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Abstract 

 
SMARTWALKER – ROLLING WALKER INSTRUMENTATION AND DATA 

ACQUISITION SYSTEM DEVELOPMENT TO MONITOR, VISUALIZE 

 AND STORE ROLLING WALKER USAGE DATA 

 

Mauricio Jaguan Nieves, MS 

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Haiying Huang 

The Smart Walker project was designed to fill a necessity of monitoring in real 

time the use of rolling walkers (RW) and study the causes that contribute to the high rate 

of fallings among its users. The main objectives of the project were to measure the major 

forces applied by RW users in real time and store it safely for further analysis. The first 

prototype of the Smart Walker includes the measurement of axial load, torque and 

gripping force applied on the handle as well as acceleration and rotation angles while it is 

being used. The axial load was measured using strain gages installed on each leg of the 

rolling walker allowing the measurement of the overall axial load and its distribution. The 

torque and gripping force applied to the handles were also measured using strain gage 

rosettes and Force Sensitive Resistors (FSR) respectively. To measure the acceleration 

and angles of rotation a 6 (Degrees of Freedom) DOF Inertial Measurement Unit (IMU) 

was implemented. The (Data Acquisition) DAQ system was developed using Arduino 

boards and Xbee antennas. Arduino boards offer a reliable and cost effective option for 

DAQ and were successfully implemented in this project. Furthermore, consistent and 

secure wireless transmission of data was required and achieved using Xbee antennas. A 

user interface (UI) was developed using LabVIEW that obtained the readings from the 
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Arduino board, showed the measurements graphically in real time and stored the data for 

further analysis. This work serves as a reference for strain gage measurement, low-cost 

DAQs, wireless transmission of data using Xbee antennas. It also covers the use of Finite 

Element Method (FEM) to assist in the design of strain gage systems and aims to close 

the gap between the Arduino and LabVIEW interaction. The work has been presented so 

readers can replicate each phase of the project and adapt it to their specific needs. 
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Chapter 1  

Introduction: Smart Walker Project Overview 

This thesis describes the development and characterization of the first prototype 

of a smart walker. The Smart Walker project envisioned the design and fabrication of a 

devise to monitor the use of rolling walkers and study the high rate of falling of elderly 

patients [1]. The rate of falling is nearly 40% among the rolling walker users. The risk of 

falls when using rolling walkers is greatly associated with incorrect RW height, 

inappropriate user posture, changes in gait patterns and poor maintenance of RW tips 

(wheel). Currently there are no instruments or devises that allow clinicians to monitor how 

the RW is used for daily mobility. The objective of the Smart Walker project was to 

measure, store, transmit and visualize the orientation, inclination and main forces applied 

to a conventional RW in real time during daily mobility usage. The measurements would 

be carried out in two local senior communities [1]. The data obtained during the studies 

will serve as a base for recommendations regarding the aforementioned factors that 

increase the risk of falls.   

The forces to be measured by this prototype are the axial load, torque and 

gripping force applied on the handles. Strain gages were used to measure the axial load 

and torque. The gripping force is measured by a force sensitive resistor (FSR). The 

orientation and inclination is measured with a six degree-of-freedom (DOF) Inertial 

Measurement Unit (IMU) board containing an accelerometer (ADXL345) and a gyroscope 

(ITG-3200). 

The readings from each sensor are acquired by the Arduino MEGA, an open 

source I/O board based on the ATmega1280 [10]. This board has 16 analog inputs that 

allow the strain gage and FSR measurements to be sampled with a 10 bit analog to 

digital converter. It also includes 54 digital input/output pins with the possibility of having 
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I
2
C connections that allow the integration of the accelerometer and the gyro. Other 

important specialized digital pins are available for serial connections. Serial connections 

permit the incorporation of Xbee antennas, which are responsible for transmitting the 

data acquired by the Arduino and receiving it at the serial port of a personal computer 

(PC). Xbee antennas communicate wirelessly using the IEEE 802.15.4 protocol for fast 

and secure peer-to-peer networking. Continuous, secure and uninterrupted transmission 

of data was achieved with an open field range of 100 m and indoor range of 30 m [24]. 

The data is received by a PC through serial connection and it is interpreted, 

visualized and stored using LabVIEW. There are open source add-ons for LabVIEW such 

as LIFA (LabVIEW interface for Arduino) and LINX that allow interacting with Arduino 

directly from LabVIEW without the need to program the Arduino board [17]. These 

platforms could not be used due to particular needs of the project. These platforms are 

created around the Arduino UNO, which differs from the MEGA in various aspects but 

more importantly, in the amount of analog and digital inputs allowed to be used. These 

platforms limit the number of analog inputs to only six (the ones available in the Arduino 

UNO) and the Smart walker requires eight analog inputs. Arduino serial communication 

with the Xbee antenna is also a challenge using the add-ons. Furthermore, the maximum 

sampling rate achieved with the LINX add-on is less than the one achieved by 

programming the Arduino board. This is because the LINX firmware includes functions to 

control most of the Arduino board’s capabilities, using memory space that a program 

written to perform only the needed tasks would not use.  

Due to the reasons presented above and also to have more control over the 

whole system, an Arduino and a LabVIEW program were written to acquire, interpret, 

visualize and store readings sent by the Arduino through the serial port with the Xbee 

antenna.  
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The aforementioned prototype allows for continuous data acquisition and real 

time visualization and storage of the measurands (axial load, torque, gripping force, 

acceleration and walker rotation). In addition to the sensors installed on the walker, an 

IMU board was installed in another Arduino board to be worn by the user during the 

usage of the RW. This extra IMU allows having more information regarding the posture of 

the patient.   

The next steps in the project are (1) to fabricate three more smart walkers using 

similar circuitry and sensors and (2) to perform reliability analysis of the walkers to finally 

perform tests with patients. As part of the efforts for the next steps, a Printed Circuit 

Board (PCB) Arduino shield was being designed for faster reproduction in a smaller size 

of the circuit, the progress is shown in the appendix. 

The figure below shows the Smart Walker model with the sensors used and 

installation location. Strain gages are placed on each leg, torque rosettes and FSRs on 

each handle and the IMU as part of the circuit board containing the necessary circuits 

and components for the data acquisition and wireless transmission. 

 
Figure 1-1 Smart Walker 3-D model showing location and placement of sensors 
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Chapter 2  

Rolling Walker Mechanical Model 

The first efforts taken to predict the Rolling Walker’s (RW) strain at the legs to an 

applied axial load on the handles was to develop a mechanical model of the walker. 

Predicting the strain caused by an applied axial load, allows designing properly the axial 

load sensors for the required resolution of the system. Chapter 3 will describe in more 

detail the considerations taken to design the axial load sensor using the strain predictions 

in this chapter. First, a simplified analytical model of the main RW’s structural members 

was developed in order to estimate the maximum strain felt at the curvature formed 

between the legs and the handle when an axial load is applied. Later, a CAD model of 

the walker was made in order to perform a Finite Element Method (FEM) analysis of the 

RW. The FEM analysis allowed having a more detailed and accurate prediction of the 

strain at the curvature, and helped to determine the location of the strain gages for axial 

load measurement on the legs. 

It is required to have a voltage output from the axial load sensor of sufficient 

magnitude to monitor the force applied by the user. The strain caused by the loads is 

used to predict the resistance change of the strain gage, thus predicting the voltage 

output from the Wheatstone bridge and the necessary amplification to have a 

measurement resolution of at least 1 lb/mV. 

Analytical Model 

A side view of the CAD model of the walker is shown in Figure 2-1 (a). The 

simplified geometry used in the analytical model is also shown in Figure 2-1 (b) for 

comparison. The analytical model consists of vertical elements (legs), and a horizontal 

element (handle). The legs are set fixed replicating the calibration conditions. The overall 

strain is calculated at the extremes of the horizontal member (handle) fixed at both ends 
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as an approximation of the actual model. The moment is not being calculated on the 

vertical members of the simplified model (legs), but rather at the handle, were the points 

of interest are B and C shown in Figure 2-1 (b). These points would represent the points 

of maximum strain at the curvature joining the handle and the legs. Results will show that 

this assumption yields an accurate prediction of the maximum strain encountered.   

  
(a) (b) 

 
Figure 2-1 Walker CAD model (a) and simplified geometry model (b) 

In Figure 2-2 the simplified model and resulting normalized shear and moment 

diagrams of the described analytical model are shown. The shear and moment equations 

along the length of a beam fixed at both ends with a uniform distributed load can be 

found in [32]. Eq. 2-1 to Eq. 2-4 show the general equations found in [32]. They have 

been simplified for the current case where the distributed load is centered along the 

length of the beam. 

The reaction forces for the distribute load model, as shown in Figure 2-2 are 

given by Eq. 2-1. 

 

 

 L 

c 
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  Eq. 2-1 

The reaction moments for the distributed load model are given by Eq. 2-2.  
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The shear equation is given by Eq. 2-3. 
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The bending moment equation is given by Eq. 2-4 

 A simpler model can be used. Instead of a distributed load a concentrated force 

P is applied at the center of the beam (handle). The equations for this model are shown 

from Eq. 2-5 to Eq. 2-8 [32] and their respective shear and moment diagrams are shown 

in Figure 2-2 as well. The reaction forces in this case are given by Eq. 2-5. 

 
      

 

 
  Eq. 2-5 

The reaction moments are given by Eq. 2-6. 

 
      

  

 
  Eq. 2-6 

The shear and moment equations for this model are Eq. 2-7 and Eq. 2-8. Notice 

that the shear curve is being forced to pass through zero at L/2 as if the concentrated 

load was a very narrow distributed load. 
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Figure 2-2 Normalized shear and moment diagrams of the  

Rolling Walker’s simplified analytical models 
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Notice that the reaction forces for both concentrated and distributed load models 

are the same and the reaction moments are very close to each other. The model with a 

distributed load has reaction moments of about 90% the magnitude of the one with a 

centered concentrated force. 

In the analytical calculations, the right and left sides of the walker are treated as if 

they were not connected to each other. It will be shown that this assumption is valid at 

this point because almost all of the strain on each leg is caused by the force applied to 

the handle of the respective leg. Later, the effect of axial loads applied on the opposite 

side is quantified experimentally in order to have a more reliable measurement. This 

simplified analytical model is expected to quantify the maximum strain at the curvature 

between the handles and legs of the walker. In the results shown in Figure 2-2, the length 

of the centered distributed load c is 15 cm and the total beam length L is 27.7 cm.  

Axial stress on the legs is calculated using Eq. 2-9. 

 
      ( )  

 ( )

 
  Eq. 2-9 

The hollow circular cross sectional area A is 1.042 cm
2
 with an inner radius of 

1.137 cm and outer radius of and 1.275 cm. 

The Axial strain is obtained using Eq. 2-10. 

 
. Eq. 2-10 

The axial stress is given by σaxial and the aluminum’s modulus of elasticity  

(79.9 GPa) is Eal. 

The Bending strain at the curvature is obtained as shown in Eq. 2-11,  

 
. Eq. 2-11 

The Bending stress σbend is given in Eq. 2-12. 

axial
axial

alE


 

bend
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 
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     ( )  

   

  
  Eq. 2-12 

M is the moment of the horizontal member shown in Figure 2-2, and R is the 

outer radius of the circular cross section. 

The second moment of inertia about the neutral axil is given in Eq. 2-13 and has 

a value of 7.6e-9 m
4
 using the outer and inner radii mentioned above. 

 

. 
Eq. 2-13 

The total strain is obtained adding both axial and bending components and has 

been plotted vs. applied loads in Figure 2-3. As expected from the moment diagram, the 

strain is higher for the concentrated load model. These two models are compared to the 

FEM model in the following section, where a distributed load was applied at the handles 

of the roller walker. 

 . Eq. 2-14 

 

Figure 2-3 Maximum total strain results from analytical model of the walker 
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FEM Model 

A CAD model of the walker was constructed to make a Finite Element Method 

(FEM) model using ANSYS [23] and predict the strain at the curvature of the leg of the 

walker when an axial load is applied at the handle. This approach was taken to observe 

the results on a more realistic geometry than the simplified geometry used in the 

analytical calculations. This model allows having a representation of the strain distribution 

in the curvature area that is closer to the real case to help assessing the placement of the 

strain gages. It is noticeable in Figure 2-4 that the strain is largest at the curvature 

between the vertical and horizontal members that form each side of the walker’s 

structure. The resultant strain in this area has components of both axial and bending 

forces. From these results the location where the strain gages were to be installed was 

determined so that a significant strain would be felt by the strain gages, also allowing for 

easier and stronger bonding of the gage to the surface than at the point of maximum 

strain [4][7][8]. Contrarily to the analytical model, the strain at the curvature does not 

occur at a single point between the vertical and horizontal member but rather is 

distributed around the curvature area as shown in Figure 2-4. 

It is necessary to perform experiments to know the true behavior of the system. 

FEM can be very accurate but it is limited by the used assumptions and approximations 

in the model; experimental results are not expected to be exactly the same as results 

from the FEM analysis for three main reasons: 

1. The strain gage tends to integrate, or average, the strain over the area 

covered by the grid (Figure 3-2) [4]. Knowing that there is strain gradient 

at the placement area, the measured strain will not be equal to the strain 

recorded at a specific point from the FEM model. 

2. The CAD model is a close but not an exact representation of the walker. 
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3. When installing the gages it is very difficult to place them exactly at the 

same area as the one in the FEM model.  

The FEM model was set similar to the analytical model described above. The 

surfaces in contact with the ground were fixed to replicate closely the calibration 

conditions. Also, axial distributed loads on the handle were applied rather than 

concentrated loads. Moreover, all the joints in the model were set as bonded. Since 

computational power was not of big concern when running the analysis the geometry was 

not simplified. The FEM analysis was performed using three-dimensional tetrahedral 

elements with the help of the meshing tools provided by ANSYS. This type of elements is 

useful for stress analysis of general three-dimensional bodies that require a more precise 

analysis than is possible through two dimensional and/or axisymmetric analysis [31], 

although in some cases a 2D or a 1D models can be more accurate than a 3D models. In 

this case a 3D model was used because it was easier to mesh all the parts and 

connectors joining all the member of the walker. A 2D model would have been a valid 

alternative as well.    

