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Abstract 

 
OPTIMAL ATTRIBUTE WEIGHTING IN A  

NEAREST NEIGHBOR  

CLASSIFIER  

 

JUGAL RAJU SHETH, MS 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Dr. Michael T. Manry 

 Nearest Neighbor algorithms are non-parametric algorithms that use distance 

measure techniques for classification and regressions. This thesis, first improves the 

traditional nearest neighbor classifier by optimizing its distance measure using a second 

order training algorithm. It then presents a second order method to adjust center vectors. 

It is shown that the distance measure weight optimization and center vector optimization, 

individually and together reduce the final classification error. The testing error of our 

algorithm is shown to be less than that of LVQ V.2.1  
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Chapter 1  

INTRODUCTION 

 This chapter is a review of basic concepts of the classifiers. It also reviews nearest 

neighbor classifiers and their properties. 

 
1.1 Classifiers 

 In the fields of statistics and pattern recognition, classification is the task of 

identifying the class or the category of a new test pattern, on the basis of a training set of 

data containing similar patterns whose class membership is known [32]. As an example, 

tasks like assigning an email into spam or non-spam, classifying an image of an animal as 

a dog or a cat etc. Algorithms that implement classification are known as classifiers. 

Depending on the characteristics of the data to be classified, different kinds of classifiers 

are used. Linear and generalized linear classifiers like the perceptron [33], support vector 

machines [34] etc. are used to classify simple datasets. For complex datasets non-linear 

classifiers like multi-layer perceptron [35], decision trees [36] etc. are used. All of these 

classifiers have parameters like weights that need to be adjusted differently depending on 

the training dataset. Thus these classifiers are called as parametric classifiers. 

  

 
1.2 Nearest Neighbor Classifier 

 Classifiers based on the nearest neighbor (NN) rule are traditional, simple and 

effectively used in pattern recognition [13, 14], text categorization [15-17], ranking models 

[18], object recognition [20] and event recognition [19]. They achieve consistently high 

performance without priori assumptions about the distributions from which the training 

examples are drawn. Nearest neighbor classifiers are a type of instance based learning or 

lazy learning classifiers, in which the generalization beyond the training data is delayed 
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until a new query is encountered. NN classifiers are thus consistent non parametric 

estimators. Here the term non-parametric refers to the fact that there is no prior knowledge 

of the statistical distribution of the data. During testing, the distance of the input vector 

(pattern) to each cluster’s center vector is calculated. The estimated class of the input 

vector is that of the nearest center vector. As the number of training patterns tend to infinity, 

classifiers based on nearest neighbor rule converge to the corresponding Bayes estimate.  

 

1.3 Objective of this thesis  

 This thesis, proposes an algorithm for optimal attribute weighting in a nearest 

neighbor classifier (OAWNCC) that optimizes the weights in a nearest neighbor classifier’s 

distance measure using a second order training algorithm. The optimized weights of 

important input features are greater in magnitude than those of less important input 

features. This enables us to neglect features by using weights having small absolute 

magnitude. It also proposes a center vector optimization algorithm that is a technique for 

optimizing the center vector locations in input dimension space which directly minimizes 

the input-output mapping error.  

 Chapter 2, reviews the structure and operations of the traditional nearest neighbor 

classifiers from which OAWNCC is derived. Chapter 3, explains the motivation behind the 

designing of OAWNCC and describes training using steepest descent technique with an 

optimal learning factor and then eventually with Newton’s algorithm for faster convergence. 

Chapter 4, introduces optimization of center vectors in OAWNCC using the steepest 

descent method and with second order algorithms for calculating multiple optimal learning 

factors. Chapter 5 present the results on several datasets.  
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Chapter 2 

STRUCTURE AND OPERATION OF NNC 

 This chapter, reviews the structure and operation of the traditional nearest 

neighbor classifier. It also reviews problems associated with the nearest neighbor 

classifiers.  

  

2.1 Structure of Nearest Neighbor Classifier 

 The training data consists of ‘𝐾’ 𝑁-dimensional cluster center vectors, 𝒎𝑖𝑘, where 

𝒎𝑖𝑘 is the center vector of the 𝑘𝑡ℎ cluster of the 𝑖𝑡ℎ class. Let the total number of classes 

be 𝑁𝑐. The 𝑝𝑡ℎ 𝑁-dimensional test vector is denoted by 𝒙𝑝. The symbol 𝑑𝑖 is the distance 

between 𝒙𝑝 and the closest center vector of the 𝑖𝑡ℎ class.  

 Since the nearest neighbor classifier is an instance based classifier [42], unlike 

many other artificial learners, they do not extract any information from the training data 

during the learning phase. The learning phase is merely a question of encapsulating the 

training data. During the time of classification, an unlabeled test pattern is classified by 

assigning the class of the center vector that is the closest to this new test pattern. The 

distance metric can be empirically chosen among the Euclidean, Minkowski [44], and 

Mahalanobis [23] methods among others, based on the training data and application. The 

most commonly used distance metric for continuous variables is the Euclidean distance 

(𝐿2) 

 
2.2 Basic Nearest Neighbor Classifier operation 

 In the 𝑁𝑣, 𝑁 - dimensional training patterns, each pattern is associated with the 

class label to which it belongs. There are two stages of operations involved during 

classification using nearest neighbor classifiers. 
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1) Clustering: 𝑁𝑣 training patterns of 𝑁-dimensional input space is divided into 𝐾 

clusters. The value of 𝐾 is chosen such that patterns in the same clusters are 

more similar to each other than to those in other clusters. This division of input 

patterns into 𝐾 cluster’s center vectors can be done by implementing clustering 

algorithms such as K – Means [3], SOM [2] or EM [42].  

2) Classification: Once the training patterns are divided into clusters, their center 

vectors and membership to a particular class 𝒎𝑖𝑘 are cached into disk. When 

a new test input vector needs to be classified, its distance from all the center 

vectors is computed. The closest center vector from each class is determined 

as  

di = argmin
k

d(𝐱p, 𝐦ik) 

where, d(𝐱p, 𝐦ik), is the distance of the 𝑝𝑡ℎ test pattern, 𝒙𝑝, from the center 

vector, 𝒎𝑖𝑘. 𝑑𝑖 is the distance of the new test pattern from the closest center 

vector of 𝑖𝑡ℎ class. The class membership of this new test pattern is then 

estimated as 

ic
′ = argmin

i
di 

where, 𝑖𝑐
′  is the estimated class of the 𝑝𝑡ℎ test pattern, 𝒙𝑝.  

