
Practical End-to-End Performance Evaluation of Backend Software Applications

by

TULI NIVAS

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2013

Copyright c© by Tuli Nivas 2013

All Rights Reserved

ACKNOWLEDGEMENTS

First and foremost I would like to thank my advisor Dr. Csallner. Without

his constant guidance this work would have never got done. His knowledge in the

field of software engineering and dedication towards his students is unparalleled. His

suggestions to the technical challenges I faced during this work, the brainstorming

sessions and his meticulous reviewing and editing of papers and this dissertation

document has been an invaluable help. I would also like to thank my committee

members - Dr. Walker, Dr. Elmasri and Dr. Khalili for taking the time to review

this document and provide critique and advice. I want to especially thank Dr. Khalili

for being so accommodating and considerate and for stepping in at the last minute

to be part of my committee.

I would like to take this opportunity to thank the pLab and EI architecture

teams at Sabre Holdings. They are some of the most innovative and smart people I

have worked with. Parts of this dissertation are a result of the excellent team work

and rapport I share with them. A special shout out to Alan Walker and Ross Darrow!

They went out of their way to discuss issues and provide me with books and licenses

to software that helped me complete this work. They provided me with brilliant ideas

and their recommendations were crucial in getting this research done.

Last but not the least I want to express my deepest gratitude to my family and

friends. I cannot thank my parents - Dr. Pratibha Srivastava and Shri Nivas and

sister - Shruti Rawat enough, for always believing in me, supporting and encouraging

me and for their never ending love. Their positive outlook in everything and faith in

me has always motivated me to achieve my goals. My brother-in-law Vikram Rawat

iii

was my sounding board. Discussing different ideas and solutions with him and his

years of industry experience were a big help in putting all the pieces together for this

work. I can never express enough appreciation to my family for always being there

when I need them - through the highs and the lows. Huge thanks to all my friends

too for being part of my life and cheering me on in my every endeavor.

November 15, 2013

iv

ABSTRACT

Practical End-to-End Performance Evaluation of Backend Software Applications

Tuli Nivas, Ph.D.

The University of Texas at Arlington, 2013

Supervising Professor: Christoph Csallner

This dissertation makes contributions to four areas of performance testing - the

test process itself, monitoring, automation and end-to-end performance evaluation of

backend applications.

The first contribution deals with the testing process. Performance testing is

a key element of industrial software development, but we still encountered the fol-

lowing two problems. (1) While testing textbooks prescribe writing tests against

performance goals, we find that it is impractical to gather from business analysts

performance goals that are detailed enough for finding subtle performance bugs. (2)

Once performance tests are conducted, we were asked questions such as - how do you

make sure that the results collected during testing are a good indication of how the

code will function in production? To enable practitioners to address these problems,

we introduce two additional performance testing process components, which we call

release certification and test data correlation. Our key idea to address problem (1)

is to run two different versions of the same subject application side-by-side in the

same test environment and (2) is to correlate the performance measurements of the

test and production environments. Running individual soak, load and stress tests to

v

assess different aspects of an application is a tedious process. So we introduce a new

test - impulse test that not only combines the characteristics of multiple existing tests

but also enables testing for engineering aspects such throttles, alerts and timeouts.

The second contribution is in the area of instrumentation. Monitoring the

performance of distributed applications is an important task in practical software

engineering. Current monitoring tools are often limited in the range of computing

platforms they support, which limits their utility in several business monitoring sce-

narios. Current monitoring tools can also impose a significant performance overhead.

We describe our in house built EI Enterprise Instrumentation monitoring tool that

addresses these issues. We compare EI with a state-of-the-art monitoring tool on

a real online shopping application and describe our experience with EI as well as

feedback we received from EI users.

The third component of the study deals with test automation and scripting.

Scarcity of commercially available testing tools that could support all native or ap-

plication specific message formats as well as those that cater to non GUI or non-web

based backend applications led to creating our own customized traffic generator and

scripts. This study provides (1) the general design principles for a test script that

can be used to generate traffic for any request format as well as (2) specific factors to

keep in mind when creating a script that will work in a test environment that uses a

mock. It will also address the (3) design and properties of a test harness. It provides

a simple framework that can be easily used to complete an end-to-end testing process:

pre test, traffic generation and post test activities.

Last but not the least the dissertation proposes a solution to assess performance

for backend applications. State space models specifically Markov models are used ex-

tensively to predict anomalies, capacity and throughput in computer systems. In

most cases existing solutions depend on underlying architecture and historical data

vi

to create the models and then detect states that differ from the created profile. In this

study we will use Markov models to proactively predict the performance of a software

system by using client side input parameters and application attributes without the

need to know the underlying architecture. The goal is to find pressure points/bottle-

necks for the application when it interacts with other components. Pressure points are

any application resource that can become exhausted thereby restricting or degrading

service level performance such as CPU, memory, disk, network and so on.

All solutions proposed in this study have been implemented on real world travel

applications, in most cases an airline shopping application. The data gathered and

all measurements/plots in this study are from travel related pieces of code that are

live and used by customers today.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . v

