
SMARTWALKER – ROLLING WALKER INSTRUMENTATION AND DATA

ACQUISITION SYSTEM DEVELOPMENT TO MONITOR, VISUALIZE

 AND STORE ROLLING WALKER USAGE DATA

by

MAURICIO JAGUAN NIEVES

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2016

ii

Copyright © by Mauricio Jaguan Nieves 2016

All Rights Reserved

iii

Acknowledgements

I would like to thank the entire MAE department at the University of Texas at

Arlington that has prepared and supported me all throughout my academic career and

has made possible the development of this work. I owe all the professors, TAs

classmates and staff during my undergraduate and graduate education years the

knowledge and skills gained during this period of time. I would also like to thank the

Simon Bolivar University, institution that started this path properly and gave a strong base

to continue my education in UTA.

I have to give special recognition to my supervising professor Dr. Haiying Huang

who welcomed and gave me the opportunity to join the Advanced Sensor Technology

Laboratory during my graduate studies. She guided me with wisdom, patience and

understanding all throughout the development of this project and pushed me in the right

direction when I needed it the most.

In the ASTL laboratory I had the fortune of sharing with and knowing many great

engineers that made all the work performed more enjoyable and fruitful. Here I would like

to mention soon to be Dr. Jun Yao, Jeremiah Sanders, Abhay Singh and Kranthi Balusu

all great friends and helping hands during the time we shared together. They have given

me their valuable input during the development of this work and helped elevating its

overall quality.

Finally I have to thank my family that has supported me and is always present.

My father that pushed me to find a future in UTA, my mother that always gave me an

example of work ethic and the pursue of perfection in every new challenge. I am grateful

of my grandparents that always gave me unconditional love and support, and my Uncle

Abraham, person that made possible to seek graduate studies.

November 28, 2016

iv

Abstract

SMARTWALKER – ROLLING WALKER INSTRUMENTATION AND DATA

ACQUISITION SYSTEM DEVELOPMENT TO MONITOR, VISUALIZE

 AND STORE ROLLING WALKER USAGE DATA

Mauricio Jaguan Nieves, MS

The University of Texas at Arlington, 2016

Supervising Professor: Haiying Huang

The Smart Walker project was designed to fill a necessity of monitoring in real

time the use of rolling walkers (RW) and study the causes that contribute to the high rate

of fallings among its users. The main objectives of the project were to measure the major

forces applied by RW users in real time and store it safely for further analysis. The first

prototype of the Smart Walker includes the measurement of axial load, torque and

gripping force applied on the handle as well as acceleration and rotation angles while it is

being used. The axial load was measured using strain gages installed on each leg of the

rolling walker allowing the measurement of the overall axial load and its distribution. The

torque and gripping force applied to the handles were also measured using strain gage

rosettes and Force Sensitive Resistors (FSR) respectively. To measure the acceleration

and angles of rotation a 6 (Degrees of Freedom) DOF Inertial Measurement Unit (IMU)

was implemented. The (Data Acquisition) DAQ system was developed using Arduino

boards and Xbee antennas. Arduino boards offer a reliable and cost effective option for

DAQ and were successfully implemented in this project. Furthermore, consistent and

secure wireless transmission of data was required and achieved using Xbee antennas. A

user interface (UI) was developed using LabVIEW that obtained the readings from the

v

Arduino board, showed the measurements graphically in real time and stored the data for

further analysis. This work serves as a reference for strain gage measurement, low-cost

DAQs, wireless transmission of data using Xbee antennas. It also covers the use of Finite

Element Method (FEM) to assist in the design of strain gage systems and aims to close

the gap between the Arduino and LabVIEW interaction. The work has been presented so

readers can replicate each phase of the project and adapt it to their specific needs.

vi

Table of Contents

Acknowledgements ... iii

Abstract .. iv

List of Figures ... ix

List of Tables ...xiv

Chapter 1 Introduction: Smart Walker Project Overview .. 15

Chapter 2 Rolling Walker Mechanical Model .. 18

Analytical Model .. 18

FEM Model ... 24

Chapter 3 Axial Load Measurement ... 29

Strain Gage Measurement Overview ... 29

Resistance Strain Gages .. 29

Wheatstone Bridge ... 32

Non-Inverting Amplifier ... 35

Analog to Digital Conversion .. 36

Amplifier Design Considerations .. 38

Estimation of Resolution of Overall System ... 38

True Gain Test .. 44

Calibration ... 45

Effect of Load Applied on Opposite Handle ... 49

Chapter 4 Torque Measurement ... 52

Strain Gage Measurement Overview for Torque Measurement 52

Basic Theory – Full Bridge ... 52

Circuit Design ... 56

True Gain Test .. 57

vii

Calibration ... 58

Effect of Axial load on Torque Measurement ... 62

Chapter 5 Gripping Force Measurement .. 64

FSR Sensor Review ... 64

Circuit .. 66

Calibration ... 67

Chapter 6 IMU Accelerometer & Gyroscope... 69

IMU 6DOF Board Review ... 69

Installation ... 70

Chapter 7 Data Acquisition, Wireless Transmission and User Interface 73

Hardware Overview .. 73

Arduino MEGA as DAQ .. 73

Resolution .. 76

Sampling Rate ... 76

XBee
®
 802.15.4 Antennas for Wireless Data Transmission 77

User Interface & LabVIEW/Arduino Connectivity ... 80

Arduino Code .. 80

User Interface ... 87

Initialization Tab ... 87

Data Visualization Tab ... 89

LabVIEW Code ... 91

A – Calibration Reference Voltage ... 93

Initial Visa read .. 95

File Path ... 99

Extract Integers from array (Axial Load) .. 100

viii

Extract Integers from Array (Torque & FSR) ... 100

B – Data Acquisition from Walker sensors & overall Data Storage 101

Torque and Grip VISA to Indicators... 102

Axial Load VISA to Indicators .. 103

Walker IMU VISA to User Indicators ... 105

C – Data Acquisition & Storage from Belt Sensors (Time Stamps) 106

Belt IMU VISA to indicators ... 107

Data Visualization ... 109

Chapter 8 Conclusions .. 114

Appendix A Walker FEM Study .. 117

Geometry and Model Setup .. 118

Mesh ... 119

Results .. 121

Appendix B Smart Walker Arduino Code ... 123

Appendix C Axial Load Calibration Data Analysis Mathcad Worksheet 129

Appendix D Torque Calibration Data Analysis Mathcad Worksheet 136

Appendix E Smart Walker PCB Arduino Shield (Initial Design) 147

Appendix F Miscellaneous Pictures and Drawings .. 150

References .. 155

Biographical Information ... 158

ix

List of Figures

Figure 1-1 Smart Walker 3-D model showing location and placement of sensors 17

Figure 2-1 Walker CAD model (a) and simplified geometry model (b) 19

Figure 2-2 Normalized shear and moment diagrams of the

Rolling Walker’s simplified analytical models ... 21

Figure 2-3 Maximum total strain results from analytical model of the walker 23

Figure 2-4 FEM analysis result performed in ANSYS (a)

vs. actual walker with installed strain gage under the point of maximum strain (b) 26

Figure 2-5 Total Strain vs. Applied Load for Analytical and FEM model 27

Figure 3-1 Construction of a typical metallic foil strain gauge [2] 31

Figure 3-2 Indicated Strain vs. peak strain measured by Strain Gage [4] 31

Figure 3-3 MR-Series Bridge Completion Modules [9] ... 32

Figure 3-4 Wheatstone bridge (quarter bridge) [2] ... 33

Figure 3-5 Differential shunt balance arrangement for balancing bridge circuits [2] 33

Figure 3-6 Non-Inverting amplifier schematic ... 35

Figure 3-7 Binary quantification and saturation [2] ... 37

Figure 3-8 Estimated bridge deflection from analytical and FE model 38

Figure 3-9 Estimated voltage response of the system with

 amplifiers of different gains to applied axial load ... 40

Figure 3-10 Non-Inverting op-amp schematic (a) and

Texas Instruments PDIP-14 package (b) .. 43

Figure 3-11 Fabricated Non-Inverting operational amplifier ... 43

Figure 3-12 True gain test results for axial load sensor amplifier.

 Channel 1 (a), 2 (b), 3 (c), 4 (d). .. 44

Figure 3-13 Application of the load for axial load calibration .. 45

x

Figure 3-14 Experimental setup for axial load calibration .. 46

Figure 3-15 Axial load Calibration Flow Diagram ... 47

Figure 3-16 Axial load sensors calibration curves.

Corresponding to legs (a) Front/Left, (b) Front/Right,

 (c) Back/Left, (d) Back/Right .. 48

Figure 3-17 Effect on the left side legs when load is applied on right handle.

 Front Leg(a), Back Leg (b) ... 49

Figure 3-18 Effect on the right side legs when load is applied on left handle.

 Front Leg(a), Back Leg (b) ... 50

Figure 4-1 Strain gage configuration for torque measurement. [3] 53

Figure 4-2 General Purpose Strain Gages - Shear/Torque Pattern [5] 53

Figure 4-3 Installed Rosettes on left handle ... 54

Figure 4-4: Expected Full-Bridge output (Torque) .. 55

Figure 4-5 Zeroing circuit for torque sensor in main circuit board 56

Figure 4-6 Fabricated Amplifier used in torque sensor (G=1000) 56

Figure 4-7 Circuit schematic of torque sensor .. 57

Figure 4-8 Torque amplifier true gain test results. Channels 1(a), 2(b), 3(c), 4(d) 57

Figure 4-9 Zeroing circuit & Amplifier true gain test .. 58

Figure 4-10 Clamp 3D printed used to apply torque for calibration 59

Figure 4-11 Experimental setup of torque calibration ... 59

Figure 4-12 Calibration curve of torque sensor in left handle ... 60

Figure 4-13 Expected response from analytical model ... 60

Figure 4-14 Calibration curve of torque sensor in right handle ... 61

Figure 4-15 Left handle torque sensor’s response due to axial load 62

Figure 4-16 Right handle torque sensor’s response due to axial load 63

xi

Figure 5-1 ForceSensitive Resistor used to measure gripping force [20] 64

Figure 5-2 FSR Resistance vs. Force curve [20] .. 65

Figure 5-3 FSR Adafruit installation tutorial for Arduino [20] .. 66

Figure 5-4 FSR circuit schematic (a) - Fabricated Circuit (b) ... 67

Figure 5-5 Block diagram of Calibration setup .. 67

Figure 5-6 (a) Calibration setup showing FSR and alignment beams

 & (b) setup while force is applied to the FSR sensing area. ... 68

Figure 5-7 FSR Calibration curves .. 68

Figure 6-1 6DOF IMU Board [12] .. 69

Figure 6-2 Connection of IMU card to Arduino (UNO) board [12],

 and block diagram of connection to PC ... 71

Figure 6-3 Front Panel of VI to acquiring data from IMU and plotting

accelerometer data ... 71

Figure 7-1 Arduino MEGA 2560 [10] ... 73

Figure 7-2 XBee
®
 802.15.4 antennas [26] .. 78

Figure 7-3 SparkFun Xbee shield [15] .. 79

Figure 7-4 Xbee Antenna + SparkFun Shield + Arduino board assembly [15] 79

Figure 7-5 SparkFun Xbee Explorer Dongle [15] .. 79

Figure 7-6 Smart Walker User Interface (―Initialize‖ Tab) ... 89

Figure 7-7 Smart Walker User Interface (―DAQ‖ Tab) .. 90

Figure 7-8 Main Smart Walker LabVIEW block diagram .. 92

Figure 7-9 Smart Walker main code (A: Calibration Reference Voltage) 93

Figure 7-10 Initial VISA read SubVI (Initialize) ... 95

Figure 7-11 Visa Read SubVI ... 96

Figure 7-12 Wait for Bytes subVI .. 97

xii

Figure 7-13 String to Array of Integers SubVI ... 98

Figure 7-14 File Path and Data file title creation subVI .. 99

Figure 7-15 Extract Integers from array of integers (Axial load) 100

Figure 7-16 Extract Integers from array of Integers (Torque and FSR) 100

Figure 7-17 Smart Walker main code (B – Data Acquisition

 from Walker sensors & overall Data Storage) ... 101

Figure 7-18 Torque and FSR VISA readings to UI Indicators subVI 102

Figure 7-19 Torque and FSR calibration curves subVI ... 103

Figure 7-20 Axial load and VISA readings to UI Indicators subVI 103

Figure 7-21 Axial Load Calibration Curves subVI ... 104

Figure 7-22 Average and percentage calculations for Axial load UI Indicators 105

Figure 7-23 Walker IMU readings to clusters for waveform chart subVI 105

Figure 7-24 Smart Walker main code (C – Data Acquisition

& Storage from Belt Sensors (Time Stamps) .. 106

Figure 7-25 Belt Arduino VISA read & cluster to waveform charts 107

Figure 7-26 String array from integers to be stored in .txt file... 108

Figure 7-27 Stored data from data acquisition (.txt file) .. 109

Figure 7-28 Axial Load Readings .. 111

Figure 7-29 Torque and Gripping Force Readings ... 112

Figure 7-30 IMU Readings from the walker .. 113

Figure A-1 CAD model, pressure applied and supports .. 118

Figure A-2 First Mesh .. 119

Figure A-3 Second Mesh [5mm element] ... 120

Figure A-4 Third Mesh [3mm element] ... 120

Figure A-5 Equivalent Strain (close-up 3rd Mesh) .. 121

xiii

Figure A-6 Total Deformation [mm] (3
rd

 Mesh) ... 121

Figure C-1 Data files format to be imported to the worksheet .. 130

Figure D-1 Data files format to be imported to the worksheet .. 137

Figure E-1 Initial Smart Walker Arduino shield design ... 148

Figure E-2 Smart Walker Arduino Shield first design (Stencil) 149

Figure E-3 Smart Walker Arduino Shield initial design (upper side) 149

Figure E-4 Smart Walker Arduino Shield initial design (lower side) 149

Figure F-1 Smart Walker (a) CAD model (b) 1
st
 prototype ... 151

Figure F-2 First PCB prototype fabricated to test axial load

and torque strain gages .. 151

Figure F-3 Smart Walker Xbee antenna on USB dongle .. 152

Figure F-4 Belt Arduino UNO with IMU and Xbee shield/antenna 152

Figure F-5 Smart Walker Circuit board - 1st prototype (Arduino Side) 153

Figure F-6 Smart Walker Circuit board - 1st prototype (circuit Side) 153

Figure F-7 Smart Walker 1st prototype circuit board case mod CAD model 154

Figure F-8 Smart Walker 1st prototype circuit board mounted

on bottom case side. ... 154

xiv

List of Tables

Table 3-1 DAQ system resolution depending on N-bit

of A/D converter and reference voltage in [mV/bit count] .. 40

Table 3-2 Estimated sensitivities and system resolution

for diferent amplifier gains and reference voltages with 10-bit A/D converter 40

Table 3-3 Operational Amplifier LT1014CN Specifications .. 42

Table 3-4 Summary of results from true gain test of axial load sensor amplifiers 45

Table 3-5 Sensitivity and overall resolution of measurement ... 47

Table 3-6 Slope of calibration curves and overall

effect on sensor readings when the load is being applied on the opposite handle 50

Table 4-1 Components of Torque sensor’s circuit .. 56

Table 4-2 Summary of linear fit coefficients .. 61

Table 5-1 FSR sensor technical specifications [20] .. 65

Table 7-1 Arduino MEGA 2560 Technical Specifications [10] .. 75

Table 7-2 XBee® 802.15.4 Technical Specifications [27] .. 78

Table 7-3 Arduino Code for Smart Walker

(Analog read, IMU card read, Xbee connectivity) ... 80

Table 7-4 Comparison between Decimal and Hexadecimal Strings 86

Table 7-5 Analog Voltage output string format & reading example 86

Table 7-6 Output string format & reading example of 6DOF IMU card readings.............. 86

Table 7-7 Acquired data regarding Axial load measurement ... 109

Table 7-8 Acquired data regarding Torque and Gripping Force measurement 110

Table 7-9 Acquired data regarding IMU readings from Walker 110

Table 7-10 Acquired data regarding IMU readings from Belt ... 111

Table A-1 Result Summary & percent change for convergence 122

15

Chapter 1

Introduction: Smart Walker Project Overview

This thesis describes the development and characterization of the first prototype

of a smart walker. The Smart Walker project envisioned the design and fabrication of a

devise to monitor the use of rolling walkers and study the high rate of falling of elderly

patients [1]. The rate of falling is nearly 40% among the rolling walker users. The risk of

falls when using rolling walkers is greatly associated with incorrect RW height,

inappropriate user posture, changes in gait patterns and poor maintenance of RW tips

(wheel). Currently there are no instruments or devises that allow clinicians to monitor how

the RW is used for daily mobility. The objective of the Smart Walker project was to

measure, store, transmit and visualize the orientation, inclination and main forces applied

to a conventional RW in real time during daily mobility usage. The measurements would

be carried out in two local senior communities [1]. The data obtained during the studies

will serve as a base for recommendations regarding the aforementioned factors that

increase the risk of falls.