 

2.3 Generating center vectors 

 Clustering is the task of grouping a set of objects such that objects in the same 

group are more similar to each other in some sense than to those in other groups. It is a 

main task of exploratory data mining, and a common technique for statistical data analysis, 

used in many fields, including machine learning, pattern recognition, image 

analysis, information retrieval, bioinformatics, data compression, and computer graphics 
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[36]. Center vectors can be generated using various algorithms like K – Means [3], SOM 

[2] and EM [42]. The appropriate center vector generating algorithm depends on the 

individual dataset and the intended use of the results. The training dataset can be used in 

different ways for classification using nearest neighbor classifiers. For example, 

1) Entire training dataset or patterns can be used as center vectors. This avoids 

the need for using any clustering algorithms. The number of training patterns 

can be large, even in the order of millions. Thus this method can cause huge 

memory strains as the entire dataset needs to be cached in memory. Along 

with this, computing distance of a test pattern from all these training patterns 

can be computationally very expensive. However, the above method can 

prove to be useful if the number of training patterns are limited and testing time 

is not a matter of concern.  

2) We can randomly choose few training patterns and use them as center 

vectors. This method also avoids the need for using any clustering algorithms 

and does not cause much memory strains as only center vectors need to be 

cached in memory as compared to the entire training dataset. Number of 

center vectors is much less than the number of training patterns. Since these 

randomly picked center vectors are not optimal, they may group dissimilar 

objects to each other and might even prove to be use less center vectors. This 

can lead to decreased performance.  

3) K - Means clustering [3] is a popular vector quantization method that partitions 

𝑁𝑣 patterns into 𝐾 clusters where each pattern belongs to the cluster with the 

nearest mean. This results in partitioning of the data space into Voronoi cells 

[4]. K - Means clustering is an iterative refinement, efficient heuristic algorithm 

that is commonly employed and converge quickly to local optimums [38]. 
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Given a set of 𝑁𝑣 training patterns, 𝒙𝑝, where each pattern has 𝑁-dimensional 

inputs. K - Means clustering aims to partition 𝑁𝑣 patterns into 𝐾  clusters, so as 

to minimize the within-cluster sum of squares distances.  

Algorithm Summary [31]  

1. 𝑖𝑡 = 0, where 𝑖𝑡 = iteration number and 𝑁𝑖𝑡 = total number of iterations. 

2. 𝑖𝑡 = 𝑖𝑡 + 1 

3. Calculate center vector, 𝒎𝑘, as 

4. 𝐦k =
1

Nv(k)
∑ 𝐱pp:m(p)=k ,  

where 𝑚(𝑝) equals the cluster number of the 𝑝𝑡ℎ pattern and  

𝑁𝑣(𝑘) equals the number of patterns in the 𝑘𝑡ℎ . 

Reclassify 𝒙𝑝s, in one data pass. If 𝒙𝑝 belongs to the 𝑘𝑡ℎ cluster, 

𝑚(𝑝) equals 𝑘.  𝑚(𝑝) therefore specifies the cluster membership of the 

𝑝𝑡ℎ pattern. If any clusters change and iteration number < 𝑁𝑖𝑡 , go to step 

2. 

  The K – Means clustering error, 𝐸𝑘−𝑚𝑒𝑎𝑛𝑠 , is 

Ek−means =
1

Nv

 ∑ d(𝐱p, 𝐦m(p))

Nv

p=1

=
1

Nv

 ∑ Ek

𝐾

k=1

 

Eik = ∑ d(𝐱p, 𝐦k)

p:m(p)=k

  

 

2.4 Example Distance Measure Techniques  

 Nearest neighbor algorithms calculates the distance between the new test pattern 

and the center vectors to estimate the class of this new test pattern. There are a variety of 

distance measures available. 
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2.4.1 Euclidean Distance 

 Euclidean distance measure is by far the most common distance measure 

technique used. The associated norm is called the Euclidean norm [38]. Euclidean distance 

between the 𝑝𝑡ℎ test pattern, 𝒙𝑝 and 𝒎𝑖𝑘  center vector is given by 

 

d(𝐱p, 𝐦ik)   =   ⃦ 𝐱p −  𝐦ik   ⃦ = (∑(xp(n) − mik(n))
2

N

n=1

)

½

 

 

(2.1) 

The square root is often not computed in practice, because the closest center vector will 

still be the closest, regardless of whether or not the square root is taken [40]. 

 

2.4.2 Mahalanobis Distance Measure [23] 

 Mahalanobis distance measure computes the distance between 𝑝𝑡ℎ test pattern, 

𝒙𝑝 and the distribution, 𝐷. It is a multi-dimensional dimensional generalization of the idea 

of measuring how many standard deviations point 𝒙𝑝 is away from the mean. If the point is 

at the mean of distribution, 𝐷, the distance is zero [41]. Mahalanobis distance measure can 

also be defined as the measure of dissimilarity between the test pattern, 𝒙𝑝, and center 

vector, 𝒎𝑖𝑘, of the same distribution [31].  

   
 

d(𝐱p, 𝐦ik)   =  ∑ ∑ 𝑎𝑘(𝑛, 𝑚)[𝑥𝑝(𝑛) − 𝑚𝑖𝑘(𝑛)][𝑥𝑝(𝑚) − 𝑚𝑖𝑘(𝑚)]

𝑁

𝑚=1

N

n=1

 

where,  

ak(𝑛, 𝑚) ∈ 𝑪𝑘
−1,      𝑪𝑘 = 𝐸[(𝒙𝑝 − 𝒎𝑖𝑘)(𝒙𝑝 − 𝒎𝑖𝑘)

𝑇
] 

 

(2.2) 
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2.4.3 Minkowski Distance Measure [44] 

 It is a generalization of Euclidean distance and the Manhattan distance. The 

distance of order 𝑣 between the 𝑝𝑡ℎ test pattern, 𝒙𝑝 and 𝒎𝑖𝑘  center vector is given by 

 

d(𝐱p, 𝐦ik)  = (∑(xp(n) − mik(n))
v

N

n=1

)

1
v

 

 

(2.3) 

If 𝑣 = 2, the Minkowski distance is equivalent to Euclidean distance (L2). 
 

 
2.4.4 Weighted Euclidean Distance 

 It is a modified Euclidean distance that incorporates weights in the distance 

calculation such that distance measure for each input element 𝑥𝑝(𝑛) is multiplied with the 

corresponding input weights element 𝑤(𝑛). The weighted Euclidean distance between the 

𝑝𝑡ℎ test pattern, 𝒙𝑝 and center vector, 𝒎𝑖𝑘 ,  is given by 

 

d(𝐱p, 𝐦𝐢𝐤) =  ∑ (w(n) ⋅ (xp(n) − mik(n)))
2

N

n=1

 

 

(2.4) 

This thesis uses weighted Euclidean distance measure to compute the distance between 

the test pattern and the center vectors as the weights are a measure of importance for the 

corresponding input element. Optimally tuning these weights such that they are small in 

magnitude for noisy and less discriminative features will reduce the participation of these 

features in computing the distance for nearest neighbors. Thus this helps in solving the 

problem of misclassification due to noisy features.  

