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Abstract 

 
Optimization of Water and Energy Use in Indirect Evaporative Cooling Systems by CFD 

Mansi Prajapati, MS  

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Dereje Agonafer 

Data center cooling is becoming important to maintain environmental condition for ITE- 

Information technology equipment. Conventional evaporative wet cooling media lowers the temperature 

of the dry bulb temperature of incoming air in which heat transfer to water film and sensibly cool the 

product air by increasing moisture into air. Wet cooling media technique requires large quantity of clean 

water, which is reducing area where water is very less. Therefore, indirect evaporative cooling is good 

alternative. Chiller plants/Indirect Evaporative cooling(IEC) are used as a cooling source for larger data 

centers as they are more efficient in heat transfer without adding moisture into product air. In this study, 

Chilled water is supplied to the heat exchanger unit ASC- 8 row copper coils indirect heat exchanger. Hot 

air stream across the coils transfer heat energy to the chilled water inside the coil and excessive moisture 

in secondary air will be condensed before the outlet as it will reach to the dew point. Focus of this study is 

to identify the various configurations for cooling coils. Parametric study has been carried out to show the 

impact of both water and air velocities on coil performance. Variable primary flow of water in chilled water 

cooling unit has been studied to improve efficiency with reducing pumping power. Weather bin analysis of 

DFW area for several months has been done. Optimization of coil design has been studied by 

maintaining balance with coil face area, air pressure drop, and water pressure drop parameters. 

Numerical simulation data has been validated with Aztek indirect evaporative cooling unit.  
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CHAPTER 1 INTRODUCTION TO INDIRECT EVAPORATION COOLING 

1.1 Why Evaporative cooling system? 

The amount of energy needed for cooling the data center is huge and increasing day by day in 

cost and environmental impact. Where we heard about electronic components and processors, it obvious 

comes with heat when it works and to remove that heat is necessary to maintain efficiency of processor 

and. Therefore, cooling of the data center is essential and so does to maintain the cost. The most efficient 

and worldwide method for data center cooling is air-cooling. In air cooling, servers are installed in racks. 

Cool air passing through rack level cooling and dissipates the heat from the servers.  Air cooling is not 

more effective technique for cooling as it creates contamination and need more power to run fan.  

Developers have moved to green cooling technique to save energy in unique way. Besides air cooling, 

evaporative water cooling, oil immersion cooling has gained rapid acceptance in data center cooling area. 

[1].  

Evaporative cooling has been taking place over air-cooling system because of the cooling 

process depends on evaporation of water which is not harmful to environment as well as require less 

energy. Mechanical cooling system requires higher cost for installation and higher energy where HVAC 

convert 100% outside air into cool air. Evaporative cooling unit can be used in residential area, business 

building, and data center cooling. Evaporative cooling considers as green cooling system as it does not 

require any chemical reaction and does not depend on hazardous material. It depends on chilled water 

evaporative cooling unit. This cooling system can work efficiently in any weather. As shown in figure [1] 

dry bulb temperature from outside air enters through the system through fan. This air is passing through 

evaporative cooling pad and reduces the dry bulb temperature and this chilled air is passing to the 

datacenter cooling. Evaporative cooling unit has two distinguished system; Direct Evaporative cooling unit 

(DEC) and Indirect Evaporative cooling system(IEC). 
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Figure 1 Evaporative cooling system[2] 

1.2 Purpose of Direct Evaporative cooling system  

Direct evaporative cooling is not new technique has been found in recent years. It has been in 

usage for primary cooling in house in urban dry places. Researchers studied to improve efficiency of DEC 

unit so that it can be used in commercial level. Direct evaporative cooling works on ambient dry bulb 

temperature passing through fan through wet cooling media. This wet cooling media cools the hot air till 