The forces to be measured by this prototype are the axial load, torque and

gripping force applied on the handles. Strain gages were used to measure the axial load

and torque. The gripping force is measured by a force sensitive resistor (FSR). The

orientation and inclination is measured with a six degree-of-freedom (DOF) Inertial

Measurement Unit (IMU) board containing an accelerometer (ADXL345) and a gyroscope

(ITG-3200).

The readings from each sensor are acquired by the Arduino MEGA, an open

source I/O board based on the ATmega1280 [10]. This board has 16 analog inputs that

allow the strain gage and FSR measurements to be sampled with a 10 bit analog to

digital converter. It also includes 54 digital input/output pins with the possibility of having

16

I
2
C connections that allow the integration of the accelerometer and the gyro. Other

important specialized digital pins are available for serial connections. Serial connections

permit the incorporation of Xbee antennas, which are responsible for transmitting the

data acquired by the Arduino and receiving it at the serial port of a personal computer

(PC). Xbee antennas communicate wirelessly using the IEEE 802.15.4 protocol for fast

and secure peer-to-peer networking. Continuous, secure and uninterrupted transmission

of data was achieved with an open field range of 100 m and indoor range of 30 m [24].

The data is received by a PC through serial connection and it is interpreted,

visualized and stored using LabVIEW. There are open source add-ons for LabVIEW such

as LIFA (LabVIEW interface for Arduino) and LINX that allow interacting with Arduino

directly from LabVIEW without the need to program the Arduino board [17]. These

platforms could not be used due to particular needs of the project. These platforms are

created around the Arduino UNO, which differs from the MEGA in various aspects but

more importantly, in the amount of analog and digital inputs allowed to be used. These

platforms limit the number of analog inputs to only six (the ones available in the Arduino

UNO) and the Smart walker requires eight analog inputs. Arduino serial communication

with the Xbee antenna is also a challenge using the add-ons. Furthermore, the maximum

sampling rate achieved with the LINX add-on is less than the one achieved by

programming the Arduino board. This is because the LINX firmware includes functions to

control most of the Arduino board’s capabilities, using memory space that a program

written to perform only the needed tasks would not use.

Due to the reasons presented above and also to have more control over the

whole system, an Arduino and a LabVIEW program were written to acquire, interpret,

visualize and store readings sent by the Arduino through the serial port with the Xbee

antenna.

17

The aforementioned prototype allows for continuous data acquisition and real

time visualization and storage of the measurands (axial load, torque, gripping force,

acceleration and walker rotation). In addition to the sensors installed on the walker, an

IMU board was installed in another Arduino board to be worn by the user during the

usage of the RW. This extra IMU allows having more information regarding the posture of

the patient.

The next steps in the project are (1) to fabricate three more smart walkers using

similar circuitry and sensors and (2) to perform reliability analysis of the walkers to finally

perform tests with patients. As part of the efforts for the next steps, a Printed Circuit

Board (PCB) Arduino shield was being designed for faster reproduction in a smaller size

of the circuit, the progress is shown in the appendix.

The figure below shows the Smart Walker model with the sensors used and

installation location. Strain gages are placed on each leg, torque rosettes and FSRs on

each handle and the IMU as part of the circuit board containing the necessary circuits

and components for the data acquisition and wireless transmission.

Figure 1-1 Smart Walker 3-D model showing location and placement of sensors

18

Chapter 2

Rolling Walker Mechanical Model

The first efforts taken to predict the Rolling Walker’s (RW) strain at the legs to an

applied axial load on the handles was to develop a mechanical model of the walker.

Predicting the strain caused by an applied axial load, allows designing properly the axial

load sensors for the required resolution of the system. Chapter 3 will describe in more

detail the considerations taken to design the axial load sensor using the strain predictions

in this chapter. First, a simplified analytical model of the main RW’s structural members

was developed in order to estimate the maximum strain felt at the curvature formed

between the legs and the handle when an axial load is applied. Later, a CAD model of

the walker was made in order to perform a Finite Element Method (FEM) analysis of the

RW. The FEM analysis allowed having a more detailed and accurate prediction of the

strain at the curvature, and helped to determine the location of the strain gages for axial

load measurement on the legs.

It is required to have a voltage output from the axial load sensor of sufficient

magnitude to monitor the force applied by the user. The strain caused by the loads is

used to predict the resistance change of the strain gage, thus predicting the voltage

output from the Wheatstone bridge and the necessary amplification to have a

measurement resolution of at least 1 lb/mV.

Analytical Model

A side view of the CAD model of the walker is shown in Figure 2-1 (a). The

simplified geometry used in the analytical model is also shown in Figure 2-1 (b) for

comparison. The analytical model consists of vertical elements (legs), and a horizontal

element (handle). The legs are set fixed replicating the calibration conditions. The overall

strain is calculated at the extremes of the horizontal member (handle) fixed at both ends

19

as an approximation of the actual model. The moment is not being calculated on the

vertical members of the simplified model (legs), but rather at the handle, were the points

of interest are B and C shown in Figure 2-1 (b). These points would represent the points

of maximum strain at the curvature joining the handle and the legs. Results will show that

this assumption yields an accurate prediction of the maximum strain encountered.

(a) (b)

Figure 2-1 Walker CAD model (a) and simplified geometry model (b)

In Figure 2-2 the simplified model and resulting normalized shear and moment

diagrams of the described analytical model are shown. The shear and moment equations

along the length of a beam fixed at both ends with a uniform distributed load can be

found in [32]. Eq. 2-1 to Eq. 2-4 show the general equations found in [32]. They have

been simplified for the current case where the distributed load is centered along the

length of the beam.

The reaction forces for the distribute load model, as shown in Figure 2-2 are

given by Eq. 2-1.

 L

c

20

 Eq. 2-1

The reaction moments for the distributed load model are given by Eq. 2-2.

() Eq. 2-2

The shear equation is given by Eq. 2-3.

 ()

{

 (

)

 (
()

) (

) (

)

 (

)

 Eq. 2-3

The bending moment equation is given by Eq. 2-4

 A simpler model can be used. Instead of a distributed load a concentrated force

P is applied at the center of the beam (handle). The equations for this model are shown

from Eq. 2-5 to Eq. 2-8 [32] and their respective shear and moment diagrams are shown

in Figure 2-2 as well. The reaction forces in this case are given by Eq. 2-5.

 Eq. 2-5

The reaction moments are given by Eq. 2-6.

 Eq. 2-6

The shear and moment equations for this model are Eq. 2-7 and Eq. 2-8. Notice

that the shear curve is being forced to pass through zero at L/2 as if the concentrated

load was a very narrow distributed load.

 ()

{

 (

)

() (

) (

)

 (

 ⁄) (

)

 Eq. 2-4

21

 ()

{

 (

)

 (

)

 (

)

 Eq. 2-7

 () {
 (

)

 () (

)

 Eq. 2-8

Figure 2-2 Normalized shear and moment diagrams of the

Rolling Walker’s simplified analytical models

0.6-

0.4-

0.2-

0

0.2

0.4

0.6

Distributed Load

Concentrated Load

N
o

rm
al

iz
ed

 S
h

e
ar

,
[V

/P
]

0 0.2 0.4 0.6 0.8 1

0.1-

0

0.1

0.2

Distributed Load

Concentrated Load

Handle Length, [x/L]

N
o
rm

al
iz

ed
 M

o
m

en
t,

 [
M

/P
L

]

0

0.5

22

Notice that the reaction forces for both concentrated and distributed load models

are the same and the reaction moments are very close to each other. The model with a

distributed load has reaction moments of about 90% the magnitude of the one with a

centered concentrated force.

In the analytical calculations, the right and left sides of the walker are treated as if

they were not connected to each other. It will be shown that this assumption is valid at

this point because almost all of the strain on each leg is caused by the force applied to

the handle of the respective leg. Later, the effect of axial loads applied on the opposite

side is quantified experimentally in order to have a more reliable measurement. This

simplified analytical model is expected to quantify the maximum strain at the curvature

between the handles and legs of the walker. In the results shown in Figure 2-2, the length

of the centered distributed load c is 15 cm and the total beam length L is 27.7 cm.

Axial stress on the legs is calculated using Eq. 2-9.

 ()

 ()

 Eq. 2-9

The hollow circular cross sectional area A is 1.042 cm
2
 with an inner radius of

1.137 cm and outer radius of and 1.275 cm.

The Axial strain is obtained using Eq. 2-10.

. Eq. 2-10

The axial stress is given by σaxial and the aluminum’s modulus of elasticity

(79.9 GPa) is Eal.

The Bending strain at the curvature is obtained as shown in Eq. 2-11,

. Eq. 2-11

The Bending stress σbend is given in Eq. 2-12.

axial
axial

alE


 

bend
bend

alE


 

23

 ()

 Eq. 2-12

M is the moment of the horizontal member shown in Figure 2-2, and R is the

outer radius of the circular cross section.

The second moment of inertia about the neutral axil is given in Eq. 2-13 and has

a value of 7.6e-9 m
4
 using the outer and inner radii mentioned above.

.
Eq. 2-13

The total strain is obtained adding both axial and bending components and has

been plotted vs. applied loads in Figure 2-3. As expected from the moment diagram, the

strain is higher for the concentrated load model. These two models are compared to the

FEM model in the following section, where a distributed load was applied at the handles

of the roller walker.

 . Eq. 2-14

Figure 2-3 Maximum total strain results from analytical model of the walker

 4 4

4
z

R r
I

 -


total axial bend   

0 20 40 60 80 100
0

100

200

300

400

Distributed Load

Concentrated Load

Axial Load, [lbf]

T
o
ta

l
S

tr
a
in

,
[

]

24

FEM Model

A CAD model of the walker was constructed to make a Finite Element Method

(FEM) model using ANSYS [23] and predict the strain at the curvature of the leg of the

walker when an axial load is applied at the handle. This approach was taken to observe

the results on a more realistic geometry than the simplified geometry used in the

analytical calculations. This model allows having a representation of the strain distribution

in the curvature area that is closer to the real case to help assessing the placement of the

strain gages. It is noticeable in Figure 2-4 that the strain is largest at the curvature

between the vertical and horizontal members that form each side of the walker’s

structure. The resultant strain in this area has components of both axial and bending

forces. From these results the location where the strain gages were to be installed was

determined so that a significant strain would be felt by the strain gages, also allowing for

easier and stronger bonding of the gage to the surface than at the point of maximum

strain [4][7][8]. Contrarily to the analytical model, the strain at the curvature does not

occur at a single point between the vertical and horizontal member but rather is

distributed around the curvature area as shown in Figure 2-4.

It is necessary to perform experiments to know the true behavior of the system.

FEM can be very accurate but it is limited by the used assumptions and approximations

in the model; experimental results are not expected to be exactly the same as results

from the FEM analysis for three main reasons:

1. The strain gage tends to integrate, or average, the strain over the area

covered by the grid (Figure 3-2) [4]. Knowing that there is strain gradient

at the placement area, the measured strain will not be equal to the strain

recorded at a specific point from the FEM model.

2. The CAD model is a close but not an exact representation of the walker.

25

3. When installing the gages it is very difficult to place them exactly at the

same area as the one in the FEM model.

The FEM model was set similar to the analytical model described above. The

surfaces in contact with the ground were fixed to replicate closely the calibration

conditions. Also, axial distributed loads on the handle were applied rather than

concentrated loads. Moreover, all the joints in the model were set as bonded. Since

computational power was not of big concern when running the analysis the geometry was

not simplified. The FEM analysis was performed using three-dimensional tetrahedral

elements with the help of the meshing tools provided by ANSYS. This type of elements is

useful for stress analysis of general three-dimensional bodies that require a more precise

analysis than is possible through two dimensional and/or axisymmetric analysis [31],

although in some cases a 2D or a 1D models can be more accurate than a 3D models. In

this case a 3D model was used because it was easier to mesh all the parts and

connectors joining all the member of the walker. A 2D model would have been a valid

alternative as well.

The model was subjected to a convergence analysis. Three different mesh sizes

were used for convergence study and they are shown in Appendix A. The finest mesh

used had a size of 3 mm and experienced a variation of 6.6% in maximum strain and

1.5% in total deformation from the previous one which had varied 14.6% and 16.3% in

maximum strain and deformation respectively. The model was one element thick since

the wall thickness is about 1 mm.

The results from the FEM model were taken at two points close to the grid area

where the strain gages were chosen to be placed (the strain gage chosen has a 5mm

grid) and these results were averaged.

26

(a) (b)

Figure 2-4 FEM analysis result performed in ANSYS (a) vs. actual walker with installed

strain gage under the point of maximum strain (b)

It is interesting to notice in Figure 2-4 that the general shape of the strain

distribution at the curvature between the leg and handle of the walker in the result from

the FEM model coincide with the shades seen on the surface of the tube after the surface

preparation process for gage installation on the walker [8]. Figure 2-5 shows the results

from the FEM analysis and how it compares to the results from the analytical model.

The maximum total strain estimated in the analytical models and the one found in

the FEM analysis are very close as expected. Moreover, the model with the distributed

load approaches the FEM results very closely. The calculated strains with this analytical

model are 99.6% the maximum strains found in the FEM model. On the other hand, the

analytical model with the concentrated load overestimated the maximum strain by 11.3%

compared to the FEM model results.

27

Most of the strain felt at the extremes of the horizontal member corresponds to

bending strain. If only the axial component of the strain is measured, the resultant change

in the resistance of the strain gage would be very small, resulting in a small voltage

response from the bridge, thus a small signal-to-noise-ratio. A larger amplification of the

signal implies amplifying the noise as well. If the signal-to-noise-ratio is small the

resulting amplified signal would have high noise also. In order to have a larger signal-to-

noise-ratio, the strain gage is installed at the curvature formed by the handle and legs

where the magnitude of the strain is higher (includes both axial and bending components

of the strain due to the applied axial load). The response would still follow a linear relation

with load and it would be more easily quantifiable. The downside is that if the resultant

load is applied at different locations of the handle, the moment felt at the curvature

changes. This means that to maintain a reliable measurement, the location at which the

handle is held has to be fixed. The assumption taken, as shown, is that a uniform

distributed load is applied on the area of the handle.

Figure 2-5 Total Strain vs. Applied Load for Analytical and FEM model

0 20 40 60 80 100
0

100

200

300

400

Analytical Model (Distributed Load)

Analytical Model (Concentrated Load)

FEM Model (max)

FEM Model (SG Location)

Axial Load, [lbf]

T
o

ta
l

S
tr

a
in

,
[

]

28

The strain gages were chosen to be installed at a location below the location of

maximum strain at curvature as shown in Figure 2-4. In this area the response would still

be bigger than only measuring axial strain but it would sense a lesser bending

component. This location would also help on the strain gage installation because the

surface is less curved and easier to prepare for installation. More details of the FEM

model can be found in Appendix A.

29

Chapter 3

Axial Load Measurement

Strain Gage Measurement Overview

A brief overview of the main concepts needed to design the axial load sensor

using strain gages is given in this section. A fundamental theoretical overview on

resistance strain gages is presented first, followed by a basic depiction of Wheatstone

bridges, non-inverting operational amplifier and finally main analog to digital conversion

concepts necessary to understand the data acquisition system. The understanding of

these concepts is essential for the measurement and data acquisition of strain using

resistance strain gages.

Very often the measurement of physical quantities consists in the transduction of

the phenomena to an electric voltage and then the measurement of this voltage which is

correlated back to the physical phenomena in question. In the case of strain

measurement, the strain causes a change in resistance in the gage which then causes

an unbalance in the Wheatstone bridge, resulting in a proportional voltage output [2]. The

voltage output of the bridge is amplified to be measured by a Multimeter or acquired

using a data acquisition system. In order to properly design each component of the

system, it is necessary to understand their basic principles behind them. These basic

principles are described below.

Resistance Strain Gages

Bonded resistance strain gages have been widely used in the past decades to

measure strain. They meet basic necessary characteristics [2] [4]:

1. High spatial resolution

2. Low sensitivity to changes in ambient conditions

3. High frequency response for dynamic strain measurement

30

They consist of a metallic grid specially designed to be securely bonded on the

surface where the strain is to be measured. The strain gage is bonded using a special

adhesive that ensures that the gage deforms with the test object. This adhesive varies

according to the material and ambient effects at which the measurement is performed.

The phenomenon that allows the use of resistance strain gages for this purpose is the

change in electrical resistance of metallic and semiconductor materials when subjected to

strain. This change in electrical resistance is what is being measured and correlated to

the applied strain [2].

To depict how strain gages work let us consider a conductor with uniform cross-

sectional area and length made of a material with an electrical resistivity . The

resistance of this conductor would be

. Eq. 3-1

If the conductor is subjected to a normal load, both the length and the area

change, which causes a variation in the total resistance of the conductor. This change in

geometry is what allows us to measure the strain of the object. When the resistance of an

object changes due to applied mechanical strain, it is known to have called piezoelectric

behavior [2].

The variables mentioned in Eq. 3-1 can change significantly with temperature. If

temperature fluctuations are not accounted for in the measurement, it can affect the

reliability of the measurement. That is why many strain gages have temperature

compensation, which allows for minimizing the effect of temperature on the measurement

[2] [4]. Temperature doesn’t represent a major factor for the Smart Walker because the

measurements are thought to be carried out around room temperature; nevertheless the

strain gages used have temperature compensation for aluminum (material of the walker).

