
i

OPTIMAL ATTRIBUTE WEIGHTING IN

A NEAREST NEIGHBOR

CLASSIFIER

by

JUGAL RAJU SHETH

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2016

ii

Copyright © by Jugal Raju Sheth 2016

All Rights Reserved

iii

Acknowledgements

 I would like to express my sincere gratitude to my advising professor Dr. Michael

T Manry for his continuous support throughout my master study and related research, for

his patience, guidance and immense knowledge. His guidance helped me in all the time of

research and writing of this thesis.

 I would also like to thank Dr. Ionnis D. Schizas and Dr. W. Alan Davis for their time,

valuable comments and being a member of my thesis defense committee.

 Finally, I must express my sincere gratitude to my family for their love and support.

I dedicate this thesis to my parents, Mr. Raju Sheth and Mrs. Asmita R. Sheth and my

sister, Arpita R. Sheth.

November 21, 2016

iv

Abstract

OPTIMAL ATTRIBUTE WEIGHTING IN A

NEAREST NEIGHBOR

CLASSIFIER

JUGAL RAJU SHETH, MS

The University of Texas at Arlington, 2016

Supervising Professor: Dr. Michael T. Manry

 Nearest Neighbor algorithms are non-parametric algorithms that use distance

measure techniques for classification and regressions. This thesis, first improves the

traditional nearest neighbor classifier by optimizing its distance measure using a second

order training algorithm. It then presents a second order method to adjust center vectors.

It is shown that the distance measure weight optimization and center vector optimization,

individually and together reduce the final classification error. The testing error of our

algorithm is shown to be less than that of LVQ V.2.1

v

Acknowledgements ...iii

Abstract .. iv

List of Illustrations ..vii

List of Tables ... viii

Chapter 1 INTRODUCTION .. 9

1.1 Classifiers .. 9

1.2 Nearest Neighbor Classifier ... 9

1.3 Objective of this thesis ... 10

Chapter 2 STRUCTURE AND OPERATION OF NNC ... 11

2.1 Structure of Nearest Neighbor Classifier ... 11

2.2 Basic Nearest Neighbor Classifier operation ... 11

2.3 Generating center vectors ... 12

2.4 Example Distance Measure Techniques ... 14

2.5 Theoretical Properties of Nearest Neighbor Classifier 17

2.6 Problems with Nearest Neighbor Classifier ... 19

Chapter 3 STRUCTURE OF OAWNNC ... 21

3.1 Motivations behind the structure of OAWNNC .. 21

3.2 Modified Weighted Euclidean Distance Measure .. 23

3.3 Training OAWNNC for distance measure improvement.................................. 24

3.4 OAWNNC Results ... 29

Chapter 4 CENTER VECTOR OPTIMIZATION (CVO) ... 32

4.1 Structure of Center Vector Optimization (CVO) .. 32

4.2 Multiple Optimal Learning Factor (MOLF) ... 34

4.3 CVO Results and Conclusions .. 35

Chapter 5 .. 37

vi

5.1 Improved Distance Measure Results... 37

5.2 Center Vector Optimization Results .. 38

5.3 Comparison with LVQ [2] ... 39

5.4 Conclusion ... 40

Appendix A Pseudocode ... 41

Appendix B Description of datasets .. 45

References .. 48

Biographical Information ... 53

vii

List of Illustrations

Figure 1 – Weight Optimization Training Iteration Difference for COMF18.tra dataset. ... 30

viii

List of Tables

Table 1 - Classification Performance of NNC v/s OAWNNC with Distance Measure

Optimization (DMO). ... 30

Table 2 - Classification Performance of NNC v/s OAWNNC with DMO v/s OAWNNC with

DMO and CVO .. 36

Table 3 – Effect of Weight Optimization on Random Noise Features. 38

Table 4 – Effect of Center Vector Optimization on Traditional Nearest Neighbor Classifier

without Noise Features ... 39

Table 5 – Classification Results from NNC v/s LVQ v2.1 v/s OAWNNC with DMO and

CVO... 40

9

Chapter 1

INTRODUCTION

 This chapter is a review of basic concepts of the classifiers. It also reviews nearest

neighbor classifiers and their properties.

1.1 Classifiers

 In the fields of statistics and pattern recognition, classification is the task of

identifying the class or the category of a new test pattern, on the basis of a training set of

data containing similar patterns whose class membership is known [32]. As an example,

tasks like assigning an email into spam or non-spam, classifying an image of an animal as

a dog or a cat etc. Algorithms that implement classification are known as classifiers.

Depending on the characteristics of the data to be classified, different kinds of classifiers

are used. Linear and generalized linear classifiers like the perceptron [33], support vector

machines [34] etc. are used to classify simple datasets. For complex datasets non-linear

classifiers like multi-layer perceptron [35], decision trees [36] etc. are used. All of these

classifiers have parameters like weights that need to be adjusted differently depending on

the training dataset. Thus these classifiers are called as parametric classifiers.

1.2 Nearest Neighbor Classifier

 Classifiers based on the nearest neighbor (NN) rule are traditional, simple and

effectively used in pattern recognition [13, 14], text categorization [15-17], ranking models

[18], object recognition [20] and event recognition [19]. They achieve consistently high

performance without priori assumptions about the distributions from which the training

examples are drawn. Nearest neighbor classifiers are a type of instance based learning or

lazy learning classifiers, in which the generalization beyond the training data is delayed

10

until a new query is encountered. NN classifiers are thus consistent non parametric

estimators. Here the term non-parametric refers to the fact that there is no prior knowledge

of the statistical distribution of the data. During testing, the distance of the input vector

(pattern) to each cluster’s center vector is calculated. The estimated class of the input

vector is that of the nearest center vector. As the number of training patterns tend to infinity,

classifiers based on nearest neighbor rule converge to the corresponding Bayes estimate.

1.3 Objective of this thesis

 This thesis, proposes an algorithm for optimal attribute weighting in a nearest

neighbor classifier (OAWNCC) that optimizes the weights in a nearest neighbor classifier’s

distance measure using a second order training algorithm. The optimized weights of

important input features are greater in magnitude than those of less important input

features. This enables us to neglect features by using weights having small absolute

magnitude. It also proposes a center vector optimization algorithm that is a technique for

optimizing the center vector locations in input dimension space which directly minimizes

the input-output mapping error.

 Chapter 2, reviews the structure and operations of the traditional nearest neighbor

classifiers from which OAWNCC is derived. Chapter 3, explains the motivation behind the

designing of OAWNCC and describes training using steepest descent technique with an

optimal learning factor and then eventually with Newton’s algorithm for faster convergence.

Chapter 4, introduces optimization of center vectors in OAWNCC using the steepest

descent method and with second order algorithms for calculating multiple optimal learning

factors. Chapter 5 present the results on several datasets.

11

Chapter 2

STRUCTURE AND OPERATION OF NNC

 This chapter, reviews the structure and operation of the traditional nearest

neighbor classifier. It also reviews problems associated with the nearest neighbor

classifiers.

2.1 Structure of Nearest Neighbor Classifier

 The training data consists of ‘𝐾’ 𝑁-dimensional cluster center vectors, 𝒎𝑖𝑘, where

𝒎𝑖𝑘 is the center vector of the 𝑘𝑡ℎ cluster of the 𝑖𝑡ℎ class. Let the total number of classes

be 𝑁𝑐. The 𝑝𝑡ℎ 𝑁-dimensional test vector is denoted by 𝒙𝑝. The symbol 𝑑𝑖 is the distance

between 𝒙𝑝 and the closest center vector of the 𝑖𝑡ℎ class.

 Since the nearest neighbor classifier is an instance based classifier [42], unlike

many other artificial learners, they do not extract any information from the training data

during the learning phase. The learning phase is merely a question of encapsulating the

training data. During the time of classification, an unlabeled test pattern is classified by

assigning the class of the center vector that is the closest to this new test pattern. The

distance metric can be empirically chosen among the Euclidean, Minkowski [44], and

Mahalanobis [23] methods among others, based on the training data and application. The

most commonly used distance metric for continuous variables is the Euclidean distance

(𝐿2)

2.2 Basic Nearest Neighbor Classifier operation

 In the 𝑁𝑣, 𝑁 - dimensional training patterns, each pattern is associated with the

class label to which it belongs. There are two stages of operations involved during

classification using nearest neighbor classifiers.