The model was subjected to a convergence analysis. Three different mesh sizes 

were used for convergence study and they are shown in Appendix A. The finest mesh 

used had a size of 3 mm and experienced a variation of 6.6% in maximum strain and 

1.5% in total deformation from the previous one which had varied 14.6% and 16.3% in 

maximum strain and deformation respectively. The model was one element thick since 

the wall thickness is about 1 mm. 

The results from the FEM model were taken at two points close to the grid area 

where the strain gages were chosen to be placed (the strain gage chosen has a 5mm 

grid) and these results were averaged. 
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(a) (b) 

 
Figure 2-4 FEM analysis result performed in ANSYS (a) vs. actual walker with installed 

strain gage under the point of maximum strain (b) 

It is interesting to notice in Figure 2-4 that the general shape of the strain 

distribution at the curvature between the leg and handle of the walker in the result from 

the FEM model coincide with the shades seen on the surface of the tube after the surface 

preparation process for gage installation on the walker [8]. Figure 2-5 shows the results 

from the FEM analysis and how it compares to the results from the analytical model.  

The maximum total strain estimated in the analytical models and the one found in 

the FEM analysis are very close as expected. Moreover, the model with the distributed 

load approaches the FEM results very closely. The calculated strains with this analytical 

model are 99.6% the maximum strains found in the FEM model. On the other hand, the 

analytical model with the concentrated load overestimated the maximum strain by 11.3% 

compared to the FEM model results. 
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Most of the strain felt at the extremes of the horizontal member corresponds to 

bending strain. If only the axial component of the strain is measured, the resultant change 

in the resistance of the strain gage would be very small, resulting in a small voltage 

response from the bridge, thus a small signal-to-noise-ratio. A larger amplification of the 

signal implies amplifying the noise as well. If the signal-to-noise-ratio is small the 

resulting amplified signal would have high noise also. In order to have a larger signal-to-

noise-ratio, the strain gage is installed at the curvature formed by the handle and legs 

where the magnitude of the strain is higher (includes both axial and bending components 

of the strain due to the applied axial load). The response would still follow a linear relation 

with load and it would be more easily quantifiable. The downside is that if the resultant 

load is applied at different locations of the handle, the moment felt at the curvature 

changes. This means that to maintain a reliable measurement, the location at which the 

handle is held has to be fixed. The assumption taken, as shown, is that a uniform 

distributed load is applied on the area of the handle. 

 

Figure 2-5 Total Strain vs. Applied Load for Analytical and FEM model 
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The strain gages were chosen to be installed at a location below the location of 

maximum strain at curvature as shown in Figure 2-4. In this area the response would still 

be bigger than only measuring axial strain but it would sense a lesser bending 

component. This location would also help on the strain gage installation because the 

surface is less curved and easier to prepare for installation. More details of the FEM 

model can be found in Appendix A.  
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Chapter 3  

Axial Load Measurement 

Strain Gage Measurement Overview 

A brief overview of the main concepts needed to design the axial load sensor 

using strain gages is given in this section. A fundamental theoretical overview on 

resistance strain gages is presented first, followed by a basic depiction of Wheatstone 

bridges, non-inverting operational amplifier and finally main analog to digital conversion 

concepts necessary to understand the data acquisition system. The understanding of 

these concepts is essential for the measurement and data acquisition of strain using 

resistance strain gages.  

Very often the measurement of physical quantities consists in the transduction of 

the phenomena to an electric voltage and then the measurement of this voltage which is 

correlated back to the physical phenomena in question. In the case of strain 

measurement, the strain causes a change in resistance in the gage which then causes 

an unbalance in the Wheatstone bridge, resulting in a proportional voltage output [2]. The 

voltage output of the bridge is amplified to be measured by a Multimeter or acquired 

using a data acquisition system. In order to properly design each component of the 

system, it is necessary to understand their basic principles behind them. These basic 

principles are described below. 

Resistance Strain Gages 

Bonded resistance strain gages have been widely used in the past decades to 

measure strain. They meet basic necessary characteristics [2] [4]: 

1. High spatial resolution 

2. Low sensitivity to changes in ambient conditions 

3. High frequency response for dynamic strain measurement 
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They consist of a metallic grid specially designed to be securely bonded on the 

surface where the strain is to be measured. The strain gage is bonded using a special 

adhesive that ensures that the gage deforms with the test object. This adhesive varies 

according to the material and ambient effects at which the measurement is performed. 

The phenomenon that allows the use of resistance strain gages for this purpose is the 

change in electrical resistance of metallic and semiconductor materials when subjected to 

strain. This change in electrical resistance is what is being measured and correlated to 

the applied strain [2].  

To depict how strain gages work let us consider a conductor with uniform cross-

sectional area    and length   made of a material with an electrical resistivity  . The 

resistance of this conductor would be 

   
   

  
. Eq. 3-1 

If the conductor is subjected to a normal load, both the length and the area 

change, which causes a variation in the total resistance of the conductor. This change in 

geometry is what allows us to measure the strain of the object. When the resistance of an 

object changes due to applied mechanical strain, it is known to have called piezoelectric 

behavior [2].  

The variables mentioned in Eq. 3-1 can change significantly with temperature. If 

temperature fluctuations are not accounted for in the measurement, it can affect the 

reliability of the measurement. That is why many strain gages have temperature 

compensation, which allows for minimizing the effect of temperature on the measurement 

[2] [4]. Temperature doesn’t represent a major factor for the Smart Walker because the 

measurements are thought to be carried out around room temperature; nevertheless the 

strain gages used have temperature compensation for aluminum (material of the walker).   
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Figure 3-1 shows a typical strain gauge construction [2]. It has a metallic pattern 

sandwiched in-between a plastic backing material. Choosing the right pattern dimensions 

is fundamental to ensure a proper measurement. The strain gage averages the 

measured strain over the grid area. Many times the maximum strain is the quantity of 

interest. Having a long gauge length in high strain gradient locations can result in error 

due to averaging. Figure 3-2 shows a representation of the averaging within the area of 

the gage.  

 

Figure 3-1 Construction of a typical metallic foil strain gauge [2] 

 

Figure 3-2 Indicated Strain vs. peak strain measured by Strain Gage [4] 
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The change in resistance is expressed in terms of a parameter called the gauge 

factor (GF) [2]. This is usually given by the strain gage manufacturer and it is defined as, 

 / /

/ a

R R R R
GF

L L

 

 
 

.

 Eq. 3-2 

Wheatstone Bridge 

The Wheatstone bridge is one of the most common circuits used to detect small 

changes in resistance. It is widely used for strain gage measurement. Equipment is 

commercially available for this purpose, which can measure changes in resistance of less 

than 0.0005 Ω. In this case a bridge completion module MR1-350-127, shown in  

Figure 3-3, has been used because of its small size and simple installation. 

 
Figure 3-3 MR-Series Bridge Completion Modules [9] 

The Wheatstone bridge is fed with an excitation voltage, shown in Figure 3-4 as 

 and the output voltage varies according to the change in resistance of the strain 

gage.  

Figure 3-4 shows a quarter-bridge configuration. In this configuration only one of 

the four resistances in the bridge varies and the others remain fixed. As such, the change 

in resistance of only one of the resistors (i.e. the strain gauge) is measured. In many 

situations, such as measuring bending strain, the change in resistance of two resistances 

is desired in order to obtain a higher response from the bridge. The full bridge 

iE
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configuration will be shown later for measuring torque, in which all of the resistors in the 

bridge change and contribute to allow for a larger voltage output and ultimately better 

response to an applied torque. 

 

. 
       Eq. 3-3

 
 

Eq. 3-3 shows the expected bridge voltage output for a quarter bridge 

configuration. It displays the initial voltage output with no bridge deflection (Eo), the 

voltage change (δEo) due to the change in resistance of the strain gage (δR) as well as 

its relation to the other fixed resistances (R2,3,4). 

Often the bridge needs to be balanced in order to ensure its best response to the 

change in the resistance of the gage and to fine-tune the output voltage at initial 

conditions. One main reason to change the output voltage at initial conditions is to make 

sure that the amplifier following the bridge can sense the bridge deflection. That means 

that the bridge output at initial conditions, 
 be bigger than the input offset voltage of 

the operational amplifier used. Potentiometers are often used for this purpose. A 

balancing scheme is shown in Figure 3-5. 
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Figure 3-4 Wheatstone bridge 

(quarter bridge) [2] 

 

Figure 3-5 Differential shunt balance 

arrangement for balancing bridge circuits [2] 
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. 
       Eq. 3-3

 
Eq. 3-3 and Eq. 3-2 reduce to Eq. 3-4 under the assumption that       ,  

 
. Eq. 3-4 

For a multiple gauge bridge arrangement, the bridge constant  is used to 

predict the bridge response. The bridge constant is defined as the ratio of the actual 

bridge output to the output that would result from a single gage sensing the maximum 

strain. When more than one gage is used, Eq. 3-4 becomes 

 . Eq. 3-5 

More detailed derivations of this equation can be found in Figliola [2].  
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Non-Inverting Amplifier 

The output signal of the bridge is amplified using a low noise amplifier. In this 

case a non-inverting amplifier was used. Figure 3-6 shows the schematic of the  

non-inverting amplifier with connections to voltage source and bridge outputs. It is 

necessary to ensure that there is a DC path to earth for the very small input current that 

is needed, for that reason R3 is included. R4 is included for impedance matching purposes 

at the input of the amplifier [28].  

The gain of the amplifier is given by,  

 
. Eq. 3-6 

  
Figure 3-6 Non-Inverting amplifier schematic 

 
Eq. 3-5 becomes Eq. 3-7 when the gain from the non-inverting amplifier is 

included Eq. 3-6, 

 
. Eq. 3-7 
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Analog to Digital Conversion 

The final goals are to acquire the voltage in real time using a data acquisition 

system, and to store and visualize the data. This requires an analog to digital (A/D) 

conversion of the signal. To obtain the best possible measurement from the system, the 

upper and lower voltage limits of the A/D converter need to be known.  

An analog to digital converter discretizes a specific range of voltages according 

to its resolution and converts the analog signal to a digital quantity; this is called 

quantization [2]. To optimize the resolution of the acquired data from a given system, it is 

important to use as much as possible of the voltage range used by the A/D converter.  

Converters in general have a reference voltage  that defines the upper 

voltage limit of the measurement. The lower limit is usually ground. If the input signal is 

below the lower limit the reading is null (lowest binary number) and if it goes beyond the 

upper limit, the result is a saturated output (highest binary number). The amount of 

divisions possible in the measurement is given by the number of bits the A/D registers. 

An M-bit A/D converter outputs  binary numbers. For example a 10 bit analog to 

digital converter with a Vref of 5 V would be able to discretize the 5 V range with 

 binary values; this means a resolution of 4.89 mV per binary value.  

If the maximum output voltage from the amplifier is known, the reference voltage 

can be adjusted to get the maximum possible resolution from the given converter. Or, if a 

specific reference voltage is known to be used, the signal can be amplified accordingly to 

closely cover the range of conversion. 

Another factor to take into account is the sampling rate of the converter. A/D 

converters sample the signal periodically. From a continuous signal, a discretized signal 

in time is obtained. Depending on the application and physical measurement to be 

performed, the required sampling rate varies. For example, when mechanical vibrations 

refV

2M

102 1024
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are to be measured, it is fundamental to ensure that the maximum natural frequency of a 

given structure is being acquired by the system. The Nyquist criterion states that the 

minimum sampling frequency needed to capture the information from an oscillating 

analog signal is twice the frequency of such signal. For example, when sampling sound it 

is common to find sampling frequencies in the order of 40 kHz, which is about twice the 

upper limit of frequencies range of the human ear.  

 

Figure 3-7 Binary quantification and saturation [2] 

Having a higher than needed sampling rate can unnecessarily complicate data 

transmission and storage. A higher sampling rate can translate for example in more 

power consumption of the system and more overall storage needed. This is why it is 

necessary to know the nature of the physical phenomena to be measured and the 

information needed to be measured from it. 

This system will use an Arduino MEGA which has a 10 bit A/D converter and has 

a maximum reference voltage of 5 V [10]. With this reference voltage, a resolution of  

4.89 mV is possible. More specific detailed explanation of the data acquisition system 

(DAQ) used in the smart walker will be given in Chapter 7.  
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Amplifier Design Considerations 

Estimation of Resolution of Overall System  

The voltage output from the bridge due to an applied axial load to the handles 

was estimated using the analytical models and the FEM model. The results are shown in 

Figure 3-8. At the moment the amplifier was being fabricated, the goal was to be able to 

get readings of up to 100 lbf per side with a sensitivity of at least 1lbf/mV. It was indicated 

previously that the precision of the 10-bit A/D converter in the Arduino MEGA with a 5 V 

reference voltage is about 4.8 mV per bit count.  

Knowing the precision of the A/D converter, the required response from the 

system is known to achieve a specific measurement resolution. In the case of a 4.8 mV 

resolution, the needed response has to be ≥ 4.8 mV/lbf. Also, another approach would be 

to reduce the reference voltage of the A/D converter. The lowest possible reference 

voltage in the Arduino MEGA without having to use the physical pin is 1.1 V. For this 

reference voltage the resolution is 1.08 mV per bit count. 

 
Figure 3-8 Estimated bridge deflection from analytical and FE model 
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Figure 3-8 shows the expected bridge deflection using the strain calculations 

from the analytical models (simplified geometry) and the FEM model. This was calculated 

using Eq. 3-5 where the gage factor used for the calculation is GF=2, which is a usual 

gage factor for the type of strain gages used. As it was indicated before, the strain in the 

analytical model is expected to be higher than at the location where the strain gage was 

installed because in the actual walker the strain distributes in the curvature area rather 

than being at a single point where a vertical and horizontal member connect.  

Since the location of the strain gage was chosen from the results of the finite 

element model, these results are used to estimate the deflection of the bridge and the 

voltage output from amplifiers of different gains. Eq. 3-7 is used where the excitation 

voltage  is 5 V, and since it is a quarter bridge,  is 1. Figure 3-9 shows the 

estimated output voltage with an output voltage at initial conditions of 100 mV. 

