

Cloud Hopper: A Unified Cloud Solution to Manage Heterogeneous Clouds

by

SHRADDHA JAIN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Computer Science

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2016

Copyright © by SHRADDHA JAIN 2016

All Rights Reserved

To my family.

iii

ACKNOWLEDGEMENTS

I would like to extend my heartfelt thanks to Mr. David Levine, my supervisor who

guided and motivated me throughout my thesis. I got a lot of exposure to the latest and

exciting technologies under his mentorship. Without his invaluable support and

encouragement, this would not have been possible.

My heartfelt thanks to my committee members Dr. Ramez Elmasri, and Dr.

Farhad Kamangar, and the computer science department, UTA for their invaluable

cooperation, and support.

 I would like to extend my sincere thanks to the members of our Cloud Team, Mr.

Mayank Jain and Mr. Samvaran Kashyap for being my pillars of support.

 I am grateful to my family, my mother, my father, and my brother who were always

there with me in my good and the bad times. Finally, I would like to thank all my friends

who helped me through this journey.

November 15, 2016

iv

ABSTRACT

Cloud Hopper: A Unified Cloud Solution to Manage Heterogeneous Clouds

SHRADDHA JAIN, MS

The University of Texas at Arlington, 2016

Supervising Professor: David Levine

Cloud environments are built on virtualization platforms which offer scalability,

on-demand pricing, high performance, elasticity, easy accessibility of the resources

and cost efficient services. Most of the small and large businesses use cloud

computing to take advantage of these features. The usage of the cloud resources

depends on the requirements of the organizations. With the advent of cloud

computing, the traditional way of handling machines by the IT professionals has

decreased. However, it leads to wastage of resources due to inadequate monitoring

and improper management of resources. Often it happens that the cloud resources

once deployed are forgotten, and they stay running until someone manually

intervenes to shut them down. This results in continuous consumption of the

resources and incurs costs which is known as Cloud Sprawling. Many organizations

use resources provided by multiple cloud providers and maintains multiple accounts

on them. The problem of cloud sprawling proliferates when there are multiple

accounts on different cloud providers are not managed properly.

In this thesis, a solution to overcome the problem of cloud sprawling is presented.

A unified console to monitor and manage all the resources such as compute

instances, and storage deployed on multiple cloud providers is provided. This

console provides the details of the resources in use and ability to manage them

v

without logging into the different accounts they belong to. Moreover, a provision to

schedule multiple tasks is provided from the scheduling tasks panel. In this way the

resources can be queued to run at a specific time and can also be torn down at a

scheduled time, thus the resources are not left unattended. Before terminating, a

facility to archive files, and directories on virtual machines is also provided using

storage services offered by both IaaS and SaaS providers.Further, a notification

system helps in notifying the user about the statuses of the scheduled tasks thus

helping enterprises in saving on the costs.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

ABSTRACT ... iv

LIST OF ILLUSTRATIONS.. x

LIST OF TABLES .. xiii

LIST OF ACRONYMS ... xiv

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 Introduction and background ... 1

1.1.1 Multi-Cloud... 3

1.2 Motivation behind the thesis .. 6

1.3 Goals of the thesis .. 7

1.4 Organization of the Thesis .. 7

CHAPTER 2 .. 8

RELATED WORK .. 8

CHAPTER 3 .. 10

PROBLEM STATEMENT .. 10

CHAPTER 4 .. 16

FRAMEWORK DESCRIPTION ... 16

4.1 Introduction ... 16

4.2 Features .. 16

4.3 Architecture ... 18

4.3.1 Web-based user interface ... 19

vii

4.3.2 Slack Bot.. 19

4.3.4 Django Server .. 19

4.3.5 Django REST ... 19

4.3.6 Celery .. 20

4.3.7 Libraries ... 22

4.3.8 Redis .. 23

4.3.9 MongoDB ... 24

4.3.10 Ansible Tool ... 24

4.3.11 Mailgun .. 26

4.4 Packages .. 26

4.4.1 iaas .. 27

4.4.2 saas ... 28

4.4.3 auth .. 28

4.5 Classes ... 29

4.5.1 vm_service class ... 30

4.5.2 iaas_storage_service class ... 31

4.5.3 saas_storage class .. 32

4.6 Database Structure ... 33

4.6.1 authentication Collection ... 33

4.6.2 scheduled_tasks Collection ... 35

4.6.3 Workflow Collection ... 36

viii

CHAPTER 5 .. 38

IMPLEMENTATION .. 38

5.1 Screenshots .. 38

5.1.1 Dashboard ... 38

5.1.2 Key Store ... 39

5.1.3 Resource Manager .. 40

5.1.4 Scheduled Tasks ... 41

5.1.5 Schedule New Tasks ... 42

5.1.6 Workflows .. 43

5.1.7 Pricing .. 44

5.1.8 Slack Bot.. 45

5.1.9 Alerts .. 45

CHAPTER 6 .. 47

PRICE ANALYSIS ... 47

6.1 Compute prices comparison and analysis .. 47

6.2 IaaS Storage prices comparison and analysis.. 52

6.3 SaaS Storage prices comparison and analysis .. 53

CHAPTER 7 .. 58

EXPERIMENTS AND RESULTS .. 58

7.1 Experimental Setup ... 58

7.2 AWS Compute Experiments ... 58

7.3 Google Cloud Compute Experiments ... 64

ix

7.4 GCP vs. AWS Compute Experiments ... 70

7.5 Storage Experiments .. 77

7.6 Archiving Experiments .. 82

CHAPTER 8 .. 88

SUMMARY AND CONCLUSION .. 88

CHAPTER 9 .. 90

FUTURE WORK .. 90

REFERENCES .. 92

BIOGRAPHICAL INFORMATION ... 98

x

LIST OF ILLUSTRATIONS

Figure Page

3.1 Services offered by Amazon Web Services and Google Cloud Platform 11

3.2 An example of a web application using services from different cloud providers 12

3.3 Depiction of managing multiple logins on different cloud providers 13

4.1 Cloud Hopper Framework 18

4.2 Celery Architecture 22

4.3 Archiving Flow Diagram 25

4.4 cloud_resource_lib package 26

4.5 iaas sub-package 27

4.6 saas sub-package 28

4.7 iaas_storage_service class diagram 31

4.8 saas_storage_service class diagram 32

4.9 authentication schema 33

4.10 scheduled_tasks schema 35

4.11 workflow collection schema 36

5.1 Dashboard Screen 38

5.2 Key Store Screen 39

5.3 Resource Manager 40

5.4 Scheduled Tasks Screen 41

5.5 Schedule New Tasks Screen 42

5.6 Workflows Screen 43

5.7 Pricing Screen 44

5.8 Slack Bot Screen 45

5.9 Alerts Screen 45

xi

6.1 Dropbox pricing 54

6.2 Google Drive Pricing 55

7.1 EC2 Instance creation time comparison 59

7.2 Average time for AWS EC2 instance creation 60

7.3 EC2 Instance deletion time comparison 61

7.4 Average time for AWS EC2 instance deletion 62

7.5 EC2 instances listing time comparison 63

7.6 Average time for AWS EC2 instance listing 64

7.7 Google Cloud instance creation time comparison 65

7.8 Average time for Google Cloud instance creation 66

7.9 Google Cloud instance deletion time comparison 67

7.10 Average time for Google Cloud instance deletion 68

7.11 Google Cloud instances listing time comparison 69

7.12 Average time for Google Cloud instance listing 70

7.13 AWS EC2 and GCP instance creation time comparison 71

7.14 Average time for instance creation on AWS EC2 and GCP 72

7.15 AWS EC2 and GCP instance deletion time comparison 73

7.16 Average time for instance deletion on AWS EC2 and GCP 74

7.17 AWS EC2 and GCP instance listing time comparison 75

7.18 Average time for instance listing on AWS EC2 and GCP Compute 76

7.19 Time taken to create buckets on AWS S3 and GCP Storage 77

7.20 Average time for creating a bucket on AWS S3 and GCP Storage 78

7.21 Time taken to delete buckets on AWS S3 and GCP Storage 79

7.22 Average time for deleting a bucket on AWS S3 and GCP Storage 80

7.23 Time taken to list buckets on AWS S3 and GCP Storage 81

xii

7.24 Average time for listing buckets on AWS S3 and GCP Storage 82

7.25 Time comparison of archiving from AWS EC2 to Dropbox, AWS S3 and

on localhost 83

7.26 Average time comparison for archiving from AWS EC2 to Dropbox, AWS S3

 and localhost 84

7.27 Time comparison of archiving from GCP instance to Dropbox, AWS S3 and on

 local machine 85

7.28 Average time comparison for archiving from GCP compute instance to

Dropbox, AWS S3 and localhost 86

xiii

LIST OF TABLES

Table Page

6.1 AWS vs GCP compute pricing 47

6.2 AWS S3 pricing 52

6.3 GCP storage pricing 53

xiv

LIST OF ACRONYMS

AWS – Amazon Web Services

EC2 – Elastic Cloud Compute

GCE – Google Cloud Engine

GCP – Google Cloud Platform

IaaS – Infrastructure as a Service

MVT – Model View Template

PaaS – Platform as a Service

S3 – Simple Storage Service

SaaS – Software as a Service

SMTP – Simple Mail Transfer Protocol

VM – Virtual Machine

1

CHAPTER 1

INTRODUCTION

1.1 Introduction and background

Cloud Computing enables user to access services such as compute, storage,

database, networks, and applications over the Internet. It is a model for storing and

accessing data and programs over the Internet instead of doing it on a local computer’s

hard drive. Small and large enterprises, as well as institutions of higher learning, are

embracing this technology due to economic advantage, improved manageability, less

maintenance, high performance, accessibility, availability, scalability, pay-per-use

model, and low carbon footprint thus bringing about a smooth facilitation of

organizational operations [1].

The Cloud model comprised of three primary service models as mentioned

below:

Infrastructure-as-a-Service (IaaS): Infrastructure as a service provides companies with

computing resources including servers, networking, storage, and data center space on

a pay-per-use basis [2].

Platform-as-a-Service (PaaS): Platform as a service provides a cloud-based

environment with everything required to support the complete lifecycle of building and

delivering applications without the cost and complexity of buying and managing the

underlying hardware, software, provisioning, and hosting [2].

