
IMPLEMENTATION OF A JAVA PROCESSOR ON A FPGA 

by 

OMKAR JOSHI 

 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 

 
 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

December 2016 



ii 

Copyright © by Omkar Joshi 2016 

All Rights Reserved 

 



iii 

Acknowledgements 

I would like to express my gratitude to the faculty at UT Arlington, my thesis 

committee Prof. David Levine, Dr. Ali Davoudi and Dr. Ramtin Madani, most particularly 

Prof. David Levine for the constant encouragement and guidance throughout, without 

whom this project would never have come to fulfilment. 

I want to extend my thanks to Mr. William Hunter, for helping with the 

implementational details and Dr. Bill Carroll for his sound words of advice.  

Last but not the least, I express my thanks to my parents, family and friends for 

supporting me and being there every step of the way. 

Nov 17, 2016 
 



iv 

Abstract 

 
IMPLEMENTATION OF A JAVA MACHINE ON A FPGA 

Omkar N Joshi, MS 

The University of Texas at Arlington, 2016 

Supervising Professor: David Levine and Ali Davoudi 

Java, a programming language developed by Sun Microsystems in 1991, now 

managed by Oracle, has become one of the most popular computer languages for 

application development. This popularity can be credited to Java being architectural neutral 

and portable. It means that a Java program executed on any computer will yield the same 

result, irrespective of the underlying hardware.  

When a Java program is compiled it creates a Java class file. The class file 

contains instructions known as Bytecodes, which are executed by the Java Virtual Machine 

(JVM). The JVM is an abstract processor, which interprets and translates the bytecodes 

into instructions for the native processor. The process of interpretation, along with 

functionality such as dynamic linking, Just-in-time compilation and on demand class 

loading, makes the execution of a Java application slower than compiled programs. 

In order to speed up this execution of the Java program, this project has developed 

a processor for which the bytecodes are the native instructions. This eliminates the time 

spent on interpretation and translation. Also, with the implementation of the Java Machine, 

certain run-time dependencies can be eliminated by pre-processing the class file, before 

loading it into the memory of the processor.  



v 

By developing the processor on a Field Programmable Gate Array (FPGA), the 

Java Machine can be kept up to date with the newest Java standards even after it is 

installation in the field. The FPGA processor can also be optimized to specific applications 

by adding application specific hardware modules to speed up the processing.  

  



vi 

TABLE OF CONTENTS 
Acknowledgements .............................................................................................................iii 

Abstract .............................................................................................................................. iv 

List of Illustrations .............................................................................................................. ix 

List of Tables ...................................................................................................................... xi 

Chapter 1 Introduction to Programming Languages ........................................................... 1 

Definitions ....................................................................................................................... 1 

Classification of Programming Language ....................................................................... 2 

Virtual Machines ............................................................................................................. 3 

Chapter 2 Java .................................................................................................................... 6 

Introduction to Java ........................................................................................................ 6 

Terminology related to Java ........................................................................................... 7 

Source File and the Class File ................................................................................... 8 

Java Virtual Machine .................................................................................................. 8 

Java Runtime Environment ........................................................................................ 9 

Java Development Kit................................................................................................. 9 

Chapter 3 Java Virtual Machine and the Class File .......................................................... 11 

The Java Virtual Machine ............................................................................................. 11 

Class Loader Sub-system ........................................................................................ 12 

Runtime Data Areas ................................................................................................. 14 

Execution Engine ...................................................................................................... 15 

The Class File ............................................................................................................... 16 

Bytecode ....................................................................................................................... 20 

Operand Stack Management Instructions ................................................................ 22 

Arithmetic and Logical Instructions ........................................................................... 22 



vii 

Control Transfer Instructions .................................................................................... 22 

Load and Store Instructions ..................................................................................... 23 

Object Creation and Field Access Instructions ........................................................ 23 

Method Invocation and Return Instructions .............................................................. 23 

Type Conversion Instruction ..................................................................................... 23 

Special Instructions .................................................................................................. 24 

Chapter 4 Programmable Hardware ................................................................................. 25 

Introduction to Programmable Hardware ..................................................................... 25 

Programmable ROM ................................................................................................. 26 

Programmable Logic Arrays ..................................................................................... 26 

Programmable Array Logic ....................................................................................... 27 

Generic Array Logic .................................................................................................. 27 

Complex Programmable Logic Devices ................................................................... 28 

Field Programmable Gate Arrays ............................................................................. 29 

Advantages of Programmable Hardware ..................................................................... 31 

Chapter 5 The Java Bytecode Execution Engine (JBEE) ................................................. 33 

Introduction to JBEE ..................................................................................................... 33 

Similar Projects: ............................................................................................................ 34 

Limitations of the JBEE ................................................................................................ 37 

Chapter 6 Class File Processing ....................................................................................... 38 

Bytecode Extractor ....................................................................................................... 38 

The Bytecode Extractor Program ............................................................................. 38 

Memory Initialization File and Generator ...................................................................... 43 

The Memory Initialization File ................................................................................... 43 

The Memory Initialization File Generator Program .................................................. 44 



viii 

Chapter 7 Architectural Overview of the JBEE ................................................................. 45 

Components of the JBEE ............................................................................................. 46 

Memory Areas .......................................................................................................... 46 

PC module ................................................................................................................ 52 

Decode Module ........................................................................................................ 53 

States of the State Machine ..................................................................................... 54 

Execute Module ........................................................................................................ 60 

Chapter 8 Instruction Execution ........................................................................................ 70 

Example 1 ..................................................................................................................... 70 

Example 2 ..................................................................................................................... 72 

Chapter 9 Results ............................................................................................................. 76 

Implementation ............................................................................................................. 76 

Simulation ..................................................................................................................... 77 

Waveform 1 .............................................................................................................. 77 

Waveform 2 .............................................................................................................. 80 

Waveform 3 .............................................................................................................. 83 

Waveform 4 .............................................................................................................. 86 

Appendix A List of Instructions Implemented And State Transition .................................. 88 

References ...................................................................................................................... 100 

 
 

 

 

 

 

 



ix 

List of Illustrations  

Figure 2-1 Compilation and execution of Java Classes  ..................................................... 7 

Figure 2-2 Components of JRE  ......................................................................................... 8 

Figure 2-3 Components of the JDK  ................................................................................... 9 

Figure 2-4 Components of Java platform by Oracle  ........................................................ 10 

Figure 3-1 Internal Architecture of the JVM  ..................................................................... 11 

Figure 3-2 Components of the Class Loading Subsystem  .............................................. 13 

Figure 3-3 Components of Execution Engine  .................................................................. 16 

Figure 3-4 Structure of the Java class file ........................................................................ 17 

Figure 4-1 Classification of Programmable Hardware  ..................................................... 25 

Figure 4-2 Internal Architecture of PLAs  .......................................................................... 26 

Figure 4-3 Internal Structure of Generic Array Logic  ....................................................... 27 

Figure 4-4 Functional Block diagram of an CPLD  ........................................................... 28 

Figure 4-5 Internal Structure of a CPLD  .......................................................................... 29 

Figure 4-6 Building blocks of FPGA  ................................................................................. 30 

Figure 5-1 Internal architecture of aJ100 .......................................................................... 35 

Figure 5-2 Komodo Java Processor Core ........................................................................ 36 

Figure 7-1 Overview of the JBEE ...................................................................................... 45 

Figure 7-2(a) Sample data for method_ROM 

 (b) Input and Output buses for method ROM .................................................................. 47 

Figure 7-3 (a) Sample data for Constant Pool ROM 

 (b) Input and Output buses for Constant Pool ROM ........................................................ 49 

Figure 7-4 Organization of stack memory ......................................................................... 50 

Figure 7-5 (a) Sample data for Stack RAM  

(b) Input and Output buses for Stack RAM ....................................................................... 51 

file:///C:/Users/omkar/Desktop/final%20edit%20with%20chapter%205.docx%23_Toc468831053
file:///C:/Users/omkar/Desktop/final%20edit%20with%20chapter%205.docx%23_Toc468831054


x 

Figure 7-6 Overview of PC module ................................................................................... 52 

Figure 7-7 Input output representation of Decode module ............................................... 53 

Figure 7-8 Overview of execute module ........................................................................... 61 

Figure 7-9 Overview of stack access subsystem .............................................................. 62 

Figure 7-10 Overview of comparator submodule .............................................................. 65 

Figure 7-11 Overview of ALU submodule ......................................................................... 66 

Figure 7-12 Physical implementation of arithmetic unit .................................................... 67 

Figure 7-13 Physical implementation of jump adder ......................................................... 68 

Figure 9-1 Image showing the PC (seven-segment LEDs) 

 and state (red LEDs) on the DE1 board........................................................................... 76 

Figure 9-2 Waveform depicting initialization of memory registers .................................... 79 

Figure 9-3 Waveforms indicating the start of processing .................................................. 81 

Figure 9-4 Waveforms showing PC update ...................................................................... 83 

Figure 9-5 Waveform showing end of execution .............................................................. 86 

Figure 9-6 Image showing end of execution and final PC. ............................................... 87 



xi 

List of Tables 

Table 1-1 Comparison of Virtual Machines and features  ................................................... 5 

Table 3-1 List of prefix/suffix and the datatype represented  ............................................ 21 

Table 6-1 List of Constant type and corresponding values  ............................................. 39 

Table 6-2 List of Flags and corresponding mask value  ................................................... 41 

Table 6-3 Table representing different data input formats for.mif files  ............................ 44 

Table 7-1 State and corresponding value of state register ............................................... 55 

Table 7-2 Value on operation bus and corresponding operation ...................................... 68 

Table 7-3 Value on operation bus and corresponding operation ...................................... 69 

Table 9-1 Signals/Registers and corresponding initial values .......................................... 78 

 

 

 



1 

Chapter 1 

Introduction to Programming Languages 

Definitions  

For computers to accept commands from a user and perform specific tasks, there 

needs to be a means for communication between the humans (users) and the computer. 

This means for communication are provided by programming languages.  

Some definitions of a programming language are as follows:  

 “A programming language is a notation for writing programs, which are 

specifications of a computation or algorithm” [1].  

 “A vocabulary and set of grammatical rules for instructing a computer to perform 

specific tasks” [2]. 

  “A programming language is a computer language engineered to create a 

standard form of commands. These commands can be interpreted into a code 

understood by a machine. Programs are created through programming languages 

to control the behavior and output of a machine through accurate algorithms, 

similar to the human communication process” [3]. 

 “A programming language is considered to be a set of characters and rules for 

combining them which have the following characteristics: (1) machine code 

knowledge is unnecessary; (2) there is good potential for conversion to other 

computers; (3) there is an instruction explosion (from one to many); and (4) there 

is a notation which is closer to the original problem than assembly language would 

be” [4]. 

 



2 

Classification of Programming Language 

Programming Languages, depending on their nature of use and programmability, can 

be classified as below. This classification and description is inspired from [5]: 

 Machine languages  

 Assembly languages  

 Middle-level languages  

 High-level languages  

 System languages  

 Scripting languages  

 Domain-specific languages  

 Esoteric and Visual languages  

Machine languages are programming languages that can be directly interpreted in 

hardware. For modern computers, the machine language is usually opcodes which is a 

stream of binary data. Assembly languages are machine languages wrapped in a text 

making it human readable. Assembly languages use mnemonics to differentiate 

instructions. These instructions can be then fed to an assembler to generate machine code. 

Assembly languages and machine-level languages together make up low-level languages. 

Middle-level languages, such as C/C++ can be used to program any computer but the 

results of these programs may wary depending on the under lying architecture.  

High level languages, unlike machine level languages and assembly languages, 

can usually be portable from one machine to another. High level languages use either a 

compiler or an assembler to convert a high level, human readable code into machine code. 

Some examples of high level languages are Java, Pascal, Python, Ruby and C#.  



3 

System languages are languages such as PL-6 and ADA, which may be used 

more for managing the computer system rather than writing application code. They usually 

perform tasks such as memory management, device drivers, kernel and thread 

managements. Scripting languages are frequently used to write high level code, which 

connect one or more applications together. Examples of scripting languages are PHP, 

python. Domain-specific languages are languages which can only be used for certain 

applications only, HTML is one such language for web pages and shell scripting for Unix.  

Esoteric and visual languages are meant for educational and in some cases as a challenge. 

Example of such languages are Turtle Graphics and Scratch. 

Virtual Machines 

The term Virtual machine was first coined in the 1960s as an operating system 

concept. It can be described as a software abstraction that emulates like a computer 

system (real computer) which can operate independently [6]. The virtual machine acts as 

a target to for a compilation system or a programmer. Many of high level languages such 

as Java, C#, Pascal, Python etc. use a virtual machine for its application. A virtual machine 

like an actual processor has an instruction set and manipulates memory during runtime [7].  