LIST OF ILLUSTRATIONS . xiii

LIST OF TABLES . xxi

Chapter Page

1. INTRODUCTION . 1

1.1 Performance Certification and Correlation 2

1.2 Designing Performace Tests . 5

1.3 Monitoring and Instrumentation . 7

1.4 Test Script Design and Automation 8

1.5 End-to-End Performance Evaluation of Applications using State Space

Models . 9

2. MANAGING PERFORMANCE TESTING WITH RELEASE CERTIFI-

CATION AND DATA CORRELATION 12

2.1 Introduction . 12

2.1.1 Solution Overview . 16

2.2 Release Certification . 18

2.2.1 Example: Certification for Airline A 20

2.3 Performance Testing For Release Certification 23

2.4 Designing an Impulse Test . 25

2.4.1 Initial Peak Load . 27

2.4.2 Traffic Surge . 27

viii

2.4.3 Traffic Drop . 28

2.4.4 Subsequent Peak Load . 28

2.5 Benefits of Impulse Test . 28

2.5.1 Ignoring the Implementation of Throttles and Timeouts 30

2.5.2 Insufficient Alerts . 31

2.6 Performance Measurements Using Impulse Tests 33

2.7 Impulse Test vs. Conventional Tests 39

2.8 Guidelines for designing thresholds, timeouts, and alerts 43

2.8.1 Thresholds . 44

2.8.2 Timeouts . 47

2.8.3 Alerting . 47

2.9 Test Data Correlation . 48

2.9.1 Example: Correlation for Airline A 50

2.10 Related Work . 51

3. SOFTWARE TESTABILITY . 53

3.1 Introduction . 53

3.1.1 Example: Insufficient Instrumentation of a Commercial Hotel

Booking Application . 54

3.2 Software Testability . 56

3.3 Characteristics of Software Applications that Affect Testability 59

3.3.1 What to Instrument? . 62

3.3.2 NOFEP . 64

3.3.3 Standard Instrumentation . 68

3.4 Characteristics External to Software Application that Affect Testability 70

3.5 Environmental Characteristics that Affect Software Testability 74

ix

4. ENTERPRISE INSTRUMENTATION: A LIGHTWEIGHT CROSS-PLATFORM

LOW-OVERHEAD MONITORING TOOL FOR DISTRIBUTED SOFT-

WARE APPLCIATIONS . 79

4.1 Introduction . 79

4.2 Background: DynaTrace . 82

4.3 Overview of Enterprise Instrumentation (EI) 83

4.4 EI Log Types and Configuration . 86

4.4.1 Log Types . 86

4.4.2 Configuration . 87

4.5 EI Implementation . 88

4.6 EI API Implementation Details . 89

4.6.1 Summary Customer Metrics (SCM) 89

4.6.2 JVM Metrics . 93

4.6.3 Billing . 96

4.7 Experience in the Sabre Production Environment 99

4.8 Comparison With a Third-Party Monitoring Tool: DynaTrace 103

4.8.1 Cross-Platform Functionality 105

4.8.2 Runtime Overhead . 106

4.9 Related Work . 108

5. TEST HARNESS AND SCRIPT DESIGN PRINCIPLES FOR AUTOMATED

TESTING . 112

5.1 Introduction . 112

5.2 Test Harness and Script Design Priciples 115

5.2.1 Test Harness Definitions . 115

5.2.2 Test Script Design . 118

5.3 Test Harness Example . 128

x

5.4 Related Work . 130

6. DESIGN OF EXPERIMENTS (DOE) FOR PERFORMANCE EVALUA-

TION OF SOFTWARE APPLICATIONS 132

6.1 Introduction . 132

6.2 Background - Terminology of DOE 136

6.2.1 One Factor Experimental Design 137

6.2.2 Factorial Experimental Design 138

6.2.3 Orthogonal Main Effect Designs - OMEDs and Taguchi Method 141

6.3 Design of Experiments for Performance Evaluation of Software Appli-

cations . 145

6.3.1 Orthogonal Array DOE Setup for Evaluating Performance of

Airline Shopping Application 150

7. STATE SPACE MODELS - MARKOV MODELS FOR PERFORMANCE

EVALUATION OF SOFTWARE APPLICATIONS 158

7.1 Introduction . 158

7.2 Background - Markov Models . 158

7.2.1 Discrete Time Markov Chains 159

7.2.2 Calculating State Transition Probabilities 162

7.3 State Space Models for Evaluating Performance of Software Applications163

7.4 Related Work . 165

8. EVALUATING PRESSURE POINTS IN A COMPUTER SYSTEM FOR

END TO END PERFORMANCE EVALUATION 169

8.1 Introduction . 169

8.2 Background - What is a Pressure Point or a Bottleneck? 173

8.3 Pressure Points in Computer Systems 177

8.4 Characteristics and Behaviors of Software Application Pressure Points 182

xi

8.5 End-to-End Performance Evaluation of Software Applications 184

8.5.1 Creating a Node Cluster . 185

8.5.2 Creating the State Space Model 188

8.5.3 Finding Pressure Point States in the State Space Model 192

8.6 Simulation Setup . 193

8.7 Simulation Results . 200

8.8 Proposed Solution vs. Conventional Performance Tests 205

8.9 Performance Prediction Using SSMs 209

REFERENCES . 220

BIOGRAPHICAL STATEMENT . 228

xii

LIST OF ILLUSTRATIONS

Figure Page

1.1 Multi-tier online-shopping application from the airline travel industry 3

1.2 Booking transactions in four related travel shopping applications (air,

hotel, car, and cruise) over eleven months. 6

2.1 Performance bug in an airline ticket sales back-end application hosted

by Sabre. CPU usage (thin lines) is similar between release 8.08 and

release 10, but virtual memory (dotted) and residual memory (broad

lines) differ significantly. This bug was found with fine-grained perfor-

mance goals for virtual and residual memory. These performance goals

did not appear in any SLA but were derived from the performance of

release 8.08. 15

2.2 Performance testing workflow extended with release certification and

data correlation components. 17

2.3 Shopping Application Data Flow Path Showing Backend Applications

- Availability and Schedule Finder along with the Database Server Pool.