 

Weight Initialization 

 Weights are one of the most important parameters that determine the performance 

of any classifier. The training error convergence, performance and training hyper-

parameters like learning rates etc. depend heavily on initial weights. If the weights are too 



 

17 

small the gradients would in turn be very small in magnitude and thus the classifier will take 

more time to converge or might not converge to a desired error value. On the other hand if 

weights are very large then their gradients would be very large in magnitude too. So a small 

change in weight update can lead to large change in the output, thus a very small learning 

rate would be required to compensate for this problem. Later, a small learning rate will 

need more iterations to converge weights with small magnitudes, since their gradients are 

also small. If some inputs have much larger variance than others, they can dominate the 

training. So to avoid dominance of some high variance inputs over others, inputs are 

normalized by initializing weights as 𝑤(𝑛) =
1

𝑉𝑎𝑟(𝑥(𝑛))+ ∈
, where ∈ is a small positive 

constant of order 10−3 used to avoid division by zero.  

  

 
2.5   Theoretical Properties of Nearest Neighbor Classifier 

 The Bayes error is the minimum achievable error rate by any classifier. Incase if 

the classes overlap then the error rate will be nonzero. For example, suppose that the 

training input pattern, with the correct class label of that pattern, follows a Gaussian 

distribution with mean 𝜇𝑖 and fixed variance. The two Gaussians overlap so no classifier 

can predict the class label correctly for all training patterns, and the Bayes error rate is 

nonzero.  

 The Bayes error rate is the average over the space of all examples of the minimum 

error probability for each example. The optimal prediction for any test pattern 𝒙 is the label 

that has highest probability given 𝒙. The error probability for this example is then one minus 

the probability of this label. Formally, the Bayes probability of error rate is 

 
Pe−Bayes =  ∫ p(𝐱)[1 − max

i
p(i| 𝐱)]

𝒙

 
 

(1.1) 
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where 𝑝(𝑖|𝒙) is the probability that 𝒙 has label 𝑖 and 1 − 𝑝(𝑖|𝒙) is the probability that 𝒙 has 

a different label. The maximum is taken over the 𝑁𝑐 possible labels 𝑖 = 1 to 𝑖 = 𝑁𝑐 [30].  

Theorem: When the number of training examples tend to infinity, the probability of error 

rate of NNC is at worst twice the Bayes error rate as proven by [1].  

Proof: Let 𝒙 be a test pattern and 𝒎𝑖𝑘 be its closest neighbor. If the number of training 

examples 𝑁𝑣 is large, then the probability distribution for any test pattern and its nearest 

neighbor will be essentially the same. In this case, for the 𝑝𝑡ℎ test pattern, 𝒙, the expected 

probability of error rate of NNC is  

 

𝑃𝑒−𝑁𝑁𝐶 =  ∑ p(i|𝐱)[1 − p(i|𝐱)

Nc

i=1

] 

 

(1.2) 

To prove the theorem, we need to show that  

 

∑ p(i|𝐱)[1 − p(i|𝐱)]

Nc

i=1

≤ 2[1 − max
i

p(i|𝐱)] 

i.e         Pe−NNC  ≤ 2 ∙ Pe−Bayes 

 

(1.3) 

Let 𝑚𝑎𝑥
𝑖

𝑝(𝑖|𝒙)  = 𝑟 and let the maximum be attained with 𝑖 = 𝑗. Then the left hand side is  

 

∑ p(i|𝐱)[1 − p(i|𝐱)]

Nc

i=1

=  𝑟(1 − 𝑟) +  ∑ p(i|𝐱)[1 − p(i|𝐱)]

i≠j

 

 

(1.4) 

and the right hand side is 2(1 − 𝑟). The summation above is maximized when all the values 

𝑝(𝑖|𝒙) are equal for 𝑖 ≠ 𝑗. The value of left hand side is then  

  
𝐴 = r(1 − r) + (Nc − 1)

1 − r 

Nc − 1

(Nc − 1) − (1 − r)

Nc − 1
 

 

∴  𝐴 = r(1 − r) + (1 − r)
Nc + r − 2

Nc − 1
 

 

(1.5) 
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Now 𝑟 ≤ 1 and Nc − 2 + 𝑟 < Nc − 1 so 𝐴 < 2(1 − 𝑟).This proves that, with large enough 

training set, no classifier can do better than half the probability of error rate of a 1-nearest 

neighbor classifier [30] 

 

2.6 Problems with Nearest Neighbor Classifier 

Though nearest neighbor methods are very easy to implement, they have many 

drawbacks.  

1 Computationally expensive – Nearest neighbor classifiers compute distance of the 

input vector to all the center vectors. This distance measurement is computationally 

expensive and requires that all the center vectors to be stored in memory. This 

increases the computational complexity and memory requirements. Due to these 

computational complexities they cannot be used for real time applications. 

2 Curse of dimensionality - The accuracy of the nearest neighbor classifiers tends to 

decrease as the number of features or inputs increases [46]. The reason is that in a 

high-dimensional space all points tend to be far away from each other, so nearest 

neighbors are not meaningfully similar. Practically, if vectors (patterns) are represented 

using many features, then every pair of examples will likely disagree on many features, 

so it will be rather arbitrary which vectors are closest to each other [9].  

3 Contaminated input features – noise and less discriminative input features can cause 

problems such as convergence difficulties, poor classification accuracy and 

contamination of the distance measure which leads to false classification.  

4 Rigid Voronoi cells -  Clustering algorithms often get stuck in local minima and the result 

is largely dependent on the choice of initial cluster centers [3] [4]. Generated clusters, 

𝒎𝑖𝑘 are not changed after initialization, and are not chosen to minimize, 𝑃𝑒−𝑁𝑁𝐶 , the 
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probability of error of the nearest neighbor classifier so they are not optimal. Clustering 

methods other than the Learning Vector Quantization (LVQ) method [2] do not adapt 

the center vectors in a way that minimizes the probability of error. [10].  
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Chapter 3  

STRUCTURE OF OAWNNC 

 This chapter, introduces Optimal Attribute Weighting in a Nearest Neighbor 

Classifier (OAWNNC) algorithm that optimizes distance measure weights. This provides a 

solution to problem solves problem 3 mentioned in section 2.6.  

 

3.1  Motivations behind the structure of OAWNNC 

 OAWNNC uses weighted Euclidean distance measure instead of regular 

Euclidean distance measure. Weights for the distance measure are initialized as 𝑤(𝑛) =

1

𝑉𝑎𝑟(𝑥(𝑛))+ ∈
 as mentioned in section 2.4.4. This reduces the dominance of inputs with high 

variance. However these weights are not optimal as they barely contribute in improving the 

performance of the classifier. Traditional nearest neighbor classifier, has a probability of 

error, 𝑃𝑒−𝑁𝑁𝐶 , as a measure of how well the classifier performs. To calculate the optimal 

weights, there needs to be a way to minimize 𝑃𝑒−𝑁𝑁𝐶 with respect to the weights, 𝒘. 

