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ABSTRACT

A HARMONIC FUNCTION METHOD FOR EEG SOURCE RECONSTRUCTION

HONGGUANG XI, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: Jianzhong Su

Neuronal activities generate the electrical current in the brain, and further

result in the potential changes over the scalp. Electroencephalography (EEG) is a

technique used to record the potential changes on the scalp.

Even though fMRI, PET, MEG and other brain-imaging tools are widely used

in brain research, they are limited by low spatial/temporal resolution, cost, mobility

and suitability for long-term monitoring. In contrast, EEG signals have been success-

fully used to obtain useful diagnostic information (neural oscillations and response

times) in clinical contexts. Further, they present the advantage to be highly portable,

inexpensive, and can be acquired at the bedside or in real-life environments with a

high temporal resolution.

In this dissertation we study a harmonic function method for dipolar source

reconstruction, and apply the method to the real pain data. We first propose a new
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error estimate that is different from an earlier result of Chafik et al. and we provide a

rigorous proof of the estimate. We then validate our method in computer-simulated

data and study its numerical stability in different noise levels. Finally, we apply the

method to EEG data acquired in pain experiments. Our result shows that when

the hand is in the cold water there are strong activities near the prefrontal cortex

and the anterior cingulate cortex, which is consistent with the known knowledge in

neuroscience.

Though the harmonic function method is affected by the noise level, its simplic-

ity and beauty make it a promising method for further development in EEG source

reconstruction.
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CHAPTER 1

Introduction

Neuronal activities generate the electrical current in the brain, and further

result in the potential changes over the scalp. Electroencephalography (EEG) is a

technique used to record the potential changes on the scalp.

Even though fMRI, PET, MEG and other brain-imaging tools are widely used

in brain research, they are limited by low spatial/temporal resolution, cost, mobility

and suitability for long-term monitoring. For example, fMRI has the advantage of

providing spatially-resolved data, but suffers from an ill-posed temporal inverse prob-

lem, i.e., a map with regional activations does not contain information about when

and in which order these activations have occurred [1]. In contrast, EEG signals have

been successfully used to obtain useful diagnostic information (neural oscillations and

response times) in clinical contexts. Further, they present the advantage to be highly

portable, inexpensive, and can be acquired at the bedside or in real-life environments

with a high temporal resolution. Because of the lack of significant patient risks, EEG

is additionally suited for long-term monitoring.

EEG offers the possibility of measuring the electrical activity of neuronal cell

assemblies on the sub-millisecond time scale [2, 3, 4]. EEG source imaging further

identifies the positions or distributions of electric fields based on EEG signals collected

on the scalp [5]. This new tool is widely used in cognitive neuroscience research,

and has also found important applications in clinical neuroscience such as neurology,
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psychiatry and psychopharmacology. In cognitive neuroscience, the majority of the

studies investigate the temporal aspects of information processing by analyzing event

related potentials (ERP). In neurology, the study of sensory or motor evoked po-

tentials is of increasing interest, but the main clinical application concerns with the

localization of epileptic foci. In psychiatry and psychopharmacology, a major focus

of interest is the localization of sources of certain EEG frequency bands. Localizing

the activity sources of a given scalp EEG measurement is achieved by solving the

so-called inverse problem [6]. These kinds of inverse problems are usually ill-posed

and their solutions are non-unique [7, 8].

El Badia and Ha-Duong [9] established an algebraic method to identify the

number, locations and moments of electrostatic dipoles in 2D or 3D domain from the

Cauchy data on the boundary. Chafik et al. [10] further provided an error estimate

without proof.

Nara and Ando [11] provided a new projective method for 3D source recon-

struction by projecting the sources onto a Riemann sphere.

Kang and Lee [12] proposed an algorithm for solving the inverse source prob-

lem of a meromorphic function and apply their method to an electrical impedance

tomography (EIT) problem.

El Badia [13] established a uniqueness result and a local Lipschitz stability

estimate for an anisotropic elliptic equation, assuming that the sources are a linear

combination of a finite number of monopoles and dipoles. The author also proposed

a global Lipschitz stability estimate for dipolar sources.
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Baratchart et al. [14] solved the inverse source problem by locating the singu-

larities of a meromorphic function from the 2D boundary measurements using best

rational or meromorphic approximations.

Chung and Chung [15] proposed an algorithm for detecting the combination of

monopolar and multipolar point sources for elliptic equations in the 2D domain from

the Neumann and Dirichlet boundary data.

Kandasmamy et al. [16] proposed a novel technique, called “analytic sensing”,

to estimate the positions and intensities of point sources in 2D for a Poisson’s equation.

Analytic sensing also used the reciprocity gap principle, but with a novel design of an

analytic function which behaved like a sensor. The authors evaluated their estimation

accuracy by Cramér-Rao lower bound.

Nara and Ando [17] proposed an algebraic method to localize the positions of

multiple poles in meromorphic function field from an incomplete boundary. They

investigated the accuracy of the algorithm for the open arc or the closed arc, and for

the arc enclosing the poles or not enclosing the poles.

El Badia and Nara [18] established the uniqueness and local stability result for

the inverse source problem of the Helmholtz equation in an interior domain, assuming

the source is composed of multiple point sources.

Clerc et al. [19] applied best rational approximation techniques in the complex

plane to EEG source localization and offered stability estimates.

Mdimagh and Ben Saad [20] identified the point sources in a scalar problem

modeled by Helmholtz equation, using reciprocity gap principle and assuming the

sources are harmonic in time. They proved local Lipschitz stability by two methods:
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one was derived from the Gâteaux differentiability, and the other used particular test

functions in the reciprocity gap functional.

In this dissertation, we study a harmonic function method for dipolar source

reconstruction and apply the method to the real pain data. The outline of this dis-

sertation is as follows. In chapter 2, “Preliminaries”, we review the fundamental

solutions of the Laplacian equation and Sobolev space. In chapter 3, “The Inverse

Source Problem”, we study the theory of inverse source problem, especially a har-

monic function method for the dipolar source reconstruction. In chapter 4, “Error

Estimate”, we provide the error estimate for the harmonic function method and com-

pare our result with Chafik’s estimate. Then, in chapter 5, “Results”, we validate our

method using both the computer-simulated data and the real pain data. Finally, in

chapter 6, “Conclusions and Future Work”, we summarize the major findings of our

research and discuss our future research plan.
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CHAPTER 2

Preliminaries

2.1 Laplacian Equation

Laplacian equations and Poisson equations probably are the most important of

all partial differential equations [21].

2.1.1 Introduction

Let u be the density of a physical quantity in equilibrium, V any smooth sub-

region within U , F the flux density, ννν the unit outer normal vector, then the flux of

u through ∂V is zero: ∫
∂V

F · νννdS = 0.

By Gauss-Green Theorem, we have∫
V

divFdx =

∫
V

∇ · Fdx =

∫
∂V

F · νννdS = 0,

which implies divF = 0 in U , since V is an arbitrary subregion.

Assume the flux density F is proportional to the gradient of the density u in

the descending direction, i.e.,

F = −a∇u, a > 0.
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Then,

0 = divF = div(−a∇u) = ∇ · (−a∇u) = −a∆u =⇒ ∆u = 0.

Definition 1 (Laplacian equation and Poisson equation). Suppose U ⊂ Rn is a given

open set, and u = u(x), x ∈ U with u : U → R is an unknown function. Then,

∆u =
n∑

j=1

∂2u

∂x2
j

= f

is a Laplacian equation if f ≡ 0, or a Poisson equation if f ̸≡ 0.

Definition 2 (Harmonic function). A C2 function u satisfying ∆u = 0 in Ω is called

a harmonic function.

2.1.2 Fundamental Solution

Theorem 1. Laplacian equation ∆u = 0 is rotation invariant; that is, if O is an

orthonormal n× n matrix and we define

v(x) := u(Ox), x ∈ Rn,

then ∆v = 0.

Proof. Let y = Ox, i.e.,



y1

y2
...

yn


=



O11 O12 · · · O1n

O21 O22 · · · O2n

...