80% efficiency. Heat absorbed by the wetted porous media which evaporates through water. This 

procedure is adiabatic process as shown in figure [3]. Cool air coming out is moistened because of direct 

contact through water. Direct evaporative cooling unit works on the principal that sensible heat is 

converting into latent heat. Sensible cooling capacity defines as to reduce the temperature where latent 

heat capacity helps to remove moisture content from the air. The latent heat follows the water vapor and 

diffuses into the air. There is various type of wetted media which are available in market like cellulose, 

fibers, or a spray of water. Efficiency of Evaporative cooling best describes by saturation effectiveness 

and system resistance curve. Saturation effectiveness is the difference between dry bulb temperature 
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difference of incoming and outgoing air. An efficient wetted pad can reduce the air temperature by as 

much as 95% of the wet-bulb depression.  

 

Figure 2 Adiabatic process of evaporative cooling system[4] 

 

 

Figure 3 Evaporative cooling system [3] 

 

1.3 Indirect Evaporative cooling system  

Indirect evaporative cooling itself defining the effect of indirect evaporation of water. It cools down 

the outside dry bulb temperature without encountering water. As shown in figure [4], there are two wet 

and dry passages for cooling. Primary outside air passing through the dry passage and secondary cool 

air meeting water and reduce the primary air temperature. The surface of wet passages is wetted by 
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spray water, so that water film evaporates into the secondary air and decreases the temperature of the 

wall. Therefore, heat is transferred from primary to secondary air without the introduction of moisture into 

the primary air stream. The air leaving the dry side of the cooler has a lower wet-bulb temperature than 

the ambient. Indirect evaporative cooling unit is not efficient as direct evaporative cooling so, in summer 

time evaporative cooler has been placed in series for higher efficiency.  Indirect evaporative cooling 

overcome the disadvantages of Direct evaporative cooling unit of adding humidity in air. Although indirect 

evaporative cooling unit is not efficient as direct evaporative cooling. 

 

Figure 4 Indirect evaporative cooling system[5] 

1.4 Combine Direct-Indirect Evaporative Cooling System 

To overcome the disadvantages of direct and indirect evaporative cooling, there is another option 

for efficient cooling without adding humidity is Direct-Indirect evaporative system. In this system, dry bulb 

temperature from outside air passing through direct evaporative cooling unit and after this air passing 

through indirect evaporative cooling to remove moisture from air through latent cooling. A two-stage unit 

as shown in figure [5] idea helpful during the summer time for higher cooling in hot region. Most of the 

time, in two-stage system, indirect evaporative cooling unit has been placed before direct evaporative 

cooling system. First stage cools the outside hot air without adding moisture in it. Second stage cools this 

air by increasing humidity. Combine stage improve efficiency than individual unit. This unit reduces 

temperature till 25℃.  
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Figure 5 Combine direct-indirect evaporative cooling system [21] 

1.5 ASHRAE Thermal Guidelines for Data Center Environment 

ASHRAE thermal guidelines provides information about implications of efficiency for ITE cooling 

on data center operation. Guidelines provides for various temperature and humidity chart to implicate 

cooling desire. This update also defined additional two data center classes increasing the number of data 

center classes to four. Table 1 and Figure 6 show the 2011 Thermal Guidelines for Data Processing 

Environments – Expanded Data Center Classes and Usage. The Thermal Guidelines apply to the inlet air 

conditions to the IT equipment. Since 2008, the recommended range for temperature and humidity of inlet 

air conditions were expanded, enabling increased number of economizer hours and reduced mechanical 

cooling. The industry now recognizes that outside air can be used with economizers to vastly decrease 

mechanical cooling in data center implementations, that there is room to exploit alternate renewable and 

sustainable cooling technologies like airside and water-side economization[5].  
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Figure 6  Data center operating envelope [5] 

Table 1 2011 ASHRAE thermal guidelines [5] 

 

 