A comparison of some of the more popular virtual machines is listed below:   

Virtual machine  Languages  Interpreter  JIT 

Implementation 

language 

Common 

Language 

Runtime (CLR)  

C#, C++/CLI, F#, VB.NET No Yes C#, C++ 

https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Common_Language_Runtime
https://en.wikipedia.org/wiki/Common_Language_Runtime
https://en.wikipedia.org/wiki/Common_Language_Runtime


4 

Adobe Flash 

Player 
ActionScript, SWF (file format) Yes Yes C++ 

DotGNU-

Portable.NET 
CLI languages including: C# No Yes C, C# 

Forth  Forth  Yes No 
Forth, Forth 

Assembler 

HHVM  PHP, Hack Yes Yes C++, OCaml 

JVM  

Java, Jython, Groovy, JRuby, C, C++, 

Clojure, Scala and several others 
Yes Yes 

JDK, OpenJDK : 

Java, C, 

ASM ; IcedTea  

LLVM  

C, C++, Objective-C, Ada, Fortran, 

andRust 
Yes Yes C++ 

Mono  

CLI 

languages including: C#, VB.NET,Iron

Python, IronRuby, and others 

Yes Yes C#, C 

p-code machine  Pascal        

Parrot  

Perl (6 and 5), NQP-

rx, PIR, PASM, PBC,BASIC, bc, C99, 

ECMAScript, Lisp, Lua,m4, Tcl, WMLS

cript, XML, and others 

Yes Yes C, Perl 

Perl virtual 

machine  

Perl  Yes No C, Perl 

https://en.wikipedia.org/wiki/Forth_virtual_machine
https://en.wikipedia.org/wiki/Forth_(programming_language)
https://en.wikipedia.org/wiki/HHVM
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/LLVM
https://en.wikipedia.org/wiki/Mono_(software)
https://en.wikipedia.org/wiki/P-code_machine
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/Parrot_virtual_machine
https://en.wikipedia.org/wiki/Perl_virtual_machine
https://en.wikipedia.org/wiki/Perl_virtual_machine
https://en.wikipedia.org/wiki/Perl


5 

PyPy  Python  Yes Yes Python 

Rubinius  Ruby Yes Yes C++, Ruby 

Silverlight  C#, VB.NET Yes Yes C++ 

SQLite  SQLite opcodes       

Squeak  Squeak Smalltalk  Yes 

Cog  an

d 

Exupery 

Smalltalk/Slang  

Zend Engine  PHP  Yes No C 

Table 1-1 Comparison of Virtual Machines and features [8] 

The JVM and the JVM bytecodes are not only used by JAVA, some other programming 

languages that generate Java bytecode are listed below [8]: 

 Clojure, a functional Lisp dialect. 

 Groovy, a programming and scripting language. 

 Scala, an object-oriented and functional programming language. 

 JRuby, an implementation of Ruby. 

 Jython, an implementation of Python. 

 

 

 

 

 

https://en.wikipedia.org/wiki/PyPy
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Rubinius
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Silverlight
https://en.wikipedia.org/wiki/SQLite
https://en.wikipedia.org/wiki/Squeak
https://en.wikipedia.org/wiki/Smalltalk
http://www.mirandabanda.org/cog/
http://www.mirandabanda.org/cog/
http://www.mirandabanda.org/cog/
http://wiki.squeak.org/squeak/2267
https://en.wikipedia.org/wiki/Zend_Engine
https://en.wikipedia.org/wiki/PHP


6 

Chapter 2 

Java 

Introduction to Java 

Java is a programming language and computing platform first released by Sun 

Microsystems in 1995. It is now maintained and managed by Oracle. 

Some of the features/characteristics of Java, as mentioned in the Oracles developers guide 

[9] are:  

 Object Oriented:  

Java is an object-oriented language, and supports the object oriented technologies 

of C++ with certain modifications and enhancements. It is not purely object 

oriented because it supports primitive data types. 

 Architecture Neutral and Portable: 

Source code written in Java is compiled into an architecture independent object 

code and stored in a class file. This class file can be compiled on a machine and 

later executed on another machine, and should work with no or little modifications. 

The object code is executed by on a Java Virtual Machine (JVM) for the under lying 

architecture. This makes it architecture neutral. 

 Distributed:  

Java can be used to create distributed applications in the sense that programs can 

be written to access any file on the internet. 

 Secure and Robust:  

The Java compiler and interpreter have an extensive error checking mechanism. 

The object code has several tests applied to check for illegal codes, illegal memory 

accesses, illegal data conversations and verified for opcode parameter types. Java 



7 

also manages dynamic memory and exceptions. This makes the Java code secure 

and robust. 

 High Performance and Multi-Threading: 

Java comes built in with support for multi-threading. With multi-threading we can 

have operations executing in parallel, which improves the performance in terms of 

execution time.  

 Dynamic: 

Linking of the various modules in Java takes place during runtime. This makes 

Java dynamic. 

Terminology related to Java 

To understand Java and its features completely, it is important to understand the terms 

related to the programming language: 

• Source File and the Class File  

• Java Virtual Machine  

• Java Runtime Environment 

• Java Development Kit  

 

Figure 2-1 Compilation and execution of Java Classes [10] 



8 

Source File and the Class File 

The file in which a Java program or class is written is the source file. These files 

are saved with a Java extension. When the source file is fed to the Java compiler the file 

generated is a class file. The class file has a .class extension and is the input to the JVM. 

It contains all the information necessary for Java to execute the program/class. We will 

look into details of the class file, in a later section. 

Java Virtual Machine 

The Java Virtual Machine (JVM) is an abstract machine, which executes the Java 

class file. The JVM is what enables a compute to execute the Java program. Oracle which 

maintains Java, does not specify an implementation of the JVM, rather defines a 

specification that allows class files to be executed. Some tasks performed by the JVM are, 

as follows, resolving dynamic dependencies, interpreting bytecode into native processor 

instructions, garbage collection, just-in-time compilation and many more.  

The HotSpot is one implementation of JVM by Oracle. Based on the HotSpot 

implementation, BEASystems came out with its own JVM named JRocket. IBM J9 and 

Kaffe are similar JVM implementations which satisfy the Oracle specifications. 

 

 

 

 

 

 

 

 

 
Figure 2-2 Components of JRE [9] 



9 

Java Runtime Environment 

The Java Runtime Environment (JRE) provides all the functionality to run a Java 

program. The JRE is not capable of compiling a source file. It provides the libraries, the 

JVM and other such components necessary to run applets and applications written in Java. 

The two important sections of the JRE are the Java Plug-in, which allows Java applets to 

run in a browser, and Java Web Start which allows standalone applications to be deployed 

over a network [11]. 

Java Development Kit 

The Java Development Kit (JDK) is the superset of the JRE. The JDK contains all 

the components of the JRE along with tools that allow a source file to be compiled and 

debuggers that allow for development of Java applets and applications.  

Figure 2-3 Components of the JDK [12] 



10 

 

Figure 2-4 Components of Java platform by Oracle [11] 

  



11 

Chapter 3 

Java Virtual Machine and the Class File 

The Java Virtual Machine 

The JVM, as mentioned previously, is an abstract (virtual) computing machine. The 

JVM is what makes Java independent of the underlying hardware and operating system 

on which the source code is running. It does so by providing a layer of abstraction between 

the compiled Java code and the underlying system.  

When a Java program is compiled, it creates a class file. This class file contains 

the bytecode. The Java bytecode acts is the machine language for the JVM. Each JVM 

instruction contains a one-byte opcode and zero or more operands. Each JVM instruction, 

bytecode, has a pre-defined mnemonic and this can be the assembly language equivalent.  

 

Figure 3-1 Internal Architecture of the JVM [13] 

The JVM is a 32-bit stack based machine. This means the size of a word in the 

JVM is 32 bits i.e. each register in the stack can store a 32-bit value. The stack oriented 

design of the JVM helps keep the instruction set compact and the implementation small. 



12 

But the JVM also supports primitive data types: byte (8-bits), short (16-bits), int (32-bits), 

long (64-bits), float (32-bits), double (64-bits), and char (16-bits). All the numeric data types 

the JVM operates on are signed, except for char which is a 16-bit Unicode encoded 

character. The JVM can address up to 4 gigabytes (2 to the power 32) memory addresses. 

The location of these 4GB is the decision of the implementer of the particular JVM.  

The JVM can be split into three sections: 

• Class Loader Sub-system 

• Runtime Data Areas 

• Execution Engine 

Class Loader Sub-system 

The class loader sub-system, as the name indicates, loads the JVM memory with 

the relevant class information. The class loading occurs during run time and is on demand. 

The operation of the class loader subsystem can be divided into three sections (a) load, 

(b) link and (c) initialize [13].  

During the load phase, the class loading subsystems reads the class files from 

different sources such as the filesystem directly, a .jar file or the network socket and the 

Internet. After reading these files, they are loaded into the appropriate memory area of the 

JVM. The class loader has three parts itself, which are (a)bootstrap class loader, (b) 

extension class loader and the (c) application class loader. 

The bootstrap loader is responsible for loading the classes internal to the JVM 

implementation. These classes are usually located in the rt.jar folder which is downloaded 

as a part of the JRE. The extension class loader also loads file provided by the JRE, and 

these are additional classes used by the Java application present in the jre/lib/ext folder. 

The application class loader loads the class files generated for the specific application. 



13 

These classes are mentioned as part of the environment class path or part of the   -cp 

parameter, which is part of the JVM.  

 

Figure 3-2 Components of the Class Loading Subsystem [14] 

After the load phase, the link phase is involved. The operation of the link phase is 

split into three sections (a) verify, (b) resolve and (c) prepare. These sections may be run 

in parallel or sequentially depending on the implementation of the JVM.  

During the verify phase, the class loader checks if the class file loaded by the 

loader is compatible with the version of the JVM. It performs bytecode verification, magic 

number checks and checks if the interface is structurally correct. During the prepare phase, 

static fields are assigned to the classes and interfaces, the memory allocation for instance 

variables is done during run-time. These static fields are then initialized to their default 

values, specified by the Java specifications. During the resolve phase, the symbolic 

references to different elements such as arrays, fields and static and dynamic classes are 

translated from constant pool references to actual references in the memory. Each kind of 

reference resolution has its own format and is a heavy process.  



14 

The final phase of the class loader subsystem is initialize. During this phase, static 

initializers of the class are executed, along with setting the initial values of static fields.  

Runtime Data Areas 

The JVM, to execute a program, needs memory not only to store the class file and its 

related components but also to store data generated during the execution such as objects, 

arrays, local variables, return values and intermediator results. The memory which the JVM 

accesses is known as the run time data areas. For the JVM, these run time data areas can 

be divided into 5 areas: (a) the method area; (b) heap (c) Java Stack; (d) Program Counter 

(PC) registers; (e) native method stack.  

 Method Area and the Program Counter(PC): 

The Method area is where the bytecode resides in the JVM. The PC points to the 

next instruction to be executed. Each thread has its own PC and is used to keep 

track of the execution.  

 Heap:  

The heap in Java is where all the objects are stored. When a memory is allocated 

using the keyword new, the same amount of memory is kept aside in the heap for 

the particular object. The Garbage Collector runs on the heap, and frees up 

memory when the object can no longer be accessed i.e. is out of scope. 

 Java Stack: 

The Java stack not only contains the local stack but also the local variables array. 

Each method in the code has its own stack and is called a stack frame. The stack 

is used to store parameters for the bytecode instructions along with the results and 

hence, acts as the workspace for the instructions. They are also used to pass 

parameters to and from (return) different methods. 



15 

The local variables array contains all the variables used by the method. The local 

variables array is pointed to by the vars register. 

The stack frame also consists of another section called as the execution 

environment. The execution environment contains registers such as the optop 

register which points to the top of the operand stack. It execution environment is 

itself pointed to by the frame register. 

 PC registers and native method stack: 

The PC register, like in any other processor points to a memory location in the 

method area, from where the next instruction is to be fetched. With multi-threading, 

each thread is assigned its own PC, which allows to keep track of the individual 

instruction to be executed in each thread.  

The native method stack is used in case of methods or functions imported into the 

Java program from other languages such as C/C++.  

Execution Engine 

The execution engine, as the name indicates, is responsible for execution of the 

Java bytecode. The execution engine can be broken down into 4 sections, which perform 

different operations but all run in parallel. The four blocks are (a) interpreter, (b) JIT 

compiler, (c) hotspot profiler and (d) garbage collector.  

The interpreter reads the Java bytecode from the runtime data area and converts 

them into the native processor instruction. This translation of instruction sets is what allows 

Java to be an architecturally neutral programming language. To do this translation, the 

interpreter uses the native method libraries present in the JVM. The JIT compiler speeds 

up the translation of the instructions by doing them in advance. The execution engine 

initially executes the interpreter, and at the appropriate time invokes the JIT compiler to 

translate most of the bytecode into native instructions for the processor. This may be a 



16 

memory heavy process; it leads to considerable speed up in running the Java application. 

Similar optimization is provided by the hotspot profiler; it detects a sequence of bytecodes 

repeatedly used and stores them in memory which is faster to access. This saves memory 

read times further boosting the performance of the JVM.  

The garbage collector is responsible for scavenging process. It frees up the 

memory used by the heap. When an object goes out of bounds, the garbage collector frees 

up the memory by marking it as such. Such processes in the other languages must be 

performed by the user by using the free keyword. And may lead to data corruption and/or 

add to the memory usage by the program.  

 

Figure 3-3 Components of Execution Engine [14] 

The Class File 

The class file is a file with the extension .class and is generated by the Java 

compiler. It contains the bytecode and can be executed by the JVM. The Java compiler will 

generate a class file for each class or interface defined in the source code. The class file 

is organized as a stream of 8-bit bytes. All the 16-bit, 32-bit and 64-bit values are 

constructed by simultaneously reading multiple bytes. The bytes are represented in big-

endian notation i.e. the most significant byte comes first. 



17 

For ease of understanding, the oracle documentation defines its own set of 

datatypes: The types u1, u2, and u4 represent an unsigned one-, two-, or four-byte 

quantity, respectively. 

 

Figure 3-4 Structure of the Java class file [15] 

The different sections of the class file are as follows: 

 magic 

The magic is a 4-byte code used to identify a class file. The value of magic has to 

be 0xCAFEBABE. 

 minor_version and major_version 

The major and minor are both 2-byte fields and are version numbers of the 

respective class file. Together they determine the version of the class file format. 

