LONG-TERM ELECTRIC PEAK DEMAND AND CAPACITY RESOURCE FORECAST FOR TEXAS 1988

1854 1988 Vol. III

VOLUME III

PUCT STAFF ECONOMETRIC ELECTRICITY DEMAND FORECASTING SYSTEM

FEBRUARY 1989

THE PUBLIC UTILITY COMMISSION OF TEXAS

U. T. ARLINGTON LIBRARY

AUG 21 1989

TEXAS DEPOSITORY DOCUMENT

UNIVERSITY OF TEXAS

LONG-TERM ELECTRIC PEAK DEMAND AND CAPACITY RESOURCE FORECAST FOR TEXAS 1988

HD 9685 .U6 .T4 1989 v. 3

VOLUME III

PUCT STAFF ECONOMETRIC ELECTRICITY DEMAND FORECASTING SYSTEM

FEBRUARY 1989

THE PUBLIC UTILITY COMMISSION OF TEXAS

CONTRIBUTORS

The contents of this three-volume report were prepared by the staff of the Public Utility Commission of Texas. The following staff members were involved:

Electric Division

Jay Zarnikau, Director Parviz Adib Brian Almon Rick Bachmeier Waldon Boecker Joe Castleberry Mel Eckhoff Doris Gayle Sid Guermouche Richard House Hal Hughes Leszek Kasprowicz Wally Kmetz George Mentrup Bill Moore Melinda Moore Chester Oberg Sarut Panjavan Paul Ramgopal Jeff Rosenblum Evan Rowe Jeff Rudolph Denise Stokes Nat Treadway

Operations Review Division

Rebecca Hathhorn Bob Reilley

Note: Partial funding for some of the research described in this three-volume report was secured from the U.S. Department of Energy through the 1988 State Energy Conservation Program.

ABSTRACT

Although electric utilities in Texas have entered a period of significant excess generating capacity, a number of planning issues deserve prompt attention. These issues include the future role of cogeneration in Texas, alleviating potential transmission bottlenecks in some areas of the State, the short-term and long-term implications associated with abandoning conservation programs in favor of promotional strategies, the appropriate degree of operating and planning coordination among the State's utilities, better utilization of the transmission system, and the potential for rate design to serve as a resource planning tool.

This report is designed to provide information and recommendations to policymakers and others interested in the present and future status of the Texas electric power industry. The first volume of this three volume report of the Commission staff's Long-Term Electric Peak Demand and Capacity Resource Forecast for Texas, 1988 provides recommended electricity demand projections for twelve of the State's largest electric utilities and an independent recommended capacity resource plan for Texas. Fuel markets, cogeneration activity, and the potential loss of industrial loads are discussed along with a number of topics of special interest.

The second volume summarizes the electricity demand forecasts, energy efficiency plans, and capacity resource plans developed by Texas generating electric utilities and filed at the Commission in December 1987. The third volume provides a technical description of the staff's Econometric Electricity Demand Forecasting system and other models used by the staff to develop the recommended load forecast presented in this volume.

The 1984 and 1986 reports focused on two central themes: 1) the development of load forecasting methodologies, data, and models; and 2) capacity expansion through the construction of utility-owned generating units. The central theme of this 1988 report, in view of the lingering effects of the Texas recession, is how to achieve greater efficiency in the use of the State's electrical resources. Within this framework, substantially more emphasis is directed toward demand-side management approaches, alternative power and energy sources, and system economics. The information presented here attempts to capture the underlying philosophy, as well as the techniques, which are used to address these important issues and provide a focus on anticipated problems and opportunities.

It should be emphasized that the projections contained herein were prepared for planning purposes and do not reflect any official policy positions or predictions by the Commission.

CONTENTS

CHAPTER ONE ELECTRICITY DEMAND FORECASTING PROJECTS AT THE COMMISSION

CHAPTER TWO

ECONOMETRIC FORECASTING SYSTEM

2.1	OVERVIEW	
2.2	ELECTRICITY SALES SUBMODEL	
2.3	ELECTRICITY PRICES SUBMODEL	
2.4	UTILITY COST SUBMODEL	
2.5	CUSTOMER SUBMODEL	
2.6	SUMMARY OF MODELING STRUCTURE	

CHAPTER THREE DATABASE DEVELOPMENT

3.1	INTRODUCTION	3.1
3.2	METHODOLOGY OF AGGREGATING COUNTY-LEVEL ECONOMIC DEMOGRAPHIC DATA	3.2
3.3	SOURCES OF HISTORICAL DATA	3.3
3.4	SOURCES OF PROJECTIONS FOR EXOGENOUS VARIABLES	3.5

CHAPTER FOUR

MODELING AND FORECASTING PROCEDURES

4.1	SALES MODEL ESTIMATION PROCEDURE	
4.2	CONVERSION TO PEAK DEMAND PROJECTIONS	

CHAPTER FIVE

SUMMARY OF ECONOMETRIC FORECASTING SYSTEM METHODOLOGY

REFERENCES

APPENDIX

ECONOMETRIC MODELS: STATISTICAL EQUATION ESTIMATION					
A.1	TEXAS UTILITIES ELECTRIC COMPANY	A.3			
A.2	HOUSTON LIGHTING & POWER COMPANY	A.9			
A.3	GULF STATES UTILITIES COMPANY	A.15			
A.4	CENTRAL POWER AND LIGHT COMPANY	A.23			
A.5	CITY PUBLIC SERVICE BOARD OF SAN ANTONIO	A.27			
A.6	SOUTHWESTERN PUBLIC SERVICE COMPANY	A.31			

A.7	SOUTHWESTERN ELECTRIC POWER COMPANY	A.39
A.8	LOWER COLORADO RIVER AUTHORITY	A.49
A.9	WEST TEXAS UTILITIES COMPANY	A.53
A.10	EL PASO ELECTRIC COMPANY	A.59
A.11	TEXAS-NEW MEXICO POWER COMPANY	A.67
A.12	CITY OF AUSTIN	A.81

CHAPTER ONE

ELECTRICITY DEMAND FORECASTING PROJECTS AT THE COMMISSION

In the past five years, the Electric Division (formerly the Economic Research Division) of the Public Utility Commission has initiated three distinct projects designed to produce accurate, flexible, and tenable independent projections of the demand for electricity to be faced by the State's larger generating electric utilities. These projects are:

- 1. The Econometric Electricity Demand Forecasting System
- 2. The End-Use Energy Modeling and Forecasting System
- 3. The Time-Series and Bayesian Forecasting Systems

The Econometric Electricity Demand Forecasting System seeks to statistically estimate the behavioral relationships among the demand for electricity and its various determinants such as weather, population, employment, personal income, electricity prices, prices of alternative energy sources, and industrial production. Future electricity consumption is projected based on these historical relationships and forecasts of these demand determinants or "explanatory variables." These energy projections are made at the customer-class level and then converted to demand and aggregated to a system peak through the use of the Hourly Electric Load Model (HELM). Simultaneous equation econometric models, ranging up to 45 equations in size, have been developed for every major generating electric utility in the State. A database containing over 7,000 timeseries variables provides data input to this set of models. Numerous improvements have been made to this forecasting system since its results were reported in the Commission's Long-Term Electric Peak Demand and Capacity Resource Forecast for Texas, 1986.

The End-Use Energy Modeling and Forecasting System, initiated in the spring of 1985, examines the end-uses of energy consumption in Texas. These end-uses include air conditioning, space-heating, refrigeration, dishwashing, lighting, irrigation, and industrial processes. Changes in the stock of energy-intensive equipment, appliance efficiencies, equipment usage patterns, and the determinants of these factors (demographic patterns, technology, laws and regulations, relative fuel prices, climatological factors, etc.) are given explicit attention. The End-Use Modeling System provides a means to explore a variety of conservation and load management strategies. The electricity demand projections derived from this system also provide a valuable validity-check upon the staff's econometric forecasts. To date, residential sector and commercial sector energy consumption for all major utility planning regions in the State have been produced from this system. These results are obtained from the Residential End-Use Energy Planning System (REEPS) and the Commercial Sector End-Use Energy Demand Forecasting Model (COMMEND). End-use models for the industrial sector are being implemented presently. Current results from the End-Use Modeling System are not presented in this report. However, their results have been used in the staff's conservation and demand-side management analysis. Also, these end-use results are reported in a recent staff report, End-Use Modeling Project: 1987 Demand Forecast and Report, August 1987.

While the Econometric Electricity Demand Forecasting System and the End-Use Energy Modeling and Forecasting System are designed to provide an accurate long-range outlook for the State's electricity markets, the Time-Series and Bayesian Forecasting Systems provide alternative statistical methods for producing short-term and long-term forecasts. Time-series methods investigated by the staff include Kalman filter models, ARIMA models, and transfer function models. ARIMA models of quarterly peak demand were presented and discussed in Volume III of the staff's 1986 forecast. No new results from the Time-Series System are reported in this edition of the forecast.

The Bayesian Forecasting System is based on an approach which formally incorporates information found outside the sample period into the modeling process. For purposes of this report, the load forecast for the City of Austin is based on results from a Bayesian linear regression model.

The pursuit of several distinct forecasting approaches permits the Commission staff to exploit the unique capabilities of each. End-use models are considered by some to be superior in addressing conservation and load management issues. Econometric models are typically more useful in studying electricity demand's responsiveness to energy prices, and the impact of weather and economic activity on energy demand. Recent studies sponsored by Battelle Laboratories and the Electric Power Research Institute confirm the accuracy of time-series methods in short- and medium-range peak demand forecasting applications. Bayesian methods are becoming more and more prevalent in applied statistical work. The results from each of these forecasting systems provide a useful frame of reference when analyzing forecast results from other methods and sources. This volume will provide a general description of the staff's Econometric Electricity Demand Forecasting System and the Bayesian linear regression model.

CHAPTER TWO

ECONOMETRIC FORECASTING SYSTEM

2.1 OVERVIEW

Simultaneous equation econometric models have been established to produce electricity sales projections for each of the larger generating electric utilities in Texas. Each forecasting model contains a set of equations representing the relationships among a utility's costs, prices and sales, and how economic demographic, and climatological factors affect electricity sales.

Each of the forecasting models contain four submodels, which interact to produce forecasts of sales, prices, fuel costs, and number of customers:

- 1. The Electricity Sales Submodel
- 2. The Electricity Price Submodel
- 3. The Utility Cost Submodel
- 4. The Customer Submodel

The relationship between these four submodels is graphically depicted in Figure 2.1.1.

The Electricity Sales Submodel consists of a set of statistically-estimated equations describing the relationship among electricity sales to various customer classes and a set of economic, demographic, and climatological variables--including population, number of customers, employment, real personal income, cooling degree-days, heating degree-days, the price of natural gas, interest rates, and electricity prices. Projections of electricity prices (average) are obtained from the Electricity Prices Submodel, while customer projections are provided by the Customer Submodel.

The average electricity prices faced by various customer classes are determined by the Electricity Prices Submodel. Within this submodel, electricity prices are premised to be determined primarily by the utility's current average fuel costs, and the utility's averaged fixed costs over a historical period. Here, fixed costs are treated as a catch-all for any significant utility costs that are not incorporated elsewhere within the submodels. These costs include depreciation expense, return on ratebase, nuclear decommissioning costs

FIGURE 2.1.1 Submodel Interaction ECONOMETRIC FORECASTING SYSTEM

(where appropriate), taxes, and operations and maintenance (O&M) expense. Most of these costs are determined by the utility's assets or ratebase, and are "fixed" in the sense that they do not fluctuate with generation or sales levels. The major exception is O&M which has a variable component. Each utility's O&M projections, as presented in their forecast filings, are incorporated into the staff's fixed cost calculations for the Utility Cost Submodel.

The Utility Cost Submodel has two distinct components: a fuel cost model and a fixed cost model. The utility's fuel expenses are simulated using a simple "economic merit order" model, based on the premise that a utility satisfies the demand for electricity at any given point in time with the generating units having the lowest fuel costs. Generating capacity by fuel type, average fuel prices, heat rates, capacity factors, loss factors, and electricity sales are inputs to the fuel model. Sales estimates are obtained from the Electricity Sales Submodel. Forecasts of a utility's asset base are based on current capacity expansion plans and construction cost estimates, among other factors. Debt service coverage is the primary determinant of fixed costs for a publicly-owned utility.

A utility's customers are projected based on anticipated population and growth, as well as historical customer growth patterns. As in the other three submodels, statistical techniques are extensively relied upon in the Customer Submodel.

Each of the statistically-determined relationships in each submodel (except the Customer Submodel) are estimated using the two-stage-least squares estimation procedure to reduce simultaneous equation bias. Once each coefficient has been estimated, all the submodels (except the Customer Submodel) are solved simultaneously through an iterative procedure to yield a projection of electricity sales, by customer class, for a given utility.

The Hourly Electric Load Model (HELM) converts the projections of electricity sales into peak demand forecasts. The following subsections will describe the structure of each of these submodels in greater detail.

2.2 ELECTRICITY SALES SUBMODEL

The Electricity Sales Submodel projects energy sales by customer class based on a set of economic, demographic, and climatological factors and the outputs from the Customer Submodel and the Electricity Price Submodel. Because the determinants of electricity

consumption differ for various customer groups, electricity sales to different customer classes are modeled separately. As many as seven different customer groups are treated independently in this submodel:

- 1. Residential
- 2. Commercial
- 3. Industrial
- 4. Irrigation
- 5. Cotton Gin
- 6. Other Retail
- 7. Wholesale

For utilities without significant sales to irrigators or cotton gins, such sales were included in the industrial or commercial classes. The Electricity Sale Submodels for each of the utilities under study are tailored to some extent to account for the unique record-keeping practices and customer mix of a particular utility.

Equation specification and variable selection are based on a number of criteria, including compatibility with economic theory and previous studies, statistical results, data availability, and simulation behavior. The equation used to determine sales to residential ratepayers typically takes the following specification:

$$RS_{t} = b_{0} + b_{1} (HDD_{t} \circ RC_{t}) + b_{2} (CDD_{t} \circ RC_{t}) + b_{3} (PI_{t} / CPI_{t}) + b_{4} [(RAP_{t} / CPI_{t}) \circ RC_{t}] + b_{5} [(PNGR_{t-4} / CPI_{t-4}) \circ RC_{t}] + e_{t}$$

where:

RS	=	Sales to Residential Customers (MWH)
RC	=	Number of Residential Customers
HDD	=	Heating Degree-Days
CDD	=	Cooling Degree-Days
PI	=	Nominal Personal Income (millions of dollars)
CPI	=	Texas Consumer Price Index
RAP	=	Average Price of Electricity to Residential Ratepayers (dollars per KWH)
PNGR	=	Price of Natural Gas to Residential Customers (cents per therm)

t = Time period (calendar quarter) $b_0...b_5$ = Coefficients to be Estimated e_t = Error term

Most of the variables on the right side of the equation are multiplied by the number of residential customers to acknowledge that the energy impact of each of the demand determinants varies in relation to the size of the customer class. Heating degree-days and cooling degree-days variables are used to measure the impact of weather on electricity sales. Real personal income is normally positively related to electricity sales. As incomes increase, consumers often utilize and purchase more electricity-intensive equipment. The real price of electricity is used to capture price elasticity effects in the model. Increases in the real price of electricity tend to discourage usage. The real price of natural gas to residential customers represents the cost of alternative energy sources. As natural gas becomes more expensive relative to electricity, electricity usage may be encouraged. The four quarter lag on this variable acknowledges the long-run nature of this response.

The equation used to determine electricity sales to commercial customers follows a similar specification:

$$CS_{t} = b_{0} + b_{1} (HDD_{t} \circ CC_{t}) + b_{2} (CDD_{t} \circ CC_{t}) + b_{3} (EMPLOY_{t}) + b_{4} [(CAP_{t} / CPI_{t}) \circ CC_{t}] + b_{5} [(CAP_{t-4} / PNGC_{t-4}) \circ CC_{t}] + e_{t}$$

where:

CS	=	Sales to Commercial customers (MWH)
CC	=	Number of Commercial Customers
HDD	=	Heating Degree-Days
CDD	. =	Cooling Degree-Days
EMPLOY	=	Service Area Employment (thousands)
CPI	=	Texas Consumer Price Index
CAP	=	Average Price of Electricity to Commercial Ratepayers (dollars per KWH)
PNGC	=	Price of Natural Gas to Commercial Customers (cents per therm)
t	=	Time Period (calendar quarter)
b ₀ b ₅	=	Coefficients to be Estimated
e _t	=	Error term

ECONOMETRIC FORECASTING SYSTEM

Specification of the equation used to determine sales to industrial customers varies among models depending on each utility's industrial mix and other factors. For example, "rotary rigs running in Texas" is sometimes used as a variable if a utility's service area's industrial base is tightly linked to the oil and gas industry. The following specification is somewhat exemplary:

$$IS_{t} = b_{0} + b_{1} (CDD_{t}) + b_{2} (IAP_{t} / CPI_{t}) + b_{3} (EMPLOY_{t}) + b_{4} (IAP_{t-4} / PNGI_{t-4}) + e_{t}$$

where:

IS	=	Sales of Electricity to Industrial Customers (MWH)
CDD	=	Cooling Degree-Days
CPI	=	Texas Consumer Price Index
EMPLOY	=	Service Area Employment (thousands)
IAP	=	Average Electricity Price to Industrial Ratepayers (dollars per KWH)
PNGI	=	Price of Natural Gas to Industrial Customers (cents per therm)
t	=	Time Period (calendar quarter)
b ₀ b ₄	=	Coefficients to be Estimated
e,	=	Error term

Other retail sales are primarily electricity sales for street and highway lighting or municipal purposes. Variables such as population, cooling degree-days, heating degree-days, electricity prices, and natural gas prices are used in their determination. Sales to wholesale customers are modeled using a similar set of explanatory variables.

2.3 ELECTRICITY PRICES SUBMODEL

The main purpose of this submodel is to provide average electricity price projections to the Electricity Sales Submodel. Average electricity prices are here defined as the revenue collected from a particular class divided by the electricity sold to that class in a given quarter. Separate equations are used to model the average prices faced by each class of customers. Each of the price equations takes the following general form:

 $AP_{t} = b_{0} + b_{1} (AFC_{t}) + b_{2} (AQT_{t}) + e_{t}$ where:

APt	=	Average Price of Electricity to a Particular Customer Class
AFC	=	Four-Quarter Moving Average of Fixed Costs Divided by the Four-Quarter Moving Average of Total Sales
AQT	=	Average Fuel Cost (Total Fuel Expense divided by Total Sales)
t	=	Time Period (calendar quarter)
b ₀ b ₃	=	Coefficients to be estimated
e _t	=	Error term

Under this specification, the average price of electricity to a particular customer class is primarily determined by the utility's average fixed costs and average fuel costs. Rates are assumed to be based partially on a utility's fixed costs divided by total sales over a historical "test year" period. Note that with regard to the 1986 forecast, this equation has been changed in that dummy variables to indicate the change from "automatic fuel adjustment clauses" to fixed fuel factors have been deleted. It was concluded that forecasting performance was not enhanced by such variables.

2.4 UTILITY COST SUBMODEL

The Utility Cost Submodel provides forecasts of a utility's fuel expenses and fixed costs to the Electricity Prices Submodel, which in turn provides price projections to the Electricity Sales Submodel. The determination of fuel expenses and fixed costs have been modified somewhat from earlier forecasts.

The projection of costs within the sales forecasting model seeks to avoid forecasting bias common when variable costs are determined exogenously. A projection of a utility's generation or fuel cost must, at least in part be based either on a forecast or assumptions concerning future sales or generation. Similarly, a projection of cost, fed through price variables, is at least implicit in an electricity sales forecast. Should a marked inconsistency occur between the implicit sales forecast, upon which projected costs and prices are based, and the econometric sales forecasts, which use the projected prices as input, a forecasting bias would be introduced.

Fuel expenses were simulated through a simple economic merit order model. Based on the premise that a utility satisfies the demand for electricity at any given time with the units having the lowest fuel cost, the logic of this submodel may be represented as:

Generation Requirements by Fuel Type

	NGR	=	(TC + (TGEN) - [(CHY)(FHY)(2190) + (CNU)(FNU)(2190) (CLI)(FLI)(2190) + (CCO)(FCO)(2190)] for NGR > 0
	NGR	=	0	for NGR < 0
	COR	=	(то + (TGEN) - NGR -[(CHY)(FHY)(2190) CNU)(FNU)(2190) + (CLI)(FLI)(2190)]
	LIGR	-	(то + (TGEN) - NGR - COR - [(CNU)(FNU)(2190) (CHY)(FHY)(2190)]
	NUR	=	(ТО	tgen) - ngr - cor - ligr - [(chy)(fhy)(2190)]
	HYR	=	(ТО	TGEN) - NGR - COR - LIGR - NUR
Fuel	Costs			
	NGC	=	(NG	R)(HRNG)(PNG)
	сос	=	(co	R)(HRCO)(PCO)
	LIGC	=	(LIC	GR)(HRLIG)(PLIG)
	NUC	=	(NU	RC)(HRNU)(PNU)
	whe	ere:		
	NGI	R	=	Generation Requirements from Natural Gas-fired Units
	COF	2	=	Generation Requirements from Coal-fired Units
	LIG	R	=	Generation Requirements from Lignite-fired Units
	NUE	2	=	Generation Requirements from Nuclear Units
	HY	2	=	Generation Requirements from Hydro Units
	NGO	2	-	Total Natural Gas Fuel Cost
	COC	2	=	Total Coal Fuel Costs
	LIG	С	=	Total Lignite Fuel Costs
	NUC	2	=	Total Nuclear Fuel Costs
	TOT	GEN	=	Total Sales Plus Losses
	CHY		=	Hydroelectric Generation Capacity
	CNU	J	=	Nuclear Generation Capacity

CLI		=	Lignite Generation Capacity
CCO	=	=	Coal Generation Capacity
FHY	=	=	Capacity Factor for Hydroelectric Units $(=.15)$
FNU	=	=	Capacity Factor for Nuclear Units $(=.70)$
FLI	=	=	Capacity Factor for Lignite Units $(=.70)$
FCO	=	=	Capacity Factor for Coal Units $(=.70)$
2190	=	=	Number of Hours in a Calendar Quarter
PNG	=	=	Unit Price of Natural Gas
PCO	=	=	Unit Price of Coal
PLIG	=	=	Unit Price of Lignite
PNU	=	=	Unit Price of Nuclear Fuel
HRNG	=	=	Heat RateNatural Gas
HRCO	=	-	Heat RateCoal
HRLIG	=	=	Heat RateLignite
HRNU	=	=	Heat RateNuclear

NOTE: All time subscripts have been dropped, since no lags and leads are present. Also, the actual programming statements in the computer code are somewhat different than the statements given above; however, the logic is similar.

Generation requirements by fuel type are determined by total generation requirements and capacity factors. Total generation requirements are estimated by adjusting total sales for line loss and company use. In the models, generation from natural gas-fired units is used to meet the generation requirements that cannot be satisfied by the available hydroelectric, nuclear, lignite, or coal fired capacity, since natural gas is the most expensive fuel. Generation from coal-fired units meets the needs that cannot be satisfied by lower-cost baseload units and that have not been met by generation from natural gas units. This calculation is continued down to hydroelectric facilities. This results in what might be described as a "top-down" approach to estimating the generation requirements met by each unit type. By explicitly incorporating capacity considerations, fuel cost savings resulting from new baseload units coming on-line can be reflected in the model. Data Resources Inc.'s (DRI) Energy Model includes a very similar means of calculating fuel costs of generating electricity on a regional level. (U.S. Energy Model Documentation, Data Resources, Inc., 1984)

The total cost for each fuel type is calculated by multiplying generation requirements associated with each fuel type by heat rates and average fuel costs. While utility-specific

data are used to represent average fuel costs, heat rates are based on statewide averages. In cases where a utility does not have and does not intend to construct capacity of a given type, the equations associated with that capacity type are excluded from the submodel.

The cost of the fuel necessary to meet generation requirements is the sum of the costs associated with each fuel type:

TF	=	NGC	C + COC + LIGC + NUC
wh	nere:		
TF		=	Total Cost of Fuel Necessary to Meet Generation Needs
NC	GC	=	Total Natural Gas Fuel Cost
CC	C	=	Total Coal Fuel Costs
LIC	GC	=	Total Lignite Fuel Costs
NU	JC	=	Total Nuclear Fuel Costs

However, the actual available data concerning each utility's fuel costs are based on fuel <u>purchases</u>. A "mismatch" commonly occurs between each utility's fuels purchased and fuels actually used in any given time period. This discrepancy may be further increased by power exchanges and purchases among utilities, the assumption of choice of a constant ratio between sales and generation requirements, and inventory costing method. A simple stochastic equation was used to correct for this mismatch:

 $CFP_t = b_0 + b_1 TF_t + e_t$ where: Cost of Fuels Purchased CFP = TF Total Cost of Fuel Necessary to Meet Generation Needs = t = Time Period (calendar quarter) Coefficients to be Estimated b,, b, = error term e, =

Two models were used to determine utility fixed costs. For publicly-owned utilities, fixed costs are based on debt service coverage. Historic fixed costs are derived from annual reports. The quarterly amount of fixed charges is estimated by multiplying the expected debt service coverage ratio times the projected total debt service amount, then subtracting projected interest income. Since utility projections of debt service coverage sometimes move erratically, the fixed cost projections are smoothed in some cases.

Fixed costs for an investor-owned utility are defined as the sum of depreciation expense, return requirements, projected nuclear decommissioning cost, federal income tax, other revenue related taxes, and O&M expense.

Quarterly historical data on total plant, accumulated depreciation, net plant, depreciation expense, and interest expense were obtained from Securities and Exchange Commission Forms 10Q and 10K. A small amount of these data were unavailable; interpolations are utilized in these situations. Allowed rate of return, weighted cost of debt factors, and ratebase amounts are taken from Final Orders issued by the Public Utility Commission of Texas (PUCT).

In order to forecast each of the fixed cost categories it is first necessary to project a utility's total plant. Total plant is the sum of four categories of assets:

TOTP = PP + TP + DP + GP

where:

TOTP	=	Total Plant in Service
PP	=	Production Plant in Service
TP	=	Transmission Plant in Service
DP	=	Distribution Plant in Service
GP	=	General Plant in Service

Future production plant in service is estimated by adding the estimated construction costs of various generating plant construction projects to this series at the expected online dates of the units. In some cases, production plant impacts are "smoothed" over time.

Future values of transmission plant, distribution plant, and general plant are projected using regression techniques. The following specification is used:

$$(\mathbf{P}_{t}-\mathbf{P}_{t-1}) / C\mathbf{I}_{t} = \mathbf{b}_{1} \ln(\mathbf{POP}_{t}) + \mathbf{e}_{t}$$

where:

Р	=	Transmission, Distribution, or General Plant
CI	=	Cost Index
POP	=	Service Area Population
t	=	Time Period
b ₁	=	Coefficient to be Estimated
e,	=	Error Term

Changes in plant-in-service are first calculated and deflated by the appropriate Handy-Whitman cost index. The resulting real changes in plant in service are then regressed on the natural logarithm of service area population.

Once projections of total plant are developed, depreciation expense is calculated by multiplying Total Plant by a depreciation rate:

DE	=	dr •	TOTP
wh	ere:		
DE		=	Depreciation Expense
dr		=	Depreciation Rate (1975-1985)
то	TP	=	Total Plant in Service

Accumulated depreciation and net plant may then be calculated:

AD _t =	AD _t	$_{-1} + DE_t$
NP _t =	TOT	TP _t - AD _t
where:		
AD	=	Accumulated Depreciation
DE	=	Depreciation Expense
NP	=	Net Plant
TOTP	=	Total Plant in Service
t	=	Time Period

In the projected period, ratebase is composed of a component estimated from net plant plus estimated construction work in progress (CWIP) allowed in ratebase. The net plant component is estimated by dividing the projected net plant by the historic average ratio of net plant to ratebase. This factor implicitly includes other components of allowed ratebase as a function of net plant. In general it its assumed that no CWIP will be allowed in the ratebase for future construction projects.

For HL&P, no CWIP associated with the South Texas Project is assumed to be allowed in ratebase per the Commissions Final Order in Docket No. 5779 and HL&P's filing in Docket No. 6765.

Symbolically, ratebase is estimated as:

RB = (NP / NPRBF) where: RB = Ratebase NP = Net Plant NPRBF = Nondepreciable Ratebase Factor

Federal income taxes permitted by the regulatory authority are determined by the taxable component of return, multiplied by the tax factor. In order to calculate the taxable component of return, interest expense is calculated and subtracted from the return requirement. These calculations are summarized as follows:

IE		=	w • RB		
RF	2	=	ror • RB		
FI	Г	$= tf \cdot (RR - IE)$		RR - IE)	
	whe	re:			
	IE		=	Interest Expense	
	RB		=	Ratebase	
	RR		=	Return Requirement	
	FIT		=	Federal Income Tax	
	w		=	Weighted Cost of Debt	
	ror		=	Regulatory Authority's Allowed Rate of Return	
	tf		=	Federal Income Tax Factor	

The rate of return and weighted cost of debt from actual rate cases are used for the historical period. The allowed weighted cost of debt and rate of return from each utility's most recent rate case are assumed constant in the forecast period.

Initially, other revenue-related taxes are calculated at the rate allowed in each utility's most recent rate case. The resulting fixed cost revenue requirement is then compared with the revenue requirement from the most recent rate case, less fuel and purchased power. If the difference is substantial, other revenue-related taxes are used as a "calibration variable" to bring the model's forecast (as of the period of the last rate case) into line with allowed fixed costs.

Total fixed costs are then calculated as the sum of depreciation expense, return requirement, O&M expense, federal income tax, nuclear decommissioning costs, and other revenue-related taxes.

FC	=	DE +	- RR + FIT + DC + ORRT
wh	nere:		
FC		=	Fixed Costs
DE	2	=	Depreciation Expense
RF	2	=	Return Requirement
FI	Г	=	Federal Income Tax
DC	2	=	Nuclear Decommissioning Costs
OF	RRT	=	Other Revenue-Related Taxes

For those utilities whose service area extends beyond Texas, the fixed costs were first calculated on a total system basis. A Texas allocator was then applied to obtain the portion of fixed costs associated with the Texas system.

2.5 CUSTOMER SUBMODEL

The Electricity Sales Submodel relies, in part, upon a projection of number of residential and commercial customers in the development of an electricity sales projection. These customer projections are provided by the Customer Submodel. These models are run on a personal computer using a multiple regression program.

Each Customer Submodel contains two statistically-estimated equations: one to determine number of residential customers and one for commercial customers. The

exact specification of these equations vary among models in order to satisfy statistical criteria. An example specification is:

= $a_0 + a_1 (POP_t) + (AR Process of Error Term)$ RC. = $b_0 + b_1 (RC_t) + b_2 (CC_{t,d}) + (AR Process of Error Term)$ CC. where: Number of Residential Customers RC = CC Number of Commercial Customers -Service Area Population POP = Time Period (calendar quarter) = t AR Process = Auto-Regressive Correction) Coefficients to be estimated a....a. = Coefficients to be estimated b....b. =

Residential customers are primarily determined by population. The number of commercial customers is related to the number of Residential Customers. Consequently, commercial customers are modeled primarily as a function of residential customers, commercial customer lagged, and an auto-regressive structure on the error term.

2.6 SUMMARY OF MODELING STRUCTURE

Econometric Electric Demand Forecasting System of the PUCT staff consists of a set of mathematical equations and submodels designed to accurately explain and project the energy demand faced by an electric utility in Texas. A wide range of economic, engineering, financial and accounting concepts are integral to this modeling structure. The modeling method was designed by the PUCT staff to acknowledge the impact of economic, demographic, and climatological factors on electricity consumption.

Within this modeling system, electricity prices have an influence on the quantity of electricity consumed. The relationship between the price of electricity to a particular class and a utility's fixed costs and fuel expenses is estimated statistically.

A utility's fixed costs are determined by a utility's assets (primarily total plant in service), allowed rates of return, depreciation rates, tax factors, weighted cost of debt, and a set of accounting and economic relationships.

Fuel costs are calculated through "economic merit order" logic, based on the assumption that a utility meets a given load level with the combination of generating units having the lowest fuel cost. Fuel prices, capacity factors, heat rates, capacity by fuel type, loss factors, and total sales are among the inputs into this calculation.

The numbers of residential and commercial customers, two other important determinants of energy sales, are projected on the basis of population and lagged number of customers.

Each of the four submodels in this system interact to produce a projection of electricity sales for a given utility. The next chapter will discuss the database used in this forecasting system.

CHAPTER THREE

DATABASE DEVELOPMENT

3.1 INTRODUCTION

To provide data input for the Public Utility Commission of Texas' (PUCT) forecasting models, a computerized database containing over 7,000 data files is maintained by the PUCT staff. This chapter will discuss the data used in this project, its sources, and any transformations performed before the information was used in the forecasting models.

Three of the most imposing problems typically facing electric demand forecasting efforts are:

- 1. Matching county, SMSA, or state-level data to a utility's geographical service area
- 2. Transforming data of dissimilar frequencies (annual, quarterly, and monthly, being the most common) to a comparable frequency
- 3. Developing reasonable projections of the factors affecting future electricity demand

Electric utility service areas rarely correspond to political boundaries. Thus, it is often necessary to proportion and aggregate county-level data in order to derive some estimate of a service area's economic-demographic profile. The next section of this chapter describes how the state is divided into "utility planning regions" for the purposes of this study. Each region is designed to roughly correspond to the service area of a generating electric utility and the nongenerating distribution utilities to which it normally sells power. These regions provide a basis for estimating service area population, personal income, and employment and for developing an economic/demographic profile of the utility's operating environment.

This chapter also lists the sources of the historical data used in this study, as well as the transformations used to develop quarterly time-series. Most of the utility operating data are obtained from the utilities' responses to data requests by the PUCT. Historical economic and demographic data are obtained from a number of state and federal government agencies, as well as Data Resources, Inc.

Finally, in order to forecast the demand for electricity using an econometric approach, it is necessary to obtain projections or make reasonable assumptions regarding the future of the factors assumed to influence electricity demand. The final section of this chapter discusses these exogenous variable projections.

3.2 METHODOLOGY OF AGGREGATING COUNTY-LEVEL ECONOMIC DEMOGRAPHIC DATA

Since utility service areas rarely correspond to any political boundaries, it is necessary to develop a means of proportioning and aggregating county-level economic and demographic data to the "utility planning region" level. Each utility planning region was designed to correspond to the service area of a generating utility and the service areas of any nongenerating distribution utility to which the generator normally sells power. A spring 1985 staff study was the basis for the utility planning region delineation used here.