31

Figure 3-1 shows a typical strain gauge construction [2]. It has a metallic pattern

sandwiched in-between a plastic backing material. Choosing the right pattern dimensions

is fundamental to ensure a proper measurement. The strain gage averages the

measured strain over the grid area. Many times the maximum strain is the quantity of

interest. Having a long gauge length in high strain gradient locations can result in error

due to averaging. Figure 3-2 shows a representation of the averaging within the area of

the gage.

Figure 3-1 Construction of a typical metallic foil strain gauge [2]

Figure 3-2 Indicated Strain vs. peak strain measured by Strain Gage [4]

32

The change in resistance is expressed in terms of a parameter called the gauge

factor (GF) [2]. This is usually given by the strain gage manufacturer and it is defined as,

 / /

/ a

R R R R
GF

L L

 

 
 

.

 Eq. 3-2

Wheatstone Bridge

The Wheatstone bridge is one of the most common circuits used to detect small

changes in resistance. It is widely used for strain gage measurement. Equipment is

commercially available for this purpose, which can measure changes in resistance of less

than 0.0005 Ω. In this case a bridge completion module MR1-350-127, shown in

Figure 3-3, has been used because of its small size and simple installation.

Figure 3-3 MR-Series Bridge Completion Modules [9]

The Wheatstone bridge is fed with an excitation voltage, shown in Figure 3-4 as

 and the output voltage varies according to the change in resistance of the strain

gage.

Figure 3-4 shows a quarter-bridge configuration. In this configuration only one of

the four resistances in the bridge varies and the others remain fixed. As such, the change

in resistance of only one of the resistors (i.e. the strain gauge) is measured. In many

situations, such as measuring bending strain, the change in resistance of two resistances

is desired in order to obtain a higher response from the bridge. The full bridge

iE

33

configuration will be shown later for measuring torque, in which all of the resistors in the

bridge change and contribute to allow for a larger voltage output and ultimately better

response to an applied torque.

.
 Eq. 3-3

Eq. 3-3 shows the expected bridge voltage output for a quarter bridge

configuration. It displays the initial voltage output with no bridge deflection (Eo), the

voltage change (δEo) due to the change in resistance of the strain gage (δR) as well as

its relation to the other fixed resistances (R2,3,4).

Often the bridge needs to be balanced in order to ensure its best response to the

change in the resistance of the gage and to fine-tune the output voltage at initial

conditions. One main reason to change the output voltage at initial conditions is to make

sure that the amplifier following the bridge can sense the bridge deflection. That means

that the bridge output at initial conditions,
 be bigger than the input offset voltage of

the operational amplifier used. Potentiometers are often used for this purpose. A

balancing scheme is shown in Figure 3-5.

 

  
1 4 3 2

1 2 3 4

o o i

R R R R R
E E E

R R R R R






 -
 

  

oE

Figure 3-4 Wheatstone bridge

(quarter bridge) [2]

Figure 3-5 Differential shunt balance

arrangement for balancing bridge circuits [2]

34

.
 Eq. 3-3

Eq. 3-3 and Eq. 3-2 reduce to Eq. 3-4 under the assumption that ,

. Eq. 3-4

For a multiple gauge bridge arrangement, the bridge constant is used to

predict the bridge response. The bridge constant is defined as the ratio of the actual

bridge output to the output that would result from a single gage sensing the maximum

strain. When more than one gage is used, Eq. 3-4 becomes

 . Eq. 3-5

More detailed derivations of this equation can be found in Figliola [2].

 

  
1 4 3 2

1 2 3 4

o o i

R R R R R
E E E

R R R R R






 -
 

  

4 2 4

o

i

E GF GF

E GF

  


 





/

4 2 / 4 2 4

o

i

E R R GF GF

E R R GF

     

 
  

 

35

Non-Inverting Amplifier

The output signal of the bridge is amplified using a low noise amplifier. In this

case a non-inverting amplifier was used. Figure 3-6 shows the schematic of the

non-inverting amplifier with connections to voltage source and bridge outputs. It is

necessary to ensure that there is a DC path to earth for the very small input current that

is needed, for that reason R3 is included. R4 is included for impedance matching purposes

at the input of the amplifier [28].

The gain of the amplifier is given by,

. Eq. 3-6

Figure 3-6 Non-Inverting amplifier schematic

Eq. 3-5 becomes Eq. 3-7 when the gain from the non-inverting amplifier is

included Eq. 3-6,

. Eq. 3-7

1

2

1A

R
G

R
 

 

 

/

4 2 / 4 2 4

Ao A A

i

G R RE G GF G GF

E R R GF

     

 
  

 

36

Analog to Digital Conversion

The final goals are to acquire the voltage in real time using a data acquisition

system, and to store and visualize the data. This requires an analog to digital (A/D)

conversion of the signal. To obtain the best possible measurement from the system, the

upper and lower voltage limits of the A/D converter need to be known.

An analog to digital converter discretizes a specific range of voltages according

to its resolution and converts the analog signal to a digital quantity; this is called

quantization [2]. To optimize the resolution of the acquired data from a given system, it is

important to use as much as possible of the voltage range used by the A/D converter.

Converters in general have a reference voltage that defines the upper

voltage limit of the measurement. The lower limit is usually ground. If the input signal is

below the lower limit the reading is null (lowest binary number) and if it goes beyond the

upper limit, the result is a saturated output (highest binary number). The amount of

divisions possible in the measurement is given by the number of bits the A/D registers.

An M-bit A/D converter outputs binary numbers. For example a 10 bit analog to

digital converter with a Vref of 5 V would be able to discretize the 5 V range with

 binary values; this means a resolution of 4.89 mV per binary value.

If the maximum output voltage from the amplifier is known, the reference voltage

can be adjusted to get the maximum possible resolution from the given converter. Or, if a

specific reference voltage is known to be used, the signal can be amplified accordingly to

closely cover the range of conversion.

Another factor to take into account is the sampling rate of the converter. A/D

converters sample the signal periodically. From a continuous signal, a discretized signal

in time is obtained. Depending on the application and physical measurement to be

performed, the required sampling rate varies. For example, when mechanical vibrations

refV

2M

102 1024

37

are to be measured, it is fundamental to ensure that the maximum natural frequency of a

given structure is being acquired by the system. The Nyquist criterion states that the

minimum sampling frequency needed to capture the information from an oscillating

analog signal is twice the frequency of such signal. For example, when sampling sound it

is common to find sampling frequencies in the order of 40 kHz, which is about twice the

upper limit of frequencies range of the human ear.

Figure 3-7 Binary quantification and saturation [2]

Having a higher than needed sampling rate can unnecessarily complicate data

transmission and storage. A higher sampling rate can translate for example in more

power consumption of the system and more overall storage needed. This is why it is

necessary to know the nature of the physical phenomena to be measured and the

information needed to be measured from it.

This system will use an Arduino MEGA which has a 10 bit A/D converter and has

a maximum reference voltage of 5 V [10]. With this reference voltage, a resolution of

4.89 mV is possible. More specific detailed explanation of the data acquisition system

(DAQ) used in the smart walker will be given in Chapter 7.

38

Amplifier Design Considerations

Estimation of Resolution of Overall System

The voltage output from the bridge due to an applied axial load to the handles

was estimated using the analytical models and the FEM model. The results are shown in

Figure 3-8. At the moment the amplifier was being fabricated, the goal was to be able to

get readings of up to 100 lbf per side with a sensitivity of at least 1lbf/mV. It was indicated

previously that the precision of the 10-bit A/D converter in the Arduino MEGA with a 5 V

reference voltage is about 4.8 mV per bit count.

Knowing the precision of the A/D converter, the required response from the

system is known to achieve a specific measurement resolution. In the case of a 4.8 mV

resolution, the needed response has to be ≥ 4.8 mV/lbf. Also, another approach would be

to reduce the reference voltage of the A/D converter. The lowest possible reference

voltage in the Arduino MEGA without having to use the physical pin is 1.1 V. For this

reference voltage the resolution is 1.08 mV per bit count.

Figure 3-8 Estimated bridge deflection from analytical and FE model

refV

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Analytical Models (Distributed load)

Analytical Model (Concentrated load)

FEM Model (max)

FEM Model (SG Location)

Axial Load, [lbf]

B
ri

d
ge

 O
u
tp

u
t,
 [

m
V

]

39

Figure 3-8 shows the expected bridge deflection using the strain calculations

from the analytical models (simplified geometry) and the FEM model. This was calculated

using Eq. 3-5 where the gage factor used for the calculation is GF=2, which is a usual

gage factor for the type of strain gages used. As it was indicated before, the strain in the

analytical model is expected to be higher than at the location where the strain gage was

installed because in the actual walker the strain distributes in the curvature area rather

than being at a single point where a vertical and horizontal member connect.

Since the location of the strain gage was chosen from the results of the finite

element model, these results are used to estimate the deflection of the bridge and the

voltage output from amplifiers of different gains. Eq. 3-7 is used where the excitation

voltage is 5 V, and since it is a quarter bridge, is 1. Figure 3-9 shows the

estimated output voltage with an output voltage at initial conditions of 100 mV.

Knowing the precision of the A/D converter, the actual resolution of the system

can be estimated. Table 3-1 shows the precision of an A/D converter depending on the

number of bits of the A/D converter and the reference voltage used. The reference

voltages used in the table are the ones that can be set though software in the Arduino

MEGA. Table 3-2 shows the sensitivities that would be obtained from various

amplifications and also the overall resolution of the system (using Arduino MEGA’s 10-bit

A/D converter) for various gains and reference voltages of 1.1 V and 5 V.

From the criterion of being able to measure at least 1lb/mV, a gain of 1000 or

larger would suffice for a reference voltage of 1.1 V. Similarly for a reference voltage of

5 V a gain of 2000 or larger would be sufficient.

iE 

40

Figure 3-9 Estimated voltage response of the system with amplifiers of different gains to

applied axial load

Table 3-1 DAQ system resolution depending on N-bit of A/D converter and

reference voltage in [mV/bit count]

 DAQ Reference Voltage

N-Bit 1.1 V 2.56 V 5 V

8 4.30 10.00 19.53

10 1.07 2.50 4.88

12 0.27 0.63 1.22

16 0.02 0.04 0.08

Table 3-2 Estimated sensitivities and system resolution for diferent amplifier gains and

reference voltages with 10-bit A/D converter

System Overall Resolution,

[lbf/bit count]

Gain
Sensitivity,

[mV/lbf]
Vref = 1.1 V Vref = 5 V

10 0.032 33.67 153.07

100 0.319 3.37 15.31

1000 3.190 0.34 1.53

2000 6.380 0.17 0.77

2500 7.975 0.13 0.61

0 20 40 60 80 100
0

200

400

600

800

1000

1200

G = 10

G = 100

G = 1000

G = 2000

G = 2500

Axial Load, [lbf]

A
m

p
li

fi
er

 o
u

tp
u

t
v

o
lt

ag
e,

 [
m

V
] 1100

41

From the other criterion of needing a range of measurement of at least 0 to

100 lbs, it is noticeable that all of the gains presented would be sufficient without

saturating the A/D using a reference voltage of 1.1 V. Nevertheless, if a gain of 1000

would be used, although it would meet both requirements, a significant amount of the

resolution would be sacrificed noticing that for 100lbs applied it would not even reach half

of the possible maximum voltage (1.1 V). Moreover, a gain of 2500 would have the best

of the resolutions presented, but the gain of 2000 is chosen for the prototype to avoid

applying extra amplification to a system that does not require it, which would amplify the

present noise. As mentioned earlier, it is also not recommended to have such high gains

with only one operational amplifier. Therefore, a gain of 2000 was chosen to maintain

simplicity of the design and avoid having to cascade two or more operational amplifiers.

This being said, as per the data sheet of the op-amp used LT1014CN, the maximum

allowed gain is 10,000. Setting the gain to 2000 also lets us measure more than 100 lbs

per side of the walker (close to 150 lbs).

42

 Non-Inverting Amplifier Design & Fabrication

For the non-inverting amplifier, the op-amp to be used is the Texas Instruments

LT1014CN. It is a 4-channel precision amplifier with very low input bias voltage and

current, capable of dual supply operation in a PDIP-14 package. The main specifications

are shown in Table 3-3. With this op amp it is possible to amplify the signal of each axial

load sensor on the walker legs.

Table 3-3 Operational Amplifier LT1014CN Specifications

Amplifier Type:
precision
amplifier

Number of Channels: 4 channel

GBP – Gain Bandwidth Product: 1 MHz

SR – Slew Rate: 0.4 V/us

CMRR – Common Mode Rejection
Ratio :

97 dB

Ib – Input Bias Current: 30 nA

Vos – Input Offset Voltage: 300 uV

Supply Voltage – Max: 44 V

Supply Voltage – Min: 5 V

Maximum Gain 10,000

Operating Supply Current: 2.2 mA

Maximum Operating Temperature: + 70 °C

Minimum Operating Temperature: 0 °C

Package PDIP-14

43

(a)

(b)

Figure 3-10 Non-Inverting op-amp schematic (a)

and Texas Instruments PDIP-14 package (b)

The schematic of the amplifier is shown in Figure 3-10 (as it was shown

previously). The resistances used are 710 kΩ for R1 and R3, and 350 Ω for R2 and R4,

to get an expected gain of 2030. The gain is calculated using [2]; the fabricated circuit is

shown below in Figure 3-11.

Figure 3-11 Fabricated Non-Inverting operational amplifier

44

True Gain Test

Due to the tolerances in the components of the amplifier, the true gain is always

off the theoretical expected value. Also, to test that the amplifier is operating properly, a

true gain test was made on each one of the channels. The results are shown below in

Figure 3-12 and the gains measured as the slope of the curves shown in Figure 3-12 are

listed in Table 3-4.

(a)

(b)

(c)

(d)

Figure 3-12 True gain test results for axial load sensor amplifier.

Channel 1 (a), 2 (b), 3 (c), 4 (d).

y = 2032.2x + 113.03
R² = 0.9998

440

460

480

500

520

540

560

0.16 0.18 0.2 0.22

A
m

p
lif

ie
r

o
u

tp
u

t,
 [

m
V

]

Input Voltage, [mV]

y = 2032.9x + 29.916
R² = 0.9992

400

450

500

550

600

650

0.18 0.2 0.22 0.24 0.26 0.28 0.3

A
m

p
lif

ie
r

o
u

tp
u

t,
 [

m
V

]

Input Voltage, [mV]

y = 2,050.563x - 5.659
R² = 1.000

400

450

500

550

600

650

700

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32

A
m

p
lif

ie
r

o
u

tp
u

t,
 [

m
V

]

Input Voltage, [mV]

y = 2084.7x + 200.6
R² = 0.9941

400

450

500

550

600

650

700

0.1 0.12 0.14 0.16 0.18 0.2 0.22

A
m

p
lif

ie
r

o
u

tp
u

t,
 [

m
V

]

Input Voltage, [mV]

45

Table 3-4 Summary of results from true gain test of axial load sensor amplifiers

Channel True Gain

1 2032.2

2 2032.9

3 2050.6

4 2084.7

Calibration

The calibration of the axial load sensors was performed by applying known

weights to the handles in increments of 1 lbf, 5 lbf, and 20 lbf in a range from 0 to 40 lbf.

When the calibration was performed, the maximum load needed to be measured per side

was lower than initially thought, reason why the range of measurements for the

calibration went only up to 40 lbs. Nevertheless, the system is able to measure up to

150 lbs per side (maximum allowed by the RW’s manufacturer) if needed.

Figure 3-13 Application of the load for axial load calibration

46

Figure 3-14 Experimental setup for axial load calibration

The flow diagram showing the components of the experimental setup is shown

below in Figure 3-15. The measurements were performed by reading voltages from

multimeters (analogically) and acquiring the signal using the Arduino MEGA. This was

done to compare readings and test the DAQ.

The Arduino MEGA 5V pin supplied the excitation voltage for the bridge and was

the voltage source for the op-amp. The voltage output from the bridge was measured

using a FLUKE 8845A precision multimeter. The output from the amplifiers was acquired

using the Arduino MEGA and also monitored using a multimeter. Part of the experimental

setup can be seen in Figure 3-14.

The calibration curves of each strain gage are shown in Figure 3-16. The first

strain gage observed in Figure 3-16 (a) experiences high hysteresis compared to the

other two strain gages. Since this strain gage has been loaded several times what seems

to be causing this behavior is poor bonding. This strain gage has been replaced, but it

serves as example of the behavior of the gages with poor bonding [6] - [8].

47

.
Figure 3-15 Axial load Calibration Flow Diagram

As it was seen on the FEM model, the sensitivity of the sensors is highly

dependent on the location of installation; experimentally it is seen also that the strain

gages that are closer to the curvature experience a higher response to loading.

Table 3-5 summarizes the sensitivity of each of the sensors as well as the

resolution of the measurement using the 10-bit A/D converter in the Arduino MEGA with a

reference voltage of 1.1 V.