The Server Pool of Shopping Application is Made Up of Shopping His-

torical (HIST), Shopping Domestic (IS) and Shopping International

(MIP) Components, Each having Separate Releases. 21

2.4 Shopping Application Setup in Test Environment with Two Identical

Test Paths - One for Current Release and Second for New Release. . . 23

2.5 Booking transactions in four related travel shopping applications (air,

hotel, car, and cruise) over eleven months. 25

xiii

2.6 Impulse test design. A long period of peak load is followed by a rel-

atively short but drastic traffic surge, followed by a brief drop and a

subsequent long pre-surge peak load; TPS = transactions per second. . 26

2.7 Impulse test design. Impulse test with incremental traffic increase after

the surge to the pre-surge peak level. 29

2.8 Impulse test design. Impulse test with two traffic surges. 29

2.9 The Customer Insight application communicates with ICE for session

authentication, USG for user communication, and Provider for user spe-

cific data. 30

2.10 Simplified architecture of Sabre Sonic Web (SSW). Users communicate

with SSW via a firewall and SSW gets user specific information from

the SSW database. 33

2.11 The application throttles requests during the traffic surge as expected. 34

2.12 The application produces and logs alerts for exceeded thresholds and

exceptions during the traffic surge as expected. 35

2.13 Application TPS decreases during the traffic surge as expected, but does

not recover after the traffic surge to before-surge levels, which indicates

a performance bug; TPS = transactions per second. 36

2.14 Response times for Release 4.2.2(dotted lines) vs. Response times for

Release 3.21.3 (solid lines). 36

2.15 Heap usage increased from ASv2 release 3.21.3 (red) to release 4.2.2

(blue). 37

2.16 Both GC times and frequency increase from ASv2 release 3.21.3 (red)

to release 4.2.2 (blue); GC = garbage collection. 38

2.17 The overall availability of the entire online shopping application (shown

in percent) has increased in recent years. 39

xiv

2.18 New release of shopping application (represented by the red line) shows

an increase in response times for Expedia (EXPD) transactions as com-

pared to the current release (represented by the green line) 40

2.19 The scheduler application’s residual memory for the new release(represented

by the red solid line) shows an increase as compared to the old release

(represented by the green solid line) 41

2.20 Traffic Profile for a Conventional Load Test for an Airline Shopping

Application.Red solid lines represent the new release and the green solid

lines represent the current release . 42

2.21 Elapsed Time Measurement for Conventional Load Test for New (rep-

reseneted by the color green) vs. Current (represeneted by the color

red) Airline Shopping Release . 43

2.22 Certification Numbers for Elapsed Time After a Conventional Load

Test for an Airline Shopping Application 43

2.23 Production Like Traffic Profile for an Impulse Test for an Airline Shop-

ping Application. Red solid lines represent the new release and the

green solid lines represent the current release 44

2.24 Elapsed Time Measurement for Impulse Test for New (represented by

the color red) vs. Current (represented by the color green) Airline Shop-

ping Release . 45

2.25 Certification Numbers for Elapsed Time After an Impulse Test for an

Airline Shopping Application . 45

2.26 Example of how to look for string patterns in Application Logs and

then set Alerts. 48

3.1 Data Flow for Hotel Booking Application 55

3.2 Test Logs for Hotel Booking Application 55

xv

3.3 Software Testability Enablers . 58

3.4 Characteristics of Software Applications that Affect Testability 59

3.5 NOFEP Architecture . 64

3.6 Time taken to create connections with existing NOFEP architecture . 66

3.7 CPU usage of a NOFEP server with existing architecture 66

3.8 Load average of a NOFEP server with existing architecture 67

3.9 New NOFEP architecture . 68

3.10 Time taken to create connections using the new NOFEP architecture 69

3.11 CPU usage of a NOFEP server running the new architecture 69

3.12 Load average of a NOFEP server with the new architecture 70

3.13 Characteristics External to Software Application that Affect Testability 71

3.14 Example of an Automated Test Harness in a Test Environment with

Backend Simulators/Mocks . 73

3.15 Environmental Characteristics that Affect Software Testability 75

3.16 Factors to Consider When Setting Up a Test Environment 76

4.1 Design excerpt of a real distributed travel shopping application. The

upper right shows key components of our EI monitoring tool, including

various instances of the instrumentation library (EI API), the shared

Pub/Sub communication medium, and the Consolidated Logging Repos-

itory (CLR). 81

4.2 Overview of the main EI components - 1. EI API, 2. Pub/Sub, 3. CLR

and 4. Monitoring GUI collecting various monitoring data, i.e., appli-

cation metrics and audit, security, and billing data. NAS = network-

attached storage; pub/sub = publish-subscribe. 84

4.3 Logical View of Summary Customer Metrics Collected Using EI API . 90

4.4 Logical View of Application Using EI API to Collect JVM Data . . . 94

xvi

4.5 Logical View of Application Collecting Billing Information 98

4.6 Yearly historical process data on a given server collected in CLR to

identify performance trends. The graph shows the total number of pro-

cesses running on the server on a particular day for each month from

September 2010 to September 2011. 101

4.7 End-to-end system response time increases as TPS is increasing in the

shopping application of Figure 4.1. 102

4.8 CPU usage on one of the two shopping servers. The corresponding

graph of the second server is very similar. CPU usage is increasing with

the TPS increase of Figure 4.7. 102

4.9 Fine-grained performance data collected in CLR: Response times, elapsed

times, up-times, and failed transactions. 103

4.10 Example fine-grained error statistics collected in CLR. 104

4.11 Logical View of User Actions Done During Testing 104

5.1 Step by Step Visualization of the Validation Activity of the Test Harness118

5.2 General Test Script Design for Environments without Mocks. Addi-

tional Components Needed for Environments with Mocks are shown in

Figure 5.6 . 121

5.3 Sample Directory Structure for Easy Test Script Development and Man-

agement . 122

5.4 Sample Test Scenario Configuration File that Clearly Describes De-

tailed Test Scenario, Interactive Console Features, Request and Log

Directories. Configuration Files Simplify the Test Script Development

and Ease Maintainability . 123

xvii

5.5 Sample Post Test Report for a Script. Automated Generation of Such

Reports Helps Identify the Types of Errors and Application Behavior

during Testing . 125

5.6 Test Script Design for Environments with Mocks. Basic Test Script De-

sign Principles - replaying traffic, reading configuration file and creating

reports are based According to Figure 5.2 127

5.7 Actual vs. Expected Test Results . 128

5.8 Sequence of Activities for Test Harness and Script 130

6.1 Execution Steps for the Taguchi Method of Design of Experiments . . 143

6.2 Multi-Tier Architecture of Software Applications 146

6.3 Percentage Distribution of Traffic Types for Airline Shopping Application151

6.4 Data Distribution of Incoming Transactions for Four Airline Shopping

Workload Types. The X-axis represents the logarithmic scale of base 10

and Y-axis represents the kernel density function of the data 152

6.5 The Frequency Histogram for Airline Shopping Application TPS . . . 153

6.6 The Taguchi Othogonal Array Selector 155

7.1 Example of a discrete-time Markov chain referring to Equation (7.6) . 161

7.2 State Space Model for Rainy and Sunny Days in a Week 163

7.3 State Space Model for Rainy and Sunny Days in a Week with Transition

Probabilities . 163

8.1 Different Systems Work Together to Enable Self Service Checkin for

Travelers . 170

8.2 Performance bottlenecks for an application can be found at each com-

munication link (incoming and outgoing) with other components . . . 171

8.3 The Pipes in Hydraulics are Similar to Software Application’s Capacity

Measurements . 174

xviii

8.4 Steps for Detecting Bottlenecks in a System 175

8.5 Example of a Pressure Point Due to Queueing 175

8.6 Example Showing a Critical Bottleneck 176

8.7 Different Paths Through the System can Cause Different Pressure Points177

8.8 An example of an airline ticketing system 179

8.9 Context Diagram for Interline Electronic Ticketing (IET)/TKTHUB . 180

8.10 Sequence of steps for pay me later option for payment web service

application . 181

8.11 nodeInCluster Algorithm Decides Whether to Add a Node to an Ex-

isting Cluster or Form a New Cluster 187

8.12 createSSM Algorithm to Build a State Space Model For a Software

Application . 189

8.13 Resulting SSM for the createSSM Algorithm Example 192

8.14 findPressurePoint Algorithm to Identify Performance Issues for Soft-

ware Applications . 195

8.15 Simple Representation of Shopping Application With Backend Compo-

nents - Availability and Schedule Finder along with the Database Server

Pool. 197

8.16 Simulation Setup for Shopping Application and Backend Components

Shown in Figure 8.15 in extendsim. 197

8.17 The Different Simulation Factors and Their Levels Can be Setup as

Attributes in extendim . 198

8.18 Simulation Setup for Airline Shopping Application and findPressure-

Point Algorithm to Identify Pressure Point States 199

8.19 Response Time Plot for Simulation Data with Response Times Greater

Than the SLA Marked as Pressure Point 200

xix

8.20 CPU Usage Plot for Simulation Data 201

8.21 Memory Usage Plot for Simulation Data 202

8.22 Disk Usage Plot for Simulation Data 202

8.23 Response Time Plot for Test Run on Real World Airline Shopping Ap-

plication Using Proposed Solution vs. Regular Performance Test. The

Combination of Multiple Factors Pushes the Application Over It’s Re-

sponse Time SLAs Before an Increase in TPS in a Regular Performance

Test Does.Pressure Points are Detected Using Proposed Solution but

Not Using a Regular Test. 206

8.24 CPU and Memory Usage Plot for Test Run on Real World Airline Shop-

ping Application Using Proposed Solution vs. Regular Performance

Test. The OS Utilization is Higher for the Proposed Solution Since It

Pushes the Application Outside It’s Normal Processing Boundaries. . . 207

8.25 Queue Depth Utilization Percentage for Real World Airline Shopping

Application Workload Types Using Proposed Solution and Using the

Queue Depth Factor Levels from Chapter 6 208

8.26 Errors Including Timeouts and Throttled Transactions for the Shopping

Application Using the Proposed Solution (LHS) vs. Errors for a Regular

Test (RHS) . 209

xx

LIST OF TABLES

Table Page

2.1 Release certification for different applications that are part of an airline

shopping back-end application data flow path. 19

2.2 Release certification criteria for an airline shopping application; d =

day; CPU/shop = CPU usage for every call made to shopping application. 22

2.3 Correlating production and test for Airline A. 50

4.1 JVM Metrics Collected Using EI API 97

4.2 Increase in response time for method calls when using DynaTrace com-

pared to our EI tool. 106

4.3 Increase in response time when delivering pages, using DynaTrace as

compared to our EI tool. 107

6.1 ANOVA for One Factor Design. df represents the Degrees of Freedom,

SS the Sum of Squares, MS is the Mean Squares and F is the Calculated

F-value . 139

6.2 ANOVA for Three Factor Design.df represents the Degrees of Freedom,

SS the Sum of Squares and MS is the Mean Squares 141

6.3 Layout of L9 Orthogonal Array . 144

6.4 TPS and Workload Type Levels for Performance Evaluation DOE . . 154

6.5 Queue Size and Timeout Levels for Performance Evaluation DOE . . 154

6.6 Throttle and Payload Size Levels for Performance Evaluation DOE . . 154

6.7 DB and Application Thread Pool Levels for Performance Evaluation

DOE . 154

xxi

6.8 L50 Standard Orthogonal Array to Decide Combinations of Levels for

Factors . 155

8.1 Sample State Space Data for Travel Shopping Application 190

8.2 Transition Probabilities of the State Space Model Generated as a Result

of the Simulation . 203

8.3 State Transition Probabilities for Example State Table 8.1 212

8.4 State Transition Probabilities for Four Test Cases Run From the Taguchi

Orthogonal Array for an Airline Shopping Application 214

8.5 Canonical State Transition Probability Matrix for Table 8.4 215

8.6 Sample Initial State Transition Probability Matrix 218

xxii

CHAPTER 1

INTRODUCTION

From simple day to day tasks to the more complicated functionalities from every

aspect of our life is slowly becoming computerized. Every industry is dependent on

computers to provide services to their customers. A company’s or an organization’s

key strategy to retain its online customers is to maintain a production environment

that reliably caters to their needs and works without fault. Adding more function-

ality to attract customers leads to more complex code and infrastructure. There are

usually different kinds of components such as routers, load balancers, message queues,

middleware APIs along with different kinds of hardware and operating systems that

make up the end-to-end production environment. A smooth operation of such a dis-

tributed system requires a clear understanding of not only how to design it but also

how to successfully test it before deployment.