On1 On2 · · · Onn





x1

x2

...

xn


where

yj = Oj1x1 +Oj2x2 + · · ·+Ojixi + · · ·+Ojnxn.

By chain rule,

∂v

∂xi

=
n∑

j=1

∂u

∂yj
· ∂yj
∂xi

=
n∑

j=1

∂u

∂yj
·Oji.
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O is orthonormal matrix =⇒ OT = O−1, i.e., OOT = OTO = I where I is the

identity matrix.

n∑
i=1

OkiOji =
n∑

i=1

OkiO
T
ij = (OOT )kj = Ikj = δkj =

 1, k = j

0, k ̸= j
.

∆v =
n∑

i=1

∂2v

∂x2
i

=
n∑

i=1

∂

∂xi

(
∂v

∂xi

)

=
n∑

i=1

∂

∂xi

(
n∑

j=1

∂u

∂yj
·Oji

)

=
n∑

i=1

n∑
k=1

∂
(∑n

j=1
∂u
∂yj
·Oji

)
∂yk

· ∂yk
∂xi

=
n∑

i=1

n∑
k=1

n∑
j=1

∂2u

∂yk∂yj
·Oki ·Oji

=
n∑

k=1

n∑
j=1

∂2u

∂yk∂yj
·

(
n∑

i=1

Oki ·Oji

)

=
n∑

k=1

n∑
j=1

∂2u

∂yk∂yj
· δkj

=
n∑

k=1

∂2u

∂y2k
= ∆u = 0.

Assuming u(x) is radially symmetric, we let

u(x) = v(r)

where r = |x| = (x2
1 + x2

2 + · · ·+ x2
n)

1/2.

∂r

∂xi

=
1

2
(x2

1 + x2
2 + · · ·+ x2

n)
−1/2(2xi) =

xi

r
, r ̸= 0.

∂u

∂xi

=
∂u

∂r
· ∂r
∂xi

=
∂v

∂r
· xi

r
= v′(r)

xi

r
.
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∂2u

∂x2
i

=
∂

∂xi

(
∂u

∂xi

)
=

∂

∂xi

(
v′(r)

xi

r

)
=

v′(r)

r
+ xi

∂

∂xi

(
v′(r)

r

)
=

v′(r)

r
+ xi

∂

∂r

(
v′(r)

r

)
· ∂r
∂xi

=
v′(r)

r
+

x2
i

r
· v

′′(r)r − v′(r)

r2

=
v′′(r)x2

i

r2
+

v′(r)

r
− v′(r)x2

i

r3
.

∆u =
n∑

i=1

∂2u

∂x2
i

=
n∑

i=1

[
v′′(r)x2

i

r2
+

v′(r)

r
− v′(r)x2

i

r3

]
= v′′(r) +

v′(r)n

r
− v′(r)

r

= v′′(r) +
n− 1

r
v′(r) = 0.

Let w(r) = v′(r). Then, w′ +
n− 1

r
w = 0 =⇒ dw

dr
=

1− n

r
w =⇒ dw

w
=

1− n

r
dr =⇒

∫
dw

w
=

∫
1− n

r
dr =⇒ ln |w| = (1 − n) ln |r| + C1 where C1 is a

constant =⇒ |w| = C2|r|1−n where C2 > 0 is a constant =⇒ w = v′(r) =
a

rn−1

where a is a constant.

When n = 2, we have
dv

dr
=

a

r
=⇒

∫
dv =

∫
a

r
dr =⇒ v(r) = a ln |r| + c =

b ln r + c where b = a and c are constants.

When n ≥ 3, we have
dv

dr
=

a

rn−1
=⇒

∫
dv =

∫
ar1−ndr =⇒ v(r) =

a
r2−n

2− n
+ c =

b

rn−2
+ c where b =

a

2− n
and c are constants.

Definition 3 (Fundamental solution of Laplacian equation). The function

Φ(x) :=


− 1

2π
ln |x|, n = 2

1

n(n− 2)α(n)
· 1

|x|n−2
, n ≥ 3

8



defined for x ∈ Rn, x ̸= 0, is the fundamental solution of Laplacian equation. α(n)

denotes the volume of the unit ball in Rn.

Theorem 2 (Solution of Poisson equation). Assume f ∈ C2
c (Rn), i.e., f is twice

continuously differentiable with compact support. Define

u(x) =

∫
Rn

Φ(x− y)f(y)dy =


− 1

2π

∫
Rn

ln(|x− y|)f(y)dy, n = 2

1

n(n− 2)α(n)

∫
Rn

f(y)

|x− y|n−2
dy, n ≥ 3

.

Then, u ∈ C2(Rn) and −∆u = f in Rn.

Proof.

1. To prove u ∈ C2(Rn).

u(x) =

∫
Rn

Φ(x− y)f(y)dy is the convolution of the fundamental solution Φ(x)

and the source f(x). By the commutativity of convolution, we have

u(x) =

∫
Rn

Φ(y)f(x− y)dy.

Then,

u(x+ hei)− u(x)

h
=

∫
Rn

Φ(y)
f(x+ hei − y)− f(x− y)

h
dy

where h ̸= 0 and ei = (0, ..., 1, ..., 0) is the unit vector in Rn with 1 in the ith

slot and 0 otherwise.

Since f ∈ C2
c (Rn),

f(x+ hei − y)− f(x− y)

h
→ ∂f

∂xi

(x− y)

uniformly in Rn as h→ 0. Then,

∂u

∂xi

(x) =

∫
Rn

Φ(y)
∂f

∂xi

(x− y)dy

9



and

∂2u

∂xi∂xj

(x) =

∫
Rn

Φ(y)
∂2f

∂xi∂xj

(x− y)dy,

which is continuous. So, u ∈ C2(Rn).

2. Since Φ(x) is singular at x = 0, we calculate ∆u separately.

∆u =

∫
B(0,ε)

Φ(y)∆xf(x− y)dy︸ ︷︷ ︸
Iε

+

∫
Rn−B(0,ε)

Φ(y)∆xf(x− y)dy︸ ︷︷ ︸
Iε′

,

where B(0, ε) is a small ball centered at 0 with radius ε.

We know

|Iε| =

∣∣∣∣∫
B(0,ε)

Φ(y)∆xf(x− y)dy

∣∣∣∣
≤

∫
B(0,ε)

|Φ(y)| · |∆xf(x− y)| dy

≤ C∥D2f∥L∞(Rn)

∫
B(0,ε)

|Φ(y)|dy ≤

 Cε2| ln ε|, n = 2

Cε2, n = 3

where ∥D2f∥L∞(Rn) = max
x∈Rn,1≤i,j≤n

|fxixj
(x)|.

When n = 2, we have∫
B(0,ε)

|Φ(y)|dy =

∫
B(0,ε)

∣∣∣∣− 1

2π
ln
√

y21 + y22

∣∣∣∣ dy1dy2
=

1

2π

∫ 2π

0

dθ

∫ ε

0

|ln r| rdr

=
ε2

2
| ln ε| − ε2

4

≤ ε2

2
| ln ε|.

10



When n = 3, we have∫
B(0,ε)

|Φ(y)|dy =

∫
B(0,ε)

1

n(n− 2)α(n)
· 1√

y21 + y22 + y23
dy1dy2dy3

=
1

n(n− 2)α(n)

∫ π

0

sinφdφ

∫ 2π

0

dθ

∫ ε

0

1

r
r2dr

=
2π

n(n− 2)α(n)
ε2.