1.6 Understanding of Psychrometric chart  

The ASHRAE Psychometric chart is a graphical form of the thermodynamic data of air. It helps to 

understand thermodynamic properties of air and the air-conditioning system process better. The following 

data is shown on the psychometric chart. (i) Dry bulb temperature (ii) Wet bulb temperature (iii) Relative 

humidity (iv) Saturation temperature/dew point (v) Enthalpy or total heat (vi) Humidity ratio (moisture 

amount) (vii) Specific volume. As per the Psychrometric chart, the dew point of the incoming air is 57 ℉. If 
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the temperature reduces due to cooling unit, air reduces the capacity of holding moisture, so it increases 

relative humidity and moisture starts condensing at dew point on the cooling coil.  

 

Figure 7 Psychrometric chart [12] 

In the cooling unit, moisture content of incoming air remains constant after entering the unit. 

Moisture content at different temperature is shown in figure 8 in psychrometric chart on vertical axes. 

Even when the air gets to the room temperature of 75°F, its moisture amount is still constant and its 

relative humidity is 71%. The same amount of moisture results in a lower percentage relative humidity at 

70°F than at 62°F. 

1.7 Chilled Water cooling system 

As shown in figure 9, chilled water cooling coil system is more efficient and cheaper option for 

green cooling system with less water consumption and less mechanical equipment. In this system, chilled 

water from the cooling tower approximately at 45 ℉ passin through copper coil. Dry bulb temperature 

from outside passing through this unit. Where chilled water cools outer surface of the copper coil sensible 
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so when hot air passing through this chilled pipe surface it transfers heat to pipe and cools down. The 

cooling coil is made of copper tubing bent into a serpentine shape with aluminum fins bonded to the 

copper tubing to increase the heat transfer area. The air handler also contains air filters that remove 

impurities from the air that is being drawn over the coil by the fan. The fan is also called a blower. A motor 

drives the blower via a drive belt that has a V section. The air handler may also be furnished with a 

heating coil that adds heat to the air when heat is required. Most chilled water air handlers contain a 

section called a mixing box. The mixing box is a sheet metal section with two openings in it as shown in 

figure 9. There is a duct connected to each opening and a damper located within each opening. One duct 

is used to bring return air from the conditioned space back to the air handler. The second duct is 

connected to the outdoors and is used to introduce outdoor air for ventilation purposes. This is an energy 

saving device in four pipe systems and a necessity in two pipe systems. In buildings with two-pipe 

systems, the building may be circulating hot water to provide heat, while some spaces with high internal 

loads require cooling. Under these circumstances, outdoor air is the only medium available to provide 

cooling. 

 

Figure 8 Chilled water cooling coil system [13] 
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Figure 9 How water-air heat exchanger is working [14] 

Some region in USA, as show in figure 10, USA has been divided as per the weather region. 

Central part of USA like Texas, Utah, Arizona are dry state which require direct and indirect both system 

to maintain moisture during cooling where eastern part of USA is moist cool region which can be work on 

indirect evaporative cooling system. Though, south eastern part like Florida, Tennessee is higher moist 

hot area where direct evaporative cooling system may increase moisture in data center. So, it requires 

IEC unit as well as chilled water cooling unit to maintain cooling in data center.  

 

Figure 10 USA map categorized by weather [23] 

1.8 Problem Facing with chilled water cooling coil design 

We facing problem with chilled water system is to provide sufficient water to each air handler unit. 

In data center cooling, water supply to each handler is in parallel path. Water will choose the least 
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resistance path to flow which will end up supplying higher pumping power to resistive path. Total 

resistance of the coil depends on length, diameter, and pumping power. Balancing valves are installed on 

each branch to add resistance to flow to guarantee that each branch receives the volume of water it was 

designed to handle as shown in figure 11. 