Since𝑃𝑒−𝑁𝑁𝐶 is a scalar value and its gradient with respect to weights is zero i.e  
𝜕𝑃𝑒−𝑁𝑁𝐶

𝜕𝑤(𝑛)
=

0, there is no direct way to minimize 𝑃𝑒, with respect to the weights to find optimal weights.  

 To solve this problem, OAWNNC maps traditional nearest neighbor classifier to a 

neural net. Optimizing the objective function of the neural network helps in calculating 

optimal weights that improve the classification performance of the neural network. It is 

really important to derive a mapping function that provides a one to one mapping between 

the NNC discriminant 𝑑𝑖 and the neural network discriminant 𝑦(𝑖), such that improving the 

classification performance of the neural network, improves the probability of error, 
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𝑃𝑒−𝑁𝑁𝐶 , of the NNC. OAWNNC uses a modified softmax discriminant function 𝑦(𝑖). This 

function is defined as 

y(i) =  
(di)

−1 

∑ (dj)
−1Nc

j=1

 

The softmax discriminant 𝑦(𝑖) takes in the inverse of distances of test vector from the 

closest center vectors of each class and outputs a score for that class. It provides a one to 

one mapping from 𝑑𝑖 when the inverse of distances of the test pattern to the closest center 

vector of each class adds up to one, i.e  ∑ (dj)
−1

= 1
Nc
j=1 . Since this function is continuous 

at all points, gradients for optimization can be easily computed. The class of the test pattern 

is estimated from the output score vector, 𝒚, as  

ic
′ = argmin

i
y(i) 

 Softmax function outputs a score in the range of 0 to 1. With the score of the correct 

class being close to 1 and that of the incorrect class close to 0. It makes it easier to 

comprehend the performance of the classifier if its outputs as the scores are interpretable 

as posterior probabilities of categorical target output. For this reason, OAWNNC chooses 

the target output of the 𝑝𝑡ℎ, 𝒕𝑝, of the correct class to be 1 and those of incorrect class to 

be 0 is chosen. This is called one-hot encoding technique.  

tp(i) = δ(i − ic(p)) 

where 𝑖𝑐(𝑝) is the correct class of the 𝑝𝑡ℎ, pattern. 

 OAWNNC converts the classification problem into regression by using the mean 

square error function (MSE). Squared error loss is one of the most widely used loss function 

in statistics. In statistical modelling the MSE, representing the difference between the 

actual target output and the output values predicted by the neural network, is used to 

determine the extent to which the network fits the data and whether the removal or some 
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explanatory variables, simplifying the model, is possible without significantly harming the 

model's predictive ability [25]. The objective function used in training 𝑦(𝑖) is 

 

E =  
1

Nv

∑ ∑ ( tp(j) − yp(j))
2

                        

Nc

j=1

Nv

p=1 

 

 

(3.1) 

 

3.2 Modified Weighted Euclidean Distance Measure 

 During classifier training to calculate optimal weights, 𝒘, using regular weighted 

Euclidean distance measure as mentioned in section 2.4.4 few weight elements 𝑤(𝑛) 

would become negative. This made the distance measure value, 𝑑, negative and thus led 

to decreased performance and increased misclassification error. To solve this issue, this 

thesis proposes two different modified weighted Euclidean distance measure techniques.   

1. Use absolute value of weights, ⎸𝑤(𝑛)⎹ , for distance calculation. 

 

 
d(𝐱p, 𝐦ik) =  ∑ (⎸w(n)⎹ ⋅ (xp(n) − mik(n)))

2

N

n=1

+ ∈ 

 

(3.2) 

2. Use squared values of weights, w(n)2, for distance calculation.  

 

 
d(𝐱𝐩, 𝐦𝐢𝐤) =  ∑ (w(n)2 ⋅ (xp(n) − mik(n)))

2

N

n=1

+ ∈ 

 

(3.3) 

∈ is a small positive constant of the order 10−3 that prevents the distances from being zero 

and avoids division by zero while mapping the NNC to the neural network. Throughout this 

thesis squared weights, 𝑤(𝑛)2, are used, since during weight optimization training with 

different datasets, it was found that squared weights, 𝑤(𝑛)2, perform better as compared 

to absolute weights, ⎸𝑤(𝑛)⎹ .  
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3.3 Training OAWNNC for distance measure improvement. 

 In order to solve the problems of the curse of dimensionality, and misclassifications 

caused by noise and less discriminative features, it is necessary to optimize the distance 

measure algorithm. To ensure that our distance measure emphasizes more on highly 

discriminative features than the less discriminative features, we optimize weights 

corresponding to each input feature. 

 Training of a classifier consists of changing the weights in order to make the 

computed output as close as possible to the desired output, thus reducing the mean square 

error (MSE). It mainly involves the following two independent steps. First a search direction 

has to be determined. i.e., in what direction do we want to search in weight space for a 

new current point? Once the search direction has been found we have to decide how far 

to go in the specified search direction, i.e., a step size has to be determined. Most of the 

optimization methods used to minimize error functions are based on the same strategy. 

The minimization is a local iterative process in which an approximation to the error function 

in a neighborhood of the current point in weight space is minimized. 

 

3.3.1 First Order Training Algorithms for Weight Optimization  

 In this section, steepest descent which is the first order optimization algorithm is 

used. The negative gradient the MSE with respect to input weights are calculated as 

follows,  

 
𝐠 =  −

∂E

∂𝐰
  

 

(3.4) 

Elements of the negative gradient vector 𝒈 are calculated from the above equation (3.4) 

as 
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g(n) =  −
∂E

∂w(n)
 =  

2

Nv

∙ ∑ ∑  ( tp(j) − yp(j))  ∙
∂yp(j)

∂w(n)
            

Nc

j=1

Nv

p=1 

 

 

(3.5) 

where, taking the partial derivative of 𝐸 in equation (3.1) yields 

∂yp(j)

 ∂w(n)
= 

− ∑ du
−1Nc

u=1 ∙  (dj)
−2 

∙ 2 ∙ 𝑤(𝑛) ∙ [xp(n) − mjk(n)]
2

 +  (dj)
−1

∙ ∑  (du)−2 ∙ 2 ∙ w(n) ∙ [xp(n) − muk(n)]
2

 Nc
u=1

( ∑ (du)−1Nc
u=1  )

2  

 

(3.6) 

Input weight changes are calculated using the negative gradients from equation (3.4), (3.5) 

and (3.6) and a learning factor 𝑧, where, 𝑧, is a heuristically chosen scalar value. The 

weights are updated as follows, 

 𝐰 ← 𝐰 + z ∙ 𝐠 (3.7) 

   

Optimal Learning Factor 

 The learning factor, 𝑧, decides the rate of convergence of training. Usually a small 

positive value for 𝑧 will work, but convergence is likely to be slow. If 𝑧 is too large the error, 

𝐸, can increase [25]. In order to avoid this uncertainty a lot of heuristic scaling approaches 

have been introduced to modify the learning factors between iterations and thus speed up 

the rate of convergence. However using a Taylor’s series for the error 𝐸, a non-heuristic 

Optimal Learning Factor (OLF) can be calculated as, 

 

z =
−

∂E
∂z

∂2E
∂z2

 

 

(3.8) 

where the numerator and denominator derivatives are evaluated at 𝑧 = 0. Assume that the 

learning factor, 𝑧, is used to update only the input weights 𝒘, as given in equation (3.7). 