 



18 

 constant_pool_count 

The constant_pool_count field gives the number of entries in the constant pool plus 

one.  

 constant_pool[] 

The constant_pool is a table of structures representing various string constants, 

class and interface names, field names, and other constants that are referred to 

within the ClassFile structure and its substructures. The format of 

each constant_pool table entry is indicated by its first "tag" byte. The constant pool 

occupies about 60% of the class file and is the biggest section of the class file. 

 access_flags 

The access_flags field is used to denote the permissions and properties of the 

respective class or interface. 

 this_class 

The this_class field points to an entry of the type CONSTANT_Class_info in the constant 

pool table. It represents the class or interface defined in this class file.  

 super_class 

The super_class field either is a zero or points to an entry of type 

CONSTANT_Class_info in the constant pool table. It represents the direct super class of the 

class or interface defined in the class file. 

 interfaces_count 

The value of the interfaces_count item gives the number of direct superinterfaces 

of this class or interface type. 

 

 



19 

 interfaces[] 

Each value in the interfaces array points to an entry of type CONSTANT_Class_info in 

the constant_pool table. It representing an interface that is a direct superinterface 

of this class or interface type. 

 fields_count 

The fields_count field gives the number of field_info structures defined in the class 

file. 

 fields[] 

A field in Java is defined as a class, interface, or enum with an associated value. 

Fields are variables defined in the class and have class wide scope, unlike local 

variables. 

The entries in the fields table give the complete description of the fields declared 

in this class or interface. 

 methods_count 

The method_count field gives the number of method_info structures defined in the 

class file. 

 methods[] 

A method in Java can be defined as a set of code which is referred to by name 

and can be called (invoked) at any point in a program simply by utilizing the 

method's name. Methods are equivalent to functions in C/C++.  

The entries in the method table give the complete description of the method 

declared in this class or interface. 

 attributes_count 

The attributes _count field gives the number of attributes_info structures defined in the 

class file. 



20 

 attributes[] 

Attributes are used in the class file, field_info, method_info, 

and code_attribute structures of the class file format. The entries in the 

attributes table give the complete description of the attributes declared in this class 

or interface. 

Bytecode  

As described earlier, the JVM is an abstract processor, and similar to any other 

physical processor, it has its own instruction set known as the Java bytecodes. The 

bytecodes are present in the code_attribute section of the class file, in the 

method_info structure. These bytecode instructions are then interpreted into the native 

processor instructions by the interpreter.  

The bytecodes are a sequence of instructions to the JVM, that allows it to perform 

a specific task defined in the corresponding method. Each bytecode instruction has an 8-

bit opcode and may have additional bytes. Most bytecode instructions have a pre-defined 

fixed length, some instruction lengths may vary and must be decoded during run-time. The 

opcode in each instruction specifies the operation to be performed, while any additional 

information required is available in the additional bytes.  

Since the length of the opcode is 8-bit, the JVM allows 256 instructions. As of 2015 

(Java 8), only 198 instructions are in use, 3 opcodes are reserved from use permanently, 

while the remaining 54 can be used in the future [16]. The opcodes 254 and 255 i.e. 0xfe 

and 0xff are reserved to allow implementation of traps or backdoors. These traps are meant 

to allow special functionality to be implemented in both hardware and software. These 

instructions are labeled impdep1 and impdep2 respectively. The third reserved opcode is 

202 i.e. 0xca, which is labeled as breakpoint and is intended to be used for debugging [16].  



21 

Prefix-suffix Operand type 

i integer 

l long 

s short 

b byte 

c character 

f float 

d double 

z boolean 

A reference 

 

 

To add to ease of understanding the Java bytecode instructions, the mnemonics 

contain prefixes or suffixes which specify the datatype of the operands along with the 

operation. The suffix and corresponding datatype can be seen in table 3-1. 

Similar to any other assembly instruction set, the Java bytecode instructions can be 

classified, based on their operation, into the following categories, as mentioned in [17]: 

 Operand stack management  

 Arithmetic and logic 

 Control transfer  

 Load and store  

Table 3-1 List of prefix/suffix and the datatype represented [16] 



22 

 Object creation and Field Access  

 Method invocation and return  

 Type conversion  

 Special Instruction 

Operand Stack Management Instructions 

Instructions of this type can be used to push values onto the stack top from different 

sources. The instruction of type ldc is used to push constants onto the stack from the 

constant pool, while the instructions bipush and sipush push constants onto the stack from 

the method area. The const instructions are used to push constants of certain commonly 

used values with different datatypes onto the stack. 

Arithmetic and Logical Instructions 

The JVM is capable of handling arithmetic operations such as add, subtract, 

multiply, divide and modulo; and logical operations such as logical AND, logical OR, logical 

XOR, arithmetic and logical shifts. Each of these operation for the primitive datatypes is 

handled by the JVM, and thus has its own instruction. For example, instruction fadd adds 

two floats values from the top of stack. Similarly, instruction iushr right shifts the top of 

stack by a specified number of times.   

Control Transfer Instructions 

In high level languages, code snippets such as for loops, if-else blocks and do-

while loops generate code which may need to transfer control or update the PC to a non-

incremental value. The same functionality in bytecode is provided by instructions such as 

goto and of type if_compare. The goto in this case, is an unconditional jump to a different 

location.  The if_compare set of instructions compare values of two operands, and 

accordingly decide if the branch is to be taken or not.  



23 

Load and Store Instructions 

Load and store instruction are used to move, operands from the top of stack to the 

local variables frame or array elements. The load instructions push the value onto the stack 

top, whereas the store instructions pop values from the stack top and save them in the 

array or local variables.  

Similar to arithmetic and logical instructions, each datatype and destination has its 

own instruction. For example, the instruction lastore stores a long integer into an array. 

Similarly, iload_1 copies an integer from the local variable 1 onto the stack top. 

Object Creation and Field Access Instructions 

Instructions with the new keyword are usually instruction used for instantiation of 

class i.e. object creation. These instructions usually assign memory for objects on the 

heap. Examples of such instructions are anewarray. Instructions putfield and setfield are 

used to update or read the value of static fields, respectively.   

Method Invocation and Return Instructions 

Methods in Java can have different access specifiers such as static, private and  

virtual. Depending on the type of method, instructions such as invokestatic and 

invokevirtual are used, to invoke methods from a superclass invokespecial instruction is 

used. Programmers can return either a void, a reference or even numeric values such as 

integers and floats. To facilitate proper values to be transferred back to the calling method, 

instructions like areturn, dreturn, ireturn and return and many more are available.  

Type Conversion Instruction 

Casting allows the programmer to change the primitive type, to either round up or 

to obtain higher accuracy. The same operation in assembly instructions is performed by 

type conversation instructions. Java allows to increase or decrease the resolution of a 



24 

variable, and even integer to decimal and vice versa conversions. Some type conversion 

instructions are f2i, i2l, i2d and i2c. 

Special Instructions 

Tasks such as exception throwing, synchronization and table look ups are also 

assigned instructions, to allow the tasks to be performed internal to the JVM. Examples of 

such instructions are monitorenter, monitorexit, lookupswitch and tableswitch.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 

Chapter 4 

Programmable Hardware 

Introduction to Programmable Hardware 

Any hardware device which can be programmed to perform a specific task is called 

as programmable hardware. Many of these devices can be programmed in the field after 

their installation and thus are called field programmable. These devices are generically 

called Programmable Logic Device (PLDs). Unlike  most hardware chips that have a 

predefined function when they are manufactured, PLDs have an undefined function at the 

time of manufacture. Before PLDs can be used in a circuit, they need to be programmed 

and assigned a specific function to be written.  

 

Figure 4-1 Classification of Programmable Hardware [18] 



26 

The figure above shows the classification of different Programmable Logic 

Devices. The devices categorized under SPLD were devices that came out earlier and 

have very limited programmability, and hence HDPLDs were developed or evolved from 

SPLDs. 

Programmable ROM  

Though programmable ROM is only memory, engineers created with a way to 

implement logic with them. The address lines of the ROM were used as inputs and the data 

lines acted as the output. But since, most logical functions needed more than a few product 

terms, the use of PROMs for realization of logical circuits was highly inefficient. 

Programmable Logic Arrays 

PLAs also known as Field Programmable Logic Arrays (FPLA) were the first 

hardware devices designed specifically as programmable hardware. They were introduced 

by Texas Instruments in 1970 [19]. The PLA architecture consisted of two layers, the first 

was the plane of programmable AND gates and the second, a plane of programmable OR 

gates. These PLAs were designed in such a way that the inputs (or their compliment) could 

be ANDed together. And the output of the AND plane would be routed to the OR plane. 

This made PLAs suitable for implementing sum-of-product logic functions.  

The drawbacks of PLAs were slow performance due to high propagation delays and 

tedious programming technique. 

 

Figure 4-2 Internal Architecture of PLAs [20] 



27 

Programmable Array Logic 

To overcome the drawbacks of PLAs, Programmable Array Logic (PAL) were 

developed. Instead of having two levels of programmable gates, the PALs had only had a 

single plane of programmable AND gates, that fed their output to fixed OR gates. The 

inputs of the PALs were connected to the AND gates via a buffer and inverter block. The 

output of the OR gates in PALs were connected to flip-flops allowing developers to 

implement sequential circuits.  

As the PALs had a fixed OR gates, the flexibility of these devices were adversely 

affected. To overcome this drawback manufacturers created many variants of PALs.  

 

Figure 4-3 Internal Structure of Generic Array Logic [21] 

Generic Array Logic 

Generic Array Logic (GAL) devices were developed with much higher gate density 

and hence could replace more than one PAL or PLA. But the main advantage of GALs over 

the earlier generations was programmability. This allowed GALs to be used for prototyping 

and allowed design changes to be made without alterations to the circuit. 



28 

Complex Programmable Logic Devices 

Due to advancement in fabrication techniques it was possible to integrate multiple 

SPLDs such as GALs and PLAs into a single chip. Such devices were called Complex 

Programmable Logic Devices (CPLD). CPLDs are a combination of a bank of macrocells 

and fully programmable AND and OR gates. The AND/OR gates are used to implement 

the different logic functions, while, the macrocells are used to provide both sequential and 

combinational logic along with feedback paths. 

Along with the programmable gates and the macrocells, CPLDs contain a Global 

Interconnect Matrix which allows the different macrocells to be connected to each other 

and the I/O pins. Most CPLDs contain non-volatile memories which allow the device to be 

powered down yet maintain its configuration. 

 

Figure 4-4 Functional Block diagram of an CPLD [22] 



29 

 

Figure 4-5 Internal Structure of a CPLD [23] 

Field Programmable Gate Arrays 

While PALs and GALs were being developed by various manufacturers, Ross 

Freeman, co-founder of Xillinx Technologies, was working developing of programmable 

hardware by using gate array technology. This led to the development of Field 

Programmable Gate Arrays (FPGAs) in 1985.  

Internally FPGAs consist of three major blocks (a) Configurable Logic Blocks 

(CLBs), (b) I/O Blocks and (c) Programmable Interconnects. Along with these basic blocks 

modern FPGAs also consist of integrated memory (RAM and ROM), multipliers and DSP 

slices.  

The CLBs, also known as Logic Elements (LEs), can be further broken down into (a) Look 

Up Table (LUT), and (b) a memory cell. The LUTs in the logical cell are used to implement 

the different sequential or logical functions such as a shift register or a memory access 

block. The memory cell on the other hand can be configured to act as an edge triggered 

flipflop or latch, so as to detect rising/falling edges or the level of a certain signal.  



30 

 

Figure 4-6 Building blocks of FPGA [24] 

The I/O blocks allows the I/O pins to be programmed into a certain mode i.e input, 

output or even as a bi-directional pin. It also allows to implement different standards such 

as 3.3V LVTTL, 1.8V LVCMOS, PCI or standards such as LVDS and RVDS. 

Programmable I/O pins allows the design to be many times more flexible.  

The programmable interconnects are what makes FPGAs to be as flexible. These 

interconnects allow the different blocks to connect to each other. Any CLB in the FPGA 

can be connected to any CLB via these interconnects. The programmable interconnects 

also connect the I/O blocks to the CLBs. Internal to the CLB, the connections are also 

programmable and are routed as required. 

Internal to the CLBs, memory elements can be used to implement arrays to store 

data sets. However, due to the interconnect routing and individual memory blocks, this is 



31 

often very resource intensive. Thus, modern FPGA integrate memory blocks which, 

depending on the device, can be configured into different sizes from 16 bytes to 32KB.  

Though multiplication may seem as a mundane task, it is highly resource intensive 

and complex to implement in hardware. Hence, to preserve CLBs and optimize 

performance, modern FPGAs consist of multiplier blocks, which allow multiplication of 8- 

to 64-bit numbers. 

Advantages of Programmable Hardware 

The top five benefits of using programmable hardware (esp. FPGAs), as described on the 

Xilinx webpage [24] are as follows: 

1. Performance 

Programmable hardware allows true multi-tasking. While running a program on 

either a computer or on an embedded system, instructions are executed 

sequentially. But when such tasks are implemented using hardware parallelism, 

performance gains of more than ten times can be easily obtained. 

2. Time to market 

With development on FPGAs, rapid prototyping and flexibility can be obtained. 

Ideas can be tested and implemented on FPGAs without developing custom ASIC 

via. the long fabrication process. Using modern software tools, IP cores and 

commercial off-the-shelf hardware, solutions can be implemented within weeks. 

3. Cost 

Many of the custom hardware such as ASICs, need not be manufactured in bulk. 

The development of such hardware can cost from a few thousand dollars to 

millions of dollars depending on the complexity. Such hardware devices can be 

implemented on FPGAs which exclude any manufacturing costs. 