 

Figure 11 Chilled water colling coils system [11] 

This study is to develop a CFD model for an Indirect Evaporative Heat Exchanger and validate 

with existing experimental data. Parametric studies and design optimization of compact heat exchanger 

by considering coil water flow rate, geometry and inlet air flow rates. Variable flow rate study has been 

considered for detailed analysis and reduce pumping power. Using weather data analysis of Dallas/Fort 

worth area, study has been carried out for chiller cooling unit.    
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CHAPTER 2 Literature Survey 

Lewis factor is important relation for heat and mass transfer in cooling tower unit. J. Klopper & D. 

Kroger[10] had investigated effect of Lewis factor in heat and mass transfer analysis of evaporative 

cooling and noticed that Lewis factor must be specified explicitly. They had done experimental study with 

different Lewis number at different temperature and humidity. They have concluded that evaporation of 

water effect the Lewis number and it changes the outlet temperature. Their research concluded that one 

should select Lewis number wisely for higher efficiency. Lewis factor is ratio of thermal and mass 

diffusivity as shown in eq (1). 

  𝐿𝑒𝑤𝑖𝑠 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝛼

𝐷
 (1) 

Indirect evaporative cooling is one type of heat exchanger. Effectiveness of heat exchanger 

depend on number of transfer unit(NTU). Hsu et. Al. during their experiment they found that cooling 

effectiveness of each configuration increases with increasingly dry channel NTU and reaches maximum 

values at large NTU.[15] Results showed that it has almost no effect on the co-current and counter-

current configurations as shown in figure 12 and its degrading effect on efficiency of ross flow is 

accelerated when the ratio of dry-passage length to that of the wet passage is large. 

 

Figure 12 Co-current and Counter-current heat exchanger flow [16] 
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Pescod carried out one study using plastic pipes in indirect evaporative cooling unit with small 

prostution [17]. Pescod expected less heat transfer will be placed between plate and air because of low 

thermal conductivity of plastic. Though, it found that efficiencies of wet surface had given higher 

efficiencies of heat exchanger; which proved that wet surface gives higher efficiencies than dry surface. 

Dreyer experimented three different setup for indirect evaporative cooling and its lewis factor: In 

first model, he took variable Lewis factor for indirect evaporative cooling unit and studied for saturation 

effect in secondary air; second model ran taking Lewis number unity and found negligible effect on spray 

water evaporation and secondary air never reaches to or above saturation, so he simplified model takin 

water temperature constant in crossflow heat exchanger with initial design purpose [18]. 

Chilled water cooling unit has been taking place in all over the world from data center cooling to 

residential building as cooling unit.  Hydeman found out optimized design for operating condition to 

reduce pumping power by increasing efficiency of cooling unit [19]. His optimized model based on overall 

power consumption of plant, a plurality of chiller plant and pumps. Moreover, he had considered 

arrangements of water pumps for condenser. His experiment showed that when the projected energy 

savings exceeds the energy saving threshold value, sending the optimized chiller plant subsystems 

output to a building control system. 

During the experiment one another aspect of study for indirect evaporative cooling unit had been 

focused. Tulsidasani had performed experiment to optimized coefficient of performance for IEC unit by 

considering air and water velocity [20]. Analytical and experimental study of optimum value of COP had 

been compares and validated summer months of May and June; the agreement is satisfactory. Hence, 

this simple analysis can be used to develop the optimum IEC size for maximum cooling performance. It is 

found that there exists an optimum value of process air velocity for which COP is maximum. The 

maximum value of COP increases with decreasing wet air velocity without significantly accepting process 

air cooling. 

Moisture content of the air poses serious risk for damaging ITE of data center. Thus, Morentsen 

studied about moisture modelling of incoming air in room and heat and moisture transfer in walls by 

applying them as fluid walls [8]. In a 3D configuration, the impact of different boundary conditions are 

investigated and the results are discussed. The changes of boundary conditions that are studied are 
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velocity, moisture and temperature conditions for room air. They had concluded that at higher 

temperature, when outlet temperature reaches to dew point it condense excessive water droplets.  