Knowing the precision of the A/D converter, the actual resolution of the system 

can be estimated. Table 3-1 shows the precision of an A/D converter depending on the 

number of bits of the A/D converter and the reference voltage used. The reference 

voltages used in the table are the ones that can be set though software in the Arduino 

MEGA. Table 3-2 shows the sensitivities that would be obtained from various 

amplifications and also the overall resolution of the system (using Arduino MEGA’s 10-bit 

A/D converter) for various gains and reference voltages of 1.1 V and 5 V.  

From the criterion of being able to measure at least 1lb/mV, a gain of 1000 or 

larger would suffice for a reference voltage of 1.1 V. Similarly for a reference voltage of  

5 V a gain of 2000 or larger would be sufficient. 

 

iE 
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Figure 3-9 Estimated voltage response of the system with amplifiers of different gains to 

applied axial load 

Table 3-1 DAQ system resolution depending on N-bit of A/D converter and  

reference voltage in [mV/bit count] 

 DAQ Reference Voltage 

N-Bit  1.1 V 2.56 V 5 V 

8 4.30 10.00 19.53 

10 1.07 2.50 4.88 

12 0.27 0.63 1.22 

16 0.02 0.04 0.08 

Table 3-2 Estimated sensitivities and system resolution for diferent amplifier gains and 

reference voltages with 10-bit A/D converter 

  
System Overall Resolution, 

[lbf/bit count] 

Gain 
Sensitivity, 

[mV/lbf] 
Vref = 1.1 V Vref = 5 V 

10 0.032 33.67 153.07 

100 0.319 3.37 15.31 

1000 3.190 0.34 1.53 

2000 6.380 0.17 0.77 

2500 7.975 0.13 0.61 
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From the other criterion of needing a range of measurement of at least 0 to  

100 lbs, it is noticeable that all of the gains presented would be sufficient without 

saturating the A/D using a reference voltage of 1.1 V. Nevertheless, if a gain of 1000 

would be used, although it would meet both requirements, a significant amount of the 

resolution would be sacrificed noticing that for 100lbs applied it would not even reach half 

of the possible maximum voltage (1.1 V). Moreover, a gain of 2500 would have the best 

of the resolutions presented, but the gain of 2000 is chosen for the prototype to avoid 

applying extra amplification to a system that does not require it, which would amplify the 

present noise. As mentioned earlier, it is also not recommended to have such high gains 

with only one operational amplifier. Therefore, a gain of 2000 was chosen to maintain 

simplicity of the design and avoid having to cascade two or more operational amplifiers. 

This being said, as per the data sheet of the op-amp used LT1014CN, the maximum 

allowed gain is 10,000.  Setting the gain to 2000 also lets us measure more than 100 lbs 

per side of the walker (close to 150 lbs).
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 Non-Inverting Amplifier Design & Fabrication  

For the non-inverting amplifier, the op-amp to be used is the Texas Instruments 

LT1014CN. It is a 4-channel precision amplifier with very low input bias voltage and 

current, capable of dual supply operation in a PDIP-14 package. The main specifications 

are shown in Table 3-3. With this op amp it is possible to amplify the signal of each axial 

load sensor on the walker legs. 

Table 3-3 Operational Amplifier LT1014CN Specifications 

Amplifier Type: 
precision 
amplifier 

Number of Channels: 4 channel 

GBP – Gain Bandwidth Product: 1 MHz 

SR – Slew Rate: 0.4 V/us 

CMRR – Common Mode Rejection 
Ratio : 

97 dB 

Ib – Input Bias Current: 30 nA 

Vos – Input Offset Voltage: 300 uV 

Supply Voltage – Max: 44 V 

Supply Voltage – Min: 5 V 

Maximum Gain 10,000 

Operating Supply Current: 2.2 mA 

Maximum Operating Temperature: + 70 °C 

Minimum Operating Temperature: 0 °C 

Package PDIP-14 
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(a) 

 

(b) 

Figure 3-10 Non-Inverting op-amp schematic (a)  

and Texas Instruments PDIP-14 package (b) 

The schematic of the amplifier is shown in Figure 3-10 (as it was shown 

previously). The resistances used are 710 kΩ for R1 and R3, and 350 Ω for R2 and R4, 

to get an expected gain of 2030. The gain is calculated using [2]; the fabricated circuit is 

shown below in Figure 3-11. 

 
Figure 3-11 Fabricated Non-Inverting operational amplifier 
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True Gain Test 

Due to the tolerances in the components of the amplifier, the true gain is always 

off the theoretical expected value. Also, to test that the amplifier is operating properly, a 

true gain test was made on each one of the channels. The results are shown below in 

Figure 3-12 and the gains measured as the slope of the curves shown in Figure 3-12 are 

listed in Table 3-4. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3-12 True gain test results for axial load sensor amplifier.  

Channel 1 (a), 2 (b), 3 (c), 4 (d).   
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Table 3-4 Summary of results from true gain test of axial load sensor amplifiers 

Channel True Gain 

1 2032.2 

2 2032.9 

3 2050.6 

4 2084.7 

Calibration 

The calibration of the axial load sensors was performed by applying known 

weights to the handles in increments of 1 lbf, 5 lbf, and 20 lbf in a range from 0 to 40 lbf. 

When the calibration was performed, the maximum load needed to be measured per side 

was lower than initially thought, reason why the range of measurements for the 

calibration went only up to 40 lbs. Nevertheless, the system is able to measure up to  

150 lbs per side (maximum allowed by the RW’s manufacturer) if needed.  

 
Figure 3-13 Application of the load for axial load calibration 
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Figure 3-14 Experimental setup for axial load  calibration 

The flow diagram showing the components of the experimental setup is shown 

below in Figure 3-15. The measurements were performed by reading voltages from 

multimeters (analogically) and acquiring the signal using the Arduino MEGA. This was 

done to compare readings and test the DAQ.  

The Arduino MEGA 5V pin supplied the excitation voltage for the bridge and was 

the voltage source for the op-amp. The voltage output from the bridge was measured 

using a FLUKE 8845A precision multimeter. The output from the amplifiers was acquired 

using the Arduino MEGA and also monitored using a multimeter. Part of the experimental 

setup can be seen in Figure 3-14.  

The calibration curves of each strain gage are shown in Figure 3-16. The first 

strain gage observed in Figure 3-16 (a) experiences high hysteresis compared to the 

other two strain gages. Since this strain gage has been loaded several times what seems 

to be causing this behavior is poor bonding. This strain gage has been replaced, but it 

serves as example of the behavior of the gages with poor bonding [6] - [8].  
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.  
Figure 3-15 Axial load Calibration Flow Diagram 

As it was seen on the FEM model, the sensitivity of the sensors is highly 

dependent on the location of installation; experimentally it is seen also that the strain 

gages that are closer to the curvature experience a higher response to loading.  

Table 3-5 summarizes the sensitivity of each of the sensors as well as the 

resolution of the measurement using the 10-bit A/D converter in the Arduino MEGA with a 

reference voltage of 1.1 V.  

Table 3-5 Sensitivity and overall resolution of measurement 

Strain 
gage (leg) 

Sensitivity 
[mV/lb] 

Overall 
Resolution 

[lb/bit count] 

Back/Right 2.48 0.43 

Back/Left 5.14 0.21 

Front/Right 6.37 0.17 

Front/Left 6.01 0.18 

The resolution of the front leg sensors are almost exactly as predicted from the 

FE model and bridge and amplifier estimations. Although the gauge on the back leg has 

a lower resolution, it is still within the acceptable margin of 1 lb per bit count. This 

Strain Gages Bridge Units 

FLUKE 8845A 
Precision 

Multimeter 

Arduino MEGA 
Power Supply 

Amplifiers 

EXTEC 
Multimeter  

Arduino Mega 
(Analog input) 

PC 

δ
R 

5V 

V(t) 

V(t) 

V(t) 

𝑉𝑖 
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difference is because the location of the strain gage is further away from the curvature of 

the leg, thus it doesn’t sense as much of the bending strain.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3-16 Axial load sensors calibration curves. Corresponding to legs (a) Front/Left,  

(b) Front/Right, (c) Back/Left, (d) Back/Right 
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Effect of Load Applied on Opposite Handle 

It was noticed experimentally that the sensors on the side where the load was not 

being applied still experienced some strain. This strain was not quantified analytically or 

with the FE model because it would have been cumbersome to replicate actual joint 

conditions of the members of the walker. The effect will be quantified experimentally and 

a relation will be found to include this effect on the overall calibration curve in the final 

user interface. The experimental setup is the same as in the calibration process 

described above, except that the loads are being applied on the opposite side of the 

walker where the sensor is installed. 

The effects on the sensors when a load is being applied on the opposite side 

handle are shown below in Figure 3-17 Figure 3-18. 

Figure 3-17 Effect on the left side legs when load is applied on right handle.  

Front Leg(a), Back Leg (b) 

Notice that the slope is negative for the sensors in the back, and positive for the 

ones in the front. Also the slope is steeper for the sensors on the left side; they are more 

sensitive to loads applied to the opposite side. The linearity on the left side is much better 
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than on the right side. Because the bar that connects both sides of the walker is not 

completely rigid and fixed, it is difficult to find a linear relationship.  

(a) (b) 

Figure 3-18 Effect on the right side legs when load is applied on left handle.  

Front Leg(a), Back Leg (b) 

Table 3-6  Slope of calibration curves and overall effect on sensor readings when the 

load is being applied on the opposite handle 

 
Slope [mV/lbf] 

Effect on reading [lbf per 
lbf applied on opposite 

side] 

Front/Left 0.76 0.13 

Back/Left -0.34 -0.07 

Front/Right 0.29 0.05 

Back/Right -0.12 -0.05 

Notice also that linearity wasn’t achieved in the results of the right side after 

numerous attempts, not because the response is not linear by nature, but because the 

members of the walker are not completely bonded and during testing, joints that were 

practically fixed experienced release or friction and shifted the voltage readings.  

Strain Gage 3

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0.175

0.178

0.182

0.185

0.188

0.192

0.195

Load

St Dev (Load)

Unload

St Dev(Unload)

Linear Fit

Load, [lb]

V
o

lt
ag

e,
 [

V
]

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0.11

0.114

0.118

0.122

0.126

0.13

Load

St Dev (Load)

Unload

St Dev(Unload)

Linear Fit

Load, [lb]

V
o

lt
ag

e,
 [

V
]



 

51 

The effect on the sensors when loads are being applied on the opposite side was 

measured to be relatively small but not negligible. For example on the front left gage an 

offset of 1.3 lbf would be felt on every 10 lbf applied on the right side.  

The characterization of this effect is not simple. When loads were applied on both 

sides, the effect that an applied load on the opposite side where the strain gages are 

installed was observed to diminish. It is recommended for following prototypes to bond 

the joints connecting all the member of the walker to help the characterization of this 

effect.  
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Chapter 4  

Torque Measurement 

Another main objective in this project is to be able to measure the torque applied 

by the user to the handle. Strain gages will be used as well for this purpose, measuring 

the shear strain at the surface caused by the torque. In this case rosettes with grids 

rotated 45 degrees as shown in Figure 4-1 were used in order to have four varying 

resistances in a full bridge configuration. A similar design process to the axial load sensor 

was carried. Analytical calculations were performed to assess the proper gain that would 

be needed to have a proper measurement resolution. This time an existing amplifier with 

a gain of 1000 was available. The full-bridge configuration response from an applied 

torque was predicted to ensure that the amplification would be sufficient. Later the 

system was calibrated to obtain actual calibration curves.  

Strain Gage Measurement Overview for Torque Measurement  

Basic Theory – Full Bridge 

In Chapter 3 a closed form solution to predict the voltage output from a 

Wheatstone bridge was shown in Eq. 3-5. 

In torque measurement using strain gages a full-bridge configuration is used. 

Four strain gages, rotated in a 45 degree angle are installed as shown in Figure 4-1. All 

four gages (4) contribute to the bridge deflection and so Eq. 3-5 with becomes 

 
. Eq. 4-1 
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Figure 4-1 Strain gage configuration for torque measurement. [3] 

For simplicity of installation and accuracy of relative angle between gages, a 

rosette with two grids rotated 45° was used.  

 
Figure 4-2 General Purpose Strain Gages - Shear/Torque Pattern [5] 

The bonding and surface preparation is the same as that for the axial load strain 

gages, although the installation is a little more difficult for special constrains.  

It is evident that because the four (4) grid patterns are the four varying 

resistances forming the full bridge, there is no need for a bridge completion unit. The 

voltage output from the bridge is directly amplified and then acquired by the Arduino 

MEGA.  
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Figure 4-3 Installed Rosettes on left handle 

The maximum shear stress on the surface of a cylindrical member subjected to 

torque is given by,  

.          
Eq. 4-2 

Where, T is the applied torque, R is the outer radius and J is the polar moment of 

inertia.  

The polar moment of inertia of a hollowed circular cross section is,  

.

    
Eq. 4-3 

R and r are the outer and inner radius respectively.  

From here the maximum shear strain is,  

    .    Eq. 4-4 

Where G is the Shear modulus, E is Young’s modulus and is the Poisson’s 

Ratio. 

Finally, the expected bridge response as a function of torque applied is given by,  
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.

  

Eq. 4-5 

Based on the walker’s handle dimensions and aluminum’s properties the 

expected signal from the bridge for an excitation voltage of 5 V would be as shown in 

Figure 4-4. With this we can estimate the output signal from an amplifier as well. In this 

case the approach was different than for the axial load sensors. There was an amplifier 

available with a gain of 1000 that was fabricated earlier. With this model we can predict 

the output and see if it meets the required resolution. It is easy to visualize from the 

Figure 4-4 that he output from the amplifier will be about 0.3 V for a torque of 1 N-m or 

8.85 lb-in t. The expected sensitivity of the system would be 35.6 mV/lb-in, which results 

in a resolution of 0.03 lb-in per bit count and sufficient for this purpose. Also, considering 

that torque is being measured in both directions, the range of voltages available is 550 

mV on each direction. Using 1.1 V as a reference voltage (as explained in Chapter 3) for 

the A/D conversion, would result in a maximum reading of about +/- 16 lb-in. 