The chapters will concentrate on the non-functional or performance testing

aspect of software applications. This implies that we will look into how to improve

the process and how to run complete tests that save time and resources by combining

characteristics of various performance tests in one. We will also look at the process

of certification and correlation that helps with deploying releases in production that

perform better or comparable to currently deployed releases. We will also look at the

various engineering aspects of the solution design that need to be part of the testing

process for proper performance validation. Since automation is such an important

part of testing, we will also look into how to design an automation framework and

characteristics of test scripts that will help with the complete testing process of an

1

application. Application Instrumentation is another aspect that will be studied. We

will provide details of an instrumentation technique that can be used for distributed

systems. And lastly, we will look at how a state space model can be used to detect

bottlenecks in an application. Most of the performance tests that exist today rely on

load as an input parameter to then find issues with the software. Load is just one

characteristic on which the application’s performance is dependent. We will study an

airline shopping application and see how it is affected by different input parameters

and how these parameters can be changed to make the application function outside

normal boundaries thereby revealing its bottlenecks in one go. Usually multiple tests

are run in order to find different issues. The goal of the state space model will

be to discover the performance bottlenecks without spending time on setting up,

executing and then analyzing data from multiple test runs. The work described

in the following chapters except the algorithms and processes involving state space

models, was accomplished as part of a team at Sabre Holdings Inc.

1.1 Performance Certification and Correlation

To make our discussion concrete, Figure 1.1 shows a high level view of an

actual airline shopping application. The end user accesses the system either through

a web based interface such as the Travelocity.com web site or via a terminal. For

example, travel agents currently use terminal access to search for flights with the

required origin and destination city and dates. The terminal user requests go through

an application called NOFEP (NO Front End Processor) and then to a component

called Liberty, which in turn forwards the shopping request to the TPF (Transaction

Processing Facility). The TPF system is fed from both hosted as well as non-hosted

airline data through an intermediary database. Web user requests go through a load

balancer, then a shopping application which determines if the request is domestic or

2

international and puts them in a queue accordingly. These requests are then picked

up by ASv2 (Availability Service version 2) and DSSv2 (Dynamic Scheduler version

2) in order to find all available schedules for the particular origin/destination city

pair. These applications also talk to a database that stores all hosted as well as non

hosted airline data.

Terminal
User

Web User

Web
User

Router

Router

Firewall

Firewall

Big IP Load
Balancer

NOFEP

Liberty

Non-hosted
Airline

Applications

Oracle

Mainframe
Based TPF

Shopping

Shopping

IBM
MQ

ASv2

DSSv2

Oracle

Figure 1.1. Multi-tier online-shopping application from the airline travel industry.

Two major aspects form the basis of running performance tests before the ap-

plication goes live: (1) assessing its behavior standalone (2) as well as when it is

integrated with other components. Standalone performance is usually measured by

looking at the response time and throughput metrics and resource utilization data at

both the system as well as the process level. Performance testing is a key element

3

of industrial software development. While basic performance testing concepts are

well understood, it is less clear how to manage performance tests in practice. i.e.,

we have encountered the following two problems. (1) While testing textbooks pre-

scribe writing tests against performance goals, we find that it is impractical to gather

from business requirements, performance goals that are detailed enough for finding

subtle performance bugs. (2) Once performance tests are conducted, we were asked

questions such as the following, which we found hard to answer. How can you be

confident that the executed tests assess the performance of the software truthfully?

How can you be certain that the software under test performs better than the code

that is already in production? How do you make sure that the results collected during

testing are a good indication of how the code will function in production?

To enable practitioners to address these problems, we introduce two additional

performance testing process components, which we call release certification and test

data correlation. Our key idea to address problem (1) is to run two different versions

of the same subject application side-by-side in the same test environment. This allows

us to use the performance profile of the previous version as the detailed performance

specification of the version under test. Our key idea to address the questions of (2) is

to correlate the performance measurements of the test and production environments.

We also report on a prototype implementation of these process components in our

production environment in the travel industry along with the way the performance

tests are designed. This work was done as part of a two member team where I helped

design the new process along with developing the proof of concept. This work has

been published in [4]

4

1.2 Designing Performace Tests

Figure 1.2 shows a real world traffic profile typically consists of peaks, troughs

and some relatively constant transaction levels. In the development lifecycle, due to

different reasons, sometimes more emphasis/time is given to the development phase

as compared to the testing phase. It is also important to keep in mind that in most

cases a particular application when deployed in the production environment will not

be working standalone. It will be interacting with other applications, various mid-

dleware components, load balancers, the database(if any), customer facing interfaces

and maybe even backend mainframe/TPF systems (as is the case with most of the

real life examples considered during this work). This implies that both functional

and non-functional testing needs to cover multiple scenarios. These scenarios need

to include not only transaction paths between different components but also need to

cover the engineering aspects of the architecture. Engineering aspects include throt-

tling, timeouts, event based alerting and thresholds. Without having tested these

factors, there is no way to validate that an application will perform as expected after

deployment. However, conventional performance tests such as load and soak tests

are designed to send constant levels of traffic throughout the test duration. Stress

or spike tests use short periods of traffic surges. None of these conventional tests

individually emulates the incoming request levels in a production environment. The

other drawback of running these tests individually is that with every new test case,

the environment and application has to be refreshed thereby resetting the state of

the application under test, load has to be generated and then performance measure-

ments have to be taken afresh. This reduces the chances of finding bugs related to

incapability of the application to handle varying traffic patterns. A load or a soak

test might miss performance issues associated with higher levels of traffic or improper

settings of timeouts and thresholds. A spike test (which uses short bursts of traffic)

5

run individually might miss bottlenecks due to memory leaks or garbage collection in

case of Java applications, which are usually only uncovered in a long running test.

Figure 1.2. Booking transactions in four related travel shopping applications (air,
hotel, car, and cruise) over eleven months..

So to address the problem of evaluating the performance plus the mechanisms

built into an application that are supposed to protect it from unusual traffic levels,

we propose impulse testing, which is designed to combine traffic that more closely

imitates real world application traffic with the characteristics and benefits of load,

soak, spike and stress tests. Once again this work was done as part of a two member

team where I helped architect the new test design and also implemented it on various

application profiles to assess its benefits.

6

1.3 Monitoring and Instrumentation

Monitoring distributed applications is challenging as it tries to satisfy two main

conflicting goals. (1) On the one hand, software engineers want to collect data that

is as detailed and comprehensive as possible, as having fine-grained runtime data for

the entire system is useful in software analysis and maintenance tasks. (2) On the

other hand, collecting any monitoring data is an overhead that can be very expensive,

as the monitoring tool consumes computing and communication resources of the very

machines and networks it monitors. Any monitoring tool therefore tries to both

maximize the utility of the data it collects and minimize the overhead it incurs.

In addition to these conflicting two main goals, existing monitoring tools also try

to optimize other goals, such as ease of deployment and providing an integrated

solution. These additional goals however conflict with the two main goals, as both

ease of deployment and a highly integrated tool can lead to collecting data that is

less useful while incurring a higher runtime overhead.