 

Using the gradient 𝒈, the optimal learning factor is derived in the following steps,  
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−

∂E

∂z
 =  

2

Nv

∙ ∑ ∑  ( tp(j) − yp(j))  ∙
∂yp(j)

∂z
            

Nc

j=1

N

p=1 

 
 

(3.9) 

where, ∂yp(j)

 ∂w(n)
=

A − B 

( ∑ (du)−1 
Nc
u=1 )

2 
 

(3.10) 

where, 

 

 

and 

A =  − ∑ du
−1

Nc

u=1

∙ (dj)
−2 

∙ ∑(2 ∙ g(n) ∙ w(n) ∙ [xp(n) − mjk(n)]
2

 )

Nv

p=1 

 

 

B =  −(dj)
−1

∙ ∑ du
−2 ∙ ∑(2 ∙  g(n) ∙ w(n) ∙ [xp(n) − muk(n)]

2
 )

Nv

p=1 

Nc

u=1

 

 

 

 

Also, Gauss-Newton approximation for second partial is given by,  

 ∂2E

∂z2
 =  

2

Nv

∙ ∑ ∑  [
∂yp(j)

∂z
]

2

            

Nc

j=1

N

p=1 

 
 

(3.11) 

Thus the optimal learning factor is calculated using equations (3.8), (3.9), (3.10) and (3.11).  

After finding the optimal learning factor the input weights are updated as given in equation 

(3.7)  

 

First Order Training Algorithm Summary for Weight Optimization 

1) Cluster 𝑁𝑣 training patterns into 𝐾 clusters using K-Means++ clustering algorithm 

[45], where 𝐾 =  ∑ 𝑘𝑖
Nc
i=1 .  𝑘𝑖 is the number of clusters of the 𝑖𝑡ℎ class 

After clustering we get 𝐾 center vectors 𝒎𝑖𝑘, where 𝒎𝑖𝑘 is the 𝑘𝑡ℎ center vector of 

the 𝑖𝑡ℎ class   

2) Initialize 𝑤(𝑛) 

3) For iteration,  𝑖𝑡 = 1 to 𝑁𝑖𝑡, where 𝑁𝑖𝑡 is the total number of iterations, 
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4) During first data pass calculate 𝑑𝑖 , 𝒚, 𝐸, 𝒈 

5) During second data pass calculate –
𝜕𝐸

𝜕𝑧
,

𝜕2𝐸

𝜕𝑧2 , 𝑧 

6) Update 𝒘 ← 𝒘 + 𝑧 ∙ 𝒈 

7)  End iterations 

* Refer to Appendix A for the pseudocode   
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3.3.2 Second Order Training algorithm for Weight Optimization 

 The second order training of a MLP involves quadratic modeling of the error 

function. Second order training methods are preferred because of their fast convergence. 

However, they can lead to problems like memory limitation, since the hessian and gradient 

matrices should be computed and stored. They also are computationally very expensive.  

 

Newton’s Method 

 Newton’s method is the basis of number of popular second order optimization 

algorithms. Newton’s algorithm is iterative, where in each iteration, [28] 

1) Calculate Newton weight change vector 𝒆. 

2) Update weights with this weight change vector 𝒆. 

The weight change vector 𝒆 is calculated by solving the linear equations using OLS [27] 

 𝐇 ∙ 𝐞 = 𝐠 (3.12) 

where, 𝒈 is the negative gradient of MSE with respect to weights, calculated using equation 

(3.4), (3.5) and (3.6) and 𝑯 is Hessian of the objective function calculated with respect to 

all the weights in the network and has elements defined as, 

 
h(i, j) =  

∂2E

∂w(i) ∂w(j)
 

 

(3.13) 

Equation (3.12) is solved for 𝒆 using Orthogonal Least Squares (OLS) [27] and 𝒘 is 

updated as  

 𝐰 ← 𝐰 + 𝐞 (3.14) 

We continue to update 𝒘 in this fashion till the change in the training error from the previous 

iteration is less than10-6. 
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Second Order Training Algorithm Summary for Weight Optimization 

1) Cluster 𝑁𝑣 training patterns into 𝐾 clusters using K-Means++ clustering algorithm 

[45]. 

After clustering we get 𝐾 center vectors 𝒎𝑖𝑘, where 𝒎𝑖𝑘 is the 𝑘𝑡ℎ center vector of 

𝑖𝑡ℎ class   

2) Initialize 𝑤(𝑛) 

3) For iteration,  𝑖𝑡 = 1 to 𝑁𝑖𝑡, where 𝑁𝑖𝑡 is the total number of iterations, 

4) Calculate 𝑑𝑖 , 𝒚, 𝐸, 𝒈, 𝑯 

5) Calculate 𝒆 

6) Update 𝒘 ← 𝒘 + 𝒆  

7) End iterations 

* Refer to Appendix A for the pseudocode  

 

3.4 OAWNNC Results 

 Table – 1 compares randomized 10-fold testing results from traditional nearest 

neighbor classifier and OAWNNC with distance measure optimization (DMO). 
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Data Set Number of inputs Number of 

classes 

NNC accuracy % DMO accuracy 

% 

F17C.dat 17 39 25.5005 68.7039 

SKIN.dat 2 2 93.8531 94.4196 

GONGTST.tst 16 10 66.8333 77.8000 

COMF18.TRA 18 4 54.2776 73.6481 

PHONEME.dat 5 2 61.4701 75.3252 

MAGIC 10 2 71.4346 79.3871 

Table 1 - Classification Performance of NNC v/s OAWNNC with Distance Measure 

Optimization (DMO). 

 This is a plot of mean square error (MSE) versus iteration number, 𝑁𝑖𝑡, for the 

nearest neighbor classifiers mapped neural network with first order and second training for 

weight optimization on COMF18.tra dataset. From the plot it concludes, that MSE 

converges much faster using second order training as compared to the first order training.  

 

Figure 1 – Weight Optimization Training Iteration Difference for COMF18.tra dataset. 
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 From the results shown in Table – 1, it can be concluded that OAWNNC with 

distance measure optimization outperforms the traditional NNC on all the datasets. From 

Figure – 1, second order training error converges much faster than first order training. The 

trained weights are such that the weights corresponding to noisy features are less in 

magnitude and vice versa. Thus OAWNNC with distance measure optimization (DMO) 

solves problem 3 mentioned in section 2. 6.  
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Chapter 4  

CENTER VECTOR OPTIMIZATION (CVO) 

 This section introduces a method to move or adjust the center vectors 𝒎𝑖𝑘  in an 

optimized way using second order training to reduce the probability of error and improve 

classification accuracy.  