By integration by parts [21] we have

Iε′ =

∫
Rn−B(0,ε)

Φ(y)∆xf(x− y)dy

=

∫
Rn−B(0,ε)

Φ(y)∆yf(x− y)dy

= −
∫
Rn−B(0,ε)

DΦ(y)Dyf(x− y)dy︸ ︷︷ ︸
Jε′

+

∫
∂B(0,ε)

Φ(y)
∂f

∂ν
(x− y)dS(y)︸ ︷︷ ︸

JΓ

,

where ν is the inward pointing unit normal along ∂B(0, ε).

|JΓ| =

∣∣∣∣∫
∂B(0,ε)

Φ(y)
∂f

∂ν
(x− y)dS(y)

∣∣∣∣
≤

∫
∂B(0,ε)

|Φ(y)| ·
∣∣∣∣∂f∂ν (x− y)

∣∣∣∣ dS(y)
≤ ∥Df∥L∞(Rn)

∫
∂B(0,ε)

|Φ(y)| dS(y) ≤

 Cε| ln ε|, n = 2

Cε, n = 3
.

When n = 2, we have∫
∂B(0,ε)

|Φ(y)| dS(y) =

∫ 2π

0

∣∣∣∣− 1

2π
ln ε

∣∣∣∣ εdθ = ε| ln ε|.
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When n = 3, we have∫
∂B(0,ε)

|Φ(y)| dS(y) =

∫
∂B(0,ε)

∣∣∣∣ 1

n(n− 2)α(n)
· 1

|y|

∣∣∣∣ dS(y)
=

1

n(n− 2)α(n)

∫
∂B(0,ε)

1

ε
dS

=
1

n(n− 2)α(n)
· 1
ε
· 4πε2

=
4π

n(n− 2)α(n)
ε.

By Gauss Theorem we have

Jε′ = −
∫
Rn−B(0,ε)

DΦ(y)Dyf(x− y)dy

=

∫
Rn−B(0,ε)

∆Φ(y)︸ ︷︷ ︸
=0

f(x− y)dy −
∫
Rn−B(0,ε)

∂Φ

∂ν
(y)f(x− y)dS(y)

= −
∫
Rn−B(0,ε)

∂Φ

∂ν
(y)f(x− y)dS(y)

= − 1

nα(n)εn−1

∫
Rn−B(0,ε)

f(x− y)dS(y)

= − −
∫
∂B(x,ε)

f(y)dS(y)→ −f(x) as ε→ 0.

Notice that the average of f over the ball B(x, r) is

−
∫
B(x,r)

fdy :=
1

α(n)rn

∫
B(x,r)

fdy,

and the average of f over the spherical boundary ∂B(x, r) is

−
∫
∂B(x,r)

fdS :=
1

nα(n)rn−1

∫
∂B(x,r)

fdS.

More generally, the average of f over set E is

−
∫
E

fdµ :=
1

µ(E)

∫
E

fdµ,

provided µ(E) > 0.

12



2.2 Sobolev Space

Banach spaces and Hilbert spaces play a central role in functional analysis [22],

while Sobolev space is of fundamental importance for the formulation of finite element

methods [23].

Definition 4 (Banach space). A real (complex) normed linear space that is complete

is called a Banach space.

Definition 5 (Hilbert space). A nonempty set H is called a Hilbert space if H is a

complex linear vector space, together with a complex-valued function (·, ·) from H×H

into C having the following properties:

1. (x, x) ≥ 0, and (x, x) = 0 if and only if x = 0;

2. (x+ y, z) = (x, z) + (y, z) for all x, y, z in H;

3. (λx, y) = λ(x, y) for all x, y in H and λ ∈ C;

4. (x, y) = (y, x) for all x, y in H;

5. if {xn} ⊂ H, lim
n,m→∞

(xn − xm, xn − xm) = 0, then there is an element x ∈ H

such that lim
n→∞

(xn − x, xn − x) = 0.

Definition 6 (Sobolev space). Let Ω be any open subset of Rn. We denote by Hm,p(Ω)

or Hm/p(Ω) the space of functions u ∈ Lp(Ω) such that

(
∂

∂x

)α

u ∈ Lp(Ω) for all

α = (α1, ..., αn) ∈ Zn
+, |α| = α1 + · · ·+ αn ≤ m, 1 ≤ p ≤ ∞.

Hm,p(Ω) is equipped with the norm

∥u∥m,p =

∑
|α|≤m

∥∥∥∥( ∂

∂x

)α

u

∥∥∥∥p
Lp(Ω)


1/p

, 1 ≤ p <∞,

∥u∥m,∞ = sup
|α|≤m

∥∥∥∥( ∂

∂x

)α

u

∥∥∥∥
L∞(Ω)

.

If p = 2, one usually writes Hm(Ω) instead of Hm,2(Ω).
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Definition 7 (Sobolev space of order s). Hs(Rn) or Hs is the Sobolev space of order

s ∈ R in Rn, i.e., the space of tempered distributions u in Rn whose Fourier transform

û is a measurable function such that

∥u∥s =
(

1

(2π)n

∫
Rn

|û(ξ)|2(1 + |ξ|2)sdξ
)1/2

<∞,

equipped with the Hilbert space structure defined by the norm ∥ · ∥s.
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CHAPTER 3

The Inverse Source Problem

3.1 Mathematical Model of EEG Problem

The electric field E is the negative gradient of the potential u.

E = −∇u.

The quasi-static approximation means all time derivatives in the equation are

set to zero. By quasi-static approximation of Maxwell equation ∇ ×H − ∂D

∂t
= J,

we have

∇×H = J

where H is the magnetizing field, J is the total current density, and D is the displace-

ment field.

Since the divergence of a curl is always zero, we have

∇ · (∇×H) = ∇ · J = 0.
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EEG problem can be modeled by a Poisson equation.

−∇ · (σ∇u) = ∇ · (σE)

= ∇ · (J− Jp)

= ∇ · J︸ ︷︷ ︸
=0

−∇ · Jp

= −∇ · Jp

= F,

where σ is the conductivity, Jp is the primary current density, and F is the source

term.

3.2 Source Model

If we assume the source is composed of a finite number of point charges, then

by linear combination, we have

F =
m∑
k=1

qkδ(r− rk), (3.1)

where m is the number of point charges, qk are values of charges, and rk are the

locations of the point charges.

If we assume the source is composed of a finite number of dipoles, we have

F = −
m∑
k=1

pk · ∇δ(r− rk).

where m is the number of dipoles, pk are the moments (or strengths) of the dipoles,

and rk are the centers of dipoles.
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3.3 The Harmonic Function Method of Identifying Dipolar Sources

The dipolar source reconstruction problem can be viewed as a Poisson problem.

∆u =
m∑
k=1

pk · ∇δ(r− rk) in Ω, (3.2)

u = f on Γ, (3.3)

∂u

∂ν
= φ on Γ, (3.4)

where f and φ are known, and ν is the outer unit normal vector.

We will use the concept of reciprocity gap functional [24]:

R(v) =

⟨
∂u

∂ν
, v

⟩
H1/2(Γ),H−1/2(Γ)

−
⟨
u,

∂v

∂ν

⟩
H1/2(Γ),H−1/2(Γ)

= ⟨φ, v⟩H1/2(Γ),H−1/2(Γ) −
⟨
f,

∂v

∂ν

⟩
H1/2(Γ),H−1/2(Γ)

, (3.5)

where v is a harmonic function in Ω:

v ∈ H(Ω) = {w ∈ H1(Ω) | ∆w = 0}. (3.6)

By Green’s formula, we have

R(v) = −
m∑
k=1

pk · ∇v(r− rk),∀v ∈ H(Ω). (3.7)

Let m be the number of dipoles in the brain. Assume m ≤ M in our problem,

i.e., there is an upper bound for the number of dipoles.

Let us consider the harmonic polynomials

vj(x, y) = (x+ iy)j, j ∈ N.
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Then, in 2D case

R(vj) = −
m∑
k=1

pk · ∇vj(rk)

= −
m∑
k=1

pk1
pk2

 · ∇(xk + iyk)
j

= −
m∑
k=1

pk1
pk2

 ·
 ∂

∂x
(x+ iy)j

∂

∂y
(x+ iy)j


x=xk,y=yk

= −
m∑
k=1

pk1
pk2

 ·
j(xk + iyk)

j−1 · 1

j(xk + iyk)
j−1 · i


= −

m∑
k=1

pk1
pk2

 ·
1
i

 j(xk + iyk)
j−1

= −j
m∑
k=1

(pk1 + ipk2)(xk + iyk)
j−1.