Table 3-5 Sensitivity and overall resolution of measurement

Strain
gage (leg)

Sensitivity
[mV/lb]

Overall
Resolution

[lb/bit count]

Back/Right 2.48 0.43

Back/Left 5.14 0.21

Front/Right 6.37 0.17

Front/Left 6.01 0.18

The resolution of the front leg sensors are almost exactly as predicted from the

FE model and bridge and amplifier estimations. Although the gauge on the back leg has

a lower resolution, it is still within the acceptable margin of 1 lb per bit count. This

Strain Gages Bridge Units

FLUKE 8845A
Precision

Multimeter

Arduino MEGA
Power Supply

Amplifiers

EXTEC
Multimeter

Arduino Mega
(Analog input)

PC

δ
R

5V

V(t)

V(t)

V(t)

𝑉𝑖

48

difference is because the location of the strain gage is further away from the curvature of

the leg, thus it doesn’t sense as much of the bending strain.

(a)

(b)

(c)

(d)

Figure 3-16 Axial load sensors calibration curves. Corresponding to legs (a) Front/Left,

(b) Front/Right, (c) Back/Left, (d) Back/Right

Strain Gage 4

0 5 10 15 20 25 30 35 40
0.25

0.275

0.3

0.325

0.35

0.375

0.4

0.425

0.45

0.475

0.5

0.525

0.55

Load

St Dev (Load)

Unload

St Dev(Unload)

Linear Fit

Load, [lb]

V
o

lt
ag

e,
 [

V
]

Strain Gage 3

0 5 10 15 20 25 30 35 40
0.1

0.125

0.15

0.175

0.2

0.225

0.25

0.275

0.3

0.325

0.35

0.375

0.4

Load

St Dev (Load)

Unload

St Dev(Unload)

Linear Fit

Load, [lb]

V
o
lt
ag

e,
 [

V
]

8

0 5 10 15 20 25 30 35 40
0.25

0.275

0.3

0.325

0.35

0.375

0.4

0.425

0.45

0.475

0.5

0.525

0.55

Load

St Dev (Load)

Unload

St Dev(Unload)

Linear Fit

Load, [lb]

V
o
lt
ag

e,
 [

V
]

0 5 10 15 20 25 30 35 40
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Load

St Dev (Load)

Unload

St Dev(Unload)

Linear Fit

Load, [lb]

V
o
lt

a
g
e,

 [
V

]

49

Effect of Load Applied on Opposite Handle

It was noticed experimentally that the sensors on the side where the load was not

being applied still experienced some strain. This strain was not quantified analytically or

with the FE model because it would have been cumbersome to replicate actual joint

conditions of the members of the walker. The effect will be quantified experimentally and

a relation will be found to include this effect on the overall calibration curve in the final

user interface. The experimental setup is the same as in the calibration process

described above, except that the loads are being applied on the opposite side of the

walker where the sensor is installed.

The effects on the sensors when a load is being applied on the opposite side

handle are shown below in Figure 3-17 Figure 3-18.

Figure 3-17 Effect on the left side legs when load is applied on right handle.

Front Leg(a), Back Leg (b)

Notice that the slope is negative for the sensors in the back, and positive for the

ones in the front. Also the slope is steeper for the sensors on the left side; they are more

sensitive to loads applied to the opposite side. The linearity on the left side is much better

(a)

(b)

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0.115

0.124

0.133

0.141

0.15

Load

St Dev (Load)

Unload

St Dev(Unload)

Linear Fit

Load, [lb]

V
o

lt
ag

e,
 [

V
]

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0.1

0.113

0.125

0.138

0.15

Load

St Dev (Load)

Unload

St Dev(Unload)

Linear Fit

Load, [lb]

V
o

lt
ag

e,
 [

V
]

50

than on the right side. Because the bar that connects both sides of the walker is not

completely rigid and fixed, it is difficult to find a linear relationship.

(a) (b)

Figure 3-18 Effect on the right side legs when load is applied on left handle.

Front Leg(a), Back Leg (b)

Table 3-6 Slope of calibration curves and overall effect on sensor readings when the

load is being applied on the opposite handle

Slope [mV/lbf]

Effect on reading [lbf per
lbf applied on opposite

side]

Front/Left 0.76 0.13

Back/Left -0.34 -0.07

Front/Right 0.29 0.05

Back/Right -0.12 -0.05

Notice also that linearity wasn’t achieved in the results of the right side after

numerous attempts, not because the response is not linear by nature, but because the

members of the walker are not completely bonded and during testing, joints that were

practically fixed experienced release or friction and shifted the voltage readings.

Strain Gage 3

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0.175

0.178

0.182

0.185

0.188

0.192

0.195

Load

St Dev (Load)

Unload

St Dev(Unload)

Linear Fit

Load, [lb]

V
o

lt
ag

e,
 [

V
]

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0.11

0.114

0.118

0.122

0.126

0.13

Load

St Dev (Load)

Unload

St Dev(Unload)

Linear Fit

Load, [lb]

V
o

lt
ag

e,
 [

V
]

51

The effect on the sensors when loads are being applied on the opposite side was

measured to be relatively small but not negligible. For example on the front left gage an

offset of 1.3 lbf would be felt on every 10 lbf applied on the right side.

The characterization of this effect is not simple. When loads were applied on both

sides, the effect that an applied load on the opposite side where the strain gages are

installed was observed to diminish. It is recommended for following prototypes to bond

the joints connecting all the member of the walker to help the characterization of this

effect.

52

Chapter 4

Torque Measurement

Another main objective in this project is to be able to measure the torque applied

by the user to the handle. Strain gages will be used as well for this purpose, measuring

the shear strain at the surface caused by the torque. In this case rosettes with grids

rotated 45 degrees as shown in Figure 4-1 were used in order to have four varying

resistances in a full bridge configuration. A similar design process to the axial load sensor

was carried. Analytical calculations were performed to assess the proper gain that would

be needed to have a proper measurement resolution. This time an existing amplifier with

a gain of 1000 was available. The full-bridge configuration response from an applied

torque was predicted to ensure that the amplification would be sufficient. Later the

system was calibrated to obtain actual calibration curves.

Strain Gage Measurement Overview for Torque Measurement

Basic Theory – Full Bridge

In Chapter 3 a closed form solution to predict the voltage output from a

Wheatstone bridge was shown in Eq. 3-5.

In torque measurement using strain gages a full-bridge configuration is used.

Four strain gages, rotated in a 45 degree angle are installed as shown in Figure 4-1. All

four gages (4) contribute to the bridge deflection and so Eq. 3-5 with becomes

. Eq. 4-1

4 

4 / 4

4 2 / 4 2

o

i

E R R GF
GF

E R R GF

  


 
  

 

53

Figure 4-1 Strain gage configuration for torque measurement. [3]

For simplicity of installation and accuracy of relative angle between gages, a

rosette with two grids rotated 45° was used.

Figure 4-2 General Purpose Strain Gages - Shear/Torque Pattern [5]

The bonding and surface preparation is the same as that for the axial load strain

gages, although the installation is a little more difficult for special constrains.

It is evident that because the four (4) grid patterns are the four varying

resistances forming the full bridge, there is no need for a bridge completion unit. The

voltage output from the bridge is directly amplified and then acquired by the Arduino

MEGA.

54

Figure 4-3 Installed Rosettes on left handle

The maximum shear stress on the surface of a cylindrical member subjected to

torque is given by,

.
Eq. 4-2

Where, T is the applied torque, R is the outer radius and J is the polar moment of

inertia.

The polar moment of inertia of a hollowed circular cross section is,

.

Eq. 4-3

R and r are the outer and inner radius respectively.

From here the maximum shear strain is,

 . Eq. 4-4

Where G is the Shear modulus, E is Young’s modulus and is the Poisson’s

Ratio.

Finally, the expected bridge response as a function of torque applied is given by,

max

TR

J
 

    4 4
2 2

32

R r
J

 -


 max
max max

2 1

G E


 


 



55

.

Eq. 4-5

Based on the walker’s handle dimensions and aluminum’s properties the

expected signal from the bridge for an excitation voltage of 5 V would be as shown in

Figure 4-4. With this we can estimate the output signal from an amplifier as well. In this

case the approach was different than for the axial load sensors. There was an amplifier

available with a gain of 1000 that was fabricated earlier. With this model we can predict

the output and see if it meets the required resolution. It is easy to visualize from the

Figure 4-4 that he output from the amplifier will be about 0.3 V for a torque of 1 N-m or

8.85 lb-in t. The expected sensitivity of the system would be 35.6 mV/lb-in, which results

in a resolution of 0.03 lb-in per bit count and sufficient for this purpose. Also, considering

that torque is being measured in both directions, the range of voltages available is 550

mV on each direction. Using 1.1 V as a reference voltage (as explained in Chapter 3) for

the A/D conversion, would result in a maximum reading of about +/- 16 lb-in.

Figure 4-4: Expected Full-Bridge output (Torque)

    
 

max 4 4

2 132

2 2

o

i

E TR
GF GF

E ER r







 

-

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

Bridge Output vs. Torque Applied

Torque, [N-m]

B
ri

d
g
e
 O

u
tp

ut
,
[m

V
]

56

Circuit Design

On the same circuit board where the axial load sensors were connected, the

zeroing circuit for the torque sensor was added. It is very important for this circuit to have

a zeroing function. The measured output voltage with no load applied is needed to be at

the center of the voltage range of measurement, this is 550 mV. This zeroing capability

does not affect the performance of the bridge; it maintains its response no matter what

value the voltage takes at initial conditions. Figure 4-7 shows the schematic of the circuit.

It includes the zeroing circuit, the full-bridge and the non-inverting amplifier.

Figure 4-5 Zeroing circuit for torque sensor in

main circuit board

Figure 4-6 Fabricated Amplifier used in

torque sensor (G=1000)

Table 4-1 Components of Torque sensor’s circuit

Component Description

 Excitation Voltage (5 V)

 Potentiometer

 Nulling Resistor

 Strain Gages ()

 Arduino analog input port

extV

potR

nullR

1 4R R

5 6,R R

7 8,R R

1J

57

Figure 4-7 Circuit schematic of torque sensor

True Gain Test

(a)

(b)

(c) (d)
Figure 4-8 Torque amplifier true gain test results. Channels 1(a), 2(b), 3(c), 4(d)

y = 987.76x - 986.65
R² = 0.9997

450

460

470

480

490

500

510

1.45 1.47 1.49 1.51

A
m

p
lif

ie
r

o
u

tp
u

t,
 [

m
V

]

Bridge output, [mV]

y = 975.56x - 776.55
R² = 0.9998

350

370

390

410

430

450

470

490

1.16 1.18 1.2 1.22 1.24 1.26 1.28 1.3

A
m

p
lif

ie
r

o
u

tp
u

t,
 [

m
V

]

Bridge output, [mV]

y = 996.36x - 1155
R² = 1

90

110

130

150

170

190

210

230

1.25 1.27 1.29 1.31 1.33 1.35 1.37 1.39

A
m

p
lif

ie
r

o
u

tp
u

t,
 [

m
V

]

Bridge output, [mV]

y = 1000.6x - 1629.4
R² = 0.9999

40

60

80

100

120

140

160

180

200

1.65 1.7 1.75 1.8 1.85

A
m

p
lif

ie
r

o
u

tp
u

t,
 [

m
V

]

Bridge output, [mV]

58

The amplifier to be used was tested to obtain the true gain of each of its

channels. Although only two channels are needed, because the chip had capability of

four channels all of them were made. Above are the results from the true gain test.

The gains of the amplifiers are as expected. Although the input voltage is very

small and difficult to measure, linear relations were found.

Figure 4-9 Zeroing circuit & Amplifier true gain test

Calibration

Finally to complete the torque sensor it is necessary to measure the actual

response to applied torque and obtain calibration curves. For this purpose the simplest

way found to apply known torques to the handle was by 3D printing a clamp and rod and

hang measured weights at known distances from the center of the handle. Figure 4-10

shows the printed clamp used for the calibration.

59

Figure 4-10 Clamp 3D printed used to apply torque for calibration

The experimental setup is similar to the one used for the axial load sensor

calibration. It is shown below.

Figure 4-11 Experimental setup of torque calibration

The clamp with a 6in bar was used to apply torque to the handles as shown in

the Figure 4-10. Two tests were performed hanging a mass of 0.5lb and 1lb every inch

from the base of the bar, having torques applied of [0.5, 1, 1.5, 2, 2.5, 3] lb-in and [1, 2, 3,

4, 5, 6] lb-in. This test was performed in both directions of twist to make sure the voltage

response is measured in both directions. About 30 seconds of data was acquired per

60

load applied and the average of the reading was used to get each point and construct the

calibration curve.

Figure 4-12 Calibration curve of torque sensor in left handle

Figure 4-13 Expected response from analytical model

8- 6- 4- 2- 0 2 4 6 8
0.08-

0.06-

0.04-

0.02-

0

0.02

0.04

0.06

0.08

Test 1

error Test 1

Test 2

error Test 2

Linear Fit

Left Handle

Torque Applied, [lb-in]

V
o
lt

ag
e

o
u

tp
u

t,
 [

V
]

8- 6- 4- 2- 0 2 4 6 8
0.08-

0.04-

0

0.04

0.08

Torque,[lb-in]

V
o
lt

ag
e

O
u
tp

u
t,
 [

V
]

61

Table 4-2 Summary of linear fit coefficients

 Left Handle Right Handle

Slope [mV/lb-in] 10.1 10.6

Intercept [V] 0.00036 -0.00001

R
2

0.9998 0.9995

Figure 4-14 Calibration curve of torque sensor in right handle

Observe that the measurements acquired with the Arduino have very low noise

and the sensor responds linearly (as expected) to applied torque.

The slope obtained is about three times less of what was expected from the

analytical model (Figure 4-13). The reason could be that the actual geometry is different

than the ideal model used as well as misalignments in the rosettes. Consider also that

the inner and outer radius were taken at the end of the legs, at the handle dimensions

could be different. Since the sensitivity gives a resolution of measurement of about 0.1lb-

in per bit count this mismatch from the theoretical model did not really affect negatively

the ability of the sensor to measure applied torque. The sensor has an acceptable

resolution and a maximum range of measurement that allows for bigger torques to be

8- 6- 4- 2- 0 2 4 6 8
0.08-

0.06-

0.04-

0.02-

0

0.02

0.04

0.06

0.08

Test 1

error Test 1

Test 2

error Test 2

Linear Fit

Right Handle

Torque Applied, [lb-in]

V
o

lt
ag

e
o

u
tp

u
t,

 [
V

]

62

measured. The sensor can measure up to +/- 54 lb-in (left handle) and

56 lb-in (right handle) if the voltage with no load is set at 550 mV. Still, such high applied

torques are no expected from elderly patients in a nursing home.

Effect of Axial load on Torque Measurement

There is strain that is caused by axial loads at the location where the torque

rosettes were installed. This was observed experimentally noticing torque readings when

only axial load was being applied. This effect was measured to subtract it from the final

reading of the torque sensor. Curves were obtained by performing the same procedure

as with the axial load sensor calibration. The data points do not follow a single curve

because the effect changes according to the position at which the axial load is being

applied but the correlation is still acceptable to have an accurate torque measurement.

Figure 4-15 Left handle torque sensor’s response due to axial load

y = 0.0001x2 + 0.0028x + 0.0022
R² = 0.9651

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 5 10 15

V
o

lt
ag

e
 O

u
tp

u
t

[V
]

Load [Lb]

63

Figure 4-16 Right handle torque sensor’s response due to axial load

From these figures it is noticeable that the response is not linear and it can be

approximated with a quadratic fit. These curves include various test runs with axial load

applied at different locations of the handle.

y = -0.0002x2 - 0.0012x - 0.0038
R² = 0.9352

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0 5 10 15

V
o

lt
ag

e
 O

u
tp

u
t

[V
]

Load [Lb]

64

Chapter 5

Gripping Force Measurement

FSR Sensor Review

Similarly to strain gages and other sensors, the FSR sensor experiences

changes in resistance according to the measured physical quantity, in this case force.

These changes in resistance are translated into an output voltage that then is correlated

to the physical quantity in question.

Figure 5-1 ForceSensitive Resistor used to measure gripping force [20]

 Because the change in resistance with applied force in the FSR sensor is large,

a Wheatstone bridge is not used to translate this change in resistance to voltage, as it is

used with strain gages. With strain gages, the resistance is maintained within a value and

changes slightly with applied loads, reason why a bridge is needed to capture this sight

change in resistance. The FSR sensor has an infinite resistance when no load in being

applied (open circuit) and with force applied the resistance reduces progressively until it

is very small. The figure below shows the non-linear change of resistance with applied

force.

65

Figure 5-2 FSR Resistance vs. Force curve [20]

The FSR sensor is fairly low cost and easy to use and install but they are rarely

accurate [20]. Definitively not even close to the accuracy of Strain gages, but for the

purpose of this measurement its accuracy is enough. Ranges of responses are expected

more than an exact force measurement.