The basic methodology for deriving the service area divisions is fairly straightforward, but the actual application of these methods is very tedious and time consuming. The first step in the process is to develop a set of maps to illustrate what portion of each county in Texas is served by a particular utility. The initial maps, which are provided by the PUCT engineering staff, indicate which regions are served by each utility, including cooperatives. Then the determination is made as to which generating utilities supply power to the nongenerating utilities and the electric cooperatives through reference to the Directory of Electric Utilities, (McGraw-Hill, 1983-1984 edition). The 17 cooperatives that purchase electricity from more than one utility were then contacted by telephone to determine the portion of each county in their service area that is served by a specific generating utility. In most cases, this information is easily derived based on the cooperatives' transmission network. The original maps are then altered to pictorially represent the "utility planning regions" of the major generating utilities in the state. Once the physical determination of which utilities supplied power to specific regions of each county is made, the task is then to indicate the proportion of the population in each county that is contained in a given service area.

The counties are separated into subdivisions defined by the **1980 Census of Housing:** General Housing Characteristics, Part 45 Texas, and these subdivisions were translated to the maps. The census provides housing and population information for each of the subdivisions, including single- and multiple-dwelling units. Using local highway maps and the population of cities within each subdivision as reference, the percentage of each subdivision that is served by a particular utility is determined.

3.3 SOURCES OF HISTORICAL DATA

The data used in this study were obtained from a variety of sources. This subsection reviews data sources and concepts.

Weather Data

- Source: U.S. Department of Commerce, National Oceanic and Atmospheric Administration.
- Series: Heating Degree Days, Cooling Degree Days, and Precipitation(for rural areas).

Weather Stations:

Texas:	Amarillo Lubbock Brownsville San Angelo Del Rio Waco	Houston Austin Port Arthur Dallas Victoria Galveston	Abilene Midland Corpus Christi San Antonio El Paso Wichita Falls
Louisiana:	Shreveport	Lake Charles	Baton Rouge
Arkansas:	Fort Smith		

Population

- Source: Based on annual county-level data from Data Resources, Inc., and the U.S. Bureau of Economic Analysis.
- Series: Total Population for Texas Counties and Parts of Oklahoma, New Mexico, Louisiana, and Arkansas.
- Units: Thousands.
- Aggregation to Utility Planning Region-Level: See Section 3.2.

Transformation to Quarterly:

Annual population estimates were assumed to be the 3rd quarter values of a quarterly series. Linear interpolation was performed to obtain 1st, 2nd, and 4th quarter values.

Personal Income

- Source: Based on annual county-level data from Data Resources, Inc.
- Series: Total Personal Income by Place of Residence for all counties in Texas and parts of Oklahoma, New Mexico, Louisiana, and Arkansas. (Millions of current dollars.)

Aggregation to Utility Planning Region-Level: See Section 3.2.

Transformation to Quarterly: Linear Interpolation.

Employment

Source: Based on annual county-level data from Data Resources, Inc.

Series: Total Non-agricultural Employment Wage and Salary Employment (employment excluding proprietors) in thousands.

Aggregation to Utility Planning Region-Level: See Section 3.2

Transformation to Quarterly: Linear Interpolation.

Consumer Price Index

Source: Wharton Econometric Forecasting Associates

Series: Texas CPI.

Price of Natural Gas to Residential, Commercial, and Industrial Consumers

Source: Data Resources, Inc. Energy Database.

Series: Average Price of Natural Gas to Residential and Industrial Consumers--West-South-Central census region. (Cents per therm.)

Fuel Costs

- Source: Calculated from U.S. Department of Energy data which was based on FERC Forms 423.
- Series: Average fuel cost by utility by fuel type (natural gas, fuel oil, bituminous coal, sub-bituminous coal, lignite, etc.). (Dollars per MMBTU.)

Total fuel cost by utility by fuel type: Thousands of dollars

Capacity Data

Source: Ten-year load forecasts submitted by the state's generating electric utilities, annual reports to stockholders, and other sources.

Series: Utility-specific MW capacity by fuel type.

Financial Data

- Source: Forms 10Q and 10K to the Securities and Exchange Commission. Final Orders of the PUCT.
- Series: Depreciation Expense Plant in Service Accumulated Depreciation Allowed Rate of Return Weighted Cost of Debt

Operating Data

- Source: Utility responses to PUCT requests for data. Additional data were obtained from FERC Forms 1, the DOE's statistics of Publicly-Owned Utilities and statistics of Privately-Owned Utilities, and Annual Reports to Stockholders.
- Series: The data received varied among utilities. Generally the information included total electric expenses (or operating expenses) and sales and revenues by rate class (residential, commercial, industrial, and other).

3.4 SOURCES OF PROJECTIONS FOR EXOGENOUS VARIABLES

A key step in developing the capability to project future electricity demand is deriving reasonable forecasts of the factors believed to influence the demand for electricity. This subsection describes the forecasts of exogenous variables used in this study.

Weather Data

"Normal" weather was calculated by simply averaging quarterly historical values. "Normal heating degree days" was based on a 21-year average, while "normal cooling degree days" and "precipitation" were calculated from a 15-year sample. These were the largest samples for which data were readily available.

Population, Employment, and Personal Income

The projections of these economic data are obtained by examining projections from the major forecasting services such as DRI, Inc., Wharton Econometric Forecasting Associates (WEFA), and The Baylor Economic Forecasting Service. A "consensus" projection is established for each utility. The following table summarizes the growth rates (in percentage terms) for these variables between 1987 and 1997:

Utility	Population	Employment	Income
TU	1.764	2.429	7.455
HLP	1.246	1.44	7.776
GSU	- 0.35	0.539	5.713
CPL	1.204	1.774	7.029
CPS	1.519	1.877	6.974
SPS	0.688	1.473	6.536
SWEPCO	1.392	1.831	6.897
LCRA	2.621	3.116	8.225
COA	2.612	nu	nu
WTU	1.092	1.72	6.803
EPE	1.456	1.822	6.791
TNP	nu	nu	nu
BEPC	nu	nu	nu
OTHERS	nu	nu	nu

nu = "not used"

Consumer Price Index

The projected Texas CPI is based on the WEFA Spring 1988 Forecast. The average inflation rate projected over the 1988-1997 period is 4.2 percent.

DATABASE DEVELOPMENT

Price of Natural Gas to Residential, Commercial, and Industrial Consumers

The price projections for natural gas are based on the Fall 1987 DRI Long-term Energy Model Forecast for the West-South-Central Census Region. The average annual growth rates for the forecast period for residential, commercial, and industrial are 6.3, 8.7, and 7.5 percent, respectively.

Fuel Costs

Projected fuel costs by fuel type for each utility serving Texas are calculated by the Fuel Section of the Electric Division of the PUCT. These long-term projections take into account projected spot market price, existing contracts, and a number of other factors. These projected fuel costs are found in Volume I, Chapter Two of this report.

Capacity Expansion Data

Capacity expansion data are based on information provided by the Engineering Section of the Electric Division at the PUCT and augmented with information taken from the ten-year load forecasts filed by the State's generating electric utilities, December 1987. The data reflect Staff-proposed modifications to the utility-proposed capacity expansion plans as described in Volume I, Chapter Six.

Financial Data

Financial data are projected via the fixed cost model described in Chapter Two of this volume. The capacity expansion data drives these projections.

Operating Data

Sales, revenues, and fuel costs, are projected within the econometric models. That is, they are endogenous to the models.

CHAPTER FOUR

MODELING AND FORECASTING PROCEDURES

Software used for the models, database, and many of the data transformation programs are mainly written in TROLL, a mainframe statistical software package developed at M.I.T. The Statistical Analysis System (SAS) is used for some graphics and additional programming applications, while a personal computer spreadsheet package is used in the development of fixed cost projections. Most computations are performed on an IBM 3081 mainframe computer at the University of Texas at Austin.

4.1 SALES MODEL ESTIMATION PROCEDURE

The appropriate choice of estimation technique for a simultaneous equation model is a frequent topic of debate. From a theoretical perspective, two-stage-least-squares, three-stage-least-squares, or full-information-maximum-likelihood techniques are favored for their minimization of simultaneous equation bias. Practitioners often find ordinary least squares to be more robust, especially in small samples where full information estimators lose their desirable properties. Both ordinary least squares and two-stage-least-squares are applied to the models. Since the estimation results do not differ significantly with respect to the choice of estimator, the more theoretically appealing method, two-stage-least-squares (TSLS), is used in producing the final results. In TROLL, two-stage-least-squares is treated as an instrumental variables technique. The modeler is required to choose the instruments used in estimation. In most cases, all of the "important" predetermined (exogenous and lagged endogenous) variables involved in the stochastic equations are selected as instruments. In some of the larger models, dummies and other variables of lesser importance are excluded to enable the instrument set to satisfy the constraint that the number of instruments not exceed the number of observations.

A common problem encountered in dealing with time-series data (especially when some data are interpolated) is the presence of autocorrelation. In the presence of autocorrelation, parameter estimates are not minimum-variance and are not consistent. As a result, a modified TSLS procedure is used when appropriate. This method uses the algorithm developed by Fair (1970) to correct for autocorrelation in simultaneous equation systems.

Simulation is performed using Newton's solution algorithm. All models are simulated insample as well as forecasted. In-sample simulations are graphed and summary statistics are printed to assist in detecting problems with identities and potential sources of model instability, such as inappropriate functional forms.

The forecasting model, as well as the estimation method, for the City of Austin (COA) is different from what was just described. The COA model is a single-equation model of total system sales. This more aggregated modeling procedure is used for COA due to data availability problems. The estimation and forecasting method is not the usual single equation estimation method (ordinary least squares or "OLS"). The estimation method for the COA model is a Bayesian estimation and projection. In Bayesian statistics model parameters (such as weather sensitivity of electric demand) are viewed as random quantities with a probability distribution, rather than being viewed as fixed but unknown constants. The Bayesian approach consists of three stages:

- 1. The formulation of a prior distribution for the model's parameters.
- 2. The formulation of the likelihood function which generates the observed data (e.g., KWH sales).
- 3. The derivation of the posterior (parameter) distribution and predictive distribution.

The prior distribution is a vehicle for quantifying one's beliefs about some phenomena before viewing the current data. The current data are viewed through the likelihood function. The prior distribution and likelihood function are combined to produce the posterior distribution of the parameters. The details of this approach are found in Zellner (1971).

The COA model has the following form:

T	OTSCOA _t	$= a_0$	$+ a_1 (CDD_t) + a_2 (HDD_t) + a_3 (POP_t) + e_t$
	where:		
	TOTSCOA	=	Total System Sales in MWH
	CDD	=	Cooling Degree-Days
	HDD	=	Heating Degree-Days
	POP	=	Service Area Population
	t	=	Time Period (calendar quarter)
	a ₀ a ₃	=	Coefficients to be Estimated
	e	=	Error Term

Using data from 1974 (first quarter) through 1977 (fourth quarter), a prior distribution for the parameters and variance of TOTSCOA is formulated. This prior distribution is computed by using OLS estimates of the above equation. The (joint) prior distribution for the coefficients and the unknown variance is assumed to be of the Normal-Gamma form. The data for 1978 (first quarter), through 1987 (third quarter), (i.e., the estimation period) are assumed to be generated from a Normal distribution. Combining the prior distribution and the likelihood function yields the posterior distribution. Also, the predictive distribution for TOTSCOA is generated. The expected value of this latter distribution is the staff's official point forecast for total sales for COA. The program for this procedure is written in SAS-IML and resides on an IBM 3081.

4.2 CONVERSION TO PEAK DEMAND PROJECTIONS

The electricity sales projections produced by the Econometric Modeling System described previously are converted into forecasts of peak demand using the Hourly Electric Load Model (HELM). HELM, which was developed by ICF, Inc. for the Electric Power Research Institute (EPRI), is a structural model which applies hourly load shapes to class sales forecasts to obtain hourly demand projections. The hourly demands are then summed across classes and added to hourly losses in order to produce hourly demand for the entire system. Peak demand is extracted from this system hourly demand forecast.

Generation requirements are also calculated in HELM by adding total system losses to the total sales projections. The system losses are obtained by applying loss factors to the class sales projections and summing across classes. Class loss factors used in this step are derived from the results of utility-sponsored loss studies presented in recent rate cases before the Commission and information contained in the utility load forecast filings.

The 1988 load forecast represents the first application of HELM for deriving the PUCT official peak demand forecast. This approach is a significant improvement over previous efforts whereby constant load factors were applied to class sales forecasts. The use of HELM also allows more flexibility in load forecasting because various factors such as alternative weather scenarios, load management programs, and changes in customer mix and consumption patterns can be explicitly modeled.

CHAPTER FIVE

SUMMARY OF ECONOMETRIC FORECASTING SYSTEM METHODOLOGY

The staff of the Public Utility Commission of Texas is presently pursing three distinct projects designed to provide policy-makers, the State's power industry, and the public with accurate independent estimates of the future electricity demand to be faced by each of the State's major generating electric utilities. These projects are:

- 1. The Econometric Electricity Demand Forecasting System
- 2. The End-Use Energy Modeling and Forecasting System
- 3. The Time-Series and Bayesian Forecasting Project

These projects have been extensively integrated with a number of other ongoing strategic planning activities at the Commission.

To provide peak demand estimates for this report the Commission Staff is relying primarily upon the Econometric Electricity Demand Forecasting System. This forecasting system consists of simultaneous equation systems that provide sales and price projections at the customer-class level of detail. Separate models are developed for each major generating utility in the State. Each model seeks to statistically estimate the behavioral relationships among electricity demand and various demand determinants such as weather, population, employment, personal income, electricity prices, prices of alternative energy sources, and industrial production. Each forecasting model actually consists of four submodels:

- 1. Electricity Sales Submodel
- 2. Electricity Prices Submodel
- 3. Utility Cost Submodel
- 4. Customer Submodel

These submodels are solved simultaneously to yield a projection of a utility's total electricity sales. The database input to this forecasting system is developed from a variety of government, university, and private sources. Projections of demand determinants (employment, population, energy prices, etc.) are developed in-house or obtained from other reputable forecasting sources such as Wharton-Econometric
Forecasting Associates, the University of Texas Bureau of Business Research, the Texas Department of Health, Data Resources, Inc., Texas Comptrollers Office, and the Baylor Forecasting Service.

REFERENCES

Chern, Wen, and Richard Just, "Assessing the Need for Power: A Regional Econometric Model," Energy Economics, October 1982.

Electric Power Supply and Demand for the Contiguous United States, U.S. Department of Energy, U.S. DOE, June 1980.

Fair, Ray C., "The Estimation of Simultaneous Equation Models with Lagged Endogenous Variables and First Order Serially Correlated Errors," **Econometrica**, May 1970.

George, Anthony, Texas Electricity Demand and Forecasting Model, Texas Energy and Natural Resources Advisory Council, July, 1980.

Hartman, Raymond, A Critical Review of Single Fuel and Interfuel Substitution Residential Energy Demand Models, MIT Energy Laboratory for the U.S. DOE, 1978.

How Electric Utilities Forecast: EPRI Symposium Proceedings, Electric Power Research Institute, EPRI, March 1979.

Jaske, Michael, California Energy Demand: 1982-2002, California Energy Commission, 1983.

Johnson, Kim-Elaine, Residential Demand for Electricity in New England: An Econometric Approach, University of Massachusetts, Unpublished M.A. Thesis, 1980.

Kon, E., and D. O. Wood, Independent Assessment of Energy Policy Models, MIT Energy Laboratory, EPRI Report EA-1071, May 1979.

Lie, Vana, R. J. and Russell Thompson, A Study of Demand Elasticities for electricity, Gasoline, and Natural Gas in the Texas Economy, University of Houston for the Governor's Energy Advisory Council, March 1977.

Maddala, G. S., W. S. Chern and G. S. Gill, Econometric Studies in Energy Supply and Demand, Praeger, 1978.

Mitchell, Park, and Labrune, **Projecting the Demand for Electricity**, Rand Corporation, 1986.

Proceeding of Symposium on Computer Analysis of Electric Load Forecasting and Generating Capacity Expansion, National Regulatory Research Institute, NRRI, 1983.

Public Utility Commission of Texas, Long-Term Peak Demand and Capacity Resource Forecast for Texas, 1984.

Public Utility Commission of Texas, Long-Term Peak Demand and Capacity Resource Forecast for Texas, 1986.

Public Utility Commission of Texas, Nuclear Plant in Service: Subcommittee Staff Electric Committee, Working Paper No. 85-3, 1985.

Ramgopal, Paul, **On the Theory and Application of State Space Models**, Public Utility Commission of Texas Working Paper, 1987.

Ramgopal Paul, and George Mentrup, **Probability Theory and Confidence Intervals:** Examples in a Regulatory Setting, Staff Paper, Public Utility Commission of Texas, 1988.

Ramgopal Paul, and George Mentrup, **Bayesian Analysis of a Linear Model of Total Electricity Sales**, Staff Paper, Public Utility Commission of Texas, 1988.

State Energy Overview, U.S. Department of Energy, U.S. DOE, EIA, October 1983.

Taylor, Lester, "The Demand for Electricity: A Survey," The Bell Journal of Economics, Vol 6, No. 1, 1975.

U.S. Energy Model Documentation, Data Resources, Inc., 1984.

Wilson, John, "Residential Demand for Electricity," Quarterly Review of Economics and Business, Vol. 11, No. 1, Spring 1971.

Zellner, Arnold, An Introduction to Bayesian Inference in Econometrics, Wiley, New York, 1971.

APPENDIX

ECONOMETRIC MODELS: STATISTICAL EQUATION ESTIMATION

This page is intentionally left blank.

A.1 TEXAS UTILITIES ELECTRIC COMPANY

Model -- TU Electric

SYMBOL DECLARATIONS

ENDOGENOUS:	AVERACE EIVED COSTS DOLLARS DED MUH
AQTTUEC -	AVERAGE FILE COSTS: DOLLARS PER MWH
CAPINST - COAPTUEC - COSTUEC -	INSTRUMENT FOR COAPTUEC COMMERCIAL AVERAGE PRICE:000'S OF \$ PER MWH COMMERCIAL SALES:MWH
IAPTUEC - ISTUEC -	INDUSTRIAL AVERAGE PRICE:000'S OF \$ PER MWH INDUSTRIAL SALES:MWH
LIGRCOND - LIGTUECO -	CONDITIONAL VARIABLE IN THE IF ARGUMENT TOTAL COAL COST:DOLLARS
LIGTUEC1 - LIGTUEC2 -	CONDITIONAL VARIABLE IN THE IF ARGUMENT CONDITIONAL VARIABLE IN THE IF ARGUMENT
NGRCOND -	CONDITIONAL VARIABLE IN THE IF ARGUMENT
NUCCOMP -	CONDITIONAL VARIABLE IN THE IF ARGUMENT
NUCTUEC1 -	CONDITIONAL VARIABLE IN THE IF ARGUMENT
NUCTUEC2 -	CONDITIONAL VARIABLE IN THE IF ARGUMENT
QTTUEC -	TOTAL FUEL EXPENSE ESTIMATE:DOLLARS
RAPINST - RAPTUEC -	INSTRUMENT FOR RAPTUEC RESIDENTIAL AVERAGE PRICE:000'S OF \$ PER MWH
TFTUEC -	TOTAL FUEL EXPENSE REQUIREMENTS:DOLLARS
TOTSTUEC -	TOTAL SYSTEM SALES: MWH
WAPTUEC -	WHOLESALE AVERAGE PRICE:000'S OF \$ PER MWH
WSTUEC -	WHOLESALE SALES:MWH
EXOGENOUS:	INSTRUMENT FOR COMMERCIAL COOLING DEGREE DAYS
CCTUEC -	COMMERCIAL CUSTOMERS:NUMBER OF CUSTOMERS
CDDTUEC -	COOLING DEGREE DAYS:NUMBER OF DAYS
FCTUEC -	FOUR-QUARTER SUM OF COSTS: THOUSANDS OF DOLLARS
HDDTUEC -	HEATING DEGREE DAYS:NUMBER OF DAYS
PIINST - QATUECLI -	INSTRUMENT FOR PERSONAL INCOME (BILLIONS OF DOLLARS) AVERAGE PRICE OF LIGNITE:DOLLARS PER MMBTU
QATUECNG -	AVERAGE PRICE OF NATURAL GAS:DOLLARS PER MMBTU
QATUECNU -	AVERAGE PRICE OF NUCLEAR FUEL:DOLLARS PER MMBTU
QCTUECNU -	NUCLEAR CAPACITY:MW
RCDDINST -	INSTRUMENT FOR RESIDENTIAL COOLING DEGREE DAYS
RCTUEC -	RESIDENTIAL CUSTOMERS:NUMBER OF CUSTOMERS
TEXCPI -	TEXAS CONSUMER PRICE INDEX
TUNAG -	NON-AGRICULTURAL EMPLOYMENT: THOUSANDS OF PERSONS
COEFFICIENT:	
AO A1 A2 M1 NO N1 N	A3 A4 B0 B1 B2 D0 D1 D2 D3 D4 E0 E1 E2 F0 F1 F2 F3 G0 G1 G2 M0 2 N3 N4 O0 O1 O2
EQUATIONS	
1:	RSTUEC = A0+A1*RHDDINST+A2*RCDDINST+A3*RAPINST+A4*PIINST
3:	ISTUEC = F0+F1*CDDTUEC+F2*IAPINST+F3*TUNAG
4:	WSTUEC = NO+N1*HDDTUEC+N2*CDDTUEC+N3*TUNAG+N4*WAPINST
RESIDE	NTIAL AVERAGE PRICE:
5:	RAPTUEC = B0+B1*AQTTUEC+B2*AFCTUEC

COM	MERCIAL/OTHER AVERAGE PRICE:
6:	COAPTUEC = E0+E1*AQTTUEC+E2*AFCTUEC
IND	USTRIAL AVERAGE PRICE:
7:	IAPTUEC = G0+G1*AQTTUEC+G2*AFCTUEC
WHO	LESALE AVERAGE PRICE:
8:	WAPTUEC = 00+01*AQTTUEC+02*AFCTUEC
9:	RAPINST = RAPTUEC/TEXCPI*RCTUEC
10:	CAPINST = COAPTUEC/TEXCPI*CCTUEC
11:	IAPINST = IAPTUEC/TEXCPI
12:	WAPINST = WAPTUEC/TEXCPI
тот	AL SYSTEM SALES:
13:	TOTSTUEC = RSTUEC+COSTUEC+ISTUEC+WSTUEC
14:	NUCCOMP = RSTUEC*1.0614+COSTUEC*1.0593+ISTUEC*1.0434
	+WSTUEC*1.0259-0.7*2190*QCTUECNU
15:	NURCOND = IF NUCCOMP GT 0 THEN NUCCOMP ELSE
	RSTUEC*1.0614+COSTUEC*1.0593+ISTUEC*1.0434+WSTUEC*1.0259
16:	LIGRCOND = IF NURCOND EQ NUCCOMP THEN NUCCOMP-QCTUECLI*2190*0.7 ELSE 0
17:	NGRCOND = IF LIGRCOND GT 0 THEN LIGRCOND ELSE 0
18:	NUCTUEC1 = QCTUECNU*2190*0.7*0.0105*QATUECNU
19:	NUCTUEC2 = (RSTUEC*1.0614+COSTUEC*1.0593+ISTUEC*1.0434+WSTUEC*1.0259)*0.0105*QATUECNU
20:	NUCTUECO = IF NURCOND EQ NUCCOMP THEN NUCTUEC1 ELSE NUCTUEC2
21:	LIGTUEC1 = QCTUECLI*2190*0.7*0.0112*QATUECLI
22:	LIGTUEC2 = NUCCOMP*0.0112*QATUECLI
23:	LIGTUECO = IF NUCCOMP-QCTUECLI*2190*0.7 GT 0 THEN LIGTUEC1 ELSE LIGTUEC2
24:	NGCTUEC = NGRCOND*0.0105*QATUECNG
25:	TFTUEC = NGCTUEC+LIGTUEC0+NUCTUEC0
26:	QTTUEC = MO+M1*TFTUEC
27:	AQTTUEC = QTTUEC/TOTSTUEC
28:	AFCTUEC = FCTUEC/(TOTSTUEC+TOTSTUEC(-1)+TOTSTUEC(-2)+TOTSTUEC(-3))

Results -- TU Electric

TWO-STAGE LEAST SQUARES

MODEL NAME: TUEC88

1 : RSTUEC = A0+A1*RHDDINST+A2*RCDDINST+A3*RAPINST+A4*PIINST

NOB = 39	9	1	то	1087 3	NOVAR = 5		NCOEF = 5		NOINST = 8
RSQ =	1770		0	.953636	CRSQ =	0.948181	F(4/34) =	174.832	PROB>F =
SER =		36	1728	•	SSR =	4.448814E+12	DW(0) =	2.21946	COND =
MAX:HAT	=		N	A	RSTUDENT =	NA	DFFITS =	NA	

				=========================	
COEF	ESTIMATE	STER	TSTAT	PROB> T	İ
AO	-1.583027E+06	674120.	-2.34829	0.024815	i
A1	0.001777	0.000142	12.5278	0.	
A2	0.002665	0.000123	21.6006	0.	
A3	-0.049215	0.031461	-1.56431	0.127007	
A4	741022.	280263.	2.64402	0.012306	

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: TUEC88

2 : COSTUEC = D0+D1*CHDDINST+D2*CCDDINST+D3*TUNAG+D4*CAPINST

NOB = 38	B	4 70 4007 7	NOVAR = 6		NCOEF = 6		NOINST = 6
RANGE: RSQ =	1978	0.958927	CRSQ =	0.952509	F(4/32) =	149.419	PROB>F =
U. SER =		230655.	SSR =	1.702449E+12	DW(0) =	1.80708	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

					================	
	COEF	ESTIMATE	STER	TSTAT	PROB> T	
					==================	
	DO	-4.458918E+06	739514.	-6.02952	0.	
	D1	0.002497	0.000538	4.63814	0.	
	D2	0.006927	. 0.000485	14.286	0.	
	D3	4705.96	581.355	8.0948	0.	
	D4	-0.534894	0.22462	-2.38133	0.023369	
	AR1.0002	0.42	0.162893	2.57838	0.014732	
ĺ						

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: TUEC88

3 : ISTUEC = F0+F1*CDDTUEC+F2*IAPINST+F3*TUNAG

NOB = 38	1978	1 TO 1987 3	NOVAR = 5		NCOEF = 5		NOINST = 5
RSQ =	1770	0.894141	CRSQ =	0.88131	F(3/33) =	69.6839	PROB>F =
U. SER =		158336.	SSR =	8.273243E+11	DW(0) =	1.89332	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
		=================		
FO	621153.	459034.	1.35317	0.185198
F1	202.055	40.2895	5.01508	0.
F2	-48294.8	24336.7	-1.98445	0.055573
F3	2166.53	192.773	11.2388	0.
AR1.0003	0.3	0.165503	1.81266	0.078991

TWO-STAGE LEAST SQUARES

MODEL NAME: TUEC88

4 : WSTUEC = NO+N1*HDDTUEC+N2*CDDTUEC+N3*TUNAG+N4*WAPINST

NOB = 39	1078	1 TO 1087 3	NOVAR = 5		NCOEF = 5		NOINST = 8
RSQ =	1970	0.944908	CRSQ =	0.938427	F(4/34) =	145.788	PROB>F =
SER =		70589.5	SSR =	1.694180E+11	DW(0) =	2.32289	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

				=================
COEF	ESTIMATE	STER	TSTAT	PROB> T
NO	-1.316611E+06	153862.	-8.55709	0.
N1	328.049	37.6487	8.71342	0.
N2	547.112	36.2821	15.0794	0.
N3	1041.52	58.8276	17.7046	0.
N4	-20968.1	7861.1	-2.66732	0.011624
*************	************			

TWO-STAGE LEAST SQUARES

MODEL NAME: TUEC88

5 : RAPTUEC = B0+B1*AQTTUEC+B2*AFCTUEC

NOB = 39	1978 1	TO 1987 3	NOVAR = 3	3		NCOEF = 3		NOINST = 13
RSQ =	1770 1	0.894643	CRSQ =		0.88879	F(2/36) =	152.848	PROB>F =
SER =		4.22081	SSR =		641.349	DW(0) =	1.94432	COND =
MAX:HAT	=	NA	RSTUDENT	=	NA	DFFITS =	NA	

1		**************				
	COEF	ESTIMATE	STER	TSTAT	PROB> T	İ
1						Ĺ
1	B0	4.79636	4.81878	0.995348	0.326211	ĺ
1	B1	1687.68	248.915	6.78014	0.	Í.
	B2	0.689787	0.3436	2.00753	0.052245	
1	*************				=================	

TWO-STAGE LEAST SQUARES

MODEL NAME: TUEC88

6 : COAPTUEC = E0+E1*AQTTUEC+E2*AFCTUEC

NOB = 39	9		NOVAR = 3		NCOEF = 3		NOINST = 13
RANGE:	1978 1	TO 1987 3					
RSQ =		0.930272	CRSQ =	0.926398	F(2/36) =	240.145	PROB>F =
0.							
SER =		2.62557	SSR =	248.17	DW(0) =	2.0891	COND =
26.6216							
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

	*************				1
COEF	ESTIMATE	STER	TSTAT	PROB> T	Ĺ
					È
EO	9.55141	2.99753	3.18642	0.002974	ľ
E1	1231.45	154.838	7.95314	0.	
E2	0.646763	0.213737	3.02597	0.004556	

TWO-STAGE LEAST SQUARES

MODEL NAME: TUEC88

7 : IAPTUEC = G0+G1*AQTTUEC+G2*AFCTUEC

NOB = 39	1078 1	TO 1087 3	NOVAR = 3		NCOEF = 3		NOINST = 13
RSQ =	1970 1	0.914894	CRSQ =	0.910166	F(2/36) =	193.5	PROB>F =
SER =		2.51616	SSR =	227.918	DW(0) =	2.25673	COND =
MAX:HAT :	-	NA	RSTUDENT =	NA	DFFITS =	NA	

		=================	===================		
COEF	ESTIMATE	STER	TSTAT	PROB> T	İ
				==================	
GO	3.13629	2.87263	1.09178	0.282181	İ
G1	1146.52	148.386	7.7266	0.	
G2	0.427391	0.204831	2.08655	0.044073	İ

TWO-STAGE LEAST SQUARES

MODEL NAME: TUEC88

8 : WAPTUEC = 00+01*AQTTUEC+02*AFCTUEC

NOB = 39 RANGE	1978 1 1	0 1987 3	NOVAR = 3		NCOEF = 3		NOINST = 13
RSQ =		0.898708	CRSQ =	0.89308	F(2/36) =	159.704	PROB>F =
SER =		2.77899	SSR =	278.02	DW(0) =	1.96038	COND =
MAX:HAT :	-	NA	RSTUDENT =	NA	DFFITS =	NA	

		===============		==============
COEF	ESTIMATE	STER	TSTAT	PROB> T
00	4.51435	3.17269	1.42288	0.16338
01	1239.14	163.886	7.561	0.
02	0.301089	0.226227	1.33091	0.191585

TWO-STAGE LEAST SQUARES

MODEL NAME: TUEC88

26 : QTTUEC = MO+M1*TFTUEC

NOB = 39	9		NOVAR = 2		NCOEF = 2		NOINST = 5
RANGE:	1978	1 TO 1987 5					
RSQ =		0.943433	CRSQ =	0.941904	F(1/37) =	617.091	PROB>F =
0.							
SER =		32755.5	SSR =	3.969815E+10	DW(0) =	2.23857	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

		=======================================		==================
COEF	ESTIMATE	STER	TSTAT	PROB> T
			=======================================	==============
MO	19974.1	14711.2	1.35774	0.182768
M1	0.939224	0.04254	22.0784	0.
			==============	=================

This page is intentionally left blank.