Specifically, we found that many existing monitoring tools utilize generic pro-

gram instrumentation facilities to collect data. This is convenient in program deploy-

ment, as it can automatically instrument different kinds of applications. However it

also limits the applicability of the approach to the platforms it supports. Practical

business applications are often implemented on a wide mix of hardware and software

platforms as well as communication protocols, which increases the risk that some part

of the system is not supported by such a generic instrumentation approach. In addi-

tion, such a general approach also leads to bloat, as it may insert monitoring probes

that are not needed for the specific application, which causes unnecessary overhead.

To provide an integrated solution, many existing monitoring tools also utilize

their own custom communication techniques to propagate monitoring data from the

monitored entities to repositories or analysis nodes. Such an integrated solution may

7

be useful in some situations, but it can also lead to undesired overhead. Such cus-

tom communication techniques often run on the very nodes that are monitored and

therefore consume resources that could otherwise be used by the monitored appli-

cation. Examples of such custom communication techniques include hierarchies of

filtering nodes that are co-located with the monitored application. We describe our

in house built lightweight instrumentation and monitoring tool EI (Enterprise Instru-

mentation), which provides detailed monitoring data on a wide range of platforms

and communication networks yet imposes very little overhead on the monitored ma-

chines. Specifically, EI provides an API that can be called from a variety of platforms,

including Java, .Net, C++ and C environments. The API is simple and customized

to avoid the overhead of more generic instrumentation approaches.

To propagate data from the monitored application to analysis nodes, EI lever-

ages the well-known advantages of publish/subscribe systems and message queues,

which separate processing logic (i.e., monitoring activities) from communication con-

cerns. A key observation is that this separation of concerns allows us to separate the

places at which the concerns are handled. This separation can preserve computing

resources on the monitored machines for the application and thus yield better end-

to-end performance. This work was accomplished working with the EI architecture

team where I ran different tests and gathered data to compare the EI API tool with

dynatrace.

1.4 Test Script Design and Automation

Scarcity of commercially available testing tools that could support all native or

application specific message formats as well as those that cater to non GUI or non web

based backend applications leads to creating your own customized traffic generators

or scripts. Also the test environment setup may differ from one system to another

8

some may use simulators or mocks to stub out complex software, others may just be

a scaled down (in terms of number of servers) replica of the production environment.

So what are the factors that need to be considered when creating scripts that can

be used for native request formats and for non GUI or web based applications? How

do we design a script that is easy to maintain and extend when new test scenarios

are added to accurately assess the performance of an application? We provide (1)

the general design principles for a test script that can be used to generate traffic for

any request format as well as (2) specific factors to keep in mind when creating a

script that will work in a test environment that uses a mock. In addition to this

the core activities of testing include not only traffic generation but also setting up

the environment, verifying that both the hardware and software configurations are

accurate prior to sending traffic and creating a report at the end of the test. Therefore

the test script needs to be part of a complete harness that accomplishes these tasks.

We will address the (3) design and properties of such a harness. It provides a simple

framework that can be easily used to complete an end to end testing process -pre

test, traffic generation and post test activities. This automation framework was built

as part of a two member team where I architected the solution and helped code part

of it for implementation. This work was published in [1].

1.5 End-to-End Performance Evaluation of Applications using State Space Models

Last but not the least we will finally look at how to identify performance pres-

sure points in an application when it is interacting with different backend or upstream

systems. As mentioned earlier there are different types of tests that can be performed

on an application to verify its functionality and performance. Both functional and

non-functional testing is of utmost importance before the application is deployed in

production in order to create a stable and reliable operating environment. Usually

9

when it comes to software testing a majority of the effort is directed towards load

testing of client facing applications. Existing tests that are performed in order to

evaluate the performance of a software application are dependent on one varying in-

put factor - load. Tests are defined as load, soak, stress, capacity and so on based on

how often the incoming transactions are per second are varied and what level of load

is driven through the application. With his kind of an approach, a number of tests

have to run in sequence to find the various bottlenecks in the application. Varying

just load levels may not even uncover all the issues.

In general there are numerous factors that affect how the application will per-

form after being deployed in production. We will be using state space models in

particular Markov models and experimental designs to study the effect of changing

input parameters that influence a software application’s performance. The purpose of

this is to operate the application outside its normal boundaries and reveal all possible

issues that could affect it in production. The objective is to evaluate and proactively

predict the performance and profile of a software system that is dependent on mul-

tiple varying input parameters in a large scale distributed system. The applications

considered would not be client interfacing web based applications but ones that in-

teract with multiple components to process incoming transactions. The goal is to

find pressure points for the application when it interacts with other systems and/or

middleware components and database. Pressure points are any application resource

that can become exhausted thereby restricting or degrading service level performance.

Examples of pressure points include: CPU, memory, disk, network, code loops, locks,

file handles, stack/heap settings, buffers, threads, connections and so on.

We will be taking an airline shopping application as the pilot application to

build its SSM and observe how the workings change, when subjected to different

changing input parameters. Numerous factors have direct or indirect influence on the

10

application’s performance. There are also different parameters that can be used to

measure the changes. The SSM will define the state of the application in terms of

it’s resource utilization numbers, it’s throughput as well as the it’s processing times.

The goal will be to subject the application to various input parameters and then

observe how the state of the application changes. Any state of the application where

the processing time goes over the predefined SLA and an application crash will be

defined as a state that is a potential pressure point. The combination of the input pa-

rameters will be noted and that will define the scenarios that could potentially cause

the application performance to degrade when deployed in production. Knowing the

cases under which the code is not performing well, will help the development team

to proactively write and put checks in place to avoid these scenarios and to instru-

ment and implement alerts that will notify the operations team of any performance

degradation immediately.

11

CHAPTER 2

MANAGING PERFORMANCE TESTING WITH RELEASE CERTIFICATION

AND DATA CORRELATION

2.1 Introduction

For a commercial computing environment that processes transactions 24*7, 365

days a year, software and hardware stability and reliability are crucial. Any disruption

of service could have catastrophic effects on the company in terms of revenue earned,

brand credibility, and customer loyalty. Bottlenecks or other issues that could degrade

the performance of a deployed application should thus ideally be found and resolved in

the test environment. Performance testing becomes crucial in such situations because

you want to find and resolve issues that could in anyway degrade the performance of

an application when deployed in production.

A particular piece of code deployed in production, let’s call it the existing

application release goes through several iterations of improvements and maintenance.

Every time the code is modified, let’s call it the new application release, it has to be

tested before it is deployed in production. Following are the conventional steps used

to run performance tests for any software application [2].

1. Understand Business/Application Needs: Performance testing is different from

functional testing. Understanding the business drivers and the service level

agreements behind a developed application helps in identifying the objectives

of performance testing.

12

2. Identify Acceptance Criteria: Here we identify the performance targets. We

have to know if a test passed or failed and hence we need to know what kind of

data or metrics need to be collected in order to make that decision.

3. Identify Test Environment: Having a test environment that mirrors production

would be ideal. But since that is not practical there are certain factors other

than assembling production like hardware that need to be considered when

building a test environment. These factors include among others network, op-

erating system, software licenses, and data collection tools.

4. Plan and Design Tests: Here we analyze workloads, create scripts, and build

test data. There are several kinds of performance tests apart from load and

soak tests and this is the time when the decision on what kind of tests need to

be run is made.

5. Execute Tests: The test environment, scripts, data monitoring and collection

tools are validated and the performance tests are run.

6. Analyze Results, Report, and Retest: This last step is one of the most important

steps for any performance testing project. It is very easy for the stakeholders

to misinterpret data and hence it becomes essential to analyze metrics correctly

and use the right statistics to report results. Using these results, if the decision

is made to tune parameters or change code, it is vital to re-run performance

tests.

While an application is being used on production servers, developers often al-

ready work on subsequent versions. Before deploying such a new version to production

servers, the new version has to be tested, to minimize the risk that it will not cause

service disruption. The conventional wisdom on performance testing is to specify per-

formance goals such as response times and test the application against these goals.