12

1) Clustering: 𝑁𝑣 training patterns of 𝑁-dimensional input space is divided into 𝐾

clusters. The value of 𝐾 is chosen such that patterns in the same clusters are

more similar to each other than to those in other clusters. This division of input

patterns into 𝐾 cluster’s center vectors can be done by implementing clustering

algorithms such as K – Means [3], SOM [2] or EM [42].

2) Classification: Once the training patterns are divided into clusters, their center

vectors and membership to a particular class 𝒎𝑖𝑘 are cached into disk. When

a new test input vector needs to be classified, its distance from all the center

vectors is computed. The closest center vector from each class is determined

as

di = argmin
k

d(𝐱p, 𝐦ik)

where, d(𝐱p, 𝐦ik), is the distance of the 𝑝𝑡ℎ test pattern, 𝒙𝑝, from the center

vector, 𝒎𝑖𝑘. 𝑑𝑖 is the distance of the new test pattern from the closest center

vector of 𝑖𝑡ℎ class. The class membership of this new test pattern is then

estimated as

ic
′ = argmin

i
di

where, 𝑖𝑐
′ is the estimated class of the 𝑝𝑡ℎ test pattern, 𝒙𝑝.

2.3 Generating center vectors

 Clustering is the task of grouping a set of objects such that objects in the same

group are more similar to each other in some sense than to those in other groups. It is a

main task of exploratory data mining, and a common technique for statistical data analysis,

used in many fields, including machine learning, pattern recognition, image

analysis, information retrieval, bioinformatics, data compression, and computer graphics

13

[36]. Center vectors can be generated using various algorithms like K – Means [3], SOM

[2] and EM [42]. The appropriate center vector generating algorithm depends on the

individual dataset and the intended use of the results. The training dataset can be used in

different ways for classification using nearest neighbor classifiers. For example,

1) Entire training dataset or patterns can be used as center vectors. This avoids

the need for using any clustering algorithms. The number of training patterns

can be large, even in the order of millions. Thus this method can cause huge

memory strains as the entire dataset needs to be cached in memory. Along

with this, computing distance of a test pattern from all these training patterns

can be computationally very expensive. However, the above method can

prove to be useful if the number of training patterns are limited and testing time

is not a matter of concern.

2) We can randomly choose few training patterns and use them as center

vectors. This method also avoids the need for using any clustering algorithms

and does not cause much memory strains as only center vectors need to be

cached in memory as compared to the entire training dataset. Number of

center vectors is much less than the number of training patterns. Since these

randomly picked center vectors are not optimal, they may group dissimilar

objects to each other and might even prove to be use less center vectors. This

can lead to decreased performance.

3) K - Means clustering [3] is a popular vector quantization method that partitions

𝑁𝑣 patterns into 𝐾 clusters where each pattern belongs to the cluster with the

nearest mean. This results in partitioning of the data space into Voronoi cells

[4]. K - Means clustering is an iterative refinement, efficient heuristic algorithm

that is commonly employed and converge quickly to local optimums [38].

14

Given a set of 𝑁𝑣 training patterns, 𝒙𝑝, where each pattern has 𝑁-dimensional

inputs. K - Means clustering aims to partition 𝑁𝑣 patterns into 𝐾 clusters, so as

to minimize the within-cluster sum of squares distances.

Algorithm Summary [31]

1. 𝑖𝑡 = 0, where 𝑖𝑡 = iteration number and 𝑁𝑖𝑡 = total number of iterations.

2. 𝑖𝑡 = 𝑖𝑡 + 1

3. Calculate center vector, 𝒎𝑘, as

4. 𝐦k =
1

Nv(k)
∑ 𝐱pp:m(p)=k ,

where 𝑚(𝑝) equals the cluster number of the 𝑝𝑡ℎ pattern and

𝑁𝑣(𝑘) equals the number of patterns in the 𝑘𝑡ℎ .

Reclassify 𝒙𝑝s, in one data pass. If 𝒙𝑝 belongs to the 𝑘𝑡ℎ cluster,

𝑚(𝑝) equals 𝑘. 𝑚(𝑝) therefore specifies the cluster membership of the

𝑝𝑡ℎ pattern. If any clusters change and iteration number < 𝑁𝑖𝑡 , go to step

2.

 The K – Means clustering error, 𝐸𝑘−𝑚𝑒𝑎𝑛𝑠 , is

Ek−means =
1

Nv

 ∑ d(𝐱p, 𝐦m(p))

Nv

p=1

=
1

Nv

 ∑ Ek

𝐾

k=1

Eik = ∑ d(𝐱p, 𝐦k)

p:m(p)=k

2.4 Example Distance Measure Techniques

 Nearest neighbor algorithms calculates the distance between the new test pattern

and the center vectors to estimate the class of this new test pattern. There are a variety of

distance measures available.

15

2.4.1 Euclidean Distance

 Euclidean distance measure is by far the most common distance measure

technique used. The associated norm is called the Euclidean norm [38]. Euclidean distance

between the 𝑝𝑡ℎ test pattern, 𝒙𝑝 and 𝒎𝑖𝑘 center vector is given by

d(𝐱p, 𝐦ik) = ⃦ 𝐱p − 𝐦ik ⃦ = (∑(xp(n) − mik(n))
2

N

n=1

)

½

(2.1)

The square root is often not computed in practice, because the closest center vector will

still be the closest, regardless of whether or not the square root is taken [40].

2.4.2 Mahalanobis Distance Measure [23]

 Mahalanobis distance measure computes the distance between 𝑝𝑡ℎ test pattern,

𝒙𝑝 and the distribution, 𝐷. It is a multi-dimensional dimensional generalization of the idea

of measuring how many standard deviations point 𝒙𝑝 is away from the mean. If the point is

at the mean of distribution, 𝐷, the distance is zero [41]. Mahalanobis distance measure can

also be defined as the measure of dissimilarity between the test pattern, 𝒙𝑝, and center

vector, 𝒎𝑖𝑘, of the same distribution [31].

d(𝐱p, 𝐦ik) = ∑ ∑ 𝑎𝑘(𝑛, 𝑚)[𝑥𝑝(𝑛) − 𝑚𝑖𝑘(𝑛)][𝑥𝑝(𝑚) − 𝑚𝑖𝑘(𝑚)]

𝑁

𝑚=1

N

n=1

where,

ak(𝑛, 𝑚) ∈ 𝑪𝑘
−1, 𝑪𝑘 = 𝐸[(𝒙𝑝 − 𝒎𝑖𝑘)(𝒙𝑝 − 𝒎𝑖𝑘)

𝑇
]

(2.2)

16

2.4.3 Minkowski Distance Measure [44]

 It is a generalization of Euclidean distance and the Manhattan distance. The

distance of order 𝑣 between the 𝑝𝑡ℎ test pattern, 𝒙𝑝 and 𝒎𝑖𝑘 center vector is given by

d(𝐱p, 𝐦ik) = (∑(xp(n) − mik(n))
v

N

n=1

)

1
v

(2.3)

If 𝑣 = 2, the Minkowski distance is equivalent to Euclidean distance (L2).

2.4.4 Weighted Euclidean Distance

 It is a modified Euclidean distance that incorporates weights in the distance

calculation such that distance measure for each input element 𝑥𝑝(𝑛) is multiplied with the

corresponding input weights element 𝑤(𝑛). The weighted Euclidean distance between the

𝑝𝑡ℎ test pattern, 𝒙𝑝 and center vector, 𝒎𝑖𝑘 , is given by

d(𝐱p, 𝐦𝐢𝐤) = ∑ (w(n) ⋅ (xp(n) − mik(n)))
2

N

n=1

(2.4)

This thesis uses weighted Euclidean distance measure to compute the distance between

the test pattern and the center vectors as the weights are a measure of importance for the

corresponding input element. Optimally tuning these weights such that they are small in

magnitude for noisy and less discriminative features will reduce the participation of these

features in computing the distance for nearest neighbors. Thus this helps in solving the

problem of misclassification due to noisy features.