A.2 HOUSTON LIGHTING & POWER COMPANY

Model -- HL&P

SYMBOL DECLARATIONS

ENDOGENOUS	:																							
AFCHLP	-	AVE	RAGE	FIX	ED CO	OSTS	:DOLI	LARS	PER	MWI	H													
AQTHLP	-	AVE	RAGE	FUE	L CO	STS:	DOLL	ARS	PER	MWH														
CAPHLP	-	COM	MERCI	AL	AVER	AGE	PRICI	E:00	0'S	OF	S PER	MWH												
CAPINST	-	INS	TRUME	NT	FOR	CAPHI	LP																	
COCHLPO	-	TOT	AL CO	DAL	COST	DOLI	LARS																	
COCHLP1	-	CON	DITIC	DNAL	VAR	IABLI	EIN	THE	IF	ARG	UMENT													
COCHLP2	-	CON	DITIC	DNAL	VAR	IABLI	EIN	THE	IF.	ARG	JMENT													
CORCOND	-	CON	DITIC	DNAL	VAR	IABLI	EIN	THE	IF.	ARG	JMENT													
CSHLP	-	COM	MERCI	AL	SALE	S:MWI	H																	
GENHLP	-	GEN	ERATI	ON	REQU	IREM	ENTS	: MWH																
IAPHLP	-	IND	JSTRI	AL	AVER/	AGE I	PRICE	E:000	0'S	OF \$	S PER	MWH												
IAPINST	-	INS	TRUME	NT	FOR	IAPHI	LP																	
ISHLP	-	IND	JSTRI	AL	SALES	S:MWI	H																	
LIGCHLP) -	TOT	AL LI	GNI	TE CO	OST:[DOLL	ARS																
LIGCHLP	-	CON	DITIC	NAL	VAR	IABLE	EIN	THE	IF	ARGL	JMENT													
LIGCHLP	2 -	CON	DITIC	NAL	VAR	IABLE	EIN	THE	IF	ARGL	JMENT													
LIGRCON) -	CON	DITIC	NAL	VAR	IABLE	EIN	THE	IF	ARGL	JMENT													
NGCHLP	-	TOT	AL NA	TUR	AL G	AS CO	DST:C	DOLL	ARS															
NGRHLP	-	NAT	JRAL	GAS	REQL	JIRE	MENTS	S																
NUCHLPO	-	TOT	AL NU	ICLE	AR FL	JEL (COST	DOLI	ARS															
NUCHLP1	-	CON	DITIC	NAL	VAR	IABLE	EIN	THE	IF	ARGL	JMENT													
NUCHLP2	-	CON	DITIO	NAL	VAR	IABLE	E IN	THE	IF	ARGL	JMENT													
NURCOMP	-	CON	DITIO	NAL	VAR	IABLE	EIN	THE	IF	ARGL	JMENT													
NURCOND	-	CON	DITIO	NAL	VAR	IABLE	EIN	THE	IF	ARGL	JMENT													
QTHLP	-	TOT	AL FU	IEL I	EXPEN	NSE E	STIN	ATE	DOL	LARS	S													
RAPHLP	-	RES	IDENT	IAL	AVER	RAGE	PRIC	CE:00	00'S	OF	\$ PE	R MW	1											
RAPINST	-	INS	RUME	NT	FOR F	RAPHL	.P																	
RSHLP	-	RES	IDENT	IAL	SALE	ES:MV	٨H																	
TFHLP	-	TOT	AL FU	EL I	EXPEN	ISE F	REQUI	REME	NTS	:DOL	LARS													
TOTSHLP	-	TOT	AL SY	STE	1 SAL	ES:N	IWH																	
EXOGENOUS: CCDDINSI CCHLP CDDHOUSI CHDDINSI CORHLP DUMMY FCHLP HLPNAG LIGRHLP NURHLP OSHLP PIINST PNGRES QAHLPCO QAHLPLI QAHLPNG QAHLPNU RCDDINST		INS COM INS COA FOU NON LIG NUC COM NUC COM NUC COM NUC COM NUC COM NUC COM NUC COM NUC COM NUC COM NUC COA COA COA COA COA COA COA COA COA CO	RUME HERCI ING TRUME SSIO R-QUA AGRIC LEAR HERCI EAGE CE OF CE OF	NT I ALL (DEGF NT I ACII N DU RTEF ULTU CAP/ AL S NT F NAI PRIC PRIC PRIC PRIC	FOR C CUSTC REE C FOR C TY RE JIMMY RAL SALES FOR P TURAL CE OF CE OF CE OF CE OF CE OF CE OF CE OF CE OF	COMME DMERS DAYS: COMME FOR FOR FOR FOR COMPL COMPL COMPL COMPL COMPL COMPL COMPL COMPL COMPL COMPL COMPL COMME COMME COMME COMME FOR COMME COMME FOR COMME COMME FOR COMME COM COMME COM COM COMME COM COM COM COM COM COM COM COM COM COM	ERCIA S:NUME ERCIA REMEN THE COST COYME UIRE UIRE UIRE DNAL 5 TO S TO CNITE URAL CLEAR ENTI	AL CC MBER C BER C INDU INDU INDU INDU INCC INDU RESI INDU LLAR ::DOL CAS 2 FUE AL C	DOLIN OF F DF D/ ATIN W STRI OUS/ HOUS S:MW S:MW S:MW S:MW S:MW S:MW S:MW S:M	NG D PERS AYS NG D IAL ANDS SAND W W (BIL IAL TIAL ER M S PE LLAR DLLA ING	DEGREI SONS DEGREI SALES S OF I DS OF I DS OF CUSTO CUSTO CUSTO CUSTO R MME S PEF RS PEF RS PEF DEGRE	E DAY E DAY S CLA PERS S OF DMERS TOMER S TOMER BTU R MMB ER MM EE DA	YS SS SS RS SONS DOLL SCEN S:CE TU BTU YS	ARS) TS P NTS	ER T PER	HERM	I M							
RCHLP	-	RESI	DENT	IAL	CUST	OMER	S:NU	MBER	OF	PER	SONS													
RHDDINST	-	INST	RUME		UK R	ESID	ENTI	AL H	LATI	ING	DEGRE	E DA	15											
TEXCPI	-	ICAA	13 LU	NUCH	ICK P	RICE	IND	EA																
COEFFICIENT	:																							
A0 A1	A2	A3	A5	A6	B0	B1	B2	DO	D1	D2	D3	D4	D5	EO	E1	E2	FO	F1	F2	F3	F4	F5		
10 11 12	YO) Y1																						
EQUATIONS		Deur	D -	A () + A	1*0*	INCT	+43+	0000	INCT		*0400	INCT	- 15+	DADT	NCT-	A6*P	CUI D	1.1.						
		NOUL	1	NUTA	I FI	11001		RUDD	11001		NADE	11401		MAP 1	USI P	HU K	JULF	(4)						

CSHLP = D0+D1*CAPINST+D2*CHDDINST+D3*CCDDINST+D4*HLPNAG+D5*CSHLP(-4) 2: ISHLP = F0+F1*IAPINST+F2*ISHLP(-1)+F3*CDDHOUST+F4*HLPNAG+F5*DUMMY 3: 4: RAPHLP = BO+B1*AQTHLP+B2*AFCHLP CAPHLP = E0+E1*AQTHLP+E2*AFCHLP 5: IAPHLP = IO+I1*AQTHLP+I2*AFCHLP 6: RAPINST = RAPHLP(-4)/PNGRES(-4)*RCHLP 7: IAPINST = IAPHLP(-4)/PNGIND(-4)8: CAPINST = CAPHLP(-1)/TEXCPI(-1)*CCHLP 9: TOTAL SALES: TOTSHLP = OSHLP+RSHLP+CSHLP+ISHLP 10: COST EQUATIONS: GENHLP = 1.0724*RSHLP+1.0724*CSHLP+1.0134*ISHLP+1.0724*OSHLP 11: NURCOMP = GENHLP-NURHLP 12: NURCOND = IF NURCOMP LE 0 THEN GENHLP ELSE NURCOMP 13: LIGRCOND = IF NURCOND EQ NURCOMP THEN LIGRHLP*2190*0.7-NURCOMP ELSE 0 14: CORCOND = IF LIGRCOND LT 0 THEN CORHLP+LIGRCOND ELSE 0 15: NGRHLP = IF CORCOND LT 0 THEN (-1)*CORCOND ELSE 0 16: NGCHLP = NGRHLP*0.0105*QAHLPNG 17: NUCHLPO = IF NURCOND EQ NURCOMP THEN NUCHLP2 ELSE NUCHLP1 18: NUCHLP1 = GENHLP*QAHLPNU*0.0105 19: 20: NUCHLP2 = NURHLP*QAHLPNU*0.0105 LIGCHLPO = IF LIGRCOND LT O THEN LIGCHLP2 ELSE LIGCHLP1 21: 22: LIGCHLP1 = IF LIGRCOND GT 0 THEN NURCOMP*0.0112*QAHLPLI ELSE 0 LIGCHLP2 = LIGRHLP*0.0112*QAHLPLI*0.7*2190 23: COCHLPO = IF CORCOND LT 0 THEN COCHLP2 ELSE COCHLP1 24: 25: COCHLP1 = IF CORCOND GT 0 THEN LIGRCOND*0.0102*QAHLPCO ELSE 0 COCHLP2 = CORHLP*0.0102*QAHLPCO 26: 27: TFHLP = NGCHLP+NUCHLPO+LIGCHLPO+COCHLPO 28: QTHLP = Y0+Y1*TFHLP AVERAGE COST EQUATIONS: 29: AQTHLP = QTHLP/TOTSHLP 30: AFCHLP = FCHLP/(TOTSHLP+TOTSHLP(-1)+TOTSHLP(-2)+TOTSHLP(-3))

Results -- HL&P

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: HLP88

1 : RSHLP = A0+A1*PIINST+A2*RCDDINST+A3*RHDDINST+A5*RAPINST+A6*RSHLP(-4)

NOB = 38	3				NOVAR =	7		NCOEF = 7		NOINST = 10)
RANGE: RSQ =	1978	1	то 0.	1987 3 .966863	CRSQ =		0.960449	F(5/31) =	150.752	PROB>F =	
SER =		20	9363		SSR =		1.358823E+12	DW(0) =	1.79314	COND =	
MAX:HAT	=		NA	4	RSTUDENT	=	NA	DFFITS =	NA		

				===============
COEF	ESTIMATE	STER	TSTAT	PROB> T
AO	-725102.	824878.	-0.879041	0.386142
A1	459159.	263427.	1.74302	0.091242
A2	0.000695	0.000201	3.46052	0.001593
A3	0.000533	0.000205	2.59667	0.014266
A5	-682.18	276.162	-2.47022	0.019209
A6	0.788266	0.070702	11.1491	0.
AR1.0001	0.34	0.169183	2.00965	0.053241
				===============

TWO-STAGE LEAST SQUARES

MODEL NAME: HLP88

4 : RAPHLP = B0+B1*AQTHLP+B2*AFCHLP

NOB = 39	1078 1	TO 1087 3	NOVAR = 3		NCOEF = 3		NOINST = 5
RSQ =	1970 1	0.891608	CRSQ =	0.885586	F(2/36) =	148.064	PROB>F =
SER =		0.0063	SSR =	0.001429	DW(0) =	2.20191	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

===					================	L
	COEF	ESTIMATE	STER	TSTAT	PROB> T	ĺ
===					=================	Ĺ
B	0	-0.011834	0.004677	-2.53054	0.015903	ĺ
B	1	1.50865	0.172722	8.73455	0.	ĺ
Ba	2	0.001868	0.000151	12.3958	0.	l
====						Ĺ

TWO-STAGE LEAST SQUARES

MODEL NAME: HLP88

5 : CAPHLP = E0+E1*AQTHLP+E2*AFCHLP

NOB = 39	1978 1	TO 1987 3	NOVAR = 3	3		NCOEF = 3		1	NOINST	= 5
RSQ =	1770 1	0.88025	CRSQ =		0.873597	F(2/36) =	132.3	13	PROB>F	=
SER =		0.005378	SSR =		0.001041	DW(0) =	2.3	3343	COND =	
MAX:HAT	=	NA	RSTUDENT	=	NA	DFFITS =	NA			

=======================================				==================	
COEF	COEF ESTIMATE		TSTAT	PROB> T	
				==================	
EO	-0.005489	0.003992	-1.37503	0.177621	
E1	1.46903	0.147444	9.96332	0.	
E2	0.00134	0.000129	10.4201	0.	

TWO-STAGE LEAST SQUARES

MODEL NAME: HLP88

6 : IAPHLP = IO+I1*AQTHLP+I2*AFCHLP

NOB = 39	1978 1	TO 1987 3	NOVAR = 3		NCOEF = 3		NOINST = 5
RSQ =	1710 1	0.84305	CRSQ =	0.83433	F(2/36) =	96.686	PROB>F =
SER = 9.88993		0.004732	SSR =	0.000806	DW(0) =	2.31547	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

				==============================	
COEF	COEF ESTIMATE		TSTAT	PROB> T	
================				=======================	
10	-0.00837	0.003512	-2.38287	0.022579	
I 1	1.41945	0.129724	10.9421	0.	
12	0.000681	0.000113	6.01685	0.	
				================	

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: HLP88

2 : CSHLP = D0+D1*CAPINST+D2*CHDDINST+D3*CCDDINST+D4*HLPNAG+D5*CSHLP(-4)

NOB = 38	3	4 70	4007 7	NOVAR = 7	7		NCOEF = 7		NOINST = 10
RANGE: RSQ =	1978	0	.966312	CRSQ =		0.959792	F(5/31) =	148.202	PROB>F =
SER =		76240	.6	SSR =		1.801919E+11	DW(0) =	1.43689	9 COND =
MAX:HAT	=	N	A	RSTUDENT	=	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T

DO	-905356.	639790.	-1.41508	0.167012
D1	-83.6968	50.2048	-1.66711	0.105566
D2	0.000809	0.000412	1.96281	0.058696
D3	0.001008	0.000441	2.28302	0.029442
D4	993.259	438.032	2.26755	0.030477
D5	0.849229	0.085281	9.95797	0.
AR1.0002	0.58	0.128685	4.50714	0.

TWO-STAGE LEAST SQUARES

MODEL NAME: HLP88

3 : ISHLP = F0+F1*IAPINST+F2*ISHLP(-1)+F3*CDDHOUST+F4*HLPNAG+F5*DUMMY

NOB = 39	2			4007 7	NOVAR =	5		NCOEF = 6		NOINST = 1	2
RANGE: RSQ =	1978	1	0	1987 3	CRSQ =		0.641247	F(5/33) =	14.5845	PROB>F =	
SER =		323	477		SSR =		3.453040E+12	DW(0) =	2.29028	COND =	
MAX:HAT	=		N	A	RSTUDENT	=	NA	DFFITS =	NA		

				=======================================
COEF	ESTIMATE	STER	TSTAT	PROB> T
	========================	****************		=======================================
FO	2.081651E+06	983200.	2.11722	0.041864
F1	-3.171679E+08	5.133084E+08	-0.617889	0.540889
F2	0.385545	0.128263	3.0059	0.00503
F3	360.554	102.553	3.51577	0.001298
F4	1804.91	1224.27	1.47427	0.149885
F5	-715446.	195289.	-3.66352	0.

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: HLP88

28 : QTHLP = Y0+Y1*TFHLP

NOB = 38	1078	1 TO 1087 3	NOVAR = 3		NCOEF = 3		NOINST = 5
RSQ =	1970	0.922547	CRSQ =	0.918121	F(1/35) =	208.442	PROB>F =
SER =		30091.9	SSR =	3.169336E+10	DW(0) =	1.85419	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

					i
COEF	ESTIMATE	STER	TSTAT	PROB> T	İ
					İ
YO	34693.4	23985.9	1.44641	0.156959	İ
Y1	0.822549	0.062757	13.1068	0.	ĺ
AR1.0028	0.32	0.160545	1.99321	0.054079	ĺ
					ĺ

.

This page is intentionally left blank.

.

A.3 GULF STATES UTILITIES COMPANY

Model -- GSU

SYMBOL DECLARATIONS

ENDOGENOUS:	
AFCGSU	- AVERAGE FIXED COSTS:DOLLARS PER MWH
AQTGSU	- AVERAGE FUEL COSTS:DOLLARS PER MWH
CAPNESU	- COMMERCIAL AVERAGE PRICE (NON-TEXAS):000'S OF \$ PER MWH
CAPNINSI	- COMMEDITAL AVEDACE DDICE (TEVAS)+000/S OF \$ DED MUH
CAPTINST	- INSTRUMENT FOR CAPTOSU
COCGSUO	- TOTAL COAL COST:DOLLARS
COCGSU1	- CONDITIONAL VARIABLE IN THE IF ARGUMENT
COCGSU2	- CONDITIONAL VARIABLE IN THE IF ARGUMENT
CORCOND	- CONDITIONAL VARIABLE IN THE IF ARGUMENT
CSGSU	- COMMERCIAL SALES: MWH
CSNGSU	- COMMERCIAL SALES (NON-TEXAS):MWH
CSTGSU	- COMMERCIAL SALES (TEXAS):MWH
GENGSU	- TOTAL GENERATION REQUIREMENTS: MWH
TAPNGSU	- INDUSTRIAL AVERAGE PRICE (NUN-TEXAS):UUU'S OF \$ PER MWH
TAPNINSI	- INDUSTRIAL AVERACE DRICE (TEVAS)+000/S OF & DED MUH
TAPTINST	- INSTRUMENT FOR TAPTOSU
ISGSU	- INDUSTRIAL SALES: MUH
ISNGSU	- INDUSTRIAL SALES (NON-TEXAS):MWH
ISTGSU	- INDUSTRIAL SALES (TEXAS):MWH
NGCGSU	- TOTAL NATURAL GAS COST:DOLLARS
NGRCOND	- CONDITIONAL VARIABLE IN THE IF ARGUMENT
NTSALES	- TOTAL NON-TEXAS SYSTEM SALES:MWH
NUCCOMP	- CONDITIONAL VARIABLE IN THE IF ARGUMENT
NUCGSUO	- TOTAL NUCLEAR FUEL COST:DOLLARS
NUCGSU1	- CONDITIONAL VARIABLE IN THE IF ARGUMENT
NUCGSUZ	- CONDITIONAL VARIABLE IN THE IF ARGUMENT
OAPTOSU	- CONDITIONAL VARIABLE IN THE IF ARGUMENT
OAPTUS	- INSTRUMENT FOR CAPTOSI
OSGSU	- OTHER SALES:MUH
OSNGSU	- OTHER SALES (NON-TEXAS):MWH
OSTGSU	- OTHER SALES (TEXAS):MWH
QTGSU	- TOTAL FUEL EXPENSE ESTIMATE:DOLLARS
RAPNGSU	- RESIDENTIAL AVERAGE PRICE (NON-TEXAS):000'S OF \$ PER MWH
RAPNINST	- INSTRUMENT FOR RAPNGSU
RAPTGSU	- RESIDENTIAL AVERAGE PRICE (TEXAS):000'S OF \$ PER MWH
RAPTINST	- INSTRUMENT FOR RAPTGSU
RSGSU	- RESIDENTIAL SALES (NON-TEXAS)-MUN
RENGEU	- RESIDENTIAL SALES (NUN-TEXAS):MWM
TECSU	- TOTAL EVEL EVENUE DECITIONENTS - DOLLADS
TOTSGSU	- TOTAL SYSTEM SALES:MUH
TSALES	- TOTAL TEXAS SYSTEM SALES: MWH
EXOGENOUS:	
CAPDUM	- COMMERCIAL AVERAGE PRICE DUMMY
CCNGSU	- COMMERCIAL CUSTOMERS (NON-TEXAS):NUMBER OF CUSTOMERS
CCTGSU	- COMMERCIAL CUSTOMERS (TEXAS):NUMBER OF CUSTOMERS
CDDLAKEC	- (LAKE CHARLES) COOLING DEGREE DAYS:NUMBER OF DAYS
COOPORTA	- (PORT ARTHUR) COULING DEGREE DAYS:NUMBER OF DAYS
CNHODINS	- INSTRUMENT FOR (NON-TEXAS) COMMERCIAL COOLING DEGREE DATS
CTCDDINS	- INSTRUMENT FOR (TEXAS) COMMERCIAL COOLING DEGREE DAYS
CTHDDINS	- INSTRUMENT FOR (TEXAS) COMMERCIAL HEATING DEGREE DAYS
FCGSU	- FOUR-QUARTER SUM OF COSTS: THOUSANDS OF DOLLARS
GSUNNAG	- NONAGRICULTURAL EMPLOYMENT (NON-TEXAS): THOUSANDS OF PERSONS
GSUNPOP	- SERVICE AREA POPULATION (NON-TEXAS): THOUSANDS OF PERSONS
GSUTPOP	- SERVICE AREA POPULATION (TEXAS): THOUSANDS OF PERSONS
HDDLAKEC	- (LAKE CHARLES) HEATING DEGREE DAYS:NUMBER OF DAYS

HDDPORTA MISSGSU NPIINST PNGCOM PNGRES QAGSUCO QAGSUNU QCGSUCO QCGSUNU RCNGSU RCTGSU RNCDDINS RNHDDINS RTHDDINS TEXCPI TPIINST WSGSU	 (PORT ARTHUR) HEATING DEGREE DAYS:NUMBER OF DAYS MISCELLANEOUS SALES:MWH INSTRUMENT FOR (NON-TEXAS) PERSONAL INCOME (BILLIONS OF DOLLARS) PRICE OF NATURAL GAS TO COMMERCIAL CUSTOMERS:CENTS PER THERM PRICE OF NATURAL GAS TO RESIDENTIAL CUSTOMERS:CENTS PER THERM AVERAGE PRICE OF COAL:DOLLARS PER MMBTU AVERAGE PRICE OF NATURAL GAS:DOLLARS PER MMBTU AVERAGE PRICE OF NUCLEAR FUEL:DOLLARS PER MMBTU COAL CAPACITY:MW NUCLEAR CAPACITY:MW RESIDENTIAL CUSTOMERS (NON-TEXAS):NUMBER OF CUSTOMERS RESIDENTIAL CUSTOMERS (TEXAS):NUMBER OF CUSTOMERS INSTRUMENT FOR (NON-TEXAS) RESIDENTIAL COOLING DEGREE DAYS INSTRUMENT FOR (TEXAS) RESIDENTIAL HEATING DEGREE DAYS INSTRUMENT FOR (TEXAS) RESIDENTIAL HEATING DEGREE DAYS INSTRUMENT FOR (TEXAS) RESIDENTIAL HEATING DEGREE DAYS INSTRUMENT FOR (TEXAS) RESIDENTIAL HEATING DEGREE DAYS INSTRUMENT FOR (TEXAS) RESIDENTIAL HEATING DEGREE DAYS INSTRUMENT FOR (TEXAS) RESIDENTIAL HEATING DEGREE DAYS INSTRUMENT FOR (TEXAS) RESIDENTIAL HEATING DEGREE DAYS INSTRUMENT FOR (TEXAS) RESIDENTIAL HEATING DEGREE DAYS INSTRUMENT FOR (TEXAS) RESIDENTIAL HEATING DEGREE DAYS INSTRUMENT FOR (TEXAS) RESIDENTIAL HEATING DEGREE DAYS INSTRUMENT FOR (TEXAS) RESIDENTIAL HEATING DEGREE DAYS INSTRUMENT FOR (TEXAS) RESIDENTIAL HEATING DEGREE DAYS INSTRUMENT FOR (TEXAS) PERSONAL INCOME (BILLIONS OF DOLLARS) WHOLESALE SALES:MWH
COEFFICIENT:	2 A3 A4 A5 B0 B1 B2 D0 D1 D2 D4 D5 E0 E1 E2 F0 F1 F2 F3 F4 G0 G1
G2 H0 H1 H N2 O0 O1 (H2 H3 IO I1 I2 KO K1 K2 K3 K4 K5 LO L1 L2 MO M1 M2 M3 M4 M5 NO N1 D3 O4 P0 P1 P2 QO Q1 Q2 Q3 Q5 UO U1
EQUATIONS	
1:	RSTGSU = `AO+A1*RTHDDINS+A2*RTCDDINS+A3*TPIINST+A4*RSTGSU(-4)+A5*RAPTINST CSTGSU = D0+D1*CTHDDINS+D2*CTCDDINS+D4*CAPTINST+D5*CSTGSU(-4)
3:	ISTGSU = F0+F1*IAPTINST+F2*GSUTPOP(-4)+F3*ISTGSU(-1)+F4*CDDPORTA
4:	OSTGSU = H0+H1*CDDPORTA+H2*HDDPORTA+H3*OAPTINST
5:	KSNGSU = KU*KI*NPIINSI(*4)*KZ*KNHUDINS*KJ*KNCUDINS*K4*KAPNINSI*KJ*KSNGSU(*1) CSNGSII = MI+M1*CAPNINST*CAPDIM+M2*CSUNNAC+M3*CNCDDINS+M4*CNHDDINS+M5*CSNGSU(*1)
7:	ISNGSU = O0+O1*IAPNINST+O3*CDDLAKEC+O4*ISNGSU(-1)
8:	OSNGSU = Q0+Q1*OSNGSU(-4)+Q2*GSUNPOP+Q3*CDDLAKEC+Q5*HDDLAKEC
9:	RAPTGSU = B0+B1*AQTGSU+B2*AFCGSU
10:	CAPTGSU = E0+E1*AQTGSU+E2*AFCGSU
11:	IAPTGSU = G0+G1*AQTGSU+G2*AFCGSU
12:	UAPIGSU = 10+11*AQIGSU+12*AFCGSU
14:	CAPNGSU = N0+N1*A0TGSU+N2*AFCGSU
15:	IAPNGSU = P0+P1*AQTGSU+P2*AFCGSU
16:	RAPTINST = RAPTGSU/PNGRES*RCTGSU
17:	CAPTINST = CAPTGSU/PNGCOM*CCTGSU
18:	IAPTINST = IAPTGSU(-1)/TEXCPI(-1)
19:	DAPTINST = DAPTGSU/TEXCPI
20:	CAPNINST = CAPNGSU(-2)/PNGCOM(-2)*CCNGSU
22:	IAPNINST = IAPNGSU/TEXCPI
TOTAL	CYCTEM CALEC.
23:	TOTSGSU = WSGSU+RSGSU+CSGSU+OSGSU+ISGSU+MISSGSU
SALES	EQUATIONS:
24:	RSNGSU = RSGSU-RSTGSU
25:	CSNGSU = CSGSU-CSTGSU
20:	ISNGSU = ISGSU-ISIGSU OSNGSU = OSGSU-OSTGSU
COST E	QUATIONS:
28:	GENGSU = 1.1073*RSTGSU+1.1073*CSTGSU+1.027*ISTGSU+1.1073*OSTGSU +1.0855*RSNGSU+1.1073*CSNGSU+1.0278*ISNGSU+1.1073*OSNGSU +1.0778*USCSU+1.1073*MISSCSU
29:	NUCCOMP = GENGSU-0.7*2190*QCGSUNU
30:	NURCOND = IF NUCCOMP GT 0 THEN NUCCOMP ELSE GENGSU
31:	CORCOND = IF NURCOND EQ NUCCOMP THEN NUCCOMP-QCGSUCO*2190*0.7 ELSE 0
32:	NGRCOND = IF CORCOND GT 0 THEN CORCOND ELSE 0
35:	NUCGSUT = WCGSUNU*2190*0.7*0.0105*QAGSUNU
35.	NUCCSUD = TE NURCOND ED NUCCOMP THEN NUCCSUL ELSE NUCCSU2
36:	COCGSU1 = QCGSUCO*2190*0.7*0.0102*QAGSUCO
37:	COCGSU2 = NUCCOMP*0.0102*QAGSUCO
38:	COCGSUO = IF NUCCOMP-QCGSUCO*2190*0.7 GT 0 THEN COCGSU1 ELSE COCGSU2

39:	NGCGSU = NGRCOND*0.0105*QAGSUNG
40:	TFGSU = NGCGSU+COCGSU0+NUCGSU0
41:	QTGSU = U0+U1*TFGSU
42:	AQTGSU = QTGSU/TOTSGSU
43:	AFCGSU = FCGSU/(TOTSGSU+TOTSGSU(-1)+TOTSGSU(-2)+TOTSGSU(-3))
SALES	EQUATIONS:
44:	NTSALES = RSNGSU+CSNGSU+ISNGSU+OSNGSU

45: TSALES = RSTGSU+CSTGSU+ISTGSU+OSTGSU

Results -- GSU

TWO-STAGE LEAST SQUARES

MODEL NAME: GSU88

1 : RSTGSU = A0+A1*RTHDDINS+A2*RTCDDINS+A3*TPIINST+A4*RSTGSU(-4)+A5*RAPTINST

NOB = 39	1078	1 TO 1087 3	NOVAR = 6		NCOEF = 6		NOINST = 9
RSQ =	1970	0.957211	CRSQ =	0.950728	F(5/33) =	147.646	PROB>F =
SER =		41301.	SSR =	5.629058E+10	DW(0) =	1.75191	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

=======================================				==============
COEF	ESTIMATE	STER	TSTAT	PROB> T
=================================	==========================	=======================================		
AO	-158219.	115822.	-1.36605	0.181162
A1	0.001228	0.00024	5.11255	0.
A2	0.00127	0.000218	5.81775	0.
A3	402924.	163285.	2.46762	0.018959
A4	0.521261	0.084221	6.18919	0.
A5	-444.957	222.753	-1.99754	0.054066

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: GSU88

2 : CSTGSU = D0+D1*CTHDDINS+D2*CTCDDINS+D4*CAPTINST+D5*CSTGSU(-4)

NOB = 38	1078	1 TO 1087 3	NOVAR = 6	•	NCOEF = 6		NOINST = 8
RSQ =	1970	0.959538	CRSQ =	0.953215	F(4/32) =	151.772	PROB>F =
SER =		16435.7	SSR =	8.644276E+09	DW(0) =	2.16332	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

				===============
COEF	ESTIMATE	STER	TSTAT	PROB> T
		================================		===============
DO	146154.	76660.9	1.9065	0.065599
D1	0.001284	0.000523	2.4578	0.01958
D2	0.00201	0.000609	3.29916	0.002385
D4	-206.617	1682.12	-0.122831	0.903009
D5	0.616964	0.106869	5.77307	0.
AR1.0002	0.76	0.120689	6.29719	0.
				===================

TWO-STAGE LEAST SQUARES

MODEL NAME: GSU88

3 : ISTGSU = F0+F1*IAPTINST+F2*GSUTPOP(-4)+F3*ISTGSU(-1)+F4*CDDPORTA

NOB = 39	4 4007 7	NOVAR = 5		NCOEF = 5		NOINST = 8
RANGE: 1978 RSQ =	0.393435	CRSQ =	0.322075	F(4/34) =	5.51335	PROB>F =
SER =	54927.2	SSR =	1.025779E+11	DW(0) =	1.64197	COND =
MAX:HAT =	NA	RSTUDENT =	NA	DFFITS =	NA	

	***********			================
COEF	ESTIMATE	ESTIMATE STER TS		PROB> T
FO	593272.	209025.	2.83828	0.007597
F1	-1.704920E+07	1.095808E+07	-1.55586	0.129002
F2	306.707	233.483	1.31362	0.197771
F3 *	0.580759	0.138065	4.20642	0.
F4	36.0025	15.0048	2.39939	0.022049

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: GSU88

4 : OSTGSU = H0+H1*CDDPORTA+H2*HDDPORTA+H3*OAPTINST

NOB = 38	3		NOVAR = 5		NCOEF = 5		NOINST = 7
RANGE: RSQ =	1978 1	TO 1987 3 0.928168	CRSQ =	0.919461	F(3/33) =	106.601	PROB>F =
U. SER = 7 3638		836.424	SSR =	2.308694E+07	DW(0) =	2.38161	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T

HO	34509.7	4535.57	7.60867	0.
H1	2.45049	0.423056	5.79237	0.
H2	2.56981	0.51254	5.01387	0.
H3	-162309.	149873.	-1.08298	0.286669
AR1.0004	0.92	0.026101	35.2475	0.