Following is a typically textbook description of this process: “The objective of perfor-

13

mance testing is to validate the software ’speed’ against the business need for ’speed’

as documented in the software requirements. Software ’speed’ is generally defined as

some combination of response time and workload during peak load times.” [2, page

129]

In practice, we have found it hard to impossible to gather a performance spec-

ification that is detailed enough for finding subtle performance bugs. Performance

goals are typically maintained in service level agreements (SLAs), which are created

by business units. SLAs contain some valuable high-level information, such as end-

to-end response times. But missing in SLAs are fine-grained performance goals that

are expressed in terms of low-level technical performance metrics, because business

units that formulate SLAs are not familiar with such technical metrics. Examples of

such fine grained metrics include CPU time, garbage collection time, virtual memory

cache misses and hits, virtual memory usage, and system exceptions.

So how do we make certain that the new application release will behave similarly

or better than the existing release? How do we know that the performance test

cases and scenarios are emulating real world production scenarios? Keeping track

of SLAs for standard metrics such as response times is a good starting point. For

example, recording the 95th percentile response time of 3 seconds when the maximum

acceptable response time is 5 seconds is good. But business units do not keep track of

more granular metrics and their corresponding SLAs that can impact the performance

of an application. For example, if the cache hit rate for a database decreases from

99.9% to 99.8%, it basically implies a 10% increase in the physical I/O requests and

could be detrimental to how well the database performs. The miss rate is the number

of I/O requests that cannot be satisfied from the cache and therefore result in a

physical read.

14

Figure 2.1. Performance bug in an airline ticket sales back-end application hosted
by Sabre. CPU usage (thin lines) is similar between release 8.08 and release 10, but
virtual memory (dotted) and residual memory (broad lines) differ significantly. This
bug was found with fine-grained performance goals for virtual and residual mem-
ory. These performance goals did not appear in any SLA but were derived from the
performance of release 8.08..

Figure 2.1 shows an example from our experience of testing an airline sales

application. The example highlights the importance of having such fine-grained per-

formance goals. The CPU usage behavior for the two releases being compared is

similar, but there is a significant increase in the virtual and residual memory of the

new release. This behavior can cause the system to crash, which means we would like

to catch and fix this problem during performance testing.

Another missing feature from the conventional performance testing steps is

data correlation. It is quite common to see applications breakdown when they go

live even after rigorous functional and non-functional testing. The primary reason

for that is the failure to correlate the results compiled during testing to the actual

numbers seen in production. Although fine-grained technical performance goals are

15

important, we have found that results obtained from measuring performance metrics

in the test environment cannot be used directly to make predictions about the eventual

performance in the production environment. The reason is that the behaviors of the

test and production environments typically diverge at some point. To address this

problem, we are experimenting with a technique for test data correlation. This has

allowed us to pinpoint problems in the test environment and in the test cases used

to emulate production usage of the software under test. This extra validation step

ensures that the test environment is setup properly, the test cases being executed

are emulating production scenarios, and the workload being used during tests closely

mirrors real live traffic.

2.1.1 Solution Overview

We propose to take a traditional performance testing workflow and extend it,

by adding two components, release certification and test data correlation. Figure 2.2

shows an example resulting workflow, which we have been using over the last 2.5

years for performance testing of several large-scale applications, including an airline

sales application. The certification process compares the performance of the new

application release to the old and determines if the measures metrics are better or

comparable to the old release. If so, the new release is good to go to production. If not,

it does not necessarily mean that it cannot go live. There is a range of acceptable

results between good and bad. If the measured metrics fall into that range, the

release will still be deployed to production. If the results are not better/comparable

or acceptable, that is when the release will not go live. More details on the process

are given in the following section.

The process is general enough to be utilized for any end-to-end enterprise sys-

tem. It is not dependent on any particular hardware or software and can be followed

16

Identify
Performance

Testing
Objectives

Build Test
Environment

and Plan Tests

Test Execution

 Is the New Release
Better or Comparable to

the Existing one?

Certify Release
Green

Deploy New
Release in
Production

Compile Test
Data and Results

Is the Performance
Degradation of New

Release Within Acceptable
Range?

Do the Test and
Production Results

Correlate?

Certify Release
Yellow

Certify Release
Red

Identify Issues

Review Code/
Test Harness

and Make
Changes

Yes

No

Yes

No

No
Yes

Business
Requirements/

SLAs

Figure 2.2. Performance testing workflow extended with release certification and data
correlation components..

to get reliable performance test numbers before an application is deployed in produc-

tion.

17

The two steps added to the traditional performance testing cycle provide the

test engineers the ability to verify and validate that their test cases/scenarios and data

being used during testing is proper. They are able to gauge if the testing process is

providing useful results and the system under test will perform as expected when

deployed.

Ideally we would like to have a test environment that matches production in

every aspect but this is often not feasible. The test environment is not only a scaled

down version but also has components that do not match production capacity like

the network bandwidth or hardware types. This not only impedes how thoroughly a

system can be tested but also limits the test scenarios that can be executed.

Test certification and correlation together help in setting up a better environ-

ment and make adjustments to the way the testing process is being implemented.

Certification provides numbers to show how one release differs from the next. It gives

test engineers as well as the project managers and system owners data to support

their decision of whether to deploy the new application release. Correlation on the

other hand provides a certain degree of confidence in how well the performance tests

emulate real world production scenarios.

The next sections will describe these two additional steps in detail.

2.2 Release Certification

Release certification is the process of gathering all application and system met-

rics needed to review the performance of that specific application and setting targets

for them. All metrics for two releases of the same application are considered and then

the performance targets are classified as red, green or yellow, as seen in Table 2.1.

We picked the colors in analogy to traffic lights. Green is a go, with yellow you move

cautiously and red means stop. For us these categories encode the range of perfor-

18

mance targets from unacceptable to acceptable. The numbers for each category are

determined together by the developer and performance testers, taking into account

the SLAs and the performance measurements of previous releases.

We follow this process even if we add a new feature or traffic profile. In produc-

tion, the new release will have to process both the existing and new traffic profiles.

So when the workload analysis is done, we need to establish the percentage of the

new traffic as part of the total and then use that as the input to the new release.

Establishing a baseline is a related approach [3]. As in release certification, a

broad set of key performance indicators can be used, such as response time, processor

capacity, memory usage, disk capacity, and network bandwidth. The key difference

is that in release certification we test the existing and new releases at the same time,

each time a performance test is being run. We found that establishing a baseline and

later using it as a reference for a new release is not practical, as requirements change

constantly. For example, in a web-facing application, the amount and mix of traffic

an application is expected to handle can change significantly in a short time frame.

Such changes can quickly, within a few months or even weeks, render a once valuable

baseline obsolete.

Table 2.1. Release certification for different applications that are part of an airline
shopping back-end application data flow path.

Service Release Status
Availability 2012.10.01 Certified GREEN
Schedule Finder 2012.10.01 Certified RED
Shopping HIST 2012.10.01 Certified Yellow
Shopping IS 2012.10.01 Certified GREEN
Shopping MIP 2012.10.01 Certified GREEN

19

Table 2.1 shows how the different releases for applications that form the part of

the airline shopping path were certified after release 2012.10 was performance tested.

To implement release certification, we need a test environment in which both the

existing and the new application release can be tested side by side on the same traffic

which will be described in detail in the next section.

2.2.1 Example: Certification for Airline A

To illustrate the certification process, consider our example of an online shop-

ping website for airline A. Users on the website are able to search for flights between

a source and destination city, get schedules and availability data. They are also able

to specify how many solutions they want returned for their particular request. The

incoming client request XMLs are guided to a pool of web servers and are then load

balanced to go a pool of shopping application servers. These shopping servers talk to

backend services to get availability and schedules and there is an Oracle database at

the backend. Figure 2.3 shows a simplified version of the shopping data flow path in

production.