Software-as-a-Service (SaaS): SaaS allows the use of applications that run on the cloud

infrastructure and is accessible from various client devices. Cloud providers install and

2

operate application software in the cloud and cloud users access the software from cloud

clients. Examples of SaaS offerings are Microsoft Office 365 [3], and Dropbox [4].

The Cloud model is also composed of the following main deployment models:

Private cloud: It is a cloud infrastructure that is operated only for an organization. The

organization can manage it internally or by a third-party and can be hosted either

internally or externally [5].

Public Cloud: Public cloud infrastructures are owned and operated by companies that

offer affordable computing resources [2]. Users do not have to purchase hardware,

software, or supporting infrastructure rather they will use the third-party’s resources as

per the demand on a pay-for-use basis. The leading public cloud providers are Amazon

Web Services, Google Cloud Platform, and Microsoft Azure [6].

Hybrid cloud: It is a composition of two or more clouds (private, or public) from different

service providers that remain distinct entities but are bound together. The companies

with hybrid clouds manage their workloads across data centers, private clouds, and

public clouds [5].

There are a few other deployment models such as Community Cloud that shares

infrastructure between several organizations from a specific community with common

concerns, a distributed cloud platform created by assembling distributed set of machines

connected to a single network in different locations. An Intercloud in which

interoperability happens between public cloud service providers and a multi-cloud model

which can be defined as the use of multiple cloud computing services in a single

heterogeneous architecture to reduce reliance on single vendors, increase flexibility

through choice, and mitigate against disasters [8].

3

This thesis focuses on the use of multi-Cloud approach in a web application

framework, which can be used for management of resources across the different clouds

from a single console. A modular approach is used to design the framework in such a

way that the services of any cloud provider can be easily plugged into the framework

and used. The motive of providing a unified console to all the service providers is to

provide an easy to use management console which will help in managing the costs of

services by the enterprises using the multi-cloud framework. A common key store is

designed to manage the access keys of multiple cloud providers securely. Further, an

ability to set lifetime to the resources and a multi-cloud archiving provision along with the

monitoring features is provided to manage the resources even in a better way. An

analysis of pricing on different cloud services offered by several cloud providers is done.

Also, a detailed performance analysis of various cloud operations is presented in the

thesis.

1.1.1 Multi-Cloud

Multi-Cloud or Heterogeneous Cloud is a mix of IaaS (Infrastructure as a

Service), SaaS (Software as a Service) and PaaS (Platform as a Service) offerings. It is

a combination of many best-of-breed cloud services which forms the optimal solution.

Not every service provided by a cloud provider is perfect. So, these days companies

want to take benefit of using the best services provided by different cloud providers. For

instance, there may be a scenario where a company might be running workloads that

need a large amount of storage and networking on a private cloud such as OpenStack

[7]. On the other hand, it might also have an enormous workload that requires powerful

4

instances to run applications which can be scaled up or down depending on the

demands. In this case, public clouds such as AWS, IBM Bluemix or Google Cloud

Platform can be used to fulfill the requirements.

The main advantages of opting for a multi-cloud ecosystem are:

- Better Performance: Since in a multi-cloud environment an organization chooses the

best of services across the various cloud providers, we get better performance.

- Cost Efficiency: The services can also be chosen based on a company’s budget on

different clouds as per the best prices offered by them. In this way, we can break down

our requirements and can find the best cloud provider for a service with the affordable

prices accordingly.

- Lower Risks: The data can be replicated on multiple clouds so that it reduces the risk

of downtime or data loss due to failure in some hardware, software, or infrastructure. For

example, On August 7, 2011, Amazon experienced an outage at its cloud computing hub

located in Dublin, Ireland, apparently caused by an electrical transformer malfunction [9].

On February 29, 2012, Microsoft's Azure cloud management system experienced

an outage that adversely affected users in parts of the United States and Europe for

several hours [10]. The loss from these outages could have been handled by using multi-

cloud approach. In this way, we can mitigate against disasters.

- Reducing reliance on any single vendor: Since apps and workloads work better in

particular type of cloud whether it is public, private or hybrid, so using multiple clouds to

handle them can help in reducing the reliance on a single vendor.

- Many choices: A user or a company has a plethora of services to choose from.

5

Figure 1.1 Enterprise Cloud Strategy [11]

Since multi-cloud provides lots of business benefits, many enterprises are

moving towards multi-cloud approach. A survey conducted by RightScale (Fig. 1.1) on

more than 1000 employees stated that 82% companies are opting for the multi-cloud

approach. Among them, 14% are opting for multiple private clouds, 13% are going for

multiple public clouds while rest of the 55% are choosing hybrid cloud framework.

Another survey conducted by Equinix on 650 IT decision makers across the globe

shows that almost 77% of IT decision makers are willing to implement multi-cloud

architectures. Almost 91% are planning to deploy cloud-based services in the next 12

months. Out of them, 48% reported that they would deploy around 6-10+ cloud services

during that period. The topmost applications that these enterprises are planning to

migrate to multiple clouds are storage/backup, disaster recovery, business intelligence,

project management and content management [12].

6

However, managing the multiple clouds is complex, an enterprise might need a

team of in-house experts for every cloud or a vendor for every cloud. Users might have

to juggle between various login account on different providers and many other issues.

Cloud Hopper resolves most of the problems faced while using multi-clouds.

1.2 Motivation behind the thesis

Although multi-cloud approach provides ample reasons which give an edge over

single-cloud or hybrid cloud approach, management of resources has always been a

challenging task to the companies opting for the multi-cloud environment. Users juggle

between multiple logins of different cloud providers to access their services. Managing

the access keys of those providers and storing them securely is another overhead. When

the compute services offered by cloud service providers such as AWS, Google Cloud

Platform, and Microsoft Azure are over-provisioned and are not managed properly that

incurs a cost to the company, it leads to a problem known as cloud sprawling. Moreover,

if the users want to manage the over-provisioned virtual machines and want to archive

the useful documents before terminating them, there is no cost-effective, faster, and

efficient way to do it. Most of the times, employees in a company are dependent on

system admins to manage the resources, thus wasting a lot of time in communicating

with the admin department. There is no provision where the employees with minimal

learning can handle the resources themselves.

7

1.3 Goals of the thesis

The goal of this thesis is to provide a unified cloud solution to manage

heterogeneous clouds from a single pane of glass. This will be helpful for enterprises

who are using the portfolio of clouds to save the cost of resources. By leveraging the

provision of scheduling and monitoring of services provided by different cloud providers,

this thesis aims to provide users to do management at a low level. The research on the

prices offered by the cloud providers will help in deciding on the best deployment

strategy. An analysis of various storage options will help in providing an archiving feature

for valuable documents in the fastest and economical way. A key-store will provide the

solution to store access keys in a secure way.

1.4 Organization of the Thesis

 This thesis starts with an introduction and background, motivation and goals of

the thesis. Chapter 2 gives an overview of related work. Chapter 3 defines the problem

statement. Chapter 4 explains the framework description which is the backbone of this

thesis. Chapter 5 provides a detailed description of the implementation of the application.

Chapter 6 gives a detailed description of the price analysis and case studies. Chapter 7

details the experiments, analyses, and results. This thesis is then concluded in Chapter

8 with future work outlined in Chapter 9.

8

CHAPTER 2

RELATED WORK

Multi-cloud can be defined as the usage of multiple cloud computing services in

a single heterogeneous architecture with the motive of using the best of services from

various cloud providers. In this thesis, the focus is on to manage these multi-clouds

through one platform to save the money on the unmanaged resources and to provide a

faster way to access services of different clouds without juggling through the multiple

logins.

Previous work related to our goals and processes can be found in the literature.

A similar work to schedule the cloud resources is presented. Chen et al. presents an

architecture-based integrated management of diverse cloud resources. They performed

an experiment on a real-world cloud that demonstrates the feasibility, effectiveness, and

benefits of the new approach to integrated management of Cloud resources [14]. Geng

et al. presented a heterogeneous solution heterogeneous DBMS and cloud storage

system, and the heterogeneous data model for cloud computing [15]. Do et al. showed

a framework for the design and understanding of the heterogeneous market cloud

computing. They formulated a price competition between cloud broker and public

provider [16]. Chen et al. shows system architecture of cloud-based agricultural resource

scheduling management. They took an agricultural resource scheduling management

for example and built the system architecture of cloud-based agricultural resource

scheduling management [13]. Mist.io is an application that provides a mobile

management, monitoring, and automation for servers across clouds through a touch-

9

friendly interface. It helps users to manage and monitor their virtual machines, across

different clouds [17]. Gorilla stack is an AWS cost management tools. It provides a

solution to take control over the AWS cost optimization [18]. It only works for AWS EC2

instances. Another web-based application Multcloud is used to manage, migrate,

transfer, copy, and move files between any cloud storage services [19].

Most of these works are done on single cloud providers and are very different to

the context of this thesis. This thesis provides a solution to the problem of cloud sprawling

which incurs a cost to the organizations. These costs sometimes exceed the budgets of

the organizations and hence faces losses. The resources if managed properly will help

in saving an enormous amount of money to the large and small-scale businesses.

10

CHAPTER 3

PROBLEM STATEMENT

The problem this thesis addresses are cloud sprawling and mismanagement of

resources over the multiple clouds which if left unnoticed and unmanaged they costs a

hefty amount to the organizations. Often it happens that organizations uses compute

instances, and storage and owns multiple accounts on multiple cloud providers. Then

they have to go through multiple logins to monitor the resources that are in use, how

much cost they are incurring and how much resources they are using. The more cloud

providers they use and the more logins they have, the crazier it gets. Below are the

issues that originate due to mismanaged services and no standard solution to handle

them:

1. Too many choices

Businesses running in multi-cloud environments need to decide what all

resources are required for their applications and what all providers should those

resources reside. These days there are large choices of providers and the resources for

users which makes it difficult to decide on them. For instance, an organization may

conclude that the compute instances should be on Amazon Web Services (AWS), the

storage on Google cloud storage and database on SQL Azure.

11

Figure 3.1 Services offered by Amazon Web Services and Google Cloud Platform

Fig. 3.1 shows the services provided by Amazon Web Services and Google

Cloud Platform. Amazon Web Services provide 57 services, and Google Cloud Platform

offers 23 services (as on 11/22/2016). Sometimes the user is not aware of the most

relevant options to choose from, and it becomes difficult for the users to decide on which

services to be used from which service provider.