TWO-STAGE LEAST SQUARES

MODEL NAME: GSU88

5 : RSNGSU = K0+K1*NPIINST(-4)+K2*RNHDDINS+K3*RNCDDINS+K4*RAPNINST+K5*RSNGSU(-1)

NOB = 39	1079	1 TO 1097 7	NOVAR = 6		NCOEF = 6		NOINST = 9
RSQ =	1978	0.910501	CRSQ =	0.89694	F(5/33) =	67.1437	PROB>F =
U. SER =		72715.2	SSR =	1.744878E+11	DW(0) =	2.38277	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

		=======================================		==================	
COEF	ESTIMATE	STER	TSTAT	PROB> T	
				===============	
КО	-216939.	154498.	-1.40415	0.169617	
K1	253240.	215956.	1.17264	0.249335	
K2	0.001917	0.000276	6.95224	0.	
K3	0.002849	0.00022	12.9783	0.	
K4	-16.7649	24.325	-0.689202	0.495514	
К5	0.199333	0.06811	2.92663	0.006161	

TWO-STAGE LEAST SQUARES

MODEL NAME: GSU88

6 : CSNGSU = M0+M1*CAPNINST*CAPDUM+M2*GSUNNAG+M3*CNCDDINS+M4*CNHDDINS+M5*CSNGSU(-1)

NOB = 39	9 1078 1 TO 1087 7	NOVAR = 6		NCOEF = 6		NOINST = 10
RSQ =	0.93567	CRSQ =	0.925923	F(5/33) =	95.9964	PROB>F =
SER =	28036.5	SSR =	2.593955E+10	DW(0) =	1.94734	COND =
MAX:HAT	= NA	RSTUDENT =	NA	DFFITS =	NA	

COEF ESTIMATE STER TSTAT PROB> T M0 -39927.4 104977. -0.380344 0.706127 M1 -196.396 645.503 -0.304252 0.762846 M2 502.489 238.351 2.10819 0.042692 M3 0.007894 0.000565 13.982 0.
M0 -39927.4 104977. -0.380344 0.706127 M1 -196.396 645.503 -0.304252 0.762846 M2 502.489 238.351 2.10819 0.042692 M3 0.007894 0.000565 13.982 0.
M1 -196.396 645.503 -0.304252 0.762846 M2 502.489 238.351 2.10819 0.042692 M3 0.007894 0.000565 13.982 0.
M2 502.489 238.351 2.10819 0.042692 M3 0.007894 0.000565 13.982 0.
M3 0.007894 0.000565 13.982 0.
M4 0.004418 0.000786 5.62165 0.
M5 0.417109 0.051836 8.04665 0.
======== =============================

TWO-STAGE LEAST SQUARES

MODEL NAME: GSU88

7 : ISNGSU = 00+01*IAPNINST+03*CDDLAKEC+04*ISNGSU(-1)

NOB = 39	1978	1 TO 1987 3	NOVAR = 4		NCOEF = 4		NOINST = 7
RSQ =		0.890356	CRSQ =	0.880958	F(3/35) =	94.7382	PROB>F =
SER =		106642.	SSR =	3.980398E+11	DW(0) =	1.6668	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

	COEF	ESTIMATE	STER	TSTAT	PROB> T	ĺ
					================	l
	00	549881.	228084.	2.41087	0.021301	Ĺ
	01	-3.230901E+07	1.139072E+07	-2.83643	0.007535	Ĺ
	03	86.1751	30.9128	2.78768	0.008523	1
	04	0.90315	0.062537	14.4419	0.	
1						

HILDRETH-LU PROCEDURE

MODEL NAME: GSU88

8 : OSNGSU = Q0+Q1*OSNGSU(-4)+Q2*GSUNPOP+Q3*CDDLAKEC+Q5*HDDLAKEC

NOB	= 38	NOVAR = 6	NCOEF = 6	RANGE:	1978 1
TO	1987 3				

RSQ =	0.888584	CRSQ =	0.871175	F(4/32) =	51.0423	PROB>F =
0. SER =	1042.65	SSR =	3.478778E+07	DW(0) =	2.00447	COND =
92.3547 MAX:HAT =	0.232055	RSTUDENT =	2.99723	DFFITS =	0.95112	

			2222222222222222222	
COEF	ESTIMATE	STER	TSTAT	PROB> T

QQ	-10735.1	6712.1	-1.59937	0.119566
Q1	0.611574	0.128107	4.77393	0.
Q2	19.5053	8.1176	2.40284	0.02224
Q3	0.798272	0.567434	1.40681	0.169122
Q5	1.24138	0.759497	1.63447	0.11196
AR1.0008	0.3	0.169261	1.77241	0.085848
=======================================			*************	==================

TWO-STAGE LEAST SQUARES

MODEL NAME: GSU88

9 : RAPTGSU = B0+B1*AQTGSU+B2*AFCGSU

NOB = 39	1078 1	TO 1987 3	NOVAR = 3		NCOEF = 3		NOINST = 5
RSQ =	1770 1	0.734438	CRSQ =	0.719685	F(2/36) =	49.7808	PROB>F =
SER =		0.009925	SSR =	0.003546	DW(0) =	0.798671	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
BO	-0.008422	0.010172	-0.827954	0.413152
B1	3.75712	0.977524	3.8435	0.
B2	0.002162	0.000717	3.01402	0.004701

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: GSU88

10 : CAPTGSU = E0+E1*AQTGSU+E2*AFCGSU

NOB = 38	3		NOVAR = 4		NCOEF = 4		NOINST = 5
RANGE: RSQ =	1978 1	TO 1987 3 0.858362	CRSQ =	0.845865	F(2/34) =	68.6831	PROB>F =
U. SER = 22 084		0.005711	SSR =	0.001109	DW(0) =	1.68627	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
	**************	**************		=================
EO	0.00247	0.007985	0.309318	0.758968
E1	2.3681	0.751048	3.15306	0.003368
E2	0.002328	0.000556	4.18619	0.
AR1.0010	0.28	0.15873	1.764	0.086716
			=======================================	============

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: GSU88

0

11 :	IAPTGSU	= G0+G1*AQTGSU+G2*AFCGSU	
------	---------	--------------------------	--

NOB = 38	70 1 1	1097 7	NOVAR = 4		NCOEF = 4		NOINST = 5
RSQ =	70 1 1	0.792909	CRSQ =	0.774636	F(2/34) =	43.3931	PROB>F =
SER =		0.003989	SSR =	0.000541	DW(0) =	1.62038	COND =
23.8243 MAX:HAT =		NA	RSTUDENT =	NA	DFFITS =	NA	

COEF .	ESTIMATE	STER	TSTAT	PROB> T
				=================
GO	-0.000924	0.004959	-0.186287	0.853327
G1	2.14574	0.467998	4.58494	0.
G2	0.000639	0.000344	1.85675	0.072028
AR1.0011	0.18	0.162115	1.11032	0.274652

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: GSU88

12 : OAPTGSU = I0+I1*AQTGSU+I2*AFCGSU

NOB = 38	1078 1	TO 1087 3	NOVAR = 4		NCOEF = 4		NOINST = 5
RSQ =	1970 1	0.834566	CRSQ =	0.81996	69 F(2/34) =	57.1733	PROB>F =
SER =		0.007489	SSR =	0.00190	07 DW(0) =	1.76836	COND =
MAX:HAT	=	NA	RSTUDENT =	= NA	DFFITS =	NA	

		=======================================		==================
COEF	ESTIMATE	STER	TSTAT	PROB> T
		==================		
0	-0.000791	0.010472	-0.075533	0.940234
1	2.55391	0.985011	2.59277	0.013937
2	0.003016	0.000729	4.13554	0.
R1.0012	0.28	0.158858	1.76258	0.08696

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: GSU88

13 : RAPNGSU = L0+L1*AQTGSU+L2*AFCGSU

NOB = 38	3		NOVAR = 4		NCOEF = 4		NOINST = 5
RANGE :	1978 1	TO 1987 3		0.047/04		474 040	
RSQ = 0.		0.920496	CRSQ =	0.913481	F(2/54) =	131.218	PROR>F =
SER = 13.6038		0.003976	SSR =	0.000537	DW(0) =	2.26658	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

	COEF	ESTIMATE	STER	TSTAT	PROB> T
			==================	==================	
	LO	0.009829	0.008613	1.14116	0.261779
	L1	1.72291	0.753761	2.28575	0.028625
	L2	0.002394	0.000663	3.60793	0.
1	AR1.0013	0.64	0.143264	4.46727	0.
1					

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: GSU88

14 : CAPNGSU = NO+N1*AQTGSU+N2*AFCGSU

NOB = 38	3		NOVAR = 4		NCOEF = 4		NOINST = 5
RANGE: RSQ =	1978 1	TO 1987 3 0.892643	CRSQ =	0.88317	F(2/34) =	94.2334	PROB>F =
U. SER =		0.00418	SSR =	0.000594	DW(0) =	1.67607	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

		=========================		
COEF	ESTIMATE	STER	TSTAT	PROB> T
		**************		===============
NO	0.002058	0.00645	0.319034	0.751653
N1	2.16971	0.60391	3.59277	0.001022
N2	0.001835	0.000452	4.05942	0.
AR1.0014	0.36	0.15055	2.39123	0.022471

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: GSU88

15 : IAPNGSU = P0+P1*AQTGSU+P2*AFCGSU

NOB = 38	3		NOVAR =	4		NCOEF = 4	6		NOINST	= 5
RANGE :	1978 1	TO 1987 3								
RSQ =		0.910774	CRSQ =		0.902901	F(2/34) =	= 11	5.685	PROB>F	=
0.										
SER =		0.002964	SSR =		0.000299	DW(0) =		1.75305	COND =	
20.8862										
MAX:HAT	=	NA	RSTUDENT	=	NA	DFFITS =		NA		

	=========================	***************		
COEF	ESTIMATE	STER	TSTAT	PROB> T
		=========================	**************	
PO	-0.006065	0.004461	-1.35963	0.182897
P1	2.19551	0.418214	5.24971	0.
P2	0.001023	0.000312	3.28035	0.002399
AR1.0015	0.34	0.153465	2.21549	0.033526

TWO-STAGE LEAST SQUARES

MODEL NAME: GSU88

41 : QTGSU = U0+U1*TFGSU

NOB = 39	9		NOVAR = 2		NCOEF = 2		NOINST = 7
RANGE: RSQ =	1978	1 TO 1987 3 0.657726	CRSQ =	0.648476	F(1/37) =	71.1006	PROB>F =
0. SER =		14851.4	SSR =	8.160891E+09	DW(0) =	1.82944	COND =
5.78535 MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

			22525526665555555	
COEF	ESTIMATE	STER	TSTAT	PROB> T
			20222222222222222	
UO	57160.6	7084.69	8.06819	0.
U1	0.394773	0.054724	7.21384	0.

.

A.4 CENTRAL POWER AND LIGHT COMPANY

Model -- CPL

SYMBOL DECLARATIONS

ENDOCENOUS.	
AECCDI	- AVERAGE FIXED COSTS-DOLLARS DER MUH
AOTCPL	AVERAGE FUEL COSTS-DOLLARS PER MUH
CAPCPL	
CAPINST	
COCCPLO	
COCCPI 1	CONDITIONAL VARIABLE IN THE LE ARGUMENT
COCCPI 2	CONDITIONAL VARIABLE IN THE LE ARGUMENT
CORCOND	CONDITIONAL VARIABLE IN THE IF ARGUMENT
CSCPI	
GENCEI	GENERATION REQUIREMENTS: MUH
TAPCPL	- INDUSTRIAL AVERAGE PRICE:000/S OF \$ PER MWH
TAPINST	- INSTRUMENT FOR TAPCPI
ISCPI	- INDUSTRIAL SALES: MWH
NGCCPL	- TOTAL NATURAL GAS COST:DOLLARS
NGRCOND	- CONDITIONAL VARIABLE IN THE IF ARGUMENT
NUCCOMP	- CONDITIONAL VARIABLE IN THE IF ARGUMENT
NUCCPLO	- TOTAL NUCLEAR FUEL COST:DOLLARS
NUCCPL1	- CONDITIONAL VARIABLE IN THE IF ARGUMENT
NUCCPL2	- CONDITIONAL VARIABLE IN THE IF ARGUMENT
NURCOND	- CONDITIONAL VARIABLE IN THE IF ARGUMENT
QTCPL	- TOTAL FUEL EXPENSE ESTIMATE:DOLLARS
RAPCPL	- RESIDENTIAL AVERAGE PRICE:000'S OF \$ PER MWH
RAPINST	- INSTRUMENT FOR RAPCPL
RSCPL	- RESIDENTIAL SALES: MWH
TFCPL	- TOTAL FUEL EXPENSE REQUIREMENTS:DOLLARS
TOTSCPL	- TOTAL SYSTEM SALES:MWH
EXOGENOUS:	
CCCPL	- COMMERCIAL CUSTOMERS:NUMBER OF CUSTOMERS
CCDDCPL	- INSTRUMENT FOR COMMERCIAL COOLING DEGREE DAYS
CDDCPL	- COOLING DEGREE DAYS:NUMBER OF DAYS
CPLPOP	- POPULATION DATA: THOUSANDS OF PERSONS
FCCPL	- FOUR-QUARTER SUM OF COSTS:THOUSANDS OF DOLLARS
IRDUM	- DUMMY FOR INDUSTRIAL REVENUES
OSCPL ·	- OTHER SALES:MWH
PIINST	- INSTRUMENT FOR PERSONAL INCOME (BILLIONS OF DOLLARS)
PNGCOM	- PRICE OF NATURAL GAS TO COMMERCIAL CUSTOMERS:CENTS PER THERM
PNGIND	- PRICE OF NATURAL GAS TO INDUSTRIAL CUSTOMERS:CENTS PER THERM
PNGRES	 PRICE OF NATURAL GAS TO RESIDENTIAL CUSTOMERS:CENTS PER THERM
QACPLCO	- AVERAGE PRICE OF COAL:DOLLARS PER MMBTU
QACPLNG	- AVERAGE PRICE OF NATURAL GAS:DOLLARS PER MMBTU
QACPLNU	- AVERAGE PRICE OF NUCLEAR FUEL:DOLLARS PER MMBTU
QCCPLCO ·	- COAL CAPACITY:MW
QCCPLNU	· NUCLEAR CAPACITY:MW
RCCPL	RESIDENTIAL CUSTOMERS:NUMBER OF CUSTOMERS
RCDDCPL ·	INSTRUMENT FOR RESIDENTIAL COOLING DEGREE DAYS
RHDDCPL -	INSTRUMENT FOR RESIDENTIAL HEATING DEGREE DAYS
WSCPL -	WHOLESALE SALES:MWH
COEFFICIENT.	
AO A1 A2	A & A & B B & B & B & C C C C C C C C C E C E E E C E C E C
G2 10 11	
GE 10 11	
FOUATIONS	
1:	$RSCPI = A\Omega + A1 * RCDDCPI + A2 * RADDCPI + A3 * RAPINST + A4 * PIINST$
2:	CSCPL = B0+B1*CCDDCPL+B2*CAPINST+B5*CPLPOP+B3*CSCPL(-1)
3:	ISCPL = $C0+C1*ISCPL(-1)+C2*CPLPOP+C3*IAPINST+C4*CDDCPL+C5*IRDUM$
4:	RAPCPL = E0+E1*AFCCPL+E2*AQTCPL
5:	CAPCPL = F0+F1*AFCCPL+F2*AQTCPL
6:	IAPCPL = G0+G1*AFCCPL+G2*AQTCPL
7:	QTCPL = I0+I1*TFCPL

8:	RAPINST = RAPCPL/PNGRES*RCCPL
9:	CAPINST = CAPCPL(-1)/PNGCOM(-1)*CCCPL
10:	IAPINST = IAPCPL(-4)/PNGIND(-4)
11:	TOTSCPL = RSCPL+CSCPL+ISCPL+WSCPL+OSCPL
12:	GENCPL = RSCPL*1.1081+CSCPL*1.1071+ISCPL*1.0406+WSCPL*1.0371+OSCPL*1.1081
13:	NUCCOMP = GENCPL-0.7*2190*QCCPLNU
14:	NURCOND = IF NUCCOMP GT 0 THEN NUCCOMP ELSE GENCPL
15:	CORCOND = IF NURCOND EQ NUCCOMP THEN NUCCOMP-0.7*2190*QCCPLCO ELSE 0
16:	NGRCOND = IF CORCOND GT 0 THEN CORCOND ELSE 0
17:	NUCCPL1 = QCCPLNU*2190*0.7*0.0105*QACPLNU
18:	NUCCPL2 = GENCPL*0.0105*QACPLNU
19:	NUCCPLO = IF NURCOND EQ NUCCOMP THEN NUCCPL1 ELSE NUCCPL2
20:	COCCPL1 = QCCPLCO*2190*0.7*0.0102*QACPLCO
21:	COCCPL2 = NUCCOMP*0.0102*QACPLCO
22:	COCCPLO = IF NUCCOMP-QCCPLCO*2190*0.7 GT 0 THEN COCCPL1 ELSE COCCPL2
23:	NGCCPL = NGRCOND*0.0105*QACPLNG
24:	TFCPL = NGCCPL+COCCPL0+NUCCPL0
25:	AQTCPL = QTCPL/TOTSCPL
26:	AFCCPL = FCCPL/(TOTSCPL+TOTSCPL(-1)+TOTSCPL(-2)+TOTSCPL(-3))

Results -- CPL

TWO-STAGE LEAST SQUARES

MODEL NAME: CPL88

1 : RSCPL = A0+A1*RCDDCPL+A2*RHDDCPL+A3*RAPINST+A4*PIINST

NOB = 40)	4 70	1007 /	NOVAR = 5		NCOEF = 5		NOINST = 8
RSQ =	1978	1 10	.839422	CRSQ =	0.82107	F(4/35) =	45.7406	PROB>F =
SER =		111616		SSR =	4.360341E+11	DW(0) =	2.27823	COND =
MAX:HAT	=	N	A	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
				===============
AO	-516841.	1.605746E+06	-0.321869	0.749466
A1	0.001576	0.000206	7.66383	0.
A2	0.002243	0.000473	4.74114	0.
A3	-0.411752	1.62479	-0.253418	0.801428
A4	786649.	493217.	1.59494	0.119718
				================

TWO-STAGE LEAST SQUARES

MODEL NAME: CPL88

2 : CSCPL = B0+B1*CCDDCPL+B2*CAPINST+B5*CPLPOP+B3*CSCPL(-1)

NOB = 40	1079	1 10	1097 (NOVAR =	5		NCOEF = 5	5		NOINST	= 7
RSQ =	1970	0	.951161	CRSQ =		0.94558	F(4/35) =	= 17	0.411	PROB>F	=
SER =		37221	.7	SSR =		4.849084E+10	DW(0) =		2.45359	COND =	
MAX:HAT	=	N	A	RSTUDENT	=	NA	DFFITS =		NA		

				===============
COEF	ESTIMATE	STER	TSTAT	PROB> T
			=======================================	===============
BO	-97685.5	251360.	-0.388627	0.699906
B1	0.00305	0.000186	16.3683	0.
B2	-1.36755	1.39233	-0.982197	0.332744
B3	0.482132	0.083823	5.75181	0.
B5	314.083	85.6905	3.66533	0.

TWO-STAGE LEAST SQUARES

MODEL NAME: CPL88

3 : ISCPL = C0+C1*ISCPL(-1)+C2*CPLPOP+C3*IAPINST+C4*CDDCPL+C5*IRDUM

NOB = 40	1079	4 70	1097 /	NOVAR = 6	5		NCOEF = 6		NOINST	= 9
RSQ =	1970	0	.561486	CRSQ =		0.496998	F(5/34) =	8.70691	PROB>F	=
O. SER =		88092	.2	SSR =		2.638479E+11	DW(0) =	1.81383	COND =	
66.3523 MAX:HAT	=	N	A	RSTUDENT	=	NA	DFFITS =	NA		

		*************	================	
COEF	ESTIMATE	STER	TSTAT	PROB> T
C0	147417.	245308.	0.600947	0.551861
C1	0.356873	0.171495	2.08095	0.045042
C2	408.224	202.584	2.01509	0.051857
C3	-196790.	199077.	-0.988514	0.329884
C4	50.99	23.1613	2.20151	0.034586
C5	191357.	71490.1	2.67669	0.01136
				=================

TWO-STAGE LEAST SQUARES

MODEL NAME: CPL88

4 : RAPCPL = E0+E1*AFCCPL+E2*AQTCPL

NOB = 40)	TO 1007 /	NOVAR = 3		NCOEF = 3		NOINST = 5
RANGE: RSQ =	1978 1	0.909189	CRSQ =	0.904281	F(2/37) =	185.22	PROB>F =
SER =		2.97338	SSR =	327.116	DW(0) =	1.66991	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

	=================			===================
COEF	ESTIMATE	STER	TSTAT	PROB> T
			============	=============
EO	18.1491	2.41357	7.51963	0.
E1	0.916996	0.078052	11.7485	0.
E2	712.121	66.9199	10.6414	0.

TWO-STAGE LEAST SQUARES

MODEL NAME: CPL88

5 : CAPCPL = F0+F1*AFCCPL+F2*AQTCPL

NOB = 40	NOVAR = 3	NCOEF = 3		NOINST = 5
RANGE: 1978 1 RSQ = 0.	TO 1987 4 0.866647 CRSQ =	0.859439 F(2/37) =	120.23	PROB>F =

SER =	4.02005	SSR =		597.95	DW(0) =	1.67435	COND =
10.8867 MAX:HAT =	NA	RSTUDENT :	= .	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
=======================================				
FO	13.5629	3.26318	4.15633	0.
F1	1.00284	0.105528	9.50306	0.
F2	802.625	90.4767	8.87107	0.
	***************	222222222222222222	***************************************	

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: CPL88

6 : IAPCPL = G0+G1*AFCCPL+G2*AQTCPL

NOB = 39			NOVAR = 4		NCOEF = 4		NOINST = 5
RANGE: RSQ =	1978 1	0.894042	CRSQ =	0.88496	F(2/35) =	98.4399	PROB>F =
U. SER =		3.03845	SSR =	323.127	DW(0) =	1.38516	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
2222222222222222				
GO	-1.22539	6.97441	-0.175698	0.861544
G1	1.21008	0.189418	6.3884	0.
G2	84.2618	165.553	0.508973	0.613965
AR1.0006	0.6	0.128554	4.6673	0.

TWO-STAGE LEAST SQUARES

MODEL NAME: CPL88

7 : QTCPL = I0+I1*TFCPL

NOB = 40	0				NOVAR = 2		NCOEF = 2		NOINST = 5
RANGE :	1978	1	TO	1987 4					
RSQ =			0.	869439	CRSQ =	0.866003	F(1/38) =	253.052	PROB>F =
0.	•								
SER =		11	596.	8	SSR =	5.110460E+09	DW(0) =	2.05374	COND =
8.72252									
MAX:HAT	=		NA		RSTUDENT =	NA	DFFITS =	NA	

			===========================	=================	
COEF	ESTIMATE	STER	TSTAT	PROB> T	
			222222222222222222		
10	-6792.01	8101.98	-0.838315	0.407096	
11	1.18856	0.083733	14.1946	0.	

A.5 CITY PUBLIC SERVICE BOARD OF SAN ANTONIO

Model -- CPS

.

SYMBOL DECLARATIONS

ENDOGENOUS:	
AFCSA	- AVERAGE FIXED COSTS:DOLLARS PER MWH
AQTSA	- AVERAGE FUEL COSTS:DOLLARS PER MWH
CAPINST	- INSTRUMENT FOR CAPSA
CAPSA	- COMMERCIAL AVERAGE PRICE:000'S OF \$ PER MWH
COCSAU	- TOTAL COAL COST:DOLLARS
COCSA1	- CONDITIONAL VARIABLE IN THE IF ARGUMENT
COCSA2	- CONDITIONAL VARIABLE IN THE IF ARGUMENT
CORCOND	- CONDITIONAL VARIABLE IN THE IF ARGUMENT
CSSA	- COMMERCIAL SALES:MWH
TAPINST	- INSTRUMENT FOR TAPSA
IAPSA	- INDUSIRIAL AVERAGE PRICE:000'S OF > PER MWH
ISSA	
NCRCOND	- CONDITIONAL VADIADIE IN THE LE ADCIMENT
NUCCOMP	- CONDITIONAL VARIABLE IN THE IF ARGUMENT
NUCSAO	- TOTAL VARIABLE IN THE IT ARGUMENT
NUCSA1	- CONDITIONAL VADIARIE IN THE LE ADCIMENT
NUCSA2	CONDITIONAL VARIABLE IN THE IF ARGIMENT
NURCOND	CONDITIONAL VARIABLE IN THE IF ARGUMENT
QTSA	- TOTAL FUEL EXPENSE ESTIMATE:DOLLARS
RAPINST	- INSTRUMENT FOR RAPSA
RAPSA	- RESIDENTIAL AVERAGE PRICE:000'S OF \$ PER MWH
RSSA	- RESIDENTIAL SALES:MWH
TFSA	- TOTAL FUEL EXPENSE REQUIREMENTS:DOLLARS
TOTSSA	- TOTAL SYSTEM SALES:MWH
EXOGENOUS:	
CCDDSAN	- INSTRUMENT FOR COMMERCIAL COOLING DEGREE DAYS
CDDSANAN	- COOLING DEGREE DAYS:NUMBER OF DAYS
CHDDSAN	- INSTRUMENT FOR COMMERCIAL HEATING DEGREE DAYS
FCSA	- FOUR-QUARTER SUM OF COSTS:THOUSANDS OF DOLLARS
OSSA	- OTHER SALES: MWH
PIINST	- INSTRUMENT FOR PERSONAL INCOME (BILLIONS OF DULLARS)
QASALU	AVERAGE PRICE OF COALIDULARS PER MIBIU
QASANG	AVERAGE PRICE OF NATURAL GAS DULLARS PER MIDTU
QASANU	- AVERAGE FRICE OF NUCLEAR FUELDULLARS PER MMBTU
OCSANU	
RCDDCAN	- NOCLEAR GARAGITIRW
PCSA	
PHODSAN	INCOMENTAL COSTONERS INCOMENCE INCOMENCE DAYS
SADOD	
TEXCEL	TEXAS CONSIDER PRICE INDEX
COEFFICIENT:	
A0 A1 A	2 A3 A4 B0 B1 B2 B3 B4 D0 D1 D2 E0 E1 E2 G0 G1 H0 H1 H2 H3 H5 I0
I1 I2	
EQUATIONS	
2.	
3.	CSSA = H0+H1*SADDS+H2*IADINST+H3*CDDSAN+H5*ISSA(-/)
4.	
5.	CAPSA = E0+E1*AOTSA+E2*AFCSA
6:	IAPSA = I0+I1*AQTSA+I2*AFCSA
7:	QTSA = G0+G1*TFSA
8:	RAPINST = RAPSA/TEXCPI*RCSA
9:	CAPINST = CAPSA/TEXCPI
10:	IAPINST = IAPSA/(-2)/TEXCPI(-2)
11:	TOTSSA = RSSA+CSSA+OSSA+ISSA
12:	NUCCOMP = TOTSSA*1.06-0.65*2190*QCSANU

13:	NURCOND = IF NUCCOMP GT 0 THEN NUCCOMP ELSE TOTSSA*1.06
14:	CORCOND = IF NURCOND EQ NUCCOMP THEN NUCCOMP-QCSACO*2190*0.7 ELSE C
15:	NGRCOND = 1F CORCOND GT 0 THEN CORCOND ELSE 0
16:	NUCSA1 = QCSANU*2190*0.65*0.0105*QASANU
17:	NUCSA2 = TOTSSA*1.06*0.0105*QASANU
18:	NUCSAO = IF NURCOND EQ NUCCOMP THEN NUCSA1 ELSE NUCSA2
19:	COCSA1 = QCSACO*2190*0.7*0.0102*QASACO
20:	COCSA2 = NUCCOMP*0.0102*QASACO
21:	COCSAO = IF NUCCOMP-QCSACO*2190*0.7 GT 0 THEN COCSA1 ELSE COCSA2
22:	NGCSA = NGRCOND*0.0105*QASANG
23:	TFSA = NGCSA+COCSAO+NUCSAO
24:	AQTSA = QTSA/TOTSSA
25:	AFCSA = FCSA/(TOTSSA+TOTSSA(-1)+TOTSSA(-2)+TOTSSA(-3))

Results -- CPS

TWO-STAGE LEAST SQUARES

MODEL NAME: SA88

1 : RSSA = A0+A1*RHDDSAN+A2*RCDDSAN+A3*PIINST+A4*RAPINST

NOB = 39	1079	1 70 1007 7	NOVAR = 5		NCOEF = 5		NOINST = 8
RSQ =	1978	0.945396	CRSQ =	0.938972	F(4/34) =	147.165	PROB>F =
SER =		78866.4	SSR =	2.114767E+11	DW(0) =	2.01264	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T	
AO	-537936.	114267.	-4.7077	0.	
A1	0.001188	0.000194	6.13585	0.	
A2	0.001849	0.000132	13.9693	0.	
A3	925625.	229258.	4.03748	0.	
A4	-38.1923	23.8586	-1.60078	0.118679	
***************	**************				

ORDINARY LEAST SQUARES

MODEL NAME: SA88

2 : CSSA = B0+B1*CHDDSAN+B2*CCDDSAN+B3*SAPOP+B4*CSSA(-1)

NOB = 3	39 87 3		NOVAR = 5		NCOEF = 5		RANGE: 1978 1
RSQ =		0.973394	CRSQ =	0.970264	F(4/34) =	310.983	PROB>F =
SER =	7	19997.4	SSR =	1.359647E+10	DW(0) =	2.2089	COND =
MAX:HAT	Γ =	0.247577	RSTUDENT =	-2.38331	DFFITS =	-1.36711	

************				================
COEF	ESTIMATE	STER	TSTAT	PROB> T
=======================================	***************		**************	
BO	-575875.	68465.6	-8.41116	0.
B1	0.002045	0.00044	4.65209	0.
B2	0.003792	0.00029	13.0758	0.
B3	700.438	81.0565	8.64136	0.
B4	0.177188	0.052719	3.36099	0.001931

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: SA88

3 : ISSA = H0+H1*SAPOP+H2*IAPINST+H3*CDDSANAN+H5*ISSA(-4)

NOB = 38		NOVAR = 6		NCOEF = 6		NOINST = 7
RANGE: RSQ =	0.917431	CRSQ =	0.904529	F(4/32) =	71.1106	PROB>F =
O. SER =	35848.8	SSR =	4.112443E+10	DW(0) =	1.81796	COND =
307.507 MAX:HAT	= NA	RSTUDENT =	NA	DFFITS =	NA	

					Ĺ
COEF	ESTIMATE	STER	TSTAT	PROB> T	
					ľ
НО	9221.84	180370.	0.051127	0.959542	
H1	332.854	253.171	1.31474	0.197941	
H2	-4.314031E+06	1.179364E+07	-0.365793	0.716927	ľ
H3	49.2976	20.7609	2.37454	0.023735	1
H5	0.610208	0.187048	3.26231	0.002629	
AR1.0003	0.46	0.147841	3.11145	0.0039	Ì

TWO-STAGE LEAST SQUARES

MODEL NAME: SA88

4 : RAPSA = D0+D1*AQTSA+D2*AFCSA

NOB = 39	1978 1	TO 1987 3	NOVAR = 3		NCOEF = 3		NOINST = 5
RSQ =	1710 1	0.967237	CRSQ =	0.965417	F(2/36) =	531.408	PROB>F =
SER =		0.002261	SSR =	0.000184	DW(0) =	2.06428	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
		=================================		
DO	0.008766	0.001746	5.02193	0.
D1	0.73015	0.073977	9.86996	0.
D2	0.00025	1.222968E-05	20.4681	0.

TWO-STAGE LEAST SQUARES

MODEL NAME: SA88

5 : CAPSA = E0+E1*AQTSA+E2*AFCSA

NOB = 39	1087 3	NOVAR = 3		NCOEF = 3		NOINST = 5
RSQ =	0.960542	CRSQ =	0.958349	F(2/36) =	438.177	PROB>F =
SER =	0.002423	SSR =	0.000211	DW(0) =	2.09571	COND =
MAX:HAT =	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
EO	0.006359	0.001871	3.3989	0.001667
E1	0.872581	0.079286	11.0055	0.
E2	0.000222	1.310740E-05	16.9052	0.
		**************	*************	

TWO-STAGE LEAST SQUARES

MODEL NAME: SA88

6 : IAPSA = I0+I1*AQTSA+I2*AFCSA

NOB = 39	9	TO 1987 3	NOVAR = 3		NCOEF = 3		NOINST = 5
RSQ =	1710 1	0.910007	CRSQ =	0.905007	F(2/36) =	182.016	PROB>F =
SER =		0.002531	SSR =	0.000231	DW(0) =	2.19406	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	COEF ESTIMATE		TSTAT	PROB> T	
10	0.00218	0.001954	1.1159	0.271858	
11	0.596858	0.082809	7.20765	0.	
12	0.000146	1.368974E-05	10.6905	0.	

TWO-STAGE LEAST SQUARES

MODEL NAME: SA88

7 : QTSA = GO+G1*TFSA

NOB = 39	9	1 TO 1097 7	NOVAR = 2		NCOEF = 2		NOINST = 5
DSO =	1970	0 06756	CPS0 =	0 0/6128	F(1/37) =	668 381	PPORSE =
0		0.747540	CR3e -	0.740120	1(1)51) -	000.301	PRODPT -
SER =		5134.16	SSR =	9.753073E+08	DW(0) =	2.37529	COND =
6.55498							
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

1					
İ	COEF	ESTIMATE	STER	TSTAT	PROB> T
I					
İ	GO	1946.51	2757.21	0.705969	0.484629
I	G1	0.971658	0.048412	20.0708	0.
İ					

A.6 SOUTHWESTERN PUBLIC SERVICE COMPANY

Model -- SPS

SYMBOL DECLARATIONS

ENDOGENOUS	:	
AFCSPS	-	AVERAGE FIXED COSTS:DOLLARS PER MWH
AQTSPS	-	AVERAGE FUEL COSTS:DOLLARS PER MWH
CAPNINS	ST -	INSTRUMENT FOR CAPNSPS
CAPNSPS		COMMERCIAL AVERAGE PRICE (NON-TEXAS):000'S OF \$ PER MWH
CAPTINS	5T -	INSTRUMENT FOR CAPTSPS
CAPTSPS	-	COMMERCIAL AVERAGE PRICE (TEXAS):000'S OF \$ PER MWH
COCCOMP		CONDITIONAL VARIABLE IN THE IF ARGUMENT
COCSPSO) -	TOTAL COAL COST:DOLLARS
COCSPS1	-	CONDITIONAL VARIABLE IN THE IF ARGUMENT
CSNSPS	-	COMMERCIAL SALES (NON-TEXAS):MWH
CSSPS	-	COMMERCIAL SALES: MWH
CSTSPS	-	COMMERCIAL SALES (TEXAS): MWH
IAPNINS	T -	INSTRUMENT FOR IAPNSPS
IAPNSPS	-	INDUSTRIAL AVERAGE PRICE (NON-TEXAS):000'S OF \$ PER MWH
IAPTINS	- 16	INSTRUMENT FOR TAPTSPS
IAPTSPS	-	INDUSTRIAL AVERAGE PRICE (TEXAS):000'S OF \$ PER MWH
ISNSPS		INDUSTRIAL SALES (NON-TEXAS):MWH
ISSPS	-	INDUSTRIAL SALES: MWH
NGCSPS	-	TOTAL NATURAL GAS COST:DOLLARS
NGRSPS	-	CONDITIONAL VARIABLE IN THE IF ARGUMENT
NISTSPS	-	INDUSTRIAL SALES (TEXAS):MWH
QTSPS		TOTAL FUEL EXPENSE ESTIMATE:DOLLARS
RAPNINS	T -	INSTRUMENT FOR RAPNSPS
RAPNSPS		RESIDENTIAL AVERAGE PRICE (NON-TEXAS):000'S OF \$ PER MWH
RAPTINS	T -	INSTRUMENT FOR RAPTSPS
RAPTSPS	-	RESIDENTIAL AVERAGE PRICE (TEXAS):UUU'S OF \$ PER MWH
RSNSPS	-	RESIDENTIAL SALES (NON-TEXAS): MWH
RSSPS	-	RESIDENTIAL SALES: MWH
RSISPS	-	RESIDENTIAL SALES (TEXAS): MWH
TESPS	-	TOTAL FUEL EXPENSE REQUIREMENTS: DULLARS
TOTSSPS	-	IUIAL STSIEM SALES:MWH
EXOCENCIIS.		
CCNSDS.	-	COMMERCIAL CUSTOMERS (NON-TEXAS)-NUMBER OF CUSTOMERS
CCTSPS		COMMERCIAL CUSTOMERS (TEXAS)-NUMBER OF CUSTOMERS
CNCDDIN	c -	INSTRUMENT FOR (NON-TEXAS) COMMERCIAL COULD REPORT DAYS
CNHODIN	c -	INSTRUMENT FOR (NON-TEXAS) COMMERCIAL GOLDAND DECREE DAYS
CTCDDIN	s -	INSTRUMENT FOR (NON-TEXAS) COMMERCIAL HEALING DEGREE DATS
CTHODIN	s -	INSTRUMENT FOR (TEXAS) COMMERCIAL GOLING DEGREE DATS
CUSTDUM	J _	COMPERIAL FOR CIERCES DIMMY
FCSDS	-	
ISNDUM	-	INDISTINAL DEVENUE DIMMY
MISSPS	-	MISCELLANEOUS SALES-MUH
PIINST	-	INSTRUMENT FOR PERSONAL INCOME (RILLIONS OF DOLLARS)
PNCCOM	-	DDICE OF NATIDAL CAS TO COMMEDICAL CITETONEDS CENTS DED THEDM
DNCDES	-	DDICE OF NATURAL GAS TO COMMERCIAL COSTONEDS.CENTS FER THEM
OASPSCO	-	AVEDAGE DDIGE OF COAL-DOLLADS DED MMETH
OASPSNG	-	AVERAGE PRICE OF NATIRAL CAS-DOLLARS DEP MMRTH
0029200	-	COAL CADACITY-MU
PCNCDC	-	DESTRUCTIONEDS (NON-TEXAS) -NUMBED OF CLISTOMEDS
PCTCDC	-	DESIDENTIAL COSTONERS (NON TEXAS). NONDER OF COSTONERS
PNCDDING	· 2	INSTRIMENT FOR (NON-TEXAS) RESIDENTIAL COOLING DECREE DAVE
PNHODING	s -	INSTRUMENT FOR (NON-TEXAS) RESIDENTIAL COOLING DEGREE DAYS
PTCDDING		INSTRUMENT FOR (TEVAS) RESIDENTIAL CONTING DEGREE DAYS
DTHODING	c -	INSTRUMENT FOR (TEXAS) RESIDENTIAL COOLING DEGREE DATS
SPEDOR	-	SEDVICE ADEA DODINATION +THONSANDS OF DEDSONS
TEYCOT	-	TEVAS CONSIMED DOICE INDEY
TEACPT	-	TEARS GONGONER FRIGE INDEA

 COEFFICIENT:
 A0
 A1
 A2
 A3
 A4
 B0
 B1
 B2
 D0
 D1
 D2
 D3
 D4
 D5
 E0
 E1
 E2
 F0
 F2
 F3
 G0
 G1
 G2
 J0

 J2
 J3
 J4
 J5
 K0
 K1
 K2
 L0
 L1
 L2
 L3
 L4
 M0
 M1
 M2
 N0
 N1
 N2
 N3
 O0
 O1
 O2
 W0
 W1

1: RSTSPS = A0+A1*RAPTINST+A2*RTCDDINS+A3*RTHDDINS+A4*PIINST	
2: CSTSPS = D0+D2*CTHDDINS+D3*CTCDDINS+D4*CAPTINST+D5*SPSPOP+D1*CSTSP	PS(-1)
3: NISTSPS = F0+F2*IAPTINST+F3*SPSPOP	
4: RSNSPS = J0+J2*RNCDDINS+J3*RNHDDINS+J4*RAPNINST*CUSTDUM+J5*RSNSPS((-4)
5: CSNSPS = L0+L1*CNHDDINS+L2*CNCDDINS+L3*CUSTDUM*CAPNINST+L4*CSNSPS((-4)
6: ISNSPS = N0+N1*ISNSPS(-4)+N2*IAPNINST*ISNDUM+N3*SPSPOP	
7: RAPTSPS = B0+B1*AQTSPS+B2*AFCSPS	
8: CAPTSPS = E0+E1*AQTSPS+E2*AFCSPS	
9: IAPTSPS = G0+G1*AQTSPS+G2*AFCSPS	
10: RAPNSPS = K0+K1*AQTSPS+K2*AFCSPS	
11: CAPNSPS = M0+M1*AQTSPS+M2*AFCSPS	
12: IAPNSPS = 00+01*AQTSPS+02*AFCSPS	
13: RAPTINST = RAPTSPS/TEXCPI*RCTSPS	
14: CAPTINST = CAPTSPS(-2)/TEXCPI(-2)*CCTSPS	
15: IAPTINST = IAPTSPS/TEXCPI	
16: RAPNINST = RAPNSPS(-4)/PNGRES(-4)*RCNSPS	
17: CAPNINST = CAPNSPS(-2)/PNGCOM(-2)*CCNSPS	
18: IAPNINST = IAPNSPS(-2)/TEXCPI(-2)	
TOTAL COMPANY SALES:	
19: TOTSSPS = RSSPS+CSSPS+ISSPS+MISSPS	
20: COCCOMP = RSSPS*1.0789+CSSPS*1.0787+ISSPS*1.0399+MISSPS*1.0464-QCS	SPSCO*0.7*2190
21: NGRSPS = IF COCCOMP GT 0 THEN COCCOMP ELSE 0	
22: NGCSPS = NGRSPS*QASPSNG*0.0105	
23: COCSPS1 = QCSPSCO*0.0102*QASPSCO*0.7*2190	
24: COCSPSO = IF COCCOMP GT 0 THEN COCSPS1 ELSE (RSSPS*1.0789+CSSPS*1. +MISSPS*1.0464)*0.0102*QASPSCO	.0787+ISSPS*1.0399
25: TFSPS = NGCSPS+COCSPS0	
26: QTSPS = W0+W1*TFSPS	
AVERAGE COST EQUATIONS:	
27: AQTSPS = QTSPS/TOTSSPS	
SALES EQUATIONS:	
28: RSSPS = RSTSPS+RSNSPS	
29: CSSPS = CSTSPS+CSNSPS	
30: ISSPS = NISTSPS+ISNSPS	
AVERAGE FIXED COST EQUATIONS:	
31: AFCSPS = FCSPS/(TOTSSPS+TOTSSPS(-1)+TOTSSPS(-2)+TOTSSPS(-3))	

Results -- SPS

TWO-STAGE LEAST SQUARES

MODEL NAME: SPS88

1 : RSTSPS = A0+A1*RAPTINST+A2*RTCDDINS+A3*RTHDDINS+A4*PIINST

NOB = 39	2		4007 7	NOVAR = 5			NCOEF = 5		NOINST = 8
RANGE: RSQ =	1978	1 10	1987 3 .928459	CRSQ =		0.920043	F(4/34) =	110.314	PROB>F =
U. SER =		20303	.4	SSR =		1.401573E+10	DW(0) =	1.73616	COND =
MAX:HAT	=	N	A	RSTUDENT	=	NA	DFFITS =	NA	

			22222222222222222222	==================	
COEF	ESTIMATE	STER	TSTAT	PROB> T	
				===========	
AO	-313346.	82927.4	-3.77856	0.	
A1	-4.66441	13.2512	-0.351999	0.727011	
A2	0.001489	8.009002E-05	18.5912	0.	
A3	0.000557	4.409450E-05	12.6241	0.	
A4	624804。	131980.	4.73409	0.	