We define

βj :=
R(vj)

−j
=

M∑
k=1

(pk1 + ipk2)(xk + iyk)
j−1, j = 1, 2, ..., 2M − 1. (3.8)

Let

ηj =



βj

βj+1

...

βj+M−1


∈ CM , 1 ≤ j ≤M, (3.9)

and

Zi =

[
ηi, ηi+1, ..., ηi+M−1

]
=



βi βi+1 · · · βi+M−1

βi+1 βi+2 · · · βi+M

...

βi+M−1 βi+M · · · βi+2M−2


, i ∈ N.
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Then,

Z1 =

[
η1, η2, ..., ηM

]
=



β1 β2 · · · βM

β2 β3 · · · βM+1

...

βM βM+1 · · · β2M−1


.

The number m of dipoles is estimated as the rank of Z1.

Now we can reduce the size of the matrix by recalculating βj and ηj with M

replaced by m. Then, the m vectors η1, ..., ηm are independent.

To get the estimates of the positions we need to construct an m×m matrix T

such that ηj+1 = Tηj, j = 1, ...,m. Then,

[η2, ..., ηm+1] = T [η1, ..., ηm].

So,

T = [η2, ..., ηm+1][η1, ..., ηm]
−1

=



β2 β3 · · · βm+1

β3 β4 · · · βm+2

...

βm+1 βm+2 · · · β2m





β1 β2 · · · βm

β2 β3 · · · βm+1

...

βm βm+1 · · · β2m−1



−1

= Z2Z
−1
1 .

The positions of dipoles are estimated as the eigenvalues of T .
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Why the eigenvalues of T are the positions of dipoles? Let us first look at an

example η2 = Tη1.

Tη1 = T



β1

β2

...

βm


= T



p1 + p2 + · · ·+ pm

p1S1 + p2S2 + · · ·+ pmSm

...

p1S
m−1
1 + p2S

m−1
2 + · · ·+ pmS

m−1
m



= p1T



1

S1

...

Sm−1
1


+ p2T



1

S2

...

Sm−1
2


+ · · ·+ pmT



1

Sm

...

Sm−1
m


.

η2 =



β2

β3

...

βm+1


=



p1S1 + p2S2 + · · ·+ pmSm

p1S
2
1 + p2S

2
2 + · · ·+ pmS

2
m

...

p1S
m
1 + p2S

m
2 + · · ·+ pmS

m
m



= p1S1



1

S1

...

Sm−1
1


+ p2S2



1

S2

...

Sm−1
2


+ · · ·+ pmSm



1

Sm

...

Sm−1
m


.

Since



1

S1

...

Sm−1
1


,



1

S2

...

Sm−1
2


, ...,



1

Sm

...

Sm−1
m


are independent and the results are similar for

ηj+1 = Tηj, j = 1, 2, ...,m, we know S1, S2, ..., Sm are just the eigenvalues of T .
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Now the question is how to get T . Only η1 and η2 are not enough to determine

T because vectors have no inverse. So, we use the redundant information to construct

the matrices Z1 and Z2 such that T = Z2Z
−1
1 , where Z1 is invertible because η1, ..., ηm

are independent.

To estimate the moments of dipoles we will write Eq. (3.8) in matrix form.

Notice that now we use m instead of M .

β1

β2

...

βm


=



S0
1 S0

2 · · · S0
m

S1
1 S1

2 · · · S1
m

...

Sm−1
1 Sm−1

2 · · · Sm−1
m





p1

p2
...

pm


, (3.10)

where pk = pk1 + ipk2 is the moment and Sk = xk + iyk is the position.

We can write Eq. (3.10) in matrix form

b = Sp, (3.11)

where b =



β1

β2

...

βm


,S =



S0
1 S0

2 · · · S0
m

S1
1 S1

2 · · · S1
m

...

Sm−1
1 Sm−1

2 · · · Sm−1
m


, and p =



p1

p2
...

pm


. Then, the

moments of dipoles in 2D are estimated as

p = S−1b. (3.12)
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3.4 Optimization of linear operator

Eq. (3.12) works in the ideal case of no noise. In reality, due to the noise in the

measurements and in the sources, we need find a linear operator L to estimate the

moments, i.e.,

p̃ = Lb (3.13)

where p̃ represents the estimates of the moments, and b represents the quantities

obtained from the measurements.

Considering the noise accompanied in the measurements, we rewrite Eq. (3.11)

as

b = Sp+ n,

where n is a random vector of mean 0. Let N be the covariance matrix of n. Also,

assume that p̃ is normally distributed with mean p and its covariance matrix is P.

Using multiple measurements and the statistical estimation theory we can find

the linear operator L which minimizes the expected difference ErrL between the

estimated moments p̃ and the exact moments p.

ErrL = ⟨∥p̃− p∥2⟩

= ⟨∥Lb− p∥2⟩

= ⟨∥L(Sp+ n)− p∥2⟩

= ⟨∥(LS− I)p+ Ln∥2⟩

= ⟨∥Mp+ Ln∥2⟩ (where M = LS− I)

= ⟨∥Mp∥2⟩+ ⟨∥Ln∥2⟩ (by independence of p and n)

= Tr(MPMT ) + Tr(LNLT ).
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Setting the gradient of ErrL to 0 and solving for L, we get the optimal linear

operator

L = PST (SPST +N)−1. (3.14)

Then, by Eq. (3.13) we get the best estimates of the moments.

3.5 Uniqueness of solutions

Theorem 3 (Uniqueness of solutions). Let ui, i = 1, 2 be the solutions of the problems

−∇ · (σ∇ui) =

mi∑
k=1

p
(i)
k · ∇δS(i)

k
in Ω,

∂ui

∂ν
= φ on Γ,

such that

u1 = u2 on Γ,

then

m1 = m2 = m,

p
(1)
k = p

(2)
k ,∀k = 1, 2, ...,m,

S
(1)
k = S

(2)
k ,∀k = 1, 2, ...,m.

Proof. We give a sketch of the proof.

1. Use the transmission conditions to rewrite PDE for the innermost layer.

−∆w =

m2∑
k=1

p
(2)
k · δS(2)

k
−

m1∑
k=1

p
(1)
k · δS(1)

k
in Ω,

w = 0 on ∂Ω,

∂w

∂ν
= 0 on ∂Ω.
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2. The solution of Poisson equation is the convolution of the fundamental solution

of Laplace equation and the source function.

w(x) =
1

2π

 m2∑
k=1

pk · (x− Sk)∣∣∣x− S
(2)
k

∣∣∣2 −
m1∑
k=1

pk · (x− Sk)∣∣∣x− S
(1)
k

∣∣∣2
 , n = 2.

w(x) =
−1
4π

 m2∑
k=1

pk · (x− Sk)∣∣∣x− S
(2)
k

∣∣∣3 −
m1∑
k=1

pk · (x− Sk)∣∣∣x− S
(1)
k

∣∣∣3
 , n = 3.
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CHAPTER 4

Error Estimate

As EEG imaging data are typically noisy, especially determining the rank of

a near singular matrix is very unstable, the error of the numerical reconstruction

method needs to be studied. Chafik et al. [10, 9] proposed that when the norms of

the perturbations (g = f̃ − f, h = φ̃−φ) are small in H1/2×H−1/2, there exist a > 0

and b > 0 such that ∀k = 1, 2, ...,m,

∥S̃k−Sk∥2 ≤
m(1−Rm)

dm−1(1−R)
max

{(
m− 1

j

)
Rj, 0 ≤ j ≤ m− 1

}(
a∥g∥H1/2(Γ) + b∥h∥H−1/2(Γ)

)
,

where Sk = xk + iyk is the exact position of the kth dipole, S̃k = x̃k + iỹk is the

estimated position of the kth dipole, d is the minimal distance between Sk and S̃k,

and R ̸= 1 is a real number bigger than the norm of any point on Γ. However, the

analysis is not given by Chafik et al.