 



32 

 

4. Reliability 

Micro-processor based systems often involve many stages of abstraction, such as 

a RTOSs which run scheduling and task sharing functionality. It also includes 

drivers which control the various hardware resources and memory management 

unit can cause time critical to be stalled. Using FPGAs, all tasks can be performed 

in parallel, such that there is no interference or dependence making the design 

more reliable. 

5. Long-term Maintenance 

FPGAs chips as mentioned in the above section are Field Programmable, this 

allows the functionality of the devices to be updated to keep up with new standards 

or customer requirements without much overhead costs. Also, since these devices 

can be programmed in the field, via Ethernet or USB, on-site support may not even 

be necessary. 

 

 

 

 

 

 

 

 

 

 



33 

Chapter 5 

The Java Bytecode Execution Engine (JBEE) 

Introduction to JBEE 

The Java Virtual Machine during runtime converts the bytecode instructions into 

native processor instructions, which are then executed on the native processor. This 

translation performed by the interpreter is what makes high level languages such as Java 

machine independent. Along with the interpreting bytecodes, the JVM also performs tasks 

such as class loading, which is done on demand, bytecode verification and resource 

allocation, garbage collection and Just-In-Time (JIT) compilation. Since, all these functions 

are performed during runtime, Java programming does not provide optimal performance in 

terms of throughput (speed). 

To overcome the performance issue with Java, a processor can be designed such 

that the Java bytecode is the native processing language for the machine. This would 

eliminate the need to translate the instructions. Such a processor could work independently 

executing directly java source files, or even be used as a co-processor. Such 

implementations of JVM are known as Java Processors.  

 Many operations such as memory allocation, garbage collection and object 

instantiation performed by the JVM, cannot be performed independent of an operating 

system. With a pure hardware implementation, such processes can be handled much 

faster, further increasing throughput. 

The JBEE is one such implementation of a Java processor on an FPGA. The JBEE 

can be considered as a stack based micro-coded processor, which breaks down Java 

bytecodes into a sequence of micro-instructions. The JBEE preloads the class file into 

memory, so as no runtime memory allocation needs to performed, further improving 

throughput. 



34 

Similar Projects: 

Java processors usually find applications in the field of embedded systems. Some 

of the popular Java processors are: 

1. picoJava 

picoJava [27] more than being a Java processor is a microprocessor specification 

for the native execution of Java Bytecode. It was first introduced by Sun Microsystems in 

1997, later a revision picoJava-II was released in 1999. The aim of picoJava was to speed 

up the execution of bytecode compared to a standard CPU. Theoretically, a speed up of 

up to 20 times be been achieved.  

A processor based on this specification, could also have executed C/C++, and the 

design was intended to be a Reduced Instruction Set Computer (RISC). The specification, 

however, did not include any I/O and memory requirements or standards.  

An open source version of PicoJava was implemented on a FPGA, but is no longer 

available. 

2. Cjip by IMSYS [28] 

The Cjip was developed to provide the Java on chip functionality. It was released 

in 2000 by a Swedish company called IMSYS. The Cjip microprocessor was developed to 

support multiple instruction sets for languages such as Java, C, C++.  

Some of the features of Cjip are it would allow native execution of Java Bytecode, 

garbage collection as a native firmware process and Virtual peripherals called Veripherals. 

The Cjip was a complete J2ME (Java 2 Micro Edition) solution. The processor also allowed 

interrupt driven tasks to run along with the Java application.  

It is suited for internet applications, where memory, size and power consumption 

are constraints. 



35 

3. aJ100 by ajile Technologies [29] 

The aJ100 was the first processor to implement both native processing of Java 

bytecode and Java multithreading on a single chip. The main purpose of development of 

the aJ100 was to allow developers to take advantage of the compactness of Java on a 

processor for embedded applications. The aJ100 provided a low-power 32-bit Java core, 

with integrated memory and peripherals.  

The main advantage of using the aJ100 was it that could function without an RTOS 

which allowed a smaller memory footprint and much faster performance as compared to a 

direct Java application. With true hardware multitasking, thread switching could be 

obtained very fast, under 1ms. This allowed the processor to be used in applications which 

had hard real-time constraints. It also supported multiple JVM instances, to allow programs 

to be run simultaneously. 

 
Figure 5-1 Internal architecture of aJ100[30] 



36 

The aJ100 was developed to support smart mobile devices, automotive 

applications and controllers in a network in an industrial environment. 

 
4. Komodo [31] 

The Komodo is a multi-threaded, pipelined (4-stages) Java processor. The 

Komodo system is based on middleware which allows JVM like features in addition to APIs 

and the microcontroller itself. The system could support direct execution of Java Bytecodes 

and allow multiplying the hardware for optimized performance.  

The 4 stages of the pipeline were fetch, decode, execute and write-back, allowing 

a simple design and features such as priority management using a hardware scheduler, 

interrupt handling from help with the signal unit.  

The Komodo system was developed with the intention of researching real-time 

scheduling on a multi-threaded processor. 

 

Figure 5-2 Komodo Java Processor Core [32] 



37 

Limitations of the JBEE 

The Java Programming Language was developed with the intent of a programming 

language for embedded devices, which ran with the support of an embedded Operating 

System(OS). The idea never went forward and later Java was released as a programming 

language for the Internet. However, it was always intended to run in conjunction with an 

OS.  

The Java Bytecode has certain instructions such as invokestatic, 

invokeinterface and anewarray invoke and or create and initialize a new object, are 

too complex to be implemented in hardware alone. Hence, no hardware implementation of 

JVM exist yet, which can implement all the bytecodes.  

Building an JVM, without an OS, direct access to memory and I/O’s along with a 

specific hardware architecture is needed. For low level access i.e. memory and I/O, Java 

uses native functions, which are functions written in a language native to the processor 

such as C and C++.   

The JBEE, being a pure hardware implementation and hence, ignores such 

bytecodes. 

Java, being an object-oriented language, is usually used in programs with multiple 

classes, interfaces and field variables. But as mentioned above, without an underlying OS 

these cannot be implemented. Hence, the JBEE is only designed to handle programs with 

single class, with no support for interfaces and field variables.  

Furthermore, to avoid complicated FPGA implementation, support for floating point 

numbers, both float and double datatypes, has been omitted.  

 

 

 



38 

Chapter 6 

Class File Processing 

In the JBEE, to allow for faster run-time by elimination of runtime dependencies, 

the class file is pre-processed. This includes eliminating run-time dependencies, omitting 

metadata and converting the file into proper format. In this chapter, we look at how this is 

done for this project. 

Bytecode Extractor 

Since, the JBEE is a limited implementation of the JVM, the Java class file cannot 

be directly loaded into the processor. The class file has to be broken down into separate 

files containing the constant pool and methods.  

The Bytecode Extractor is a Python program which breaks down the class file into 

the constant pool, fields, interfaces and the different methods. As, the JBEE only deals with 

the constant pool and methods, only these are written to bytecode files. The remaining 

class file data is ignored.  

As the class file consist of a stream of 8-bit values, the program reads the required 

number of consecutive bytes to construct the 8-bit, 16-bit and 64-bit data values. 

The Bytecode Extractor Program 

The Bytecode Extractor program first checks the validity of the class file by reading 

the magic, a 4-byte quantity, which equals the value 0xCAFEBABE. If the first 4-bytes 

match the magic number, the file is considered to be a valid class file.  

The next 4-bytes give the version of the class file. The version is split into two 2-

byte values the minor and the major version numbers. These values indicate the version 

of the Java compiler. 

The next section of the class file is the constant pool. A separate class is used to 

extract the elements of the constant pool. The first two bytes indicate the number of 



39 

elements of the constant pool. This value is then used as the count for iterating through 

the constant pool.  

The first byte of each entry of the constant pool is the tag. The value of the tag 

indicates the type of element. The following table indicates the tag value and the associated 

type: 

Constant Type Value 

CONSTANT_Class 7 

CONSTANT_Fieldref 9 

CONSTANT_Methodref 10 

CONSTANT_InterfaceMethodref 11 

CONSTANT_String 8 

CONSTANT_Integer 3 

CONSTANT_Float 4 

CONSTANT_Long 5 

CONSTANT_Double 6 

CONSTANT_NameAndType 12 

CONSTANT_Utf8 1 

CONSTANT_MethodHandle 15 

CONSTANT_MethodType 16 

CONSTANT_InvokeDynamic 18 

Table 6-1 List of Constant type and corresponding values [15] 



40 

Each tag byte is followed by two or more bytes which provide additional information 

about the specific entry such as the name, length of the entry etc. The format of this 

additional information is indicated by the tag. In the case of a integer, long integer, float or 

a double entry the size of the entry is fixed, but in the case of the strings the next two bytes 

determine the size of the string. 

The JBEE only supports datatypes are the integer and long integer, these are 

added into the constant pool bytecode file (const_pool.byc). The integer constants are 32-

bit values stored at a single index. The long elements are split up into two indices, and 

follows the Java convention of big-endianness. The index of the element in the constant 

pool along with the byte are added to the file serially as they appear in the constant pool. 

The remaining entries of the constant pool are ignored. 

After the constant pool, the next two bytes of the class file is the access_flags 

entry, which as the name indicates indicate the access flags for the constant pool. These 

access flags are masked and need to be extracted from the two bytes. The following table 

indicates the mask and the associated flags: 

Flag Name Value Interpretation 

ACC_PUBLIC 0x0001 
Declared public; may be accessed from outside its 

package. 

ACC_FINAL 0x0010 Declared final; no subclasses allowed. 

ACC_SUPER 0x0020 
Treat superclass methods specially when invoked by 

the invokespecial instruction. 

ACC_INTERFACE 0x0200 Is an interface, not a class. 

ACC_ABSTRACT 0x0400 Declared abstract; must not be instantiated. 



41 

Flag Name Value Interpretation 

ACC_SYNTHETIC 0x1000 Declared synthetic; not present in the source code. 

ACC_ANNOTATION 0x2000 Declared as an annotation type. 

ACC_ENUM 0x4000 Declared as an enum type. 

Table 6-2 List of Flags and corresponding mask value [15] 

Following the access flags, the next two bytes are a pointer into the constant pool 

of the same file which point to a CONSTANT_Utf8 entry, specifying the name of the class 

file. This entry is called this_class. 

Similar to the this_class field, the next field is the super_class. This field also 

points to an entry in the constant pool to a CONSTANT_Utf8 entry, specifying the name of 

the super class. 

The subsequent entry in the class file is the interface_count and the 

interfaces[] array. These field indicates the interfaces that are direct superinterfaces 

to the current class or interface. The interface_count is a two byte entry which gives 

the depth of the interface[] array. Each entry in the interface[] array is two byte 

wide and points to a CONSTANT_Class_info entry in the constant pool. 

Just as the interface_count and the interfaces[] array, the field_count 

and the fields_info[] structure indicate the fields in the class file. These fields include 

both class variables and instance variables. The fields_count gives the number of 

field_info structures. The field_info structure has the following format [15]: 

field_info { 

    2-bytes   access_flags; 

    2-bytes        name_index; 

    2-bytes        descriptor_index; 

    2-bytes        attributes_count; 



42 

    attribute_info attributes[attributes_count]; 

} 

The access_flags are similar to the access flags field for the corresponding 

field. The name_index and the descriptor_index fields points to an entry in the 

constant pool of the type CONSTANT_Utf8_info, indicating the name of the field and a 

valid field descriptor respectively.  

The attributes_count indicates the number of additional attributes associated 

with the field and the attributes_info structure gives the specific type of attribute. The 

attributes defined by this specification   could be a ConstantValue, Synthetic, Signature, 

Deprecated, RuntimeVisibleAnnotations and RuntimeInvisibleAnnotations. 

Though the above mentioned fields are not directly used in the JBEE, the Fields 

class in the program isolate the fields and other sections of the class file but are not written 

to any file. If a future modification of the JBEE supports fields, interfaces and classes, these 

can be easily obtained from the program and written to a file. 

Subsequent to the fields, is the method section of the class file. Like the fields, 

methods are obtained by a two-bit method_count and a method_info[] structure. To 

extract methods out of the class file, a method_info class is used. This class reads the 

method_count from the class file and loops until all the methods are extracted. The 

method_info structure has the following format [15]: 

method_info { 

    2-bytes   access_flags; 

    2-bytes        name_index; 

    2-bytes        descriptor_index; 

    2-bytes        attributes_count; 

    attribute_info attributes[attributes_count]; } 



43 

If the attribute of the method is ‘CODE’, it indicates that the following bytes are the 

bytecodes the JVM execute. These are bytes are added to the respective method files. 

The files are named sequentially as ‘method_<value>.byc’ where the value is an integer 

number. Each bytecode file contains the name of the method and code line. The code line 

contains all the bytecodes associated to the method. 

The final field of the class file is the attributes section, and follow the same format 

as the methods and fields. These attributes are used by JVM implementation to obtain 

additional details about the class file. And thus, are ignored by the bytecode extractor file.  

Memory Initialization File and Generator 

The Memory Initialization File 

To initialize the contents of the method_area_ROM and the constant_pool_ROM, 

the Altera Quartus II IDE supports two file types (a).mif file and (b).hex file. 

For the implementation of the JBEE, the .mif file was selected. 

MIF stands for Memory Initialization File. It is an ASCII text file, used to specify the 

initial contents of a memory such as RAM, ROM or CAM, with the .mif extension. The 

memory initialization file contains the contents of each address possible in the memory. 

Before specifying the contents of the memory, must specify certain parameters about it. 