TWO-STAGE LEAST SQUARES

MODEL NAME: SPS88

2 : CSTSPS = D0+D2*CTHDDINS+D3*CTCDDINS+D4*CAPTINST+D5*SPSPOP+D1*CSTSPS(-1)

NOB = 39	9	1 TO 1097 3	NOVAR = 6		NCOEF = 6		NOINST = 9
RSQ =	1910	0.950805	CRSQ =	0.943351	F(5/33) =	127.561	PROB>F =
O. SER =		13486.1	SSR =	6.001893E+09	DW(0) =	2.06388	COND =
171.468 MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF ESTIMATE		STER	TSTAT	PROB> T	
				=================	
DO	-397236.	92880.8	-4.27683	0.	
D1	0.467717	0.057922	8.07494	0.	
D2	0.001221	0.000162	7.5265	0.	
D3	0.005213	0.000307	16.9576	0.	
D4	-74.9199	69.235	-1.08211	0.287048	
D5	755.676	181.289	4.16834	0.	

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: SPS88

3 : NISTSPS = F0+F2*IAPTINST+F3*SPSPOP

NOB = 38	B 1078	1	то	1087 3	NOVAR = 4		NCOEF = 4		NOINST = 5
RSQ =	1770		0	.888708	CRSQ =	0.878888	F(2/34) =	90.5006	PROB>F =
SER =		2	6503		SSR =	2.388196E+10	DW(0) =	1.85569	COND =
MAX:HAT	= .		N	A	RSTUDENT =	NA	DFFITS =	NA	

=============================	=================		==============	==============
COEF ESTIMATE		STER	STER TSTAT	
==============================	==========================		=======================================	===============
FO	-1.096512E+06	289134.	-3.79241	0.
F2	-1.078935E+07	6.916899E+06	-1.55985	0.128055
F3	3288.02	334.993	9.81519	0.
AR1.0003	0.34	0.153987	2.20798	0.034092

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: SPS88

4 : RSNSPS = J0+J2*RNCDDINS+J3*RNHDDINS+J4*RAPNINST*CUSTDUM+J5*RSNSPS(-4)

NOB = 38	B 1078 1	TO 1087 3	NOVAR = 6		NCOEF = 6		NOINST = 9
RSQ =	1770 1	0.970977	CRSQ =	0.966442	F(4/32) =	214.114	PROB>F =
SER =		5718.06	SSR =	1.046278E+09	DW(0) =	2.0655	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	
COEF	COEF ESTIMATE		TSTAT	PROB> T			
--------------------	---------------	--------------	----------	-----------------			
				===============			
10 0	58826.1	10602.2	5.54849	0.			
J2	0.000655	7.702992E-05	8.50009	0.			
J3	0.000333	3.804229E-05	8.76643	0.			
J4	-145.752	43.2705	-3.36838	0.001984			
J5	0.377269	0.075162	5.01942	0.			
AR1.0004	0.88	0.063859	13.7803	0.			
==================							

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: SPS88

5 : CSNSPS = L0+L1*CNHDDINS+L2*CNCDDINS+L3*CUSTDUM*CAPNINST+L4*CSNSPS(-4)

NOB = 38	B 1078 1	TO 1087 3	NOVAR = 6		NCOEF = 6		NOINST = 9
RSQ =	1970 1	0.975259	CRSQ =	0.971393	F(4/32) =	252.28	PROB>F =
SER =		5296.64	SSR =	8.977421E+08	DW(0) =	1.95935	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	COEF ESTIMATE		TSTAT	PROB> T
2222222222222222				==================
LO	62111.6	14399.1	4.31358	0.
L1	0.00073	0.000132	5.54367	0.
L2	0.002575	0.000379	6.80191	0.
L3	-175.267	219.561	-0.798261	0.430603
L4	0.444207	0.085778	5.17854	0.
AR1.0005	0.92	0.050951	18.0565	0.

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: SPS88

6 : ISNSPS = N0+N1*ISNSPS(-4)+N2*IAPNINST*ISNDUM+N3*SPSPOP

NOB = 38	1078	1 10	1087 3	NOVAR =	5		NCOEF =	5		NOINST	= 7
RSQ =	1770	0.	921832	CRSQ =		0.912357	F(3/33)	-	97.2915	PROB>F	=
SER =		17973.	4	SSR =		1.066046E+10	DW(0) =		1.10616	COND =	
MAX:HAT	=	NA		RSTUDENT	=	NA	DFFITS :	-	NA		

COEF	ESTIMATE	STER	TSTAT	PROB> T
***************	****************	***************		
NO	-929486.	730480.	-1.27243	0.212113
N1	0.355575	0.142719	2.49144	0.017926
N2	-822125.	752210.	-1.09295	0.282332
N3	1466.25	983.24	1.49125	0.145395
AR1.0006	0.8	0.09283	8.61786	0.

TWO-STAGE LEAST SQUARES

MODEL NAME: SPS88

7 : RAPTSPS = B0+B1*AQTSPS+B2*AFCSPS

NOVAR = 3

NOINST = 5

RANGE: RSQ =	1978 1	TO 1987 3 0.828002	CRSQ =		0.818447	F(2/36) =	86.6523	PROB>F =
0. SER =		0.004824	SSR =		0.000838	DW(0) =	2.12823	COND =
MAX:HAT	=	NA	RSTUDENT	=	NA	DFFITS =	NA	

1					
	COEF	ESTIMATE	STER	TSTAT	PROB> T
1					
	BO	0.004871	0.004612	1.0562	0.297912
-	B1	0.966535	0.189284	5.10628	0.
	B2	0.002576	0.000312	8.25846	0.
1					

TWO-STAGE LEAST SQUARES

MODEL NAME: SPS88

8 : CAPTSPS = E0+E1*AQTSPS+E2*AFCSPS

NOB = 39 RANGE:	1978 1	TO 1987 3	NOVAR = 3		NCOEF = 3		NOINST = 5
RSQ = 0.		0.851996	CRSQ =	0.843773	F(2/36) =	103.618	PROB>F =
SER = 13.0152		0.003896	SSR =	0.000546	DW(0) =	2.37492	COND =
MAX:HAT	=	NA	RSTUDENT =	= NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
=======================================		===============================	=======================================	=======================================
EO	0.003682	0.003725	0.988675	0.329421
E1	0.763955	0.152859	4.99776	0.
E2	0.002387	0.000252	9.47572	0.
========================				

TWO-STAGE LEAST SQUARES

MODEL NAME: SPS88

9 : IAPTSPS = G0+G1*AQTSPS+G2*AFCSPS

NOB = 39 RANGE - 1	978 1	TO 1987 3	NOVAR = 3		NCOEF = 3		NOINST = 5
RSQ =	10 1	0.797149	CRSQ =	0.78588	F(2/36) =	70.7353	PROB>F =
SER =		0.003345	SSR =	0.000403	DW(0) =	2.57059	COND =
MAX:HAT =		NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T	
				==================	
GO	0.002009	0.003198	0.62833	0.533754	
G1	0.747944	0.131249	5.69867	0.	
G2	0.001434	0.000216	6.63229	0.	

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: SPS88

10 : RAPNSPS = KO+K1*AQTSPS+K2*AFCSPS

NOB = 38

NCOEF = 4

NOINST = 5

RANGE: RSQ =	1978 1	TO 1987 3 0.90847	CRSQ =		0.900393	F(2/34) =	112.487	PROB>F =
U. SER =		0.003071	SSR =		0.000321	DW(0) =	2.03827	COND =
MAX:HAT	=	NA	RSTUDENT	=	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
KO	0.012637	0.011409	1.10758	0.275817
K1	0.603812	0.243091	2.48389	0.018084
K2	0.002353	0.000626	3.75564	0.
AR1.0010	0.74	0.161192	4.59081	0.

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: SPS88

11 : CAPNSPS = MO+M1*AQTSPS+M2*AFCSPS

NOB = 38	B 1078 1	TO 1087 3	NOVAR = 4		NCOEF = 4		NOINST = 5
RSQ =	1970 1	0.965681	CRSQ =	0.962653	F(2/34) =	318.903	PROB>F =
SER =		0.001946	SSR =	0.000129	DW(0) =	2.45366	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
MO	0.016747	0.011431	1.46507	0.152089
M1	0.397497	0.155907	2.54957	0.015465
M2	0.002041	0.00061	3.34517	0.002015
AR1.0011	0.88	0.081378	10.8137	0.

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: SPS88

12 : IAPNSPS = 00+01*AQTSPS+02*AFCSPS

NOB = 38	3	TO 1087 3	NOVAR = 4		NCOEF = 4		NOINST = 5
RSQ =	1970 1	0.924526	CRSQ =	0.917866	F(2/34) =	138.828	PROB>F =
SER =		0.002218	SSR =	0.000167	DW(0) =	2.47301	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

	************	************		
COEF	ESTIMATE	STER	TSTAT	PROB> T

00	0.016212	0.01215	1.33425	0.190989
01	0.28084	0.17893	1.56955	0.12578
02	0.001416	0.000657	2.15654	0.038202
AR1.0012	0.86	0.092032	9.34457	0.

TWO-STAGE LEAST SQUARES

 MODEL NAME:
 SPS88

 26 :
 QTSPS = W0+W1*TFSPS

 NOB = 39
 NOVAR = 2
 NCOEF = 2
 NOINST = 5

 RANGE:
 1978 1
 TO
 1987 3
 RSQ =
 0.757926
 CRSQ =
 0.751384
 F(1/37) =
 115.846
 PROB>F =
 0.

 SER =
 11541.6
 SSR =
 4.928692E+09
 DW(0) =
 2.30456
 COND =

 9.13945
 MAX:HAT =
 NA
 RSTUDENT =
 NA
 DFFITS =
 NA

1						L
	COEF	ESTIMATE	STER	TSTAT	PROB> T	ĺ
						1
	WO	-13809.2	8546.56	-1.61576	0.114642	Ĺ
1	W1	1.22788	0.11228	10.9358	0.	Ĺ
						Ĺ

This page is intentionally left blank.

A.7 SOUTHWESTERN ELECTRIC POWER COMPANY

Model -- SWEPCO

SYMBOL DECLARATIONS

EN	DOGENOUS:		
	AFCSWEP	-	AVERAGE FIXED COSTS:DULLARS PER MWH
	AQTSWEP		AVERAGE FUEL COSTS:DOLLARS PER MWH
	CAPNINST	-	INSTRUMENT FOR CAPNSWEP
	CAPNSWEP	-	COMMERCIAL AVERAGE PRICE (NON-TEXAS):000'S OF \$ PER MWH
	CAPTINST		INSTRUMENT FOR CAPTSWEP
	CAPTSWEP	-	COMMERCIAL AVERAGE PRICE (TEXAS):000'S OF \$ PER MWH
	COCSWEPO	-	TOTAL COAL COST:DOLLARS
	COCSWEP1	•	CONDITIONAL VARIABLE IN THE IF ARGUMENT
	COCSWEP2	-	CONDITIONAL VARIABLE IN THE IF ARGUMENT
	CORCOND	-	CONDITIONAL VARIABLE IN THE IF ARGUMENT
	CSNSWEP	-	COMMERCIAL SALES (NON-TEXAS): MWH
	CSSWEP		COMMERCIAL SALES: MWH
	CSTSWEP		COMMERCIAL SALES (TEXAS): MWH
	IAPNINST	-	INSTRUMENT FOR TAPNSWEP
	TADNELED		INDUSTRIAL AVERACE DRICE (NON-TEXAS) ODDIS OF \$ DEP MUH
	TADTINGT		INSTRIMENT FOR LADTSUED
	TADTQUED		INDUSTRIAL AVEDACE DDICE (TEVAS):000/S OF & DED MUH
	TENELED	_	INDUSTRIAL AVERAGE PRICE (TEARS).000'S OF \$ FER MWH
	ISNSWEP		INDUSTRIAL SALES (NUN-TEXAS):MWN
	ISSWEP		INDUSTRIAL SALES TEVAS ANUL
	ISISWEP	-	INDUSTRIAL SALES (TEXAS):MWH
	LICSWEPU	•	TOTAL NUCLEAR FUEL COST:DOLLARS
	LICSWEP1	-	CONDITIONAL VARIABLE IN THE IF ARGUMENT
	LICSWEP2	-	CONDITIONAL VARIABLE IN THE IF ARGUMENT
	LIGCCOMP	-	CONDITIONAL VARIABLE IN THE IF ARGUMENT
	LIGRCOND	-	CONDITIONAL VARIABLE IN THE IF ARGUMENT
	NGCSWEP	-	TOTAL NATURAL GAS COST:DOLLARS
	NGRCOND	-	CONDITIONAL VARIABLE IN THE IF ARGUMENT
	OAPNINST	-	INSTRUMENT FOR OAPNSWEP
	OAPNSWEP	-	OTHER AVERAGE PRICE (NON-TEXAS):000'S OF \$ PER MWH
	OAPTINST	-	INSTRUMENT FOR OAPTSWEP
	OAPTSWEP	-	OTHER AVERAGE PRICE (TEXAS):000'S OF \$ PER MWH
	OSNSWEP	-	OTHER SALES (NON-TEXAS): MWH
	OSSWEP		OTHER SALES: MWH
	OSTSHEP	-	OTHER SALES (TEXAS):MUH
	OTSUEP		TOTAL FUEL EXPENSE ESTIMATE DOLLARS
	PADNINST	-	INSTRUMENT FOR RAPNSUED
	DADNEUED		DESIDENTIAL AVEDACE DDICE (NON-TEYAS) ONOUS OF & DED MUH
	DADTINCT	_	INCIDENTIAL AVERAGE FRICE (NON TEARS).000 5 OF \$ FER INNI
	DADTOUED		DESTDENTIAL MALEDACE DELCE (TEVAS) 000/S OF & DED MUN
	RAPISWEP		RESIDENTIAL AVERAGE PRICE (TEXAS):000'S OF \$ PER MWH
	RSNSWEP	-	RESIDENTIAL SALES (NUN-TEXAS):MWN
	RSSWEP	-	RESIDENTIAL SALES:MWH
	RSTSWEP	-	RESIDENTIAL SALES (TEXAS):MWH
	TFSWEP	-	TOTAL FUEL EXPENSE REQUIREMENTS:DOLLARS
	TOTSSWEP	-	TOTAL SYSTEM SALES:MWH
EXC	DGENOUS:		
	CCNSWEP	•	COMMERCIAL CUSTOMERS (NON-TEXAS):NUMBER OF CUSTOMERS
	CCTSWEP	-	COMMERCIAL CUSTOMERS (TEXAS):NUMBER OF CUSTOMERS
	CDDSWEP	•	COOLING DEGREE DAYS:NUMBER OF DAYS
	CNCDDINS	-	INSTRUMENT FOR (NON-TEXAS) COMMERCIAL COOLING DEGREE DAYS
	CNHDDINS	-	INSTRUMENT FOR (NON-TEXAS) COMMERCIAL HEATING DEGREE DAYS
	CTCDDINS		INSTRUMENT FOR (TEXAS) COMMERCIAL COOLING DEGREE DAYS
	CTHDDINS	-	INSTRUMENT FOR (TEXAS) COMMERCIAL HEATING DEGREE DAYS
	FCSWEP		FOUR-QUARTER SUM OF COSTS: THOUSANDS OF DOLLARS
	HDDSWEP	-	HEATING DEGREE DAYS:NUMBER OF DAYS
	NPIINST		INSTRUMENT FOR (NON-TEXAS) PERSONAL INCOME (BILLIONS OF DOLLARS)
	OAPNDUM	-	OTHER (NON-TEXAS) AVERAGE PRICE DUMMY
	PNGCOM		PRICE OF NATURAL GAS TO COMMERCIAL CUSTOMEDS CENTS DED THEDM
	PNGIND		DDICE OF NATIONAL CAS TO INDISTDIAL CUSTOMEDS CENTS DED TUEDM
	DNCDES	-	DDICE OF NATIONAL CAS TO DESIDENTIAL CUSTOMERS.CENTS FER THERM
	OASUEDCO		AVEDACE DDICE OF COAL DOLLARS DED MMDTH
	CASHEFUU	-	ATERAGE FRICE OF GOAL DOLLARD FLA MIDIO

QASWEPL QASWEPL QCSWEPL RCNSWEP RCTSWEP RNCDDIN RTCDDIN RTCDDIN SWENNAG SWENNAG SWENNAG SWENPOP SWETPOP TEXCPI TPIINST WSSWEP	 AVERAGE PRICE OF LIGNITE:DOLLARS PER MMBTU AVERAGE PRICE OF NATURAL GAS:DOLLARS PER MMBTU COAL CAPACITY:MW LIGNITE CAPACITY:MW RESIDENTIAL CUSTOMERS (NON-TEXAS):NUMBER OF CUSTOMERS RESIDENTIAL CUSTOMERS (TEXAS):NUMBER OF CUSTOMERS INSTRUMENT FOR (NON-TEXAS) RESIDENTIAL COOLING DEGREE DAYS INSTRUMENT FOR (NON-TEXAS) RESIDENTIAL HEATING DEGREE DAYS INSTRUMENT FOR (TEXAS) RESIDENTIAL COOLING DEGREE DAYS INSTRUMENT FOR (TEXAS) RESIDENTIAL HEATING DEGREE DAYS INSTRUMENT FOR (TEXAS) RESIDENTIAL HEATING DEGREE DAYS SINSTRUMENT FOR (TEXAS) RESIDENTIAL HEATING DEGREE DAYS SERVICE AREA POPULATION (NON-TEXAS):THOUSANDS OF PERSONS SERVICE AREA POPULATION (TEXAS):THOUSANDS OF PERSONS SERVICE AREA POPULATION (TEXAS):THOUSANDS OF PERSONS TEXAS CONSUMER PRICE INDEX INSTRUMENT FOR (TEXAS) PERSONAL INCOME (BILLIONS OF DOLLARS) WHOLESALE SALES:MWH 	5
AO A1 G2 HO H1 MO M1 M2	A2 A3 A5 B0 B1 B2 C0 C1 D0 D1 D2 D4 D5 E0 E1 E2 F0 F1 F2 F3 G0 G1 H2 H3 H4 H5 I0 I1 I2 J0 J1 J2 J3 J4 J5 K0 K1 K2 L0 L1 L2 L3 L4 L5 N0 N1 N2 N3 O0 O1 O2 P0 P1 P2 P3 P4 P5 Q0 Q1 Q2 Q3	
EQUATIONS 1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: 16: 17: 18: 19: 20: 21: 22: 23: 24: 25: 26: 27: 28: 29: 30: 31: 32: 33: 34: 35: 36: 37: 38: 39: 40: 41: 42: 42: 42: 42: 42: 42: 42: 42	RSTSWEP = A0+A1*RTHDDINS+A2*RTCDDINS+A3*RAPTINST+A5*TPIINST CSTSWEP = D0+D1*CTHDDINS+D2*CTCDDINS+A5*RAPTINST+A5*CSTSWEP(-1) ISTSWEP = F0+F1*ISTSWEP(-1)+F2*IAPTINST+H3*CDDSWEP+H4*SWETPOP+H5*HDDSWEP RSNSWEP = J0+J1*RCDDINS+J2*CNHDDINS+J3*SWETNAGHL4*CAPPINIST+L5*CSNSWEP(-1) ISNSWEP = L0+L1*CCDDINS+L2*CNHDDINS+L3*SWETNAGHL4*CAPPINIST+L5*CSNSWEP(-1) ISNSWEP = L0+L1*CACDDINS+L2*CNHDDINS+L3*SWETNAGHL4*CAPPINIST+L5*CSNSWEP(-1) ISNSWEP = B0+B1*AGTSWEP+2*AFCSWEP CAPTSWEP = B0+B1*AGTSWEP+2*AFCSWEP CAPTSWEP = B0+B1*AGTSWEP+2*AFCSWEP CAPTSWEP = B0+B1*AGTSWEP+2*AFCSWEP CAPTSWEP = B0+B1*AGTSWEP+2*AFCSWEP CAPTSWEP = B0+B1*AGTSWEP+2*AFCSWEP CAPTSWEP = B0+B1*AGTSWEP+2*AFCSWEP CAPTSWEP = B0+B1*AGTSWEP+2*AFCSWEP CAPTSWEP = B0+B1*AGTSWEP+2*AFCSWEP CAPTSWEP = B0+B1*AGTSWEP+2*AFCSWEP CAPTSWEP = 00+01*AGTSWEP+2*AFCSWEP CAPTSWEP = 00+01*AGTSWEP+2*AFCSWEP CAPTSWEP = 00+01*AGTSWEP+2*AFCSWEP CAPTINST = RAPTSWEP/PMGRES*RCTSWEP CAPTINST = CAPTSWEP/PMGRES*RCTSWEP CAPTINST = CAPTSWEP/PMGRIND OAPHINST = CAPTSWEP/PMGRIND TOTSSWEP = RSSWEP+CSSWEP+1SSWEP+0SSWEP+WSSWEP RSSWEP = RSSWEP+CSSWEP+1SSWEP SSWEP = RSSWEP+CSSWEP+1SSWEP SSWEP = SSSWEP+CSSWEP+10867+CSSWEP+1.0478+0SSWEP*1.0259 -0.7*2100*GCSWEP1 L1GCCOMP = FSSWEP*1.0867+CSSWEP*1.0862+1SSWEP*1.0478+0SSWEP*1.0867+WSSWEP*1.0259 CORCODD IF LIGRCOMP TEWL L1GCCOMP -CSSWEP*1.0867+WSSWEP*1.0259 CORCODD IF LIGRCOMP TEWL L1GCCOMP -TEWS L1GCCOMP = RSSWEP*1.0867+CSSWEP*1.0862+1SSWEP*1.0478+0SSWEP*1.0867+WSSWEP*1.0259 CORCOMD IF LIGCCOMP TEWL L1GCCOMP -TEWS L1GSCWEP = QSSWEP*0.0027+Q0.770.0112*QASWEP11 L1CSWEP2 = (RSSWEP*1.0867+CSSWEP*1.0862+1SSWEP*1.0478 +0SSWEP2.0673190*0.7*0.0112*QASWEP10 L1CSWEP2 = CSSWEP*0.0027+Q0.7*0.0112*QASWEP10 L1CSWEP2 = RGSNEP1.0867+CSSWEP1.0862+1SSWEP*1.0478 +0SSWEP2.0	
44:	AFCSWEP = $FCSWEP/(TOTSSWEP+TOTSSWEP(-1)+TOTSSWEP(-2)+TOTSSWEP(-3))$	

Results -- SWEPCO

TWO-STAGE LEAST SQUARES

MODEL NAME: SWEPCO88

1 : RSTSWEP = A0+A1*RTHDDINS+A2*RTCDDINS+A3*RAPTINST+A5*TPIINST

NOB = 39	1070	1 70	1097 7	NOVAR = 5		NCOEF = 5		NOINST = 8
RANGE: RSQ =	1978	0	.939186	CRSQ =	0.932031	F(4/34) =	131.27	PROB>F =
SER = 37.8558		24931	.8	SSR =	2.113430E+10	DW(0) =	1.9954	COND =
MAX:HAT	=	N	A	RSTUDENT =	NA	DFFITS =	NA	

				=======================
COEF	ESTIMATE	STER	TSTAT	PROB> T
		================================		================
AO	-143397.	58404.1	-2.45525	0.019348
A1	0.000962	0.000101	9.53731	0.
A2	0.002245	0.000119	18.8816	0.
A3	-728.738	291.263	-2.50199	0.017324
A5	774743.	131103.	5.90942	0.
==============				

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: SWEPCO88

2 : CSTSWEP = D0+D1*CTHDDINS+D2*CTCDDINS+D4*CAPTINST+D5*CSTSWEP(-1)

NOB = 38	B 1978 1	TO 1987 3	NOVAR = 6		NCOEF = 6		NOINST = 9
RSQ =	1710 1	0.98067	CRSQ =	0.97765	F(4/32) =	324.697	PROB>F =
SER =		7415.38	SSR =	1.759612E+09	DW(0) =	2.62795	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
=========================				
DO	177913.	28475.4	6.24797	0.
D1	0.001286	0.000159	8.0671	0.
D2	0.004977	0.000199	25.0346	0.
D4	-2545.95	928.741	-2.74129	0.009931
D5	0.287772	0.027859	10.3294	0.
AR1.0002	0.92	0.043435	21.181	0.

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: SWEPCO88

3 : ISTSWEP = F0+F1*ISTSWEP(-1)+F2*IAPTINST+F3*SWETPOP

NOB = 38	1079	1 TO 1097 7	NOVAR = 5		NCOEF = 5		NOINST = 8
RSQ =	1970	0.893998	CRSQ =	0.88115	F(3/33) =	69.579	PROB>F =
0. SER =		34477.6	SSR =	3.922719E+10	DW(0) =	1.65823	COND =
52.3115 MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

1		*************			
	COEF	ESTIMATE	STER	TSTAT	PROB> T
1					
	FO	-752054.	308472.	-2.438	0.02032
	F1	0.453125	0.176733	2.56389	0.015091
	F2	-3.408001E+06	4.867994E+06	-0.700083	0.488782
	F3	2495.42	846.941	2.94639	0.005859
1	AR1.0003	0.34	0.162004	2.09871	0.043576

TWO-STAGE LEAST SQUARES

MODEL NAME: SWEPCO88

4 : OSTSWEP = H0+H1*OSTSWEP(-1)+H2*OAPTINST+H3*CDDSWEP+H4*SWETPOP+H5*HDDSWEP

NOB = 39	2		NOVAR = 6		NCOEF = 6		NOINST = 11
RANGE: RSQ =	1978 1	10 1987 3 0.913369	CRSQ =	0.900243	F(5/33) =	69.5851	PROB>F =
U. SER =		1134.2	SSR =	4.245144E+07	DW(0) =	1.6784	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

		222222222222222222		
COEF	ESTIMATE	STER	TSTAT	PROB> T
			==========================	22222222222222222
HO	-14894.6	4832.59	-3.08211	0.00413
H1	0.329953	0.073188	4.50827	0.
H2	-104902.	555706.	-0.188773	0.851427
H3	6.37814	0.656451	9.71609	0.
H4	74.1074	13.9709	5.30441	0.
H5	2.06132	0.501825	4.10765	0.

TWO-STAGE LEAST SQUARES

MODEL NAME: SWEPCO88

5 : RSNSWEP = J0+J1*RNCDDINS+J2*RNHDDINS+J3*NPIINST+J4*RSNSWEP(-1)+J5*RAPNINST

NOB = 39	9			NOVAR =	6		NCOEF = 6		NOINST = 11
RANGE: RSQ =	1978	1 TO 0	1987 3 .964072	CRSQ =		0.958628	F(5/33) =	177.099	PROB>F =
0. SER =		32003	.5	SSR =		3.379939E+10	DW(0) =	2.37773	COND =
59.5742 MAX:HAT	=	N	A	RSTUDENT	=	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
				================
JO	-281047.	86705.9	-3.24139	0.002718
J1	0.002363	0.000108	21.7812	0.
J2	0.000908	8.215198E-05	11.0531	0.
J3	496197.	136585.	3.63288	0.
J4	0.120746	0.044715	2.70033	0.010844
J5	-311.654	270.004	-1.15425	0.256686

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: SWEPCO88

6 : CSNSWEP = L0+L1*CNCDDINS+L2*CNHDDINS+L3*SWENNAG+L4*CAPNINST+L5*CSNSWEP(-1)

NOB = 38

NOVAR = 7

NOINST = 10

RANGE: RSQ =	1978 1 TO 1987 3 0.97294	CRSQ =	0.967702	F(5/31) =	185.766	PROB>F =
0. SER =	12166.7	SSR =	4.588921E+09	DW(0) =	2.25876	COND =
MAX:HAT	= NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
LO	-536100.	120378.	-4.45349	0.
L1	0.006343	0.00026	24.3798	0.
L2	0.00184	0.000223	8.2473	0.
L3	2.17247	0.409124	5.31005	0.
L4	-905.281	1624.74	-0.557186	0.581401
L5	0.221495	0.044476	4.98009	0.
AR1.0006	0.52	0.152796	3.40323	0.001855

TWO-STAGE LEAST SQUARES

MODEL NAME: SWEPCO88

7 : ISNSWEP = NO+N1*ISNSWEP(-4)+N2*IAPNINST+N3*SWENNAG

NOB = 39	1078	1 TO 1087 3	NOVAR = 4		NCOEF = 4		NOINST = 9
RSQ =	1970	0.703874	CRSQ =	0.678492	F(3/35) =	27.731	PROB>F =
SER =		32811.2	SSR =	3.768010E+10	DW(0) =	1.88769	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

	================================			
COEF	ESTIMATE	STER	TSTAT	PROB> T
==================				=================
NO	-281083.	165608.	-1.69728	0.09852
N1	0.754935	0.147818	5.10721	0.
N2	-3.939859E+07	1.930306E+07	-2.04105	0.048843
N3	1.39361	0.604739	2.30448	0.027247

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: SWEPCO88

8 : OSNSWEP = P0+P1*OSNSWEP(-1)+P2*OAPNINST+P3*CDDSWEP+P4*HDDSWEP+P5*SWENPOP

NOB = 38	3 1978 1	TO 1987 3	NOVAR = 7		NCOEF = 7		NOINST = 10
RSQ =	1710 1	0.965498	CRSQ =	0.95882	F(5/31) =	144.584	PROB>F =
SER =		1177.52	SSR =	4.298301E+07	DW(0) =	1.59546	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

						l
	COEF	ESTIMATE	STER	TSTAT	PROB> T	ĺ
						Ĺ
1	PO	-97575.9	12459.3	-7.83159	0.	Ĺ
	P1	0.077465	0.06813	1.13703	0.264239	l
	P2	-296697.	324776.	-0.913544	0.368007	Ì
	P3	6.92719	0.585456	11.8321	0.	
	P4	2.11434	0.463337	4.56328	0.	
	P5	152.605	16.1289	9.46159	0.	ľ
1	AR1.0008	0.26	0.163615	1.5891	0.122186	l
1						

TWO-STAGE LEAST SQUARES

MODEL NAME: SWEPCO88

9 : RAPTSWEP = B0+B1*AQTSWEP+B2*AFCSWEP

NOB = 39	>		NOVAR = 3		NCOEF = 3		NOINST = 7
RANGE: RSQ =	1978 1	TO 1987 3 0.877593	CRSQ =	0.870792	F(2/36) =	129.05	PROB>F =
U. SER =		0.006077	SSR =	0.00133	DW(0) =	1.74538	COND =
MAX: HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
2222222222222222222222				
BO	-0.002477	0.003788	-0.653976	0.517283
B1	1.04048	0.50253	2.07048	0.045637
B2	0.001879	0.000438	4.29351	0.
				==================

TWO-STAGE LEAST SQUARES

MODEL NAME: SWEPCO88

10 : CAPTSWEP = E0+E1*AQTSWEP+E2*AFCSWEP

NOB = 39)		NOVAR = 3		NCOEF = 3		NOINST = 7
RANGE:	1978 1	TO 1987 3 0.898653	CRSQ =	0.893022	F(2/36) =	159.607	PROB>F =
0. SER =		0.003352	SSR =	0.000404	DW(0) =	2.25786	COND =
22.1294 MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
EO	0.00944	0.00209	4.51761	0.
E1	0.817288	0.277182	2.94856	0.005577
E2	0.001058	0.000241	4.38231	0.