 
Figure 4-4: Expected Full-Bridge output (Torque) 
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Circuit Design 

On the same circuit board where the axial load sensors were connected, the 

zeroing circuit for the torque sensor was added. It is very important for this circuit to have 

a zeroing function. The measured output voltage with no load applied is needed to be at 

the center of the voltage range of measurement, this is 550 mV. This zeroing capability 

does not affect the performance of the bridge; it maintains its response no matter what 

value the voltage takes at initial conditions. Figure 4-7 shows the schematic of the circuit. 

It includes the zeroing circuit, the full-bridge and the non-inverting amplifier. 

 
Figure 4-5 Zeroing circuit for torque sensor in 

main circuit board 

 
Figure 4-6 Fabricated Amplifier used in 

torque sensor (G=1000) 

Table 4-1 Components of Torque sensor’s circuit 

Component Description 

 Excitation Voltage (5 V) 

 Potentiometer 

 Nulling Resistor 

 Strain Gages (    ) 

      

       

 Arduino analog input port 

extV

potR

nullR

1 4R R

5 6,R R

7 8,R R

1J
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Figure 4-7 Circuit schematic of torque sensor 

True Gain Test 

 
(a) 

 
(b) 

(c) (d) 
Figure 4-8 Torque amplifier true gain test results. Channels 1(a), 2(b), 3(c), 4(d) 
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The amplifier to be used was tested to obtain the true gain of each of its 

channels. Although only two channels are needed, because the chip had capability of 

four channels all of them were made. Above are the results from the true gain test. 

The gains of the amplifiers are as expected. Although the input voltage is very 

small and difficult to measure, linear relations were found.   

 
Figure 4-9 Zeroing circuit & Amplifier true gain test 

Calibration 

Finally to complete the torque sensor it is necessary to measure the actual 

response to applied torque and obtain calibration curves. For this purpose the simplest 

way found to apply known torques to the handle was by 3D printing a clamp and rod and 

hang measured weights at known distances from the center of the handle. Figure 4-10 

shows the printed clamp used for the calibration.  
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Figure 4-10 Clamp 3D printed used to apply torque for calibration 

The experimental setup is similar to the one used for the axial load sensor 

calibration. It is shown below. 

  
Figure 4-11 Experimental setup of torque calibration 

The clamp with a 6in bar was used to apply torque to the handles as shown in 

the Figure 4-10. Two tests were performed hanging a mass of 0.5lb and 1lb every inch 

from the base of the bar, having torques applied of [0.5, 1, 1.5, 2, 2.5, 3] lb-in and [1, 2, 3, 

4, 5, 6] lb-in. This test was performed in both directions of twist to make sure the voltage 

response is measured in both directions. About 30 seconds of data was acquired per 
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load applied and the average of the reading was used to get each point and construct the 

calibration curve.  

 
Figure 4-12 Calibration curve of torque sensor in left handle 

 

Figure 4-13 Expected response from analytical model 
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Table 4-2 Summary of linear fit coefficients 

 Left Handle Right Handle 

Slope [mV/lb-in] 10.1 10.6 

Intercept [V] 0.00036 -0.00001 

R
2 

0.9998 0.9995 

 
Figure 4-14 Calibration curve of torque sensor in right handle 

Observe that the measurements acquired with the Arduino have very low noise 

and the sensor responds linearly (as expected) to applied torque. 

The slope obtained is about three times less of what was expected from the 
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could be different. Since the sensitivity gives a resolution of measurement of about 0.1lb-

in per bit count this mismatch from the theoretical model did not really affect negatively 
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measured. The sensor can measure up to +/- 54 lb-in (left handle) and  

56 lb-in (right handle) if the voltage with no load is set at 550 mV. Still, such high applied 

torques are no expected from elderly patients in a nursing home. 

Effect of Axial load on Torque Measurement 

There is strain that is caused by axial loads at the location where the torque 

rosettes were installed. This was observed experimentally noticing torque readings when 

only axial load was being applied. This effect was measured to subtract it from the final 

reading of the torque sensor. Curves were obtained by performing the same procedure 

as with the axial load sensor calibration. The data points do not follow a single curve 

because the effect changes according to the position at which the axial load is being 

applied but the correlation is still acceptable to have an accurate torque measurement.   

 
Figure 4-15 Left handle torque sensor’s response due to axial load 
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Figure 4-16 Right handle torque sensor’s response due to axial load 

From these figures it is noticeable that the response is not linear and it can be 

approximated with a quadratic fit. These curves include various test runs with axial load 

applied at different locations of the handle. 
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Chapter 5  

Gripping Force Measurement 

FSR Sensor Review 

Similarly to strain gages and other sensors, the FSR sensor experiences 

changes in resistance according to the measured physical quantity, in this case force. 

These changes in resistance are translated into an output voltage that then is correlated 

to the physical quantity in question. 

 
Figure 5-1 ForceSensitive Resistor used to measure gripping force [20] 

 Because the change in resistance with applied force in the FSR sensor is large, 

a Wheatstone bridge is not used to translate this change in resistance to voltage, as it is 

used with strain gages. With strain gages, the resistance is maintained within a value and 

changes slightly with applied loads, reason why a bridge is needed to capture this sight 

change in resistance. The FSR sensor has an infinite resistance when no load in being 

applied (open circuit) and with force applied the resistance reduces progressively until it 

is very small. The figure below shows the non-linear change of resistance with applied 

force.  
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Figure 5-2 FSR Resistance vs. Force curve [20] 

The FSR sensor is fairly low cost and easy to use and install but they are rarely 

accurate [20]. Definitively not even close to the accuracy of Strain gages, but for the 

purpose of this measurement its accuracy is enough. Ranges of responses are expected 

more than an exact force measurement.  

The FSR sensor has the specifications shown below, 

Table 5-1 FSR sensor technical specifications [20] 

Diameter [in] 0.5 

Resistance Range [Ω]  Infinite (no force) to 200 Ω max force 

Force Range [lb] 0 to 20 lb applied over 0.125 in
2
 of surface area 

Power Supply Less than 1 mA od current  
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Circuit 

The FSR sensors are very easy to install and use. The easiest way to measure 

force is to connect one end to Power and the other to a pull down resistor to ground as 

shown below [20]. This basically makes the sensor act as a voltage valve. When there is 

no force applied the valve is closed and no voltage output is observed, when the FSR is 

pushed the valve is open and voltage is felt at the analog input. In Figure 5-3 the 5 V 

supply is used, so the range of voltage will be between 0 and 5 V. In the Adafruit 

reference given it is possible to find a tutorial to complete the acquisition with an Arduino 

Board.  

  
Figure 5-3 FSR Adafruit installation tutorial for Arduino [20] 

Because the reference voltage for the A/D converter in this system has been set 

for the axial load and torque measurements to 1.1 V, the range of voltage output from the 

FSR sensor has to be reduced from 5 V to 1.1 V. The overall recommended circuit in 

Adafruit was slightly modified and a voltage divider circuit was implemented for this 

purpose, the schematic and components used are shown in Figure 5-4. 
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(a) 

 

(b) 

Figure 5-4 FSR circuit schematic (a) - Fabricated Circuit (b) 

The values of the resistors used in the schematic shown in Figure 5-4 are 1 kΩ 

for R2, 11.3 kΩ for R3, 3.9 kΩ for R4. 

Calibration 

After the circuit was made and the voltage response was observed in the wanted 

voltage range a calibration curve was obtained. The voltage output was observed using a 

multimeter. 

 
Figure 5-5 Block diagram of Calibration setup 

Known weights where applied to the 0.125 in2 sensing area as shown in the 

experimental setup picture Figure 5-6. 

The voltage response found from the sensor is logarithmic having a maximum 

voltage of about 1 V when 22 lb are being applied. The correlation found has good R
2
 

values although it was not possible to fit all of the points with only one function. The data 

was subdivided in 3 sub-sections in order to fit better the functions to the data. Figure 5-7 

shows the data and calibration curves obtained.  

 

Voltage divider 
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After the calibration was performed the sensors were installed on the handle. 

One sensor on the inside of every handle was installed. The measuring area of the FSR 

was set at the handle curvature where the hand lays, same point where the axial load is 

expected to be applied.   

 
(a) (b) 

 
Figure 5-6 (a) Calibration setup showing FSR and alignment beams & 

 (b) setup while force is applied to the FSR sensing area.  

 
Figure 5-7 FSR Calibration curves 
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Chapter 6  

IMU Accelerometer & Gyroscope 

Additionally to the axial load, torque and gripping force measurements, it is 

needed to know the inclination and orientation of the walker during its use. It is also 

required to know the velocity at which the patient is moving. For this purpose 

accelerometers and gyroscopes are used. They were installed both in the walker and 

also in a separate unit that they patient would wear. An off the shelve IMU 6-DOF  

(Figure 6-1) board was used containing both an accelerometer (ADXL345) and a 

gyroscope (ITG3200). This section will briefly describe these sensors, how to connect 

them to an Arduino board to obtain measurements and sample obtained measurements. 

IMU 6DOF Board Review 

The Sparkfun 6 DOF IMU digital combo board includes an accelerometer 

(ADXL345) and gyroscope (ITG3200). The sensors communicate over I2C and pins are 

available to easily connect them to an Arduino Board or any board that permits I2C 

communication. 

 
Figure 6-1 6DOF IMU Board [12] 

 The ADXL345 accelerometer is a small, thin, low power, 3-axis accelerometer 

with high resolution (13-bit) measurement at up to +/- 16g [6]. It measures the static 

acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration 

resulting from motion or shock. 
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The ITG-3200 gyro is a single-chip, digital-output, 3-axis gyro. It features 

enhanced bias and sensitivity temperature stability, reducing the need for user calibration 

[12].  

One of the main advantages of using this board is the ease of installation and 

data acquisition and available public domain information provided by Sparkfun and 

various Arduino enthusiasts. Much of the efforts needed to interpret the sensor’s readings 

were helped by available Arduino libraries with supporting documentation [22] [12]. 

Installation 

Sparkfun provides in very useful sources to install and use this IMU board with 

Arduino Boards. They provide the Arduino code necessary to get the data from the 

sensors and also a code to visualize it [12]. This was done initially to make sure that the 

board was working but the code was modified in order to include the readings from the 

analog inputs and send the data via serial connection to be read by the LabVIEW user 

interface.  

Figure 6-2 from the mentioned tutorial [12] shows the I2C connection between 

the IMU board and the Arduino board.  The SDA and SCL ports are the analog ports 4 

and 5 in the Arduino UNO and in the Arduino Mega the SDA and SCL ports are the digital 

ports 20 and 21 respectively.  

The Arduino code used to acquire the measurements is in the appendix and the 

LabVIEW code to read the data sent by the Arduino board to the PC is explained in 

Chapter 7. A very detail explanation of the models implemented in the libraries used in 

the Arduino code can be found in [22]. It was not necessary to perform any calibration. 

The sensors measured immediately acceleration and orientation and it was easily 

verifiable. Gravity was able to be observed as well as the orientation. This board however 

is not accurate to measure yaw. The Yaw reading is decent initially but with time it 
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increases even when the board maintains its same orientation. So the board can only 

measure effectively 5 degrees of freedom.  

 
(a) (b) 

 
Figure 6-2 Connection of IMU card to Arduino (UNO) board [12], and block diagram of 

connection to PC  

 
Figure 6-3 Front Panel of VI to acquiring data from IMU and plotting accelerometer data 
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Figure 6-3 shows a screen shot once the IMU board was successfully sending 

data through the Arduino board to LabVIEW. The data shown is random data with the 

IMU placed on a table; it does not represent data acquired during the usage of the 

walker.   
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Chapter 7  

Data Acquisition, Wireless Transmission and User Interface 

Hardware Overview 

Arduino MEGA as DAQ 

Arduino is an open-source project founded by Massimo Banzi, David Cuartielles, 

Tom Igoe, Gianluca Martino, and David Mellis. It was built with the effort to have in the 

market an open-source electronic platform with easy-to-use hardware and software 

intended for anyone making interactive projects [10]. Arduino boards are able to read 

inputs (sensors, switches, digital commands, etc.) and turn them into outputs (activating a 

motor, turning on an LED, sending information, etc.). Figure 7-1 shows the top view of the 

Arduino Mega where all the inputs and outputs are displayed. The microcontrollers 

serves as the brain of the board and it is programmed using the Arduino programming 

language (based on Wiring), and the Arduino Software (IDE), based on Processing. 

 
Figure 7-1 Arduino MEGA 2560 [10] 

Arduino presents many advantages when building projects like the Smart Walker. 

Because of its language, anyone with basic knowledge of C++ can easily program the 
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board and link the interactions between sensors and user interface. Additionally, it has 

been widely used for thousands of open source projects, reason why there are many 

sources to look up to for similar implementations and solutions to encountered problems. 

Also there is a variety of sensors and circuits specifically designed to interact with 

Arduino (some of them used in the Smart Walker), and many open-source user-tested 

libraries that lessens the necessity to fabricate and write needed equipment and code 

from scratch. Compared to other microcontroller platforms Arduino boards are relatively 

inexpensive and its software (IDE) runs on all mayor operating systems (Windows, 

Macintosh OSX and Linux). 

Arguably the most commonly used board among all the Arduino Products is the 

Arduino UNO. This board is very versatile and was the first in a series of USB Arduino 

boards. It is based on the ATmega328P microcontroller. Provides the user with 14 digital 

input/output pins, 6 analog inputs, a 16MHz quartz crystal, a USB connection, a power 

jack, a ICSP header and a reset button. This board allows for numerous possibilities and 

applications. Unfortunately, for the Smart Walker, the amount of analog inputs on the 

Arduino UNO was not enough. Including the 4 (four) channels for axial load 

measurement, 2 (two) for torque measurement and 2 (two) for gripping force a total of 8 

analog inputs are needed in order to perform the reading with only one board. For that 

reason the Arduino MEGA 2560 was used.  

The Arduino MEGA is based on the ATmega2560 microcontroller, and is 

designed for more complex projects (MEGA) [10]. It has 54 digital input/output pins, 16 

analog inputs and a larger flash memory than the UNO.  