2. Too much to manage

When the options of services are wide in multi-cloud environments, and users

take the liberty of using multiple accounts, then the issue of over-provisioning of

resources starts. Due to inaccurate estimates of the resources which would be required

for an application or allocate more resources than needed so that the applications do not

starve, it becomes difficult to manage the services in a cost-effective manner. Fig. 3.2

shows example of an application that is built on multi-cloud framework

12

Figure 3.2 An example of a web application using services from different cloud

providers

3. Too many logins

When it is multi-cloud, then undoubtedly there are multiple logins and then starts

the trouble of handling multiple ‘access-keys’ and ‘tokens’. It becomes an overhead to

store all the ‘keys’ to a safer place and with minimum management. Fig. 3.3 depicts the

management of multiple logins for an application built on multi-cloud architecture.

13

Figure 3.3 Depiction of managing multiple logins on different cloud providers

4. Cloud Sprawling

Cloud Sprawl is a situation created by over-provisioning and ever growing use of

cloud services such as virtual machines, and cloud storage by the employees of a

company. When each user is free to pick the cloud services of her/his choice for

conducting business and managing data, the result can be unmanageable, and

inherently insecure which leads to the proliferation of sharing and collaboration services

[20]. This uncontrolled cloud sprawl is effecting the company budgets.

As per one of the Forbes article, more than half of U.S. Businesses now use

Cloud Computing, and many of them are facing the problem of cloud sprawling [21]. A

report released by Avanade, an Accenture, and Microsoft joint IT consultancy firm,

shows 61 percent of companies across the globe blame cloud sprawl for causing

inefficiencies in their business. That number falls to 52 per cent in the UK, but it rises to

71 percent among those using both public and private clouds. This survey involved 750

14

IT decision makers in United States, United Kingdom, Germany, China, France, Sweden,

Brazil, Japan, and Australia [22].

5. No standard way to handle Multiple clouds

So far there has not been any standardised solution to manage multiple cloud

provider offerings through a single panel.

6. No single console to handle AWS VMs in various regions

AWS EC2 console is built in such a way that at a time user can see the instances

in a single region. Every time user toggles between the regions to keep an eye on their

instances. There is no platform where one can see all the instances of all the regions at

one single panel.

7. No monitoring for multi-cloud

There is no notification system to monitor and notify about the status and

activities of the services in use by the users on multiple clouds.

8. No provision to take backups before terminating a machine

A company’s system admin department might want to shut down some machines

which are no more of use but contains lots of important documents and application

folders which need to be moved to some safe storage and archived. So far there has

15

been no instance where the files and folders would have been thought to be saved on

faster, reliable, and cheaper storage options such as Dropbox, Google drive, and box.

9. Dependency on IT Admins

In large and small enterprises, to use the resources from a cloud provider, team

members contact the system admin department to create them and assign them to the

team. This way, there is a layer of admin department between the cloud providers and

the team members which increases the timelines of a project. Often the team members

are not aware of how to provision the services on a cloud provider. So, there is no user-

friendly provision where a team member with minimal knowledge can handle most of the

admin stuff which can cut down in extra time used in projects.

16

CHAPTER 4

FRAMEWORK DESCRIPTION

4.1 Introduction

 Cloud Hopper is a web-based application that tries to solve the existing problems

mentioned in the previous chapter. It is built on Python libraries [23], Django [24] and

various other plugins. The whole framework of Cloud Hopper is designed in such a

manner that it will handle the heterogeneous clouds. The packages designed for Cloud

Hopper are modular, and any new module, or a package can be easily integrated with

minimal efforts.

4.2 Features

 Following is the list of features provided by Cloud Hopper:

Common key-store – A key-store is designed to manage the access keys of multiple

cloud providers in a secure manner. Before storing these credentials, they are being

encrypted by AES 256 bit and 32-bit block algorithm. Further, when the credentials are

retrieved from the database, they are decrypted and used.

 Ability to set lifetime to a resource – A resource can be scheduled to expire on a

preset date and time which helps the user to manage the tasks efficiently. The

unused resources can be removed in an automated manner which will help in

reducing cloud sprawling and thus saving money of the companies.

17

 Multi-Cloud archiving – When the unused virtual machines are planned to schedule

to terminate, the important folders and documents can be archived to the various

cloud storage options which are cost efficient and the transfer is fast. Using archiving

feature, one can easily move the files, and folders from any compute machine such

as AWS EC2 [25] instance to either IaaS storage services such as AWS S3 [26] and

GCP storage [27] or SaaS providers such as Dropbox [28] and Google Drive [29].

 Dashboard to view the usage of resources – A dashboard is designed to show the

usage of different services across multiple clouds, thus giving a provision to present

the statistics of the services in use on one single platform.

 Resources management console – The resource management console presents the

details of the resources in use across multiple clouds thus saving the time of the user

in logging into multiple consoles of the service providers. The provision of documents

archiving and tasks scheduling is also given at this console.

 Interactive bot based operations - Slack Bot is an external Slack [30] interface script

interacting with REST services provided by Cloud Hopper. It offers interactive

operations such as listing, creation, and deletion of resources using Slack Channel

interface.

 Usage alerts – Alerts are configured with an external SMTP service such as Mailgun

[31] to send timely alerts to the intended user regarding the status of the scheduled

tasks and the resource usage.

18

4.3 Architecture

Figure 4.1 Cloud Hopper Framework

The architecture of Cloud Hopper is a three-layered Model, View, and Template

(MVT). Fig. 4.1 illustrates the framework and the related functional components of cloud

hopper. Cloud Hopper is comprised of the following components:

19

4.3.1 Web-based user interface

The web-based user interface accepts inputs from the user, makes a REST

request to the Django REST API for processing and provides the output on the

dynamically rendered web pages. In Cloud Hopper, jQuery AJAX calls are made to

interact with the Django REST APIs. Validations are also done on the front end to avoid

the incorrect inputs from the user.

4.3.2 Slack Bot

The slack bot is a user-friendly interface built on Slack APIs to interact with the

REST services offered by the Django REST. Although, it provides limited operations as

compared to the web-based user interface, it is very useful and requires very less

learning curve. It is controlled programmatically through some scripts for specific tasks

which interacts with the user inputs.

4.3.4 Django Server

 Django server is the application server for Cloud Hopper. It provides APIs using

Django REST to the front-end and responds to the request and delivers the content of

the page back to the user.

4.3.5 Django REST

Django REST framework is a powerful and flexible toolkit for building Web APIs.

20

Following are the features provided by Django REST framework:

 It provides API explorer for easier management of REST calls.

 It has built in support for authentication packages such as OAuth1a and OAuth2.

 It also offers Serialization that supports both ORM and non-ORM data sources.

 Highly customizable function-based views help developers in easier design of REST

API.

 It provides extensive documentation, and great community support.

 It is been used and trusted by internationally recognized companies including

Mozilla, Red Hat, Heroku, and Eventbrite [45].

4.3.6 Celery

Celery is an asynchronous task/job queue that is built on message passing

system and can be used for scheduling as well. By implementing celery, one can offload

tasks to it and continue to execute and function responsively. In this way, the

responsiveness of system can be increased and not get locked up while performing long-

running tasks. Cloud Hopper uses celery for scheduling of the tasks which user want to

run at a particular point in time.

It is tightly coupled with the Django REST APIs that passes the values or the

parameters for the tasks or the execution units that are to be scheduled at a time and

date. It can also be used to design workflows. Cloud Hopper uses chaining functionality

of Celery for workflows that can be used to link tasks also referred as adding a callback

task [32]. The linked task runs with the results of the parent task as its first parameter. In

http://www.django-rest-framework.org/api-guide/authentication/#django-rest-framework-oauth
http://www.django-rest-framework.org/api-guide/authentication/#django-oauth-toolkit
http://www.django-rest-framework.org/api-guide/serializers#modelserializer
http://www.django-rest-framework.org/api-guide/serializers#serializers
http://www.django-rest-framework.org/
https://groups.google.com/forum/?fromgroups#!forum/django-rest-framework
http://www.mozilla.org/en-US/about/
https://www.redhat.com/
https://www.heroku.com/
https://www.eventbrite.co.uk/about/

21

the case of Cloud Hopper, a workflow can be designed with a series of prioritized tasks.

Once the execution of the first task is successful, then only the next linked task runs with

the output of the parent task. For instance, if a user wants to schedule termination of an

EC2 instance which is no more in use which incurring a cost to the user. If it has some

important files and folders stored in it which the user wants to archive and store them in

his/her Dropbox account before deleting the instance. In that case, the user can design

a workflow in the following manner:

Compress the required files and folder on the instance. Create a folder or use an existing

location on Dropbox. Move the compressed files to Dropbox. And finally, terminate the

EC2 instance. Celery Chain is used to implement all the tasks mentioned above in a

series.

22

4.3.6.1 Celery Architecture

Figure 4.2 Celery Architecture [33]

Celery architecture is designed to scale and distribute tasks across several

servers. The client components, as presented in the Fig. 4.2, have the function of

creating and dispatching tasks to the brokers.

4.3.7 Libraries

 The main libraries make the backbone of Cloud Hopper are explained below:

23

4.3.7.1 cloud_resource_lib

cloud_resource_lib is a major component of Cloud Hopper. It contains modules

that provide access to the functionalities of various services provided by multiple cloud

providers by providing an abstraction layer to all the cloud providers.

4.3.7.2 Ansible Library

Ansible library is a group of various Ansible modules. Ansible gives a provision

to custom design modules which can be used to leverage the functionalities of several

services [34]. Each module is a standalone and reusable script used by Ansible API and

playbook programs.

For Cloud Hopper, multiple modules are written to interact with the services like

Dropbox, Google Cloud Storage and Google Drive.

4.3.7.3 Notification Driver

 This driver is used to send the usage alerts to the users through emails. The

tasks statuses are emailed to the users promptly so that users can take appropriate

actions.

4.3.8 Redis

Redis [35] is being used as a message broker by celery and is tightly coupled

with it. It has been used as a communication system in Cloud Hopper. The tasks created

24

to be scheduled by celery are queued in the Redis database which are picked up by the

brokers for their execution.