Weight Initialization

 Weights are one of the most important parameters that determine the performance

of any classifier. The training error convergence, performance and training hyper-

parameters like learning rates etc. depend heavily on initial weights. If the weights are too

17

small the gradients would in turn be very small in magnitude and thus the classifier will take

more time to converge or might not converge to a desired error value. On the other hand if

weights are very large then their gradients would be very large in magnitude too. So a small

change in weight update can lead to large change in the output, thus a very small learning

rate would be required to compensate for this problem. Later, a small learning rate will

need more iterations to converge weights with small magnitudes, since their gradients are

also small. If some inputs have much larger variance than others, they can dominate the

training. So to avoid dominance of some high variance inputs over others, inputs are

normalized by initializing weights as 𝑤(𝑛) =
1

𝑉𝑎𝑟(𝑥(𝑛))+ ∈
, where ∈ is a small positive

constant of order 10−3 used to avoid division by zero.

2.5 Theoretical Properties of Nearest Neighbor Classifier

 The Bayes error is the minimum achievable error rate by any classifier. Incase if

the classes overlap then the error rate will be nonzero. For example, suppose that the

training input pattern, with the correct class label of that pattern, follows a Gaussian

distribution with mean 𝜇𝑖 and fixed variance. The two Gaussians overlap so no classifier

can predict the class label correctly for all training patterns, and the Bayes error rate is

nonzero.

 The Bayes error rate is the average over the space of all examples of the minimum

error probability for each example. The optimal prediction for any test pattern 𝒙 is the label

that has highest probability given 𝒙. The error probability for this example is then one minus

the probability of this label. Formally, the Bayes probability of error rate is

Pe−Bayes = ∫ p(𝐱)[1 − max

i
p(i| 𝐱)]

𝒙

(1.1)

18

where 𝑝(𝑖|𝒙) is the probability that 𝒙 has label 𝑖 and 1 − 𝑝(𝑖|𝒙) is the probability that 𝒙 has

a different label. The maximum is taken over the 𝑁𝑐 possible labels 𝑖 = 1 to 𝑖 = 𝑁𝑐 [30].

Theorem: When the number of training examples tend to infinity, the probability of error

rate of NNC is at worst twice the Bayes error rate as proven by [1].

Proof: Let 𝒙 be a test pattern and 𝒎𝑖𝑘 be its closest neighbor. If the number of training

examples 𝑁𝑣 is large, then the probability distribution for any test pattern and its nearest

neighbor will be essentially the same. In this case, for the 𝑝𝑡ℎ test pattern, 𝒙, the expected

probability of error rate of NNC is

𝑃𝑒−𝑁𝑁𝐶 = ∑ p(i|𝐱)[1 − p(i|𝐱)

Nc

i=1

]

(1.2)

To prove the theorem, we need to show that

∑ p(i|𝐱)[1 − p(i|𝐱)]

Nc

i=1

≤ 2[1 − max
i

p(i|𝐱)]

i.e Pe−NNC ≤ 2 ∙ Pe−Bayes

(1.3)

Let 𝑚𝑎𝑥
𝑖

𝑝(𝑖|𝒙) = 𝑟 and let the maximum be attained with 𝑖 = 𝑗. Then the left hand side is

∑ p(i|𝐱)[1 − p(i|𝐱)]

Nc

i=1

= 𝑟(1 − 𝑟) + ∑ p(i|𝐱)[1 − p(i|𝐱)]

i≠j

(1.4)

and the right hand side is 2(1 − 𝑟). The summation above is maximized when all the values

𝑝(𝑖|𝒙) are equal for 𝑖 ≠ 𝑗. The value of left hand side is then

𝐴 = r(1 − r) + (Nc − 1)

1 − r

Nc − 1

(Nc − 1) − (1 − r)

Nc − 1

∴ 𝐴 = r(1 − r) + (1 − r)
Nc + r − 2

Nc − 1

(1.5)

19

Now 𝑟 ≤ 1 and Nc − 2 + 𝑟 < Nc − 1 so 𝐴 < 2(1 − 𝑟).This proves that, with large enough

training set, no classifier can do better than half the probability of error rate of a 1-nearest

neighbor classifier [30]

2.6 Problems with Nearest Neighbor Classifier

Though nearest neighbor methods are very easy to implement, they have many

drawbacks.

1 Computationally expensive – Nearest neighbor classifiers compute distance of the

input vector to all the center vectors. This distance measurement is computationally

expensive and requires that all the center vectors to be stored in memory. This

increases the computational complexity and memory requirements. Due to these

computational complexities they cannot be used for real time applications.

2 Curse of dimensionality - The accuracy of the nearest neighbor classifiers tends to

decrease as the number of features or inputs increases [46]. The reason is that in a

high-dimensional space all points tend to be far away from each other, so nearest

neighbors are not meaningfully similar. Practically, if vectors (patterns) are represented

using many features, then every pair of examples will likely disagree on many features,

so it will be rather arbitrary which vectors are closest to each other [9].

3 Contaminated input features – noise and less discriminative input features can cause

problems such as convergence difficulties, poor classification accuracy and

contamination of the distance measure which leads to false classification.

4 Rigid Voronoi cells - Clustering algorithms often get stuck in local minima and the result

is largely dependent on the choice of initial cluster centers [3] [4]. Generated clusters,

𝒎𝑖𝑘 are not changed after initialization, and are not chosen to minimize, 𝑃𝑒−𝑁𝑁𝐶 , the

20

probability of error of the nearest neighbor classifier so they are not optimal. Clustering

methods other than the Learning Vector Quantization (LVQ) method [2] do not adapt

the center vectors in a way that minimizes the probability of error. [10].

21

Chapter 3

STRUCTURE OF OAWNNC

 This chapter, introduces Optimal Attribute Weighting in a Nearest Neighbor

Classifier (OAWNNC) algorithm that optimizes distance measure weights. This provides a

solution to problem solves problem 3 mentioned in section 2.6.

3.1 Motivations behind the structure of OAWNNC

 OAWNNC uses weighted Euclidean distance measure instead of regular

Euclidean distance measure. Weights for the distance measure are initialized as 𝑤(𝑛) =

1

𝑉𝑎𝑟(𝑥(𝑛))+ ∈
 as mentioned in section 2.4.4. This reduces the dominance of inputs with high

variance. However these weights are not optimal as they barely contribute in improving the

performance of the classifier. Traditional nearest neighbor classifier, has a probability of

error, 𝑃𝑒−𝑁𝑁𝐶 , as a measure of how well the classifier performs. To calculate the optimal

weights, there needs to be a way to minimize 𝑃𝑒−𝑁𝑁𝐶 with respect to the weights, 𝒘.

Since𝑃𝑒−𝑁𝑁𝐶 is a scalar value and its gradient with respect to weights is zero i.e
𝜕𝑃𝑒−𝑁𝑁𝐶

𝜕𝑤(𝑛)
=

0, there is no direct way to minimize 𝑃𝑒, with respect to the weights to find optimal weights.