Table 7-1shows all de major technical specifications of the Arduino MEGA board. 

The MEGA board is the one recommended for 3D printers and robotics projects. For the 
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Smart Walker it serves mainly for data acquisition. In this regard the MEGA board has 

one extra benefit on top of the Arduino UNO regarding easily achievable resolution. 

Table 7-1 Arduino MEGA 2560 Technical Specifications [10] 

Microcontroller ATmega2560 

Operating Voltage 5V 

Input Voltage (recommended) 7-12V 

Input Voltage (limit) 6-20V 

Digital I/O Pins 54 (of which 15 provide PWM output) 

Analog Input Pins 16 

DC Current per I/O Pin 20 mA 

DC Current for 3.3V Pin 50 mA 

Flash Memory 
256 KB of which 8 KB used by  
boot- loader 

SRAM 8 KB 

EEPROM 4 KB 

Clock Speed 16 MHz 

Length 101.52 mm 

Width 53.3 mm 

  

http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
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Resolution 

The overall achievable resolution of an analog reading in the Arduino has the 

possibility to be modified or maximized depending on the application. As mentioned in 

Chapter 3 in the Analog to Digital Conversion section, the resolution depends on the 

quantization of a specific sampled voltage range. The Arduino MEGA has a 10-bit A2D 

converter and its default reference voltage is 5 V. This results in a resolution of,  

. 

This resolution can be maximized if the high end of the measured voltage range 

is known. The Arduino MEGA has the possibility to configure the reference voltage by 

code to three different values 5 V (default), 2.56 V, and 1.1 V. Also, Arduino UNO and 

MEGA give the possibility to configure the reference voltage externally if the wanted 

reference voltage is applied to the AREF pin (in the range 0 to 5 V only). Because the 

reference voltage has to be the same for all inputs, the Smart Walker the sensors were 

designed to output a maximum voltage of ~1 V and the reference voltage set to 1.1 V. 

Resulting in a resolution of,  

. 

Sampling Rate 

Both Arduino MEGA and UNO have one 10-bit A2D converter that samples the 

analog signal of all of their analog inputs. Although the clock speed is 16 MHz the highest 

sampling rate achievable when only reading one analog input is about 1 kHz for a 

number of reasons. First, some performance sacrificed in order to have the ease of the 

Arduino programming language. Since it is only one ―brain‖ reading the analog signal, 

processing the data and sending it to the serial port, the amount of operations and speed 

at which this information is sent is directly related to the overall sampling rate of the 

system. The biggest baud rate possible is 115200 bits/sec. In order to achieve the 
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maximum possible sampling rate with this system, the program and internal operations 

have to be very mindfully considered. When sampling 8 analog inputs instead of one, the 

overall sampling rate is shared among these inputs because there is only one A2D 

converter. So in reality the analog channels are read one after the next, not all at the 

same time.  

In the Arduino code written for the Smart Walker the analog inputs are read one 

after the next and then appended in one big string with the reading from the IMU card. 

Once the string is formed, the array of characters is sent through the serial port. A more 

detailed explanation can be seen in the Arduino Code section. 

Including all of the mentioned factors an overall sampling rate of about 40 Hz per 

channel was achieved. Again, the effect of the inputs being read progressively and not at 

the same time is neglected. The timestamp taken as the time of the reading is the instant 

when the complete string of readings is read by the LabVIEW program. In the stored data 

the readings from all sensors are recorded at the same time. It is important to mention as 

well that the time interval between readings is not fixed but varies from reading to reading 

and on average they result in an overall sampling rate of  about 40 Hz. For this 

application at the sampling rate achieved, these conditions and assumptions are 

acceptable but if the application requires a meticulous determination of the time stamps 

and equally spaced time intervals from reading to reading, the Arduino MEGA would not 

be the best option. 

XBee
®
 802.15.4 Antennas for Wireless Data Transmission 

Xbee modules are off-the-shelve embedded solutions providing wireless end-

point connectivity to devices [26]. They use IEEE 802.15.4 networking protocol for fast 

peer-to-peer networking. These modules are ideal for low-power, low-cost applications 

[24].  
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Table 7-2 shows the main technical specifications of the XBee® 802.15.4 

antennas and Figure 7-2 shows a picture of the antennas. 

Table 7-2 XBee® 802.15.4 Technical Specifications [27] 

Indoor/Urban Range  Up to 100.ft (30m.) 

Outdoor Range Up to 300 ft. (100m.)  

Transmit Power Output 
(software selectable) 

1mW (0 dBm) 

RF Data Rate 250,000 bps 

Serial Interface Data Rate 
(software selectable) 

1200 - 115200 bps (non-standard 
baud rates also supported) 

Receiver Sensitivity -92 dBm (1% packet error rate) 

Operating Frequency ISM 2.4 GHz 

Dimensions 0.960‖ x 1.087‖ (2.438cm x 2.761cm) 

Addressing Options PAN ID, Channel and Addresses 

 
Figure 7-2 XBee

®
 802.15.4 antennas [26] 

Xbee modules allow reliable and simple communication between 

microcontrollers, computers, or anything with serial ports. They are ideal for Arduino 

projects. Arduino shields are readily available to implement wireless communication 

using Xbee antennas. Sparkfun electronics provides a series of products to ease the use 

and implementation of Xbee antennas [15], many of them used in the Smart Walker. 

Figure 7-3 toFigure 7-5 show the Arduino shield to connect the antenna to the Arduino 
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board an explorer dongle to connect the antenna to the PC and the Arduino/Shield/Xbee 

assembly.  

For the Smart Walker, one antenna is needed connected to the Arduino board 

and one connected to the PC where the data is being sent to. SparkFun Xbee shield was 

used to connect one Xbee antenna to the Arduino and SparkFun Xbee Explorer Dongle 

to connect the other connected Xbee antenna to the serial port of the PC. 

 
Figure 7-3 SparkFun Xbee shield [15] 

 
Figure 7-4 Xbee Antenna + SparkFun 

Shield + Arduino board assembly [15] 

 

 
Figure 7-5 SparkFun Xbee Explorer 

Dongle [15] 
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User Interface & LabVIEW/Arduino Connectivity 

Arduino Code 

A detailed explanation of the Arduino code written for the Smart Walker is shown 

below in Table 7-3. The code was written in order to read the analog signals from the 

axial load, torque and pressure sensors as well as the readings from the 6DOF IMU 

board and wireless transmission with the Xbee antenna. Tutorials for connectivity with the 

6DOF IMU and Xbee antenna can be found in [12] and [15]. The full code can be found in 

Appendix B. 

It is important to mention that he Baud Rate has to match in the Arduino code, 

Xbee antenna and LabVIEW code (user interface). Any mismatch would result in 

communication problems between XBee antennas. 

Table 7-3 Arduino Code for Smart Walker 

(Analog read, IMU card read, Xbee connectivity) 

Code Section Explanation 

#include <FreeSixIMU.h> 

 
//FreeSixIMU library was made 
from the code FreeIMU 
developed by the people at 
Versano under GPL License 
specifically to accommodate to 
the needs of the 6DOF IMU 
card used in the Smart Walker 
[12] since it was created for a 
9DOF chip originally. Their 
models were based on the 
positioning algorithms found in 
[22]. 

#include <FIMU_ADXL345.h> 
 

//This library is for the 3-axis 
high resolution accelerometer 
chip used in the 6DOF IMU 
Card.    

#include <FIMU_ITG3200.h> 
.  

 

//This library is for the 3-axis 
high resolution gyroscope chip 
used in the 6DOF IMU Card 
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Table 7-3—Continued 

#include "CommunicationUtils.h" 
 

//This library is needed to 
communicate with the 6DOF 
IMU Card 

#include <Wire.h> 
 

 

This library allows to 
communicate with I2C / TWI 
devices (6DOF IMU Card 
communicates through I2C with 
Arduino) 

#include <SoftwareSerial.h> 
 

 

//This library is for the serial 
communication between the 
Arduino board and the Xbee 
antenna [13]. 

//Variables for IMU reading  
float Acc[4]; 
float gyr[4]; 

//Initially the readings from the 
IMU board are taken as floats. 
To reduce the size of each 
reading the float readings will 
be transformed into integers in 
order to get a 4 integer long 
value.  

int Acci[4]; 
int Acc_abs[4]; 
int Gyi[4]; 
int Gy_abs[4]; 

//Variables to create the 
truncated readings mentioned 
before.   

 

String Accs[4]; 
String Gys[4]; 
String A_str_tot, G_str_tot; 

//Once the reading is of the 
desired length as an integer, 
the IMU readings are 
transformed to a string in order 
to concatenate them with the 
analog inputs and have a final 
string output with all the 
readings. 

FreeSixIMU my3IMU = FreeSixIMU(); 
 

//Set IMU object.  

 

SoftwareSerial Xbee(2,3); 
 

//Setup digital port to print to 
Xbee. The ports are chosen 
depending on the ports in the 
Arduino board.  
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Table 7-3—Continued 

//USB Serial Connection   
Serial.begin(57600); 
// the setup routine runs once when you press reset: 
void setup() { 
  //Xbee Serial Connection 
  XBee.begin(57600);   
 

// Initialize serial communication 
at 57600 bits per second for 
both through the USB port of 
the Arduino and Serial 
connection to Xbee. During 
regular operations of the walker 
the USB connection will not be 
used, but for debugging 
purposes the line of code is 
kept. This is not the fastest 
Baud Rate possible by the 
Xbee or Arduino (115200 
bits/second) but it was noticed 
that when using the fastest 
Baud Rate the final string 
arrived at the Xbee with some 
errors and although the overall 
speed of the system was faster, 
the fidelity of the readings was 
not perfect. 

  analogReference(INTERNAL1V1); 
 

 

//Reference Voltage for Analog 
reading is set to 1.1V. This is 
an option that only Arduino 
MEGA provides. It could be set 
to 2.56V and 5V through the 
code, or to any desired voltage 
plugged in the Vref pin. [14] 

  Wire.begin(); 
 

 

//Initiate I2C connections (IMU 
Board) 

 

  delay(5); 
  my3IMU.init(); 

 
  delay(5); 
} 
 

//Initiate connection with the 
IMU board 

 

int analog[8]; 
float Vf[8]; 
int Vi[8]; 
String Vs[8]; 
 

//Define variables for analog 
readings (Axial load, Torque 
and FSR). Similar to the IMU 
readings the float values are 
converted into integers and 
then into strings.   
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Table 7-3—Continued 

// the loop routine runs over and over again forever: 
void loop() { 
  String V_tot_string = ""; 

 

//Placeholder for the final String 
sent through the Xbee Antenna.  
 

  for (int x = 0; x<8 ; x++){ 
    // read the input on analog pin 0-7: 
    analog[x] = analogRead(x); 

 

//Readings are bits from 0 to 
1023 (integers).  
 

    // Convert to Float 
    Vf[x] = analog[x] * (1.1 / 1023.0)*1000; 

   
 

//(1.1/1023) conversion factor is 
used to convert the reading 
from bits to Volts and the 1000 
multiplier to convert to mV. This 
value is a float. 

    //Convert back to integer 
    Vi[x] = int(Vf[x]); 
 

//Since the float was in 
millivolts. When is converted to 
an integer all the decimal 
values are dropped. As it has 
been mentioned before, the 
resolution of the readings is a 
little over 1mV which makes 
this readings more than 
adequate. 

    //Convert to String 
    if (Vi[x]>=256){Vs[x] =      String(Vi[x],HEX);}; 
    if (Vi[x]<256){Vs[x] = "0" + String(Vi[x],HEX);}; 
    if (Vi[x]<16){Vs[x] = "00" + String(Vi[x],HEX);}; 

 

//Integer values are converted 
to hexadecimal strings in order 
to reduce the length of the total 
string. As it can be seen in 
Table 7-4 decimal values of 
from 256 to 4095 can be 
represented with only three 
characters in the hexadecimal 
system. In this case the length 
has been reduced by one 
character per reading. It might 
seem a minor gain but including 
all the analog channels used, 
the overall reduction in the 
output string (8 characters) and 
thus the increase is overall 
speed is noticeable. 
To maintain a constant length 
of the output string no matter 
the magnitude of the reading, 
zeroes are appended at the 
beginning of the reading 
according its magnitude. Every 
channel’s output string is 3 
characters long no matter what 
voltage is read.  
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Table 7-3—Continued 

    //Create full string from analog inputs  
    V_tot_string = V_tot_string + Vs[x]; 
  } 
 
 

//The full string format of the 
readings from the Analog 
voltage readings are shown in 
Table 7-5 Table 7-6 
. The string has a total of 24 
characters, 3 per channel. 

  A_str_tot = ""; 
  G_str_tot = ""; 

 

//Placeholder for accelerometer 
and gyroscope readings  
 

  //Obtain values from IMU 
  my3IMU.getValues(Acc); 
  my3IMU.getYawPitchRoll(gyr); 
  // Normalize Acceleration readings 
  for(int x = 0; x<4 ; x++){ 
    Acci[x] = int(Acc[x]*1000); 
 

//Accelerometer readings 
obtained are in g’s and are 
converted to mili-g’s. 