4.3.9 MongoDB

MongoDB [36] is a NoSQL database that uses key/value pairs approach to store

the data. Cloud Hopper uses this primarily to log the tasks that were being scheduled to

run at some particular time. Each task has a lifecycle of four states: accepted, scheduled,

active and completed. When the Django REST API receives the task, the status is set

as ‘Accepted’ and is sent to celery for scheduling. Once it reaches celery, it is scheduled

to run at a particular time, and the status is changed to ‘Scheduled’. The moment task

starts running; the status changes to ‘Active’. Finally, when the task is complete, status

becomes ‘Completed’. Apart from this, when the task does not run correctly or stops

abruptly due to some known or unknown reasons, the status changes to ‘Error’.

All these transitions are saved in the MongoDB collection along with many other

details to keep track of the tasks.

4.3.10 Ansible Tool

Ansible is a powerful IT automation tool that automates application deployment,

configuration management, cloud provisioning, intra-service orchestration. It can also be

used for multi-cloud provisioning. Ansible provides Playbooks that are Ansible’s

configuration, deployment, and orchestration language [37]. The modules in the Ansible

library are executed directly on remote or through Playbooks [34].

25

Figure 4.3 Archiving Flow Diagram

Cloud Hopper uses Ansible for archiving the files and folders from a compute

instance such as AWS EC2, and Google Compute instance to storage services such as

AWS S3, Google cloud storage, Dropbox & Google Drive. During the archiving process,

Ansible API is being triggered with the SSH key of the virtual machine fetched from the

key store. Ansible connects to the machine and compress the files and push them to the

selected storage services. An illustration of the flow of archiving is shown in Fig. 4.3. In

this way, the documents can be moved around from one cloud provider to another cloud

provider or any other storage service provider with the help of Ansible.

26

4.3.11 Mailgun

 Mailgun [39] is an SMTP [38] service which is used to send alerts through the

emails. The notification driver interacts with Mailgun which fetches the statuses from the

server and transfer them to the Mailgun which are finally sent to the intended users.

4.4 Packages

Figure 4.4 cloud_resource_lib package

The cloud_resource_lib package as shown in Fig. 4.4 provides an abstraction

layer to the cloud service providers. The package contains sub-packages and modules

that provide access to the functionalities of services offered by different cloud service

providers.

This package has auth, iaas and saas sub-packages and their modules:

27

4.4.1 iaas

Figure 4.5 iaas sub-package

This module provides the features of Infrastructure as a Service and provides the

infrastructure components such as compute and storage. The module further comprised

of sub-packages named ‘compute’ and ‘storage’ as shown in Fig. 4.5.

- compute: This package has modules of compute services such as AWS EC2 and

Google Cloud Compute offered by cloud providers such as AWS and Google

respectively that inherit and override the functions of compute from their abstract

classes.

- storage: This package has modules of storage such as AWS S3 and Google Cloud

Storage offered by IaaS cloud providers which inherits and override the functions of

storage from their abstract classes.

28

4.4.2 saas

Figure 4.6 saas sub-package

This package provides the features of Software as a Service and further contains

modules for each type of SaaS service providers such as Dropbox and Google Drive as

depicted in Fig. 4.6. These modules inherit and override the functions of an abstract

class of saas module.

4.4.3 auth

This package has modules which are used to handle the access key and tokens

of the cloud service providers. The modules of each cloud provider inherit the functions

of the abstract class defined in the ‘auth’ module. These functions provide easy access

to manage the access key and tokens for the various cloud providers and multiple

accounts.

29

4.4.4 cloud_service_factory

This class is an implementation of factory pattern. It introduces an abstraction

layer over the modules of iaas, saas, and auth packages and provides cloud specific API

objects on request.

4.5 Classes

This section discusses the classes that are being used in the Cloud Hopper

framework with the help of class diagrams.

30

4.5.1 vm_service class

Figure 4.6 vm_service class diagram

vm_service is an abstract class for compute services which indicate that the

methods mentioned in the UML representation of the vm_service class in Fig. 4.6 are

abstract methods. The two child classes of AWS_EC2 and Google_Cloud_Compute

each implement their own version of the abstract methods. Moreover, the inherited

classes have their own methods and attributes.

31

4.5.2 iaas_storage_service class

Figure 4.7 iaas_storage_service class diagram

iaas_storage_service is an abstract class for storage services offered by IaaS

service providers. The UML representation of the class in Fig. 4.7 indicates the abstract

methods. The two child classes of AWS_S3 and Google_Cloud_Storage each

implement their own version of the abstract methods. These inherited classes have their

own additional methods and attributes.

32

4.5.3 saas_storage class

Figure 4.8 saas_storage_service class diagram

saas_storage_service is an abstract class for storage services offered by SaaS

service providers such as Dropbox and Google Drive. Fig. 4.8 shows the UML

representation of the saas_storage_class and its abstract methods. The two child

classes of Dropbox and Google_Drive each implement their own version of the abstract

methods. Moreover, these inherited classes have their own attributes and methods.

33

4.6 Database Structure

 This section depicts the database design of the Cloud Hopper. The NoSQL

database, MongoDB has been used to store and maintain the data. The reason behind

using MongoDB as the database is that it provides high performance, high availability,

and automatic scaling [40]. Data in MongoDB has a flexible schema. It is stored in a

JSON-like object in field and value format data model. Three main collections are being

used to store the credentials, data of tasks and the workflow data. These collections are

authentication, scheduled_tasks, and workflow respectively. Each of the collections is

explained in the following sections:

4.6.1 authentication Collection

Figure 4.9 authentication schema

34

This collection is used to store the access keys and secret keys in a secure

manner. Fig. 4.9 shows the schema of authentication collection. ‘chId’ and ‘chUsername’

fields of each document are used to store the login credentials of the Cloud Hopper

application. ‘credentials’ field is an embedded sub-document that further contains sub-

documents in the form of arrays. They store the access keys and secret keys of each

account and follows ‘One-to-Many’ relationship model. Before storing these credentials,

they are being encrypted by AES 256 bit and 32-bit block algorithm. Further, when the

credentials are retrieved from the database, they are decrypted and then used.

35

4.6.2 scheduled_tasks Collection

Figure 4.10 scheduled_tasks schema

This collection is being used for storing each task’s details. Most of the fields

shown in the Fig. 4.10 of scheduled_tasks schema shows the fields that are related to a

resource. All the details of each resource that has been scheduled along with the

timestamp for which the task has been scheduled to run and their statuses are saved.

Snapshots of the details of the task are stored each time the status of the task changes.

36

The ‘task_status’ and ‘archive_parameters’ are the sub-fields. The ‘task_status’ field

uses ‘One-to-Many’ relationship with the ‘status’ documents of the task.

‘archive_parameters’ uses ‘One-to-One’ relationship model which stores the details of

the archiving task.

4.6.3 Workflow Collection

Figure 4.11 workflow collection schema

This collection has been used to store the details of the scheduled workflows. All

the tasks under a workflow are grouped under a ‘group_id’ field. The ‘task_list’ field of

37

each group follows the ‘One-to-Many’ relationship model and contains the array of

dictionaries. Each dictionary consists of all the details of each task along with their

statuses and their timestamps at which they change as can be seen in the Fig. 4.11.

38

CHAPTER 5

IMPLEMENTATION

 In this chapter, we will discuss the implementation of the architecture presented

in the previous chapter. The application can be either hosted on local environment or on

the public cloud. For our experiments, application is hosted on the local environment. A

Mongo DB server was installed on the AWS EC2 instance. Below section gives an

overview of few main screens of the application.

5.1 Screenshots

5.1.1 Dashboard

Figure 5.1 Dashboard Screen

39

Fig. 5.1 depicts the dashboard of the application that is designed to show the

number of resources in use and their usage in the last seven days. Also, it shows the

number of tasks scheduled and completed.

5.1.2 Key Store

Figure 5.2 Key Store Screen

 Fig. 5.2 illustrates the functionality of key store where one can upload, edit, and

delete the key details.

40

5.1.3 Resource Manager

Figure 5.3 Resource Manager

 As can be seen in the Fig. 5.3, resource manager screen shows the details of the

resources in use along with the scheduling and archiving provision.

41

5.1.4 Scheduled Tasks

Figure 5.4 Scheduled Tasks Screen

 Scheduled Tasks screen presents user the details about the tasks that are

being scheduled and the tasks that are being triggered and are in active state. It also

gives the ability to the user to delete the task at any point of time. Fig. 5.4 gives an

overview of the screen.

42

5.1.5 Schedule New Tasks

Figure 5.5 Schedule New Tasks Screen

 When a new task is to be created, and scheduled, it can be done from the

Schedule New Tasks screen as shown in the Fig. 5.5.

43

5.1.6 Workflows

Figure 5.6 Workflows Screen

 As depicted in the Fig. 5.6, this screen can be used to create a workflow which is

a series of tasks to be run in an order. These workflows can also be scheduled and the

details of each workflow are presented in a tabular form

44

5.1.7 Pricing

Figure 5.7 Pricing Screen

 The pricing screen as shown in the Fig. 5.7 gives user an idea of the prices of

the different services offered by the cloud providers.

45

5.1.8 Slack Bot

Figure 5.8 Slack Bot Screen

Fig. 5.8 illustrates the Slack Bot interface.

5.1.9 Alerts

Figure 5.9 Alerts Screen

46

Fig. 5.9 shows an example of the email alert triggered by Mailgun through Cloud

Hopper regarding a task completion to the user.

47

CHAPTER 6

PRICE ANALYSIS

6.1 Compute prices comparison and analysis

These days, companies who are using cloud services do not want to dump all

the workload of multiple services to a single cloud provider, rather, they try to distribute

the work on multiple clouds as per the providers who are offering most efficient services

and for the best prices. Keeping that in mind, in this thesis, research on the prices of

various services provided by some IaaS and SaaS cloud players is done.