 To solve this problem, OAWNNC maps traditional nearest neighbor classifier to a

neural net. Optimizing the objective function of the neural network helps in calculating

optimal weights that improve the classification performance of the neural network. It is

really important to derive a mapping function that provides a one to one mapping between

the NNC discriminant 𝑑𝑖 and the neural network discriminant 𝑦(𝑖), such that improving the

classification performance of the neural network, improves the probability of error,

22

𝑃𝑒−𝑁𝑁𝐶 , of the NNC. OAWNNC uses a modified softmax discriminant function 𝑦(𝑖). This

function is defined as

y(i) =
(di)

−1

∑ (dj)
−1Nc

j=1

The softmax discriminant 𝑦(𝑖) takes in the inverse of distances of test vector from the

closest center vectors of each class and outputs a score for that class. It provides a one to

one mapping from 𝑑𝑖 when the inverse of distances of the test pattern to the closest center

vector of each class adds up to one, i.e ∑ (dj)
−1

= 1
Nc
j=1 . Since this function is continuous

at all points, gradients for optimization can be easily computed. The class of the test pattern

is estimated from the output score vector, 𝒚, as

ic
′ = argmin

i
y(i)

 Softmax function outputs a score in the range of 0 to 1. With the score of the correct

class being close to 1 and that of the incorrect class close to 0. It makes it easier to

comprehend the performance of the classifier if its outputs as the scores are interpretable

as posterior probabilities of categorical target output. For this reason, OAWNNC chooses

the target output of the 𝑝𝑡ℎ, 𝒕𝑝, of the correct class to be 1 and those of incorrect class to

be 0 is chosen. This is called one-hot encoding technique.

tp(i) = δ(i − ic(p))

where 𝑖𝑐(𝑝) is the correct class of the 𝑝𝑡ℎ, pattern.

 OAWNNC converts the classification problem into regression by using the mean

square error function (MSE). Squared error loss is one of the most widely used loss function

in statistics. In statistical modelling the MSE, representing the difference between the

actual target output and the output values predicted by the neural network, is used to

determine the extent to which the network fits the data and whether the removal or some

23

explanatory variables, simplifying the model, is possible without significantly harming the

model's predictive ability [25]. The objective function used in training 𝑦(𝑖) is

E =
1

Nv

∑ ∑ (tp(j) − yp(j))
2

Nc

j=1

Nv

p=1

(3.1)

3.2 Modified Weighted Euclidean Distance Measure

 During classifier training to calculate optimal weights, 𝒘, using regular weighted

Euclidean distance measure as mentioned in section 2.4.4 few weight elements 𝑤(𝑛)

would become negative. This made the distance measure value, 𝑑, negative and thus led

to decreased performance and increased misclassification error. To solve this issue, this

thesis proposes two different modified weighted Euclidean distance measure techniques.

1. Use absolute value of weights, ⎸𝑤(𝑛)⎹ , for distance calculation.

d(𝐱p, 𝐦ik) = ∑ (⎸w(n)⎹ ⋅ (xp(n) − mik(n)))

2

N

n=1

+ ∈

(3.2)

2. Use squared values of weights, w(n)2, for distance calculation.

d(𝐱𝐩, 𝐦𝐢𝐤) = ∑ (w(n)2 ⋅ (xp(n) − mik(n)))

2

N

n=1

+ ∈

(3.3)

∈ is a small positive constant of the order 10−3 that prevents the distances from being zero

and avoids division by zero while mapping the NNC to the neural network. Throughout this

thesis squared weights, 𝑤(𝑛)2, are used, since during weight optimization training with

different datasets, it was found that squared weights, 𝑤(𝑛)2, perform better as compared

to absolute weights, ⎸𝑤(𝑛)⎹ .

24

3.3 Training OAWNNC for distance measure improvement.

 In order to solve the problems of the curse of dimensionality, and misclassifications

caused by noise and less discriminative features, it is necessary to optimize the distance

measure algorithm. To ensure that our distance measure emphasizes more on highly

discriminative features than the less discriminative features, we optimize weights

corresponding to each input feature.

 Training of a classifier consists of changing the weights in order to make the

computed output as close as possible to the desired output, thus reducing the mean square

error (MSE). It mainly involves the following two independent steps. First a search direction

has to be determined. i.e., in what direction do we want to search in weight space for a

new current point? Once the search direction has been found we have to decide how far

to go in the specified search direction, i.e., a step size has to be determined. Most of the

optimization methods used to minimize error functions are based on the same strategy.

The minimization is a local iterative process in which an approximation to the error function

in a neighborhood of the current point in weight space is minimized.

3.3.1 First Order Training Algorithms for Weight Optimization

 In this section, steepest descent which is the first order optimization algorithm is

used. The negative gradient the MSE with respect to input weights are calculated as

follows,

𝐠 = −

∂E

∂𝐰

(3.4)

Elements of the negative gradient vector 𝒈 are calculated from the above equation (3.4)

as

25

g(n) = −
∂E

∂w(n)
 =

2

Nv

∙ ∑ ∑ (tp(j) − yp(j)) ∙
∂yp(j)

∂w(n)

Nc

j=1

Nv

p=1

(3.5)

where, taking the partial derivative of 𝐸 in equation (3.1) yields

∂yp(j)

 ∂w(n)
=

− ∑ du
−1Nc

u=1 ∙ (dj)
−2

∙ 2 ∙ 𝑤(𝑛) ∙ [xp(n) − mjk(n)]
2

 + (dj)
−1

∙ ∑ (du)−2 ∙ 2 ∙ w(n) ∙ [xp(n) − muk(n)]
2

 Nc
u=1

(∑ (du)−1Nc
u=1)

2

(3.6)

Input weight changes are calculated using the negative gradients from equation (3.4), (3.5)

and (3.6) and a learning factor 𝑧, where, 𝑧, is a heuristically chosen scalar value. The

weights are updated as follows,

 𝐰 ← 𝐰 + z ∙ 𝐠 (3.7)

Optimal Learning Factor

 The learning factor, 𝑧, decides the rate of convergence of training. Usually a small

positive value for 𝑧 will work, but convergence is likely to be slow. If 𝑧 is too large the error,

𝐸, can increase [25]. In order to avoid this uncertainty a lot of heuristic scaling approaches

have been introduced to modify the learning factors between iterations and thus speed up

the rate of convergence. However using a Taylor’s series for the error 𝐸, a non-heuristic

Optimal Learning Factor (OLF) can be calculated as,

z =
−

∂E
∂z

∂2E
∂z2

(3.8)

where the numerator and denominator derivatives are evaluated at 𝑧 = 0. Assume that the

learning factor, 𝑧, is used to update only the input weights 𝒘, as given in equation (3.7).

Using the gradient 𝒈, the optimal learning factor is derived in the following steps,

26

−

∂E

∂z
 =

2

Nv

∙ ∑ ∑ (tp(j) − yp(j)) ∙
∂yp(j)

∂z

Nc

j=1

N

p=1

(3.9)

where, ∂yp(j)

 ∂w(n)
=

A − B

(∑ (du)−1
Nc
u=1)

2

(3.10)

where,

and

A = − ∑ du
−1

Nc

u=1

∙ (dj)
−2

∙ ∑(2 ∙ g(n) ∙ w(n) ∙ [xp(n) − mjk(n)]
2

)

Nv

p=1

B = −(dj)
−1

∙ ∑ du
−2 ∙ ∑(2 ∙ g(n) ∙ w(n) ∙ [xp(n) − muk(n)]

2
)

Nv

p=1

Nc

u=1

Also, Gauss-Newton approximation for second partial is given by,

 ∂2E

∂z2
 =

2

Nv

∙ ∑ ∑ [
∂yp(j)

∂z
]

2

Nc

j=1

N

p=1

(3.11)

Thus the optimal learning factor is calculated using equations (3.8), (3.9), (3.10) and (3.11).

After finding the optimal learning factor the input weights are updated as given in equation

(3.7)

First Order Training Algorithm Summary for Weight Optimization

1) Cluster 𝑁𝑣 training patterns into 𝐾 clusters using K-Means++ clustering algorithm

[45], where 𝐾 = ∑ 𝑘𝑖
Nc
i=1 . 𝑘𝑖 is the number of clusters of the 𝑖𝑡ℎ class

After clustering we get 𝐾 center vectors 𝒎𝑖𝑘, where 𝒎𝑖𝑘 is the 𝑘𝑡ℎ center vector of

the 𝑖𝑡ℎ class

2) Initialize 𝑤(𝑛)

3) For iteration, 𝑖𝑡 = 1 to 𝑁𝑖𝑡, where 𝑁𝑖𝑡 is the total number of iterations,

27

4) During first data pass calculate 𝑑𝑖 , 𝒚, 𝐸, 𝒈

5) During second data pass calculate –
𝜕𝐸

𝜕𝑧
,

𝜕2𝐸

𝜕𝑧2 , 𝑧

6) Update 𝒘 ← 𝒘 + 𝑧 ∙ 𝒈

7) End iterations

* Refer to Appendix A for the pseudocode

28

3.3.2 Second Order Training algorithm for Weight Optimization

 The second order training of a MLP involves quadratic modeling of the error

function. Second order training methods are preferred because of their fast convergence.