  }   
  //Get absolute values to avoid continuous 
unnecessary conversions when transforming to 
strings 
  for(int x = 0; x<4 ; x++){ 
    Acc_abs[x] = abs(Acci[x]); 
    Gy_abs[x] = abs(gyr[x]); 
  } 
  //convert IMU readings to strings (4 characters) 
  for(int x = 0; x<4 ; x++){ 
    if (Acci[x]<0){ 
      if (Acc_abs[x] >= 256){Accs[x] = "-" + 
String(Acc_abs[x],HEX);}; 
      if (Acc_abs[x] <  256){Accs[x] = "-0" + 
String(Acc_abs[x],HEX);}; 
      if (Acc_abs[x] <  16){Accs[x] = "-00" + 
String(Acc_abs[x],HEX);}; 
    }  
    if (Acci[x]>=0){ 
      if (Acc_abs[x] >= 256){Accs[x] = "0" + 
String(Acc_abs[x],HEX);}; 
      if (Acc_abs[x] <  256){Accs[x] = "00" + 
String(Acc_abs[x],HEX);}; 
      if (Acc_abs[x] <  16){Accs[x] = "000" + 
String(Acc_abs[x],HEX);};  
    }  
if ( x==0 ){ 
     if (gyr[x]<0){ 
       if (Gy_abs[x] >= 256){Gys[x] = "-" + 
String(Gy_abs[x],HEX);}; 
       if (Gy_abs[x] <  256){Gys[x] = "-0" + 
String(Gy_abs[x],HEX);}; 

//In the case of the IMU, since 
the readings can be negative or 
positive notice that the 
conversion is a little less 
simple. Also, one extra 
character is always present to 
be able to know the sign of the 
reading. If it is a positive 
reading then instead of a 
negative sign, that place would 
be replaced by a zero. Again, 
the purpose is to maintain a 
constant length of output string 
to reduce fluctuations in overall 
sampling rate. 
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Table 7-3—Continued 
       if (Gy_abs[x] <  16){Gys[x] = "-00" + 
String(Gy_abs[x],HEX);}; 
    }  
     if (gyr[x]>=0){ 
       if (Gy_abs[x] >= 256){Gys[x] = "-" + 
String(Gy_abs[x],HEX);}; 
       if (Gy_abs[x] <  256){Gys[x] = "00" + 
String(Gy_abs[x],HEX);}; 
       if (Gy_abs[x] <  16){Gys[x] = "000" + 
String(Gy_abs[x],HEX);}; 
    } 
    } 
    if ( x!=0 ){ 
     if (gyr[x]<0){ 
       if (Gy_abs[x] < 256){Gys[x] = "-" + 
String(Gy_abs[x],HEX);}; 
       if (Gy_abs[x] < 16){Gys[x] = "-0" + 
String(Gy_abs[x],HEX);}; 
      }  
     if (gyr[x]>=0){ 
       if (Gy_abs[x] < 256){Gys[x] = "0" + 
String(Gy_abs[x],HEX);}; 
       if (Gy_abs[x] < 16){Gys[x] = "00" + 
String(Gy_abs[x],HEX);}; 
      } 
    } 
  } 
 

 

  for(int i =0; i<3; i++){ 
    A_str_tot = A_str_tot + Accs[i]; 
    G_str_tot = G_str_tot + Gys[i]; 

 
 

//Table 7-6 shows the format of 
the strings with the readings 
from the accelerometer and 
gyroscope in the 6DOF IMU 
Card. 

  String Tot_string = V_tot_string + A_str_tot + 
G_str_tot; 

  
 

//Complete output string with 
the format as shown in Table 
7-5 and Table 7-6 is created by 
concatenating the analog 
voltage in string to the one of 
the IMU board readings ( 
//The complete string to be sent 
to the LabVIEW user interface 
would have the format shown in 
the Table below. 
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Table 7-3—Continued 

  //Print String to Arduino USB port 
  //Serial.println(Tot_string);  

 
 

//notice it is commented out; 
this line was used when the 
code was being tested without 
the Xbee through the USB port. 

  //Print to Xbee 
  XBee.println(Tot_string); 

 

//Print string to the serial 
connection to the Xbee antenna 
 

delay(16); 
  } 
} 
 

//This delay is an effort to 
maintain the sampling rate of 
the system consistent. The 
sampling rate without the delay 
function is about 40Hz. But 
even using the delay function 
(which input is in milliseconds) 
the overall sampling rate still 
fluctuates. 

 
Table 7-4 Comparison between Decimal and Hexadecimal Strings 

# of Characters 
in HEX String 

DEC HEX 

1 1 1 

2 16 10 

3 256 100 

4 4096 1000 

5 65536 10000 

6 1048576 100000 

Table 7-5 Analog Voltage output string format & reading example 

Axial Load Torque  FSR 

A0 A1 A2 A3 A4 A5 A6 A7 

2 8 3 1 2 D 3 0 B 2 3 C 3 A B 1 5 C 3 8 4 2 7 3 

   
Table 7-6 Output string format & reading example of 6DOF IMU card readings 

Accelerometer Gyroscope 

X Y Z Pitch  Roll  Yaw 

- A 1 0 0 4 3 8 - 1 B 2 0 1 C 1 0 2 F 4 - 3 7 E 

  



 

87 

User Interface 

The user interface was created to monitor the readings of the walker and 

visualize them graphically and numerically. The main screen includes two controls to 

define the VISA inputs. One is to define the input from the Walker’s Arduino and the other 

from the Belt’s Arduino.  

The interface, as shown in Figure 7-6 and Figure 7-7 has a main block with an 

―Initialize‖ tab and a ―DAQ‖ tab. The first one serves mainly to visualize the initial voltage 

read from the axial load and torque sensors and use them as reference voltages for when 

the calibration curves are applied to the signals during the DAQ portion. Also, this tab is 

where the file path of the .txt file where the data is to be stored is defined. After the 

reference voltages are set the user must press the ―continue‖ button and go to the ―DAQ‖ 

tab where all the physical measurements are visualized. After the ―continue‖ button is 

pressed the system starts storing the read data. 

In the right side of the screen, two waveform charts have been set to show the 

readings from the accelerometers in the walker’s and belt’s IMU. Also, numerical 

indicators were placed to show not only the readings from the accelerometer but also the 

gyroscope. The ―STOP‖ button in the upper right corner of the screen stops the data 

acquisition at any point. The code was made making sure that if the data acquisition 

process is broken inappropriately, the data until that point is still stored in the .txt file 

previously defined.  

Initialization Tab 

This tab, as mentioned above, serves two main purposes, to have initial readings 

of the sensors and to define the file path where the data is to be stored.  

The initial readings are necessary in order to verify that readings are being taken 

from all sensors prior to start the data storage and if the voltage readings from the 
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sensors that use Wheatstone bridges (axial load and torque sensors) are not within the 

voltage range set for the Arduino (in this case [0-1100 mV]), it allows the user to adjust 

the zeroing potentiometers to bring the reference voltage within the proper voltage range.  

The recommended reference voltage for the axial load sensors is 100 mV 

because it lets us know that the minimum required voltage of the amplifier has been met, 

allows some room for tension readings and gives a range of 1000 mV for compression 

readings (which is the main purpose of the sensors). For the torque sensors the 

reference voltage recommended is in the middle of the voltage range (550 mV) in order 

to have the same range of measurement for both directions of torque applied to the 

handles.  

In this initial tab the user can input his/her weight to later on have a percentage of 

the body weight being felt by the walker. This of course can be done with the stored data 

once the measurement is taken but it is a useful indicator to have while the walker is 

being used.  

This Tab also allows knowing the sampling rate of each input prior to the start of 

the data acquisition and lets the user to troubleshoot in case there are connectivity 

problems. Another indicator that has been kept on this Tab that was of much help during 

the development of the code is the ―String Reading‖ indicator. This indicator shows 

exactly the string that is being read through the VISA resource. Bellow this indicator is an 

array on integers created from the read string and below this indicator the voltage 

readings from axial load, torque and FSR sensors.   
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Figure 7-6 Smart Walker User Interface (―Initialize‖ Tab) 

Data Visualization Tab  

This tab is the one where all the measured forces can be monitored through bar 

and numerical indicators as well as waveform charts for the accelerometer readings. 

In this screen the time of measurement (in seconds), the average sampling rate 

of each channel and the total number of samples are indicated.  

The sensor indicators are organized according to the location of the sensors in 

the walker. The right and left side of the UI include the axial load readings in a numerical 

indicator from the strain gage on each leg (see burgundy numerical indicators in Figure 

7-7). Moreover, the axial load readings from each side are averaged and shown in a bar 

indicator to display the average axial load applied on each side of the walker (see blue 

bar indicators in Figure 7-7). Also, it is shown the percentage of the total force applied on 

each side of the walker. Furthermore, these two averages are then added to display the 

overall weight of the user on the walker (see the red bar indicator in the middle of the 

block and the numerical indicator below the bar indicator). Finally, regarding the axial 

load measurement the percentage of the body weight being felt by the walker is shown in 

a numerical indicator as well. 
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Both, gripping force and torque applied on each handle are shown in bar 

indicators as well (see green and yellow indicators respectively). The torque indicators 

show positive readings when the torque is applied to the right side of the user and 

negative readings when the torque is applied to the opposite direction.  

Waveform charts and numerical indicators are shown to indicate readings from 

the IMU in the walker and in the belt worn by the user. Accelerometer readings in X, Y 

and Z directions are shown where Z is normal to the floor, X in the forward direction and 

Y to the right side of the walker according to the right-hand rule. Pitch, yaw and roll 

readings from the gyroscope are shown only as numerical indicators pitch as rotation of Y 

axis, yaw rotation of the Z axis and roll of the X axis.   

When the measurement is done the stop button is to be pressed to stop reading 

and storing data from the VISA ports. 

 
Figure 7-7 Smart Walker User Interface (―DAQ‖ Tab) 
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LabVIEW Code 

This section will explain the LabVIEW code to read, interpret, show and store the 

data sent by the Arduino through the VISA ports. The code consists of two major sections 

in a flat sequence structure, as shown in the previous section. The first sequence, linked 

to the ―initialize‖ serves the purposes explained previously and shown as section ―A‖ in 

Figure 7-8. The second sequence is linked to the ―DAQ‖ tab and IMU indicators in the 

right side of the screen shown as sections ―B‖ and ―C‖ in Figure 7-8. Section ―B‖ contains 

the code for the walker sensors and section ―C‖ contains the one for the Belt IMU.  

The purpose of this section is to show the LabVIEW code developed to create 

this user interface and show each one of the written subVIs. Each subVI will be explained 

in individual sections and will contain subsections with internal subVIs. Various subVIs 

are repeated throughout the code. The first appearance will be explained and following 

appearances will refer to the section where it first appeared. If a subVI is a variation of a 

previously explained subVI, it will be described superficially and will refer the reader to 

the previously explained subVI.  

The Arduino board is programmed to read each sensor connected to it and send 

read values through the Xbee antenna continuously. The LabVIEW code obtains these 

readings sent to the Xbee antenna connected to the USB port of the computer, 

separates, interprets, shows and records these readings.  

Before starting, the user is asked to determine the USB ports (VISA resource 

name) where the Xbee antennas for the Walker and Belt readings are to be taken. The 

highest baud rate with stable readings is 57600 bits/sec and has been set both in the 

Arduino and LabVIEW codes. The initialize screen allows the user to set the reference 

voltage for the strain gage sensors, test that the other voltages are being read and select 

the file path were the data is to be stored. After the voltages are in the proper range, the 
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user weight has been set and the file path the ―Continue‖ button is pressed to start the 

data acquisition and storage. 

 
Figure 7-8 Main Smart Walker LabVIEW block diagram 

Once the setup is done in section A, Section B & C (second part of the flat 

sequence) reads the data, shows it in the user interface and stores it in the file set in 

Section A. When the data acquisition is finished, the STOP button is to be pressed to end 

data acquisition. 

A - Calibration 

Reference Voltage, 

User weight & File 

path 

B – Data Acquisition & Storage  

from  

Walker sensors 

C – Data Acquisition & Storage  

from  

Belt Sensors (Time Stamps) 
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A – Calibration Reference Voltage 

 
Figure 7-9 Smart Walker main code (A: Calibration Reference Voltage) 

The following main tasks are performed in this section of the code shown in 

Figure 7-9: 
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1. VISA serial ports are configured.  

a. User interface control allows user to set VISA resource names.  

b. Baud rate is set to 57600 bit/sec.  

2. Walker VISA serial port configuration connects to Initial VISA Read SubVI.  

a. Outputs total average sampling rate 

b. Time (in seconds) 

c.  Total samples acquired 

d. Readings from the Arduino board (both, raw string being sent to serial 

port and array if integers after hexadecimal to decimal conversion).  

i. The appended array of integers is separated in individual 

indicators to show individual voltage readings for each sensor.    

3. User weight is input (in pounds). 

4. File path where data is to be stored is set.  

a. The title to the text file and to the arrays for the readings of each sensor 

is created.  

5. After ―Continue‖ button is pressed the following is sent to the next flat sequence 

event: 

a. Voltage readings are sent to be the reference voltages in the calibration 

curves 

b. File path where created .txt file is located 

c. VISA port configuration cables  
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Initial Visa read 

  

 
Figure 7-10 Initial VISA read SubVI (Initialize) 

Initial Visa Read subVI shown in Figure 7-10 is the main component to acquire 

and monitor analog voltage readings using the Arduino Board and LabVIEW. In this 

subVI all the component to read data through the VISA ports are present as well as other 

additions to monitor performance and assist for debugging purposes.  

The initial Visa Read Sub VI is a while loop that on each iteration obtains the 

readings at the VISA port, interprets the hexadecimal characters, transforms them to 

integers and indicates the values. Moreover it includes indicators for number of samples 

taken, total average sampling rate and time elapsed since the start of the data acquisition 

process. The ―while loop‖ is forced to wait 27 milliseconds (in this case) as an attempt to 

make sampling rate constant. The maximum sampling rate per channel was close to 

40Hz when this code was developed and various ―wait times‖ close to this sampling 

frequency were tried until the sampling rate behaved more stable; in this case the 

resulting sampling rate was close to 37Hz.  
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Visa Read 

 

 
Figure 7-11 Visa Read SubVI 

The Visa Read Sub VI, shown in Figure 7-11, shown above is the responsible of 

allowing reading the string coming from the Arduino board through the VISA resource 

port continuously and reliably. A main necessity that was added to this subVI was the 

―Wait for Bytes‖ subVI which solved the lack of fluidity of data. Before this subVI was 

added the data acquisition would occur for some time and crash eventually when no data 

was encountered at the VISA port. 