Table 2.2 is the certification criteria table for this sample Airline A shopping

application. The first column specifies the metric being measured and the next three

columns are the criteria for the new release, expressed not as an absolute value but as

a percentage of the measurement of the previous release. In order to properly compare

memory utilization and CPU usage, performance tests are run for at least 48 hours

and therefore these metrics are compared in terms of usage per day. For example,

if we have a SLA for elapsed time (the time taken by a piece of code to execute a

particular transaction) set as maximum 4 seconds, anything less than 4 seconds is

good. Historical data indicated that even if the piece of code is taking about 5 seconds

to process transactions it does not affect the application, so that is a warning but

20

Web Server F5 Load Balancer

Shopping
Application

Shopping
Application

Availability
Application

Schedule Finder Oracle Database

Oracle Database

Shopping
Application Cluster Database Cluster

Figure 2.3. Shopping Application Data Flow Path Showing Backend Applications -
Availability and Schedule Finder along with the Database Server Pool. The Server
Pool of Shopping Application is Made Up of Shopping Historical (HIST), Shopping
Domestic (IS) and Shopping International (MIP) Components, Each having Separate
Releases..

still an acceptable number. However, anything over 5 seconds is unacceptable and

the application will not be deployed in production to prevent performance related

problems. The metrics are measured during the entire duration of the test and the

differences in the numbers are also calculated for the entire test duration. For an

airline shopping application number of solutions is an important metric (as seen in

the last row of table 2.2). For example if the end user requests 50 flight combinations

for his/her source and destination cities and the application returns only 10, that

implies that the quality of the solution is not as expected. This needs to be kept

track of from release to release in order to maintain the quality of the solution being

returned. Similarly it is important to track the number of failed transactions. An

increase in the number of any specific error from release to release implies a bug and

needs to be fixed before the application can be deployed to production.

Setting up a test environment with two identical data flow paths for the two

releases enables us to test the existing and new releases side by side. In the test

21

Table 2.2. Release certification criteria for an airline shopping application; d = day;
CPU/shop = CPU usage for every call made to shopping application.

Metric Green Yellow Red

Client response time[s] < 10 10-15 > 15
Increase in CPU per shop < 5% 5-10% > 10%
CPU/shop absolute level[ms] < 30 30-35 > 35
Increase in elapsed time[s] < 5% 5-10% > 10%
Elapsed time absolute level < 4 4-5 > 5
Increase in CPU time < 5% 5-10% > 10%
Server CPU utilization < 60% 60-70% > 70%
Memory utilization growth < 20%/d 20-30%/d >30%/d
Release specific core dumps 0 0 > 0
Other core dumps 0 0 > 0
Increase in #failures < 5% 5-10% > 10%
Solutions < 5% 5-10% > 10%

environment a similar scaled down (in terms of the number of servers) environment

needs to be setup as shown in Figure 2.4. Note that two test paths, absolutely

identical to the production environment are build. The difference being that one

path will be configured with the existing production release and the other path will

have the new release going into production. This will enable us to run tests through

the two releases at the same time. This helps avoid chances of environment changes

affecting results and also permits comparison of the existing and new releases with

the same traffic profile.

Running tests in an environment as shown in Figure 2.4 will help us in compar-

ing system and application metrics side by side and also help in determining if the

new application release falls under the red, green or yellow certification category.

22

Schedule
Finder

Web Server
Release R01.00

F5 Load Balancer

Shopping
Application

Shopping
Application

Availability
Application

Release R01.00

Oracle Database

Oracle Database

Shopping
Application Cluster

Release R01.00

Schedule Finder
Release R01.00

Web Server
Release R01.00

Shopping
Application

Shopping
Application Availability

Application
Release R01.00

Schedule Finder
Release R02.00

Shopping
Application Cluster

Release R02.00

Figure 2.4. Shopping Application Setup in Test Environment with Two Identical Test
Paths - One for Current Release and Second for New Release..

2.3 Performance Testing For Release Certification

Testing applications standalone and running only one kind of test or a series

in sequence, does not account for situations where the application might have to

handle scenarios like sudden surges or drops in traffic over or below the peak levels

of workload. Incoming transaction levels fluctuate widely in a real world production

environment. Tests need to be designed in a way that not only assess the application’s

performance but also ascertain that it can process these traffic swings and that it will

trigger alerts when a particular threshold for processes or resource utilization have

exceeded. Tests need to determine that the application will recover and return to

23

normal behavior when the traffic levels drop after a surge. When the application is

integrated with other components in a system it is expected to be available 24X7 and

any failure to do that will lead to system instability. So we propose a test that will be

able to combine most of these scenarios into one 48 hour test. We call it an impulse

test and it is designed as shown in Figure 2.6. Impulse test is a combination of a load,

soak and stress test and can have multiple peaks and troughs and helps verify that

the application is architected well to cope with the real world traffic and will perform

as expected.

As shown in Figure 2.5, a real world traffic profile typically consists of peaks,

troughs and some relatively constant transaction levels. However, conventional per-

formance tests such as load and soak tests are designed to send constant levels of

traffic throughout the test duration. Stress or spike tests use short periods of traffic

surges. None of these conventional tests individually emulates the incoming request

levels in a production environment. The other drawback of running these tests in-

dividually is that with every new test case, the environment and application has to

be refreshed thereby resetting the state of the application under test, load has to be

generated and then performance measurements have to be taken afresh. This reduces

the chances of finding bugs related to incapability of the application to handle varying

traffic patterns. A load or a soak test might miss performance issues associated with

higher levels of traffic or improper settings of timeouts and thresholds. A spike test

(which uses short bursts of traffic) run individually might miss bottlenecks due to

memory leaks or garbage collection in case of Java applications, which are usually

only uncovered in a long running test.

So to address the problem of evaluating the performance plus the mechanisms

built into an application that are supposed to protect it from unusual traffic levels,

we propose impulse testing, which is designed to combine traffic that more closely

24

Figure 2.5. Booking transactions in four related travel shopping applications (air,
hotel, car, and cruise) over eleven months..

imitates real world application traffic with the characteristics and benefits of load,

soak, spike and stress tests.

2.4 Designing an Impulse Test

In order to evaluate the performance of an application, it is not only necessary

to assess the inherent functionalities but also its design. As is clear from the examples

in the last section, the application maybe tested standalone successfully standalone

using conventional tests like load or soak but it still could cause instability of the entire

system when it is integrated with other components. So unless and until its behavior

is not checked under real production like traffic level fluctuations, its evaluation is

incomplete. Tests need to be custom designed to emulate production workload levels.

25

Keeping in mind the variations in real scenarios as shown in Figure 2.5, we design an

impulse test. An impulse test is a combination of a load, soak and stress test and can

have multiple peaks and troughs and helps verify that the application is architected

well to cope with the real world traffic and will perform as expected. As mentioned

earlier it can be designed in different ways but the main characteristics of the test are

as shown in Figure 2.6.

0

20

40

60

80

100

120

140

160

1 3 5 7 11 13 15 17 19 21 22 23 25 27 29 31 33 35 37 39 41 43 45 47

 Peak
 Load

3X
Peak
Load

0.2X Peak
Load

 Peak
 Load

Time (Hours)

T
P
S

Figure 2.6. Impulse test design. A long period of peak load is followed by a relatively
short but drastic traffic surge, followed by a brief drop and a subsequent long pre-surge
peak load; TPS = transactions per second..