However, they can lead to problems like memory limitation, since the hessian and gradient

matrices should be computed and stored. They also are computationally very expensive.

Newton’s Method

 Newton’s method is the basis of number of popular second order optimization

algorithms. Newton’s algorithm is iterative, where in each iteration, [28]

1) Calculate Newton weight change vector 𝒆.

2) Update weights with this weight change vector 𝒆.

The weight change vector 𝒆 is calculated by solving the linear equations using OLS [27]

 𝐇 ∙ 𝐞 = 𝐠 (3.12)

where, 𝒈 is the negative gradient of MSE with respect to weights, calculated using equation

(3.4), (3.5) and (3.6) and 𝑯 is Hessian of the objective function calculated with respect to

all the weights in the network and has elements defined as,

h(i, j) =

∂2E

∂w(i) ∂w(j)

(3.13)

Equation (3.12) is solved for 𝒆 using Orthogonal Least Squares (OLS) [27] and 𝒘 is

updated as

 𝐰 ← 𝐰 + 𝐞 (3.14)

We continue to update 𝒘 in this fashion till the change in the training error from the previous

iteration is less than10-6.

29

Second Order Training Algorithm Summary for Weight Optimization

1) Cluster 𝑁𝑣 training patterns into 𝐾 clusters using K-Means++ clustering algorithm

[45].

After clustering we get 𝐾 center vectors 𝒎𝑖𝑘, where 𝒎𝑖𝑘 is the 𝑘𝑡ℎ center vector of

𝑖𝑡ℎ class

2) Initialize 𝑤(𝑛)

3) For iteration, 𝑖𝑡 = 1 to 𝑁𝑖𝑡, where 𝑁𝑖𝑡 is the total number of iterations,

4) Calculate 𝑑𝑖 , 𝒚, 𝐸, 𝒈, 𝑯

5) Calculate 𝒆

6) Update 𝒘 ← 𝒘 + 𝒆

7) End iterations

* Refer to Appendix A for the pseudocode

3.4 OAWNNC Results

 Table – 1 compares randomized 10-fold testing results from traditional nearest

neighbor classifier and OAWNNC with distance measure optimization (DMO).

30

Data Set Number of inputs Number of

classes

NNC accuracy % DMO accuracy

%

F17C.dat 17 39 25.5005 68.7039

SKIN.dat 2 2 93.8531 94.4196

GONGTST.tst 16 10 66.8333 77.8000

COMF18.TRA 18 4 54.2776 73.6481

PHONEME.dat 5 2 61.4701 75.3252

MAGIC 10 2 71.4346 79.3871

Table 1 - Classification Performance of NNC v/s OAWNNC with Distance Measure

Optimization (DMO).

 This is a plot of mean square error (MSE) versus iteration number, 𝑁𝑖𝑡, for the

nearest neighbor classifiers mapped neural network with first order and second training for

weight optimization on COMF18.tra dataset. From the plot it concludes, that MSE

converges much faster using second order training as compared to the first order training.

Figure 1 – Weight Optimization Training Iteration Difference for COMF18.tra dataset.

31

 From the results shown in Table – 1, it can be concluded that OAWNNC with

distance measure optimization outperforms the traditional NNC on all the datasets. From

Figure – 1, second order training error converges much faster than first order training. The

trained weights are such that the weights corresponding to noisy features are less in

magnitude and vice versa. Thus OAWNNC with distance measure optimization (DMO)

solves problem 3 mentioned in section 2. 6.

32

Chapter 4

CENTER VECTOR OPTIMIZATION (CVO)

 This section introduces a method to move or adjust the center vectors 𝒎𝑖𝑘 in an

optimized way using second order training to reduce the probability of error and improve

classification accuracy.

 Cluster center vectors formed by using clustering algorithms are rigid so they do

not change after initialization. Thus our OAWNNC algorithm is dependent on these initial

clusters. Since these clusters do not contribute to minimizing the probability of error, they

are not optimal. In addition to this, clustering is sensitive to the choice of initial clusters,

clustering parameters etc. Thus a few center vectors generated may not be unique. To

alleviate these problems, we need to remove the sensitivity of the classifier to initial

clustering and the rigid nature of clusters. For this it is necessary to find a way to move the

center vectors in a way that minimizes the probability of error. The LVQ method is a

technique that does something similar by adapting the center vectors that minimizes input-

output mapping [10].

4.1 Structure of Center Vector Optimization (CVO)

 Here, CVO minimizes the MSE error from equation (3.1) with respect to the

𝑖𝑡ℎ class, 𝑘𝑡ℎcenter vector 𝒎𝑖𝑘. First, it calculates the negative gradient of the MSE with

respect to 𝒎𝑖𝑘 and then moves the center vector in the direction of the negative gradient

using a second order algorithm. The negative gradient, 𝒈𝑖𝑘 , of the MSE with respect to 𝒎𝑖𝑘

is calculated as follows,

𝒈𝑖𝑘 = −

∂E

𝐦ik

(4.1)

33

−𝐠ik = −
∂E

∂mik(n)
 =

2

Nv

∙ ∑ ∑ (tp(j) − yp(j)) ∙
∂yp(j)

∂mik(n)

Nc

j=1

Nv

p=1

(4.2)

 where, 𝑦𝑝(𝑗) is calculated as,

yp(j) =

(dj)
−1

∑ (du)−1Nc
u=1

(4.3)

and
∂yp(j)

∂mik(n)
 is computed as,

∂yp(j)

∂mik(n)
= 0

if 𝒎𝑖𝑘 is not participating in computing 𝑦𝑝(𝑗)

else,

−

∂yp(j)

∂mik(n)
 = 2 ∙ dj

−2 ∙ w(n)2 ∙ (xp(n) − mik(n)) . (∑ du
−1 − dj

−1)/ ∑ du
−1

Nc

u=1

)

Nc

u=1

when i = j, and

−
∂yp(j)

∂mik(n)
 = − 2 ∙ dj

−1 ∙ di
−2 ∙ w(n)2 ∙ (xp(n) − mik(n)) / ∑ du

−1

Nc

u=1

when i ≠ j

(4.4)

After calculating the negative gradient, 𝒈𝑖𝑘, of the MSE with respect to 𝒎𝑖𝑘, CVO moves

the center vectors in the direction of these negative gradients in order to minimize the error.

Center vector are updated as follows

 𝒎𝑖𝑘 ← 𝒎𝑖𝑘 + 𝑧𝑖𝑘 ∙ 𝒈𝑖𝑘 (4.5)

34

4.2 Multiple Optimal Learning Factor (MOLF)

 Since learning factor, 𝑧, decides the rate of convergence of classifier training,

multiple learning factor, 𝒛, one for each center vector proves to be very efficient during

training. Using a Taylor’s series for the error 𝐸, and Newton’s algorithm [26] a non-heuristic

multiple optimal learning factor (MOLF) can be calculated as,

 𝑯 ∙ 𝒛 = 𝒈𝒛 (4.6)

where, 𝒈𝑧 is the negative gradient of error 𝐸 with respect to the learning factors 𝒛, after

replacing center vector 𝒎𝑖𝑘 as given in equation (4.5) and evaluated at 𝑧𝑖𝑘 = 0. Matrix 𝑯, is

the Hessian matrix of the objective function. Assume that the learning factor, 𝑧𝑖𝑘 , is used

to update only the center vector, 𝒎𝑖𝑘, as given in equation (4.5). Using 𝒈𝑖𝑘 from equation

(4.1), negative gradient 𝒈𝑧𝑖𝑘 is calculated as follows,

𝐠zik = −
∂E

∂z𝑖𝑘

 =
2

Nv

∙ ∑ ∑ (tp(j) − yp(j)) ∙
∂yp(j)