Moving forward to the main research of this paper is based on chilled water cooling coil. X. Tang 

has given important results from his experimental setup of 8-row chilled water cooling coil[9]. He had 

found out the physical model involved with solution of transient energy solved with partial differential 

equation. Temperature distributions in the direction of water flow are handled by using a finite-volume 

aapproximation to the partial differential equations. A fin efficiency method is utilized to characterize the 

temperature distribution in fins in the air flow direction.  

2.1 Project Methodology 

Considering literature study and ASHRAE thermal guidelines along with real life experimental 

setup from MESTEX unit, this research showing CFD modelling of chilled water cooling (water-air heat 

exchanger) and validation with MESTEX unit.  This paper also considers water and energy saving 

methods for implementing further.  This study has been divided into two parts: (i) moisture interaction 

model and validation (ii) 8-row copper coil chilled water cooling unit and validation. Chapter 4 shows CFD 

validation through moisture interaction and Chapter 5 describes second part of this study.  

Motivation of this research are listed below:  

 Identifying the cooling range under various water mass flow rates to guide  you to 

optimize the pumping power  

 Study the effectiveness for different weather condition/ places demand for different 

cooling requirement to make compact model 

 To find out the optimum range of air mass flow rate and water mass flow rate  in order to 

reduce energy  

 

 

 

 

 

 



23 

CHAPTER 3 CFD MODELLIG FOR INDIRECT COOLING UNIT 

 
 CFD modelling of indirect cooling unit is based on species transport equation. In this 

research study commercial CFD software ANSYS Fluent is used for modelling approach. Indirect cooling 

unknit depends on relative humidity and cooling so it requires study of moisture interaction in system. 

This chapter is based on species of H2O in air and how it affects when temperature reduces. This work 

gives validation of moisture interaction model with the experimental model.  

3.1 Moisture interaction model and CFD validation 

Indirect cooling working on sensible and latent cooling system. Chilled water cools the surface 

sensibly where air transfer temperature to the chilled water and cools. When air temperature reduces, 

relative humidity increases and it reaches to the dew point where species of H2O starts condensation 

which calls latent cooling.  

This study based on a room which has fluid wall at the inlet and outlet side at 0℃ and outside dry 

bulb temperature enters through hole as shown in fig 13 at 20℃ with 27% relative humidity. Study shows 

the species transport and heat transfer through walls. Mortensen’s model can be used implementing 

following assumptions [8].  

 Air and water flows are steady 

 Negligible conduction in flow direction for water 

 Water and air velocities are uniform 

 Negligible energy storage within the air  

Accounting these assumptions for indirect cooling unit, we can use Mortensen’s model for 

validation purpose in this research. This model is for quite a flow over water surfaces. So turbulence 

model can be used for CFD modelling. 

 

3.2 Moisture Modelling test case and Flow condition 

To validate the species transport model, a test case with simple geometry is considered here. 

Two fluid walls placed at the inlet and outlet side where air is passing through the hole.  
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Figure 13 CAD model of fluid walls and room [8] 

 

Geometry with all dimensions of the test case is shown in figure 13. All dimensions are given in 

m. Flow conditions are given in table 2. 

 

Table 2 Flow conditions [8] 

AIR INLET 

Temperature 20° C 

Relative Humidity 27% 
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Mass fraction of water 0.00979 kg 

Velocity 0.167 m/s 

                                                          Fluid 

Water Immobile 

Temperature 0° C 

  

Species transport equation has been used for moisture content in air. 

3.3 Governing Equations  

ANSYS Fluent solves continuity, momentum and energy equation along with species transport. 

Equation 2 represents continuity equation used for this case [7]. 