The FSR sensor has the specifications shown below,

Table 5-1 FSR sensor technical specifications [20]

Diameter [in] 0.5

Resistance Range [Ω] Infinite (no force) to 200 Ω max force

Force Range [lb] 0 to 20 lb applied over 0.125 in
2
 of surface area

Power Supply Less than 1 mA od current

66

Circuit

The FSR sensors are very easy to install and use. The easiest way to measure

force is to connect one end to Power and the other to a pull down resistor to ground as

shown below [20]. This basically makes the sensor act as a voltage valve. When there is

no force applied the valve is closed and no voltage output is observed, when the FSR is

pushed the valve is open and voltage is felt at the analog input. In Figure 5-3 the 5 V

supply is used, so the range of voltage will be between 0 and 5 V. In the Adafruit

reference given it is possible to find a tutorial to complete the acquisition with an Arduino

Board.

Figure 5-3 FSR Adafruit installation tutorial for Arduino [20]

Because the reference voltage for the A/D converter in this system has been set

for the axial load and torque measurements to 1.1 V, the range of voltage output from the

FSR sensor has to be reduced from 5 V to 1.1 V. The overall recommended circuit in

Adafruit was slightly modified and a voltage divider circuit was implemented for this

purpose, the schematic and components used are shown in Figure 5-4.

67

(a)

(b)

Figure 5-4 FSR circuit schematic (a) - Fabricated Circuit (b)

The values of the resistors used in the schematic shown in Figure 5-4 are 1 kΩ

for R2, 11.3 kΩ for R3, 3.9 kΩ for R4.

Calibration

After the circuit was made and the voltage response was observed in the wanted

voltage range a calibration curve was obtained. The voltage output was observed using a

multimeter.

Figure 5-5 Block diagram of Calibration setup

Known weights where applied to the 0.125 in2 sensing area as shown in the

experimental setup picture Figure 5-6.

The voltage response found from the sensor is logarithmic having a maximum

voltage of about 1 V when 22 lb are being applied. The correlation found has good R
2

values although it was not possible to fit all of the points with only one function. The data

was subdivided in 3 sub-sections in order to fit better the functions to the data. Figure 5-7

shows the data and calibration curves obtained.

Voltage divider

68

After the calibration was performed the sensors were installed on the handle.

One sensor on the inside of every handle was installed. The measuring area of the FSR

was set at the handle curvature where the hand lays, same point where the axial load is

expected to be applied.

(a) (b)

Figure 5-6 (a) Calibration setup showing FSR and alignment beams &

 (b) setup while force is applied to the FSR sensing area.

Figure 5-7 FSR Calibration curves

y = 0.1878ln(x) + 0.4316
R² = 0.9918

y = 0.1243ln(x) + 0.6012
R² = 0.9968

y = 0.1623ln(x) + 0.5068
R² = 0.991

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2 4 6 8 10 12 14 16 18 20 22 24

V
o

lt
a

g
e

,
[V

]

Force, [Lb]

69

Chapter 6

IMU Accelerometer & Gyroscope

Additionally to the axial load, torque and gripping force measurements, it is

needed to know the inclination and orientation of the walker during its use. It is also

required to know the velocity at which the patient is moving. For this purpose

accelerometers and gyroscopes are used. They were installed both in the walker and

also in a separate unit that they patient would wear. An off the shelve IMU 6-DOF

(Figure 6-1) board was used containing both an accelerometer (ADXL345) and a

gyroscope (ITG3200). This section will briefly describe these sensors, how to connect

them to an Arduino board to obtain measurements and sample obtained measurements.

IMU 6DOF Board Review

The Sparkfun 6 DOF IMU digital combo board includes an accelerometer

(ADXL345) and gyroscope (ITG3200). The sensors communicate over I2C and pins are

available to easily connect them to an Arduino Board or any board that permits I2C

communication.

Figure 6-1 6DOF IMU Board [12]

 The ADXL345 accelerometer is a small, thin, low power, 3-axis accelerometer

with high resolution (13-bit) measurement at up to +/- 16g [6]. It measures the static

acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration

resulting from motion or shock.

70

The ITG-3200 gyro is a single-chip, digital-output, 3-axis gyro. It features

enhanced bias and sensitivity temperature stability, reducing the need for user calibration

[12].

One of the main advantages of using this board is the ease of installation and

data acquisition and available public domain information provided by Sparkfun and

various Arduino enthusiasts. Much of the efforts needed to interpret the sensor’s readings

were helped by available Arduino libraries with supporting documentation [22] [12].

Installation

Sparkfun provides in very useful sources to install and use this IMU board with

Arduino Boards. They provide the Arduino code necessary to get the data from the

sensors and also a code to visualize it [12]. This was done initially to make sure that the

board was working but the code was modified in order to include the readings from the

analog inputs and send the data via serial connection to be read by the LabVIEW user

interface.

Figure 6-2 from the mentioned tutorial [12] shows the I2C connection between

the IMU board and the Arduino board. The SDA and SCL ports are the analog ports 4

and 5 in the Arduino UNO and in the Arduino Mega the SDA and SCL ports are the digital

ports 20 and 21 respectively.

The Arduino code used to acquire the measurements is in the appendix and the

LabVIEW code to read the data sent by the Arduino board to the PC is explained in

Chapter 7. A very detail explanation of the models implemented in the libraries used in

the Arduino code can be found in [22]. It was not necessary to perform any calibration.

The sensors measured immediately acceleration and orientation and it was easily

verifiable. Gravity was able to be observed as well as the orientation. This board however

is not accurate to measure yaw. The Yaw reading is decent initially but with time it

71

increases even when the board maintains its same orientation. So the board can only

measure effectively 5 degrees of freedom.

(a) (b)

Figure 6-2 Connection of IMU card to Arduino (UNO) board [12], and block diagram of

connection to PC

Figure 6-3 Front Panel of VI to acquiring data from IMU and plotting accelerometer data

72

Figure 6-3 shows a screen shot once the IMU board was successfully sending

data through the Arduino board to LabVIEW. The data shown is random data with the

IMU placed on a table; it does not represent data acquired during the usage of the

walker.

73

Chapter 7

Data Acquisition, Wireless Transmission and User Interface

Hardware Overview

Arduino MEGA as DAQ

Arduino is an open-source project founded by Massimo Banzi, David Cuartielles,

Tom Igoe, Gianluca Martino, and David Mellis. It was built with the effort to have in the

market an open-source electronic platform with easy-to-use hardware and software

intended for anyone making interactive projects [10]. Arduino boards are able to read

inputs (sensors, switches, digital commands, etc.) and turn them into outputs (activating a

motor, turning on an LED, sending information, etc.). Figure 7-1 shows the top view of the

Arduino Mega where all the inputs and outputs are displayed. The microcontrollers

serves as the brain of the board and it is programmed using the Arduino programming

language (based on Wiring), and the Arduino Software (IDE), based on Processing.

Figure 7-1 Arduino MEGA 2560 [10]

Arduino presents many advantages when building projects like the Smart Walker.

Because of its language, anyone with basic knowledge of C++ can easily program the

74

board and link the interactions between sensors and user interface. Additionally, it has

been widely used for thousands of open source projects, reason why there are many

sources to look up to for similar implementations and solutions to encountered problems.

Also there is a variety of sensors and circuits specifically designed to interact with

Arduino (some of them used in the Smart Walker), and many open-source user-tested

libraries that lessens the necessity to fabricate and write needed equipment and code

from scratch. Compared to other microcontroller platforms Arduino boards are relatively

inexpensive and its software (IDE) runs on all mayor operating systems (Windows,

Macintosh OSX and Linux).

Arguably the most commonly used board among all the Arduino Products is the

Arduino UNO. This board is very versatile and was the first in a series of USB Arduino

boards. It is based on the ATmega328P microcontroller. Provides the user with 14 digital

input/output pins, 6 analog inputs, a 16MHz quartz crystal, a USB connection, a power

jack, a ICSP header and a reset button. This board allows for numerous possibilities and

applications. Unfortunately, for the Smart Walker, the amount of analog inputs on the

Arduino UNO was not enough. Including the 4 (four) channels for axial load

measurement, 2 (two) for torque measurement and 2 (two) for gripping force a total of 8

analog inputs are needed in order to perform the reading with only one board. For that

reason the Arduino MEGA 2560 was used.

The Arduino MEGA is based on the ATmega2560 microcontroller, and is

designed for more complex projects (MEGA) [10]. It has 54 digital input/output pins, 16

analog inputs and a larger flash memory than the UNO.

Table 7-1shows all de major technical specifications of the Arduino MEGA board.

The MEGA board is the one recommended for 3D printers and robotics projects. For the

75

Smart Walker it serves mainly for data acquisition. In this regard the MEGA board has

one extra benefit on top of the Arduino UNO regarding easily achievable resolution.

Table 7-1 Arduino MEGA 2560 Technical Specifications [10]

Microcontroller ATmega2560

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limit) 6-20V

Digital I/O Pins 54 (of which 15 provide PWM output)

Analog Input Pins 16

DC Current per I/O Pin 20 mA

DC Current for 3.3V Pin 50 mA

Flash Memory
256 KB of which 8 KB used by
boot- loader

SRAM 8 KB

EEPROM 4 KB

Clock Speed 16 MHz

Length 101.52 mm

Width 53.3 mm

http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf

76

Resolution

The overall achievable resolution of an analog reading in the Arduino has the

possibility to be modified or maximized depending on the application. As mentioned in

Chapter 3 in the Analog to Digital Conversion section, the resolution depends on the

quantization of a specific sampled voltage range. The Arduino MEGA has a 10-bit A2D

converter and its default reference voltage is 5 V. This results in a resolution of,

.

This resolution can be maximized if the high end of the measured voltage range

is known. The Arduino MEGA has the possibility to configure the reference voltage by

code to three different values 5 V (default), 2.56 V, and 1.1 V. Also, Arduino UNO and

MEGA give the possibility to configure the reference voltage externally if the wanted

reference voltage is applied to the AREF pin (in the range 0 to 5 V only). Because the

reference voltage has to be the same for all inputs, the Smart Walker the sensors were

designed to output a maximum voltage of ~1 V and the reference voltage set to 1.1 V.

Resulting in a resolution of,

.

Sampling Rate

Both Arduino MEGA and UNO have one 10-bit A2D converter that samples the

analog signal of all of their analog inputs. Although the clock speed is 16 MHz the highest

sampling rate achievable when only reading one analog input is about 1 kHz for a

number of reasons. First, some performance sacrificed in order to have the ease of the

Arduino programming language. Since it is only one ―brain‖ reading the analog signal,

processing the data and sending it to the serial port, the amount of operations and speed

at which this information is sent is directly related to the overall sampling rate of the

system. The biggest baud rate possible is 115200 bits/sec. In order to achieve the

10

5
4.89

2 1

V
mV

-

10

1.1
1.075

2 1

V
mV

-

77

maximum possible sampling rate with this system, the program and internal operations

have to be very mindfully considered. When sampling 8 analog inputs instead of one, the

overall sampling rate is shared among these inputs because there is only one A2D

converter. So in reality the analog channels are read one after the next, not all at the

same time.

In the Arduino code written for the Smart Walker the analog inputs are read one

after the next and then appended in one big string with the reading from the IMU card.

Once the string is formed, the array of characters is sent through the serial port. A more

detailed explanation can be seen in the Arduino Code section.

Including all of the mentioned factors an overall sampling rate of about 40 Hz per

channel was achieved. Again, the effect of the inputs being read progressively and not at

the same time is neglected. The timestamp taken as the time of the reading is the instant

when the complete string of readings is read by the LabVIEW program. In the stored data

the readings from all sensors are recorded at the same time. It is important to mention as

well that the time interval between readings is not fixed but varies from reading to reading

and on average they result in an overall sampling rate of about 40 Hz. For this

application at the sampling rate achieved, these conditions and assumptions are

acceptable but if the application requires a meticulous determination of the time stamps

and equally spaced time intervals from reading to reading, the Arduino MEGA would not

be the best option.

XBee
®
 802.15.4 Antennas for Wireless Data Transmission

Xbee modules are off-the-shelve embedded solutions providing wireless end-

point connectivity to devices [26]. They use IEEE 802.15.4 networking protocol for fast

peer-to-peer networking. These modules are ideal for low-power, low-cost applications

[24].

78

Table 7-2 shows the main technical specifications of the XBee® 802.15.4

antennas and Figure 7-2 shows a picture of the antennas.

Table 7-2 XBee® 802.15.4 Technical Specifications [27]

Indoor/Urban Range Up to 100.ft (30m.)

Outdoor Range Up to 300 ft. (100m.)

Transmit Power Output
(software selectable)

1mW (0 dBm)

RF Data Rate 250,000 bps

Serial Interface Data Rate
(software selectable)

1200 - 115200 bps (non-standard
baud rates also supported)

Receiver Sensitivity -92 dBm (1% packet error rate)

Operating Frequency ISM 2.4 GHz

Dimensions 0.960‖ x 1.087‖ (2.438cm x 2.761cm)

Addressing Options PAN ID, Channel and Addresses

Figure 7-2 XBee

®
 802.15.4 antennas [26]

Xbee modules allow reliable and simple communication between

microcontrollers, computers, or anything with serial ports. They are ideal for Arduino

projects. Arduino shields are readily available to implement wireless communication

using Xbee antennas. Sparkfun electronics provides a series of products to ease the use

and implementation of Xbee antennas [15], many of them used in the Smart Walker.

Figure 7-3 toFigure 7-5 show the Arduino shield to connect the antenna to the Arduino

79

board an explorer dongle to connect the antenna to the PC and the Arduino/Shield/Xbee

assembly.

For the Smart Walker, one antenna is needed connected to the Arduino board

and one connected to the PC where the data is being sent to. SparkFun Xbee shield was

used to connect one Xbee antenna to the Arduino and SparkFun Xbee Explorer Dongle

to connect the other connected Xbee antenna to the serial port of the PC.

Figure 7-3 SparkFun Xbee shield [15]

Figure 7-4 Xbee Antenna + SparkFun

Shield + Arduino board assembly [15]

Figure 7-5 SparkFun Xbee Explorer

Dongle [15]

80

User Interface & LabVIEW/Arduino Connectivity

Arduino Code

A detailed explanation of the Arduino code written for the Smart Walker is shown

below in Table 7-3. The code was written in order to read the analog signals from the

axial load, torque and pressure sensors as well as the readings from the 6DOF IMU

board and wireless transmission with the Xbee antenna. Tutorials for connectivity with the

6DOF IMU and Xbee antenna can be found in [12] and [15]. The full code can be found in

Appendix B.

It is important to mention that he Baud Rate has to match in the Arduino code,

Xbee antenna and LabVIEW code (user interface). Any mismatch would result in

communication problems between XBee antennas.

Table 7-3 Arduino Code for Smart Walker

(Analog read, IMU card read, Xbee connectivity)

Code Section Explanation

#include <FreeSixIMU.h>

//FreeSixIMU library was made
from the code FreeIMU
developed by the people at
Versano under GPL License
specifically to accommodate to
the needs of the 6DOF IMU
card used in the Smart Walker
[12] since it was created for a
9DOF chip originally. Their
models were based on the
positioning algorithms found in
[22].

#include <FIMU_ADXL345.h>

//This library is for the 3-axis
high resolution accelerometer
chip used in the 6DOF IMU
Card.

#include <FIMU_ITG3200.h>
.

//This library is for the 3-axis
high resolution gyroscope chip
used in the 6DOF IMU Card

81

Table 7-3—Continued

#include "CommunicationUtils.h"

//This library is needed to
communicate with the 6DOF
IMU Card

#include <Wire.h>

This library allows to
communicate with I2C / TWI
devices (6DOF IMU Card
communicates through I2C with
Arduino)

#include <SoftwareSerial.h>

//This library is for the serial
communication between the
Arduino board and the Xbee
antenna [13].

//Variables for IMU reading
float Acc[4];
float gyr[4];

//Initially the readings from the
IMU board are taken as floats.
To reduce the size of each
reading the float readings will
be transformed into integers in
order to get a 4 integer long
value.

int Acci[4];
int Acc_abs[4];
int Gyi[4];
int Gy_abs[4];

//Variables to create the
truncated readings mentioned
before.

String Accs[4];
String Gys[4];
String A_str_tot, G_str_tot;

//Once the reading is of the
desired length as an integer,
the IMU readings are
transformed to a string in order
to concatenate them with the
analog inputs and have a final
string output with all the
readings.

FreeSixIMU my3IMU = FreeSixIMU();

//Set IMU object.

SoftwareSerial Xbee(2,3);

//Setup digital port to print to
Xbee. The ports are chosen
depending on the ports in the
Arduino board.

82

Table 7-3—Continued

//USB Serial Connection
Serial.begin(57600);
// the setup routine runs once when you press reset:
void setup() {
 //Xbee Serial Connection
 XBee.begin(57600);

// Initialize serial communication
at 57600 bits per second for
both through the USB port of
the Arduino and Serial
connection to Xbee. During
regular operations of the walker
the USB connection will not be
used, but for debugging
purposes the line of code is
kept. This is not the fastest
Baud Rate possible by the
Xbee or Arduino (115200
bits/second) but it was noticed
that when using the fastest
Baud Rate the final string
arrived at the Xbee with some
errors and although the overall
speed of the system was faster,
the fidelity of the readings was
not perfect.

 analogReference(INTERNAL1V1);

//Reference Voltage for Analog
reading is set to 1.1V. This is
an option that only Arduino
MEGA provides. It could be set
to 2.56V and 5V through the
code, or to any desired voltage
plugged in the Vref pin. [14]

 Wire.begin();

//Initiate I2C connections (IMU
Board)

 delay(5);
 my3IMU.init();

 delay(5);
}

//Initiate connection with the
IMU board

int analog[8];
float Vf[8];
int Vi[8];
String Vs[8];

//Define variables for analog
readings (Axial load, Torque
and FSR). Similar to the IMU
readings the float values are
converted into integers and
then into strings.