∂z𝑖𝑘

Nc

j=1

Nv

p=1

(4.7)

as mentioned in section 4.1, if center vector, 𝒎𝑖𝑘, is not participating in computing 𝑦𝑝(𝑗)

using equation (4.3) then,

∂yp(j)

∂zik
= 0

else,

−
∂yp(j)

∂zik
 = 2 ∙ dj

−2 ∙ (∑ gik(n) ∙ w(n)2 ∙

N

n=1

(xp(n) − mik(n))). (∑ du
−1 − dj

−1)/ ∑ du
−1

Nc

u=1

)

Nc

u=1

when i = j, and

−
∂yp(j)

∂zik

 = − 2 ∙ dj
−1 ∙ di

−2 ∙ (∑ g
ik

(n) ∙ w(n)2 ∙

N

n=1

(xp(n) − mik(n)))/ ∑ du
−1

Nc

u=1

(4.8)

when i ≠ j .The Hessian matrix, 𝑯, of the objective function calculated with respect to all
the center vectors is computed as,

35

ℎ(𝑖, 𝑗) =

𝜕2𝐸

𝜕𝑧𝑖𝑘𝜕𝑧𝑗𝑘

(4.9)

Equation (4.6) is solved for 𝒛, using OLS [27] and 𝒎𝑖𝑘 is updated according to equation

(4.5).

CVO Training Algorithm Summary

1) For iteration, 𝑖𝑡 = 1 to 𝑁𝑖𝑡, where 𝑁𝑖𝑡 is the total number of iterations.

2) During 1st data pass calculate 𝑑𝑖 , 𝒚, 𝐸, 𝒈𝑖𝑘

3) During second data pass calculate –
𝜕𝐸

𝜕𝑧𝑖𝑘
,

𝜕2𝐸

𝜕𝑧𝑖𝑘
2 , 𝒛

4) Update 𝒎𝑖𝑘 ← 𝒎𝑖𝑘 + 𝑧𝑖𝑘 ∙ 𝒈𝑧𝑖𝑘

5) End iterations

4.3 CVO Results

 Table – 2 compares randomized 10-fold testing results from traditional nearest

neighbor classifier, OAWNNC and OAWNNC with center vector optimization.

36

Data Set Number of

inputs

Number of

classes

NNC

accuracy %

OAWNNC with

DMO accuracy

%

OAWNNC with

DMO and CVO

accuracy %

F17C.dat 17 39 25.5005 68.7039 69.0200

SKIN.dat 2 2 93.8531 94.4196 95.4206

GONGTST.tst 16 10 66.8333 77.8000 80.4667

COMF18.TRA 18 4 54.2776 73.6481 77.2800

PHONEME.dat 5 2 61.4701 75.3252 76.3194

MAGIC 10 2 71.4346 79.3871 81.3103

Table 2 - Classification Performance of NNC v/s OAWNNC with DMO v/s OAWNNC with

DMO and CVO

 From the results shown in the Table – 2, it can be concluded that center vector

optimization makes OAWNNC insensitive to initial cluster center vectors. It optimally moves

the cluster center vectors that further improves the performance of OAWNNC as compared

to traditional nearest neighbor classifier. Thus CVO solves problem 4 mentioned in section

2.6.

37

Chapter 5

RESULTS AND CONCLUSION

 This chapter presents results on several data sets to show that the new methods

are successful in improving traditional NNC. These datasets are described in details in

Appendix B. The training iterations were stopped when the mean square error difference

in consecutive iterations was less than 10−5, for five consecutive iterations or if number of

iterations reached 100. Center vectors were generated from 𝑁𝑣 training patterns using K –

Means clustering algorithm [45]. The location of these cluster center vectors were

intentionally perturbed in a random manner by adding Gaussian noise. This was done to

validate the dependency of the traditional nearest neighbor classifier on initial center

vectors and also validate the performance of the center vector optimization algorithm.

5.1 Improved Distance Measure Results

 Random noise features drawn from standard normal distribution were added to the

data files and the larger datasets were put through the distance measure optimization. To

measure how distance measure optimization improves the classification accuracy of the

NNC. Table – 3 compares randomized 10 - fold testing results from traditional nearest

neighbor classifier and OAWNNC with improved distance measure after augmenting the

training data with noise features.

38

Data Set Number of

inputs

Number of

noise features

Number of

classes

NNC

accuracy %

OAWNNC with

DMO accuracy %

F17C.dat 17 5 39 19.6985 60.5496

SKIN.dat 2 2 1 71.3204 79.8257

GONGTST.tst 16 4 10 59.9184 73.1963

COMF18.TRA 18 5 4 52.0759 71.8160

PHONEME.dat 5 5 2 56.9096 70.3860

MAGIC 10 5 2 69.3054 78.6154

Table 3 – Effect of Weight Optimization on Random Noise Features.

5.2 Center Vector Optimization Results

 This sub-section shows the improvements in probability of error of the traditional

nearest neighbor classifier after center vector optimization only. Training data is divided

into cluster center vectors using K-Means++ [45]. Classification is performed using these

center vectors. Center vector optimization moves these cluster center vectors optimally to

improve the performance. Table – 4 compares randomized 10-fold testing results from

traditional nearest neighbor classifier and OAWNNC with center vector optimization only.

39

Data Set Number of

inputs

Number of

clusters

Number of

classes

NNC accuracy

%

CVO only

accuracy %

F17C.dat 17 78 39 25.5005 43.6954

SKIN.dat 2 6 2 93.8531 94.1651

GONGTST.tst 16 30 10 66.8333 73.3521

COMF18.TRA 18 12 4 54.2776 69.4915

PHONEME.dat 5 6 2 61.4701 72.1839

MAGIC 10 6 2 71.4346 75.9686

Table 4 – Effect of Center Vector Optimization on Traditional Nearest Neighbor Classifier

without Noise Features

5.3 Comparison with LVQ [2]

 Learning Vector Quantization [2] is a supervised learning algorithm that applies a

winner-take-it-all based approach. . Winner-take-all training algorithm determines, for each

input pattern, the center vector that is closest to the input according to a given distance

measure. The position of this so-called winner center vector is then adapted, i.e. the winner

is moved closer if it correctly classifies the data point or moved away if it classifies the data

point incorrectly. The performance of OWNNC with CVO was compared to LVQ version

2.1 from MATLAB to show its practicality. To have a fair comparison, same number of

center vectors were used for both LVQ and OAWNNC with CVO training. Table 5 shows

that the OAWNNC with CVO algorithm performs better than LVQ on all five datasets.

40

Data Set Number of

inputs

Number of

classes

NNC accuracy % LVQ V 2.1

accuracy %

OAWNNC +

CVO

accuracy %

F17C.dat 17 39 25.5005 68.7039 69.0200

SKIN.dat 2 2 93.8531 94.4 95.4206

GONGTST.tst 16 10 66.8333 67.3 80.4667

COMF18.TRA 18 4 54.2776 58.33 77.2800

PHONEME.dat 5 2 61.4701 74.99 76.3194

MAGIC 10 2 71.4346 71.9 81.3103

Table 5 – Classification Results from NNC v/s LVQ v2.1 v/s OAWNNC with DMO and

CVO

5.4 Conclusion

 Form the results in Table – 3, it is evident that nearest neighbor classifier suffers

greatly by noisy features. However, OAWNNC with DMO makes the classifier robust to

these noisy features. Thus the performance of the traditional nearest neighbor classifier is

improved. OAWNNC solves problem 3 mentioned in section 2.6. Results in Table – 4 show

that the performance of the traditional nearest neighbor classifier is greatly dependent on

the initial choice of center vectors. Non-optimal center vectors increases the probability of

error nearest neighbor classifier. However, center vector optimization solves this

dependency problem by optimally moving the center vector locations in input space. Center

vector optimization alone reduces the probability of error. CVO solves problem 4 mentioned

in section 2.6. OAWNNC with DMO and center vector optimization improves the

performance of the nearest neighbor classifier and out performs similar algorithms like

LVQ.

41

Appendix A

Pseudocode

42

 Optimizing distance measure weights with optimal learning factor.