 𝜕𝜌

𝜕𝑡
+ ∇. (𝜌�⃗� ) = 𝑆𝐷𝑃𝑀 + 𝑆𝑂𝑡ℎ𝑒𝑟 (2) 

 

Where, 

 𝜌 = density of fluid phase 

�⃗� =velocity in vector form 

𝑆𝐷𝑃𝑀=Discrete phase model source  

𝑆𝑜𝑡ℎ𝑒𝑟=additional mass source 

Momentum equation is shown in equation 3 for this case. Here acceleration due to droplet 

particle and viscous forces are considered [7]. 

  𝜕𝜌�⃗� 

𝜕𝑡
+ ∇. (𝜌�⃗� �⃗� ) = −∇𝑝 + ∇. 𝜏 + 𝜌𝑔 + 𝐹 𝐷𝑃𝑀 (3) 

Where, 

𝑝=Static pressure  

𝜏=stress tensor 

𝑔 =gravitational acceleration 

𝐹 𝐷𝑃𝑀= DPM force acceleration 
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Water vapor in the air is modelled using species transport in ANSYS Fluent. Species transport 

equation uses convection-diffusion phenomena to transport water vapor in the air. The general equation 

is shown in equation 4 [7]. 

  𝜕𝜌𝑌𝑖

𝜕𝑡
+ ∇. (𝜌𝑣 𝑌𝑖) = −∇. 𝐽 𝑖 + 𝑆𝑖 (4) 

 

Where, 

𝑌𝑖=local mass fraction of each species 

𝐽 𝑖=diffusive flux 

𝑆𝑖=creation of species by DPM 

Heat transfer is governed by energy equation which is shown in equation 5 [7]. 

  𝜕𝜌𝐸

𝜕𝑡
+ ∇. (𝑣 (𝜌𝐸 + 𝑝)) = ∇. (𝑘𝑒𝑓𝑓∇𝑇 − ∑ℎ𝑗𝐽 𝑗

𝑗

+ 𝜏�̿�𝑓𝑓. 𝑣 ) (5) 

 

Where, 

E=enthalpy 

𝑘𝑒𝑓𝑓=effective thermal conductivity  

𝐽 𝑗=diffusive flux due to species 

 

3.4 CFD model validation and results 

Using above governing equations for the flow simulation with enabling species transport equation 

with steady state analysis of k-𝜀 turbulence model has been carried out.  Hydraulic diameter is 0.0127 

and turbulence intensity is 6% where Reynolds number is higher than 10^5 which lid to consider k-𝜀 

turbulence model[7] with enhanced wall treatment to derive condensation near wall. Thermal and mass 

diffusivity has been considered constant at 1.9*10^-5 cm2/s. Viscocity and density are mass weighted for 

calculation. 
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Figure 14 Heat transfer between air-water 

 

As we can see in figure 14 that applying 293K temperature at inlet air reduced temperature at 

284.3K. which shows almost 10K reduction. At the outlet side water started condensing which helps to 

reduce moisture content from air till 0.0076. Heat transfer rate of this system is 28.93K. This results show 

that CFD model for indirect cooling unit is validated with existing data. Likewise, relative humidity 

increases up-to 45% [8]. It proves that Species transport model can be used further for this research 

work. 
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CHAPTER 4 Chilled water cooling coil: CFD modelling and validation 

   

4.1 CAD Model and dimension 

ASC 8-row chilled water cooling coils has been designed in CATIA V5 CAD software 

using solid surfaces which are shown in figure 15. Dimension has been takes as shown in Table 

3. Coils are made up of copper because of higher thermal conductive material.  

 

Figure 15 Baseline 8-row coil model [9] 

 
Table 3 Dimension of baseline 8-row coil model [9] 

Coil face width 0.6096m 

Coil face height 0.6096 

Coil face depth 0.264 

Tube diameter 0.0127m 



29 

 

4.2 Flow condition  

Flow conditions are shown in table 4. Baseline case of air velocity is taken as 0.6m/s.  case is 

baseline case 8 row coils in parallel.  