The main components of the VISA read function block are present and a control 

for the number of bytes to read was added to allow for changes in case the string to be 

read would change.   
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Wait for bytes 

 

 
Figure 7-12 Wait for Bytes subVI 

The Wait for bytes sub VI shown in Figure 7-12 allows the VISA Read subVI to – 

as the name indicates – wait until enough data is available to be shown and then proceed 

to read it. Prior to the addition of this subVI the program would crash every time not 

enough data was available to be read and the continuous data acquisition was 

impossible. The number of bytes expected to be read have to be indicated. The Time Out 

(time at which the process would stop if not enough data is encountered) period was 

defined as 100 ms, large enough compared to the looping period of the system (27 ms). 
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String to array of Integers 

 

 
Figure 7-13 String to Array of Integers SubVI 

As the name describes, the String to Array subVI shown in Figure 7-13 takes the 

original string sent by the Arduino, slices it according to the length of each sensor 

reading, converts the hexadecimal string to decimal integer and appends the integers in 

one big array of integers. In other word, this subVI is the interpreter from hexadecimal 

Arduino output to usable and visual decimal integers.   
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File Path 

  

 
Figure 7-14 File Path and Data file title creation subVI 

The file path subVI shown in Figure 7-14 creates the title of the text file where the 

data is to be stored. This title consists of the date and time of the beginning of the 

measurement and the weight of the user. Additionally it includes the title for each one of 

the columns of data stored. Each column represents one of the values indicated in the 

user interface.  
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Extract Integers from array (Axial Load) 

 

 
Figure 7-15 Extract Integers from array of integers (Axial load) 

The ―Extract Integers from array‖ subVI, shown in Figure 7-15, is a simple one 

with the only purpose of extracting the individual integer values needed from the 

appended array of integers created by ―String to array of Integers‖ subVI. Here the one 

for axial load readings is shown, but throughout the code variations of this subVI are used 

for other sensors.  

Extract Integers from Array (Torque & FSR) 

 

 
Figure 7-16 Extract Integers from array of Integers (Torque and FSR) 

The Extract Integers from Array SubVI shown in Figure 7-16 is almost identical to 

the one shown in Figure 7-15 except that at other position of the array of integers.  
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B – Data Acquisition from Walker sensors & overall Data Storage 

 

 
Figure 7-17 Smart Walker main code  

(B – Data Acquisition from Walker sensors & overall Data Storage) 

The code shown in Figure 7-17 flows as follows: 

1. Reference voltage from section A of the code is used to apply calibration 

curves to voltage readings and show axial load, torque and gripping 

force measurements. The physical measurements shown are: 

a. Axial Load: 

i. Felt by the strain gage of each leg (numerical indicator) 

ii. Axial load felt by each side of the walker (Average of 

front/back on each side) 

iii. Overall applied to the walker and what percentage of 

body weight it represents.  

b. Torque (both handles of the walker - numerical and bar 

indicators) 
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c. Gripping force measurements (Both handles of the walker – 

numerical and bar indicators) 

d. IMU readings in waveform chart and numerical indicators 

including 

i. Acceleration in X,Y and Z axis 

ii. Pitch, roll, yaw 

2. Data is stored in the file created in part A 

a. Axial Load (each leg, average of each side, overall axial load, 

overall weight on the walker) 

b. Torque from each side 

c. Gripping force from each side 

d. IMU from walker and belt 

Torque and Grip VISA to Indicators 

 

 
Figure 7-18 Torque and FSR VISA readings to UI Indicators subVI 

The Torque and Grip VISA to Indicators subVI shown in Figure 7-18 serves as a 

connector to extract the relevant integers from the reference voltage array of integers and 

readings and use them to apply the calibration curves developed in Chapter 4 and 

Chapter 5. 
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Torque and FSR calibration curves 

 

 
Figure 7-19 Torque and FSR calibration curves subVI 

The Torque and FSR calibration curves subVI shown in Figure 7-19 applies the 

linear calibration curve to the torque voltage readings (Upper left corner) and the 

exponential calibration curve for the FSR sensors. The FSR calibration curve, in order to 

obtain a closer fit to the experimental results, was broken down to three main regions (as 

shown is Chapter 5).  

Axial Load VISA to Indicators 

 
Figure 7-20 Axial load and VISA readings to UI Indicators subVI 
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Similarly to the section describing the torque and gripping force indicators before, 

the Axial Load VISA to Indicators section, shown in Figure 7-20 uses the reference 

voltage values and the continuous readings, applies the calibration curves developed in 

section Chapter 3 and indicates the physical values of the axial load applied to each 

strain gage. Moreover, additional calculations are performed to show the average axial 

load applied to each side, the overall axial load applied to the walker, percentage of total 

axial load applied to each side and percentage of user weight on the walker.  

Axial load Calibration Curves 

 

 
Figure 7-21 Axial Load Calibration Curves subVI 

The Axial load Calibration Curves subVI shown in Figure 7-21 applies the 

calibration curves found in Chapter 3 to the samples sent by the Arduino.   
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Operations for User Interface Indicators 

 
Figure 7-22 Average and percentage calculations for Axial load UI Indicators 

The Operations for User Interface Indicators subVI shown in Figure 7-22 includes 

the average and percentage calculations needed for all the values going to the axial load 

indicators. Including: 

- Average of left and right side axial load 

- Overall axial load applied (addition of the left and right side averages) 

- % of load on each side of the walker 

- % of body weight applied to the walker 

Walker IMU VISA to User Indicators 

 
Figure 7-23 Walker IMU readings to clusters for waveform chart subVI 
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Since the IMU readings don’t need to be calibrated because the Arduino libraries 

do all the work to output accelerometer and gyroscope readings, this subVI extracts the 

integers from IMU readings and clusters them in order to send them to a waveform chart 

as shown in Figure 7-23.  

C – Data Acquisition & Storage from Belt Sensors (Time Stamps) 

 
Figure 7-24 Smart Walker main code  

(C – Data Acquisition & Storage from Belt Sensors (Time Stamps) 

This section of the code is part of the data acquisition section of the two part flat 

sequence. Another VISA read subVI is implemented but only to read IMU values from an 

Arduino installed on the User’s belt and be able to monitor the movement of the user 

simultaneously with the one of the walker.  

Similarly to the Initial VISA Read subVI, this section includes the time elapsed 

starting at the moment of data acquisition/storage, average sampling rate and overall 

samples stored as shown in the lower left corner of Figure 7-24.   



 

107 

Belt IMU VISA to indicators 

 

 
Figure 7-25 Belt Arduino VISA read & cluster to waveform charts 

The Belt IMU VISA to indicators subVI shown in Figure 7-25 is a modification of 

previously mentioned subVIs but specifically written for the readings coming from the 

Arduino worn by the user. It essentially consists of: 

1. Visa Read  

2. String to integers 

3. Integers to cluster 

4. Cluster to waveform charts 

5. Integers to data arrays to be sent to .txt file 
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Create String Array to be stored in created .txt file 

 

 
Figure 7-26 String array from integers to be stored in .txt file 

For simplicity the subVI shown in Figure 7-26 has been used to present the code 

used to compile the readings from the sensors, convert them to strings and append them 

in array of strings so they can be sent to a .txt file in an organized manner and create 

columns of data. A similar subVI was used for the Walker portion in section B of the code 

and looks very similar to this except that with more input and a bigger output array of 

strings.  
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Data Visualization  

The resulting text file resulting from the data acquisition looks like is shown in 

Figure 7-27 (more columns to the right are present). 

 
Figure 7-27 Stored data from data acquisition (.txt file) 

After importing the data a table like the one below can be obtained. The table 

showing first couple of samples acquired has been divided in Table 7-7 to Table 7-9 to fit 

the width of the page.  

First the section of the data regarding axial load measurement is shown, then 

torque & gripping force sensors and finally IMU readings from Walker and user belt.   

Table 7-7  Acquired data regarding Axial load measurement  

Time 
[sec] 

Left 
Back 
[Lb] 

Left 
Front  
[Lb] 

Left 
avg 
[Lb] 

% on 
left 
[%] 

Right 
Back 
[Lb] 

Right 
front 
[Lb] 

Right 
avg 
[Lb] 

% on 
right 
[%] 

Total 
load 
avg 
[Lb] 

% W on 
walker 

[%] 

0 -0.36 2.32 0.98 84.05 0 0.37 0.19 15.95 1.16 0.61 

0.05 -1.26 3.86 1.3 49.99 0 2.6 1.3 50.01 2.6 1.37 

0.1 -1.08 4.44 1.68 53.06 0 2.97 1.48 46.94 3.16 1.66 

0.14 -0.9 4.63 1.86 64.63 0 2.04 1.02 35.37 2.89 1.52 

0.19 -0.72 5.4 2.34 69.64 0 2.04 1.02 30.36 3.36 1.77 

0.24 -2.17 6.18 2.01 59.03 0 2.78 1.39 40.97 3.4 1.79 
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Table 7-8 Acquired data regarding Torque and Gripping Force measurement  

Time 
[sec] 

T Left 
[Lb-in] 

T Right 
[Lb-in] 

G Left 
[Lb] 

G Right 
[Lb] 

0 0.99 1.6 0 0.41 

0.05 0.5 0.38 0 0.42 

0.1 0 -0.75 0 0.42 

0.14 0.3 -0.19 0 0.42 

0.19 0.4 -0.09 0 0.43 

0.24 0.4 -0.75 0 0.43 

0.29 0 -0.94 0 0.43 
A standard code was written in MATLAB to be able to visualize the data after it 

has been acquired. Plots obtained are shown in Figure 7-28 to Figure 7-30. 

It is noticed that if long periods of data acquisition are needed some of the 

columns that are derivative from the main measurements can be omitted, thus producing 

a smaller size data file, and the information then can be computed after the data has 

been acquired. Columns such as the one showing average axial load on each side, or 

percentage load on each side can be taken out and computed in MATLAB if needed. 

Table 7-9 Acquired data regarding IMU readings from Walker 

Time 
[sec] 

Acc X 
[g's e-3] 

Acc Y 
[g's e-3] 

Acc Z 
[g's e-3] 

Gyro 
[pitch] 
[deg] 

Gyro 
[roll] 
[deg] 

Gyro 
[yaw] 
[deg] 

0 669 119 811 40 39 0 

0.05 657 65 742 40 39 0 

0.1 638 3 807 40 39 0 

0.14 642 0 784 40 39 0 

0.19 646 -3 773 40 39 0 

0.24 650 -7 761 40 39 0 

0.29 634 -7 780 40 39 0 
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Table 7-10 Acquired data regarding IMU readings from Belt 

Time 
[sec] 

Acc X_b 
[g's e-3] 

Acc Y_b 
[g's e-3] 

Acc Z_b 
[g's e-3] 

Gyro_b 
[pitch] 
[deg] 

Gyro_b 
[roll] 
[deg] 

Gyro_b 
[yaw] 
[deg] 

0 -7 30 961 0 -117 1 

0.05 -7 23 969 0 -117 1 

0.1 -11 30 965 0 -117 1 

0.14 -7 26 961 0 -117 1 

0.19 -7 26 969 0 -117 1 

0.24 -7 34 969 0 -117 1 

0.29 -7 26 965 0 -117 1 

 
The IMU readings figure & code would be the same for the readings coming from 

the walker’s IMU and from the user belt’s IMU.  

 
Figure 7-28 Axial Load Readings 

Figure 7-28 shows the results for axial loading. It can be seen that from seconds 

20 to 40 a load to each side of the walker was applied. Then the user walked normally 
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using the walker and at about second 110 the user started applying bigger forces 

purposely.  

 
Figure 7-29 Torque and Gripping Force Readings 

Figure 7-29 shows the torque and gripping force sensor readings. The user 

continuously applied torque to both sides in both directions. Similarly the gripping force 

was tested and gave reasonable results according to the user’s experience.  

Figure 7-30 shows accelerometer readings. Notice that the acceleration has 

fluctuations of a little bigger amplitude after the user starts walker normally. When the 

user starts applying more force, it shakes the walker with more intensity than before and 

it is felt by the accelerometer. Notice that the accelerometer during this test was not fixed 

in a specific direction so it shown readings in it x, y and z axes from the vibration of the 

whole IMU board. The gyroscope readings are also shown. See that what is plotted as 

pitch is the one direction that is not maintained reliably after the user starts to walk and 

increases although the user had not changed its orientation. At about second 120 the 
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user rotates in what is plotted as pitch. The pitch, roll and yaw can be defined according 

on the testing necessities.     

 
Figure 7-30 IMU Readings from the walker 
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Chapter 8  

Conclusions 

The smart walker project is a devise that permits walker users and therapists to 

observe and store readings of the forces applied to a rolling walker during its use. The 

visualization of the forces applied to the walker help to determine and quantify usage and 

posture problems that lead to the falling of patients. The goal of reliably acquire digital 

readings of the main relevant forces applied to the walker was achieved by using 

reasonably priced and commonly used components, devises and software was 

successfully achieved.   

Essentially it was necessary to know the axial load applied to the walker and its 

distribution, the torque and the gripping force applied to the handles. Moreover it was 

necessary to know when and how it is moving, reason why an IMU was included in the 

design. Finally, the relationship between the forces and the movement of the patient itself 

needed to be correlated so another IMU was used to be placed at the patient’s belt. 

The axial load was read by the use of 1-axis metallic foil strain gages. One strain 

gage was carefully placed on each leg of the walker at a location carefully studied with a 

FEM model of the walker. It is worth mentioning that the results obtained from the FEM 

study and the strain gage readings agreed very closely. The torque was also measured 

using strain gages, in this case, 2 axis strain gages specially designed with patterns 

perpendicular to each other and 45deg from the horizontal. These patterns allow setting 2 

2-axis strain gages in a full bridge configuration that measures torque of a circular shaft 

(walker handle) reliably and without the need of high amplification. 

The gripping force was measured by using an FSR sensor. Similarly to strain 

gages, this sensor allows quantifying the gripping force by measuring the voltage output 

due to resistance changes. Contrarily to strain gages, FSRs experience resistance 
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changes from infinity to – in this case – 200 Ω, resistance at which the maximum 

measurable force is reached. This is not a linear sensor, its obtained calibration curve 

was better fitted which three logarithmic curves (Chapter 5). This sensor is not very 

accurate, but it does allow us to quantify the intensity at which the patient it grabbing the 

handle. The circuitry involved to setup this sensor is very simple. This sensor basically 

acts like a valve that allows current flow (the more it is pressed, the less resistance it has 

and the more voltage is felt). The ―valve‖ is followed by a voltage divider to reduce the 

maximum voltage output from 5 V (voltage source) to around the limit set in the Arduino 

program (1.1 V).  