1) Cluster 𝑁𝑣 patterns into 𝐾 clusters, where 𝐾 = ∑ 𝑘𝑖
Nc
i=1

𝑘𝑖 is the number of clusters of 𝑖𝑡ℎ class

After clustering we get 𝐾 center vectors 𝒎𝑖𝑘, where 𝒎𝑖𝑘 is the 𝑘𝑡ℎ center vector of 𝑖𝑡ℎ class

1) Initialize 𝑤(𝑛) =
1

𝑣𝑎𝑟(𝑥(𝑛))
 for 1 ≤ 𝑛 ≤ 𝑁

2) Initialize 𝒘𝒐𝒍𝒅 = 𝒘, 𝑀𝑆𝐸𝑜𝑙𝑑 = +𝑖𝑛𝑓, 𝑧𝑜𝑙𝑑 = 0

3) For 𝑖𝑡𝑒𝑟 = 1 to 𝑀𝑎𝑥𝐼𝑡𝑒𝑟

a) Initialize 𝑧 = 0, 𝐷1 = 0, 𝐷2 = 0, 𝐺 = 0

b) For 𝑝 = 1 𝑡𝑜 𝑁𝑣

i. For 𝑖 = 1 𝑡𝑜 𝑁𝑐

 Compute di = min (d(xp, mik)) using equation (3.3)

 Cache values of argminik(dp(xp, mik)) in memory, required while computing

OLF

ii. Compute y

iii. End 𝑖

iv. Compute 𝑀𝑆𝐸 using equation (3.1) with one-hot encoding target output

v. MSEold = MSE

vi. Compute negative gradient vector g using equation (3.4), (3.5) and (3.6)

vii. Cache values of 𝒚 and 𝑑𝑖 for each pattern 𝑁𝑣 in order to avoid re-computing

these values during OLF calculation

End 𝑝

c) Using the cached values for each training pattern during the 1st pass through the

data, and 𝒈 perform second pass through the data to calculate OLF

i. For 𝑝 = 1 to 𝑁𝑣

43

ii. For 𝑖 = 1 𝑡𝑜 𝑁𝑐

 Replace 𝑤(𝑛) ← 𝑤(𝑛) + 𝑧 ∙ 𝑔(𝑛) in equation (3. 3) where 𝑧 = 0. Compute 𝐷1

i.e negative 1𝑠𝑡 order derivative of MSE w.r.t 𝑧 using equation (3.9) and

(3.10)

 Compute 𝐷2 i.e second derivative of MSE w.r.t 𝑧 using equation (3.11)

END 𝑖

END 𝑝

iii. Using equation (3.8) compute OLF 𝑧

d) Update the weights as 𝑤(𝑛) ← 𝑤(𝑛) + 𝑧 ∙ 𝑔(𝑛)

e) Calculate 𝑀𝑆𝐸 using updated weights

i. If 𝑀𝑆𝐸 < 𝑀𝑆𝐸𝑜𝑙𝑑

iv. 𝒘𝒐𝒍𝒅 = 𝒘, 𝑧𝑜𝑙𝑑 = 𝑧, 𝑀𝑆𝐸𝑜𝑙𝑑 = 𝑀𝑆𝐸

Else, perform back-tracking

v. 𝑧 =
𝑍

2
, 𝑤(𝑛) ← 𝑤(𝑛) + 𝑧 ∙ 𝑔(𝑛)

End 𝑖𝑡𝑒𝑟

4) Save Weights to disk

44

 Optimizing distance measure weights using Newton’s algorithm.

1) Cluster 𝑁𝑣 patterns into 𝐾 clusters, where 𝐾 = ∑ 𝑘𝑖
Nc
i=1 .

𝑘𝑖 is the number of clusters of 𝑖𝑡ℎ class

After clustering we get 𝐾 center vectors 𝒎𝒊𝒌, where 𝒎𝑖𝑘 is the 𝑘𝑡ℎ center vector of 𝑖𝑡ℎ

class

2) Initialize 𝑤(𝑛) =
1

𝑣𝑎𝑟(𝑥(𝑛))
 for 1 ≤ 𝑛 ≤ 𝑁

3) Initialize 𝒘𝒐𝒍𝒅 = 𝒘, 𝑧𝑜𝑙𝑑 = 0

4) For 𝑖𝑡𝑒𝑟 = 1 to 𝑀𝑎𝑥𝐼𝑡𝑒𝑟

f) Initialize 𝒈 = 0, 𝑯 = 0

a) For 𝑝 = 1 𝑡𝑜 𝑁𝑣

i. For 𝑖 = 1 𝑡𝑜 𝑁𝑐

vi. Compute 𝑑𝑖 = min (𝑑(𝒙𝑝, 𝒎𝑖,𝑘)) using equation (3.3)

ii. Compute 𝒚

End 𝑖

iii. Compute 𝑀𝑆𝐸 using equation (3.1) with one-hot encoding target output

iv. Compute negative gradient vector 𝒈 using equation (3.4), (3.5) and (3.6)

v. Compute Hessian matrix 𝑯 using equation (3.13)

End 𝑝

vi. Solve equation (3.14) to compute update vector 𝒆 using OLS [27]

vii. Update weights as 𝑤(𝑛) ← 𝑤(𝑛) + 𝑒(𝑛)

End 𝑖𝑡𝑒𝑟

5) Save Weights to disk

45

Appendix B

Description of datasets

46

1 GONGTST.TST

 The raw data consists of images from hand printed numerals collected by the

Internal Revenue Service. Images are 32 by 24 binary matrices. An image scaling

algorithm is used to remove size variation in characters. This dataset contains 16 input

features. The 10 classes correspond to 10 Arabic numerals.

2 COMF18.TRA

 This dataset comes from [47] and has 18 input features to classify patterns into 4

distinct classes. These features are extracted from images as per Level 1 of the US

Geological Survey Land Use/Land Cover Classification System to categorize into four

regions of land use: urban areas, fields or open grass lands, trees (forest land) and water

(lakes or river).

3 F17C

 This dataset is used for the application of prognostics or flight condition

recognition. It consists of parameters that are available in the basic health usage

monitoring systems (HUMS), plus some others. The data was collected from M430

flight load level survey conducted in Mirabel Canada in early 1995. It has 17 input

features and 39 classes.

4 Skin Segmentation Data Set

 The skin dataset is collected by randomly sampling B,G,R values from face images

of various age groups (young, middle, and old), race groups (white, black, and asian), and

genders obtained from FERET database and PAL database [48]. Total number of training

47

patterns is 245057; out of which 50859 is the skin samples and 194198 is non-skin

samples. It has 3 input features and 2 classes.

5 Phoneme Data Set

 This dataset distinguishes between nasal and oral sounds. It has 3818 patterns

with 5 input features and 2 classes [49].

6 Magic Gamma Telescope Data Set

 This is a MC generated dataset to simulate registration of high energy gamma

particles in a ground-based atmospheric Cherenkov gamma telescope using imaging

technique. The information consists of pluses left by incoming Cherenkov photons on the

photomultiplier tubes, arranged on the camera plane. Depending on number of photons

collected on the image plane, the patterns are classified into two categories: those caused

by primary gamma and those caused hardonic showers initiated by cosmic rays.

48

References

[1] Cover, Thomas, and Peter Hart, "Nearest neighbor pattern classification." IEEE

transactions on information theory 13.1 (1967): 21-27.

[2] Kohonen, Teuvo, Self-organization and associative memory. Vol. 8. Springer Science

& Business Media, 2012.

[3] Selim SZ, Ismail MA (1984) K-means-type algorithms: A generalized convergence

theorem and characterization of local optimality. IEEE Transactions on Pattern

Analysis and Machine Intelligence 6(1):81{87

[4] Du, Qiang, Vance Faber, and Max Gunzburger, "Centroidal Voronoi tessellations:

applications and algorithms." SIAM review 41.4 (1999): 637-676.

[5] Daelemans, Walter, Steven Gillis, and Gert Durieux, "The acquisition of stress: A data-

oriented approach." Computational Linguistics 20.3 (1994): 421-451.