Instance
Type

AWS
Instance

Type

Hourly
$

Monthly
$

Google Cloud
Platform

Instance Type

Hourly
$

Monthly
$

1 core, 3.75
GB memory

m3.medium 0.067 48.91 n1-standard-1 0.036 25.95

2 core, 7.5
GB memory

m3.large 0.133 97.09 n1-standard-2 0.071 51.5

4 core, 15
GB memory

m3.xlarge 0.266 194.18 n1-standard-4 0.141 102.6

8 core, 30
GB memory

m3.2xlarge 0.532 388.36 n1-standard-8 0.281 204.8

Table 6.1: AWS vs. GCP compute pricing

48

The comparison of the monthly cost of various instance types of AWS and GCP

is shown in the Table. 6.1. The AWS pricing data is collected from Amazon EC2 Pricing

webpage [41]. And for Google Cloud Platform, it is obtained from Google Cloud Platform

developer’s console after logging into its console and choosing the compute services

[42]. All the comparisons are made for the image type as ‘Linux’, instance types of the

region ‘US West’, specifically, for AWS, it is ‘us-west-1 (Oregon)’, and for GCP, it is ‘us-

west1-a’. The monthly cost is calculated for a total of 730 hours.

The cost comparison Table. 6.1 gives the glimpse of monthly costs incurred for

one virtual machine of some instance types for AWS and GCP. Now, if we see it as a

big picture and consider a scenario where in a company, out of 500 virtual machines of

‘Linux’ image type and region as ‘us-west-1’ are in running state. Out of them, 80 AWS

machines of instance type ‘m3.large’ are of no use and are still running without being

monitored. Those machines if left running for a month will cost total:

Total unused VMs x Cost of each instance type = Total cost of the unused VMs

80 x 97.09 (in USD) = 7767.2 (in USD)

The total cost of 500 VMs would have been:

 Total VMs x Cost of each instance type = Total cost of the VMs

500 x 97.09 (in USD) = 48545 (in USD)

Above calculations show that if the 80 needlessly provisioned or over-provisioned

machines are terminated, it reduces the cost by up to 16% per month.

49

Let us take another scenario, where there are total 500 AWS virtual machines

created by a company. Out of them, 300 are of instance type ‘m3.medium’ and rest 200

are of instance type ‘m3.2xlarge’. From these 500 VMs, let us consider 100 VMs of

‘m3.medium’ type and 70 VMs of ‘m3.2xlarge’ are in running state and are no longer

being used. The total monthly cost of these VMs will be:

For ‘m3.medium’ instance type:

 Total unused VMs x Cost of each instance type = Total cost of the unused VMs

100 x 48.91 (in USD) = 4891 (in USD)

For ‘m3.2xlarge’ instance type:

Total unused VMs x Cost of each instance type = Total cost of the unused VMs

70 x 388.36 (in USD) = 27185.2 (in USD)

Total cost = 4891 + 27185.2 = 32076.2 (in USD)

The above results show the total amount which a company is losing on the unused VMs.

In this scenario, the total cost of all the VMs for a month would have been:

 Total VMs x Cost of each instance type = Total cost of the VMs

300 x 48.91 (in USD) = 14673 (in USD)

200 x 388.36 (in USD) = 77672 (in USD)

Total = 79135 (in USD)

If the 170 (100 +70) unused machines are managed properly, then the company would

save up to 41.29 %.

50

If we consider another scenario where a company has 300 VMs on AWS, each

of ‘Linux’ operating system image and the region as ‘us-west-1’. Out of them, 200 are of

‘m3.medium’ type and 100 are of ‘m3.2xlarge’ type. Also, it has 200 VMs on GCP, each

of ‘Linux’ image, region as ‘us-west1-a’ and ‘n1-standard-8’ instance type. Out of the 300

AWS VMs, 100 of ‘m3.medium’ type and 50 ‘m3.2xlarge’ are no more in use. Out of 200

GCP VMs, 100 are of no use and are in running state. In this scenario, the total monthly

cost for these VMs will be:

AWS VMs:

 Total unused VMs x Cost of each instance type = Total cost of the unused VMs

100 x 48.91 (in USD) = 4891 (in USD)

50 x 388.36 (in USD) = 19418 (in USD)

GCP VMs:

Total unused VMs x Cost of each instance type = Total cost of the unused VMs

100 x 204.8 (in USD) = 20480 (in USD)

Total cost = 4891 + 19418 + 20480 = 44789 (in USD)

The above scenarios show the extra cost which companies are paying per month. If the

third scenario is considered for six months, then the total amount the company is losing

will be:

Total cost = 6 x 44789 = 268734 (in USD)

The total cost of 500 VMs, some on AWS and some on GCP would have been:

51

AWS VMs:

 Total VMs x Cost of each instance type = Total cost of the VMs

200 x 48.91 (in USD) = 9782 (in USD)

100 x 388.36 (in USD) = 38836 (in USD)

GCP VMs:

 Total VMs x Cost of each instance type = Total cost of the VMs

200 x 204.8 (in USD) = 40960 (in USD)

Total = 89578 (in USD)

The total cost which could be saved on these unmanaged and over-provisioned VMs

would be up to 50% a month which is a huge saving for any company. Thus, if these

resources are managed properly, they can help in maintaining the budgets of a company.

Moreover, the Table. 6.1 can also be used to compare the VM prices on AWS

and GCP. It will help in deciding on the economic options for the company or a user

which ultimately will assist in keeping the budgets stable for them.

52

6.2 IaaS Storage prices comparison and analysis

Standard
Storage

Standard - Infrequent Access
Storage

Glacier
Storage

First 1 TB / month $0.0300 per
GB

$0.0125 per GB $0.007 per
GB

Next 49 TB / month $0.0295 per
GB

$0.0125 per GB $0.007 per
GB

Next 450 TB / month $0.0290 per
GB

$0.0125 per GB $0.007 per
GB

Next 500 TB / month $0.0285 per
GB

$0.0125 per GB $0.007 per
GB

Next 4000 TB /
month

$0.0280 per
GB

$0.0125 per GB $0.007 per
GB

Over 5000 TB /
month

$0.0275 per
GB

$0.0125 per GB $0.007 per
GB

Table 6.2: AWS S3 pricing

53

Table. 6.2 illustrates the pricing of AWS S3 storage for ‘US West (Oregon)’ region

(as per 11/5/2016). Monthly bill can be estimated by using it.

Multi-Regional
Storage

(per GB per Month)

Regional Storage
(per GB per

Month)

Nearline Storage
(per GB per

Month)

Coldline Storage
(per GB per

Month)

$0.026 $0.02 $0.01 $0.007

Table 6.3: GCP storage pricing

Table. 6.3 gives the pricing of GCP storage (as per 11/5/2016). Both tables are

being used for price comparison of the storage services offered by the different cloud

service providers which will be helpful in deciding on the economical options.

6.3 SaaS Storage prices comparison and analysis

Till now, we analyzed and compared the prices of IaaS (Infrastructure as a

Service) such as compute and storage provided by AWS and GCP. Let us analyze the

pricing of some SaaS (Software as a Service) providers such as Dropbox and Google

Drive.

54

Figure 6.1 Dropbox pricing

Fig. 6.1 gives the overview of pricing for personal or a business account for a

month (as per 11/6/2016). And, Fig. 6.2 presents the pricing on a Google Drive account

for a month.

55

Figure 6.2 Google Drive Pricing

Let us consider a scenario where a company has some over-provisioned VMs

which are of no use and are costing unnecessary. The company wants to terminate them.

But those machines have some of the important files and folders which need to be

archived before the machines are put down. Cloud Hopper provides a provision to

archive the directories and documents either to the IaaS services such as AWS S3,

Google Cloud Storage or PaaS services such as Dropbox and Google Drive and even

on the local machine on few clicks of buttons through a simple user interface. Let us

calculate and compare the pricing of 1TB storage for a month on the below-mentioned

service providers. First, let us take IaaS services:

56

AWS S3: (for standard storage and location US West (Oregon))

Cost for 1TB a month:

0.0300 (in USD) x 1024 GB = 30.72 (in USD)

GCP Storage: (for regional storage)

Cost for 1TB a month:

0.02 (in USD) x 1024 GB = 20.48 (in USD)

GCP storage comes out to be a cheaper option to choose among IaaS based storage

services. AWS also charges for Request Pricing and Data Transfer Pricing [43]. So, the

AWS S3 final price goes even higher.

Now, let us do the similar cost comparison for SaaS-based storage services:

Dropbox:

If we choose the business account for a user, Dropbox charges $12.50 for

unlimited storage for a month.

Cost for a month:

12.50 (in USD)

Google Drive:

Cost for 1TB a month:

9.99 (in USD)

57

Thus, since we have more affordable and cheaper options for storage, a

company sticking to only IaaS services can even move on with the above described

SaaS services and can cut down on the sprawling costs on these storage services.

As per the VMware whitepaper on ‘controlling virtual machine sprawling’ [44],

below three scenarios are shown on the virtual machines, which gives some statistics

that shows how companies can save a lot of amount on over-provisioned, under-used or

temporary virtual machines.

Scenario 1: A typical company with 1,000 virtual machines—with 5 percent of

machines created without proper business justification and another 5 percent over-

provisioned—could easily save over USD $100,000 to USD $150,000 in capital

expenditures through better control of the front-end provisioning process. By delivering

the right sized machine at the right service level, companies can eliminate waste,

improve resource utilization, and lower costs [44].

Scenario 2: A typical company with 1,000 virtual machines that have five percent

of its machines used for temporary applications can expect to save approximately USD

$60,000 to USD $70,000 by automating the reuse of leased machines. Environments

such as development and testing, which have a larger need for temporary machines,

can expect even greater savings [44].

Scenario 3: A typical company with 1,000 virtual machines and 10 percent of its

resources consumed by inactive and abandoned virtual machines can expect to save

between USD $80,000 and USD $100,000 on capital expenditures annually [44].

58

CHAPTER 7

EXPERIMENTS AND RESULTS

This chapter discusses the experiments and comparisons done that are used to

analyze the performance of various services offered by multiple cloud service providers.

The details of the experiments are discussed in each of the below sections.

7.1 Experimental Setup

The experiments were performed using the below configurations:

 Programming language: Python 2.7

 Framework: Django, Django REST, Celery 4.0

 Database: MongoDB 3.4, Redis 2.10.5

 Cloud Platforms: Amazon Web Services, Google Cloud Platform

 DevOps: Ansible 2.2

 Network upload speed: 70 Mbps

 Host location: US Central

7.2 AWS Compute Experiments

This section shows the performance analysis of creation, deletion, and listing of

various instances on AWS in different US regions. The experiments 1, 2 and 3 were

conducted on the ‘Ubuntu 14.0’ virtual machine of ‘t2.micro’ type, on ‘AWS’ in all the US

59

regions (except for US-East-2 (Ohio)) that include ‘US-West-1 (N. California)’, ‘US-West-

2 (Oregon)’ and ‘US-East-1 (N. Virginia)’.