All these sensors were read and sampled with the Arduino MEGA board, a very 

commonly used piece of equipment. The Arduino environment helped immensely to 

develop the project, not only because its language is very intuitive but also because of 

the massive amount of resources in the Arduino community offered that help solving very 

quickly most of the problems encountered. Additionally, there is a plethora of products 

that are compatible and easy to install to the Arduino, like the Xbee antenna and related 

accessories. The Arduino MEGA has proven itself to be a very useful devise to be used 

for data acquisition for sampling rates between 20 and 1000 Hz. Because of the fact that 

it only has 1 A2D converter that is shared by all of his analog inputs, the more inputs it 

has, smaller is the maximum achievable sampling rate. For the case of the Smart Walker, 

a sampling rate of 30 Hz to 60 Hz was enough for the therapist to observe and study the 

patient’s use of the walker.      

Another main requirement for this project was to ensure a reliable wireless 

connection between the Smart Walker system and the computer where the data was to 

be observed and stored. The Xbee antenna served this purpose perfectly, allowing the 

Smart Walker to have a reliable constant connection to the computer with a very useful 
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range for the application. The monitor station could be placed up to 100 ft. of the walker 

(indoor) and 300 ft. outdoor ensuring a fluid, secure and reliable connection. 

Finally the system was able to be monitored with a user interface developed in 

LabVIEW that received the data sent by the Arduino through the Xbee antennas. 

LabVIEW allowed to read and interpret the data, showed the data in an easy-to-visualize 

manner and stored it to be able to analyze it afterwards. The use interface showed the 

axial load and its distribution on the walker, the percent body weight on the walker, torque 

and gripping force measurements and IMU readings from the walker and belt of the user.  

Future work planned after this prototype was completed was to develop a PCB 

design of the all the circuits in the walker and arrange them as an Arduino shield for easy 

assembly, fabrication, stability and reduce the space occupied by the system. In the 

Appendix the initial PCB design in eagle is shown. 

Beyond the specific application of the Smart Walker, this project was written as a 

good resource for anyone attempting to measure axial load, torque or punctual forces 

with FSRs, develop a cost effective data acquisition systems, utilize IMUs and develop 

LabVIEW user interfaces to work with Arduino boards and wireless connectivity using 

Xbee antennas. It is wished that is helps future students, engineers or anyone that wants 

to make use of the material presented.  
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Appendix A  

Walker FEM Study 
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A simple Cad model of the walker was made. A static structural simulation of the model 

was performed with ANSYS in order to predict the strains of the principal structure of the walker 

when perpendicular incremental pressures on the handles  are applied.  This study helped to 

have a better perspective on the positioning of the strain gages by avoiding areas with large 

strain gradients..   

Geometry and Model Setup  

Only the essential parts where considered. The contacts where set as bonded for this 

study. The material used was the general structural aluminum in ANSYS. Figure A-1 shows the 

supports and applied pressure on the handles. This model setup was the one that approached 

more closely to the conditions of calibration.  

 
Figure A-1 CAD model, pressure applied  and supports 
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Mesh 

Three meshes were used for convergence analysis of the results and are shown in 

Figure A-2, Figure A-3 and Figure A-4. Three dimensional tetrahedral elements were used. The 

first the one generated by ANSYS by default, the second one with a 5 mm element size and the 

third one 3 mm element size. 

 
Figure A-2 First Mesh 
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Figure A-3 Second Mesh [5mm element] 

 
Figure A-4 Third Mesh [3mm element] 
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Results 

Table A-1 shows the values of equivalent strain, and total deformation for their 

respective mesh. Reasonable convergence is observed for the maximum values. For the 

regions of the walker where the strains are wanted the values are very stable. Figure A-5 and 

Figure A-6 show screenshots of the results of the equivalent strain and total deformation results 

obtained from the model.  

 
Figure A-5 Equivalent Strain (close-up 3rd Mesh) 

 
Figure A-6 Total Deformation [mm] (3

rd
 Mesh) 
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Table A-1 Result Summary & percent change for convergence  

 

 

 

 

 

 

 

Figure 2-5 Total Strain vs. Applied Load for Analytical and FEM model 
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Appendix B  

Smart Walker Arduino Code 
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//Smart Walker Arduino Code 

//This code acquires 8 analog voltage inputs and IMU readings through I2C connection, 

compiles the readings in an array of characters and sends them through the serial port 

connected to the Xbee antenna 

//ASTL Lab – The University of Texas at Arlington  

//Mauricio Jaguan Nieves 

 

#include <FreeSixIMU.h> 

#include <FIMU_ADXL345.h> 

#include <FIMU_ITG3200.h> 

#include "CommunicationUtils.h" 

#include <Wire.h> 

#include <SoftwareSerial.h> 

 

//Variables for IMU reading  

float Acc[4]; 

float gyr[4]; 

int Acci[4]; 

int Acc_abs[4]; 

int Gyi[4]; 

int Gy_abs[4]; 

String Accs[4]; 

String Gys[4]; 

String A_str_tot, G_str_tot; 

FreeSixIMU my3IMU = FreeSixIMU(); 
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SoftwareSerial Xbee(2,3); 

 

//USB Serial Connection   

Serial.begin(57600); 

// the setup routine runs once when you press reset: 

void setup() { 

  //Xbee Serial Connection 

  XBee.begin(57600);   

  analogReference(INTERNAL1V1); 

  Wire.begin(); 

  delay(5); 

  my3IMU.init(); 

  delay(5); 

} 

 

int analog[8]; 

float Vf[8]; 

int Vi[8]; 

String Vs[8]; 

 

// the loop routine runs over and over again forever: 

void loop() { 

  String V_tot_string = ""; 

  for (int x = 0; x<8 ; x++){ 

    // read the input on analog pin 0-7: 

    analog[x] = analogRead(x); 
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    // Convert to Float 

    Vf[x] = analog[x] * (1.1 / 1023.0)*1000; 

  

    //Convert back to integer 

    Vi[x] = int(Vf[x]); 

    //Convert to String 

    if (Vi[x]>=256){Vs[x] =      String(Vi[x],HEX);}; 

    if (Vi[x]<256){Vs[x] = "0" + String(Vi[x],HEX);}; 

    if (Vi[x]<16){Vs[x] = "00" + String(Vi[x],HEX);}; 

    //Create full string from analog inputs  

    V_tot_string = V_tot_string + Vs[x]; 

  } 

  A_str_tot = ""; 

  G_str_tot = ""; 

  //Obtain values from IMU 

  my3IMU.getValues(Acc); 

  my3IMU.getYawPitchRoll(gyr); 

  // Normalize Acceleration readings 

  for(int x = 0; x<4 ; x++){ 

    Acci[x] = int(Acc[x]*1000/260); 

  }   

  //Get absolute values to avoid continuous unnecessary conversions when transforming to 

strings 

  for(int x = 0; x<4 ; x++){ 

    Acc_abs[x] = abs(Acci[x]); 
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    Gy_abs[x] = abs(gyr[x]); 

  } 

  //convert IMU readings to strings (4 characters) 

  for(int x = 0; x<4 ; x++){ 

    if (Acci[x]<0){ 

      if (Acc_abs[x] >= 256){Accs[x] = "-" + String(Acc_abs[x],HEX);}; 

      if (Acc_abs[x] <  256){Accs[x] = "-0" + String(Acc_abs[x],HEX);}; 

      if (Acc_abs[x] <  16){Accs[x] = "-00" + String(Acc_abs[x],HEX);}; 

    }  

    if (Acci[x]>=0){ 

      if (Acc_abs[x] >= 256){Accs[x] = "0" + String(Acc_abs[x],HEX);}; 

      if (Acc_abs[x] <  256){Accs[x] = "00" + String(Acc_abs[x],HEX);}; 

      if (Acc_abs[x] <  16){Accs[x] = "000" + String(Acc_abs[x],HEX);};  

    } 

    if ( x==0 ){ 

     if (gyr[x]<0){ 

       if (Gy_abs[x] >= 256){Gys[x] = "-" + String(Gy_abs[x],HEX);}; 

       if (Gy_abs[x] <  256){Gys[x] = "-0" + String(Gy_abs[x],HEX);}; 

       if (Gy_abs[x] <  16){Gys[x] = "-00" + String(Gy_abs[x],HEX);}; 

    }  

     if (gyr[x]>=0){ 

       if (Gy_abs[x] >= 256){Gys[x] = "-" + String(Gy_abs[x],HEX);}; 

       if (Gy_abs[x] <  256){Gys[x] = "00" + String(Gy_abs[x],HEX);}; 

       if (Gy_abs[x] <  16){Gys[x] = "000" + String(Gy_abs[x],HEX);}; 

    } 

    } 
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    if ( x!=0 ){ 

     if (gyr[x]<0){ 

       if (Gy_abs[x] < 256){Gys[x] = "-" + String(Gy_abs[x],HEX);}; 

       if (Gy_abs[x] < 16){Gys[x] = "-0" + String(Gy_abs[x],HEX);}; 

      }  

     if (gyr[x]>=0){ 

       if (Gy_abs[x] < 256){Gys[x] = "0" + String(Gy_abs[x],HEX);}; 

       if (Gy_abs[x] < 16){Gys[x] = "00" + String(Gy_abs[x],HEX);}; 

      } 

    } 

  } 

  for(int i =0; i<3; i++){ 

    A_str_tot = A_str_tot + Accs[i]; 

    G_str_tot = G_str_tot + Gys[i]; 

  String Tot_string = V_tot_string + A_str_tot + G_str_tot; 

  //Print String to Arduino USB port 

  //Serial.println(Tot_string);  

 

 

  //Print to Xbee 

  XBee.println(Tot_string); 

delay(16); 

  } 

} 
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Appendix C  

Axial Load Calibration  

Data Analysis Mathcad Worksheet 
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The following Mathcad worksheet was created to automate the axial load strain 

gage calibration data analysis process for further walkers. It takes voltage readings 

acquired with the Arduino for a reasonable time (in the case of the example shown  

~20 sec). The Worksheet requires inputting the names of the files to be read with the 

load applied as title. It extracts the data from the .txt file and averages the voltage 

readings over the time it was acquired, calculates the standard deviation, plots linear 

calibration curves and shows the coefficients of the curves. It also includes standard 

deviation plots to show the uncertainty of the reading that comes from the noise of the 

signal.  

The calibration process to use this worksheet is as follows: 

1. Acquire sets of data from the Arduino with voltage readings of all strain 

gages for a period of 10 to 20 seconds. Data sets need to follow the 

format shown in Figure C-1. 

 

Figure C-1 Data files format to be imported to the worksheet 

2. Name each file ―load applid.txt‖ i.e. ―80.txt‖ 

3. Separate the readings taken while loading and unloading the walker. 

Notice there is a directory for loading and one for unloading. This is to 

make sure hysteresis is taken into account.  

4. Match the string columns in the worksheet with the titles of your files. 

Make sure to input the proper directory where files have been stored.  

5. Calibration curves should be calculated automatically 
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Appendix D  

Torque Calibration  

Data Analysis Mathcad Worksheet 
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The following Mathcad worksheet similarly to the one for the axial load sensor 

was created to automate the torque sensor calibration data analysis process for further 

walkers. It takes voltage readings acquired with the Arduino for a reasonable time (in the 

case of the example shown ~20 sec). It extracts the data from the .txt file and averages 

the voltage readings over the time it was acquired, calculates the standard deviation, 

plots linear calibration curves and shows the coefficients of the curves.  

The calibration process to use this worksheet is as follows: 

1. Acquire sets of data from the Arduino with voltage readings of all strain 

gages for a period of 10 to 20 seconds. Data sets need to follow the 

format shown in Figure D-1. 

 
Figure D-1 Data files format to be imported to the worksheet 

2. Creates vectors to read the defined directories and separate data 

according to handle and magnitude and direction of the torque applied.  

3. This worksheet also can read accelerometer readings from data in 

columns adjacent to the ones shown above for torque. 

4.  Obtains voltage average of the time the data was acquired for each 

torque applied as well as standard deviation to have a sense of the 

noise in the signal.  

5. The calculated averages are compiled to create vectors and create 

linear trends and calculate the calibration curves.  
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Appendix E  

Smart Walker PCB Arduino Shield 

(Initial Design)  



 

 
148 

After the first prototype was completed, the next step was to create a PCB design 

of the circuits in the walker to expedite the fabrication of further walkers, reduce the size 

of the circuit board. This section shows the initial efforts to create an Arduino shield that 

contained all the circuits described in this thesis (Figure E-1). A major change from the 

original circuits was the attempt to create Wheatstone bridges with low tolerance resistors 

rather than using bridge completion units. The main challenge was to fit all the 

components in the Arduino MEGA surface area knowing that it would be fabricated 

manually. This design proved to have various problems for manual fabrication due to the 

small size of the chosen components.  

 

Figure E-1 Initial Smart Walker Arduino shield design 

A stencil was made in order to solder the components using solder paste. Stencil 

is shown below.  

Also, a board was etched and ready to place the components. Unfortunately 

placing the operational amplifier was very difficult and the board was damaged after the 

attempt. 
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Figure E-2 Smart Walker Arduino Shield first design (Stencil) 

 

Figure E-3 Smart Walker Arduino Shield initial design (upper side) 

 

Figure E-4 Smart Walker Arduino Shield initial design (lower side) 
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Appendix F  

Miscellaneous Pictures and Drawings
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Some of the pictures of the first prototype of the Smart Walker and the progress 

of its fabrication and testing are being shown in this section. 

  

(a) (b) 
Figure F-1 Smart Walker (a) CAD model (b) 1

st
 prototype 

 

Figure F-2 First PCB prototype fabricated to test axial load and torque strain gages 
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Figure F-3 Smart Walker Xbee antenna on USB dongle 

 

Figure F-4 Belt Arduino UNO with IMU and Xbee shield/antenna 
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Figure F-5 Smart Walker Circuit board - 1st prototype (Arduino Side) 

 
Figure F-6 Smart Walker Circuit board - 1st prototype (circuit Side) 
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Figure F-7 Smart Walker 1st prototype circuit board case mod CAD model 

 

Figure F-8 Smart Walker 1st prototype circuit board mounted on bottom case side.  
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