 Cluster center vectors formed by using clustering algorithms are rigid so they do 

not change after initialization. Thus our OAWNNC algorithm is dependent on these initial 

clusters. Since these clusters do not contribute to minimizing the probability of error, they 

are not optimal. In addition to this, clustering is sensitive to the choice of initial clusters, 

clustering parameters etc. Thus a few center vectors generated may not be unique. To 

alleviate these problems, we need to remove the sensitivity of the classifier to initial 

clustering and the rigid nature of clusters. For this it is necessary to find a way to move the 

center vectors in a way that minimizes the probability of error. The LVQ method is a 

technique that does something similar by adapting the center vectors that minimizes input-

output mapping [10].  

 

4.1 Structure of Center Vector Optimization (CVO) 

 Here, CVO minimizes the MSE error from equation (3.1) with respect to the 

𝑖𝑡ℎ class, 𝑘𝑡ℎcenter vector 𝒎𝑖𝑘. First, it calculates the negative gradient of the MSE with 

respect to 𝒎𝑖𝑘  and then moves the center vector in the direction of the negative gradient 

using a second order algorithm. The negative gradient, 𝒈𝑖𝑘 , of the MSE with respect to 𝒎𝑖𝑘 

is calculated as follows,  

 
𝒈𝑖𝑘 = −

∂E

𝐦ik

 
(4.1) 
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−𝐠ik = −
∂E

∂mik(n)
 =  

2

Nv

∙ ∑ ∑  ( tp(j) − yp(j))  ∙
∂yp(j)

∂mik(n)
            

Nc

j=1

Nv

p=1 

 

 

(4.2) 

          where, 𝑦𝑝(𝑗) is calculated as,  

 
yp(j) =  

(dj)
−1

 

∑ (du)−1Nc
u=1

 
 

(4.3) 

and  
∂yp(j)

∂mik(n)
 is computed as,  

∂yp(j)

∂mik(n)
= 0 

if 𝒎𝑖𝑘  is not participating in computing 𝑦𝑝(𝑗) 

else,  

 
−

∂yp(j)

∂mik(n)
 = 2 ∙ dj

−2 ∙ w(n)2 ∙ (xp(n) − mik(n)) . (∑ du
−1 − dj

−1)/ ∑ du
−1

Nc

u=1

) 

Nc

u=1

 

when i = j, and  

−
∂yp(j)

∂mik(n)
 = − 2 ∙ dj

−1 ∙ di
−2 ∙ w(n)2 ∙ (xp(n) − mik(n)) / ∑ du

−1

Nc

u=1

 

when i ≠ j 

 

(4.4) 

After calculating the negative gradient, 𝒈𝑖𝑘, of the MSE with respect to 𝒎𝑖𝑘, CVO moves 

the center vectors in the direction of these negative gradients in order to minimize the error. 

Center vector are updated as follows  

 𝒎𝑖𝑘 ← 𝒎𝑖𝑘 + 𝑧𝑖𝑘 ∙ 𝒈𝑖𝑘 (4.5) 
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4.2 Multiple Optimal Learning Factor (MOLF) 

 
 Since learning factor, 𝑧, decides the rate of convergence of classifier training, 

multiple learning factor, 𝒛, one for each center vector proves to be very efficient during 

training. Using a Taylor’s series for the error 𝐸, and Newton’s algorithm [26] a non-heuristic 

multiple optimal learning factor (MOLF) can be calculated as, 

 𝑯 ∙  𝒛 =  𝒈𝒛  (4.6) 

 
where, 𝒈𝑧 is the negative gradient of error 𝐸 with respect to the learning factors 𝒛, after 

replacing center vector 𝒎𝑖𝑘 as given in equation (4.5) and evaluated at 𝑧𝑖𝑘 = 0. Matrix 𝑯, is 

the Hessian matrix of the objective function. Assume that the learning factor, 𝑧𝑖𝑘 ,  is used 

to update only the center vector, 𝒎𝑖𝑘, as given in equation (4.5). Using 𝒈𝑖𝑘  from equation 

(4.1), negative gradient 𝒈𝑧𝑖𝑘 is calculated as follows, 

 

𝐠zik = −
∂E

∂z𝑖𝑘

 =  
2

Nv

∙ ∑ ∑  ( tp(j) − yp(j))  ∙
∂yp(j)

∂z𝑖𝑘

            

Nc

j=1

Nv

p=1 

 

 

(4.7) 

as mentioned in section 4.1, if center vector, 𝒎𝑖𝑘, is not participating in computing 𝑦𝑝(𝑗)  

using equation (4.3) then,  

∂yp(j)

∂zik
= 0  

else,  

−
∂yp(j)

∂zik
 =  2 ∙ dj

−2 ∙ (∑ gik(n) ∙ w(n)2 ∙ 

N

n=1

(xp(n) − mik(n))). (∑ du
−1 − dj

−1)/ ∑ du
−1

Nc

u=1

) 

Nc

u=1

 

when i = j, and  

−
∂yp(j)

∂zik

 = − 2 ∙ dj
−1 ∙ di

−2 ∙ (∑ g
ik

(n) ∙ w(n)2 ∙ 

N

n=1

(xp(n) − mik(n)))/ ∑ du
−1

Nc

u=1

 

 

(4.8) 

 
when i ≠ j .The Hessian matrix, 𝑯, of the objective function calculated with respect to all 
the center vectors is computed as,  
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ℎ(𝑖, 𝑗)  =

𝜕2𝐸

𝜕𝑧𝑖𝑘𝜕𝑧𝑗𝑘

  
 
(4.9) 

Equation (4.6) is solved for 𝒛, using OLS [27] and 𝒎𝑖𝑘 is updated according to equation 

(4.5).  

 

CVO Training Algorithm Summary 

 
1) For iteration,  𝑖𝑡 = 1 to 𝑁𝑖𝑡, where 𝑁𝑖𝑡 is the total number of iterations. 