83

Table 7-3—Continued

// the loop routine runs over and over again forever:
void loop() {
 String V_tot_string = "";

//Placeholder for the final String
sent through the Xbee Antenna.

 for (int x = 0; x<8 ; x++){
 // read the input on analog pin 0-7:
 analog[x] = analogRead(x);

//Readings are bits from 0 to
1023 (integers).

 // Convert to Float
 Vf[x] = analog[x] * (1.1 / 1023.0)*1000;

//(1.1/1023) conversion factor is
used to convert the reading
from bits to Volts and the 1000
multiplier to convert to mV. This
value is a float.

 //Convert back to integer
 Vi[x] = int(Vf[x]);

//Since the float was in
millivolts. When is converted to
an integer all the decimal
values are dropped. As it has
been mentioned before, the
resolution of the readings is a
little over 1mV which makes
this readings more than
adequate.

 //Convert to String
 if (Vi[x]>=256){Vs[x] = String(Vi[x],HEX);};
 if (Vi[x]<256){Vs[x] = "0" + String(Vi[x],HEX);};
 if (Vi[x]<16){Vs[x] = "00" + String(Vi[x],HEX);};

//Integer values are converted
to hexadecimal strings in order
to reduce the length of the total
string. As it can be seen in
Table 7-4 decimal values of
from 256 to 4095 can be
represented with only three
characters in the hexadecimal
system. In this case the length
has been reduced by one
character per reading. It might
seem a minor gain but including
all the analog channels used,
the overall reduction in the
output string (8 characters) and
thus the increase is overall
speed is noticeable.
To maintain a constant length
of the output string no matter
the magnitude of the reading,
zeroes are appended at the
beginning of the reading
according its magnitude. Every
channel’s output string is 3
characters long no matter what
voltage is read.

84

Table 7-3—Continued

 //Create full string from analog inputs
 V_tot_string = V_tot_string + Vs[x];
 }

//The full string format of the
readings from the Analog
voltage readings are shown in
Table 7-5 Table 7-6
. The string has a total of 24
characters, 3 per channel.

 A_str_tot = "";
 G_str_tot = "";

//Placeholder for accelerometer
and gyroscope readings

 //Obtain values from IMU
 my3IMU.getValues(Acc);
 my3IMU.getYawPitchRoll(gyr);
 // Normalize Acceleration readings
 for(int x = 0; x<4 ; x++){
 Acci[x] = int(Acc[x]*1000);

//Accelerometer readings
obtained are in g’s and are
converted to mili-g’s.

 }
 //Get absolute values to avoid continuous
unnecessary conversions when transforming to
strings
 for(int x = 0; x<4 ; x++){
 Acc_abs[x] = abs(Acci[x]);
 Gy_abs[x] = abs(gyr[x]);
 }
 //convert IMU readings to strings (4 characters)
 for(int x = 0; x<4 ; x++){
 if (Acci[x]<0){
 if (Acc_abs[x] >= 256){Accs[x] = "-" +
String(Acc_abs[x],HEX);};
 if (Acc_abs[x] < 256){Accs[x] = "-0" +
String(Acc_abs[x],HEX);};
 if (Acc_abs[x] < 16){Accs[x] = "-00" +
String(Acc_abs[x],HEX);};
 }
 if (Acci[x]>=0){
 if (Acc_abs[x] >= 256){Accs[x] = "0" +
String(Acc_abs[x],HEX);};
 if (Acc_abs[x] < 256){Accs[x] = "00" +
String(Acc_abs[x],HEX);};
 if (Acc_abs[x] < 16){Accs[x] = "000" +
String(Acc_abs[x],HEX);};
 }
if (x==0){
 if (gyr[x]<0){
 if (Gy_abs[x] >= 256){Gys[x] = "-" +
String(Gy_abs[x],HEX);};
 if (Gy_abs[x] < 256){Gys[x] = "-0" +
String(Gy_abs[x],HEX);};

//In the case of the IMU, since
the readings can be negative or
positive notice that the
conversion is a little less
simple. Also, one extra
character is always present to
be able to know the sign of the
reading. If it is a positive
reading then instead of a
negative sign, that place would
be replaced by a zero. Again,
the purpose is to maintain a
constant length of output string
to reduce fluctuations in overall
sampling rate.

85

Table 7-3—Continued
 if (Gy_abs[x] < 16){Gys[x] = "-00" +
String(Gy_abs[x],HEX);};
 }
 if (gyr[x]>=0){
 if (Gy_abs[x] >= 256){Gys[x] = "-" +
String(Gy_abs[x],HEX);};
 if (Gy_abs[x] < 256){Gys[x] = "00" +
String(Gy_abs[x],HEX);};
 if (Gy_abs[x] < 16){Gys[x] = "000" +
String(Gy_abs[x],HEX);};
 }
 }
 if (x!=0){
 if (gyr[x]<0){
 if (Gy_abs[x] < 256){Gys[x] = "-" +
String(Gy_abs[x],HEX);};
 if (Gy_abs[x] < 16){Gys[x] = "-0" +
String(Gy_abs[x],HEX);};
 }
 if (gyr[x]>=0){
 if (Gy_abs[x] < 256){Gys[x] = "0" +
String(Gy_abs[x],HEX);};
 if (Gy_abs[x] < 16){Gys[x] = "00" +
String(Gy_abs[x],HEX);};
 }
 }
 }

 for(int i =0; i<3; i++){
 A_str_tot = A_str_tot + Accs[i];
 G_str_tot = G_str_tot + Gys[i];

//Table 7-6 shows the format of
the strings with the readings
from the accelerometer and
gyroscope in the 6DOF IMU
Card.

 String Tot_string = V_tot_string + A_str_tot +
G_str_tot;

//Complete output string with
the format as shown in Table
7-5 and Table 7-6 is created by
concatenating the analog
voltage in string to the one of
the IMU board readings (
//The complete string to be sent
to the LabVIEW user interface
would have the format shown in
the Table below.

86

Table 7-3—Continued

 //Print String to Arduino USB port
 //Serial.println(Tot_string);

//notice it is commented out;
this line was used when the
code was being tested without
the Xbee through the USB port.

 //Print to Xbee
 XBee.println(Tot_string);

//Print string to the serial
connection to the Xbee antenna

delay(16);
 }
}

//This delay is an effort to
maintain the sampling rate of
the system consistent. The
sampling rate without the delay
function is about 40Hz. But
even using the delay function
(which input is in milliseconds)
the overall sampling rate still
fluctuates.

Table 7-4 Comparison between Decimal and Hexadecimal Strings

of Characters
in HEX String

DEC HEX

1 1 1

2 16 10

3 256 100

4 4096 1000

5 65536 10000

6 1048576 100000

Table 7-5 Analog Voltage output string format & reading example

Axial Load Torque FSR

A0 A1 A2 A3 A4 A5 A6 A7

2 8 3 1 2 D 3 0 B 2 3 C 3 A B 1 5 C 3 8 4 2 7 3

Table 7-6 Output string format & reading example of 6DOF IMU card readings

Accelerometer Gyroscope

X Y Z Pitch Roll Yaw

- A 1 0 0 4 3 8 - 1 B 2 0 1 C 1 0 2 F 4 - 3 7 E

87

User Interface

The user interface was created to monitor the readings of the walker and

visualize them graphically and numerically. The main screen includes two controls to

define the VISA inputs. One is to define the input from the Walker’s Arduino and the other

from the Belt’s Arduino.

The interface, as shown in Figure 7-6 and Figure 7-7 has a main block with an

―Initialize‖ tab and a ―DAQ‖ tab. The first one serves mainly to visualize the initial voltage

read from the axial load and torque sensors and use them as reference voltages for when

the calibration curves are applied to the signals during the DAQ portion. Also, this tab is

where the file path of the .txt file where the data is to be stored is defined. After the

reference voltages are set the user must press the ―continue‖ button and go to the ―DAQ‖

tab where all the physical measurements are visualized. After the ―continue‖ button is

pressed the system starts storing the read data.

In the right side of the screen, two waveform charts have been set to show the

readings from the accelerometers in the walker’s and belt’s IMU. Also, numerical

indicators were placed to show not only the readings from the accelerometer but also the

gyroscope. The ―STOP‖ button in the upper right corner of the screen stops the data

acquisition at any point. The code was made making sure that if the data acquisition

process is broken inappropriately, the data until that point is still stored in the .txt file

previously defined.

Initialization Tab

This tab, as mentioned above, serves two main purposes, to have initial readings

of the sensors and to define the file path where the data is to be stored.

The initial readings are necessary in order to verify that readings are being taken

from all sensors prior to start the data storage and if the voltage readings from the

88

sensors that use Wheatstone bridges (axial load and torque sensors) are not within the

voltage range set for the Arduino (in this case [0-1100 mV]), it allows the user to adjust

the zeroing potentiometers to bring the reference voltage within the proper voltage range.

The recommended reference voltage for the axial load sensors is 100 mV

because it lets us know that the minimum required voltage of the amplifier has been met,

allows some room for tension readings and gives a range of 1000 mV for compression

readings (which is the main purpose of the sensors). For the torque sensors the

reference voltage recommended is in the middle of the voltage range (550 mV) in order

to have the same range of measurement for both directions of torque applied to the

handles.

In this initial tab the user can input his/her weight to later on have a percentage of

the body weight being felt by the walker. This of course can be done with the stored data

once the measurement is taken but it is a useful indicator to have while the walker is

being used.

This Tab also allows knowing the sampling rate of each input prior to the start of

the data acquisition and lets the user to troubleshoot in case there are connectivity

problems. Another indicator that has been kept on this Tab that was of much help during

the development of the code is the ―String Reading‖ indicator. This indicator shows

exactly the string that is being read through the VISA resource. Bellow this indicator is an

array on integers created from the read string and below this indicator the voltage

readings from axial load, torque and FSR sensors.

89

Figure 7-6 Smart Walker User Interface (―Initialize‖ Tab)

Data Visualization Tab

This tab is the one where all the measured forces can be monitored through bar

and numerical indicators as well as waveform charts for the accelerometer readings.

In this screen the time of measurement (in seconds), the average sampling rate

of each channel and the total number of samples are indicated.

The sensor indicators are organized according to the location of the sensors in

the walker. The right and left side of the UI include the axial load readings in a numerical

indicator from the strain gage on each leg (see burgundy numerical indicators in Figure

7-7). Moreover, the axial load readings from each side are averaged and shown in a bar

indicator to display the average axial load applied on each side of the walker (see blue

bar indicators in Figure 7-7). Also, it is shown the percentage of the total force applied on

each side of the walker. Furthermore, these two averages are then added to display the

overall weight of the user on the walker (see the red bar indicator in the middle of the

block and the numerical indicator below the bar indicator). Finally, regarding the axial

load measurement the percentage of the body weight being felt by the walker is shown in

a numerical indicator as well.

90

Both, gripping force and torque applied on each handle are shown in bar

indicators as well (see green and yellow indicators respectively). The torque indicators

show positive readings when the torque is applied to the right side of the user and

negative readings when the torque is applied to the opposite direction.

Waveform charts and numerical indicators are shown to indicate readings from

the IMU in the walker and in the belt worn by the user. Accelerometer readings in X, Y

and Z directions are shown where Z is normal to the floor, X in the forward direction and

Y to the right side of the walker according to the right-hand rule. Pitch, yaw and roll

readings from the gyroscope are shown only as numerical indicators pitch as rotation of Y

axis, yaw rotation of the Z axis and roll of the X axis.

When the measurement is done the stop button is to be pressed to stop reading

and storing data from the VISA ports.

Figure 7-7 Smart Walker User Interface (―DAQ‖ Tab)

91

LabVIEW Code

This section will explain the LabVIEW code to read, interpret, show and store the

data sent by the Arduino through the VISA ports. The code consists of two major sections

in a flat sequence structure, as shown in the previous section. The first sequence, linked

to the ―initialize‖ serves the purposes explained previously and shown as section ―A‖ in

Figure 7-8. The second sequence is linked to the ―DAQ‖ tab and IMU indicators in the

right side of the screen shown as sections ―B‖ and ―C‖ in Figure 7-8. Section ―B‖ contains

the code for the walker sensors and section ―C‖ contains the one for the Belt IMU.

The purpose of this section is to show the LabVIEW code developed to create

this user interface and show each one of the written subVIs. Each subVI will be explained

in individual sections and will contain subsections with internal subVIs. Various subVIs

are repeated throughout the code. The first appearance will be explained and following

appearances will refer to the section where it first appeared. If a subVI is a variation of a

previously explained subVI, it will be described superficially and will refer the reader to

the previously explained subVI.

The Arduino board is programmed to read each sensor connected to it and send

read values through the Xbee antenna continuously. The LabVIEW code obtains these

readings sent to the Xbee antenna connected to the USB port of the computer,

separates, interprets, shows and records these readings.

Before starting, the user is asked to determine the USB ports (VISA resource

name) where the Xbee antennas for the Walker and Belt readings are to be taken. The

highest baud rate with stable readings is 57600 bits/sec and has been set both in the

Arduino and LabVIEW codes. The initialize screen allows the user to set the reference

voltage for the strain gage sensors, test that the other voltages are being read and select

the file path were the data is to be stored. After the voltages are in the proper range, the

92

user weight has been set and the file path the ―Continue‖ button is pressed to start the

data acquisition and storage.

Figure 7-8 Main Smart Walker LabVIEW block diagram

Once the setup is done in section A, Section B & C (second part of the flat

sequence) reads the data, shows it in the user interface and stores it in the file set in

Section A. When the data acquisition is finished, the STOP button is to be pressed to end

data acquisition.

A - Calibration

Reference Voltage,

User weight & File

path

B – Data Acquisition & Storage

from

Walker sensors

C – Data Acquisition & Storage

from

Belt Sensors (Time Stamps)

93

A – Calibration Reference Voltage

Figure 7-9 Smart Walker main code (A: Calibration Reference Voltage)

The following main tasks are performed in this section of the code shown in

Figure 7-9:

94

1. VISA serial ports are configured.

a. User interface control allows user to set VISA resource names.

b. Baud rate is set to 57600 bit/sec.

2. Walker VISA serial port configuration connects to Initial VISA Read SubVI.

a. Outputs total average sampling rate

b. Time (in seconds)

c. Total samples acquired

d. Readings from the Arduino board (both, raw string being sent to serial

port and array if integers after hexadecimal to decimal conversion).

i. The appended array of integers is separated in individual

indicators to show individual voltage readings for each sensor.

3. User weight is input (in pounds).

4. File path where data is to be stored is set.

a. The title to the text file and to the arrays for the readings of each sensor

is created.

5. After ―Continue‖ button is pressed the following is sent to the next flat sequence

event:

a. Voltage readings are sent to be the reference voltages in the calibration

curves

b. File path where created .txt file is located

c. VISA port configuration cables

95

Initial Visa read

Figure 7-10 Initial VISA read SubVI (Initialize)

Initial Visa Read subVI shown in Figure 7-10 is the main component to acquire

and monitor analog voltage readings using the Arduino Board and LabVIEW. In this

subVI all the component to read data through the VISA ports are present as well as other

additions to monitor performance and assist for debugging purposes.

The initial Visa Read Sub VI is a while loop that on each iteration obtains the

readings at the VISA port, interprets the hexadecimal characters, transforms them to

integers and indicates the values. Moreover it includes indicators for number of samples

taken, total average sampling rate and time elapsed since the start of the data acquisition

process. The ―while loop‖ is forced to wait 27 milliseconds (in this case) as an attempt to

make sampling rate constant. The maximum sampling rate per channel was close to

40Hz when this code was developed and various ―wait times‖ close to this sampling

frequency were tried until the sampling rate behaved more stable; in this case the

resulting sampling rate was close to 37Hz.

96

Visa Read

Figure 7-11 Visa Read SubVI

The Visa Read Sub VI, shown in Figure 7-11, shown above is the responsible of

allowing reading the string coming from the Arduino board through the VISA resource

port continuously and reliably. A main necessity that was added to this subVI was the

―Wait for Bytes‖ subVI which solved the lack of fluidity of data. Before this subVI was

added the data acquisition would occur for some time and crash eventually when no data

was encountered at the VISA port.

The main components of the VISA read function block are present and a control

for the number of bytes to read was added to allow for changes in case the string to be

read would change.

97

Wait for bytes

Figure 7-12 Wait for Bytes subVI

The Wait for bytes sub VI shown in Figure 7-12 allows the VISA Read subVI to –

as the name indicates – wait until enough data is available to be shown and then proceed

to read it. Prior to the addition of this subVI the program would crash every time not

enough data was available to be read and the continuous data acquisition was

impossible. The number of bytes expected to be read have to be indicated. The Time Out

(time at which the process would stop if not enough data is encountered) period was

defined as 100 ms, large enough compared to the looping period of the system (27 ms).