These parameters include the memory depth and the memory width, and the radix used to 

define these values throughout the file. The radixes may be binary, octal, hexadecimal.  

The Quartus II IDE uses the Memory Initialization File as an input during the 

simulation and the compilation process. A separate file is required to initialize each block 

of memory.  

 

 



44 

The following table shows the different formats that allow data and address 

combinations: 

Address : Data 
Pairs Syntax 
Rules 

Definition Example 

A : D Addr[A] = D 2 : 4 

Address: 01234567 

Data:    00400000 

[A0..A1] : D Addr[A0] to [A1] contain 

data D 
[0..7] : 6 

Address: 01234567 

Data:    66666666 

[A0..A1] : D0 

D1 
Addr[A0] = D0, 

Addr[A0+1] = D1, 

Add [A0+2] = D0, 
Addr[A0+3] = D1, 
until A0+n = A1 

[0..7] : 5 6 

Address: 01234567 

Data:    56565656 

A : D0 D1 D2 Addr[A] = D0, 

Addr[A+1] = D1, 

Addr[A+2] = D2 

2 : 4 5 6 

Address: 01234567 

Data:    00456000 

Table 6-3 Table representing different data input formats for.mif files [33] 

The Memory Initialization File Generator Program 

To be able to load files in the FPGA processor, a .mif file needs to be created from 

the bytecode files generated by the Bytecode Extractor. This conversion is performed by 

the. mif file generator, a Python program. The file generator uses the hexadecimal as the 

default radix, and specifies the content (data) to be loaded into each memory location 

individually. The unused memory locations are loaded with a zero.  

 



45 

Chapter 7 

Architectural Overview of the JBEE 

The JBEE is an implementation of the JVM on an FPGA. It is a single core, stack 

machine with integrated memory. The important features of the JBEE are: 

 Integrated RAM and ROM memories 

 Pseudo 2-stage pipeline 

 Multi-cycle instruction processing 

 State machine based implementation 

 Low I/O requirement (3 pins) 

 Pre-Decrement/Post-Increment Stack  

 

Figure 7-1 Overview of the JBEE 

 



46 

Components of the JBEE 

To simplify the process of designing the JBEE and to be able to understand the 

workings better, the JBEE has been broken down into important functional modules. These 

modules are: 

 PC module 

 Memory Area 

 Decode Module 

 Execute Module  

Memory Areas 

The memory from which the JVM retrieves the class file or to which it writes the 

results and0 objects is known as the run time data area. This data area for the JVM is 

divided into 5 areas, (a) the method area; (b) heap (c) Java Stack; (d) Program Counter 

registers; (e) native method stack.  

The method area is the memory into which the methods and the related contents 

such as the constant pool, access flags, fields, interfaces etc. are loaded. The stack stores 

the stack frame and the local variables for the respective class. The heap consists of the 

fields and the objects created during runtime. The program counter is a register which 

points to the location in the method area from where the next instruction is to be read, while 

the native method stack is used in case of function calls to a native language (such as C, 

C++) function are made. 

To maximize effectiveness of the FPGA, the data areas in the JBEE had to be 

reorganized. The JBEE areas are, (a) PC (b) Method ROM, (c) Constant Pool ROM, (d) 

Stack RAM. 



47 

PC 

The PC in the JBEE is a simple 16-bit register which points to the location in the 

method area, indicating from where to fetch the next byte. 

Method ROM 

The method area, in the JBEE is an 8-bit wide memory. The default size of the 

memory is 256 words, which can be extended to be a much larger memory. Since, the 

memory is 256 words deep and 8 bits wide, the address bus and the data bus are both 8 

lines. The word size is chosen to be 8 bits as the bytecode instructions defined by Java are 

8 bits, as well as is the additional data (such as index, constant). 

The Method load is loaded from a file named method.mif. The file contains the 

depth of the stack needed for execution of the bytecode, the size of the local variable array 

and the bytecode associated with the method. The first two bytes of the ROM indicate the 

stack depth and are loaded into the stack_size register, the next two bytes give the size of 

the local variable array which is loaded into the LP register, what follows is the bytecode 

for the method.  

(a) 

 

Figure 7-2(a) Sample data for method_ROM (b) Input/Output buses for method ROM [34] 



48 

The register/buses associated with the method ROM are: 

method_area_bus: The method_area_bus is an 8-bit bus which acts as the address 

bus for the method ROM. 

method_area_out: The method_area_out is an 8-bit bus which acts as the data bus 

for the method ROM. 

PC 

The method_area_bus of the method ROM is driven by the PC. Traditionally, the 

PC only points to instruction that need to be executed, but in case of the JBEE, an offset 

is present. This is handled by using the current_PC register in the execute module. 

Constant Pool ROM 

The Constant Pool in the JVM is part of the method area. To improve performance 

and reduce memory read latencies, the constant pool in the JBEE is loaded into a separate 

ROM. The constant pool ROM by default is 64 words deep, and each word in the ROM is 

32-bits wide. The width of the constant pool ROM is set to be 32-bits as the constant pool 

in the class file is organized as 32-bits. A byte, short or an integer stored in the memory 

occupies a single memory location, while a long occupies 2 locations. Also, the 32-bit 

words reduces the number of reads to the memory i.e. to read an int from the ROM, it only 

takes a single clock cycle, whereas if the ROM were organized as 8-bit words, it would 

have taken a minimum of 4 clock cycles. 

The constant pool ROM is loaded from a file named the constant_pool.mif. The 

constant pool ROM only store integers and longs, whereas the constant pool in the class 

file also contains references, strings and fields. The elements in the constant pool are 

accesses by their indices, and thus the location cannot be altered. Hence, the constant 

pool ROM contains many of empty slots.  

 



49 

(a) 

 

Figure 7-3 (a) Sample data for Constant Pool ROM (b) Input/Output buses for Constant 

Pool ROM [34] 

The register associated with the constant pool ROM are: 

constant_pool_bus: The constant_pool_bus is a 6-bit bus which acts as the address bus 

for the constant pool ROM. 

pool_pointer: The pool_pointer is a 6-bit register which drives the address bus for the 

memory. The register is part of the execute module. 

constant_pool_out: The constant_pool_out is a 32-bit bus which acts as the output data 

bus for the ROM. 

Stack RAM 

The Stack area in the JVM contains only the method stack frame and the local 

variables array. To reduce the complexity of the JBEE and to reduce the number of LEs 

used, the heap has been merged along with the stack frame and the local variables array. 

The stack RAM is a 32-bit wide, just like the constant pool ROM, and has a depth of 64 

words. The 32-bit width allows a byte, short or an integer to be stored in a single location, 



50 

while a long needs 64 bits. Since, the stack RAM is not involved in any compile time 

updates, it does not need to be initialized, and is empty at the start of the execution. 

The heap in the JVM, is used to store objects (class instances) and arrays. As the 

heap size cannot be predetermined, the memory allocated to the objects and arrays which 

are not in use any more needs to be freed, to limit the runtime memory used by the 

program. This is done by the garbage collector. Since, the JBEE does not support objects 

and is independent of an operating system, the garbage collection is not implemented. 

 

Figure 7-4 Organization of stack memory 



51 

 

(a) 

 

Figure 7-5 (a) Sample data for Stack RAM (b) Input/Output buses for Stack RAM [34] 

The size of the stack frame and the local variable array is predetermined during 

compile time. Hence, the stack RAM can be organized to the sizes specified in the method 

ROM. The remaining of the stack RAM can be allocated to the heap. Since, there is no 

garbage collector the heap may run out of bounds, and proper care must be taken by the 

programmer to avoid such erroneous conditions.  

The registers/buses associated with the Stack RAM are: 

stack_bus: The stack_bus is a 6-bit bus which acts as the address bus for the Stack RAM.  

stack_bus_select: The stack_bus_select is a 2-bit input to the stack bus arbitrator, which 

choses from one of the three inputs (a) stack_adder_out, (b) local_adder_out or (c) 

heap_adder_out. The stack_bus_select is driven by the state machine and depending on 

the state the value of the bus changes. 

Stack_data_in_reg and Stack_data_in: The stack_data_in is a 32-bit bus which acts as the 

input data bus for the Stack RAM. The stack_data_in bus is driven by the 

stack_data_in_register. 



52 

Stack_data_out: The stack_data_out is a 32-bit bus which acts as the output data bus of 

the Stack RAM. 

stack_write: The stack_write acts as the write enable for the stack RAM. The stack_write 

is an active high signal which means when the stack_write is one the data on the 

stack_data_in bus is written to the address pointed to by the stack_bus. 

PC module 

The PC module contains the program counter, which points to the next location of 

in the method ROM from which a bytecode instruction is read. Depending on which location 

the PC points, the data is loaded either into the Instruction Register, Stack Size Register 

or the Locals Pointer (local variable pointer). 

 

Figure 7-6 Overview of PC module 

Architecturally, the PC, being a register, cannot be connected to the address bus 

of the method ROM directly. Hence, it is used to drive the net(bus) method_area_bus which 

acts as the address bus for the method ROM.  



53 

The fig. 9-6 shows the internal structure of the PC module. The module contains 

of the two adders, the increment_adder increments the PC by 1, whenever a byte is read 

from the method ROM is read, while the branch_adder updates the PC in case of a jump 

or a branch. The branch_adder adds 3 to the new_PC, which is generated by the execute 

module. The 3 is added to the new_PC, to compensate for the initial bytes of the method 

ROM indicate the stack size and the local variable size. 

The PC_arbitrator_mux assigns the output of one of the adders to the PC register. 

The mux outputs are controlled by the update_PC signal. 

Decode Module 

 

Figure 7-7 Input output representation of Decode module 

The decode module, as the name indicates, is responsible for decoding the 

instruction and implementing the state machine.  

Depending on the current state of the state machine, the current instruction (i.e. 

contents of the IR) and the iteration variable, the next state is calculated. In case of certain 

instructions, certain states of the state machine need to be repeated. In such cases, the 

iteration variable is used to keep track of the number of times a certain state or block of 

states has been executed. 



54 

The state machine begins when the start_processing flag get activated, after the 

stack_size and local_pointer registers are written into. The initial state loaded into the state 

machine is fetch and then the state is updated on the rising edge of the clock. 

States of the State Machine 

The state is an 8-bit register, allowing up to 256 states, out of which only 23 are 

used. The table below names the states and their equivalent decimal values.  

STATE VALUE 

(decimal) 

fetch   0 

write_stack   1 

inc_SP   2 

dec_SP   3 

read_stack   4 

write_local   5 

read_local  6 

byte_two_state   7 

byte_three_state   8 

byte_four_state   9 

compare   10 

update_PC_state   11 

ALU_op   12 

ALU2_op   13 

inc_HP   14 

write_heap   15 



55 

read_heap   16 

read_pool   17 

handle_long   18 

return_state   20 

exception   39 

nop   254 

done_state   255 

Table 7-1 State and corresponding value of state register 

fetch 

The initial state during which the instruction is loaded into the IR is the fetch. During 

fetch, the bytecode which is present on the Method ROM data bus is written to the register. 

write_stack 

As the name indicates, in the write stack state the data is written into the stack 

memory. To enable the stack to be written to, the stack write enable signal, stack_write, is 

first set and the stack bus arbitrator is fed 2’b00, this results in the stack adders output to 

be fed to the stack RAM as the address, i.e. it connects the stack_add_out to the 

stack_bus. These two signals set up the stack to be written, and the data to be written to 

the stack has different sources depending on the current instruction being executed. This 

data is then written into the register stack_data_in_reg which is connected to the data bus 

of the stack RAM. On the next rising clock edge of the clock cycle, this data is written to 

the top of the stack. 

inc_SP 

The write stack state is usually followed by the increment SP state. The increment 

SP state deactivates the stack write, by resetting the stack_write signal. It then toggles the 

stack_add_enable signal to activate the stack adder. To signal the addition operation to 



56 

the adder/subtractor unit the stack_add_sub signal is set. The adder/subtractor increments 

the value of the stack by a 1, and this value is then written into the Stack Pointer (SP) 

register. 

dec_SP 

Similar to the increment SP stage the decrement SP stage decrements the value 

of the stack pointer by 1. It usually precedes the read stack stage. To enable the subtractor, 

the stack_add_enable signal is toggled and the stack_add_sub is reset. The 

adder/subtractor then decrements the value of the stack by a 1, and this value is then 

written into the Stack Pointer (SP) register. 

read_stack 

The read stack stage is where the contents of the stack, pointed to by the stack 

adder output. The data read by default is transferred to the stack_read_reg, unless 

specified to a different register for a certain instruction. 

write_local 

As in the JVM, the locals on the JBEE are stored in the stack area. Hence, to write 

to a local variable, the stack write enable is set. The position of the local variable in the 

Stack RAM is pointed by the Local Adder. Depending on the instruction the offset is either 

a constant or the value read from a register. This value is written to the local_offset register. 

To connect the local adder output to the stack RAM address bus, the bus arbitrator mux is 

fed 2’b01. Similar to the stack write state, depending on the instruction, the source of the 

data may vary. This data is written into the stack_data_in_reg. On the following positive 

edge of the clock cycle the data is written into the local variable. 

byte_two, byte_three and byte_four 

The Java bytecode instruction are variable length instructions, which may occupy 

from 1 to 4 bytes in the class file. For certain instructions such as wide, tableswitch and 



57 

jsr_w. the length of the instruction is not fixed, and thus cannot be implemented without an 

software assistance. 