2) During 1st data pass calculate 𝑑𝑖 , 𝒚, 𝐸, 𝒈𝑖𝑘 

3) During second data pass calculate –
𝜕𝐸

𝜕𝑧𝑖𝑘
,

𝜕2𝐸

𝜕𝑧𝑖𝑘
2 , 𝒛 

4) Update 𝒎𝑖𝑘  ← 𝒎𝑖𝑘 + 𝑧𝑖𝑘  ∙ 𝒈𝑧𝑖𝑘 

5) End iterations 

  

4.3 CVO Results  

 Table – 2 compares randomized 10-fold testing results from traditional nearest 

neighbor classifier, OAWNNC and OAWNNC with center vector optimization. 
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Data Set Number of 

inputs 

Number of 

classes 

NNC 

accuracy % 

OAWNNC with 

DMO accuracy 

% 

OAWNNC with 

DMO and CVO 

accuracy % 

F17C.dat 17 39 25.5005 68.7039 69.0200 

SKIN.dat 2 2 93.8531 94.4196 95.4206 

GONGTST.tst 16 10 66.8333 77.8000 80.4667 

COMF18.TRA 18 4 54.2776 73.6481 77.2800 

PHONEME.dat 5 2 61.4701 75.3252 76.3194 

MAGIC 10 2 71.4346 79.3871 81.3103 

Table 2 - Classification Performance of NNC v/s OAWNNC with DMO v/s OAWNNC with 

DMO and CVO 

 From the results shown in the Table – 2, it can be concluded that center vector 

optimization makes OAWNNC insensitive to initial cluster center vectors. It optimally moves 

the cluster center vectors that further improves the performance of OAWNNC as compared 

to traditional nearest neighbor classifier. Thus CVO solves problem 4 mentioned in section 

2.6. 
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Chapter 5 

RESULTS AND CONCLUSION 
 
 This chapter presents results on several data sets to show that the new methods 

are successful in improving traditional NNC. These datasets are described in details in 

Appendix B. The training iterations were stopped when the mean square error difference 

in consecutive iterations was less than 10−5, for five consecutive iterations or if number of 

iterations reached 100. Center vectors were generated from 𝑁𝑣 training patterns using K – 

Means clustering algorithm [45]. The location of these cluster center vectors were 

intentionally perturbed in a random manner by adding Gaussian noise. This was done to 

validate the dependency of the traditional nearest neighbor classifier on initial center 

vectors and also validate the performance of the center vector optimization algorithm.  

 

5.1 Improved Distance Measure Results 

 Random noise features drawn from standard normal distribution were added to the 

data files and the larger datasets were put through the distance measure optimization. To 

measure how distance measure optimization improves the classification accuracy of the 

NNC. Table – 3 compares randomized 10 - fold testing results from traditional nearest 

neighbor classifier and OAWNNC with improved distance measure after augmenting the 

training data with noise features.  
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Data Set Number of 

inputs 

Number of 

noise features  

Number of 

classes 

NNC 

accuracy % 

OAWNNC with 

DMO accuracy % 

F17C.dat 17 5 39 19.6985 60.5496 

SKIN.dat 2 2 1 71.3204 79.8257 

GONGTST.tst 16 4 10 59.9184 73.1963 

COMF18.TRA 18 5 4 52.0759 71.8160 

PHONEME.dat 5 5 2 56.9096 70.3860 

MAGIC 10 5 2 69.3054 78.6154 

Table 3 – Effect of Weight Optimization on Random Noise Features.   

 
5.2 Center Vector Optimization Results 

 This sub-section shows the improvements in probability of error of the traditional 

nearest neighbor classifier after center vector optimization only. Training data is divided 

into cluster center vectors using K-Means++ [45]. Classification is performed using these 

center vectors. Center vector optimization moves these cluster center vectors optimally to 

improve the performance. Table – 4 compares randomized 10-fold testing results from 

traditional nearest neighbor classifier and OAWNNC with center vector optimization only. 
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Data Set Number of 

inputs 

Number of 

clusters 

Number of 

classes 

NNC accuracy 

% 

CVO only 

accuracy % 

F17C.dat 17 78 39 25.5005 43.6954 

SKIN.dat 2 6 2 93.8531 94.1651 

GONGTST.tst 16 30 10 66.8333 73.3521 

COMF18.TRA 18 12 4 54.2776 69.4915 

PHONEME.dat 5 6 2 61.4701 72.1839 

MAGIC 10 6 2 71.4346 75.9686 

Table 4 – Effect of Center Vector Optimization on Traditional Nearest Neighbor Classifier 

without Noise Features 

 
5.3 Comparison with LVQ [2] 

 Learning Vector Quantization [2] is a supervised learning algorithm that applies a 

winner-take-it-all based approach. . Winner-take-all training algorithm determines, for each 

input pattern, the center vector that is closest to the input according to a given distance 

measure. The position of this so-called winner center vector is then adapted, i.e. the winner 

is moved closer if it correctly classifies the data point or moved away if it classifies the data 

point incorrectly. The performance of OWNNC with CVO was compared to LVQ version 

2.1 from MATLAB to show its practicality. To have a fair comparison, same number of 

center vectors were used for both LVQ and OAWNNC with CVO training. Table 5 shows 

that the OAWNNC with CVO algorithm performs better than LVQ on all five datasets.  
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Data Set Number of 

inputs 

Number of 

classes 

NNC accuracy % LVQ V 2.1 

accuracy % 

OAWNNC + 

CVO 

accuracy % 

F17C.dat 17 39 25.5005 68.7039 69.0200 

SKIN.dat 2 2 93.8531 94.4 95.4206 

GONGTST.tst 16 10 66.8333 67.3 80.4667 

COMF18.TRA 18 4 54.2776 58.33 77.2800 

PHONEME.dat 5 2 61.4701 74.99 76.3194 

MAGIC 10 2 71.4346 71.9 81.3103 

Table 5 – Classification Results from NNC v/s LVQ v2.1 v/s OAWNNC with DMO and 

CVO 

 
5.4 Conclusion 

 Form the results in Table – 3, it is evident that nearest neighbor classifier suffers 

greatly by noisy features. However, OAWNNC with DMO makes the classifier robust to 

these noisy features. Thus the performance of the traditional nearest neighbor classifier is 

improved. OAWNNC solves problem 3 mentioned in section 2.6.  Results in Table – 4 show 

that the performance of the traditional nearest neighbor classifier is greatly dependent on 

the initial choice of center vectors. Non-optimal center vectors increases the probability of 

error nearest neighbor classifier. However, center vector optimization solves this 

dependency problem by optimally moving the center vector locations in input space. Center 

vector optimization alone reduces the probability of error. CVO solves problem 4 mentioned 

in section 2.6. OAWNNC with DMO and center vector optimization improves the 

performance of the nearest neighbor classifier and out performs similar algorithms like 

LVQ.  
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Appendix A 

Pseudocode
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 Optimizing distance measure weights with optimal learning factor.  