Experiment 1: EC2 instance creation time comparison across the US regions

Figure 7.1 EC2 Instance creation time comparison

In this experiment, through Cloud Hopper, a machine with the configurations

mentioned in the beginning were created eight times in each US region and the time of

creation of each machine was recorded. Fig. 7.1 shows the time taken to create eight

EC2 instances.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

Ti
m

e
 (

in
 s

e
co

n
d

s)

No. of Times

EC2 Instance Creation Time Comparison

US-West-1 US-West-2 US-East-1

60

Figure 7.2 Average time for AWS EC2 instance creation

Fig. 7.2 shows the average time taken to create an EC2 instance across the US

regions. It can easily be deduced that time taken to create an instance is least in ‘US-

West-1’ region followed by ‘US-West-2’ and the region ‘US-East-1’ took the maximum

time. Thus, it shows that it is faster to create an instance in ‘US-West-1’ region

61

Experiment 2: EC2 instance deletion time comparison across US regions

Figure 7.3 EC2 Instance deletion time comparison

 Fig. 7.3 shows the time taken to delete eight EC2 instances across US regions

and which are in ‘active’ or ‘stopped’ state. We can see that deletion time was almost the

same for each instance in ‘US-West-1’ region.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8

Ti
m

e
 (

in
 s

e
co

n
d

s)

No. of Times

EC2 Instance Deletion Time Comparison

US-West-1 US-West-2 US-East-1

62

Figure 7.4 Average time for AWS EC2 instance deletion

Fig. 7.4 depicts the average time taken to delete an instance across the US

regions. It can easily be deduced that time taken to delete an instance is least in ‘US-

West-1’ region followed by ‘US-East-1’ and the ‘US-West-2’ region took the maximum

time. So, it shows that it is faster to delete the instance in ‘US-West-1’ region.

63

Experiment 3: EC2 instances listing time comparison across US regions

Figure 7.5 EC2 instances listing time comparison

In this experiment, listing times of 10 instances in each US region were recorded.

The listing was done ten times for each region. Fig. 7.5 shows the time taken to list ten

instances ten times and in whichever state they are. We can deduce that listing time was

highest for ‘US-West-2’ region.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

Ti
m

e
 (

in
 s

e
co

n
d

s)

No. of Times

EC2 Instances Listing Time Comparison

US-West-1 US-West-2 US-East-1

64

Figure 7.6 Average time for AWS EC2 instance listing

Fig. 7.6 illustrates the average time taken to list ten instances in the US regions.

‘US-East-1’ took the least time to list the instances.

From experiments 1, 2 and 3, we can deduce that creation and deletion of an

instance is faster if it is done in ‘US-West-1’ region and listing of instance is faster in ‘US-

East-1’ region on AWS when the Cloud Hopper is hosted in US central location. So,

using ‘US-West-1’ to maintain an instance is a better deal when the application is hosted

in US central location.

7.3 Google Cloud Compute Experiments

This section shows the performance analysis of creation, deletion, and listing of

various instances on GCP in different US regions. The experiments 4, 5 and 6 were

65

conducted on the ‘Ubuntu 14.0’ virtual machine of ‘n1-standard-1’ type, on ‘Google Cloud

Platform’ in all the US regions that include ‘us-west1-a’, ‘us-west1-b’, ‘us-central1-a’, ‘us-

central1-b’, ‘us-central1-c’, ‘us-central1-f’, ‘us-east1-b’, ‘us-east1-c’ and ‘us-east1-d’.

Experiment 4: Instance creation time comparison across the regions of United States

Figure 7.7 Google Cloud instance creation time comparison

In this experiment, through Cloud Hopper, a machine with the configurations

mentioned in the beginning were created eight times in each US region and the time of

creation of each machine was recorded. Fig. 7.7 shows the time taken to create 8 EC2

instances in all the US regions.

00:00.0

00:43.2

01:26.4

02:09.6

02:52.8

03:36.0

1 2 3 4 5 6 7 8

Ti
m

e
 (

in
 m

in
u

te
s)

No. of Times

Google Cloud Instance Creation Time Comparison

us-central1-a us-central1-b us-central1-c us-central1-f us-east1-b

us-east1-c us-east1-d us-west1-a us-west1-b

66

Figure 7.8 Average time for Google Cloud instance creation

Fig. 7.8 shows the average time taken to create an instance across the US

regions. It indicates that time taken to create an instance is least in ‘us-east1-c’ while

region ‘us-east1-d’ took the maximum time. Thus, it can be deduced that it is faster to

create an instance in ‘us-east1-c’ region when the Cloud Hopper application is hosted in

US Central region.

67

Experiment 5: Google Cloud instance deletion time comparison across US regions

Figure 7.9 Google Cloud instance deletion time comparison

Fig. 7.9 shows the time taken to delete eight instances across US regions and

which are in ‘active’ or ‘stopped’ state.

00:00.0
00:08.6
00:17.3
00:25.9
00:34.6
00:43.2
00:51.8
01:00.5
01:09.1
01:17.8

1 2 3 4 5 6 7 8

Ti
m

e
 (

in
 m

in
u

te
s)

No. of Times

Google Cloud Instance Deletion Time Comparison

us-central1-a us-central1-b us-central1-c us-central1-f us-east1-b

us-east1-c us-east1-d us-west1-a us-west1-b

68

Figure 7.10 Average time for Google Cloud instance deletion

Fig. 7.10 depicts the average time taken to delete an instance across the US

regions. It can easily be deduced that time taken to delete an instance is least in ‘us-

east1-c’ region and the ‘us-central1-c’ region took the maximum time. So, it shows that

it is faster to delete the instance in ‘us-east1-c’ region.

69

Experiment 6: Google Cloud instances listing time comparison across US regions

Figure 7.11 Google Cloud instances listing time comparison

In this experiment, listing times of 10 instances in each US region were recorded.

The listing was done ten times for each region. Fig. 7.11 shows the time taken to list ten

instances ten times and in each of the US region.

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

Ti
m

e
 (

in
 s

e
co

n
d

s)

No. of Times

Google Cloud Instance Listing Time Comparison

us-central1-a us-central1-b us-central1-c us-central1-f us-east1-b

us-east1-c us-east1-d us-west1-a us-west1-b

70

Figure 7.12 Average time for Google Cloud instance listing

Fig. 7.12 shows the average time taken to list ten instances in the US regions.

‘us-east1-c’ took the least time to list the instances.

From experiments 4, 5 and 6, we can deduce that creation, deletion, and listing

of an instance is faster if it is done in ‘us-east1-c’ region on Google Cloud Platform when

the Cloud Hopper is hosted in US central location. So, using ‘us-east1-c’ to maintain an

instance is a better deal when the application is hosted US central location.

7.4 GCP vs. AWS Compute Experiments

In this section, a time comparison of creation, deletion, and listing of various

instances on AWS and GCP in one US regions is done. The experiments 7, 8 and 9

shows this comparison in the coming sections. To conduct the experiments, for AWS,

71

the ‘Ubuntu 14.0’ virtual machines of ‘t2.micro’ type, in the ‘US-West-1’ region were taken

and for GCP, ‘Ubuntu 14.0’ virtual machines of ‘n1-standard-1’ type in ‘US-West1-a’ were

taken.

Experiment 7: AWS EC2 and GCP instance creation time comparison

Figure 7.13 AWS EC2 and GCP instance creation time comparison

This experiment was conducted to record the creation times of 8 instances on

the AWS EC2 and GCP. Fig. 7.13 clearly shows that creating an instance on AWS EC2

was always faster as compared to on GCP Compute.

00:00.0

00:43.2

01:26.4

02:09.6

02:52.8

03:36.0

1 2 3 4 5 6 7 8

Ti
m

e
 (

in
 m

in
u

te
s)

No. of Times

Time comparison of instance creation between AWS EC2 and Google Cloud
Compute

AWS EC2 Google Cloud Compute

72

Figure 7.14 Average time for instance creation on AWS EC2 and GCP

 Fig. 7.14 illustrates the average time taken to create an instance on AWS EC2

and GCP Compute. While it took average 2 minutes and 18 seconds to create an

instance in ‘US-West1-a’ on Google Cloud Compute, it took only 23 seconds on AWS in

‘US-West-1’ region, when the application is hosted in US Central region. Thus, we can

deduce that creating an instance on AWS is way faster than creating on GCP.

00:23.0

02:18.9

00:00.0

00:17.3

00:34.6

00:51.8

01:09.1

01:26.4

01:43.7

02:01.0

02:18.2

02:35.5

Ti
m

e
 (

in
 m

in
u

te
s)

Service Providers

Average time taken to create an instance

AWS EC2 Google Cloud Compute

73

Experiment 8: AWS EC2 and GCP instance deletion time comparison

Figure 7.15 AWS EC2 and GCP instance deletion time comparison

This experiment was conducted to record the deletion times of 8 instances on the

AWS EC2 and GCP. From Fig. 7.15, we can see that in all the cases apart from one, the

time taken to delete an instance is almost same on both AWS and GCP.

00:00.0

00:43.2

01:26.4

02:09.6

02:52.8

03:36.0

04:19.2

1 2 3 4 5 6 7 8

Ti
m

e
 (

in
 s

e
co

n
d

s)

No. of Times

Time comparison of instance deletion between AWS EC2 and Google Cloud
Compute

AWS EC2 Google Cloud Compute

74

Figure 7.16 Average time for instance deletion on AWS EC2 and GCP

When the average deletion times for an instance on AWS and GCP were

calculated, though deletion time was faster on GCP, there was not much difference

between both AWS and GCP. Fig. 7.16 depicts the comparison.

01:11.1

00:47.9

00:00.0

00:08.6

00:17.3

00:25.9

00:34.6

00:43.2

00:51.8

01:00.5

01:09.1

01:17.8

Ti
m

e
 (

in
 m

in
u

te
s)

Service Providers

Average time taken to delete an instance

AWS EC2 Google Cloud Compute

75

Experiment 9: AWS EC2 and GCP instance listing time comparison

Figure 7.17 AWS EC2 and GCP instance listing time comparison

This experiment was conducted to record the listing times of 10 instances on the

AWS EC2 and GCP. This experiment was run ten times. From Fig. 7.17, we can see that

in all the cases, the time taken to list instances was very less on AWS as compared to

GCP.