The byte_two, byte_three and byte_four stages are used to read the additional 

bytes of the bytecode instruction into the respective state registers, to make them available 

for further processing whenever needed. The data read from the method ROM is usually 

returned into byte_two, byte_three or the byte_four registers depending on the state, or 

into a different register if specified for the specific register. 

read_local 

As in the case of the write local state, to read the local variables, the address is 

fed by the local adder. Depending on the instruction, the offset is either a constant or the 

value read from a register. This value is written to the local_offset register. To connect the 

address bus to the output of the local adder, the bus arbitrator mux is fed 2’b01. The stack 

write enable is reset, to make sure no data is written into the stack unnecessarily.  

Note: Unlike the stack read state, the value read is not directly written to a register. This is 

because the default pointer to the stack RAM is the stack_adder_out and in case of the 

read local, the data from the location is available on the next falling edge of the clock. 

compare 

The compare state is invoked only in case of a conditional branch instruction. The 

state is used to determine whether the branch should be taken or not.  

Depending on the instruction, one of the six outputs of the comparator is checked to be 

true or false. If the condition is true, the update_PC signal is set, signaling the PC module 

that a branch needs to be taken and the PC needs to be updated.  The new address to 

which the program counter jumps is calculated  from the byte_two and the byte_three 

registers and stored in the PC_offset register. If the conditions fails, no action is taken, and 

thus, the PC will be incremented by 1’b1 at the end of the instruction. 



58 

ALU_op, ALU2_op 

The ALU_op and the ALU2_op are states used to indicate to the ALU, which 

operation needs to be performed. The JBEE consists of two ALU, one for integer/long 

operations and the other for bitwise/logical operations.  

When these states are invoked, depending on the instruction the ALU_op or the 

ALU2_op bus are set indicating to the ALUs which output should be routed to the result. 

The following table shows the operation to be performed and the value of the ALU operation 

bits: 

update_PC_state 

The update PC state is a special state used only in case of the GOTO instruction. 

It is used to calculate the new address of the PC, from the byte_two and the byte_three 

registers. It also sets the update_PC signal indicating the PC module that a branch has 

been encountered and the PC address needs to be updated. 

inc_HP 

The increment HP state is a special state invoked when an array is to be created 

on the stack. The only instruction it is valid for is the newarray instruction. For the newarray 

instruction, the second byte of the instruction (loaded in the byte_two register) determines 

the datatype of the array. If the datatype is either byte, short or integer, the heap pointer 

needs to be incremented by only the size of the array, which is loaded on the stack. For 

the long datatype, the HP must be incremented by twice the size of the array.  

write_heap 

The write heap state, is used to write to an array element. The position of the array 

element on the heap (in the Stack RAM) is determined, by the values pushed on the stack. 

The location of the array element is pointed to by the heap adder. The bus arbitrator mux 

is fed 2’b10 to connect the stack RAM, to the output of the heap adder. To enable the stack 



59 

RAM to be written to the stack_write signal is set. Similar to the write local and write stack 

operation, the data is written onto the RAM on the following rising edge of the clock. 

read_heap 

The implementation of the read heap state is just like that of the read local. The 

stack_write is first deactivated, to avoid unintentional writes to the memory. To read from 

the array element, the output of the heap adder must be connected to the address bus of 

the stack RAM. This is done by feeding the bus arbitrator mux by 2’b01.  

Note: Similar to the read local stage, the data read is not written to any register, this is 

handled during the stage that follows the read heap. 

read_pool 

The constant pool in the JBEE is a separate memory area, unlike the JVM. This 

makes reading the data out of the constant pool considerably quicker. During this stage, 

the pool_pointer register is set to the location of the element in the constant pool ROM. 

This address is calculated by using the byte_two and byte_three registers. The 

pool_pointer is connected to the address bus of the constant pool ROM. The data to be 

read is then available on the data bus on the next falling edge.  

return 

The return state is a special state that indicates the execution has ended. During 

this stage the return signal is set, indicating to the PC module to stop incrementing the 

program counter.  

exception 

The exception state is not invoked in case of regular operation of the state 

machine. In case an unsupported instruction or an error condition occurrence, the 

exception state is reached. The JBEE stays in the exception state until reset. 



60 

nop 

nop stands for No operation. As the name indicates, no operation is performed 

during this state. This state is usually invoked by the state machine, when the processor is 

waiting for the data to be made available on the data bus of the method ROM. 

handle_long 

Handle long is a special case for handling the long datatype. The state is valid in 

only two instructions, ldc2_w (load long from constant pool) and lastore (store long into an 

array).  If the instruction is ldc2_w the state increments the constant pool_pointer between 

the two reads. But for the lastore, the array_index is incremented between two writes to 

the heap. 

done 

The final state of each instruction is the done state. This state indicates that the 

processor is ready to fetch the next instruction. During this state, the instruction is 

committed i.e. if the instruction was a branch, depending on weather the branch is taken 

or not, the PC is updated in this state. Else, it updates the current instruction register, to 

keep track of instructions executed. 

Execute Module 

The execute module has been broken down into sub-modules to facilitate both 

design and implementation. The modular approach also allows reusability, which reduces 

the LE usage in the FPGA, which can allow implementing additional features. The 

different submodules are shown in figure 7-8 and explained below.    



61 

 

Figure 7-8 Overview of execute module 



62 

Stack RAM access sub-system 

As described in the memory section, the stack consists of not only the stack frame 

and the local variables array, but also the heap. The accesses to each of these must be 

independent of the other. If the system was to use only one pointer to the Stack RAM, that 

would result in catastrophic failure conditions. As an example, consider a stack read 

followed by the local variable write. Initially, the pointer points to the top of stack to read 

the data from the RAM and the data is then stored in an intermediate register. This register 

is then updated to point to a local variable, causing the top of stack to be lost. Hence, 

access to one section is kept independent of the other. The size of the stack RAM is loaded 

into the stack_size register and that of the local variables is loaded into the local_size 

register. 

 

Figure 7-9 Overview of stack access subsystem 



63 

Stack Adder/Subtactor 

The stack adder is used to point to the top of stack during a stack read or write. 

The output of the stack adder, stack_adder_out, is connected to the first input of the bus 

arbitrator. The inputs to the adder are (a) stack_add_sub signal, (b) stack_add_enable, (c) 

stack_ptr. The stack_add_sub bit enables the increment (by 1’b1) operation when set, 

otherwise when reset leads to a decrement (by 1’b1) operation. A change in state on the 

stack_add_enable signal triggers the stack adder operation. The stack pointer stores the 

current top of stack. The stack_adder_out depending on the last stack operation either 

leads or follows the stack_ptr. 

Stack Operation 

The stack in the JBEE, has been designed as a pre-decrement and post-increment 

configuration. Thus, before a valid stack read can be made the stack pointer must be 

decremented, to read from the top of the stack. After a valid stack write, the stack pointer 

should be incremented to point to the next location.  

Conventional stack memory is located at the end of the memory and as the stack 

grows upwards, so as to avoid overlaps between the heap and the stack. Unlike the 

conventional stack, the JBEE stack begins at the start of the memory and grows 

downwards. This is possible since the maximum depth of the stack is predefined in the 

class file.   

Local Adder 

The local adder, during an instruction, is used to point to the location in the stack 

RAM from which data needs to be written to or read from. The output of the local adder 

output local_add_out is connected to the second input of the bus arbitrator mux. The two 

inputs to the local adder are the stack_size register and the local_offset register which is 



64 

updated during either the read or write local state. The stack_size register, once loaded, 

does not change for the respective method and can be considered as a constant. 

Local Variable Operation 

The local variables array is the second section of the stack RAM. The size of the 

local variables array is stored in the local_size variable. The local variables array begins at 

the location where the lowest stack top could exist. This location is pointed to by the 

stack_size register. The stack_size variable is loaded before the program start executing. 

The Java bytecode specifies the exact element in the which the data must be loaded. This 

acts as the offset from the start of the stack_size variable, indicating the exact location in 

the stack RAM to which the data needs to be written.  

Heap Adder 

The heap adder is used to point to a location in the heap to write or read an array 

element. The Java bytecode instruction load stack frame with the array index and a 

reference to the start of the array whenever an array element needs to be accessed. This 

allows the JBEE to read the reference and load it into the array_ptr register and the index 

and to load it into the array_index register. The array_ptr and the array_index registers act 

as the input to the heap adder. The output of the heap adder, heap_adder_out is connected 

to the third input of the bus arbitrator mux. The heap adder and the local adder are similar, 

as they generate an output when the appropriate state is reached. But the heap_ptr may 

not be a static or OTP register like the stack_size register and may be updated when more 

than one arrays are created.  

Heap Operation 

The heap pointer is a register which points to the location in the Stack RAM, from 

which a new array should begin in the case of an array declaration. The heap is allotted at 

the bottom of the Stack RAM, to allow the heap to grow dynamically during runtime. The 



65 

heap pointer is, thus, initialized to a value equivalent to the sum of the stack size and the 

local pointer. During runtime, whenever a newarray instruction is encountered, the heap 

pointer is incremented by the size of the array. The byte_two of the instruction gives the 

data type of the array, and the size of the array is loaded onto the stack. If the datatype is 

either byte, short or integer, the heap pointer needs to be incremented by only the size of 

the array, which is loaded on the stack. For the long datatype, the HP must be incremented 

by twice the size of the array.  

Stack Bus Arbitrator 

The stack bus arbitrator is a 3 input 6-bit mux with a single 6-bit output. The three 

inputs to the mux are, as mentioned above, (a) stack_adder_out, (b) local_adder_out and 

the (c) heap_adder_out. The select lines to the mux are named stack_bus_select, and has 

a width of two bytes, as there are three inputs to the mux. The state machine drives the 

stack_bus_select, and depending on the state the one of the inputs is latched to the output. 

The output of the stack bus arbitrator is connected to the address bus of the stack RAM.  

Comparator sub-system 

 

Figure 7-10 Overview of comparator submodule 

The comparator in the JBEE compares two 32 bit values and generates six outputs 

(a) a_eq_b, (b) a_grt_b, (c) a_grt_eq_b, (d) a_les_b, (e) a_les_eq_b and (f) a_nt_eq_b. All 

the outputs are generated simultaneously in the comparator. The comparator has a 



66 

dedicated state in the state machine, where the needed output is checked, and depending 

on the value, further action is taken. The comparator plays a major role in integer/long 

compare instructions, compare with zero instructions and in conditional jump instructions.  

Arithmetic Logical Unit 

The JBEE uses an unconventional design for implementation of the ALU. The ALU 

is split into two parts (a) the arithmetic unit and the logical unit. 

Arithmetic Unit 

 

Figure 7-11 Overview of ALU submodule 

The Arithmetic Unit in the JBEE performs (a) addition, (b) subtraction, (c) 

multiplication, (d) division and (e) modulo. The operands are fed to the arithmetic unit 

through long_A and long_B, which are 64-bit registers. As the registers are 64-bit wide, 

even long arithmetic can be performed in a single cycle. For integer arithmetic, however, 

proper care must be taken to sign extend the values when they are loaded into the 

registers. Similar sign extensions are performed in case of a byte or a short data type 

operation. The output of the arithmetic unit is available on a 64-bit result bus.  



67 

 

Figure 7-12 Physical implementation of arithmetic unit 

Internally, the ALU generates output to all the operations. However, only one of 

those outputs is connected to the result bus. The arithmetic unit is programmed in such a 

way that a mux is used internally and one of these outputs are routed to the result bus. The 

ALU_op which is a 3-bit bus acts as the select lines for the mux.  

Value of 

ALU_op 

Operation 

3’d00 Addition 

3’d01 Multiplication 

3’d02 Divide 

3’d03 Modulo 



68 

3’d04 Subtraction 

3’d05          XX 

3’d06          XX 

3’d07          XX 

Table 7-2 Value on operation bus and corresponding operation 

To generate all the inputs simultaneously, the arithmetic unit is internally divided 

into (a) an adder/subtractor, (b) a multiplier, (c) a divide and (d) a remainder generator. The 

adder/subtractor unit is controlled by the 3rd bit of the ALU_op bus. If the signal is zero, the 

unit will output the sum of the two inputs, else if the bit is set it will produce the difference.  

Logical Unit 

The logical unit in the JBEE is labeled as the bitwise_ALU, as it preforms most 

bitwise operations. It performs (a) logical AND, (b) logical OR, (c) logical XOR, (d) logical 

shift right, (e) arithmetic shift right and (f) logical shift left. Just as the arithmetic unit, the 

input to the logical unit are the two 64-bit register, long_A and long_B. As the registers are 

64-bit wide all operations long, int, short or byte are performed in a single cycle. The output 

of the logical unit is fed to the bitwise_result bus.  

Unlike the arithmetic unit, the logical unit depending on the bitwise_ALU_op input 

generates only a single output. This generated result is directly connected to the output 

bus. The bitwise_ALU_op indicates to the logical unit which output is to be generated.  

 

Figure 7-13 Physical implementation of jump adder 



69 

 

 

    

 

 

 

 

     

  

Jump Adder 

As the name indicates, the jump adder is used to calculate the address to which 

the PC should be updated to in the case of a branch. When a goto or a conditional jump 

instruction is encountered, if the branch is to be taken, the output of the jump adder is 

enabled. The update_PC signal indicates if the PC should be updated.  

The two inputs to the jump adder are the current_PC register and the jump_offset 

register. The current_PC register is updated at the end of the instruction execution cycle 

i.e. in the done state. Depending on the size of the instruction, the current_PC is 

incremented by one, two, three or four bytes. The current_PC lags the PC register, which 

is part of the PC module, by 4. This is to account for the first two bytes which indicate the 

stack frame size and the next two specifying the size of the local variable array. 