We derive a new form of error estimate

∥T − T̃∥∞

≤ 2m
(
∥φ∥2R2m

√
2πR + ∥f∥2R2m

√
2πR

)(m!mm−1pm−1
maxR

m(m−1)

pmmind
m(m−1)

)
+2m2

(
∥φ∥2R2m

√
2πR + ∥f∥2R2m

√
2πR

)2(m!mm−1pm−1
maxR

m(m−1)

pmmind
m(m−1)

)2

,

and give a mathematical proof. A simple numerical example is provided that the

error estimate of Chafik et al. may not be valid for some cases.
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4.1 Introduction

Error estimate is crucial for numerical applications [20].

Researchers have done error estimate for inverse problems related to electric

filed models. Alessandrini et al. [25, 26], and Bellout et al. [19] have dealt with

stability for an inverse conductivity problem.

Bellout et al. [19] introduced the notion of local Lipschitz stability, which are

widely used in cracks, boundary recovery and Robin’s coefficient [20-22].

Assuming that the poles are well separated and their respective strengths are

large enough, Cannon et al. [23] obtained a logarithm-type stability estimate for the

2D case problem of identifying dense masses in the earth from gravimetry data taken

at the surface or in the air.

Vessella [8] proved Lipschitz stability results in the problem of determining loca-

tions and strengths of point sources in 3-D Euclidean spaces from the measurements

of potentials on the boundary.

El Badia and El Hajj [27] provided the Hölder stability estimates for some

inverse point-wise source problems.

El Badia and El Hajj [28] showed the Hölder stability estimates for the inverse

source problem of Helmholtz’s equation in 3-D case.

Abdelaziz et al. designed direct algorithms for multipolar sources reconstruction

[29] and for solving some inverse source problems in 2D elliptic equations [30].
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El Badia et al. [31] made Lipschitz stability estimates for an inverse monopo-

lar source problem of an elliptic equation from interior measurements in anisotropic

media.

El Badia et al. [32] investigated an inverse source problem of the time harmonic

Maxwell equations and provided a Hölder stability estimate.

Mdimagh and Saad [20] used two methods to get the local Lipschitz stability

results of the point sources in 2D and 3D cases. One method used Gâteaux differ-

entiability and the other method used the reciprocity gap concept [8] with particular

test functions.

4.2 Error Estimates of Positions

We define

Zi =



βi βi+1 · · · βi+m−1

βi+1 βi+2 · · · βi+m

...

βi+m−1 βi+m · · · βi+2m−2


, i ∈ N.

Then,

Z1 =



β1 β2 · · · βm

β2 β3 · · · βm+1

...

βm βm+1 · · · β2m−1


.

where

βj =
m∑
k=1

pkS
j−1
k =

m∑
k=1

(pk1 + ipk2)(xk + iyk)
j−1, j = 1, 2, ..., 2m− 1.
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det(Z1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 β2 · · · βm

β2 β3 · · · βm+1

...

βm βm+1 · · · β2m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
pk

∑
pkSk · · ·

∑
pkS

m−1
k∑

pkSk

∑
pkS

2
k · · ·

∑
pkS

m
k

...∑
pkS

m−1
k

∑
pkS

m
k · · ·

∑
pkS

2m−2
k

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∑

m1 ̸=m2 ̸=···̸=mm

τ(m1,m2, ...,mm) · pm1pm2 · · · pmm

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Sm2 · · · Sm−1
mm

Sm1 S2
m2
· · · Sm

mm

...

Sm−1
m1

Sm
m2
· · · S2m−2

mm

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∑

m1 ̸=m2 ̸=···̸=mm

τ(m1,m2, ...,mm) · pm1pm2 · · · pmm

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

Sm1 Sm2 · · · Smm

...

Sm−1
m1

Sm−1
m2

· · · Sm−1
mm

∣∣∣∣∣∣∣∣∣∣∣∣∣
S0
m1

S1
m2
· · ·Sm−1

mm

= p1p2 · · · pm

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

Sm1 Sm2 · · · Smm

...

Sm−1
m1

Sm−1
m2

· · · Sm−1
mm

∣∣∣∣∣∣∣∣∣∣∣∣∣

( ∑
m1 ̸=m2 ̸=···̸=mm

τ(m1,m2, ...,mm) · S0
m1

S1
m2
· · ·Sm−1

mm

)

= p1p2 · · · pm

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

Sm1 Sm2 · · · Smm

...

Sm−1
m1

Sm−1
m2

· · · Sm−1
mm

∣∣∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

Sm1 Sm2 · · · Smm

...

Sm−1
m1

Sm−1
m2

· · · Sm−1
mm

∣∣∣∣∣∣∣∣∣∣∣∣∣
= p1p2 · · · pm

∏
1≤i<j≤m

(Si − Sj)
2.

Here, (m1,m2, ...,mm) is any permutation of (1, 2, ...,m) and τ(m1,m2, ...,mm) is the

sign determined by the permutation.
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The maximum absolute row sum norm is defined by

∥A∥∞ = max
i

∑
j

|aij|,

where A is a matrix. When A is a vector, ∥A∥∞ = max
i
|ai|.

In the following proof we will use an important inequality:

∥a(x)b(x)− a(y)b(y)∥∞ ≤ ∥a(x)− a(y)∥∞ · ∥b(x)∥∞ + ∥b(x)− b(y)∥∞ · ∥a(x)∥∞

where a(x) and b(x) can be scalar, vector, or matrix.

By Cauchy-Schwarz inequality, we have

R(vj) = ⟨φ, vj⟩ −
⟨
f,

∂vj
∂ν

⟩
=

∫
Γ

φ · vjds−
∫
Γ

f · ∂vj
∂ν

ds

=

∫
Γ

φ · (x+ iy)jds−
∫
Γ

f · ∂(x+ iy)j

∂ν
ds

≤
(∫

Γ

φ2ds

)1/2(∫
Γ

(x+ iy)2jds

)1/2

+

(∫
Γ

f 2ds

)1/2
(∫

Γ

(
∂(x+ iy)j

∂ν

)2

ds

)1/2

≤
(∫

Γ

φ2ds

)1/2

Rj
√
2πR +

(∫
Γ

f 2ds

)1/2

jRj−1
√
2πR

≤ j∥φ∥2Rj
√
2πR + j∥f∥2Rj−1

√
2πR.

|βj| =

∣∣∣∣R(vj)

−j

∣∣∣∣
≤ ∥φ∥2Rj

√
2πR + ∥f∥2Rj−1

√
2πR

≤ ∥φ∥2R2m
√
2πR + ∥f∥2R2m

√
2πR

where R > 1.
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Let

T = Z2Z
−1
1 = Z2

adj(Z1)

det(Z1)

where Z1 =



β1 β2 · · · βm

β2 β3 · · · βm+1

...

βm βm+1 · · · β2m−1


and Z2 =



β2 β3 · · · βm+1

β3 β4 · · · βm+2

...

βm+1 βm+2 · · · β2m


.

We can view R(vj) as the measurement obtained by the “detector” vj, while βj

is just a constant multiple of R(vj). So, βj is still a measurement of another form,

which contains the information about the moment and the position of the dipole

source. Since Z1 and Z2 are constructed by different measurements βj, T is also a

matrix of measurements.

Assume T is the measurements without noise, and T̃ is the measurements with

noise. Then,

∥T − T̃∥∞ = ∥Z2Z
−1
1 − Z̃2Z̃

−1
1 ∥∞

≤ ∥Z2 − Z̃2∥∞∥Z−1
1 ∥∞ + ∥Z−1

1 − Z̃−1
1 ∥∞∥Z2∥∞.

We will analyse the four norms in the above inequality one by one.

∥Z2 − Z̃2∥∞ ≤ m∥φ− φ̃∥2R2m
√
2πR +m∥f − f̃∥2R2m

√
2πR.