TWO-STAGE LEAST SQUARES

MODEL NAME: SWEPCO88

11 : IAPTSWEP = G0+G1*AQTSWEP+G2*AFCSWEP

NOB = 39	,		NOVAR = 3		NCOEF = 3		NOINST = 7
RANGE: RSQ =	1978 1	TO 1987 3 0.870403	CRSQ =	0.863203	F(2/36) =	120.892	PROB>F =
U. SER =		0.003233	SSR =	0.000376	DW(0) =	1.88766	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
				===================
GO	0.004348	0.002016	2.15739	0.037725
G1	0.976855	0.267368	3.65359	0.
G2	0.000636	0.000233	2.73004	0.009739

TWO-STAGE LEAST SQUARES

MODEL NAME: SWEPCO88

12 : OAPTSWEP = IO+I1*AQTSWEP+I2*AFCSWEP

NOB = 39	1079 1	TO 1097 7	NOVAR = 3		NCOEF = 3		NOINST = 7
RSQ =	19/0 1	0.960266	CRSQ =	0.958058	F(2/36) =	435.01	PROB>F =
0. SER =		0.002861	SSR =	0.000295	DW(0) =	2.5213	COND =
22.1294 MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

				========================
COEF	ESTIMATE	TIMATE STER		PROB> T
				==============
10	-0.003653	0.001783	-2.0489	0.047815
11	0.645981	0.236539	2.73096	0.009717
12	0.001898	0.000206	9.21588	0.
				==============

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: SWEPCO88

13 : RAPNSWEP = K0+K1*AQTSWEP+K2*AFCSWEP

NOB = 38	3		NOVAR = 4		NCOEF = 4		NOINST = 7
RANGE: RSQ =	1978 1	TO 1987 3 0.894802	CRSQ =	0.88552	F(2/34) =	96.4004	PROB>F =
U. SER =		0.004833	SSR =	0.000794	DW(0) =	1.92211	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

		===================	=======================================	===============
COEF	ESTIMATE	STER	TSTAT	PROB> T
=======================================	============================		==============	=============
K0	5.573727E-05	0.004045	0.013779	0.989087
K1	0.348951	0.529737	0.658725	0.514509
K2	0.002126	0.00045	4.72565	0.
AR1.0013	0.24	0.163518	1.46773	0.151369
				=============

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: SWEPCO88

14 : CAPNSWEP = MO+M1*AQTSWEP+M2*AFCSWEP

NOB = 38 RANGE:	1978 1	TO 1987 3	NOVAR = 4		NCOEF = 4		NOINST = 7
RSQ =		0.935512	CRSQ =	0.929821	F(2/34) =	164.409	PROB>F =
SER =		0.003202	SSR =	0.000348	DW(0) =	1.78251	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	COEF ESTIMATE		TSTAT	PROB> T
MO	0.000682	0.003414	0.19965	0.842944
M1	0.510698	0.436339	1.17041	0.249972
M2	0.001652	0.000368	4.49016	0.
AR1.0014	0.4	0.148677	2.6904	0.010984

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: SWEPCO88

15 : IAPNSWEP = 00+01*AQTSWEP+02*AFCSWEP

NOB = 38	3		NOVAR = 4		NCOEF = 4		NOINST = 7
RANGE: RSQ =	1978 1	10 1987 3 0.798238	CRSQ =	0.780435	F(2/34) =	44.8385	PROB>F =
U. SER =		0.00541	SSR =	0.000995	DW(0) =	1.73906	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

		***************	**************	
COEF	ESTIMATE	STER	TSTAT	PROB> T
00	-0.001885	0.00441	-0.427567	0.671662
01	0.697765	0.577994	1.20722	0.235679
02	0.001265	0.000491	2.57519	0.014541
AR1.0015	0.22	0.162845	1.35097	0.185626
2222222222222222				================

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: SWEPCO88

16 : OAPNSWEP = Q0+Q1*AQTSWEP+Q2*AFCSWEP+Q3*OAPNDUM

NOB = 38	8		NOVAR = 5		NCOEF = 5		NOINST = 8
RANGE: RSQ =	1978 1	10 1987 3 0.873883	CRSQ =	0.858596	F(3/33) =	57.1653	PROB>F =
U. SER =		0.015748	SSR =	0.008184	DW(0) =	1.89579	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

	===================			==================
COEF	ESTIMATE	STER	TSTAT	PROB> T
		=================		
QO	-0.015152	0.029132	-0.520108	0.60646
Q1	0.589517	2.65856	0.221743	0.82588
Q2	0.006073	0.002573	2.36036	0.02432
Q3	-0.095062	0.012245	-7.76357	0.
AR1.0016	0.6	0.113866	5.26935	0.

TWO-STAGE LEAST SQUARES

MODEL NAME: SWEPCO88

42 : QTSWEP = CO+C1*TFSWEP

NOB = 39	NOVAR = 2	NCOEF = 2	NOINST = 7
RANGE: 1978 1	TO 1987 3		
RSQ =	0.833459 CRSQ =	0.828958 F(1/37) = 185.	.168 PROB>F =
0.			

SER =	10531.3	SSR =	4.103571E+09	DW(0) =	1.61805	COND =
5.93571 MAX:HAT =	NA	RSTUDENT =	NA	DFFITS =	NA	

				=======================
COEF	ESTIMATE	STER	TSTAT	PROB> T
=======================================	===================	================================	=======================================	============
CO	-562.598	5146.89	-0.109308	0.913549
C1	0.949269	0.076319	12.4381	0.

This page is intentionally left blank.

A.8 LOWER COLORADO RIVER AUTHORITY

Model -- LCRA

SYMBOL DECLARATIONS

ENDOGENOUS:	AVERAGE FIXED COSTS:DOLLARS PER MWH
AQTLCRA -	AVERAGE FUEL COSTS:DOLLARS PER MWH
CAPINST -	INSTRUMENT FOR CAPLCRA
COCLCRA -	
CSLCRA -	COMMERCIAL SALES (ADJUSIED): MMA
HYRCOMP -	CONDITIONAL VARIABLE LEADING TO THE IF ARGUMENT
IAPINST -	INSTRUMENT FOR IAPLCRA
IRSLCRA -	IRRIGATION SALES (ADJUSTED): MWH
IRSLCRA1 -	IRRIGATION SALES: MWH
ISLCRA -	INDUSTRIAL SALES (ADJUSTED): MWH
ISLCRA1 -	INDUSTRIAL SALES: MWH
NGCLCRA -	TOTAL NATURAL GAS COST: DOLLARS
NGRLCKA -	GUNDITIONAL VARIABLE IN THE IF ARGUMENT
OSI CRA -	MISCELLANFOLS SALES (ADJUSTED): MWH
OSLCRA1 -	MISCELLANEOUS SALES: MWH
QTLCRA -	TOTAL FUEL EXPENSE ESTIMATE:DOLLARS
RAPINST -	INSTRUMENT FOR RAPLCRA
RSLCRA -	RESIDENTIAL SALES (ADJUSTED):MWH
RSLCRA1 -	RESIDENTIAL SALES:MWH
TFLCRA -	TOTAL FUEL EXPENSE REQUIREMENTS: DOLLARS
IUISLCRA -	IUIAL STSIEM SALES:MWH
WAPLCKA -	WHOLESALE AVERAGE PRICE .000'S OF \$ PER HWH
EXOGENOUS:	
CCDDINST -	INSTRUMENT FOR COMMERCIAL COOLING DEGREE DAYS
CCLCRA -	COMMERCIAL CUSTOMERS:NUMBER OF CUSTOMERS
CDDAUSTI -	COOLING DEGREE DAYS:NUMBER OF DAYS
CORLCRA -	GENERATION REQUIREMENTS - COAL
FULURA -	FOUR-QUARIER SUM OF COSIS: INOUSANDS OF DOLLARS
ICPACPI -	CANING DERICE INDER OF DATS
LCRANAG -	SERVICE AREA NONAGRICULTURAL EMPLOYMENT: THOUSANDS OF PERSONS
PIINST -	INSTRUMENT FOR PERSONAL INCOME (BILLIONS OF DOLLARS)
PNGCOM -	PRICE OF NATURAL GAS TO COMMERCIAL CUSTOMERS:CENTS PER THERM
PNGIND -	PRICE OF NATURAL GAS TO INDUSTRIAL CUSTOMERS:CENTS PER THERM
QALCRANG -	AVERAGE PRICE OF NATURAL GAS:DOLLARS PER MMBTU
QALCRASU -	AVERAGE PRICE OF COAL:DOLLARS PER MMBTU
QCLCRAHY -	HTDRO CAPACITIEM
PCICPA -	INSIKUMENI FUK KESIDENITAL GOOLING DEGKEE DATS
RHDDINST -	INSTRUMENT FOR RESIDENTIAL HEATING DEGREE DAYS
COEFFICIENT:	
A0 A1 A2	A3 A4 A5 B0 B1 B2 B3 C0 C1 C2 C3 C4 F0 F1 F2 F3 H0 H1 H2 H3 H4
11 12 MO M	
FOUATIONS	
1:	RSLCRA1 = A0+A1*RSLCRA1(-4)+A2*RCDDINST+A3*RHDDINST+A4*PIINST+A5*RAPINST
2:	CSLCRA1 = C0+C1*CSLCRA1(-4)+C2*CCDDINST+C3*CAPINST+C4*LCRANAG
3:	ISLCRA1 = F0+F1*IAPINST+F2*CDDAUSTI+F3*LCRANAG
4:	IRSLCRA1 = I1*IRSLCRA1(-1)+I2*CDDAUSTI
5:	OSLCRA1 = H0+H1*HDDAUSTI+H2*CDDAUSTI+H3*OAPINST+H4*OSLCRA1(-1)
6:	RSLCRA = RSLCRA1/0.944
1:	CSLCRA = CSLCRA / 0.944
0:	ISCURA = ISCURAT/0.944 $ISCURA = ISCURAT/0.944$
10.	OSI CRA = OSI CRA1/0.944
11:	TOTSLCRA = RSLCRA+CSLCRA+ISLCRA+OSLCRA+IRSLCRA
12:	WAPLCRA = B0+B1*AQTLCRA+B2*AFCLCRA+B3*AQTLCRA(-2)

13:	RAPINST = WAPLCRA/LCRACPI*RCLCRA
14:	CAPINST = WAPLCRA/PNGCOM*CCLCRA
15:	IAPINST = WAPLCRA/PNGIND
16:	OAPINST = WAPLCRA/LCRACPI
17:	HYRCOMP = TOTSLCRA/0.95-QCLCRAHY*2190*0.15
18:	QTLCRA = MO+M1*TFLCRA
19:	NGRLCRA = IF HYRCOMP-CORLCRA GT 0 THEN HYRCOMP-CORLCRA ELSE 0
20:	NGCLCRA = IF NGRLCRA GT 0 THEN NGRLCRA*0.0105*QALCRANG ELSE 0
21:	COCLCRA = IF HYRCOMP-CORLCRA GT 0 THEN CORLCRA*0.0102*QALCRASU
	ELSE HYRCOMP*0.0102*QALCRASU
22:	TFLCRA = NGCLCRA+COCLCRA
AVE	RAGE COST EQUATIONS :
23:	AQTLCRA = QTLCRA/TOTSLCRA
24:	AFCLCRA = FCLCRA/(TOTSLCRA+TOTSLCRA(-1)+TOTSLCRA(-2)+TOTSLCRA(-3))

Results -- LCRA

TWO-STAGE LEAST SQUARES

MODEL NAME: LCRA88

1 : RSLCRA1 = A0+A1*RSLCRA1(-4)+A2*RCDDINST+A3*RHDDINST+A4*PIINST+A5*RAPINST

NOB = 39	9	1 TO 1987 3	NOVAR = 6		NCOEF = 6		NOINST = 10
RSQ =	17/0	0.924612	CRSQ =	0.913189	F(5/33) =	80.9467	PROB>F =
SER =		50764.2	SSR =	8.504109E+10	DW(0) =	1.77055	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	COEF ESTIMATE		TSTAT	PROB> T	
AO	-45550.9	86897.4	-0.524191	0.603649	
A1	0.799946	0.09915	8.06801	0.	
A2	0.000309	0.000158	1.94904	0.059834	
A3	0.000323	0.000197	1.64322	0.109832	
A4	236361.	151253.	1.56269	0.127666	
A5	-9.849331E-05	0.008498	-0.011591	0.990822	
==========================			*************	**************	

TWO-STAGE LEAST SQUARES

MODEL NAME: LCRA88

2 : CSLCRA1 = C0+C1*CSLCRA1(-4)+C2*CCDDINST+C3*CAPINST+C4*LCRANAG

NOB = 39	1078	1 TO 1	087 3	NOVAR = 5			NCOEF = 5	5		NOINST	= 9
RSQ =	1970	0.9	83778	CRSQ =		0.98187	F(4/34) =		515.484	PROB>F	=
U. SER =		16286.9)	SSR =		9.018929E+09	DW(0) =		1.60257	COND =	
MAX:HAT	=	NA		RSTUDENT	=	NA	DFFITS =		NA		

	************				I
COEF	ESTIMATE	STER	TSTAT	PROB> T	İ
					İ
C0	-109189.	69597.6	-1.56886	0.125942	İ
C1	0.418705	0.09013	4.64555	0.	ĺ
C2	0.001583	0.000262	6.04442	0.	İ
C3	-3.54875	1.62209	-2.18776	0.035658	ĺ
C4	13249.3	2120.97	6.24682	0.	ĺ
					Í

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: LCRA88

3 : ISLCRA1 = F0+F1*IAPINST+F2*CDDAUSTI+F3*LCRANAG

NOB = 37	7	70 4007 7	NOVAR = 5		NCOEF = 5		NOINST = 7
RANGE: RSQ =	1978 2	0.816537	CRSQ =	0.793605	F(3/32) =	35.6056	PROB>F =
SER =		9278.37	SSR =	2.754824E+09	DW(0) =	1.56043	COND =
131.044 MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

==================				
COEF	ESTIMATE	STER	TSTAT	PROB> T
=================				================
FO	-3881.93	208494.	-0.018619	0.985261
F1	-20678.8	70793.6	-0.2921	0.772095
F2	9.29991	2.67909	3.47129	0.001505
F3	4776.78	3007.81	1.58812	0.122091
AR1.0003	0.08	0.176284	0.453813	0.653027

ORDINARY LEAST SQUARES

MODEL NAME: LCRA88

4 : IRSLCRA1 = I1*IRSLCRA1(-1)+I2*CDDAUSTI

NOB = 3 TO 198	9		NOVAR = 2		NCOEF = 2		RANGE: 1978 1
RSQ =		0.885552	CRSQ =	0.882459	F(2/37) =	NA	PROB>F =
SER =		1251.85	SSR =	5.798387E+07	DW(0) =	2.14681	COND =
MAX:HAT	=	0.214527	RSTUDENT =	3.29527	DFFITS =	1.03533	

				=================
COEF	ESTIMATE	STER	TSTAT	PROB> T
				================
11	0.187557	0.061116	3.06888	0.004008
12	3.03725	0.216417	14.0343	0.
				=============

TWO-STAGE LEAST SQUARES

MODEL NAME: LCRA88

5 : OSLCRA1 = H0+H1*HDDAUSTI+H2*CDDAUSTI+H3*OAPINST+H4*OSLCRA1(-1)

NOB = 39	9 1078 1	TO 1087 3	NOVAR = 5		NCOEF = 5		NOINST = 9
RSQ =	1770 1	0.874117	CRSQ =	0.859307	F(4/34) =	59.023	PROB>F =
SER =		1730.87	SSR =	1.018615E+08	DW(0) =	1.62265	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
			===============================	
HO	16889.8	6557.2	2.57576	0.014521
H1	6.00867	1.25418	4.7909	0.
H2	6.45238	0.914748	7.05372	0.
H3	-319.46	84.6123	-3.77558	0.
H4	0.620233	0.10697	5.79817	0.
	*************			**************

TWO-STAGE LEAST SQUARES

MODEL NAME: LCRA88

12 : WAPLCRA = B0+B1*AQTLCRA+B2*AFCLCRA+B3*AQTLCRA(-2)

NOB = 39	1078 1	TO 1087 3	NOVAR = 4		NCOEF = 4		NOINST = 7
RSQ =	1970 1	0.731098	CRSQ =	0.708049	F(3/35) =	31.7197	PROB>F =
SER =		2.77115	SSR =	268.775	DW(0) =	1.86725	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

=====		22222222222222222				l
j c	OEF	ESTIMATE	STER	TSTAT	PROB> T	İ
=====						l
BO		10.2093	3.16092	3.22985	0.002694	i
B1		524.771	133.775	3.92279	ΰ.	Í
B2		0.692646	0.24382	2.84081	0.007452	ĺ
B3		242.116	111.893	2.16381	0.037388	ĺ
=====				22222222222222222		ĺ

TWO-STAGE LEAST SQUARES

MODEL NAME: LCRA88

18 : QTLCRA = MO+M1*TFLCRA

NOB = 39	9 1078 1	TO 1087	NOVAR = 2		NCOEF = 2		NOINST = 7
RSQ =	1970	0.73846	CRSQ =	0.731391	F(1/37) =	104.47	PROB>F =
SER =		5016.43	SSR =	9.310884E+08	DW(0) =	2.1846	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

				===============
COEF	ESTIMATE	STER	TSTAT	PROB> T
1220222222222222				
MO	7397.35	2919.33	2.53392	0.015645
M1	0.756881	0.082427	9.18242	0.
				================

A.9 WEST TEXAS UTILITIES COMPANY

Model -- WTU

SYMBOL DECLARATIONS

ENDOGENOUS:	
AFCWTU	- AVERAGE FIXED COSTS:DOLLARS PER MWH
AQTWTU	- AVERAGE FUEL COSTS:DOLLARS PER MWH
CAPINST	- INSTRUMENT FOR CAPWID
CAPWIU	COMMERCIAL AVERAGE PRICE:000'S OF S PER MWN
COCUTUO	- CONDITIONAL VARIABLE IN THE IF ARGOMENT
COCUTUI	- CONDITIONAL VADIABLE IN THE LE ADRIMENT
CSUTU	
TAPINST	
IAPUTU	- INDISTRIAL AVERAGE PRICE:000/S OF \$ PER MWH
ISWTU	- INDUSTRIAL SALES: MWH
NGCWTU	- TOTAL NATURAL GAS COST:DOLLARS
NGRWTU	- NATURAL GAS REQUIREMENT:MW
OAPINST	- INSTRUMENT FOR OAPWTU
OAPWTU	- OTHER AVERAGE PRICE:000'S OF \$ PER MWH
OSWTU	- OTHER SALES:MWH
QTWTU	- TOTAL FUEL EXPENSE ESTIMATE:DOLLARS
RAPINST	- INSTRUMENT FOR RAPWTU
RAPWTU	- RESIDENTIAL AVERAGE PRICE:000'S OF \$ PER MWH
RSWIU	- RESIDENTIAL SALESIMWH
TOTOUTU	- IOTAL FUEL EXPENSE REQUIREMENTS: DULLARS
UADINGT	- INSTRIMENT FOR LADUTI
WAPINGI	- WHOLESALE AVERAGE PRICE-000/S OF \$ PER MWH
USUTU	WHOLESALE SALES: WH
nonro	
EXOGENOUS:	
CCDDWTU	- INSTRUMENT FOR COMMERCIAL COOLING DEGREE DAYS
CCWTU	- COMMERCIAL CUSTOMERS:NUMBER OF CUSTOMERS
CDDWTU	- COOLING DEGREE DAYS:NUMBER OF DAYS
CGSWTU	- COTTONGIN SALES:MWH
CHDDWTU	- INSTRUMENT FOR COMMERCIAL HEATING DEGREE DAYS
FCWTU	- FOUR-QUARTER SUM OF COSTS:THOUSANDS OF DOLLARS
PIINST	- INSTRUMENT FOR PERSONAL INCOME (BILLIONS OF DOLLARS)
PNGCOM	- PRICE OF NATURAL GAS TO COMMERCIAL CUSTOMERS:CENTS PER THERM
PNGIND	- PRICE OF NATURAL GAS TO INDUSTRIAL CUSTOMERS SLEATS PER THERM
PNGRES	- PRICE OF NATURAL GAS TO RESIDENTIAL CUSTOMERSIGENTS PER THERM
OAUTUNG	A AVERAGE PRICE OF LOAL JOLLARS FER MMBIG
OCUTUCO	- COAL CADACITY-MU
RCDDWTU	- INSTRUMENT FOR RESIDENTIAL COOLING DEGREE DAYS
RCWTU	- RESIDENTIAL CUSTOMERS:NUMBER OF CUSTOMERS
RHDDWTU	- INSTRUMENT FOR RESIDENTIAL HEATING DEGREE DAYS
TEXCPI	- TEXAS CONSUMER PRICE INDEX
WTUNAG	- NONAGRICULTURAL EMPLOYMENT: THOUSANDS OF PERSONS
WTUPOP	- SERVICE AREA POPULATION: THOUSANDS OF PERSONS
COEFFICIENT:	
AU AI A	12 A3 A4 A5 B0 B1 B2 B3 B4 B5 C0 C1 C2 C3 D0 D1 D2 D3 D4 E0 E1 E2
E3 HU H1	HZ IU IT IZ JU JT JZ KU KZ KS LU LT LZ MU MT
FOUATIONS	
1.	
2.	
3:	ISHTU = C0+C1*ISHTU(-1)+C2*UTUNAG+C3*IAPINST
4:	OSWTU = D0+D1*OSWTU(-1)+D2*CDDWTU+D3*WTUPOP+D4*OAPINST
5:	WSWTU = E0+E1*WAPINST+E2*WTUNAG+E3*WSWTU(-1)
6:	TOTSWTU = RSWTU+CSWTU+ISWTU+OSWTU+WSWTU+CGSWTU
7:	RAPWTU = H0+H1*AFCWTU+H2*AQTWTU
8:	CAPWTU = I0+I1*AFCWTU+I2*AQTWTU
9:	IAPWTU = J0+J1*AFCWTU+J2*AQTWTU

10:	OAPWTU = KO+K3*AFCWTU+K2*AQTWTU
11:	WAPWTU = L0+L1*AFCWTU+L2*AQTWTU
12:	RAPINST = RAPWTU/PNGRES*RCWTU
13:	CAPINST = CAPWTU(-1)/PNGCOM(-1)*CCWTU
14:	IAPINST = IAPWTU(-2)/PNGIND(-2)
15:	OAPINST = OAPWTU/TEXCPI
16:	WAPINST = WAPWTU(-1)/TEXCPI(-1)
17:	COCCOMP = RSWTU*1.10498+CSWTU*1.09975+ISWTU*1.06977+OSWTU*1.09002+WSWTU*1.04894
	- QCWTUCO*0.7*2190
18:	NGRWTU = IF COCCOMP GT 0 THEN COCCOMP ELSE 0
19:	NGCWTU = NGRWTU*0.0105*QAWTUNG
20:	COCWTU1 = QCWTUCO*0.7*2190*0.0102*QAWTUCO
21:	COCWTU0 = IF COCCOMP GT 0 THEN COCWTU1 ELSE (RSWTU*1.10498+CSWTU*1.09975
	+ISWTU*1.06977+0SWTU*1.09002+WSWTU*1.04894)
	* 0.0102*QAWTUCO
22:	TFWTU = NGCWTU+COCWTU0
23:	QTWTU = MO+M1*TFWTU
24:	AQTWTU = QTWTU/TOTSWTU
25:	AFCWTU = FCWTU/(TOTSWTU+TOTSWTU(-1)+TOTSWTU(-2)+TOTSWTU(-3))

Results -- WTU

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: WTU88

7 : RAPWTU = H0+H1*AFCWTU+H2*AQTWTU

NOB = 38	1070 1	TO 1007 7	NOVAR = 4	4		NCOEF =	4		NOINST	= 7
RSQ =	19/0 1	0.878144	CRSQ =		0.867393	F(2/34)	=	81.673	PROB>F	=
SER =		0.004951	SSR =		0.000834	DW(0) =		2.45164	COND =	
MAX:HAT	=	NA	RSTUDENT	=	NA	DFFITS =		NA		

COEF	ESTIMATE	STER	TSTAT	PROB> T
			=========================	
HO	0.010153	0.020482	0.495717	0.623283
H1	0.00124	0.000694	1.78586	0.083044
H2	1.03162	0.32256	3.19822	0.002988
AR1.0007	0.84	0.106198	7.90975	0.

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: WTU88

9 : IAPWTU = J0+J1*AFCWTU+J2*AQTWTU

NOB = 38 RANGE: 1978	3 1 1	0 1987 3	NOVAR = 4		NCOEF = 4		NOINST = 7
RSQ =		0.882893	CRSQ =	0.87256	F(2/34) =	85.4442	PROB>F =
SER =		0.003506	SSR =	0.000418	DW(0) =	2.31077	COND =
MAX:HAT =		NA	RSTUDENT =	NA	DFFITS =	NA	

			=======================================	
COEF	ESTIMATE	STER	TSTAT	PROB> T
		=================		
JO	0.040997	0.028003	1.46401	0.152375
J1	-0.0003	0.000842	-0.35573	0.72424
J2	0.662592	0.222946	2.97199	0.005402
AR1.0009	0.94	0.047266	19.8875	0.
	=============			

TWO-STAGE LEAST SQUARES

MODEL NAME: WTU88

10 : OAPWTU = KO+K3*AFCWTU+K2*AQTWTU

NOB = 39	1078 1	TO 1087 3	NOVAR = 3		NCOEF = 3		NOINST = 7
RSQ =	1970 1	0.813194	CRSQ =	0.802816	F(2/36) =	78.3565	PROB>F =
SER =		0.0051	SSR =	0.000936	DW(0) =	0.600726	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

			2222222222222222	=================
COEF	ESTIMATE	STER	TSTAT	PROB> T
				===================
к0	-0.016361	0.005197	-3.14798	0.003297
K2	1.1877.7	0.157244	7.55371	0.
K3	0.001647	0.000144	11.4361	0.
				===============

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: WTU88

11 : WAPWTU = LO+L1*AFCWTU+L2*AQTWTU

NOB = 38	1978 1	TO 1987 3	NOVAR = 4		NCOEF = 4		NOINST = 6
RSQ =	1770 1	0.77021	CRSQ =	0.749934	F(2/34) =	37.987	PROB>F =
SER =		0.004516	SSR =	0.000693	DW(0) =	1.80177	COND =
MAX:HAT :	-	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
			==================	
LO	-0.017984	0.007572	-2.37498	0.023333
L1	0.001005	0.0002	5.03528	0.
L2	1.41285	0.217983	6.48147	0.
AR1.0011	0.36	0.159361	2.25902	0.030408
===============================			================	================

TWO-STAGE LEAST SQUARES

MODEL NAME: WTU88

8 : CAPWTU = I0+I1*AFCWTU+I2*AQTWTU

NOB = 39	NOVAR = 3	NCOEF = 3		NOINST = 7
RSQ =	0.743987 CRSQ =	0.729764 F(2/36) =	52.3089	PROB>F =
SER = 13.3862	0.005582 SSR =	0.001122 DW(0) =	0.650685	COND =

MAX:HAT =	NA	RSTUDENT =	NA	DFFITS =	· NA

COEF	ESTIMATE	STER	TSTAT	PROB> T
10	-0.005061	0.005689	-0.889699	0.379535
11	0.001341	0.000158	8.5037	0.
12	1.29837	0.172114	7.54368	0.

TWO-STAGE LEAST SQUARES

MODEL NAME: WTU88

1 : RSWTU = A0+A1*RHDDWTU+A2*RCDDWTU+A3*PIINST+A4*RSWTU(-4)+A5*RAPINST

NOB = 39	2		NOVAR = 6		NCOEF = 6		NOINST = 11
RANGE: RSQ =	1978	0.974233	CRSQ =	0.970328	F(5/33) =	249.538	PROB>F =
U. SER =		12944.4	SSR =	5.529424E+09	DW(0) =	2.04602	COND =
MAX:HAT	=	NA	RSTUDENT =	= NA	DFFITS =	NA	

22222222222222222			***************	
COEF	ESTIMATE	STER	TSTAT	PROB> T
	=========================			***************
AO	-140045.	49620.1	-2.82235	0.008015
A1	0.000657	9.544291E-05	6.88035	0.
A2	0.000971	0.000135	7.17463	0.
A3	486783.	116663。	4.17257	0.
A4	0.411381	0.085636	4.80384	0.
A5	-216.238	148.703	-1.45416	0.155348
				======================

TWO-STAGE LEAST SQUARES

MODEL NAME: WTU88

2 : CSWTU = B0+B1*CHDDWTU+B2*CCDDWTU+B3*WTUNAG+B4*CSWTU(-1)+B5*CAPINST

NOB = 39	9	1 10	1097 7	NOVAR = 6		NCOEF = 6		NOINST = 9
RSQ =	1970	0.	916781	CRSQ =	0.904172	F(5/33) =	72.7084	PROB>F =
SER =		13341.	7	SSR =	5.874037E+09	DW(0) =	1.56669	COND =
MAX:HAT	=	NA		RSTUDENT =	= NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T	İ
		**************		===============================	
BO	-174871.	51340.7	-3.40609	0.001749	İ
B1	0.001938	0.000332	5.84296	0.	I
B2	0.004303	0.00034	12.6616	0.	ĺ
B3	1534.75	425.523	3.60673	0.001012	
B4	0.474605	0.063457	7.47915	0.	
B5	-61.4626	46.4403	-1.32348	0.194773	

ORDINARY LEAST SQUARES

MODEL NAME: WTU88

3 : ISWTU = CO+C1*ISWTU(-1)+C2*WTUNAG+C3*IAPINST

NOB = 3	39 87 3		NOVAR = 4		NCOEF = 4		RANGE: 1978 1
RSQ =	01 5	0.656173	CRSQ =	0.626702	F(3/35) =	22.2652	PROB>F =
SER =	4	10958.4	SSR =	4.203026E+09	DW(0) =	2.0441	COND =
MAX: HA1	о Т =	0.503867	RSTUDENT =	2.40291	DFFITS =	1.59589	

					========================
	COEF	ESTIMATE	STER	TSTAT	PROB> T
1	CO	6693.45	48634.5	0.137627	0.891324
1	C1	0.777757	0.097592	7.96949	0.
	C2	480.718	266.513	1.80373	0.079887
1	C3	-9.183280E+06	1.222205E+07	-0.75137	0.457453

TWO-STAGE LEAST SQUARES

MODEL NAME: WTU88

4 : OSWTU = D0+D1*OSWTU(-1)+D2*CDDWTU+D3*WTUPOP+D4*OAPINST

NOB = 39	1978 1	TO 1987 3	NOVAR = 5		NCOEF = 5		NOINST = 8
RSQ =		0.930746	CRSQ =	0.922598	F(4/34) =	114.236	PROB>F =
SER =		3952.17	SSR =	5.310684E+08	DW(0) =	1.74637	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

				================
COEF	ESTIMATE	STER	TSTAT	PROB> T
=======================================				================
DO	-77512.6	16542.3	-4.68572	0.
D1	0.400347	0.057996	6.90296	0.
D2	19.7776	1.0776	18.3534	0.
D3	316.188	51.4205	6.14907	0.
D4	-897142.	420613.	-2.13294	0.040232
=======================================				

ORDINARY LEAST SQUARES

MODEL NAME: WTU88

5 : WSWTU = E0+E1*WAPINST+E2*WTUNAG+E3*WSWTU(-1)

NOB = 3 TO 198	9 7 3		NOVAR = 4		NCOEF = 4		RANGE: 1978	1
RSQ =		0.564617	CRSQ =	0.527299	F(3/35) =	15.1297	PROB>F =	
SER =	,	31985.2	SSR =	3.580687E+10	DW(0) =	2.18134	COND =	
MAX:HAT	=	0.241408	RSTUDENT =	2.23473	DFFITS =	0.741967		

COEF	ESTIMATE	STER	TSTAT	PROB> T
===================				
EO	-303057.	134286.	-2.2568	0.030368
E1	-4.242793E+06	2.743920E+06	-1.54625	0.131039
E2	3862.45	1164.28	3.31747	0.002127
E3	0.298612	0.159334	1.87413	0.06928

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: WTU88

23 : QTWTU = M0+M1*TFWTU

NOB = 38	B 1078 1	TO 1987 3	NOVAR = 3		NCOEF = 3		NOINST = 7
RSQ =	1770 1	0.889394	CRSQ =	0.883073	F(1/35) =	140.719	PROB>F =
SER =		3153.09	SSR =	3.479683E+08	DW(0) =	2.16139	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

1						1
I	COEF	ESTIMATE	STER	TSTAT	PROB> T	1
		==================				l
I	MO	-3731.57	3916.1	-0.95288	0.347185	
İ.	M1	0.996765	0.104662	9.52363	0.	Í.
İ	AR1.0023	0.68	0.104674	6.49639	0.	