 

1) Cluster 𝑁𝑣 patterns into 𝐾 clusters, where 𝐾 =  ∑ 𝑘𝑖
Nc
i=1    

𝑘𝑖 is the number of clusters of 𝑖𝑡ℎ class 

After clustering we get 𝐾 center vectors 𝒎𝑖𝑘, where 𝒎𝑖𝑘 is the 𝑘𝑡ℎ center vector of 𝑖𝑡ℎ class   

1) Initialize 𝑤(𝑛) =
1

𝑣𝑎𝑟(𝑥(𝑛))
 for  1 ≤ 𝑛 ≤ 𝑁  

2) Initialize 𝒘𝒐𝒍𝒅 = 𝒘, 𝑀𝑆𝐸𝑜𝑙𝑑 = +𝑖𝑛𝑓, 𝑧𝑜𝑙𝑑 = 0 

3) For 𝑖𝑡𝑒𝑟 = 1 to 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 

a) Initialize 𝑧 = 0, 𝐷1 = 0, 𝐷2 = 0, 𝐺 = 0 

b) For 𝑝 = 1 𝑡𝑜 𝑁𝑣 

i. For 𝑖 = 1 𝑡𝑜 𝑁𝑐 

 Compute di = min (d(xp, mik)) using equation (3.3) 

 Cache values of argminik(dp(xp, mik)) in memory, required while computing 

OLF 

ii. Compute y  

iii. End 𝑖 

iv. Compute 𝑀𝑆𝐸 using equation (3.1) with one-hot encoding target output 

v. MSEold = MSE 

vi. Compute negative gradient vector g using equation (3.4), (3.5) and (3.6) 

vii. Cache values of 𝒚 and  𝑑𝑖 for each pattern 𝑁𝑣 in order to avoid re-computing 

these values during OLF calculation 

End 𝑝 

c) Using the cached values for each training pattern during the 1st pass through the 

data, and 𝒈 perform second pass through the data to calculate OLF 

i. For 𝑝 = 1 to 𝑁𝑣 
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ii. For 𝑖 = 1 𝑡𝑜 𝑁𝑐 

 Replace 𝑤(𝑛)  ← 𝑤(𝑛) + 𝑧 ∙ 𝑔(𝑛) in equation (3. 3) where 𝑧 = 0. Compute 𝐷1 

i.e negative  1𝑠𝑡 order derivative of MSE w.r.t 𝑧 using equation (3.9) and 

(3.10) 

 Compute 𝐷2 i.e second derivative of MSE w.r.t 𝑧 using equation (3.11) 

END 𝑖 

END 𝑝 

iii. Using equation (3.8) compute OLF 𝑧 

d) Update the weights as 𝑤(𝑛) ← 𝑤(𝑛) + 𝑧 ∙ 𝑔(𝑛) 

e) Calculate 𝑀𝑆𝐸 using updated weights  

i. If 𝑀𝑆𝐸 <  𝑀𝑆𝐸𝑜𝑙𝑑  

iv. 𝒘𝒐𝒍𝒅 = 𝒘, 𝑧𝑜𝑙𝑑 = 𝑧, 𝑀𝑆𝐸𝑜𝑙𝑑 =  𝑀𝑆𝐸  

Else, perform back-tracking  

v. 𝑧 =
𝑍

2
,  𝑤(𝑛) ← 𝑤(𝑛) + 𝑧 ∙ 𝑔(𝑛) 

End 𝑖𝑡𝑒𝑟 

4) Save Weights to disk 
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 Optimizing distance measure weights using Newton’s algorithm.  

1) Cluster 𝑁𝑣 patterns into 𝐾 clusters, where 𝐾 =  ∑ 𝑘𝑖
Nc
i=1 .   

𝑘𝑖 is the number of clusters of 𝑖𝑡ℎ class 

After clustering we get 𝐾 center vectors 𝒎𝒊𝒌, where 𝒎𝑖𝑘 is the 𝑘𝑡ℎ center vector of 𝑖𝑡ℎ 

class   

2) Initialize 𝑤(𝑛) =
1

𝑣𝑎𝑟(𝑥(𝑛))
 for  1 ≤ 𝑛 ≤ 𝑁  

3) Initialize 𝒘𝒐𝒍𝒅 = 𝒘, 𝑧𝑜𝑙𝑑 = 0 

4) For 𝑖𝑡𝑒𝑟 = 1 to 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 

f) Initialize 𝒈 = 0, 𝑯 = 0 

a) For 𝑝 = 1 𝑡𝑜 𝑁𝑣 

i. For 𝑖 = 1 𝑡𝑜 𝑁𝑐 

vi. Compute 𝑑𝑖 = min (𝑑(𝒙𝑝, 𝒎𝑖,𝑘)) using equation (3.3) 

ii. Compute 𝒚  

End 𝑖 

iii. Compute 𝑀𝑆𝐸 using equation (3.1) with one-hot encoding target output 

iv. Compute negative gradient vector 𝒈 using equation (3.4), (3.5) and (3.6) 

v. Compute Hessian matrix 𝑯 using equation (3.13) 

End 𝑝 

vi. Solve equation (3.14) to compute update vector 𝒆 using OLS [27] 

vii. Update weights as 𝑤(𝑛)  ← 𝑤(𝑛) + 𝑒(𝑛) 

End 𝑖𝑡𝑒𝑟 

5) Save Weights to disk  
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Appendix B 

Description of datasets
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1 GONGTST.TST  

 The raw data consists of images from hand printed numerals collected by the 

Internal Revenue Service. Images are 32 by 24 binary matrices. An image scaling 

algorithm is used to remove size variation in characters. This dataset contains 16 input 

features. The 10 classes correspond to 10 Arabic numerals.  

 

2 COMF18.TRA  

 This dataset comes from [47] and has 18 input features to classify patterns into 4 

distinct classes. These features are extracted from images as per Level 1 of the US 

Geological Survey Land Use/Land Cover Classification System to categorize into four 

regions of land use: urban areas, fields or open grass lands, trees (forest land) and water 

(lakes or river). 

 

3   F17C  

 This dataset is used for the application of prognostics or flight condition 

recognition. It consists of parameters that are available in the basic health usage 

monitoring systems (HUMS), plus some others. The data was collected from M430 

flight load level survey conducted in Mirabel Canada in early 1995. It has 17 input 

features and 39 classes. 

 
4 Skin Segmentation Data Set  

 The skin dataset is collected by randomly sampling B,G,R values from face images 

of various age groups (young, middle, and old), race groups (white, black, and asian), and 

genders obtained from FERET database and PAL database [48]. Total number of training 
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patterns is 245057; out of which 50859 is the skin samples and 194198 is non-skin 

samples. It has 3 input features and 2 classes. 

 
5 Phoneme Data Set  

 This dataset distinguishes between nasal and oral sounds. It has 3818 patterns 

with 5 input features and 2 classes [49].  

 

6 Magic Gamma Telescope Data Set  

 This is a MC generated dataset to simulate registration of high energy gamma 

particles in a ground-based atmospheric Cherenkov gamma telescope using imaging 

technique. The information consists of pluses left by incoming Cherenkov photons on the 

photomultiplier tubes, arranged on the camera plane. Depending on number of photons 

collected on the image plane, the patterns are classified into two categories: those caused 

by primary gamma and those caused hardonic showers initiated by cosmic rays.  
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