To find ∥Z−1
1 ∥∞ we need to estimate ∥ adj(Z1)∥∞. We first observe the results

for m = 3 and m = 4, then generalize the results to the arbitrary m.
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If Z1 =


β1 β2 β3

β2 β3 β4

β3 β4 β5

, then the absolute value of the first element of adj(Z1)

would be

abs


∣∣∣∣∣∣∣
β3 β4

β4 β5

∣∣∣∣∣∣∣
 = |β3β5 − β2

4 | ≤ |β3| · |β5|+ |β2
4 |

= (p1S
2
1 + p2S

2
2 + p3S

2
3)(p1S

4
1 + p2S

4
2 + p3S

4
3) + (p1S

3
1 + p2S

3
2 + p3S

3
3)

2

≤ (3pmaxR
2)(3pmaxR

4) + (3pmaxR
3)2 = 2(3pmaxR

3)2

= (3− 1)!33−1p3−1
maxR

3(3−1)

=: max

abs


∣∣∣∣∣∣∣
β3 β4

β4 β5

∣∣∣∣∣∣∣

 .

Then,

∥ adj(Z1)∥∞

≤ max

abs


∣∣∣∣∣∣∣
β3 β4

β4 β5

∣∣∣∣∣∣∣

+max

abs


∣∣∣∣∣∣∣
β2 β4

β3 β5

∣∣∣∣∣∣∣

+max

abs


∣∣∣∣∣∣∣
β2 β3

β3 β4

∣∣∣∣∣∣∣



≤ 3 ·max

abs


∣∣∣∣∣∣∣
β3 β4

β4 β5

∣∣∣∣∣∣∣



= 3 · (3− 1)!33−1p3−1
maxR

3(3−1)

= 3!33−1p3−1
maxR

3(3−1).
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If Z1 =



β1 β2 β3 β4

β2 β3 β4 β5

β3 β4 β5 β6

β4 β5 β6 β7


, then the absolute value of the first element of adj(Z1)

would be

abs


∣∣∣∣∣∣∣∣∣∣
β3 β4 β5

β4 β5 β6

β5 β6 β7

∣∣∣∣∣∣∣∣∣∣

 = |β3β5β7 + 2β4β5β6 − β3
5 − β3β

2
6 − β2

4β7|

≤ |β3β5β7|+ |2β4β5β6|+ |β3
5 |+ |β3β

2
6 |+ |β2

4β7|

≤ 6max(|β3
5 |)

= 6max(p1S
4
1 + p2S

4
2 + p3S

4
3 + p4S

4
4)

3 ≤ 6(4pmaxR
4)3

= (4− 1)!44−1p4−1
maxR

4(4−1)

=: max

abs


∣∣∣∣∣∣∣∣∣∣
β3 β4 β5

β4 β5 β6

β5 β6 β7

∣∣∣∣∣∣∣∣∣∣


 .

Then,
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∥ adj(Z1)∥∞

≤ max

abs


∣∣∣∣∣∣∣∣∣∣
β3 β4 β5

β4 β5 β6

β5 β6 β7

∣∣∣∣∣∣∣∣∣∣


+max

abs


∣∣∣∣∣∣∣∣∣∣
β2 β4 β5

β3 β5 β6

β4 β6 β7

∣∣∣∣∣∣∣∣∣∣




+max

abs


∣∣∣∣∣∣∣∣∣∣
β2 β3 β5

β3 β4 β6

β4 β5 β7

∣∣∣∣∣∣∣∣∣∣


+max

abs


∣∣∣∣∣∣∣∣∣∣
β2 β3 β4

β3 β4 β5

β4 β5 β6

∣∣∣∣∣∣∣∣∣∣




≤ 4 ·max

abs


∣∣∣∣∣∣∣∣∣∣
β3 β4 β5

β4 β5 β6

β5 β6 β7

∣∣∣∣∣∣∣∣∣∣




≤ 4 · (4− 1)!44−1p4−1
maxR

4(4−1)

= 4!44−1p4−1
maxR

4(4−1).

Assume when m = n− 1, we have

abs



∣∣∣∣∣∣∣∣∣∣∣∣∣

β3 β4 · · · βn+1

β4 β5 · · · βn+2

...

βn+1 βn+2 · · · β2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣


≤ (n− 1)!nn−1pn−1

maxR
n(n−1).

In fact, this inequality is also true for other minors with matrix size (n− 1)× (n− 1).
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Then, when m = n we have

abs



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β3 β4 · · · βn+1 βn+2

β4 β5 · · · βn+2 βn+3

...

βn+1 βn+2 · · · β2n−1 β2n

βn+2 βn+3 · · · β2n β2n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



≤ max |β2n+1| ·max


abs

∣∣∣∣∣∣∣∣∣∣∣∣∣

β3 β4 · · · βn+1

β4 β5 · · · βn+2

...

βn+1 βn+2 · · · β2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣


+ · · ·

+max |βn+2| ·max


abs

∣∣∣∣∣∣∣∣∣∣∣∣∣

β4 β5 · · · βn+2

β5 β6 · · · βn+3

...

βn+2 βn+3 · · · β2n

∣∣∣∣∣∣∣∣∣∣∣∣∣



≤ n ·max |β2n+1| ·max


abs

∣∣∣∣∣∣∣∣∣∣∣∣∣

β3 β4 · · · βn+1

β4 β5 · · · βn+2

...

βn+1 βn+2 · · · β2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣


≤ n ·max |p1S2n

1 + p2S
2n
2 + · · ·+ pnS

2n
n | · (n− 1)!nn−1pn−1

maxR
n(n−1)

≤ n · npmaxR
2n · (n− 1)!nn−1pn−1

maxR
n2−n)

= n!nnpnmaxR
(n+1)n

≤ n!(n+ 1)npnmaxR
(n+1)n.
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Then, for any m we have

∥ adj(Z1)∥∞ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
adj





β1 β2 · · · βm−1 βm

β2 β3 · · · βm βm+1

...

βm−1 βm · · · β2m−3 β2m−2

βm βm+1 · · · β2m−2 β2m−1





∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

≤ max


abs

∣∣∣∣∣∣∣∣∣∣∣∣∣

β3 β4 · · · βm+1

β4 β5 · · · βm+2

...

βm+1 βm+2 · · · β2m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣


+ · · ·+max


abs

∣∣∣∣∣∣∣∣∣∣∣∣∣

β2 β3 · · · βm

β3 β4 · · · βm+1

...

βm βm+1 · · · β2m−2

∣∣∣∣∣∣∣∣∣∣∣∣∣



≤ m ·max


abs

∣∣∣∣∣∣∣∣∣∣∣∣∣

β3 β4 · · · βm+1

β4 β5 · · · βm+2

...

βm+1 βm+2 · · · β2m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣


= m · (m− 1)!mm−1pm−1

maxR
m(m−1)

= m!mm−1pm−1
maxR

m(m−1).

Thus,

∥Z−1
1 ∥∞ =

∥∥∥∥adj(Z1)

det(Z1)

∥∥∥∥
∞

≤ m!mm−1pm−1
maxR

m(m−1)

p1p2 · · · pm
∏

1≤i<j≤m(Si − Sj)2

≤ m!mm−1pm−1
maxR

m(m−1)

pmmind
m(m−1)

where d is the smallest distance between any two points.

Notice that

Z1(Z
−1
1 − Z̃−1

1 ) + (Z1 − Z̃1)Z̃
−1
1 = 0.
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Z−1
1 − Z̃−1

1 = −Z−1
1 (Z1 − Z̃1)Z̃

−1
1 .

∥Z−1
1 − Z̃−1

1 ∥∞

≤ ∥Z−1
1 ∥∞ · ∥Z1 − Z̃1∥∞ · ∥Z̃−1

1 ∥∞

≤
(
m!mm−1pm−1

maxR
m(m−1)

pmmind
m(m−1)

)2

·
(
m∥φ− φ̃∥2R2m

√
2πR +m∥f − f̃∥2R2m

√
2πR

)
.