 

Table 4 Flow domain condition for baseline model [9] 

Boundary Condition  

Air Inlet Temperature 27℃ 

Air velocity(m/s) 0.6 

Relative Humidity (%) 34.9 

 

Water Inlet Temperature 2℃ 

Water Inlet Velocity  0.5 

Relative Humidity at Outlet 57.8% 

 

 After applying equation 2,3,4 and k-𝜀 turbulence model to baseline case model it reduces 

temperature of air from 27℃ to 17.8℃ which is showing almost 10℃ reduction in outlet side as shown in 

figure 16. Results are validated with experimental study from ref as shown in table 5.  

Reduction in Temperature Temperature outlet Air℃ Water outlet Temperature℃ 

Numerical Study 10.10 12.20 

Experimental study [9] 10.45 12.85 

Error (%) -3.49 -5.32 
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Figure 16 CFD Analysis of baseline case 

 Baseline case study proves that applied CFD modelling is appropriate and gives 

expected results. Moving further to make this study more realistic, research continues with validating CFD 

model with MESTEX unit with boundary condition. Flow condition has been takes as shown in table 5.  

 

Table 5 Boundary condition for MESTEX unit [21] 

Air Inlet Velocity  0.6m/s 

Water inlet velocity 0.8m/s 

Relative humidity  35.8% 

 

Applying CFD model it reduces temperature in summer weather from 90℉ to 75℉ as 

experimental setup.   
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Figure 17 Validation with MESTEX modular unit [21] 

As show in table 6, temperature difference between experimental and analysis is 2.66% which 

can be neglected as during process they use air filters which reduce the velocity. We can say that this 

research has been validated with experimental setup. We can use this flow condition for further study.  

 

Table 6 Percent Error in validation  

 Air Temperature outlet ℉ Humidity (Rh%) 

CFD 77.10 63 

Experimental 75 58.7 
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Error(%) 2.66 7.32 

 

4.3 Grid Independence Study 

Grid independence study has also been carried out for baseline case of Indirect cooling design 

and temperature of 310K and 0.6 m/s. 6 million cell is threshold value in this research work. Up to 6 

million cells, junction temperature reduces significantly which is shown in figure 18. After this limit 

temperature change is within an agreement. After 6 million cells, it remains constant. For future study of 

this research work 6 million cells have been used for meshing. 

 

Figure 18 Grid independence study 
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CHAPTER 5 Parametric and optimization results 

 

5.1  Parametric study  

As shown in fig 19, air mass flow rate has been taken in range from 0.05 to 0.3m/s and water 

mass flow rate has been taken from 0.01 to 0.2 kg/s. It shows that as mass flow rate increasing 

efficiency decreases and so vice-a-versa. It helped to find out recommended zone by optimum range 

for air mass flow rate is 0.05-0.2 kg/s and for water mass flow rate is 0.04-0.17 kg/s. Parametric study 

by CFD reduced the cost of experiment and gives exact results in less timing.  

 

 

 

 

Figure 19 Air mass flow rate vs water mass flow rate 

 

5.2  Saturations effectiveness curve 

There are two ways to find out the efficiency of cooling system. 1. Saturation effectiveness 2. 

System resistance. Here, we  have focused on saturation effectiveness. Saturation effectiveness is a 
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mathematical representation of efficiency of the system which is shown in equation 6. It requires three 

quantities: inlet temperature and relative humidity and outlet temperature.  

   𝜀𝑒 =
𝑡1−𝑡2

𝑡1−𝑡′ 100% 

 

(6) 

Where,  

  𝜀𝑒 =saturation effectiveness,% 

  𝑡1= dry-bulb temperature of entering air, ℉ 

  𝑡2= dry-bulb temperature of leaving air, ℉ 

  𝑡′= wet bulb temperature of entering air, ℉ 

 

 

Figure 20 Saturation effectiveness curve for overall system 

As shown in figure 20, at different air velocity and different water velocity outlet temperature 

changes. Saturation effectiveness curve helpful for different climate. It helps to find out how much data 

center requires cooling as per ASHRAE guidelines at different outlet temperature. It helps to save energy 

in winter timing when temperature is low outside, requirement of the air mass flow rate and water mass 

flow rate reduces as well.  
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Moreover, this curve can be helpful in compact modelling of DEC and IEC in Flowtherm, six-

sigma room or Flovent software for easy setup as shown in figure [21] and figure [22] .  