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

Ti
m

e
 (

in
 s

e
co

n
d

s)

No. of Times

Time comparison of instances listing between AWS EC2 and Google Cloud
Compute

AWS EC2 Google Cloud Compute

76

Figure 7.18 Average time for instance listing on AWS EC2 and GCP Compute

When the average listing times for an instance on AWS and GCP were

calculated, listing on AWS was very fast as compared to instance on GCP. Fig. 7.18

depicts the comparison.

So, from the experiments 7, 8 and 9, we can deduce that creation and listing

times for instance was faster on AWS and the deletion time was comparatively same on

both AWS and GCP when the application is hosted in US Central region, a user can opt

for AWS platform to save execution time.

0.7625919

5.3529633

0

1

2

3

4

5

6

Ti
m

e
 (

in
 m

in
u

te
s)

Service Providers

Average time taken to list an instance

AWS EC2 Google Cloud Compute

77

7.5 Storage Experiments

This section shows the performance analysis of creation, deletion, and listing of

buckets on AWS S3 and GCP storage. The experiments 10, 11 and 12 give an overview

of each experiment.

Experiment 10: Time comparison to create buckets on AWS S3 and Google Cloud

Storage

Figure 7.19 Time taken to create buckets on AWS S3 and GCP Storage

This experiment was conducted by creating ten buckets on each of AWS and

GCP storages. The creation time of each bucket was recorded and plotted on a graph

to see the difference in the bucket creation times on both AWS and GCP. Fig. 7.19 shows

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10

Ti
m

e
 (

in
 s

e
co

n
d

s)

No. of Times

Storage Creation Time Comparison

AWS S3 Google Cloud Storage

78

the comparison and portrays that the creation time of bucket was almost constant for

GCP and less than AWS.

Figure 7.20 Average time for creating a bucket on AWS S3 and GCP Storage

Fig. 7.20 shows the average time taken to create a bucket on AWS S3 and GCP

Storage. Thus, it shows that it is faster to create a bucket on GCP as compared to AWS.

79

Experiment 11: Time comparison to delete buckets on AWS S3 and Google Cloud

Storage

Figure 7.21 Time taken to delete buckets on AWS S3 and GCP Storage

 In this experiment, a comparison of time taken to delete ten buckets on AWS S3

and GCP storage is done whose results are depicted in the Fig. 7.21. From the figure, it

can easily be deduced that deletion of bucket took almost constant time every time on

GCP storage. Also, the deletion was faster on GCP as compared to GCP every time.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10

Ti
m

e
 (

in
 s

e
co

n
d

s)

No. of Times

Storage Deletion Time Comparison

AWS S3 Google Cloud Storage

80

Figure 7.22 Average time for deleting a bucket on AWS S3 and GCP Storage

Fig. 7.22 shows the average time taken to delete a bucket on AWS S3 and GCP

Storage. It demonstrates that it is faster to delete a bucket on GCP as compared to AWS.

81

Experiment 12: Comparison of time to list buckets on AWS S3 and Google Cloud Storage

Figure 7.23 Time taken to list buckets on AWS S3 and GCP Storage

 In this experiment, a comparison of time taken to list ten buckets ten times on

AWS S3 and GCP storage is done whose results are depicted in the Fig. 7.23. From the

figure, we can observe that listing of buckets on AWS S3 was constant and for GCP

storage also it was almost constant except at one instance. Also, the time taken on both

the service providers was very similar.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Ti
m

e
 (

in
 s

e
co

n
d

s)

No. of Times

Storage Listing Time Comparison

AWS S3 Google Cloud Storage

82

Figure 7.24 Average time for listing buckets on AWS S3 and GCP Storage

Fig. 7.24 shows the average time taken to list ten buckets on AWS S3 and GCP

Storage. Both the service providers took time in the range of 3-4 seconds.

From the experiments 10, 11 and 12 we can see that performance of GCP

storage was better than AWS S3 on the basic create, delete and list operations on

buckets. If given a choice between AWS S3 and GCP storage, it would be better to select

GCP storage while taking the time taken for each operation and the application being

hosted in US Central region.

7.6 Archiving Experiments

 This section shows the performance analysis of archiving of documents and

folders from EC2 to storage services such as Dropbox, AWS S3, and Localhost. The

83

experiments 13 and 14 give an overview of each experiment. All the experiments are

conducted using a 100 MB file. The file was transferred from an AWS EC2 instance and

a GCP compute instance to Dropbox, AWS S3 and to the local machine.

Experiment 13: Comparison of time taken for archiving of documents and folders from

AWS EC2 to Dropbox, AWS S3, and Localhost.

Figure 7.25 Time comparison of archiving from AWS EC2 to Dropbox, AWS S3 and on

localhost

 This experiment was conducted to find out the time taken to transfer a 100 MB

file from an AWS EC2 instance to Dropbox, AWS S3 and the local machine. This

experiment was conducted ten times. Fig. 7.25 shows the time taken each time to

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Ti
m

e
 (

in
 s

e
co

n
d

s)

No. of Times

Archiving Time Comparison from EC2 to Storages

Dropbox S3 Localhost

84

transfer the file to various storage service providers. Moving to local machine took a

longer time than on the cloud service providers such as AWS and Dropbox.

Figure 7.26 Average time comparison for archiving from AWS EC2 to Dropbox, AWS

S3, and localhost

 When the average time taken to archive from AWS EC2 to Dropbox, AWS S3

and localhost was plotted on the graph as shown in the Fig. 7.26, it was observed that

archiving to Dropbox and AWS S3 took almost same time whereas, while archiving to

local machine took longer than others. This is mainly due to the reason that the

experiment to transfer from AWS EC2 to localhost was done on the home network with

the upload speed of 70 Mbps and download speed of 15 Mbps. Whereas, AWS maintains

0

5

10

15

20

25

Dropbox S3 Localhost

A
ve

ra
ge

 T
im

e
 (

in
 s

e
co

n
d

s)

Storage Service Providers

Average Time taken for Archiving from EC2

85

its own high-speed dedicated lease lines, so the transfer on AWS S3 and Dropbox from

AWS EC2 were done using the super-fast AWS network.

Experiment 14: Comparison of time taken for archiving of documents and folders from

Google Cloud compute instance to Dropbox, AWS S3, and Localhost.

Figure 7.27 Time comparison of archiving from GCP instance to Dropbox, AWS S3 and

on local machine

This experiment was conducted to find out the time taken to transfer a 100 MB

file from a Google Cloud compute instance to Dropbox, AWS S3 and the local machine.

This experiment was conducted ten times. Fig. 7.27 shows the time taken each time to

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Ti
m

e
 (

in
 s

e
co

n
d

s)

No. of Times

Archiving Time Comparison from GC Instance to Storages

Dropbox S3 Local

86

transfer the file to various storage service providers. Moving to AWS S3 took the least

time as compared to other storages.

Figure 7.28 Average time comparison for archiving from GCP compute instance to

Dropbox, AWS S3 and localhost

 When the average time taken to archive from Google Cloud Compute instance

to Dropbox, AWS S3, and localhost and plotted on the graph as shown in the Fig. 7.28,

it was observed that archiving to AWS S3 took the least time whereas, while archiving

to local machine took most time than others. As explained in the previous section where

the AWS was maintaining its high-speed lease lines, Google Cloud Platform also

maintains their own dedicated lease lines. The experiment to transfer from Google Cloud

Compute instance to localhost was done on the home network with the upload speed of

87

70 Mbps and download speed of 15 Mbps. And the transfer on AWS S3 and Dropbox

from Google Cloud Compute instance was done using the Google Cloud Platform

network. Thus, it was faster on AWS S3 and Dropbox.

88

CHAPTER 8

SUMMARY AND CONCLUSION

This thesis started with a goal to provide a unified cloud solution to manage

heterogeneous clouds from a single platform which would help enterprises who are using

the portfolio of multiple clouds to save the cost of resources. The burgeoning future of

multi-cloud framework strengthens the need for a reliable, cost-efficient, faster and a

one-stop shop for the resources provided by multiple cloud service providers. A strong

framework was presented in this thesis which can handle heterogeneous clouds. The

packages were designed in such a manner that they are modular and any new module

or a package can be easily integrated with the framework. This framework also provides

an ability to set lifetime to the resources.

An application was developed based on the above-described framework which

provided a user-friendly resources management console along with the features to

schedule and monitor the individual resources as well as the workflows. An additional

feature to archive the documents and folders to the various storages services was also

offered. A common key store to store all the credentials in a secure manner was

designed. A dashboard of the application was designed to show the data of the number

of resources in use and a trend of usage of those resources in the last 7 seven days.

Also, the data related to the tasks scheduling was presented there. Another screen of

the application was designed to show the prices of the compute and storage services. A

usage alert feature was also presented to send the timely alerts to the user. Another

89

interesting feature, named Slack Bot which performed interactive bot based operations

was also presented.

After the implementation of application section, a detailed analysis of prices of

compute and storage services was done showing the price comparison of similar

services offered by different cloud providers. Alternate options for storage were

suggested based on the prices. It has been demonstrated that if the resources are

chosen correctly across multiple cloud providers, companies can save a lot of money.

In the later part of the thesis, experiments and analysis were conducted to

compare the performance of various services offered by multiple cloud providers. The

comparison helps in deciding on the services provided by the cloud providers which can

be used to design the infrastructure of an application in an optimal manner.

Heterogeneous cloud computing will remain a major area of research as most of

the enterprises are moving towards multi-cloud ecosystem and Cloud Hopper can be an

efficient multi-cloud management tool for them which in future can be enhanced with the

upcoming technologies.

90

CHAPTER 9

FUTURE WORK

 So far in this thesis, integration of IaaS and SaaS services has been done with

the framework of Cloud Hopper. The framework is designed in such a way that in future,

PaaS services can be easily integrated. A new PaaS package can be added to the

‘cloud_resource_lib’ library to leverage the services provided by the PaaS providers such

as Heroku and AWS Elastic Beanstalk.