Based on the above results, we have

∥T − T̃∥∞

≤ ∥Z2 − Z̃2∥∞∥Z−1
1 ∥∞ + ∥Z−1

1 − Z̃−1
1 ∥∞∥Z2∥∞.

≤
(
m∥φ− φ̃∥2R2m

√
2πR +m∥f − f̃∥2R2m

√
2πR

)(m!mm−1pm−1
maxR

m(m−1)

pmmind
m(m−1)

)
+

(
m!mm−1pm−1

maxR
m(m−1)

pmmind
m(m−1)

)2

·
(
m∥φ− φ̃∥2R2m

√
2πR +m∥f − f̃∥2R2m

√
2πR

)
·
(
m∥φ∥2R2m

√
2πR +m∥f∥2R2m

√
2πR

)
≤ 2m

(
∥φ∥2R2m

√
2πR + ∥f∥2R2m

√
2πR

)(m!mm−1pm−1
maxR

m(m−1)

pmmind
m(m−1)

)
+2m2

(
∥φ∥2R2m

√
2πR + ∥f∥2R2m

√
2πR

)2(m!mm−1pm−1
maxR

m(m−1)

pmmind
m(m−1)

)2

≤ E + E2

where

E = 2mR2m
√
2πR (∥f∥2 + ∥φ∥2)

(
m!mm−1pm−1

maxR
m(m−1)

pmmind
m(m−1)

)
.

When 0 < E < 1, the error in the position estimate is mainly controlled by E; when

E > 1, the error in the position estimate is mainly controlled by E2.
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CHAPTER 5

Results

5.1 Numerical simulation for 2D

Let Ω be a circular disk centered at the origin and of radius r = 1. Then, the

numerical implementation can be simplified as follow.

∂vj
∂ν

=
∂(x+ iy)j

∂r
=

∂
(
reiθ
)j

∂r
= jrj−1eiθj =

jrjeiθj

r
=

jvj
r
.

R(vj) = −
⟨
f,

∂vj
∂ν

⟩
= −

∫
Γ

f · ∂vj
∂ν

dΓ

= −
∫ 2π

0

f · jvj
r
· rdθ

= −j
∫ 2π

0

f · vjdθ

= −j
∫ 2π

0

f ·
(
reiθ
)j
dθ,

where f is a function of θ on the boundary. We don’t know the explicit form of f , but

we can measure as many points as possible on the boundary to get enough discretized

function values of f . Then, the above integral can be approximated by a Riemann

sum.
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The measurable values we want to use in the following are

βj = −
R(vj)

j
=

∫ 2π

0

f ·
(
reiθ
)j
dθ.

The Romberg algorithm is used to calculate the integral numerically.

We compare the efficacy of the harmonic function method in dipolar source

reconstruction when the perturbation level is 0, 0.001, 0.01, 0.1 and the number of

dipoles is 1, 2, 3, 4, 5. It is shown that as the perturbation level increases, the recon-

struction error increases.

Figure 5.1. The effect of the perturbation level on the reconstruction error of 1
dipole. As the perturbation level increases, the reconstruction error increases. Here,
the perturbation means adding noise to the exact measurement. If the perturbation
level is σ, then the perturbed measurement is the exact measurement times (1± σ),
where plus or minus signs are randomly assigned to each channel. Here, the error is
defined as the sum of position errors.
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Figure 5.2. The effect of the perturbation level on the reconstruction error of 2
dipoles. As the perturbation level increases, the reconstruction error increases. Here,
the perturbation means adding noise to the exact measurement. If the perturbation
level is σ, then the perturbed measurement is the exact measurement times (1± σ),
where plus or minus signs are randomly assigned to each channel. Here, the error is
defined as the sum of position errors.
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Figure 5.3. The effect of the perturbation level on the reconstruction error of 3
dipoles. As the perturbation level increases, the reconstruction error increases. Here,
the perturbation means adding noise to the exact measurement. If the perturbation
level is σ, then the perturbed measurement is the exact measurement times (1± σ),
where plus or minus signs are randomly assigned to each channel. Here, the error is
defined as the sum of position errors.
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Figure 5.4. The effect of the perturbation level on the reconstruction error of 4
dipoles. As the perturbation level increases, the reconstruction error increases. Here,
the perturbation means adding noise to the exact measurement. If the perturbation
level is σ, then the perturbed measurement is the exact measurement times (1± σ),
where plus or minus signs are randomly assigned to each channel. Here, the error is
defined as the sum of position errors.
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Figure 5.5. The effect of the perturbation level on the reconstruction error of 5
dipoles. As the perturbation level increases, the reconstruction error increases. Here,
the perturbation means adding noise to the exact measurement. If the perturbation
level is σ, then the perturbed measurement is the exact measurement times (1± σ),
where plus or minus signs are randomly assigned to each channel. Here, the error is
defined as the sum of position errors.

In the following we show the results of source estimation, assuming there are 3

dipolar sources (m = 3).

• Dipole 1. Position (0.3,−0.3) and moment (0, 1).

• Dipole 2. Position (0.6, 0.2) and moment (1, 1).

• Dipole 3. Position (−0.5, 0.4) and moment (2, 2).

In the graphs we use a small circle and a red line segment to indicate the true

value, and use a cross sign and a green line segment to indicate the reconstructed

values.
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Figure 5.6. The effect of the perturbation level on the reconstruction error of 3 dipoles.
As the perturbation level increases, the reconstruction error increases.

From error estimates we know that as the distance between two dipoles gets

closer, the reconstruction error for the positions of dipoles gets larger (see Table 5.1

and Fig. 5.7). This is verified by the numerical simulations.
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We randomly assign two dipoles with fixed distance, say 0.1, in the unit disk,

then reconstruct their positions. We fix the noise level for all experiments at σ =

0.001.

Let di, i = 1, 2 be the distance between the ith exact dipole and the ith esti-

mated dipole, and dmax be the largest d.

We repeat the experiment 10 times and show their performance on average over

different dipole distances.

The above experiment also provides a numerical example to show that the

estimate provided by Chafik et al. may be wrong in some cases.

When the number of dipoles ism = 2, Chafik’s estimate is bounded by
C

d
, while

our estimate is bounded by
C

d2
where C is a constant and d is the smallest distance

between two dipoles. That is, when the distance is halved, the estimate error will be

amplified by 2 in Chafik’s estimate and by 4 in our estimate.

From the data simulation, we see that

0.05

0.03
= 1.67 <

0.7429

0.3084
= 2.41 < 1.672 = 2.79.

0.10

0.05
= 2 <

0.3084

0.1200
= 2.57 < 22 = 4.

0.10

0.03
= 3.33 <

0.7429

0.1200
= 6.19 < 3.332 = 11.09.

For example, when the distance between the two dipoles is reduced from 0.10

to 0.05, by Chafik’s estimate the error should be amplified by 2, but in fact, the error

is amplified by 2.57, which is bounded by 4 in our estimate. Similarly, the other two

comparisons of ratio also show that Chafik’s estimate may be wrong in some cases.
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Exact Dipole Distance Reconstructed Dipole Distance
0.03 0.7429
0.05 0.3084
0.10 0.1200

Table 5.1. The effect of dipole distance on the reconstruction error. As two dipoles
get closer, the mean reconstruction error in the positions of the dipoles gets larger,
which is consistent with the result in the error estimate.

Figure 5.7. The effect of dipole distance on the reconstruction error. As two dipoles
get closer, the reconstruction error in the positions of the dipoles gets larger, which
is consistent with the theoretical analysis in the error estimate. When dexact = 0.10,
dest = 0.1200; when dexact = 0.05, dest = 0.3084; when dexact = 0.03, dest = 0.7429.
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5.2 Application in EEG data of Pain

Pain quantification is essential for pain relief. In clinical situations the pain is

assessed by the patients’ reporting, which is subjective and inaccurate. For example,

children or patients with communication disabilities are unable to express their pain

effectively. So, methods or equipment for objective and accurate assessment of pain

are needed.