A.10 EL PASO ELECTRIC COMPANY

Model -- EPE

SYMBOL DECLARATIONS

ENDOGENOUS: AFCEPEC -	AVERAGE FIXED COSTS:DOLLARS PER MWH
CAPNEPEC - CAPNINST - CAPTEPEC - CAPTINST - COCEPEC0 - COCEPEC1 - COCEPEC2 - CORCOND - CSEPEC -	COMMERCIAL AVERAGE PRICE (NON-TEXAS):000'S OF \$ PER MWH INSTRUMENT FOR CAPNEPEC COMMERCIAL AVERAGE PRICE (TEXAS):000'S OF \$ PER MWH INSTRUMENT FOR CAPTEPEC TOTAL COAL COST:DOLLARS CONDITIONAL VARIABLE IN THE IF ARGUMENT CONDITIONAL VARIABLE IN THE IF ARGUMENT CONDITIONAL VARIABLE IN THE IF ARGUMENT CONDITIONAL VARIABLE IN THE IF ARGUMENT COMMERCIAL SALES:MWH
CSNEPEC -	COMMERCIAL SALES (NON-TEXAS):MWH
CSTEPEC -	COMMERCIAL SALES (TEXAS):MWH
FUELCOST -	TOTAL FUEL COST:DOLLARS
IAPTEPEC -	INDUSTRIAL AVERAGE PRICE (TEXAS):000'S OF \$ PER MWH
IAPTINST -	INSTRUMENT FOR IAPTEPEC
ISEPEC -	INDUSTRIAL SALES:MWH
NGCEPEC -	TOTAL NATURAL GAS COST:DOLLARS
NGRCOND -	CONDITIONAL VARIABLE IN THE IF ARGUMENT
NUCCOMP -	CONDITIONAL VARIABLE IN THE IF ARGUMENT
NUCEPECO -	TOTAL NUCLEAR FUEL COST:DOLLARS
NUCEPEC2 -	CONDITIONAL VARIABLE IN THE IF ARGUMENT
NURCOND -	CONDITIONAL VARIABLE IN THE IF ARGUMENT
OAPNEPEC -	OTHER AVERAGE PRICE (NON-TEXAS):000'S OF \$ PER MWH
OAPNINST -	INSTRUMENT FOR OAPNEPEC
OAPTEPEC -	OTHER AVERAGE PRICE (TEXAS):000'S OF \$ PER MWH
OAPTINST -	INSTRUMENT FOR OAPTEPEC
OSEPEC -	OTHER SALES:MWH
OSNEPEC - OSTEPEC - RAPNEPEC - RAPNINST - RAPTEPEC -	OTHER SALES (NON-TEXAS):MWH OTHER SALES (TEXAS):MWH TOTAL FUEL EXPENSE ESTIMATE:DOLLARS RESIDENTIAL AVERAGE PRICE (NON-TEXAS):000'S OF \$ PER MWH INSTRUMENT FOR RAPNEPEC RESIDENTIAL AVERAGE PRICE (TEXAS):000'S OF \$ PER MWH
RAPTINST -	INSTRUMENT FOR RAPTEPEC
RSEPEC -	RESIDENTIAL SALES:MWH
RSNEPEC -	RESIDENTIAL SALES (NON-TEXAS):MWH
RSTEPEC -	RESIDENTIAL SALES (TEXAS):MWH
TCLLB -	BASIC INDUSTRIAL SALES (TEXAS):MWH
TFEPEC -	TOTAL FUEL EXPENSE REQUIREMENTS:DOLLARS
TOTGENEP -	TOTAL GENERATION REQUIREMENTS:MWH
TOTSEPEC -	TOTAL SYSTEM SALES:MWH
TOTSNEPE -	TOTAL NON-TEXAS SALES
TOTSTEPE -	TOTAL TEXAS SALES
EXOGENOUS:	NUCLEAR UNIT STARTING DOUED MUN
CCNEPEC -	COMMERCIAL CUSTOMERS (NON-TEXAS):NUMBER OF CUSTOMERS
CCTEPEC -	COMMERCIAL CUSTOMERS (TEXAS):NUMBER OF CUSTOMERS
CDDELPAS -	COOLING DEGREE DAYS:NUMBER OF DAYS
COMPUSE -	COMPANY USE:MWH
CONSALES - EPENNAG - EPETNAG - EPETPOP - FCEPEC - ISNEPEC - LISTEPEC - LTO - NCCDD -	CONTRACTUAL SALES:MWH NONAGRICULTURAL EMPLOYMENT (NON-TEXAS):THOUSANDS OF PERSONS SERVICE AREA POPULATION (NON-TEXAS):THOUSANDS OF PERSONS NONAGRICULTURAL EMPLOYMENT (TEXAS):THOUSANDS OF PERSONS SERVICE AREA POPULATION (TEXAS):THOUSANDS OF PERSONS FOUR-QUARTER SUM OF COSTS:THOUSANDS OF DOLLARS INDUSTRIAL SALES (NON-TEXAS):MWH LARGE INDUSTRIAL SALES (TEXAS):MWH LOSSES TO OTHERS:MWH INSTRUMENT FOR (NON-TEXAS) COMMERCIAL COOLING DEGREE DAYS

NRCDD	-	INSTRUMENT FOR (NON-TEXAS) RESIDENTIAL COOLING DEGREE DAYS	
NRHDD	-	INSTRUMENT FOR (NON-TEXAS) RESIDENTIAL HEATING DEGREE DAYS	
PNGCOM	-	PRICE OF NATURAL GAS TO COMMERCIAL CUSTOMERS: CENTS PER THERM	
PNGIND		PRICE OF NATURAL GAS TO INDUSTRIAL CUSTOMERS: CENTS PER THERM	
PNGRES	•	PRICE OF NATURAL GAS TO RESIDENTIAL CUSTOMERS:CENTS PER THERM	
PPOWCOST	-	PURCHASED POWER COST:DOLLARS	
PPOWER	•	PURCHASED POWER: MWH	
PUMPSALE		SALES FROM GENERATING PUMPS: MWH	
QAEPECCO	-	AVERAGE PRICE OF COAL:DOLLARS PER MMBTU	
QAEPECNG		AVERAGE PRICE OF NATURAL GAS:DOLLARS PER MMBTU	
QAEPECNU		AVERAGE PRICE OF NUCLEAR FUEL:DOLLARS PER MMBTU	
QCEPECCO	-	COAL CAPACITY:MW	
QCEPECNU	-	NUCLEAR CAPACITY:MW	
RCNEPEC	-	RESIDENTIAL CUSTOMERS (NON-TEXAS):NUMBER OF CUSTOMERS	
RCTEPEC	•	RESIDENTIAL CUSTOMERS (TEXAS):NUMBER OF CUSTOMERS	
RGSALES	-	RIO GRANDE SALES: MWH	
TCCDD	-	INSTRUMENT FOR (TEXAS) COMMERCIAL COOLING DEGREE DAYS	
TEXCPI	-	TEXAS CONSUMER PRICE INDEX	
TOTLOSS	-	LOSSES FROM EXPANDED SYSTEM: MWH	
TPIINST	-	INSTRUMENT FOR (TEXAS) PERSONAL INCOME (BILLIONS OF DOLLARS)	
TRCDD	-	INSTRUMENT FOR (TEXAS) RESIDENTIAL COOLING DEGREE DAYS	
TRHDD	-	INSTRUMENT FOR (TEXAS) RESIDENTIAL HEATING DEGREE DAYS	

COEFFICIENT:

	AO	A1	A2	A3	A4	A5	BO	B1	B2	DO	D1	D2	D3	EO	E1	E2	FO	F1	F2	F3	F4	GO	G1	G2
HO	H1	H2	H3	H4	10	11	12	LO	L1	L2	MO	M1	M2	M3	M4	NO	N1	N2	QO	Q1	Q2	Q3	Q4	RO
R1	R2	UO	U1	U2	U3	U4	U5	Z0	Z1															

EQUATIONS

1:	RSTEPEC = A0+A1*RAPTINST+A2*TRHDD+A3*TRCDD+A4*TPIINST+A5*RSTEPEC(-4)
2:	CSTEPEC = D0+D1*CAPTINST+D2*EPETNAG+D3*TCCDD
3:	TCILB = F0+F1*IAPTINST+F2*EPETNAG+F3*CDDELPAS+F4*TCILB(-1)
4:	OSTEPEC = H0+H1*OAPTINST+H2*EPETPOP+H3*CDDELPAS+H4*OSTEPEC(-4)
5:	RSNEPEC = U0+U1*NRHDD+U2*NRCDD+U3*RAPNINST+U4*EPENPOP+U5*RSNEPEC(-4)
6:	CSNEPEC = M0+M1*NCCDD+M2*CAPNINST+M3*EPENNAG+M4*CSNEPEC(-4)
7:	OSNEPEC = Q0+Q1*EPENPOP+Q2*OAPNINST+Q3*CDDELPAS+Q4*OSNEPEC(-4)
8:	RAPTEPEC = B0+B1*AQT+B2*AFCEPEC
9:	CAPTEPEC = E0+E1*AQT+E2*AFCEPEC
10:	IAPTEPEC = G0+G1*AQT+G2*AFCEPEC
11:	OAPTEPEC = I0+I1*AQT+I2*AFCEPEC
12:	RAPNEPEC = L0+L1*AQT+L2*AFCEPEC
13:	OAPNEPEC = R0+R1*AQT+R2*AFCEPEC
14:	CAPNEPEC = NO+N1*AQT+N2*AFCEPEC
15:	RAPTINST = RAPTEPEC/PNGRES*RCTEPEC
16:	CAPTINST = CAPTEPEC/PNGCOM*CCTEPEC
17:	IAPTINST = IAPTEPEC(-4)/PNGIND(-4)
18:	OAPTINST = OAPTEPEC(-1)/PNGCOM(-1)
19:	RAPNINST = RAPNEPEC/TEXCPI*RCNEPEC
20:	CAPNINST = CAPNEPEC/PNGCOM*CCNEPEC
21:	OAPNINST = OAPNEPEC/PNGCOM
22:	TOTSEPEC = RSEPEC+CSEPEC+ISEPEC+OSEPEC
SALES	IDENTITIES:
23:	RSNEPEC = RSEPEC-RSTEPEC
24:	CSNEPEC = CSEPEC-CSTEPEC
25:	ISEPEC = TCILB+LISTEPEC+ISNEPEC
26:	OSNEPEC = OSEPEC-OSTEPEC
27:	TOTGENEP = RSEPEC*1.154+CSEPEC*1.1513+ISEPEC*1.096
	+OSEPEC*1.0991+CONSALES+COMPUSE+LTO+ANPP+PUMPSALE
	+RGSALES+TOTLOSS-PPOWER
28:	NUCCOMP = TOTGENEP-0.7*2190*QCEPECNU
29:	NURCOND = IF NUCCOMP GT 0 THEN NUCCOMP ELSE TOTGENEP
30:	CORCOND = IF NURCOND EQ NUCCOMP THEN NUCCOMP-QCEPECCO*2190*0.7 ELSE 0
31:	NGRCOND = IF CORCOND GT 0 THEN CORCOND ELSE 0
32:	NUCEPEC2 = TOTGENEP*0.0085*QAEPECNU
33:	NUCEPECO = IF NURCOND EQ NUCCOMP THEN QCEPECNU*2190*0.7*0.0085*QAEPECNU ELSE NUCEPEC2
34:	COCEPEC1 = QCEPECCO*0.7*2190*QAEPECCO*0.0099
35:	COCEPEC2 = NUCCOMP*0.0099*QAEPECCO
36:	COCEPECO = IF NUCCOMP-QCEPECCO*2190*0.7 GT 0 THEN COCEPEC1 ELSE COCEPEC2
37:	NGCEPEC = NGRCOND*0.0105*QAEPECNG

38:	TFEPEC = NGCEPEC+COCEPEC0+NUCEPEC0
39:	QTEPEC = Z0+Z1*TFEPEC
40:	FUELCOST = QTEPEC+PPOWCOST
TOTAL	SALES EQUATIONS:
41:	TOTSTEPE = RSTEPEC+CSTEPEC+TCILB+LISTEPEC+OSTEPEC
42:	TOTSNEPE = RSNEPEC+CSNEPEC+ISNEPEC+OSNEPEC
AVERAG	E COST EQUATIONS:
43:	AQT = (FUELCOST+FUELCOST(-1)+FUELCOST(-2)+FUELCOST(-3))/(TOTSEPEC +TOTSEPEC(-1)+TOTSEPEC(-2)+TOTSEPEC(-3))
44:	AFCEPEC = FCEPEC/(TOTSEPEC+TOTSEPEC(-1)+TOTSEPEC(-2)+TOTSEPEC(-3)

Results -- EPE

TWO-STAGE LEAST SQUARES

MODEL NAME: EPEC88

1 : RSTEPEC = A0+A1*RAPTINST+A2*TRHDD+A3*TRCDD+A4*TPIINST+A5*RSTEPEC(-4)

NOB = 39	9	TO 1087 3	NOVAR = 6		NCOEF = 6		NOINST = 12
RSQ =	1970 1	0.983444	CRSQ =	0.980936	F(5/33) =	392.047	PROB>F =
SER =		4135.29	SSR =	5.643203E+08	DW(0) =	2.41809	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

======================		===================	=================	=================
COEF	ESTIMATE	STER	TSTAT	PROB> T
=========================		==========================	=================	
AO	29922.3	13993.9	2.13823	0.039994
A1	-175.883	62.6213	-2.80868	0.008294
A2	0.000208	3.042001E-05	6.82289	0.
A3	0.000318	4.623363E-05	6.88218	0.
A4	167536.	29701.6	5.64063	0.
A5	0.542266	0.068219	7.94885	0.

TWO-STAGE LEAST SQUARES

MODEL NAME: EPEC88

2 : CSTEPEC = D0+D1*CAPTINST+D2*EPETNAG+D3*TCCDD

NOB = 39	1078	1 TO 1087 3	NOVAR = 4		NCOEF = 4		NOINST = 10
RSQ =	1970	0.94114	CRSQ =	0.936095	F(3/35) =	186.545	PROB>F =
SER =		10465.3	SSR =	3.833265E+09	DW(0) =	1.84038	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

					=======================================	l
İ	COEF	ESTIMATE	STER	TSTAT	PROB> T	İ
	=================	=======================================			=================	I
İ	DO	-85083.6	34475.5	-2.46794	0.018622	İ
	D1	-2727.5	1206.01	-2.2616	0.03004	ĺ
	D2	2120.12	151.036	14.0372	0.	ĺ
	D3	0.003539	0.000297	11.9166	0.	
i						L

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: EPEC88

```
3 : TCILB = F0+F1*IAPTINST+F2*EPETNAG+F3*CDDELPAS+F4*TCILB(-1)
```

NOB = 38	3	70 1097 7	NOVAR = 6		NCOEF = 6		NOINST = 9
RSQ =	19/8 1	0.746494	CRSQ =	0.706883	F(4/32) =	18.8459	PROB>F =
SER =		4172.48	SSR =	5.571064E+08	DW(0) =	2.02739	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
FO	41075.3	15960.	2.57364	0.0149
F1	-1.382274E+07	5.201914E+06	-2.65724	0.012189
F2	224.748	113.742	1.97595	0.056835
F3	9.90825	1.24865	7.93515	0.
F4	0.184758	0.12032	1.53555	0.134478
AR1.0003	0.24	0.170186	1.41022	0.16812
	222222222222222222		***************	

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: EPEC88

4 : OSTEPEC = H0+H1*OAPTINST+H2*EPETPOP+H3*CDDELPAS+H4*OSTEPEC(-4)

NOB = 38	3	TO	1097 7	NOVAR = 6		NCOEF = 6		NOINST = 5
RSQ =	1970	0.	.959136	CRSQ =	0.952751	F(4/32) =	150.217	PROB>F =
SER =		3107.	.35	SSR =	3.089807E+08	DW(0) =	1.83435	COND =
MAX:HAT	=	NA	1	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
HO	13908.2	14460.8	0.961789	0.343367
H1	-6.373873E+06	3.521171E+06	-1.81016	0.079672
H2	139.018	28.2366	4.92333	0.
H3	15.1377	2.761	5.48269	0.
H4	0.309282	0.124274	2.48872	0.018214
AR1.0004	0.06	0.187638	0.319765	0.751225

TWO-STAGE LEAST SQUARES

MODEL NAME: EPEC88

5 : RSNEPEC = U0+U1*NRHDD+U2*NRCDD+U3*RAPNINST+U4*EPENPOP+U5*RSNEPEC(-4)

NOB = 3	9	TO 1097 7	NOVAR = 6		NCOEF = 6		NOINST = 12
RSQ =	1970 1	0.964027	CRSQ =	0.958577	F(5/33) =	176.873	PROB>F =
SER =		1390.8	SSR =	6.383299E+07	DW(0) =	2.32437	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER ·	TSTAT	PROB> T
===============================	=========================			
UO	-2394.98	3939.53	-0.607934	0.547393
U1	0.00033	4.571036E-05	7.21652	0.
U2	0.000366	5.347189E-05	6.84929	0.
U3	-10.1742	4.08858	-2.48843	0.018053
U4	349.198	87.8296	3.97586	0.
U5	0.324299	0.100777	3.21798	0.002892

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: EPEC88

6 : CSNEPEC = M0+M1*NCCDD+M2*CAPNINST+M3*EPENNAG+M4*CSNEPEC(-4)

NOB = 38	B		NOVAR = 6		NCOEF = 6		NOINST = 11
RANGE: RSQ =	1978 1	TO 1987 3 0.928088	CRSQ =	0.916851	F(4/32) =	82.5972	PROB>F =
0. SER =		2700.4	SSR =	2.333494E+08	DW(0) =	1.695	COND =
53.0666 MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
	===============================	================		================
MO	29008.3	11561.8	2.50897	0.017367
M1	0.001803	0.000428	4.209	0.
M2	-3313.26	1273.43	-2.60184	0.013929
M3	944.298	271.039	3.484	0.001454
M4	0.240302	0.162814	1.47593	0.149736
AR1.0006	0.42	0.154491	2.71861	0.010499

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: EPEC88

7 : OSNEPEC = Q0+Q1*EPENPOP+Q2*OAPNINST+Q3*CDDELPAS+Q4*OSNEPEC(-4)

NOB = 38	3 1978 1	TO 1987 3	NOVAR = 6		NCOEF = 6		NOINST = 5
RSQ =	1710 1	0.943657	CRSQ =	0.934854	F(4/32) =	107.191	PROB>F =
SER =		2291.1	SSR =	1.679728E+08	DW(0) =	2.04788	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

=======================================	=====				
COEF		ESTIMATE	STER	TSTAT	PROB> T
=======================================	=====			=========================	==================
Q0		6014.76	9627.92	0.624721	0.536584
Q1		413.535	81.2518	5.08954	0.
Q2		-3.755739E+06	2.656969E+06	-1.41354	0.167151
Q3		7.06402	1.45735	4.84716	0.
Q4	-	0.252824	0.146624	1.7243	0.094303
AR1.0007		0.28	0.163233	1.71534	0.095952
=======================================					

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: EPEC88

8 : RAPTEPEC = B0+B1*AQT+B2*AFCEPEC

NOB = 38	3	70 1097 7	NOVAR = 4		NCOEF = 4		NOINST = 8
RANGE: RSQ =	19/8 1	0.947453	CRSQ =	0.942816	F(2/34) =	204.345	PROB>F =
U. SER =		0.004423	SSR =	0.000665	DW(0) =	2.26909	COND =
16.4805 MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T

B0	0.036076	0.027761	1.29952	0.202508
B1	0.719617	0.486651	1.47871	0.148423
B2	0.001166	0.000606	1.925	0.062628
AR1.0008	0.88	0.10065	8.74316	0.

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: EPEC88

9 : CAPTEPEC = E0+E1*AQT+E2*AFCEPEC

NOB = 38	3 1978 1	TO 1987 3	NOVAR = 4		NCOEF = 4		NOINST = 7
RSQ =	1770 1	0.883881	CRSQ =	0.873635	F(2/34) =	86.2674	PROB>F =
SER =		0.006081	SSR =	0.001257	DW(0) =	1.71169	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
EO	0.018604	0.011511	1.61623	0.115287
E1	1.05537	0.337138	3.13038	0.003575
E2	0.001058	0.000305	3.47186	0.001427
AR1.0009	0.64	0.143567	4.45784	0.

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: EPEC88

10 : IAPTEPEC = G0+G1*AQT+G2*AFCEPEC

NOB = 38	3	TO 1097 7	NOVAR = 4		NCOEF = 4		NOINST = 8
RSQ =	1970 1	0.93361	CRSQ =	0.927752	F(2/34) =	159.376	PROB>F =
SER =		0.003031	SSR =	0.000312	DW(0) =	1.85849	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
GO	0.026695	0.021496	1.2419	0.222773
G1	0.390272	0.303239	1.28701	0.206784
G2	0.000665	0.000482	1.37999	0.176598
AR1.0010	0.9	0.094981	9.47558	0.

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: EPEC88

11 : OAPTEPEC = I0+I1*AQT+I2*AFCEPEC

NOB = 38	78 1	TO 1087 3	NOVAR = 4		NCOEF = 4		NOINST = 8
RSQ =	10 1	0.933788	CRSQ =	0.927945	F(2/34) =	159.833	PROB>F =
SER =		0.004007	SSR =	0.000546	DW(0) =	2.18401	COND =
11.8204 MAX:HAT =		NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T
=================				
10	0.001108	0.038518	0.028766	0.977219
11	0.757114	0.535745	1.4132	0.166688
12	0.001362	0.000788	1.72906	0.092871
AR1.0011	0.92	0.08851	10.3944	0.

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: EPEC88

12 : RAPNEPEC = LO+L1*AQT+L2*AFCEPEC

NOB = 38	3		NOVAR = 4	6		NCOEF = 4			NOINST	= 11	I
RANGE: RSQ =	1978 1	TO 1987 3 0.950277	CRSQ =		0.94589	F(2/34) =	2	16.596	PROB>F	=	
U. SER =		0.004934	SSR =		0.000828	DW(0) =		1.44816	COND =		
MAX:HAT	=	NA	RSTUDENT	=	NA	DFFITS =		NA			

	================================		==========================	==============
COEF	ESTIMATE	STER	TSTAT	PROB> T
LO	0.004464	0.006865	0.650207	0.519928
L1	1.11339	0.259779	4.28593	0.
L2	0.001846	0.000296	6.23208	0.
AR1.0012	0.52	0.117251	4.43495	0.

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: EPEC88

13 : OAPNEPEC = R0+R1*AQT+R2*AFCEPEC

NOB = 38	1078 1	TO 1087 3	NOVAR = 4		NCOEF = 4		NOINST = 8
RSQ =	1770 1	0.903097	CRSQ =	0.894547	F(2/34) =	105.622	PROB>F =
SER =		0.003235	SSR =	0.000356	DW(0) =	1.9967	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T	l
RO	0.018826	0.008707	2.16231	0.03772	
R1	0.688579	0.247299	2.78439	0.008699	
R2	0.000645	0.000202	3.18564	0.00309	
AR1.0013	0.72	0.120971	5.95182	0.	

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: EPEC88

14 : CAPNEPEC = NO+N1*AQT+N2*AFCEPEC

NOB = 38	3		NOVAR = 4			NCOEF =	4		NOINST	= 6
RANGE: RSQ =	1978 1	TO 1987 3 0.86081	CRSQ =		0.848529	F(2/34) :	= 7	0.0902	PROB>F	=
U. SER =		0.005106	SSR =		0.000886	DW(0) =		1.9261	COND =	
MAX:HAT	=	NA	RSTUDENT =	-	NA	DFFITS =	1	NA		

					Ĺ
COEF	ESTIMATE	STER	TSTAT	PROB> T	
		**************			Ľ
NO	0.026755	0.005057	5.29099	0.	
N1	0.709476	0.178616	3.97206	0.	
N2	0.000962	0.000152	6.34962	0.	
AR1.0014	0.34	0.162187	2.09635	0.043567	
				===================	ſ

TWO-STAGE LEAST SQUARES HILDRETH-LU PROCEDURE

MODEL NAME: EPEC88

39 : QTEPEC = Z0+Z1*TFEPEC

NOB = 38	3		NOVAR = 3		NCOEF = 3		NOINST = 5
RANGE: RSQ =	1978 1	TO 1987 3 0.762636	CRSQ =	0.749073	F(1/35) =	56.2266	PROB>F =
U. SER = 22 7326		3632.78	SSR =	4.618993E+08	DW(0) =	1.84501	COND =
MAX:HAT	=	NA	RSTUDENT =	NA	DFFITS =	NA	

COEF	ESTIMATE	STER	TSTAT	PROB> T

Z0	-45.3448	5766.29	-0.007864	0.99377
Z1	0.801349	0.265237	3.02126	0.004682
AR1.0039	0.52	0.143433	3.62538	0.

A.11 TEXAS-NEW MEXICO POWER COMPANY

Model -- TNP

SYMBOL DECLARATIONS

EN	DOGENOUS:		
	CANGCOM	-	COMMERCIAL CUSTOMERS (ANGLETON) (NUMBER OF CUSTOMERS)
	CANGRES	-	RESIDENTIAL CUSTOMERS (ANGLETON) (NUMBER OF CUSTOMERS)
	CCLICOM	-	COMMERCIAL CUSTOMERS (CLIFTON) (NUMBER OF CUSTOMERS)
	CCLIRES	-	RESIDENTIAL CUSTOMERS (CLIFTON) (NUMBER OF CUSTOMERS)
	CLEWCOM	-	COMMERCIAL CUSTOMERS (LEWISVILLE) (NUMBER OF CUSTOMERS)
	CLEWRES	-	RESIDENTIAL CUSTOMERS (LEWISVILLE) (NUMBER OF CUSTOMERS)
	COLNCOM	-	COMMERCIAL CUSTOMERS (OLNEY) (NUMBER OF CUSTOMERS)
	COLNRES	-	RESIDENTIAL CUSTOMERS (OLNEY) (NUMBER OF CUSTOMERS)
	CPETCOM		COMMERCIAL CUSTOMERS (PETROLIA) (NUMBER OF CUSTOMERS)
	CPETRES	-	RESIDENTIAL CUSTOMERS (PETROLIA) (NUMBER OF CUSTOMERS)
	CSTNP		COMMERCIAL SALES (TEXAS ONLY) (MWH)
	CTEXCOM		COMMERCIAL CUSTOMERS (TEXAS CITY) (NUMBER OF CUSTOMERS)
	CTEXRES	-	RESIDENTIAL CUSTOMERS (TEXAS CITY) (NUMBER OF CUSTOMERS)
	CWHICOM	-	COMMERCIAL CUSTOMERS (WHITEWRIGHT) (NUMBER OF CUSTOMERS)
	CWHIRES	-	RESIDENTIAL CUSTOMERS (WHITEWRIGHT) (NUMBER OF CUSTOMERS)
	RSTNP	-	RESIDENTIAL SALES (TEXAS ONLY) (MWH)
	SANGCOM	-	COMMERCIAL SALES (ANGLETON) (MWH)
	SANGRES	-	RESIDENTIAL SALES (ANGLETON) (MWH)
	SCLICOM	-	COMMERCIAL SALES (CLIFTON) (MWH)
	SCLIRES	-	RESIDENTIAL SALES (CLIFTON) (MWH)
	SFORCOM	-	COMMERCIAL SALES (FORT STOCKTON) (MWH)
	SFORRES	-	RESIDENTIAL SALES (FORT STOCKTON) (MWH)
	SLEWCOM	-	COMMERCIAL SALES (LEWISVILLE) (MWH)
	SLEWRES	-	RESIDENTIAL SALES (LEWISVILLE) (MWH)
	SOLNCOM	-	COMMERCIAL SALES (OLNEY) (MWH)
	SOLNRES	-	RESIDENTIAL SALES (OLNEY) (MWH)
	SPANCOM	-	COMMERCIAL SALES (PANHANDLE) (MWH)
	SPANRES	-	RESIDENTIAL SALES (PANHANDLE) (MWH)
	SPECCOM	-	COMMERCIAL SALES (PECOS) (MWH)
	SPECRES	-	RESIDENTIAL SALES (PECOS) (MWH)
	SPETCOM	-	COMMERCIAL SALES (PETROLIA) (MWH)
	SPETRES	-	RESIDENTIAL SALES (PETROLIA) (MWH)
	STEXCOM	-	COMMERCIAL SALES (TEXAS CITY) (MWH)
	STEXRES	-	RESIDENTIAL SALES (TEXAS CITY) (MWH)
	SWHICOM	-	COMMERCIAL SALES (WHITEWRIGHT) (MWH)
	SWHIRES	-	RESIDENTIAL SALES (WHITEWRIGHT) (MWH)
	TOTSCD	-	TOTAL SALES CENTRAL DIVISION (MWH)
	TOTSNED	-	TOTAL SALES NORTH-EAST DIVISION (MWH)
	TOTSPD	-	TOTAL SALES PANHANDLE DIVISION (MWH)
	TOTSSED	-	TOTAL SALES SOUTH-EAST DIVISION (MWH)
	TOTSTNP	-	SUM OF TOTSSED. TOTSNED. TOTSCD. TOTSWD. AND TOTSPD. (MWH)
	TOTSWD	-	TOTAL SALES WESTERN DIVISION (MWH)
EX	OGENOUS:		
	CDDANG	-	COOLING DEGREE DAYS (ANGLETON) NUMBER OF DAYS
	CDDCLI	-	COOLING DEGREE DAYS (CLIFTON) NUMBER OF DAYS
	CDDFOR	-	COOLING DEGREE DAYS (FORT STOCKTON) NUMBER OF DAYS
	CDDLEW		COOLING DEGREE DAYS (LEWISVILLE) NUMBER OF DAYS
	CDDOL N	-	COOLING DEGREE DAYS (OLNEY) NUMBER OF DAYS
	CDDPAN	-	COOLING DEGREE DAYS (PANHANDLE) NUMBER OF DAYS
	CDDPEC	-	COOLING DEGREE DAYS (PECOS) NUMBER OF DAYS
	CDDPET	-	COOLING DEGREE DAYS (PETROLIA) NUMBER OF DAYS
	CDDTEX	-	COOLING DEGREE DAYS (TEXAS CITY) NUMBER OF DAYS
	CDDWHI	-	COOLING DEGREE DAYS (WHITEWRIGHT) NUMBER OF DAYS
	CFORCOM	-	COMMERCIAL CUSTOMERS (FORT STOCKTON) (NUMBER OF CUSTOMERS)
	CEORDES	-	RESIDENTIAL CUSTOMERS (FORT STOCKTON) (NUMBER OF CUSTOMERS)
	CPANCOM	-	COMMERCIAL CUSTOMERS (PANHANDLE) (NUMBER OF CUSTOMERS)
	CPANDES	-	RESIDENTIAL CUSTOMERS (PANHANDLE) (NUMBER OF CUSTOMERS)
	CDECCOM	-	COMMERCIAL CUSTOMERS (DECOS) (NUMBER OF CUSTOMERS)
	CDECDES	-	RESIDENTIAL CUSTOMERS (PECOS) (NUMBER OF CUSTOMERS)
	HDDANC	-	HEATING DECREE DAYS (ANGIETON) NUMBER OF DAYS
	INDUANG	-	TEATING FEARLE PATS (ANGLETON) NOTBER OF PATS

G2 G3 H0 H1 H2 H3 I0 I1 I2 I3 J0 J1 J2 J3

HDDCI I	-	UEATTN	C DE	CDEE	DAVO	101	TETO	IN CL	MDE	0 05 1	AVC								
HDDCLI	-	REALT	G DE	GREE	DATS	(CL	IFIO		MDE	C OF L	MIS	-							
HDDFOR	-	HEATIN	G DE	GREE	DAYS	(FUI	RIS	IOCKI	UN)	NUMB	R UF	DAYS	5						
HDDLEW	-	HEATIN	G DE	GREE	DAYS	(LEI	MISVI	(LLE)	NUI	IBER (DF DA'	YS							
HDDOLN	-	HEATIN	G DE	GREE	DAYS	(OLI	NEY)	NUME	BER (OF DAY	(S								
HDDPAN	-	HEATIN	G DE	GREE	DAYS	(PAI	HAND	DLE)	NUM	BER OI	DAYS	S							
HDDPEC	-	HEATIN	G DE	GREE	DAYS	(PE	COS)	NUME	ER (DF DAY	'S								
HDDPET	-	HEATIN	G DE	GREE	DAYS	(PET	TROL	A) N	UMB	R OF	DAYS								
HDDTEX		HEATIN	G DE	GREE	DAYS	(TE)	KAS (CITY	NU	ABER (DF DA	rs							
HDDWHI		HEATIN	G DE	GREE	DAYS	(WH)	TEW	RIGHT) NI	JMBER	OF D	AYS							
HLPMPOP		HLP MC	NTHL	Y PO	PULAT	ION	THO	JSAND	S)										
NENAG	-	NORTHE	AST	DIVI	SION	NON-/	AGRIC	ULTU	RAL	EMPLO	YMEN	T (TH	IOUSA	NDS)					
NEPI		NORTHE	AST	IVID	SION	PERSO	DNAL	INCO	ME	THOUS	ANDS	OF \$	5)						
PNAG	-	PANHAN	DLE	DIVI	SION	NON-/	AGRIC	ULTU	RAL	EMPLO	YMENT	T (TH	IOUSA	NDS)					
PPI	-	PANHAN	DLE	DIVI	SION	PERSO	DNAL	INCO	ME	THOUS	ANDS	OF \$	5)						
SEPI	-	SOUTHE	AST	DIVI	SION	PERSO	ONAL	INCO	ME	THOUS	ANDS	OF \$	5)						
TEXCPI	-	TEXAS	CONS	UMER	PRIC	EIN	DEX												
TREND	-	TREND	VARI	ABLE															
TUMPOP	-	TU ELE	CTRI	C PO	PULAT	ION (THOU	JSAND	S)										
WNAG	-	WESTER	NT D	IVIS	ION N	ON-AC	GRICL	ILTUR	AL E	MPLOY	MENT	(THC	USAN	DS)					
WPI	•	WESTER	N DI	VISI	ON PE	RSON/	AL IN	ICOME	(TI	OUSAN	IDS OI	= \$)							
COEFFICIENT				-		-								12.1			A states		
AAO AA1	1	10 A1	A2	A3	BBO	BB1	BO	B1	B2	CCO	CC1	CO	C1	C2	C3	DDO	DD1	DO	D-1
EEO EE1 E	0	E1 E2	E3	FF	0														