 

 

Figure 21 Compact modelling of IEC & DEC in Flow-therm [22] 

 

Figure 22 CFD analysis after applying 75% SE to unit [22] 

 

5.3 Variable primary flow study  

Variable primary flow is little be complicated for understanding and higher for efficiency. In chilled 

water cooling coils, there are just one inlet of water from cooling tower. It requires higher pumping power 

for water to reach at high water head and requires less power for bottom pipe which has lower head. 
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Variable primary flow is for to reduce pumping power and less water usage. In this research, there are 

two batches at lower velocity and optimum range velocity as shown in figure 22.   

 

 

 

Figure 23 Variable primary flow setup in coils 

 
As shown in Table 7, Batch 1 and Batch water velocity has been distributed. Applying this 

condition for analysis and optimization of water.  Variable flow can be distributed by applying water pump 

to each coils to control. 

Table 7 Velocity distribution 

Batch 1 Water Velocity Batch 2 Water Velocity 

0.1 0.2-1.5 

0.2 0.2-1.5 

0.3 0.3-1.5 

0.4 0.4-1.5 

0.5 0.5-1.5 
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Figure 24 Variable water flow vs outlet temperature 

As show in Figure 24, graph indicates outlet temperature by considering different temperature in 

coils. Indirect cooling coils give 75% maximum saturation effectiveness which means it can reduce 

temperature 10℃ at highest level. Inlet dry bulb temperature was taken in calculation was 310K. Graph 

shows that even after changing the flow rate in coils it does not change the efficiency of unit it maintains 

0.6 0.6-1.5 

0.7 0.7-1.5 

0.8 0.8-1.5 

0.9 0.9-1.5 

1 1-1.5 
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constant in optimum range of water velocity shown in Figure 20.  At constant water velocity v=0.4m/s, 

outlet temperature of air was 298K where appling variable flow in coils at batch 1: v=0.1 and batch 2: 

v=0.4; temperature at outlet side is 297K. so we can say that reduction in pumping power will be 37.5%.   
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CHAPTER 6 CONCLUSION OF CHILLED WATER COOLING MEDIA AND FUTURE 

SCOPE 

6.1 Conclusion 

 Optimum thermal performance can be achieved at air mass flow rate from 0.05 to 0.2 

kg/sec where current air mass flow rate is 0.5 kg/sec which saved energy almost 50% 

 Optimum water mass flow rate obtained at 0.05 to 0.3 Kg/sec; it requires 1500 GPH 

pump instead of 2000 GPH 

 IEC unit can be operated efficiently with variable primary flow with 37.5% low pumping 

power 

 Shape optimization gives 13% of pumping power reduction which is operational efficiency 

and manufacturing cost is same because material volume is same 

6.2 Future scope 

 Indirect chilled water cooling is efficient system. During winter, dry air is passing through 

the system which can be harmful to the ITE; so, it is beneficial if we run system with DEC 

unit to maintain humidity. 

 Cooling coil efficiency not only depends on water and air temperature, it also depends on 

number of coils, coil diameter, face area of coil, ratio to cooling length to diameter. It is 

important to find out most efficient design through parametric study in CFD for real-life 

implementation.  

 Heat transfer performance varies with different cross section shape. Study of different 

cross section like oval, helical shape should be carried out through analytical and CFD  

 Analytical study for chilled water cooling unit should be carried out and validated with 

experimental results from MESTEX unit  

 Study should be carried out through steady state and transient level and compare for 

better results  
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