98

String to array of Integers

Figure 7-13 String to Array of Integers SubVI

As the name describes, the String to Array subVI shown in Figure 7-13 takes the

original string sent by the Arduino, slices it according to the length of each sensor

reading, converts the hexadecimal string to decimal integer and appends the integers in

one big array of integers. In other word, this subVI is the interpreter from hexadecimal

Arduino output to usable and visual decimal integers.

99

File Path

Figure 7-14 File Path and Data file title creation subVI

The file path subVI shown in Figure 7-14 creates the title of the text file where the

data is to be stored. This title consists of the date and time of the beginning of the

measurement and the weight of the user. Additionally it includes the title for each one of

the columns of data stored. Each column represents one of the values indicated in the

user interface.

100

Extract Integers from array (Axial Load)

Figure 7-15 Extract Integers from array of integers (Axial load)

The ―Extract Integers from array‖ subVI, shown in Figure 7-15, is a simple one

with the only purpose of extracting the individual integer values needed from the

appended array of integers created by ―String to array of Integers‖ subVI. Here the one

for axial load readings is shown, but throughout the code variations of this subVI are used

for other sensors.

Extract Integers from Array (Torque & FSR)

Figure 7-16 Extract Integers from array of Integers (Torque and FSR)

The Extract Integers from Array SubVI shown in Figure 7-16 is almost identical to

the one shown in Figure 7-15 except that at other position of the array of integers.

101

B – Data Acquisition from Walker sensors & overall Data Storage

Figure 7-17 Smart Walker main code

(B – Data Acquisition from Walker sensors & overall Data Storage)

The code shown in Figure 7-17 flows as follows:

1. Reference voltage from section A of the code is used to apply calibration

curves to voltage readings and show axial load, torque and gripping

force measurements. The physical measurements shown are:

a. Axial Load:

i. Felt by the strain gage of each leg (numerical indicator)

ii. Axial load felt by each side of the walker (Average of

front/back on each side)

iii. Overall applied to the walker and what percentage of

body weight it represents.

b. Torque (both handles of the walker - numerical and bar

indicators)

102

c. Gripping force measurements (Both handles of the walker –

numerical and bar indicators)

d. IMU readings in waveform chart and numerical indicators

including

i. Acceleration in X,Y and Z axis

ii. Pitch, roll, yaw

2. Data is stored in the file created in part A

a. Axial Load (each leg, average of each side, overall axial load,

overall weight on the walker)

b. Torque from each side

c. Gripping force from each side

d. IMU from walker and belt

Torque and Grip VISA to Indicators

Figure 7-18 Torque and FSR VISA readings to UI Indicators subVI

The Torque and Grip VISA to Indicators subVI shown in Figure 7-18 serves as a

connector to extract the relevant integers from the reference voltage array of integers and

readings and use them to apply the calibration curves developed in Chapter 4 and

Chapter 5.

103

Torque and FSR calibration curves

Figure 7-19 Torque and FSR calibration curves subVI

The Torque and FSR calibration curves subVI shown in Figure 7-19 applies the

linear calibration curve to the torque voltage readings (Upper left corner) and the

exponential calibration curve for the FSR sensors. The FSR calibration curve, in order to

obtain a closer fit to the experimental results, was broken down to three main regions (as

shown is Chapter 5).

Axial Load VISA to Indicators

Figure 7-20 Axial load and VISA readings to UI Indicators subVI

104

Similarly to the section describing the torque and gripping force indicators before,

the Axial Load VISA to Indicators section, shown in Figure 7-20 uses the reference

voltage values and the continuous readings, applies the calibration curves developed in

section Chapter 3 and indicates the physical values of the axial load applied to each

strain gage. Moreover, additional calculations are performed to show the average axial

load applied to each side, the overall axial load applied to the walker, percentage of total

axial load applied to each side and percentage of user weight on the walker.

Axial load Calibration Curves

Figure 7-21 Axial Load Calibration Curves subVI

The Axial load Calibration Curves subVI shown in Figure 7-21 applies the

calibration curves found in Chapter 3 to the samples sent by the Arduino.

105

Operations for User Interface Indicators

Figure 7-22 Average and percentage calculations for Axial load UI Indicators

The Operations for User Interface Indicators subVI shown in Figure 7-22 includes

the average and percentage calculations needed for all the values going to the axial load

indicators. Including:

- Average of left and right side axial load

- Overall axial load applied (addition of the left and right side averages)

- % of load on each side of the walker

- % of body weight applied to the walker

Walker IMU VISA to User Indicators

Figure 7-23 Walker IMU readings to clusters for waveform chart subVI

106

Since the IMU readings don’t need to be calibrated because the Arduino libraries

do all the work to output accelerometer and gyroscope readings, this subVI extracts the

integers from IMU readings and clusters them in order to send them to a waveform chart

as shown in Figure 7-23.

C – Data Acquisition & Storage from Belt Sensors (Time Stamps)

Figure 7-24 Smart Walker main code

(C – Data Acquisition & Storage from Belt Sensors (Time Stamps)

This section of the code is part of the data acquisition section of the two part flat

sequence. Another VISA read subVI is implemented but only to read IMU values from an

Arduino installed on the User’s belt and be able to monitor the movement of the user

simultaneously with the one of the walker.

Similarly to the Initial VISA Read subVI, this section includes the time elapsed

starting at the moment of data acquisition/storage, average sampling rate and overall

samples stored as shown in the lower left corner of Figure 7-24.

107

Belt IMU VISA to indicators

Figure 7-25 Belt Arduino VISA read & cluster to waveform charts

The Belt IMU VISA to indicators subVI shown in Figure 7-25 is a modification of

previously mentioned subVIs but specifically written for the readings coming from the

Arduino worn by the user. It essentially consists of:

1. Visa Read

2. String to integers

3. Integers to cluster

4. Cluster to waveform charts

5. Integers to data arrays to be sent to .txt file

108

Create String Array to be stored in created .txt file

Figure 7-26 String array from integers to be stored in .txt file

For simplicity the subVI shown in Figure 7-26 has been used to present the code

used to compile the readings from the sensors, convert them to strings and append them

in array of strings so they can be sent to a .txt file in an organized manner and create

columns of data. A similar subVI was used for the Walker portion in section B of the code

and looks very similar to this except that with more input and a bigger output array of

strings.

109

Data Visualization

The resulting text file resulting from the data acquisition looks like is shown in

Figure 7-27 (more columns to the right are present).

Figure 7-27 Stored data from data acquisition (.txt file)

After importing the data a table like the one below can be obtained. The table

showing first couple of samples acquired has been divided in Table 7-7 to Table 7-9 to fit

the width of the page.

First the section of the data regarding axial load measurement is shown, then

torque & gripping force sensors and finally IMU readings from Walker and user belt.

Table 7-7 Acquired data regarding Axial load measurement

Time
[sec]

Left
Back
[Lb]

Left
Front
[Lb]

Left
avg
[Lb]

% on
left
[%]

Right
Back
[Lb]

Right
front
[Lb]

Right
avg
[Lb]

% on
right
[%]

Total
load
avg
[Lb]

% W on
walker

[%]

0 -0.36 2.32 0.98 84.05 0 0.37 0.19 15.95 1.16 0.61

0.05 -1.26 3.86 1.3 49.99 0 2.6 1.3 50.01 2.6 1.37

0.1 -1.08 4.44 1.68 53.06 0 2.97 1.48 46.94 3.16 1.66

0.14 -0.9 4.63 1.86 64.63 0 2.04 1.02 35.37 2.89 1.52

0.19 -0.72 5.4 2.34 69.64 0 2.04 1.02 30.36 3.36 1.77

0.24 -2.17 6.18 2.01 59.03 0 2.78 1.39 40.97 3.4 1.79

110

Table 7-8 Acquired data regarding Torque and Gripping Force measurement

Time
[sec]

T Left
[Lb-in]

T Right
[Lb-in]

G Left
[Lb]

G Right
[Lb]

0 0.99 1.6 0 0.41

0.05 0.5 0.38 0 0.42

0.1 0 -0.75 0 0.42

0.14 0.3 -0.19 0 0.42

0.19 0.4 -0.09 0 0.43

0.24 0.4 -0.75 0 0.43

0.29 0 -0.94 0 0.43
A standard code was written in MATLAB to be able to visualize the data after it

has been acquired. Plots obtained are shown in Figure 7-28 to Figure 7-30.

It is noticed that if long periods of data acquisition are needed some of the

columns that are derivative from the main measurements can be omitted, thus producing

a smaller size data file, and the information then can be computed after the data has

been acquired. Columns such as the one showing average axial load on each side, or

percentage load on each side can be taken out and computed in MATLAB if needed.

Table 7-9 Acquired data regarding IMU readings from Walker

Time
[sec]

Acc X
[g's e-3]

Acc Y
[g's e-3]

Acc Z
[g's e-3]

Gyro
[pitch]
[deg]

Gyro
[roll]
[deg]

Gyro
[yaw]
[deg]

0 669 119 811 40 39 0

0.05 657 65 742 40 39 0

0.1 638 3 807 40 39 0

0.14 642 0 784 40 39 0

0.19 646 -3 773 40 39 0

0.24 650 -7 761 40 39 0

0.29 634 -7 780 40 39 0

111

Table 7-10 Acquired data regarding IMU readings from Belt

Time
[sec]

Acc X_b
[g's e-3]

Acc Y_b
[g's e-3]

Acc Z_b
[g's e-3]

Gyro_b
[pitch]
[deg]

Gyro_b
[roll]
[deg]

Gyro_b
[yaw]
[deg]

0 -7 30 961 0 -117 1

0.05 -7 23 969 0 -117 1

0.1 -11 30 965 0 -117 1

0.14 -7 26 961 0 -117 1

0.19 -7 26 969 0 -117 1

0.24 -7 34 969 0 -117 1

0.29 -7 26 965 0 -117 1

The IMU readings figure & code would be the same for the readings coming from

the walker’s IMU and from the user belt’s IMU.

Figure 7-28 Axial Load Readings

Figure 7-28 shows the results for axial loading. It can be seen that from seconds

20 to 40 a load to each side of the walker was applied. Then the user walked normally

20 40 60 80 100 120 140 160

0

20

40

60

80

100

Time, [s]

A
x
ia

l
L
o
a
d
,

[l
b
]

Average left side

Average right side

Total

20 40 60 80 100 120 140 160
0

20

40

60

80

100

Time, [s]

A
x
ia

l
L
o
a
d
,

[%
]

%Left of Total

%Right of Total

% of Weight on Walker

112

using the walker and at about second 110 the user started applying bigger forces

purposely.

Figure 7-29 Torque and Gripping Force Readings

Figure 7-29 shows the torque and gripping force sensor readings. The user

continuously applied torque to both sides in both directions. Similarly the gripping force

was tested and gave reasonable results according to the user’s experience.

Figure 7-30 shows accelerometer readings. Notice that the acceleration has

fluctuations of a little bigger amplitude after the user starts walker normally. When the

user starts applying more force, it shakes the walker with more intensity than before and

it is felt by the accelerometer. Notice that the accelerometer during this test was not fixed

in a specific direction so it shown readings in it x, y and z axes from the vibration of the

whole IMU board. The gyroscope readings are also shown. See that what is plotted as

pitch is the one direction that is not maintained reliably after the user starts to walk and

increases although the user had not changed its orientation. At about second 120 the

20 40 60 80 100 120 140 160
-20

-10

0

10

20

30

Time, [s]

T
o
rq

u
e
,

[l
b
-i
n
]

Left side

Right side

20 40 60 80 100 120 140 160
0

5

10

15

20

Time, [s]

G
ri
p
p
in

g
 F

o
rc

e
,

[l
b
]

Left side

Right side

113

user rotates in what is plotted as pitch. The pitch, roll and yaw can be defined according

on the testing necessities.

Figure 7-30 IMU Readings from the walker

20 40 60 80 100 120 140 160
-500

0

500

1000

1500

Time, [s]

A
c
c
e
le

ra
ti
o
n
,

[g
's

 e
-3

]

X

Y

Z

20 40 60 80 100 120 140 160

-100

0

100

Time, [s]

A
n
g
le

,
[d

e
g
]

Pitch

Roll

Yaw

114

Chapter 8

Conclusions

The smart walker project is a devise that permits walker users and therapists to

observe and store readings of the forces applied to a rolling walker during its use. The

visualization of the forces applied to the walker help to determine and quantify usage and

posture problems that lead to the falling of patients. The goal of reliably acquire digital

readings of the main relevant forces applied to the walker was achieved by using

reasonably priced and commonly used components, devises and software was

successfully achieved.

Essentially it was necessary to know the axial load applied to the walker and its

distribution, the torque and the gripping force applied to the handles. Moreover it was

necessary to know when and how it is moving, reason why an IMU was included in the

design. Finally, the relationship between the forces and the movement of the patient itself

needed to be correlated so another IMU was used to be placed at the patient’s belt.

The axial load was read by the use of 1-axis metallic foil strain gages. One strain

gage was carefully placed on each leg of the walker at a location carefully studied with a

FEM model of the walker. It is worth mentioning that the results obtained from the FEM

study and the strain gage readings agreed very closely. The torque was also measured

using strain gages, in this case, 2 axis strain gages specially designed with patterns

perpendicular to each other and 45deg from the horizontal. These patterns allow setting 2

2-axis strain gages in a full bridge configuration that measures torque of a circular shaft

(walker handle) reliably and without the need of high amplification.

The gripping force was measured by using an FSR sensor. Similarly to strain

gages, this sensor allows quantifying the gripping force by measuring the voltage output

due to resistance changes. Contrarily to strain gages, FSRs experience resistance

115

changes from infinity to – in this case – 200 Ω, resistance at which the maximum

measurable force is reached. This is not a linear sensor, its obtained calibration curve

was better fitted which three logarithmic curves (Chapter 5). This sensor is not very

accurate, but it does allow us to quantify the intensity at which the patient it grabbing the

handle. The circuitry involved to setup this sensor is very simple. This sensor basically

acts like a valve that allows current flow (the more it is pressed, the less resistance it has

and the more voltage is felt). The ―valve‖ is followed by a voltage divider to reduce the

maximum voltage output from 5 V (voltage source) to around the limit set in the Arduino

program (1.1 V).

All these sensors were read and sampled with the Arduino MEGA board, a very

commonly used piece of equipment. The Arduino environment helped immensely to

develop the project, not only because its language is very intuitive but also because of

the massive amount of resources in the Arduino community offered that help solving very

quickly most of the problems encountered. Additionally, there is a plethora of products

that are compatible and easy to install to the Arduino, like the Xbee antenna and related

accessories. The Arduino MEGA has proven itself to be a very useful devise to be used

for data acquisition for sampling rates between 20 and 1000 Hz. Because of the fact that

it only has 1 A2D converter that is shared by all of his analog inputs, the more inputs it

has, smaller is the maximum achievable sampling rate. For the case of the Smart Walker,

a sampling rate of 30 Hz to 60 Hz was enough for the therapist to observe and study the

patient’s use of the walker.

Another main requirement for this project was to ensure a reliable wireless

connection between the Smart Walker system and the computer where the data was to

be observed and stored. The Xbee antenna served this purpose perfectly, allowing the

Smart Walker to have a reliable constant connection to the computer with a very useful

116

range for the application. The monitor station could be placed up to 100 ft. of the walker

(indoor) and 300 ft. outdoor ensuring a fluid, secure and reliable connection.

Finally the system was able to be monitored with a user interface developed in

LabVIEW that received the data sent by the Arduino through the Xbee antennas.

LabVIEW allowed to read and interpret the data, showed the data in an easy-to-visualize

manner and stored it to be able to analyze it afterwards. The use interface showed the

axial load and its distribution on the walker, the percent body weight on the walker, torque

and gripping force measurements and IMU readings from the walker and belt of the user.

Future work planned after this prototype was completed was to develop a PCB

design of the all the circuits in the walker and arrange them as an Arduino shield for easy

assembly, fabrication, stability and reduce the space occupied by the system. In the

Appendix the initial PCB design in eagle is shown.

Beyond the specific application of the Smart Walker, this project was written as a

good resource for anyone attempting to measure axial load, torque or punctual forces

with FSRs, develop a cost effective data acquisition systems, utilize IMUs and develop

LabVIEW user interfaces to work with Arduino boards and wireless connectivity using

Xbee antennas. It is wished that is helps future students, engineers or anyone that wants

to make use of the material presented.

117

Appendix A

Walker FEM Study

118

A simple Cad model of the walker was made. A static structural simulation of the model

was performed with ANSYS in order to predict the strains of the principal structure of the walker

when perpendicular incremental pressures on the handles are applied. This study helped to

have a better perspective on the positioning of the strain gages by avoiding areas with large

strain gradients..

Geometry and Model Setup

Only the essential parts where considered. The contacts where set as bonded for this

study. The material used was the general structural aluminum in ANSYS. Figure A-1 shows the

supports and applied pressure on the handles. This model setup was the one that approached

more closely to the conditions of calibration.