The PC_offset value is generated during either update_PC_state or the compare 

state. The offset is calculated using the second and the third byte of the instruction. To 

calculate the offset the Java standard specifies, left shifting branch byte one by 8, and 

adding branch byte two to the resulting value. The output of the jump adder, new_PC, is 

updated after every instruction but it is not valid until the update_PC signal is set. 

Value of 

bitwise_ALU_op 

Operation 

3’d00 logical left shift 

3’d01 logical right shift 

3’d02 arithmetic right shift 

3’d03 logical AND 

3’d04 logical OR 

3’d05 logical XOR 

3’d06          XX 

3’d07          XX 

Table 7-3 Value on operation bus and corresponding operation 



70 

Chapter 8 

Instruction Execution 

To better understand the working of the JBEE, it is best to look into how the 

instructions traverse through different states. 

Example 1 

Instruction: iinc [16] 

Operation: Increment local variable by constant 

Format: iinc <index> <constant> 

Opcode: 132 (0x84) 

Stack: No change 

Description: The instruction increments the local variable at the index, which must be an 

integer. The index in the instruction is an unsigned byte which must be a valid offset in the 

local variable array. The constant, on the other hand, is a signed value.  

States 

 fetch 

The fetch stage being the first stage of the instruction execution cycle, the 

contents of the method ROM, pointed to by the PC register are read and updated 

into the instruction register. 

 nop 

The first stage of the iinc instruction is the nop. This state does not perform any 

operation but allows the method ROM address to be updated and the new data 

i.e. the index to be available on the output data bus.  

 

 

 



71 

 byte_two 

During the byte_two state, the execute module reads the index from the method 

ROMs output data bus and saves it into the byte_two register. The value read is 

the index of the integer in the local variable array.  

 read_local 

As the integer to be incremented is present in the local variable array, during the 

read_local state this value is copied into the long_A register.  

To read the value from the local variable array, the address corresponding to the 

index is calculated using the local adder. The index (read in earlier stage) acts as 

the local_offset, while the stack_size acts as the reference to point to the start of 

the local variable array. This address generated is available on the 

local_adder_out bus, and is fed to the second input of the stack arbitrator mux. 

To feed this address to the stack RAM, the stack_bus_select bus is set to 2’b01.  

 byte_three 

During this stage, the constant is read from the method ROM and updated into 

the byte_three register. To speed up the instruction, the value read is also loaded 

into the long_B register, so the arithmetic operation can be performed directly.  

In this case, unlike the byte_two state, a clock cycle does not need to be wasted, 

as the method ROM output data bus has already been updated, during the 

intermediate read_local state. 

 ALU_op 

During the ALU_op state, the execute module sets the ALU_op bus to 2’b00, 

generating the sum of long_A and long_B registers on the result bus.  

 

 



72 

 write_local 

The address to the stack RAM, was set as the address of the local variable 

pointed to by the index variable during the read_local state. The result generated 

during the ALU_op needs to be updated into the same location. Thus, the stack 

access submodule does not need to be updated. Instead, to be able to write to 

the stack RAM, the stack_write signal is set. And the result is updated into the 

stack_data_in register. 

 done 

The done stage, being the last stage of the instruction cycle, the current_PC 

register is updated by 2’b10. Also, the stack access submodule is reset to the 

default, i.e. pointing to the stack top. 

 

 
Example 2 

Instruction: lastore [16] 

Operation: store value into long array 

Format: lastore 

Opcode: 80 (0x50) 

Stack: Before: ……, arrayref, index, value 

 After: …… 

Description: The lastore instruction is used to save the value from the top of stack into an 

element of the local array pointed by arrayref, at the index location. The arrayref is of type 

reference and the index is an usigned integer. Since, the data is being written to an long 

array, the value is 64-bits and occupies two locations on the stack. 

 

 



73 

States 

 fetch 

The fetch stage being the first stage of the instruction execution cycle, the contents 

of the method ROM, pointed to by the PC register are read and updated into the 

instruction register. 

 dec_SP    

As describeds earlier, the stack in the JBEE is designed as a Pre-Decrement/Post-

Increment Stack architecture. Thus, to make the stack pointer point to the 

value_MSB (higher 32-bits of the long data), the stack pointer is decremented.  

Since, the default state of the stack access subsystem is read stack section, no 

other modifications are made during this state. 

 read_stack 

The destination of the data read during the read_stack state is determined by the 

iteration variable, as this state is invoked multiple times during this instruction 

execution cycle. 

During the first invocation of the read_stack state, the value of iteration is 2’b00 

and thus, the data is read from the stack top and stored into the higher bits [32:63] 

of the long_A register. After the data has been read out the value of the iteration 

variable is incremented.  

 dec_SP 

As seen in the first invocation of the dec_SP state, the SP is now decremented to 

point to the value_LSB as the higher bits [32:63] was popped of the stack in the 

last state, thus, pointing to the valid top of stack.  

 

 



74 

 read_stack 

As the value of the iteration variable during this state is 2’b01, the value read from 

the stack RAM is stored into the LSB [0:31] of the long_A register. The long_A now 

contains the complete value to be written into the array.  

Also, the iteration register is incremented, and now contains the value 2’b10. 

 dec_SP 

The stack pointer is decremented again to point to index value, is now the valid top 

of stack.  

 read_stack 

During this stage, the iteration value is 2’b10. The value, thus, read from this stack 

RAM is stored into the array_index register. The index as it points to an element in 

the array on the heap is used as an operand to the heap adder. 

The iteration variable is incremented to 2’b11. 

 dec_SP 

During the final iteration of the dec_SP of this instruction execution cycle, the 

stack pointer is decremented to point further, to the valid top of stack. The stack 

pointer now points to the arrayref. 

Note: As the stack is the top of the memory, and in certain cases there may not 

be any element on the stack left, the stack pointer may roll over to the highest 

address (0x3f).   

 read_stack 

During the final iteration of the read_stack, the register variable is at 2’b11. The 

arrayref is read from the stack and then stored into the array_ptr register.  



75 

As the array_ptr points to the start of the register and the array_index points to 

the precise element in the array, the exact memory location to be written to is 

obtained. The iteration value is also incremented and rolls around to 2’b00. 

 write_heap 

During the write_heap state, the stack access subsystem is set up to write to the 

heap section of the stack RAM. The stack_select_bus is set to 2’b10, so as to 

enable the heap adder output to connect to the stack_bus. Since, the write_heap 

state is also invoked more than once, the iteration register value is checked before 

writing to the array. 

The heap is written the LSB value of long_A register when the iteration value is 

2’b00. 

 handle_long 

The handle_long is a special state, invoked while writing a long integer. During 

this state, the heap pointer is incremented, to point to the next memory location, 

to store the MSB of the long value. This is done by incrementing the array_index 

register by one. 

 write_heap 

During this stage the long_A MSB to written to the array element. Thus, the long 

integer is completely transferred from the stack to the heap at the required 

memory locations. 

 done 

The done stage, being the last stage of the instruction cycle, the current_PC 

register is updated by 2’b10. Also, the stack access submodule is reset to the 

default, i.e. pointing to the stack top. 

 



76 

Chapter 9 

Results 

Implementation 

The hardware used for the project is the Altera’s DE1 development board. Since, 

in the project a processor has been developed only a limited hardware elements provided 

by the board are used. The JBEE itself is programmed into the Cyclone II FPGA chip. The 

seven-segment display is used to show the value of the program counter register. The red 

LEDs on the board are connected to the state register and thus indicates the current stages 

of the processor at a certain point in time.   

The green LEDs are linked to the return_inst state. When the state is invoked, the 

LEDs are set indicating the program execution has finished.  

 

Figure 9-1 Image showing the PC (seven-segment LEDs) and state (red LEDs) on the 

DE1 board. 



77 

Simulation 

To get a better understanding of how things work inside the JBEE, its best to 

observe the simulation results. The simulation results are obtained via. ModelSim, a multi-

language HDL simulation environment by MentorGraphics [35].  

Since it is overwhelming to go over the entire execution of the program, the 

waveforms have been broken down into sections.  

Note 1:  

The M4F memory block in the Altera Cyclone II, update the value on the output 

bus at the rising edge of the clock, while values are written into the memory on the falling 

edge of the clock. 

Note 2: 

The Java method stored in the code attribute is presented in such a way that the 

first two bytes contain the maximum size of the stack frame, while the next two bytes 

contain the size of the local variable array for the corresponding method.  

Waveform 1 

In the waveforms fig. 9-1, the first five clock cycles the program goes through while 

execution. These waveforms are similar for any program being executed, the only 

difference being the values updated into the stack_size register and the Local Pointer (LP) 

register.  

The initial values are assigned to the registers and buses, at the start of the 

execution. These initial values include: 

REGISTER/SIGNAL INITIAL VALUES 

PC 8’b00000000 

stack_size 16'b0 

LP 16'b0 

HP 16'b0 

stack_ptr 6'h3f 



78 

stack_add_sub 1'b1 

stack_add_enable 1'b1 

iteration 2'b00 

current_PC 16'b0 

update_PC 1'b0 

return_inst 1'b0 

pool_pointer 6'b0 

LED 10'b1111111111 

Table 9-1 Signals/Registers and corresponding initial values 

On the rising edge of the first clock cycle, the PC register is incremented from 

(0x0), to (0x1). The value corresponding to the PC memory location is obtained during the 

next rising edge of the clock. Hence, on the second rising edge of the clock, the value 

(0x00) is obtained from the PC register which corresponds to the memory location (0x0). 

This value is then written into the lower eight bits of the stack_size register.   

On the next clock cycle, when the method ROM outputs the value corresponding 

to memory location (0x1), which in this case is (0x02). This value is then updated into the 

higher eight bits of the stack_size register. The update value can be seen in the stack_size 

register, as its contents change from (0x00) to (0x02).  

Similarly, on the following clock cycle, the value obtained from the method ROM 

corresponds to the PC (0x2) and is (0x00). This value is written into the lower eight bits of 

the LP register. The next value read from the PC register, corresponding to memory 

location (0x3) is (0x06). This value is then updated into the higher byte of the LP register. 

This is evident, as the value in the register changes from (0x00) to (0x06).  

Also, as the processor is initializing the value of the memory register, the state 

register contains the value (0x39). This indicates the processor is in exception state, no 

data is loaded into the IR register. 

 



79 

 

Figure 9-2 Waveform depicting initialization of memory registers 



80 

Waveform 2 

The first four bytes of the method ROM has the contains values for the memory 

registers. Following these four bytes, the fifth byte contains the opcode of the first 

instruction. When the address of the PC is incremented to (0x4), the data on the output 

bus of the method ROM is (0x07). The succeeding clock cycle, the start_processing signal 

is set and the opcode is loaded into the IR register. This changes the state of the machine 

to (0x00) i.e. fetch, and the IR checks if the opcode is a valid.  

The state register, as can be seen from the waveform below, transitions at the 

falling edge of the clock. Each  

The opcode (0x07), loaded in the IR indicates the instruction is an iconst_4. The state 

through which the iconst_4 instruction transitions is:  

 fetch  

As mentioned above, when the start_processing signal is set, the processor 

changes state from exception to fetch. During the fetch state, the method ROM 

output data bus is read and the value is loaded into the IR register. Since, no state 

in the instruction is repeated, the iteration variable remains unused. 

 write_stack 

The iconst_4 instructions loads an integer four onto the stack. Since, this value is 

not being read from memory or loaded from a register, it is generated internally, 

and loaded in the stack_data_in_register. The stack_write_en signal is set, so as 

to indicate that the stack RAM is being written to. 



81 

 

Figure 9-3 Waveforms indicating the start of processing 



82 

Also, evident from the waveforms, the stack_ptr register points to the highest 

location I the memory i.e. 8’h3f. Though it may seem, the stack_ptr points to an 

invalid address, the memory location written to is one added to this address, as 

the output of the stack_access_adder, is the actual address that is being written 

to, while the stack_ptr register points to the top of stack. 

 inc_SP 

The inc_SP state, increments to the value of the stack_ptr variable. Since, the 

stack RAM was written to during the preceding stage, the top of stack incremented, 

causing the stack_ptr to hold an invalid address. The stack_add_sub signal is 

enabled, indicating the stack_ptr needs to be incremented. And to enable the 

adder to do so, the stack_add_enable signal is complemented.  

 done 

As this is not a branch or a jump instruction, the only action performed during this 

stage is increment of the current_PC register, and the iteration register is reset to 

its default value, 2’b00.  



83 

Waveform 3 

 

Figure 9-4 Waveforms showing PC update 



84 

The waveform above, show the execution of a conditional branch instruction. The 

instruction loaded into the IR is if_icmpge, and has the opcode (0xa2). The instruction 

indicates, if value1 is greater than or equal to value2, the branch must be taken.  

The instruction contains two additional bytes, branchoffset1 and branchoffset2, 

that are used to generate the offset address. These are unsigned both unsigned byte 

numbers. This offset address is then added to the current_PC register, to obtain the jump 

address. Depending on whether the jump is to be taken or not, the address is loaded into 

the PC modules register.  

The two values to be compared, value1 and value2, are present on the stack 

register and must be transferred to the comp_A and comp_B registers. The first two states, 

i.e. dec_SP and read_stack, pop the value2 off the stack top and stores it in register 

comp_B. The iteration register value is also incremented during the read_stack state, as 

two values need to be popped of the stack, and multiple invocation of the dec_SP and 

read_stack states is necessary. 

The following state, which is the byte_two state, the method_ROM output data bus 

is read and the branchoffset1 value is loaded into the byte_two register. As soon as the 

byte_two state is reached, the PC module increments the PC register. The PC now points 

to the location of byteoffset2.  