 The prototype is built on the services offered by the public cloud service providers

such as Amazon Web Services and Google Cloud Platform. The services provided by

the private cloud built on the platform such as OpenStack can also be integrated by

simply writing the modules which can be plugged into the Cloud Hopper framework.

 In this thesis, the prototype was built by using the compute services offered by

AWS and GCP, storage services provided by AWS and GCP and the SaaS providers

such as Dropbox and Google Drive. There are a lot of services offered by the cloud

providers which can be studied and can be integrated with the application framework.

The implementation can be enhanced to services such as Databases, and Containers.

This can also be achieved by simply creating modules for each service type and plugging

them in the correct packages of Cloud Hopper.

 For archiving of documents from the compute instances on AWS and GCP to

storage services, only the storage services offered by IaaS service providers such as

AWS S3 and SaaS service providers such as Dropbox and Google Drive was

91

implemented in the prototype. Exploration of other storage service providers and

integrating them into the framework will give more options to the users to choose.

 Another area to consider is the real-time analysis and comparison of prices

offered for different services by various cloud providers. This will help the users in

comparing and choosing the best options available across multiple clouds in their

budget.

92

REFERENCES

[1] Behrend, T. S., Wiebe, E. N., London, J. E., & Johnson, E. C. “Cloud computing

adoption and usage in community colleges.” Behaviour & Information Technology,

2011, 30(2), 231-240.

[2] I. Cloud, "What is cloud computing?," 2016. [Online]. Available:

https://www.ibm.com/cloud-computing/learn-more/what-is-cloud-computing.

Accessed: Dec. 5, 2016.

[3] Microsoft, "Office 365 for business," 2016. [Online]. Available:

https://products.office.com/en-us/business/get-latest-office-365-for-your-business-

with-2016-apps?wt.srch=1&wt.mc_id=AID522514_SEM_5SOqeNbs. Accessed:

Dec. 5, 2016.

[4] I. Bojanova and A. Samba, "Analysis of Cloud Computing Delivery Architecture

Models," 2011 IEEE Workshops of International Conference on Advanced

Information Networking and Applications, Biopolis, 2011, pp. 453-458.

doi: 10.1109/WAINA.2011.74

keywords: {Internet;cloud computing;software architecture;Internet;cloud computing

delivery architecture models;cloud computing infrastructure metrics;cloud service

model architectures;Cloud computing;Computational modeling;Computer

architecture;Google;Hardware;Servers;Software;Amazon EC2;Cloud

Computing;Google Apps;IaaS;Microsoft Azure;Oracle Fusion;PaaS;SaaS},

URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5763543&isnumber=57

63390

[5] Peter Mell and Timothy Grance (September 2011). The NIST Definition of Cloud

93

Computing (Technical report). National Institute of Standards and Technology: U.S.

Department of Commerce. doi:10.6028/NIST.SP.800-145. Special publication 800-

145.

[6] Microsoft (2016). Microsoft azure: Cloud computing platform & services. . Retrieved

from https://azure.microsoft.com/en-us/?b=16.48

[7] Software » OpenStack open source cloud computing software. Retrieved

December 5, 2016, from https://www.openstack.org/software/

[8] 19— (2016). Cloud computing. In Wikipedia. Retrieved from

https://en.wikipedia.org/wiki/Cloud_computing

[9] Summary of the Amazon EC2, Amazon EBS, and Amazon RDS service event in

the EU west region. (2016). Retrieved December 5, 2016, from

https://aws.amazon.com/message/2329B7/

[10] Laing, B. (2012, September 3). Summary of windows azure service disruption on

Feb 29th, 2012. Retrieved from https://azure.microsoft.com/en-us/blog/summary-of-

windows-azure-service-disruption-on-feb-29th-2012/

[11] Cloud industry insights. (2006). Retrieved December 5, 2016, from

http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-

2015-state-cloud-surveyFebruary18, 2015, Posted by Kim Weins

[12] Bishop, T. (2014, November 5). InterConnections – the Equinix Blog. Retrieved

December 5, 2016, from https://blog.equinix.com/blog/2014/11/05/and-the-winner-

is-the-multi-cloud/#!prettyPhoto

[13] Chen, Y., & Huang, X. (2013). Cloud-based resource scheduling management and

its application - with agricultural resource scheduling management for example.

Advances in Information Sciences and Service Sciences, 5(4), 191. Retrieved from

https://login.ezproxy.uta.edu/login?url=http://search.proquest.com.ezproxy.uta.edu/

94

docview/1620059831?accountid=7117

[14] Chen, X., Zhang, Y., Zhang, X., Zheng, X., Guo, W., & Chen, G. (2013).

Architecture-based integrated management of cloud resources. IEEE Conferences,

474-481. doi:http://dx.doi.org.ezproxy.uta.edu/10.1109/CLOUDCOM-ASIA.2013.45

[15] Geng, Y., & Kou, J. (2012). Construction of heterogeneous data integration model

on cloud computing. Journal of Jinan University / Science and Technology, 26(4),

384-389. Retrieved from

https://login.ezproxy.uta.edu/login?url=http://search.proquest.com.ezproxy.uta.edu/

docview/1136337071?accountid=7117

[16] Do, C. T., Tran, N. H., Tran, D. H., Pham, C., Alam, M. G. R., & Hong, C. S. (2015).

Toward service selection game in a heterogeneous market cloud computing. Paper

presented at the 44-52. Retrieved from

https://login.ezproxy.uta.edu/login?url=http://search.proquest.com.ezproxy.uta.edu/

docview/1695350083?accountid=7117

[17] Blog, D. (2015, October 15). Mist.Io: Cloud management in your pocket: Retrieved

December 5, 2016, from https://mist.io/

[18] AWS cost management tools. Retrieved December 5, 2016, from

https://www.gorillastack.com/

[19] MultCloud. (2016). Manage, move, copy, and migrate files between cloud storage

services with MultCloud. Retrieved December 5, 2016, from

https://www.multcloud.com/

[20] ACCELLION. (2014, April 2). Operational and security risks of public cloud

subscriptions. Retrieved December 5, 2016, from

http://www.accellion.com/blog/cloud-sprawl-operational-and-security-risks-public-

cloud-subscriptions

https://mist.io/

95

[21] Cohen, R. (2013, April 16). The cloud hits the mainstream: More than Half of U.S.

Businesses now use cloud computing. Forbes. Retrieved from

http://www.forbes.com/sites/reuvencohen/2013/04/16/the-cloud-hits-the-

mainstream-more-than-half-of-u-s-businesses-now-use-cloud-

computing/#7987560e67c2

[22] Wilson, D. (2014, March 18). Cloud ’sprawl’ causing business inefficiencies. .

Retrieved from http://www.techradar.com/news/internet/cloud-services/cloud-

sprawl-causing-business-inefficiencies-1234913

[23] Welcome to python.org. (2016, December 4). Retrieved December 5, 2016, from

https://www.python.org/

[24] Welcome to python.org. (2016, December 4). Retrieved December 5, 2016, from

https://www.python.org/

[25] 2, to A. E. (2016). Elastic compute cloud (EC2) cloud server & hosting – AWS.

Retrieved December 6, 2016, from https://aws.amazon.com/ec2/

[26] Introduction to Amazon S3 (2016). Retrieved from https://aws.amazon.com/s3/

[27] Cloud storage - online data storage | Google cloud platform. Retrieved December

6, 2016, from https://cloud.google.com/storage/

[28] Dropbox. Retrieved December 6, 2016, from https://www.dropbox.com/

[29] Google drive - cloud storage & file backup for photos, Docs & more. Retrieved

December 6, 2016, from https://www.google.com/drive/

[30] Slack. Slack: Be less busy. Retrieved December 6, 2016, from https://slack.com/

[31] Rackspace. (2016). Transactional Email API service for developers by Rackspace.

Retrieved December 6, 2016, from https://www.mailgun.com/

[32] Canvas: Designing work-flows — celery 4.0.0 documentation. (2009). Retrieved

December 6, 2016, from

96

http://docs.celeryproject.org/en/latest/userguide/canvas.html#chains

[33] Palach, J. (2016). Understanding celery’s architecture [Book]. Retrieved from

https://www.safaribooksonline.com/library/view/parallel-programming-

with/9781783288397/ch07s02.html

[34] Hat, R. (2016). About modules — Ansible documentation. Retrieved December 6,

2016, from http://docs.ansible.com/ansible/modules.html

[35] Redis. Retrieved December 6, 2016, from https://redis.io/

[36] MongoDB. (2016). MongoDB for GIANT ideas. Retrieved December 6, 2016, from

https://www.mongodb.com/

[37] Hat, R. (2016). Playbooks — Ansible documentation. Retrieved December 6, 2016,

from http://docs.ansible.com/ansible/playbooks.html

[38] Simple mail transfer protocol (2016). In Wikipedia. Retrieved from

https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

[39] Rackspace. (2016). Transactional Email API service for developers by Rackspace.

Retrieved December 6, 2016, from https://www.mailgun.com/

[40] MongoDB. Introduction to MongoDB — MongoDB manual 3.2. Retrieved

December 6, 2016, from https://docs.mongodb.com/v3.2/introduction/

[41] EC2 instance pricing – Amazon web services (AWS). (2016). Retrieved December

6, 2016, from https://aws.amazon.com/ec2/pricing/on-demand/

[42] Google cloud platform. Retrieved December 6, 2016, from

https://console.cloud.google.com/

[43] Cloud storage pricing – Amazon simple storage service (S3) – AWS. (2016).

Retrieved December 6, 2016, from https://aws.amazon.com/s3/pricing/

[44] Retrieved December 6, 2016, from

https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/v

97

mware-controlling-virtual-machine-sprawl-white-paper.pdf

[45] Christie, T. Django REST framework. Retrieved December 7, 2016, from

http://www.django-rest-framework.org/

98

BIOGRAPHICAL INFORMATION

Shraddha Jain joined the University of Texas at Arlington in spring 2015. She

received her Bachelor’s Degree in Computer Science from Uttar Pradesh Technical

University, Lucknow in 2010. She worked as a senior systems engineer with Infosys,

Ltd., Bangalore in India until December 2014, after which she decided to pursue her

Master’s Degree in Computer Science at University of Texas at Arlington. She interned

at Cloud Elements as a software developer at Dallas, Texas.

Her current research interests are in the areas of cloud computing, data mining,

big data technologies, DevOps and software development.