Figure A-1 CAD model, pressure applied and supports

119

Mesh

Three meshes were used for convergence analysis of the results and are shown in

Figure A-2, Figure A-3 and Figure A-4. Three dimensional tetrahedral elements were used. The

first the one generated by ANSYS by default, the second one with a 5 mm element size and the

third one 3 mm element size.

Figure A-2 First Mesh

120

Figure A-3 Second Mesh [5mm element]

Figure A-4 Third Mesh [3mm element]

121

Results

Table A-1 shows the values of equivalent strain, and total deformation for their

respective mesh. Reasonable convergence is observed for the maximum values. For the

regions of the walker where the strains are wanted the values are very stable. Figure A-5 and

Figure A-6 show screenshots of the results of the equivalent strain and total deformation results

obtained from the model.

Figure A-5 Equivalent Strain (close-up 3rd Mesh)

Figure A-6 Total Deformation [mm] (3

rd
 Mesh)

122

Table A-1 Result Summary & percent change for convergence

Figure 2-5 Total Strain vs. Applied Load for Analytical and FEM model

y = 1.2762x
R² = 0.9986

0

10

20

30

40

50

60

70

0 10 20 30 40 50

Eq
u

iv
al

en
t

St
ra

in
, [

µ
ε]

Load, [lbf]

0 20 40 60 80 100
0

100

200

300

400

Analytical Model (Distributed Load)

Analytical Model (Concentrated Load)

FEM Model (max)

FEM Model (SG Location)

Axial Load, [lbf]

T
o

ta
l

S
tr

a
in

,
[

]

Max
equivalent
strain [με]

Δ%
Total

Deformation
[mm]

Δ%

1st Mesh 219.8

0.080
 2nd Mesh 187.6 14.6 0.067 16.3

3rd Mesh 200.0 6.6 0.068 1.5

123

Appendix B

Smart Walker Arduino Code

124

//Smart Walker Arduino Code

//This code acquires 8 analog voltage inputs and IMU readings through I2C connection,

compiles the readings in an array of characters and sends them through the serial port

connected to the Xbee antenna

//ASTL Lab – The University of Texas at Arlington

//Mauricio Jaguan Nieves

#include <FreeSixIMU.h>

#include <FIMU_ADXL345.h>

#include <FIMU_ITG3200.h>

#include "CommunicationUtils.h"

#include <Wire.h>

#include <SoftwareSerial.h>

//Variables for IMU reading

float Acc[4];

float gyr[4];

int Acci[4];

int Acc_abs[4];

int Gyi[4];

int Gy_abs[4];

String Accs[4];

String Gys[4];

String A_str_tot, G_str_tot;

FreeSixIMU my3IMU = FreeSixIMU();

125

SoftwareSerial Xbee(2,3);

//USB Serial Connection

Serial.begin(57600);

// the setup routine runs once when you press reset:

void setup() {

 //Xbee Serial Connection

 XBee.begin(57600);

 analogReference(INTERNAL1V1);

 Wire.begin();

 delay(5);

 my3IMU.init();

 delay(5);

}

int analog[8];

float Vf[8];

int Vi[8];

String Vs[8];

// the loop routine runs over and over again forever:

void loop() {

 String V_tot_string = "";

 for (int x = 0; x<8 ; x++){

 // read the input on analog pin 0-7:

 analog[x] = analogRead(x);

126

 // Convert to Float

 Vf[x] = analog[x] * (1.1 / 1023.0)*1000;

 //Convert back to integer

 Vi[x] = int(Vf[x]);

 //Convert to String

 if (Vi[x]>=256){Vs[x] = String(Vi[x],HEX);};

 if (Vi[x]<256){Vs[x] = "0" + String(Vi[x],HEX);};

 if (Vi[x]<16){Vs[x] = "00" + String(Vi[x],HEX);};

 //Create full string from analog inputs

 V_tot_string = V_tot_string + Vs[x];

 }

 A_str_tot = "";

 G_str_tot = "";

 //Obtain values from IMU

 my3IMU.getValues(Acc);

 my3IMU.getYawPitchRoll(gyr);

 // Normalize Acceleration readings

 for(int x = 0; x<4 ; x++){

 Acci[x] = int(Acc[x]*1000/260);

 }

 //Get absolute values to avoid continuous unnecessary conversions when transforming to

strings

 for(int x = 0; x<4 ; x++){

 Acc_abs[x] = abs(Acci[x]);

127

 Gy_abs[x] = abs(gyr[x]);

 }

 //convert IMU readings to strings (4 characters)

 for(int x = 0; x<4 ; x++){

 if (Acci[x]<0){

 if (Acc_abs[x] >= 256){Accs[x] = "-" + String(Acc_abs[x],HEX);};

 if (Acc_abs[x] < 256){Accs[x] = "-0" + String(Acc_abs[x],HEX);};

 if (Acc_abs[x] < 16){Accs[x] = "-00" + String(Acc_abs[x],HEX);};

 }

 if (Acci[x]>=0){

 if (Acc_abs[x] >= 256){Accs[x] = "0" + String(Acc_abs[x],HEX);};

 if (Acc_abs[x] < 256){Accs[x] = "00" + String(Acc_abs[x],HEX);};

 if (Acc_abs[x] < 16){Accs[x] = "000" + String(Acc_abs[x],HEX);};

 }

 if (x==0){

 if (gyr[x]<0){

 if (Gy_abs[x] >= 256){Gys[x] = "-" + String(Gy_abs[x],HEX);};

 if (Gy_abs[x] < 256){Gys[x] = "-0" + String(Gy_abs[x],HEX);};

 if (Gy_abs[x] < 16){Gys[x] = "-00" + String(Gy_abs[x],HEX);};

 }

 if (gyr[x]>=0){

 if (Gy_abs[x] >= 256){Gys[x] = "-" + String(Gy_abs[x],HEX);};

 if (Gy_abs[x] < 256){Gys[x] = "00" + String(Gy_abs[x],HEX);};

 if (Gy_abs[x] < 16){Gys[x] = "000" + String(Gy_abs[x],HEX);};

 }

 }

128

 if (x!=0){

 if (gyr[x]<0){

 if (Gy_abs[x] < 256){Gys[x] = "-" + String(Gy_abs[x],HEX);};

 if (Gy_abs[x] < 16){Gys[x] = "-0" + String(Gy_abs[x],HEX);};

 }

 if (gyr[x]>=0){

 if (Gy_abs[x] < 256){Gys[x] = "0" + String(Gy_abs[x],HEX);};

 if (Gy_abs[x] < 16){Gys[x] = "00" + String(Gy_abs[x],HEX);};

 }

 }

 }

 for(int i =0; i<3; i++){

 A_str_tot = A_str_tot + Accs[i];

 G_str_tot = G_str_tot + Gys[i];

 String Tot_string = V_tot_string + A_str_tot + G_str_tot;

 //Print String to Arduino USB port

 //Serial.println(Tot_string);

 //Print to Xbee

 XBee.println(Tot_string);

delay(16);

 }

}

129

Appendix C

Axial Load Calibration

Data Analysis Mathcad Worksheet

130

The following Mathcad worksheet was created to automate the axial load strain

gage calibration data analysis process for further walkers. It takes voltage readings

acquired with the Arduino for a reasonable time (in the case of the example shown

~20 sec). The Worksheet requires inputting the names of the files to be read with the

load applied as title. It extracts the data from the .txt file and averages the voltage

readings over the time it was acquired, calculates the standard deviation, plots linear

calibration curves and shows the coefficients of the curves. It also includes standard

deviation plots to show the uncertainty of the reading that comes from the noise of the

signal.

The calibration process to use this worksheet is as follows:

1. Acquire sets of data from the Arduino with voltage readings of all strain

gages for a period of 10 to 20 seconds. Data sets need to follow the

format shown in Figure C-1.

Figure C-1 Data files format to be imported to the worksheet

2. Name each file ―load applid.txt‖ i.e. ―80.txt‖

3. Separate the readings taken while loading and unloading the walker.

Notice there is a directory for loading and one for unloading. This is to

make sure hysteresis is taken into account.

4. Match the string columns in the worksheet with the titles of your files.

Make sure to input the proper directory where files have been stored.

5. Calibration curves should be calculated automatically

131

132

133

134

135

136

Appendix D

Torque Calibration

Data Analysis Mathcad Worksheet

137

The following Mathcad worksheet similarly to the one for the axial load sensor

was created to automate the torque sensor calibration data analysis process for further

walkers. It takes voltage readings acquired with the Arduino for a reasonable time (in the

case of the example shown ~20 sec). It extracts the data from the .txt file and averages

the voltage readings over the time it was acquired, calculates the standard deviation,

plots linear calibration curves and shows the coefficients of the curves.

The calibration process to use this worksheet is as follows:

1. Acquire sets of data from the Arduino with voltage readings of all strain

gages for a period of 10 to 20 seconds. Data sets need to follow the

format shown in Figure D-1.

Figure D-1 Data files format to be imported to the worksheet

2. Creates vectors to read the defined directories and separate data

according to handle and magnitude and direction of the torque applied.

3. This worksheet also can read accelerometer readings from data in

columns adjacent to the ones shown above for torque.

4. Obtains voltage average of the time the data was acquired for each

torque applied as well as standard deviation to have a sense of the

noise in the signal.

5. The calculated averages are compiled to create vectors and create

linear trends and calculate the calibration curves.

138

139

140

141

142

143

144

145

146

147

Appendix E

Smart Walker PCB Arduino Shield

(Initial Design)

148

After the first prototype was completed, the next step was to create a PCB design

of the circuits in the walker to expedite the fabrication of further walkers, reduce the size

of the circuit board. This section shows the initial efforts to create an Arduino shield that

contained all the circuits described in this thesis (Figure E-1). A major change from the

original circuits was the attempt to create Wheatstone bridges with low tolerance resistors

rather than using bridge completion units. The main challenge was to fit all the

components in the Arduino MEGA surface area knowing that it would be fabricated

manually. This design proved to have various problems for manual fabrication due to the

small size of the chosen components.

Figure E-1 Initial Smart Walker Arduino shield design

A stencil was made in order to solder the components using solder paste. Stencil

is shown below.

Also, a board was etched and ready to place the components. Unfortunately

placing the operational amplifier was very difficult and the board was damaged after the

attempt.

149

Figure E-2 Smart Walker Arduino Shield first design (Stencil)

Figure E-3 Smart Walker Arduino Shield initial design (upper side)

Figure E-4 Smart Walker Arduino Shield initial design (lower side)

150

Appendix F

Miscellaneous Pictures and Drawings

151

Some of the pictures of the first prototype of the Smart Walker and the progress

of its fabrication and testing are being shown in this section.

(a) (b)
Figure F-1 Smart Walker (a) CAD model (b) 1

st
 prototype

Figure F-2 First PCB prototype fabricated to test axial load and torque strain gages

152

Figure F-3 Smart Walker Xbee antenna on USB dongle

Figure F-4 Belt Arduino UNO with IMU and Xbee shield/antenna

153

Figure F-5 Smart Walker Circuit board - 1st prototype (Arduino Side)

Figure F-6 Smart Walker Circuit board - 1st prototype (circuit Side)

154

Figure F-7 Smart Walker 1st prototype circuit board case mod CAD model

Figure F-8 Smart Walker 1st prototype circuit board mounted on bottom case side.

155

References

[1] Liu, H., Huang, H. and Nana A., SmartWalker – A New Design of Rolling Walker

to Reduce Falls and Walker‐use Related Side Effects, Texas MRC Program,

Proposal Application Form for 2014, 2014.

[2] Figliola, R. S. and Beasley D. E., Theory and design for mechanical

measurements, 5th ed. Hoboken, NJ: Wiley, 2011.

[3] Furman, B. J., Force, Torque, Stress, and Strain Measurement, ME120

Experimental Methods, San Jose State University, 2006

[4] Micro-Measurements, Strain Gage Selection: Criteria, Procedures,

Recommendations, TN-505-4, Doc No. 11055, Vishay, Precision Group, 2010.

[5] Micro-Measurements, General Purpose Strain Gages – Shear/Torque Pattern,

187UV, Doc No. 11244, Vishay, Precision Group, 2010.

[6] Micro-Measurements, Strain Gage Adhesive, M-Bond 200, Doc No. 11010,

Vishay, Precision Group, 2012.

[7] Micro-Measurements, Strain Gage Installation with M-Bond 200 Adhesive, B-

127-14, Doc No. 11127, Vishay, Precision Group, 2011.

[8] Micro-Measurements, Surface Preparation for Strain Gage Bonding, B-129-8,

Doc No. 11129, Vishay, Precision Group, 2011.

[9] Micro-Measurements, Information and Selection Chart, MR-Series Bridge

Completion Modules, Doc No. 11042, Vishay, Precision Group, 2013.

[10] Arduino LLC., 2016, ‖Arduino MEGA 2560‖, from

https://www.arduino.cc/en/Main/ArduinoBoardMega2560

[11] Ochoa, G. J., 2011,‖A Swarm of Xbees! Arduino Xbee Wireless & More‖, from

http://bildr.org/2011/04/arduino-xbee-wireless/

https://www.sparkfun.com/products/11215

156

[12] Bildr.org, 2012, ―Stable Orientation – Digital IMU 6DOF + Arduino‖, from

http://bildr.org/2012/03/stable-orientation-digital-imu-6dof-arduino/

[13] Arduino LLC., 2016, ―SoftwareSerial Library‖, from

http://www.arduino.cc/en/Reference/softwareSerial

[14] Arduino LLC., 2016, ―analogReference()‖, from

https://www.arduino.cc/en/Reference/AnalogReference

[15] SparkFun Electronics ®, 2016, ―XBee Shield Hookup Guide‖, from

https://learn.sparkfun.com/tutorials/xbee-shield-hookup-guide

[16] Digi International Inc., 2016, ―Basic XBee 802.15.4 (Series 1) Chat‖, from

http://www.digi.com/blog/xbee/basic-xbee-802-15-4-chat/

[17] LabVIEW MarkerHub, ―LINX‖, from

https://www.labviewmakerhub.com/doku.php?id=libraries:linx:start (LINX)

[18] Margolis, M., Arduino Cookbook, 1st Ed. Sebastopol, CA: O’Reilly, 2011.

[19] Evans, B. W., Arduino Programming Notebook, 1st ed. San Francisco, CA:

Creative CommonsAttribution-Noncommertial-Share,2007.

[20] Adafruit ®., 2014, ―Force Sensitive Resistor (FSR)‖, from

https://learn.adafruit.com/force-sensitive-resistor-fsr/using-an-fsr

[21] Padmanapan S., Workshop on SMT Stencils, SMTA Chennai, 2014.

[22] Seifert, K. and Camacho O., Implementing Positioning Algorithms Using

Accelerometers, , AN3397, Rev. 0. Tempe, AR: Freescale Semiconductor, Inc.

2007.

[23] Lawrence, K., ANSYS Workbench Tutorial Release 14, 1st Ed. Mission, KS:

Schroff Development Corporation, 2012.

[24] Digi International Inc., Demystifying 802.15.4 and ZigBee®, White Paper,

9100991437, A1/208, 2008.

http://bildr.org/2012/03/stable-orientation-digital-imu-6dof-arduino/
http://www.arduino.cc/en/Reference/softwareSerial
https://learn.sparkfun.com/tutorials/xbee-shield-hookup-guide
https://www.labviewmakerhub.com/doku.php?id=libraries:linx:start

157

[25] Faludi, R., Building Wireless Sensor Networks,1st Ed. Sebastopol, CA: O’Reilly,

2011.

[26] Digi International Inc., XBee/XBee-PRO® 802.15.4 Professional Kit - Getting

Started, 90002159_A, 2012.

[27] Digi International Inc., XBee®/XBee-PRO® RF Modules, Product Manual v1.xEx

– 802.15.4 Protocol, 90000982_P, Minnetonka, MN: 2014.

[28] University of California Santa Barbra, Lab Manual “Strain Gage Sensors”,

Department of Mechanical and Environmental Engineering, 2013.

[29] Hibbeler, R.C., Mechanics of Materials, 8
th
 Ed. Boston, MA: Prentice Hall, 2011.

[30] Norton, R. L., Machine Design – An Integrated Approach, 4
th
 Ed. Boston, MA:

Prentice Hall, 2011.

[31] Logan, D. L., A First Course in the Finite Element Method, 3
rd

 Ed. Pacific Grove,

CA: Brooks/Cole, 2002.

[32] Young, W. C., Budynas, R. G., Roark’s Formulas for Stress and Strain, 7
th
 Ed.

New York, NY: McGraw-Hill, 2002.

158

Biographical Information

Mauricio Jaguan Nieves started his undergraduate education in the Simon

Bolivar University in Caracas, Venezuela where he coursed basic mathematics and

physics courses before transferring to the University of Texas at Arlington. In UTA he

graduated magna-cum-Laude as a bachelor of science in Mechanical Engineering and

Aerospace Engineering. He immediately pursued further education in Mechanical

Engineering and enrolled in a Master of Science program at his alma mater the University

of Texas at Arlington. He works currently in Clyde Bergemann Power Group as

applications engineer in the Air Pollution and Material Handling division. His main

research interests have been in data acquisition systems and currently he seeks further

preparation in machine learning for autonomous vehicles.