For the next two stages, dec_SP and read_stack, the value of the iteration variable 

is 2’b01. When value2 is read from the top of stack, the value is written into register 

comp_A. The iteration variable is incremented again to 2’b10.  

During the next stage, byte_three, the byteoffset2 value is read and loaded into the 

byte_three register. The complete offset value is then calculated, using the formula 

branchbyte1 << 8 + branchbyte2. The value generated is of two complement notation. If 



85 

the value is negative then the jump is backwards, compared to the current PC value, else 

it’s a forward jump.  

As the values were transferred to the comparator registers as they were popped 

from the stack, during the compare stage, the required comparator output is checked. If 

the output is set or high, the branch is to be taken. In this case, as the a_grt_equal_b signal 

is set, the branch is to be taken. To indicate to the PC_module to update the address of 

the PC with the new_PC data, the update_PC signal is set. The current_PC is update by 

one byte as well, to account for the if_icmpge instruction itself being read.   

 

The compare state is followed by an NOP stage, to allow the PC to be loaded and 

the address to be fed to the method ROM.  

During the final state, i.e. done, the iteration register is set back to 2’b00. No action is taken 

with the current_PC register as the value was updated in the compare state. 



86 

Waveform 4 

 

Figure 9-5 Waveform showing end of execution 

  

 



87 

The last instruction executed in a program, is always the return (0xb1) instruction. 

As seen in the waveform, during the fetch stage the method ROM output data bus is read 

and loaded into the IR register. The execution cycle of the IR instruction only contains the 

special state, return_inst. Once the processor enters the return_state, the state does not 

change as the program execution stops. 

During the return_inst state, the return_inst signal is set. Due to a positive transition 

on the signal, triggers the LEDs to be set.  

 

Figure 9-6 Image showing end of execution and final PC. 

Also, since the processor enters the fetch state, the PC module increments the PC register. 

This leads to the PC pointing to an address with an invalid instruction This will present an 

invalid address on the seven-segment display, and will be offset by 1’b1, as it is linked to 

the PC address from PC module. But as the data is not loaded into the IR, this does not 

interfere with the execution of the program. 

 

 

 



88 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Appendix A 

List of Instructions Implemented And State Transition 

 

 

 

 

 

 

 

 

 

 

 



89 

The following list gives all the instructions implemented and shows the states 

through which they transition: 

Note: Since, all instructions begin with the Fetch stage it is excluded from the state 

transition list. 

iconst_value:  

o write_stack 

o inc_SP 

o done 

istore index:   

o dec_SP 

o read_stack 

o byte_two 

o write_local 

o done 

istore_value:   

o dec_SP    

o read_stack 

o write_local 

o done 

iload index:  

o nop 

o byte_two 

o read_local 

o write_stack 



90 

o inc_SP 

o done 

iload_value:   

o read_local   

o write_stack 

o inc_SP 

o done 

dup:  

o read_stack 

o write_stack 

o inc_SP 

o done 

if_compare:   

o dec_SP 

o read_stack 

o byte_two 

o dec_SP 

o read_stack 

o byte_three 

o compare 

o nop 

o done 

goto:    

o nop 



91 

o byte_two 

o nop 

o byte_three 

o update_PC 

o done 

iadd: (all integer arithmetic instructions)   

o dec_SP 

o read_stack 

o dec_SP 

o read_stack 

o ALU_op 

o write_stack 

o inc_SP 

o done 

iinc:    

o nop 

o byte_two 

o read_local 

o byte_three 

o ALU_op 

o write_local 

o done 

newarray:   

o dec_SP 



92 

o read_stack 

o byte_two 

o write_stack 

o inc_SP 

o inc_HP 

o done 

iastore:   

o dec_SP 

o read_stack 

o dec_SP 

o read_stack 

o dec_SP 

o read_stack 

o write_heap 

o done 

bipush:    

o nop 

o byte_two 

o write_stack 

o inc_SP 

o done 

sipush:    

o nop 

o byte_two 



93 

o nop 

o byte_three 

o write_stack 

o inc_SP 

o done 

ldc:    

o nop 

o byte_two 

o read_pool 

o write_stack 

o inc_SP 

o done  

ldc_w:    

o nop 

o byte_two 

o nop 

o byte_three 

o read_pool 

o write_stack 

o inc_SP 

o done 

ldc2_w:    

o nop  

o byte_two 



94 

o nop 

o byte_three 

o read_pool 

o write_stack 

o inc_SP 

o read_pool 

o write_stack 

o inc_SP 

o done 

12l:    

o dec_SP 

o read_stack 

o write_stack 

o inc_SP 

o write_stack 

o inc_SP 

o done 

lastore:   

o dec_SP    

o read_stack 

o dec_SP 

o read_stack 

o dec_SP 

o read_stack 



95 

o dec_SP 

o read_stack 

o write_heap 

o handle_long 

o write_heap 

o done 

lstore_value:  

o dec_SP 

o read_stack 

o write_local 

o dec_SP 

o read_stack 

o write_local 

o done 

lstore index:  

o dec_SP 

o read_stack 

o byte_two 

o write_local 

o dec_SP 

o read_stack 

o write_local 

o done 

     



96 

astore:    

o dec_SP 

o read_stack 

o byte_two 

o write_local 

o done 

aload:    

o nop 

o byte_two 

o read_local 

o write_stack 

o inc_SP 

o done 

lload_value:  

o read_local    

o write_stack 

o inc_SP 

o read_local 

o write_stack 

o inc_SP 

o done 

lload index:  

o nop      

o byte_two 



97 

o read_local 

o write_stack 

o inc_SP 

o read_local 

o write_stack 

o inc_SP 

o done 

ladd: (all long integer arithmetic instructions)  

o dec_SP     

o read_stack 

o dec_SP 

o read_stack 

o dec_SP 

o read_stack 

o dec_SP 

o read_stack 

o ALU_op 

o write_stack 

o inc_SP 

o write_stack 

o inc_SP 

o done     

lneg:    

o dec_SP 



98 

o read_stack 

o dec_SP 

o read_stack 

o ALU_op 

o write_stack 

o inc_SP 

o write_stack 

o inc_SP 

o done 

ishl:    

o dec_SP        

o read_stack 

o dec_SP 

o read_stack 

o ALU2_op 

o write_stack 

o inc_SP 

o done 

lshl:    

o dec_SP      

o read_stack   

o dec_SP 

o read_stack   

o dec_SP 



99 

o read_stack    

o ALU2_op 

o write_stack     

o inc_SP     

o write_stack   

o inc_SP     

o done 

land:    

o dec_SP      

o read_stack   

o dec_SP 

o read_stack   

o dec_SP 

o read_stack    

o dec_SP 

o read_stack    

o ALU2_op 

o write_stack     

o inc_SP     

o write_stack   

o inc_SP   

o done 

 



100 

References 

[1] A. Aaby, "Introduction," 1998. [Online]. Available: 

http://www.emu.edu.tr/aelci/Courses/D-318/D-318-Files/plbook/intro.htm.   

[2] V. Beal, "What is programming language? Webopedia definition,". [Online]. 

Available: http://www.webopedia.com/TERM/P/programming_language.html.   

[3] Divestopedia and S. Institute, "What is a programming language? - definition from 

Techopedia," Techopedia.com, 2016. [Online]. Available: 

https://www.techopedia.com/definition/24815/programming-language.   

[4] Sammet, J. E. (1972). Programming languages. Communications of the ACM, 15(7), 

601–610. doi:10.1145/361454.361485 

[5] Rosenblum, M. (2004). The Reincarnation of virtual machines. Queue, 2(5), 34. 

doi:10.1145/1016998.1017000 

[6] Toal, R. Pltypes. Retrieved December 6, 2016, from 

http://cs.lmu.edu/~ray/notes/pltypes/ 

[7] Novoselsky, A., and Karun, K. (2011, April 15). XSLTVM — an XSLT virtual machine [ 

Anguel Novoselsky, K. Karun ]. Retrieved December 6, 2016, from 

https://dret.net/biblio/reference/nov00 

[8] Comparison of application virtualization software (2016). . In Wikipedia. Retrieved 

from https://en.wikipedia.org/wiki/Comparison_of_application_virtualization_software 

[9] "Chapter 1 introduction to the java programming environment (JDK 1.1 for Solaris 

developer’s guide)," in Oracle, 2010. [Online]. Available: 

https://docs.oracle.com/cd/E19455-01/806-3461/6jck06gqb/index.html.   

[10] "Apache commons BCEL™ – the java virtual machine," in Apache Commons, 2004. 

[Online]. Available: https://commons.apache.org/proper/commons-bcel/manual/jvm.html.   



101 

[11] "Oracle technology network," in Oracle. [Online]. Available: 

http://www.oracle.com/technetwork/java/javase/tech/index.html.   

[12] "Section 1.4. Java’s magic: Bytecode, java virtual machine, JIT, JRE and JDK," in 

Java School, Java School, 2013. [Online]. Available: https://j4school.wordpress.com/java-

tutorials/core-java/introduction-to-java/java-magic-bytecode-java-virtual-machine-jit-jre-

jdk/.   

[13] B. Venners, "Java virtual machine’s internal architecture," in artima developer, 1996. 

[Online]. Available: http://www.artima.com/insidejvm/ed2/jvm2.html.   

[14] R. Ramachandran, "JVM ( java virtual machine) architecture - tutorial," in YouTube, 

YouTube, 2015. [Online]. Available: https://www.youtube.com/watch?v=ZBJ0u9MaKtM.   

[15] "Chapter 4. The class File Format," in Oracle. [Online]. Available: 

https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html.   

[16] "Chapter 6. The Java Virtual Machine Instruction Set," in Oracle. [Online]. Available: 

http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html#jvms-6.2.   

[17] M. Dahm, "Byte Code Engineering with the BCEL API," Freie Universitat Berlin, 

Berlin, Germany, Apr. 03, 2001. [Online]. Available: 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.1710andrep=rep1andtype=

pdf.   

[18] R. ROOSTA, "Programmable Logic Devices," in ECE595. Northridge, CA. 

[19] A. Kent, "A Texas Instruments Application Report: MOS programmable logic arrays," 

Texas Instruments, California, Oct. 1970. 

[20] M. Ferdjallah, Introduction to digital systems: Modeling, synthesis, and simulation 

using VHDL [Book]. Suffolk, Virginia: John Wiley and Sons, 2011. [Online]. Available: 

https://www.safaribooksonline.com/library/view/introduction-to-digital/9780470900550/.   



102 

[21] K. Kant, "GAL - generic array logic," in FPGA Central, 2011. [Online]. Available: 

http://www.fpgacentral.com/pld-types/gal-generic-array-logic. 

[22] W. N. Wan Ibrahim, "Multiplexers, Decoders and Programmable Logic Devices," in 

Slideshare, 2013. [Online]. Available: http://www.slideshare.net/WanNurdiana/mux-

decod-pld2vs2.   

[23] "CPLD," in Xilinx. [Online]. Available: http://www.xilinx.com/cpld/.   

[24] "FPGA fundamentals," in National Instruments, 2008. [Online]. Available: 

http://www.ni.com/white-paper/6983/en/.   

[25] "DE1 Board Introduction," 2006. [Online]. Available: https://www.terasic.com.tw/cgi-

bin/page/archive.pl?Language=EnglishandCategoryNo=165andNo=83andPartNo=4.   

[26] "DE main boards - Cyclone - Altera DE1 board," in Terasic Technologies, 2006. 

[Online]. Available: https://www.terasic.com.tw/cgi-bin/page/archive.pl?No=83.   

[27] W. Puffitsch and M. Schoeberl, "PicoJava-iI in an FPGA," ACM, 2007, pp. 213–221. 

[Online]. Available: http://dl.acm.org/citation.cfm?doid=1288940.1288972.   

[28] Cision, "IMSYS launches Cjip the ‘java system on a chip’ at JavaOne," News 

Powered by Cision, 2000. [Online]. Available: http://news.cision.com/se/imsys/r/imsys-

launches-cjip--the--java-system-on-a-chip--at-javaone,e24234.   

[29] aj. Systems, "AJile systems introduces the aJ-100, the world’s First single chip java 

Microcontroller with an embedded real-time kernel," PR Newswire, 2000. [Online]. 

Available: http://www.prnewswire.com/news-releases/ajile-systems-introduces-the-aj-

100-the-worlds-first-single-chip-java-microcontroller-with-an-embedded-real-time-kernel-

73579227.html.   

[30] "aJ-100TM Real-time Low Power JavaTM Processor," 2000. [Online]. Available: 

https://www.digchip.com/datasheets/download_datasheet.php?id=126782andpart-

number=aJ-100.   



103 

[31] R. Zulauf, "Komodo-Mikrocontroller," in zulauf-online, 2000. [Online]. Available: 

http://zulauf-online.name/da/node56.htm.   

[32] S. Uhrig, J. Mische, and T. Ungerer, "An IP Core for Embedded Java Systems," 

in University of Augsburg, Augsburg, Germany, 2007. [Online]. Available: http://samos-

conference.com/Resources_Samos_Websites/Proceedings_Repository_SAMOS/2007/Fi

les/2007-WS-28.pdf.  

[33] "Memory Initialization file (.mif) definition," in Altera, 2005. [Online]. Available: 

http://quartushelp.altera.com/15.0/mergedProjects/reference/glossary/def_mif.htm.   

[34] Quartus II. Altera, 2016. Print. 

[35] T. Granberg, Handbook of digital techniques for high-speed design. India: Pearson 

Education, 2007. [Online]. Available: 

https://books.google.com/books?id=Eqgrqktkk1YCandpg=PA606anddq=ModelSimandhl=

enandsa=X#v=onepageandq=ModelSimandf=false.   