G1

FF1 F0 F1 F2 GG0 GG1 G0

KK1 KO K1 K2 K3 LLO LL1 LO

L1 L2 L3 MMO MM1 MO M1 M2 M3 NNO NN1 NO N1 N2 N3 000 001 00 01 02 PP0 PO P1 P3 QQO QQ1 QO Q1 Q2 Q3 R0 R1 R2 S0 S1 S2 S3 T0 T1 T2 T3 EQUATIONS 1: SANGRES = A0+A1*CDDANG*CANGRES+A2*HDDANG*CANGRES+A3*SEPI/TEXCPI 2: SANGCOM = B0+B1*CDDANG*CANGCOM+B2*TREND STEXRES = C0+C1*HDDTEX*CTEXRES+C2*CDDTEX*CTEXRES+C3*SEPI/TEXCPI 3: STEXCOM = D0+D1*CDDTEX*CTEXCOM+D2*TREND 4: 5: SCLIRES = E0+E1*CDDCLI*CCLIRES+E2*HDDCLI*CCLIRES+E3*NEPI/TEXCPI SCLICOM = F0+F1*CDDCLI*CCLICOM+F2*NENAG 6: SOLNRES = G0+G1*HDDOLN*COLNRES+G2*CDDOLN*COLNRES+G3*NEPI/TEXCPI 7: SOLNCOM = H0+H1*HDDOLN*COLNCOM+H2*CDDOLN*COLNCOM+H3*NENAG 8: 9: SLEWRES = I0+I1*HDDLEW*CLEWRES+I2*CDDLEW*CLEWRES+I3*NEPI/TEXCPI 10: SLEWCOM = J0+J1*HDDLEW*CLEWCOM+J2*CDDLEW*CLEWCOM+J3*NENAG 11: SPETRES = K0+K1*HDDPET*CPETRES+K2*CDDPET*CPETRES+K3*NEPI/TEXCPI SPETCOM = L0+L1*HDDPET*CPETCOM+L2*CDDPET*CPETCOM+L3*NENAG 12: 13: SWHIRES = M0+M1*HDDWHI*CWHIRES+M2*CDDWHI*CWHIRES+M3*NEPI/TEXCPI SWHICOM = NO+N1*HDDWHI*CWHICOM+N2*CDDWHI*CWHICOM+N3*NENAG 14: 15: SFORRES = 00+01*HDDFOR*CFORRES+02*CDDFOR*CFORRES SFORCOM = P0+P1*CDDFOR*CFORCOM+P3*WNAG 16: SPECRES = Q0+Q1*HDDPEC*CPECRES+Q2*CDDPEC*CPECRES+Q3*WPI/TEXCPI 17: 18: SPECCOM = R0+R1*CDDPEC*CPECCOM+R2*WNAG 19: SPANRES = S0+S1*CDDPAN*CPANRES+S2*HDDPAN*CPANRES+S3*PPI/TEXCPI SPANCOM = T0+T1*CDDPAN*CPANCOM+T2*HDDPAN*CPANCOM+T3*PNAG 20: CANGRES = AAO+AA1*HLPMPOP 21: 22: CTEXRES = BBO+BB1*TREND 23: CCLIRES = CCO+CC1*TUMPOP 24: COLNRES = DDO+DD1*TUMPOP 25: CPETRES = EEO+EE1*TUMPOP 26: CLEWRES = FF0+FF1*TUMPOP 27: CWHIRES = GG0+GG1*TUMPOP 28: CANGCOM = KKO+KK1*TREND 29: CTEXCOM = LLO+LL1*CTEXRES 30: CCLICOM = MMO+MM1*TUMPOP COLNCOM = NNO+NN1*COLNRES 31: 32: CPETCOM = 000+001*TUMPOP33: CLEWCOM = PPO+PP1*CLEWRES 34: CWHICOM = QQ0+QQ1*TUMPOP 35: TOTSSED = (SANGRES+STEXRES+SANGCOM+STEXCOM)/1000 36: TOTSCD = (SCLIRES+SOLNRES+SCLICOM+SOLNCOM)/1000 37: TOTSNED = (SPETRES+SLEWRES+SWHIRES+SPETCOM+SLEWCOM+SWHICOM)/1000 TOTSWD = (SFORRES+SPECRES+SFORCOM+SPECCOM)/1000 38: 39: TOTSPD = (SPANRES+SPANCOM)/1000 40: TOTSTNP = TOTSSED+TOTSNED+TOTSCD+TOTSWD+TOTSPD

D2

KK0

PP1

41:	RSTNP	=	(SANGRES+SCLIRES+SLEWRES+SOLNRES+SPETRES+STEXRES
			+SWHIRES+SFORRES+SPANRES+SPECRES)/1000
42:	CSTNP	=	(SANGCOM+SCLICOM+SLEWCOM+SOLNCOM+SPETCOM+STEXCOM+SWHICOM
			+SFORCOM+SPANCOM+SPECCOM)/1000

Results -- **TNP**

HILDRETH-LU PROCEDURE

```
MODEL NAME: TNP88
```

1 : SANGRES = A0+A1*CDDANG*CANGRES+A2*HDDANG*CANGRES+A3*SEPI/TEXCPI

NOB =	= 88	E		NOVAR = 5		NCOEF = 5		RANGE: 1980 1	
RSQ =	=	5	0.936957	CRSQ =	0.933919	F(3/83) =	308.391	PROB>F =	
SER =	=		1.313001E+06	SSR =	1.430897E+14	DW(0) =	2.1247	COND =	
63.51 MAX:1	HAT	=	0.202379	RSTUDENT =	2.89933	DFFITS =	0.950893		

COEF	ESTIMATE	STER	TSTAT	PROB> T
		============================		
AO	3.872273E+06	5.567207E+06	0.69555	0.488653
A1	3.44701	0.122332	28.1774	0.
A2 .	1.01305	0.08306	12.1966	0.
A3	5.259806E+06	4.047455E+06	1.29953	0.197359
AR1.0001	0.32	0.103716	3.08535	0.002762

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

2 : SANGCOM = B0+B1*CDDANG*CANGCOM+B2*TREND

NOB = 8	38		NOVAR = 4		NCOEF = 4		RANGE: 1980 1
RSQ =	57 5	0.876246	CRSQ =	0.871826	F(2/84) =	198.256	PROB>F =
SER =		585845.	SSR =	2.882997E+13	DW(0) =	2.14987	COND =
4.51228 MAX:HAT	5 「 =	0.103058	RSTUDENT =	3.24937	DFFITS =	-0.588537	

===================		==================		
COEF	ESTIMATE	STER	TSTAT	PROB> T
BO	6.701276E+06	198754.	33.7164	0.
B1	4.93845	0.296738	16.6425	0.
B2	29053.5	3492.9	8.31787	0.
AR1.0002	0.3	0.10771	2.78526	0.006609
				===================

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

3 : STEXRES = C0+C1*HDDTEX*CTEXRES+C2*CDDTEX*CTEXRES+C3*SEPI/TEXCPI

NOB	= 88		NOVAR = 5		NCOEF = 5		RANGE:	1980	1
RSQ	1987 5	0.938215	CRSQ =	0.935237	F(3/83) =	315.09	PROB>F	=	
SER =	4.205682E+06	SSR =	1.468084E+15	DW(0) =	2.26742 COND =				
-----------	--------------	------------	--------------	----------	----------------	--			
63.7109									
MAX:HAT =	0.20613	RSTUDENT =	2.72147	DFFITS =	0.935548				

	*************		**************	
COEF	ESTIMATE	STER	TSTAT	PROB> T
=========================	***************			
CO	7.981454E+06	1.733709E+07	0.460369	0.646455
C1	1.0171	0.09565	10.6335	0.
C2	3.97075	0.141156	28.1303	0.
C3	1.647291E+07	1.260861E+07	1.30648	0.194998
AR1.0003	0.3	0.10659	2.81452	0.006099

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

5 : SCLIRES = E0+E1*CDDCLI*CCLIRES+E2*HDDCLI*CCLIRES+E3*NEPI/TEXCPI

NOB = 88		NOVAR = 5		NCOEF = 5		RANGE: 1980 1
RSQ =	0.932517	CRSQ =	0.929264	F(3/83) =	286.733	PROB>F =
SER =	849975.	SSR =	5.996395E+13	DW(0) =	2.00337	COND =
MAX:HAT =	0.204442	RSTUDENT =	-3.03986	DFFITS =	-1.0804	

COEF	ESTIMATE	STER	TSTAT	PROB> T

EO	-891954。	1.461846E+06	-0.610156	0.543426
E1	2.27132	0.080258	28.3002	0.
E2	0.526799	0.039108	13.4704	0.
E3	3.505243E+06	733731.	4.77729	0.
AR1.0005	0.3	0.104133	2.88094	0.005044

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

6 : SCLICOM = F0+F1*CDDCLI*CCLICOM+F2*NENAG

NOB =	88	E	NOVAR = 4		NCOEF = 4		RANGE: 19	80 1
RSQ =	901	0.938023	CRSQ =	0.935809	F(2/84) =	423.779	PROB>F =	
SER =	7/	491407.	SSR =	2.028438E+13	DW(0) =	2.20835	COND =	
MAX:H	AT =	0.091929	RSTUDENT =	-2.86674	DFFITS =	-0.457738		

COEF	ESTIMATE	STER	TSTAT	PROB> T
FO	-7.585722E+06	1.090883E+06	-6.95374	0.
F1	4.97171	0.202835	24.511	0.
F2	18738.	1475.19	12.7021	0.
AR1.0006	0.3	0.106881	2.80687	0.006217
	22222222222222222		*************	

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

8 : SOLNCOM = H0+H1*HDDOLN*COLNCOM+H2*CDDOLN*COLNCOM+H3*NENAG

NOB = 88		NOVAR = 5		NCOEF = 5		RANGE: 1980 1
RSQ =	0.861987	CRSQ =	0.855336	F(3/83) =	129.598	PROB>F =
U. SER =	188682.	SSR =	2.954865E+12	DW(0) =	2.34861	COND =
MAX:HAT =	0.208412	RSTUDENT =	-2.54494	DFFITS =	-0.54082	

COEF	ESTIMATE	STER	TSTAT	PROB> T

НО	-2.335890E+06	616483.	-3.78906	0.
H1	0.261757	0.098093	2.66846	0.009162
H2	2.36652	0.209641	11.2884	0.
H3	6204.79	831.154	7.46527	0.
AR1.0008	0.52	0.094394	5.5088	0.

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

9 : SLEWRES = I0+I1*HDDLEW*CLEWRES+I2*CDDLEW*CLEWRES+I3*NEPI/TEXCPI

NOB =	88		NOVAR = 5		NCOEF = 5		RANGE: 1980 1
RSQ =		0.945571	CRSQ =	0.942948	F(3/83) =	360.48	PROB>F =
SER =	2	1.192236E+06	SSR =	1.179786E+14	DW(0) =	2.10248	COND =
MAX:HA	+2 \T =	0.191068	RSTUDENT =	-3.16969	DFFITS =	-1.14835	

========================			=======================================	
COEF	ESTIMATE	STER	TSTAT	PROB> T
10	-8.517222E+06	2.304629E+06	-3.6957	0.
11	1.12397	0.062103	18.0985	0.
12	3.11701	0.117765	26.4681	0.
13	8.065119E+06	1.182430E+06	6.8208	0.
AR1.0009	0.38	0.100984	3.76297	0.

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

10 : SLEWCOM = J0+J1*HDDLEW*CLEWCOM+J2*CDDLEW*CLEWCOM+J3*NENAG

NOB =	= 88	3		NOVAR = 5		NCOEF = 5		RANGE: 1980 1
RSQ =	=	2	0.946748	CRSQ =	0.944182	F(3/83) =	368.907	PROB>F =
SER =	=		664741.	SSR =	3.667614E+13	DW(0) =	2.05161	COND =
MAX:	AT	=	0.186838	RSTUDENT =	3.38675	DFFITS =	-0.712113	

==================				
COEF	ESTIMATE	STER	TSTAT	PROB> T
				================
JO	-2.064706E+07	1.601147E+06	-12.8952	0.
J1	0.747007	0.266639	2.80157	0.006327
J2	8.28958	0.520183	15.9359	0.
J3	38756.5	2212.23	17.5192	0.
AR1.0010	0.34	0.103382	3.28878	0.001477

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

12 : SPETCOM = L0+L1*HDDPET*CPETCOM+L2*CDDPET*CPETCOM+L3*NENAG

NOB	= 88	-		NOVAR = 5		NCOEF = 5		RANGE:	1980	1
RSQ	1987	5	0.654608	CRSQ =	0.637962	F(3/83) =	39.3266	PROB>F =		
U. SER	=		23338.7	SSR =	4.520987E+10	DW(0) =	1.99912	COND =		
54.1 MAX:	HAT :	=	0.176327	RSTUDENT =	5.8737	DFFITS =	1.39221			

		***************	2222222222222222222	=============
COEF	ESTIMATE	STER	TSTAT	PROB> T
==================				
LO	-17035.7	53509.7	-0.318368	0.751006
L1	0.448992	0.083592	5.37122	0.
L2	1.50483	0.155704	9.66466	0
L3	282.681	72.2288	3.91369	0.
AR1.0012	0.32	0.101537	3.15155	0.00226

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

13 : SWHIRES = M0+M1*HDDWHI*CWHIRES+M2*CDDWHI*CWHIRES+M3*NEPI/TEXCPI

NOB = 88		NOVAR = 5		NCOEF = 5		RANGE: 1980 1
RSQ =	0.956737	CRSQ =	0.954652	F(3/83) =	458.872	PROB>F =
SER =	705866.	SSR =	4.135453E+13	DW(0) =	2.22207	COND =
26.369 MAX:HAT =	0.163826	RSTUDENT =	-2.87923	DFFITS =	0.687117	

COEF	ESTIMATE	STER	TSTAT	PROB> T
	=======================================			
MO	-3.824177E+06	1.217604E+06	-3.14074	0.002335
M1	0.552692	0.033658	16.4207	0.
M2	2.15384	0.060485	35.6092	0.
M3	4.880113E+06	609555.	8.00602	0.
AR1.0013	0.3	0.107531	2.78988	0.006539
	20220222222222222	**************		=======================================

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

14 : SWHICOM = NO+N1*HDDWHI*CWHICOM+N2*CDDWHI*CWHICOM+N3*NENAG

NOB = 88		NOVAR = 5		NCOEF = 5		RANGE: 1980 1
RSQ =	0.908244	CRSQ =	0.903822	F(3/83) =	205.393	PROB>F =
U. SER =	350070.	SSR =	1.017157E+13	DW(0) =	2.16426	COND =
34.2112 MAX:HAT =	0.163712	RSTUDENT =	2.86623	DFFITS =	-0.760233	

		=======================================	============	
COEF	ESTIMATE	STER	TSTAT	PROB> T
=======================================		=========================		
NO	-5.435082E+06	777518.	-6.9903	0.
N1	0.464491	0.081186	5.72129	0.
N2	2.60095	0.147998	17.5742	0.
N3	14044.9	1052.96	13.3385	0.
AR1.0014	0.3	0.109581	2.7377	0.007568

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

17 : SPECRES = Q0+Q1*HDDPEC*CPECRES+Q2*CDDPEC*CPECRES+Q3*WPI/TEXCPI

NOB = 88		NOVAR = 5		NCOEF = 5		RANGE: 1980 1
RSQ =	0.933736	CRSQ =	0.930543	F(3/83) =	292.392	PROB>F =
SER =	292481.	SSR =	7.100242E+12	DW(0) =	2.30324	COND =
MAX:HAT =	0.157369	RSTUDENT =	-2.52295	DFFITS =	-0.569694	

			22222222222222222	
COEF	ESTIMATE	STER	TSTAT	PROB> T
				===============
QO	1.149483E+06	1.063927E+06	1.08041	0.283087
Q1	0.435806	0.031572	13.8035	0.
Q2	1.5689	0.057032	27.5089	0.
Q3	9.797299E+06	6.930404E+06	1.41367	0.161199
AR1.0017	0.3	0.108513	2.76463	0.00702
				======================

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

18 : SPECCOM = R0+R1*CDDPEC*CPECCOM+R2*WNAG

NOB = 8 TO 198	88 87 5		NOVAR = 4		NCOEF = 4		RANGE: 1980 1
RSQ =		0.826506	CRSQ =	0.82031	F(2/84) =	133.389	PROB>F =
SER = 92.6538	в	1.038927E+06	SSR =	9.066708E+13	DW(0) =	1.96539	COND =
MAX:HAT	Γ =	0.112757	RSTUDENT =	-3.45627	DFFITS =	-0.600334	

			===============		l
COEF	ESTIMATE	STER	TSTAT	PROB> T	İ
			==================	============	l
RO	1.929246E+06	9.610626E+06	0.200741	0.841386	ĺ
R1	6.66961	0.550235	12.1214	0.	ĺ
R2	125316.	188376.	0.665247	0.507715	ĺ
AR1.0018	0.52	0.092699	5.60953	0.	ĺ
					ĺ

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

20 : SPANCOM = T0+T1*CDDPAN*CPANCOM+T2*HDDPAN*CPANCOM+T3*PNAG

NOB	= 88		NOVAR = 5		NCOEF = 5		RANGE:	1980	1
RSQ 0.	=	0.835769	CRSQ =	0.827855	F(3/83) =	105.597	PROB>F =	-	

SER =	312976.	SSR =	8.130203E+12	DW(0) =	2.06242 COND =
151.523 MAX:HAT =	0.16101	B RSTUDENT =	4.76542	DFFITS =	0.981857

			=======================================		
COEF	ESTIMATE	STER	TSTAT	PROB> T	

то	-4.899910E+06	3.030872E+06	-1.61667	0.109745	
T1	5.06816	0.324993	15.5947	0.	
T2	0.387498	0.098031	3.95282	0.	
T3	89479.4	33214.1	2.69402	0.008541	
AR1.0020	0.3	0.104771	2.8634	0.005305	

ORDINARY LEAST SQUARES

MODEL NAME: TNP88

4 : STEXCOM = D0+D1*CDDTEX*CTEXCOM+D2*TREND

NOB = 89		NOVAR = 3		NCOEF = 3		RANGE:	1980 1	
RSQ =	0.887213	CRSQ =	0.88459	F(2/86) =	338.249	PROB>F =		
U. SER =	1.658727E+06	SSR =	2.366183E+14	DW(0) =	1.83774	COND =		
4.45601 MAX:HAT =	0.096768	RSTUDENT =	2.18973	DFFITS =	-0.588629			

		***************				Ĺ
COEF		ESTIMATE	STER	TSTAT	PROB> T	
		****************		**************		l
	DO	2.367302E+07	389905.	60.7149	0.	ĺ
	D1	7.8164	0.328476	23.796	0.	
D2		73919.4	6844.51	10.7998	0.	
	**************			****************		Ĺ

ORDINARY LEAST SQUARES

MODEL NAME: TNP88

7 : SOLNRES = G0+G1*HDDOLN*COLNRES+G2*CDDOLN*COLNRES+G3*NEPI/TEXCPI

NOB =	89		NOVAR = 4		NCOEF = 4		RANGE :	1980	1
RSQ =	987 2	0.937752	CRSQ =	0.935555	F(3/85) =	426.839	PROB>F =		
SER =	2	254184.	SSR =	5.491810E+12	DW(0) =	1.86414	COND =		
27.47	AT =	0.17715	RSTUDENT =	-3.20299	DFFITS =	0.821958			

COEF	COEF ESTIMATE		TSTAT	PROB> T
	===========================			
GO	-299431.	316877.	-0.944944	0.347366
G1	0.451579	0.036732	12.2938	0.
G2	2.47206	0.074105	33.3589	0.
G3	1.007457E+06	154256.	6.53105	0.

ORDINARY LEAST SQUARES

MODEL NAME: TNP88

11 : SPETRES = KO+K1*HDDPET*CPETRES+K2*CDDPET*CPETRES+K3*NEPI/TEXCPI

NOB = 8	89	-		NOVAR = 4		NCOEF = 4		RANGE :	1980	1
RSQ =	01	2	0.855847	CRSQ =	0.850759	F(3/85) =	168.217	PROB>F =		
SER =	-		65112.5	SSR =	3.603692E+11	DW(0) =	1.92411	COND =		
20.043: MAX:HA	5 T =		0.138786	RSTUDENT =	4.97622	DFFITS =	1.1254			

COEF	ESTIMATE	STER	TSTAT	PROB> T	
ко	185962.	78424.4	2.37122	0.01999	
K1	0.653959	0.059884	10.9204	0.	
K2	2.33485	0.105185	22.1975	0.	
K3	47025.3	38831.4	1.21101	0.229246	
	==================				

ORDINARY LEAST SQUARES

MODEL NAME: TNP88

15 : SFORRES = 00+01*HDDFOR*CFORRES+02*CDDFOR*CFORRES

NOB = 89		NOVAR = 3		NCOEF = 3		RANGE: 1980 1
RSQ =	0.924263	CRSQ =	0.922501	F(2/86) =	524.752	PROB>F =
SER =	179687.	SSR =	2.776719E+12	DW(0) =	1.93512	COND =
MAX:HAT =	0.12653	RSTUDENT =	-2.5818	DFFITS =	-0.42276	·

				===============================	
COEF	COEF ESTIMATE		TSTAT	PROB> T	
=========================				***************	
00	1.551321E+06	58711.3	26.4229	0.	
01	0.456944	0.030758	14.8562	0.	
02	1.63709	0.055602	29.4432	0.	

ORDINARY LEAST SQUARES

MODEL NAME: TNP88

16 : SFORCOM = P0+P1*CDDFOR*CFORCOM+P3*WNAG

NOB = 8	39 87 5		NOVAR = 3		NCOEF = 3		RANGE: 1980 1	
RSQ =		0.867346	CRSQ =	0.864261	F(2/86) =	281.151	PROB>F =	
SER =		358279.	SSR =	1.103928E+13	DW(0) =	1.7696	COND =	
MAX:HAT	=	0.096682	RSTUDENT =	2.87442	DFFITS =	-0.738901		

				================	
COEF	ESTIMATE STER		TSTAT	PROB> T	
			===================	===============	
PO	2.072526E+06	1.527924E+06	1.35643	0.178512	
P1	5.94028	0.252935	23.4854	0.	
P3	30699.7	30016.8	1.02275	0.309294	
				==============	

ORDINARY LEAST SQUARES

MODEL NAME: TNP88

19 : SPANRES = S0+S1*CDDPAN*CPANRES+S2*HDDPAN*CPANRES+S3*PPI/TEXCPI

NOB = 89 TO 1987 5		NOVAR = 4		NCOEF = 4		RANGE: 1980 1
RSQ =	0.94815	CRSQ =	0.94632	F(3/85) =	518.113	PROB>F =
SER =	284692.	SSR =	6.889222E+12	DW(0) =	2.12911	COND =
MAX:HAT =	0.140469	RSTUDENT =	3.00145	DFFITS =	-0.664844	

COEF	ESTIMATE	STER	TSTAT	PROB> T

SO	-1.014320E+06	802924.	-1.26328	0.209942
S1	2.57768	0.073625	35.0107	0.
S2	0.265588	0.021758	12.2065	0.
S3	1.420804E+07	3.070691E+06	4.62698	0.

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

21 : CANGRES = AAO+AA1*HLPMPOP

NOB = 8	88		NOVAR = 3		NCOEF = 3		RANGE: 1980 1
RSQ =		0.976805	CRSQ =	0.976259	F(1/85) =	1789.79	PROB>F =
SER =		135.213	SSR =	1.554014E+06	DW(0) =	1.90116	COND =
MAX:HAT	=	0.111182	RSTUDENT =	-9.50184	DFFITS =	-1.02312	

COEF	ESTIMATE	STER	TSTAT	PROB> T

AAO	-707.561	3989.32	-0.177364	0.859645
AA1	5.33513	1.23002	4.33743	0.
AR1.0021	0.9	0.048446	18.5775	0.

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

22 : CTEXRES = BBO+BB1*TREND

NOB = 88	3		NOVAR = 3		NCOEF = 3		RANGE: 1	980	1
RSQ =		0.979943	CRSQ =	0.979471	F(1/85) =	2076.49	PROB>F =		
SER =		445.986	SSR =	1.690677E+07	DW(0) =	2.14122	COND =		
MAX:HAT	=	0.044688	RSTUDENT =	-11.0383	DFFITS =	-2.21898			

COEF	ESTIMATE	STER	TSTAT	PROB> T	
5262222222222222		*************			
BBO	40407.9	1118.82	36.1165	0.	
BB1	101.929	18.607	5.478	0.	
AR1.0022	0.9	0.047733	18.855	0.	
2222222222222222					

HILDRETH-LU PROCEDURE

23 : CCLIRES = CCO+CC1*TUMPOP

NOB = 88	5		NOVAR = 3		NCOEF = 3		RANGE: 1980 1
RSQ =		0.996571	CRSQ =	0.99649	F(1/85) =	12351.7	PROB>F =
SER =	38	8.8093	SSR =	128024.	DW(0) =	1.80563	COND =
MAX:HAT =		0.051222	RSTUDENT =	2.84114	DFFITS =	0.506	

=======================================			=======================================	
COEF	ESTIMATE	STER	TSTAT	PROB> T
000	3298.85	514.008	6.4179	0.
CC1	2.26263	0.103183	21.9285	0.
AR1.0023	0.86	0.046648	18.4358	0.

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

24 : COLNRES = DDO+DD1*TUMPOP

NOB = 88		NOVAR = 3		NCOEF = 3		RANGE: 1980 1
RSQ =	0.973792	CRSQ =	0.973176	F(1/85) =	1579.16	PROB>F =
SER =	24.754	SSR =	52084.5	DW(0) =	2.19805	COND =
MAX:HAT =	0.065082	RSTUDENT =	13.0661	DFFITS =	1.43845	

COEF		ESTIMATE	STER	TSTAT	PROB> T	
	DDO	3641.25	1305.4	2.78937	0.006517	
1	DD1	0.100266	0.252378	0.397287	0.692152	
	AR1.0024	0.96	0.017924	53.5603	0.	

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

25 : CPETRES = EE0+EE1*TUMPOP

NOB = 88		NOVAR = 3		NCOEF = 3		RANGE: 19	80 1	1
RSQ =	0.892784	CRSQ =	0.890261	F(1/85) =	353.895	PROB>F =		
SER = 33.7288	3.56664	SSR =	1081.28	DW(0) =	2.03364	COND =		
MAX:HAT =	0.04807	RSTUDENT =	-3.8811	DFFITS =	-0.758256			

				=======================================
COEF	ESTIMATE	STER	TSTAT	PROB> T
EEO	462.564	17.7226	26.1002	0.
EE1	0.032719	0.003591	9.11096	0.
AR1.0025	0.64	0.085107	7.51997	0.

HILDRETH-LU PROCEDURE

26 : CLEWRES = FF0+FF1*TUMPOP

.

NOB = 8	38		NOVAR = 3		NCOEF = 3		RANGE: 1980	1
10 198 RSQ =	57 5	0.991895	CRSQ =	0.991705	F(1/85) =	5201.39	PROB>F =	
U. SER =		276.625	SSR =	6.504328E+06	DW(0) =	2.26125	COND =	
36.4692 MAX:HAT	=	0.055273	RSTUDENT =	-8.83767	DFFITS =	-1.4233		

================================	332222222222222222			
COEF	ESTIMATE	STER	TSTAT	PROB> T
=======================================				
FFO	-43792.9	6687.19	-6.54877	0.
FF1	11.2951	1.32716	8.51072	0.
AR1.0026	0.92	0.035223	26.1195	0.

:

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

27 : CWHIRES = GGO+GG1*TUMPOP

NOB = 88	8		NOVAR = 3		NCOEF = 3		RANGE: 1980	1
RSQ =		0.985704	CRSQ =	0.985368	F(1/85) =	2930.39	PROB>F =	
SER =		85.2516	SSR =	617766.	DW(0) =	2.46855	COND =	
MAX:HAT	=	0.049328	RSTUDENT =	-5.73833	DFFITS =	-0.67404		

COEF	ESTIMATE	STER	TSTAT	PROB> T
2222222222222222				
GGO	1578.99	703.448	2.24464	0.027388
GG1	2.38644	0.142	16.8059	0.
AR1.0027	0.78	0.064644	12.066	0.
GG1 AR1.0027	2.38644 0.78	0.142 0.064644	16.8059 12.066	0. 0.

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

28 : CANGCOM = KKO+KK1*TREND

NOB = 88	3		NOVAR = 3		NCOEF = 3		RANGE: 19	80 1
RSQ =		0.989519	CRSQ =	0.989272	F(1/85) =	4012.41	PROB>F =	
SER =		18.9597	SSR =	30554.8	DW(0) =	2.15015	COND =	
MAX:HAT	=	0.044688	RSTUDENT =	-6.03918	DFFITS =	-0.886419		

				222222222222222222
COEF	ESTIMATE	STER	TSTAT	PROB> T
=========================			***************	
кко	2238.56	10.0422	222.915	0.
KK1	7.10721	0.188337	37.7366	0.
AR1.0028	0.58	0.088975	6.51867	0.
				===================

HILDRETH-LU PROCEDURE

29 : CTEXCOM = LLO+LL1*CTEXRES

NOB = 88 TO 1987 5		NOVAR = 3		NCOEF = 3		RANGE: 1980 1
RSQ =	0.974953	CRSQ =	0.974364	F(1/85) =	1654.33	PROB>F =
SER =	52.4786	SSR =	234090.	DW(0) =	2.24209	COND =
MAX:HAT =	0.438279	RSTUDENT =	-6.55877	DFFITS =	1.38335	

==================				
COEF	ESTIMATE	STER	TSTAT	PROB> T

LLO	2348.71	569.751	4.12234	0.
LL1	0.064104	0.012056	5.31711	0.
AR1.0029	0.94	0.031565	29.7799	0.

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

30 : CCLICOM = MMO+MM1*TUMPOP

NOB = 88	8		NOVAR = 3		NCOEF = 3		RANGE: 1980 1
RSQ =		0.99703	CRSQ =	0.99696	F(1/85) =	14266.	PROB>F =
SER =		12.367	SSR =	13000.	DW(0) =	1.90373	COND =
MAX:HAT	=	0.058521	RSTUDENT =	-4.53839	DFFITS =	-0.733398	

		=============		
COEF	ESTIMATE	STER	TSTAT.	PROB> T
=======================================		========================		
MMO	-1749.21	411.132	-4.25463	0.
MM1	0.929321	0.08088	11.4901	0.
AR1.0030	0.94	0.015285	61.4988	0.

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

31 : COLNCOM = NNO+NN1*COLNRES

NOB = 88	NOVAR = 3		NCOEF = 3		RANGE: 1980 1
RSQ =	0.995794 CRSQ =	0.995695	F(1/85) =	10063.	PROB>F =
SER =	7.76594 SSR =	5126.34	DW(0) =	2.08113	COND =
MAX:HAT =	0.674803 RSTUDENT =	-3.39497	DFFITS =	-1.8386	

COEF	ESTIMATE	STER	TSTAT	PROB> T
NNO	1291.52	149.301	8.6504	0.
NN1	0.03455	0.033705	1.02508	0.308232
AR1.0031	0.98	0.003778	259.384	0.
AR1.0031	0.98	0.003778	259.384 =======	0.

HILDRETH-LU PROCEDURE

32 : CPETCOM = 000+001*TUMPOP

NOB = 88		NOVAR = 3		NCOEF = 3		RANGE: 1980	1
10 1987 5 RSQ =	0,94265	CRSQ =	0.941301	F(1/85) =	698,565	PROB>F =	
0.	0174205	UNUU	01741001		0,01505	TRODE T	
SER =	2.42781	SSR =	501.013	DW(0) =	2.10573	COND =	
34.3575			7 750/4				
MAX:HAT =	0.049656	RSTUDENT =	-3.35061	DFFITS =	-0.505256		

COEF	ESTIMATE	STER	TSTAT	PROB> T

000	39.1722	22.1189	1.77099	0.080148
001	0.02745	0.004461	6.15379	0.
AR1.0032	0.8	0.059904	13.3547	0.
		*************	***************	

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

33 : CLEWCOM = PPO+PP1*CLEWRES

NOB = 88		NOVAR = 3		NCOEF = 3		RANGE: 1980 1
RSQ =	0.983373	CRSQ =	0.982982	F(1/85) =	2513.63	PROB>F =
SER =	60.8835	SSR =	315079.	DW(0) =	2.28101	COND =
MAX:HAT =	0.056296	RSTUDENT =	-11.1975	DFFITS =	-1.90951	

=======================================				
COEF	ESTIMATE	STER	TSTAT	PROB> T
PPO	-266.079	51.7271	-5.14389	0.
PP1	0.151449	0.004216	35.9187	0.
AR1.0033	0.5	0.095663	5.22669	0.

HILDRETH-LU PROCEDURE

MODEL NAME: TNP88

34 : CWHICOM = QQO+QQ1*TUMPOP

NOB = 88	3		NOVAR = 3		NCOEF = 3		RANGE: 1980 1
RSQ =		0.990764	CRSQ =	0.990547	F(1/85) =	4559.11	PROB>F =
SER =		23.5687	SSR =	47216.	DW(0) =	2.63412	COND =
MAX:HAT	=	0.052106	RSTUDENT =	-5.64729	DFFITS =	-0.657549	

COEF	ESTIMATE	STER TSTAT		PROB> T
QQ0	-1502.98	367.677	-4.08779	0.
QQ1	0.862047	0.07362	11.7094	0.
AR1.0034	0.88	0.056223	15.6519	0.

A.12 CITY OF AUSTIN

Model -- COA

Symbol Declaration

TOTSCOA - TOTAL SYSTEM SALES IN MWH

CDD - COOLING DEGREE DAYS

HDD - HEATING DEGREE DAYS

POP - SERVICE AREA POPULATION

Coefficients: ^a0 ^a1 ^a2 ^a3 Equation: $TOTSCOA_t = a_0 + a_1 (CDD_t) + a_2 (HDD_t) + a_3 (POP_t)$ Mean of the Marginal Posterior Distribution of the Coefficients: a0 = -1,412,605.01 a1 = 467.06 a2 = 344.94 a3 = 4,818.78.

Precision of the Marginal Posterior Distibution of the Coefficients: a0: 6.6869 x 10 a1: 0.0068 a2: 0.0027

a3: 0.0011

HD 9685 .U6 T4 1989 v.3