[6] Wettschereck, Dietrich, A study of distance-based machine learning algorithms. Diss.

1994.

[7] Aha, David W, "Tolerating noisy, irrelevant and novel attributes in instance-based

learning algorithms." International Journal of Man-Machine Studies 36.2 (1992): 267-

287.

[8] Kohavi, Ron, Pat Langley, and Yeogirl Yun, "The utility of feature weighting in nearest-

neighbor algorithms." Proceedings of the Ninth European Conference on Machine

Learning. 1997.

[9] Syed, Muhammad Ejazuddin, "Attribute weighting in k-nearest neighbor classification."

(2014).

[10] Rawat Rohit, Manry Michael T. “Second Order Training of a Smoothed Piecewise

Linear Network”. December 2016.

49

[11] Vapnik, Vladimir. The nature of statistical learning theory. Springer Science & Business

Media, 2013.

[12] Bhatia, Nitin. “Survey of nearest neighbor techniques.” arXiv preprint

arXiv:1007.0085 (2010).

[13] V.Vaidehi, S. Vasuhi, “Person Authentication using Face Recognition”, Proceedings

of the world congress on engg and computer science, 2008.

[14] Shizen, Y. Wu, “An Algorithm for Remote Sensing Image Classification based on

Artificial Immune b-cell Network”, Springer Berlin, Vol 40.

[15] G. Toker, O. Kirmemis, “Text Categorization using k Nearest Neighbor Classification”,

Survey Paper, Middle East Technical University

[16] Y. Liao, V. R. Vemuri, “Using Text Categorization Technique for Intrusion detection”,

Survey Paper, University of California.

[17] E. M. Elnahrawy, “Log Based Chat Room Monitoring Using Text Categorization: A

Comparative Study”, University of Maryland.

[18] X. Geng et. al, “Query Dependent Ranking Using k Nearest Neighbor”, SIGIR, 2008.

[19] Y. Yang and T. Ault, “Improving Text Categorization Methods for event tracking”,

Carnegie Mellon University.

[20] F. Bajramovie et. al “A Comparison of Nearest Neighbor Search Algorithms for Generic

Object Recognition”, ACIVS 2006, LNCS 4179, pp 1186-1197.

[21] Taskar, Ben. “Nearest Neighbor Methods”. Machine learning CIS520. University of

Pennsylvania, Philadelphia.

[22] Arthur, David, and Sergei Vassilvitskii. "k-means++: The advantages of careful

seeding." Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms. Society for Industrial and Applied Mathematics, 2007.

50

[23] De Maesschalck, Roy, Delphine Jouan-Rimbaud, and Désiré L, Massart. "The

mahalanobis distance." Chemometrics and intelligent laboratory systems 50.1 (2000):

1-18.

[24] Wikipedia contributors. "Softmax function." Wikipedia, The Free Encyclopedia.

Wikipedia, The Free Encyclopedia, 2 Dec. 2016. Web. 2 Dec. 2016.

[25] Wikipedia contributors. "Mean squared error." Wikipedia, The Free Encyclopedia.

Wikipedia, The Free Encyclopedia, 18 Nov. 2016. Web. 18 Nov. 2016.

[26] S. Haykin, “Neural Networks a Comprehensive Foundation,” 1994

[27] M. D. Robinson, and M. T. Manry, “Two-Stage Second Order Training in Feedforward

Neural Networks,” Twenty-Sixth International Florida Artificial Intelligence Research

Society Conference, 2013.

[28] Maldonado, F. J., and M. T. Manry. "Optimal pruning of feedforward neural networks

based upon the Schmidt procedure." Signals, Systems and Computers, 2002.

Conference Record of the Thirty-Sixth Asilomar Conference on. Vol. 2. IEEE, 2002.

[29] Cost, Scott, and Steven Salzberg. "A weighted nearest neighbor algorithm for learning

with symbolic features." Machine learning 10.1 (1993): 57-78.

[30] Elkan, Charles. "Nearest Neighbor Classification." Web.

<http://cseweb.ucsd.edu/~elkan/250Bwinter2010/nearestn.pdf>.

[31] Manry, Michael T. "Unsupervised Learning and Neural Nets That Use It." Neural

networks EE 5353. University of Texas at Arlington. Texas. 16 November, 2016.

Lecture.

[32] Wikipedia contributors. "Statistical classification." Wikipedia, The Free Encyclopedia.

Wikipedia, The Free Encyclopedia, 18 Nov. 2016. Web. 18 Nov. 2016.

[33] Bishop, Christopher M. "Pattern recognition." Machine Learning 128 (2006).

51

[34] Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." Machine

learning 20.3 (1995): 273-297.

[35] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. Learning internal

representations by error propagation. No. ICS-8506. CALIFORNIA UNIV SAN DIEGO

LA JOLLA INST FOR COGNITIVE SCIENCE, 1985.

[36] Quinlan, J. Ross. "Simplifying decision trees." International journal of man-machine

studies 27.3 (1987): 221-234.

[37] Wikipedia contributors. "Cluster analysis." Wikipedia, The Free Encyclopedia.

Wikipedia, The Free Encyclopedia, 13 Nov. 2016. Web. 13 Nov. 2016.

[38] Wikipedia contributors. "K-means clustering." Wikipedia, The Free Encyclopedia.

Wikipedia, The Free Encyclopedia, 22 Nov. 2016. Web. 22 Nov. 2016.

[39] Wikipedia contributors. "Euclidean distance." Wikipedia, The Free Encyclopedia.

Wikipedia, The Free Encyclopedia, 2 Nov. 2016. Web. 2 Nov. 2016.

[40] Wilson, D. Randall, and Tony R. Martinez. "Improved heterogeneous distance

functions." Journal of artificial intelligence research 6 (1997): 1-34.

[41] Wikipedia contributors. "Mahalanobis distance." Wikipedia, The Free Encyclopedia.

Wikipedia, The Free Encyclopedia, 27 Sep. 2016. Web. 27 Sep. 2016.

[42] Wikipedia contributors. "K-nearest neighbors algorithm." Wikipedia, The Free

Encyclopedia. Wikipedia, The Free Encyclopedia, 28 Nov. 2016. Web. 28 Nov. 2016.

[43] Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin. "Maximum likelihood from

incomplete data via the EM algorithm." Journal of the royal statistical society. Series B

(methodological) (1977): 1-38.

52

[44] Ichino, Manabu, and Hiroyuki Yaguchi. "Generalized Minkowski metrics for mixed

feature-type data analysis." IEEE Transactions on Systems, Man, and

Cybernetics 24.4 (1994): 698-708.

[45] Arthur, David, and Sergei Vassilvitskii. "k-means++: The advantages of careful

seeding." Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms. Society for Industrial and Applied Mathematics, 2007.

[46] Marimont, R. B., and M. B. Shapiro. "Nearest neighbour searches and the curse of

dimensionality." IMA Journal of Applied Mathematics 24.1 (1979): 59-70.

[47] Bailey, Robert R., et al. "Automatic recognition of usgs land use/cover categories using

statistical and neural network classifiers." Optical Engineering and Photonics in

Aerospace Sensing. International Society for Optics and Photonics, 1993.

[48] Rajen, Bhatt, and Dhall Abhinav. "Skin segmentation dataset." UCI Machine Learning

Repository (2012).

[49] "ELENA Project." ELENA Project. N.p., n.d. Web. 07 Dec. 2016.

53

Biographical Information

Jugal Raju Sheth was born in India in 1992. He received his Bachelor of

Technology in Electronics Engineering from Narsee Monjee Institute of Management

Studies, Mumbai, India in May 2014 and Master of Science in Electrical Engineering from

the University of Texas at Arlington in December 2016.

He interned at Volvo Construction Equipment in fall 2015 and spring 2016, where

he developed applications for real time pedestrian detection using stereo cameras

leveraging machine learning and deep neural network algorithms. He has been involved in

research activities under the guidance of Dr. Michael T. Manry in Image Processing and

Neural Networks Laboratory (IPNNL) since 2015. His main research interests include

Neural Networks and Pattern Recognition.