We obtained a set of human pain EEG data from Dr. Yuanbo Peng’s lab at

UT Arlington. The experiment is operated in the following way.

The subject wears an EasyCap-M1 74-electrode helmet [33] (see Fig. 5.8),

where only 66 electrodes were used in our experiments, and the other 8 electrodes

(Fpz, F9, F10, P9, P10, O9, O10, Iz) were not used. In 66 electrodes there is one “Ground”

and one “Reference”. So, we call the helmet a 64-channel helmet.
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Figure 5.8. The layout of an EasyCap-M1 74-electrode helmet. Only
66 electrodes were used in our experiments, and the other 8 electrodes
(Fpz, F9, F10, P9, P10, O9, O10, Iz) were not used. In 66 electrodes there is one “Ground”
and one “Reference”. So, only 64-channel data were used for solving inverse problems.
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The subject puts the right hand in the warm water (40◦C) for 1 minute, then

rests in the air for 5 minutes. Then, put right hand in the cold water (4◦C) for 1

minute, then rest in the air for 5 minutes. Then put the left hand in the warm water

(40◦C) for 1 minute, then rest in the air for 5 minutes. Then, put left hand in the

cold water (4◦C) for 1 minute, then rest in the air for 5 minutes. This is one trial of

experiment. The experimenter repeats 3 trials of experiment.

We used FieldTrip [34], MNE [35], and FreeSurfer [36] to create a template head

model and a template source model (see Fig. 5.9). Head model contains the geomet-

rical and electrical/magnetic properties of the head, while source model provides the

locations of all possible sources.
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Figure 5.9. Head Model and Source Model. (A) Head model contains the geometrical
and electrical/magnetic properties of the head. (B) Source model (lateral view)
provides the locations of all possible sources. (C) The alignment of head model and
source model. (D) Source model (top view). T: top, A: anterior, P: posterior.
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We applied the harmonic function method to the real data of pain study, and

find that there are strong activities near prefrontal cortex and anterior cingulate

cortex (see Fig. 5.10 and Fig. 5.11), of which both are reported to be related to the

pain processing in the brain [37].

Figure 5.10. Source reconstruction from one averaged measurement on the scalp.
Because the sampling frequency is 1000 Hz, the averaged measurement at one instant
is the average of the following 1000 measurements. It shows that there are strong
activities near prefrontal cortex and anterior cingulate cortex.
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Figure 5.11. Source reconstruction from one averaged measurement on the scalp.
Because the sampling frequency is 1000 Hz, the averaged measurement at one instant
is the average of the following 1000 measurements. It shows that there are strong
activities near prefrontal cortex and anterior cingulate cortex. Also, the response in
the left brain is stronger than the response in the right brain, which is consistent with
the expectation because the pain stimulus is applied to the right hand. T: top, B:
bottom, A: anterior, P: posterior.
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CHAPTER 6

Conclusions and Future Work

In this dissertation we studied a harmonic function method for dipolar source

reconstruction, and applied the method to the real pain data. Our result showed

that when the hand is in the cold water there are strong activities near the prefrontal

cortex and the anterior cingulate cortex, which is consistent with the published result

[37]. We also provided a better error estimate than Chafik et al. because evidence

showed that Chafik’s estimate may be wrong in some cases.

In chapter 2 we reviewed some preliminaries, such as the fundamental solutions

of the Laplacian equation and Sobolev space. In chapter 3 we studied the theory of

inverse source problem, especially a harmonic function method for the dipolar source

reconstruction. In chapter 4 we derived error estimate for the harmonic function

method and compared our result with Chafik’s estimate. It is shown by numerical

examples that the estimate provided by Chafik et al. may be wrong in some cases.

Finally, in chapter 5 we did data simulation and applied the harmonic function method

to the real pain data, and got good results of dipole source reconstruction, showing

that the prefrontal cortex and the anterior cingulate cortex may be the areas related

to the pain processing in the brain.

In the future, we plan to extend the harmonic function method to 3D case and

applied this method to other realistic areas. Since the estimation of the number of

dipoles relies on the calculation of the rank of the measurement matrix, which is
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significantly affected by the noise, we hope to find some way to solve or circumvent

this problem.

We may also compare the efficiency and efficacy of the harmonic function

method with other existing reconstruction methods, such as minimum norm estimates

(MNE) [38], low resolution electrical tomography (LORETA) [39, 40] or multiple-

signal classification algorithm (MUSIC) [41, 42], etc.
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APPENDIX A

Some Important Algorithms
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A.1 Romberg Integration

Romberg integration [43] is a recursive method for numerically calculating the

definite integral

I =

∫ b

a

f(x)dx.

A.1.1 Romberg Algorithm

Let R(n, 0) be the trapezoid estimate with 2n subintervals. Then, we get the

recursive form of Romberg integration.
R(0, 0) =

1

2
(b− a)[f(a) + f(b)]

R(n, 0) =
1

2
R(n− 1, 0) + hn

2n−1∑
i=1

f(a+ (2i− 1)hn)
,

and

R(n,m) = R(n,m− 1) +
1

4m − 1
[R(n,m− 1)−R(n− 1,m− 1)],

where 0 ≤ n ≤ M and 0 ≤ m ≤ n. In practice, M = 10 is usually enough to get an

accurate integral. Also, asM increase the computational load increases exponentially.

The pseudocode for Romberg algorithm is as follows.
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Algorithm 1 Romberg Algorithm

1: procedure Romberg

2: input a, b,M

3: h← b− a

4: R(0, 0)← 1

2
(b− a)[f(a) + f(b)]

5: for n = 1 : M do

6: h← h/2

7: R(n, 0)← 1

2
R(n− 1, 0) + h

2n−1∑
i=1

f(a+ (2i− 1)h)

8: for m = 1 : n do

9: R(n,m)← R(n,m− 1) +
R(n,m− 1)−R(n− 1,m− 1)

4m − 1

10: output R(n,m) (0 ≤ n ≤M, 0 ≤ m ≤ n)
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APPENDIX B

Some Important Theorems
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B.1 Divergence Theorem

The divergence theorem has a significant importance in the study of partial

differential equations [44].

Let Ω be a bounded domain in R3 satisfying the following conditions:

1. The boundary Γ := ∂Ω has a finite number of smooth surfaces. A smooth

surface is a level surface of a C2 function with nonvanishing gradient.

2. Any straight line parallel to any of the coordinate axes either intersects Γ at a

finite number of points or has a whole interval common with Γ.

Let n = (nx, ny, nz) be the unit outer normal vector to Γ. Let V(x, y, z) =

(P (x, y, z), Q(x, y, z), R(x, y, z)) be a vector field defined in the closure Ω of Ω such

that its component functions P,Q,R are in C1(Ω) and in C0(Ω).

If

∫∫∫
Ω

(
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dxdydz is convergent, then

∫∫∫
Ω

(
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dxdydz =

∫∫
Γ

(Pnx +Qny +Rnz)ds,

or in compact notation,∫
Ω

divVdv =

∫
Ω

∇ ·Vdv =

∫
Γ

V · nds.

B.2 Green’s Identities

We get two Green’s identities using the divergence theorem.

If u ∈ C2(R3), then the gradient of u is

∇u = grad u =

(
∂u

∂x
,
∂u

∂y
,
∂u

∂z

)
,
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and the Laplacian of u is

∆u = ∇2u = ∇ · ∇u = div grad u =
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
.

It is easy to verify the differential identity

u∇2w = ∇ · (u∇w)− (∇u) · (∇w).

∇ · (u∇w)− (∇u) · (∇w)

=


∂

∂x
∂

∂y
∂

∂z

 ·

uwx

uwy

uwz

−

ux

uy

uz

 ·

wx

wy

wz


=

(
∂(uwx)

∂x
+

∂(uwx)

∂y
+

∂(uwx)

∂z

)
− (uxwx + uywy + uzwz)

= (uxwx + uwxx + uywy + uwyy + uzwz + uwzz)− (uxwx + uywy + uzwz)

= uwxx + uwyy + uwzz

= u∇2w.
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