The impulse test is run for at least 48 hours. This enables not only sufficient

time to generate the different scenarios but also will enable the detection of many

memory leaks in the applications. The test will also emulate the real world scenario

of varying traffic levels. A system will never be subjected to constant levels of traffic

26

for the entire duration that it is live. There will always be peaks and dips and until

and unless these cases are not simulated during performance tests, it will be difficult

to assess how the application will perform in such situations when it is deployed. The

main design aspects of this test are:

2.4.1 Initial Peak Load

Determine the peak workload level that the application is expected to handle

and then run traffic through it at these maximum levels for at least 24 hours. This

will help us establish the performance and record various metrics for this duration.

2.4.2 Traffic Surge

Then the next relatively short period of time such as two hours is when the

inbound traffic is increased to a level that is significantly higher than the expected

maximum load, say three times the peak levels. This is to simulate times when there

might be a sudden unexpected surge in incoming traffic. For example if a system

handles airline traffic, during a particular airline fare sale there will be an increase in

the volume of workload coming in because of customer trying to take advantage of

lower air fares and all logging in during the same sale window. The application should

behave gracefully even if the load surge is significantly steeper or higher than expected.

To prepare for such cases, we need to test if the application will throttle properly, if

it will send out alerts when the processing levels or even resource utilization metrics

go over certain values, if it has timeout values set appropriately so that the end user

is not left waiting indefinitely for a response and the constrained resources are not

spent on requests that cannot be fulfilled. This will also check if the application is

logging these kind of critical conditions effectively and correctly.

27

2.4.3 Traffic Drop

After the traffic surge, the next step is to decrease the traffic levels and in this

case we are reducing it to at least 0.2 times the peak levels. This decrease in traffic

levels is variable and can be changed to better suit the production traffic troughs. This

will help in determining if the application recovers properly after the traffic surge, if

it is able to process the transactions successfully without throttling or timing them.

2.4.4 Subsequent Peak Load

The last step is to send in peak volumes of workload for the rest of the test

duration. This will establish that after the surges and dips the application is still able

to consume transactions at peak levels and respond successfully. The application

performance should now resemble the peak-level performance that the application

exhibited before the surge.

The time durations for the peaks and troughs as well as the frequency at which

they occur can be changed to imitate more closely the traffic fluctuations of a par-

ticular application as shown in Figures 2.7 and 2.8. Impulse tests can basically be

designed according to the needs of each individual application and match the traffic

profiles for it as closely as possible. The test can be used for both synthetically gen-

erated traffic or even when playing back production requests. Even when requests

are captured from production there is a need to play them back in a pattern that

matches real live traffic.

2.5 Benefits of Impulse Test

The purpose of running performance tests is twofold, (1) assess the performance

of an application standalone and (2) assess its performance when integrated with other

28

Figure 2.7. Impulse test design. Impulse test with incremental traffic increase after
the surge to the pre-surge peak level..

Figure 2.8. Impulse test design. Impulse test with two traffic surges..

components. Impulse tests are designed to achieve both these objectives by running

just one test.

To keep up with end user demands many commercial systems are becoming

multi-tiered and distributed. In order to retain the customer base and revenue, or-

ganizations have to ensure that their production environments are stable and over

99.999% available. It is therefore critical to ensure that each individual application

integrates smoothly with other system components. With many applications being

developed by different teams in parallel, guaranteeing that they will behave as ex-

pected when they go live is increasingly difficult.

29

Ensuring a smooth integration requires knowledge of the entire system when

designing applications. Sometimes developers are either not aware of the entire system

architecture or they do not have the proper knowledge of the kind of mechanisms

that need to be implemented such as setting throttle limits or thresholds, timeouts

or alerting levels, in order to ensure that an individual application will function even

when its peer components are unavailable. Running individual tests to validate the

working of each of these aspects is time consuming but cannot be an after thought.

This is where an impulse test can prove most beneficial. Following are some of the

real world examples that were experienced, which reinforce the importance of testing

these features during the performance testing phase.

2.5.1 Ignoring the Implementation of Throttles and Timeouts

Figure 2.9 shows a very high level view of part of the customer insight applica-

tion. The following briefly describes the main functions of the application.

ICE

USG Customer Insight Provider

Incoming
Request

Outgoing
Response

AUTH

Figure 2.9. The Customer Insight application communicates with ICE for session
authentication, USG for user communication, and Provider for user specific data..

The Universal Service Gateway (USG) is the application that creates sessions

for users with incoming shopping requests. It passes the requests to a component

called ICE that authorizes and authenticates users, creating valid sessions for billing.

30

Once the session has been created USG passes the requests to the customer insight

application to get information about promotion codes or discount codes associated

with the user account, in order to evaluate the total billing cost. The customer insight

application also talks to a provider component that manages user specific data.

Before a new airline migration, the customer insight application was tested

individually with a simulator imitating the provider behavior and all response times

recorded were in the acceptable range. When the new airline migrated its traffic

to this system, after two hours of service, the customer insight application crashed,

causing users to experience unavailable system errors. Even though the application

was tested for performance standalone, it was not tested for a scenario where the

backend application, which in this case is the provider, becomes unresponsive. The

provider was basically overwhelmed with the additional traffic and stopped responding

within acceptable time ranges. The customer insight application was depleted of all its

user threads waiting for a response because its timeout settings were not implemented

properly. The core application’s thread pool size was equal to the size of the thread

pool that was used to access the provider application and when each of these threads

was occupied waiting for responses, the core thread pool was depleted. With incoming

requests piling up, the system crashed. This is an example where the application was

tested standalone for performance like response times and constant throughputs, but

was not tested to see if its throttle limits and timeouts setting were designed properly

2.5.2 Insufficient Alerts

The traffic profile for impulse tests match the profile of the incoming requests in

production, and therefore it is easy to validate that the right alerts have been setup

for the application. The following two examples show how a live application can go

into a severity if alerts, are not setup properly. The following two examples describe

31

what happens when alerts for resource utilization as well as application logs are not

setup respectively. Impulse tests can help with validating both kinds of alerts.

1. Example 1: It is common practice to set up alerts for resource usage utilizations

like CPU and memory, but disk usage is often ignored. Setting alerts for disk

usage going over a particular threshold will avoid cases where the server crashes

due to logs filling up the disk. Even when logging levels are set to INFO,

which implies minimal logging during normal processing, it does write extensive

logs when exceptions occur. A logging system coupled with the application

implies there are no provisions to automate log rotations and archives. So when

exceptions occur the logs grow quickly and eventually fill up the entire disk.

Setting no alerts for disk usage going over a particular threshold may lead to

no indication that the server was about to crash during peak load levels.

2. Example 2: The other example is on not setting alerts for application logs.

Figure 2.10 shows a simplified view of the architecture of an application called

Sabre Sonic Web (SSW), which depending on the type of incoming user/airline,

gets the user profile specifications from a database and displays a customized

air shopping web page.

During a database refresh activity a particular customer was deleted from the

database. This caused authentication errors for that particular user every time

the user tried to access the airline shopping webpage. This incident was logged

in the application logs, but no alerts were set for this, and hence there was no

way for the operations team to know that a particular customer was receiving

authentication failure errors. It was only after customer complaints and deep

investigation of application logs and errors that the root cause was discovered.

These examples show how important it is to design self-protecting mechanisms

like thresholds, throttles and timeouts, in addition to setting the right alerts at

32

SSW Users

SSW

SSW Database

Figure 2.10. Simplified architecture of Sabre Sonic Web (SSW). Users communi-
cate with SSW via a firewall and SSW gets user specific information from the SSW
database..

the right places. Learning from these experiences in our production environment

led to the design and implementation of impulse tests, which can not only assess

the functionality of these mechanisms but also the individual performance of the

application. These tests have proved valuable in uncovering situations described

in the above examples and fixing them before the application goes live

2.6 Performance Measurements Using Impulse Tests

As mentioned earlier the purpose of running performance tests is twofold, (1) as-

sess the performance of an application standalone and (2) assess its performance when

33

integrated with other components. Impulse tests are designed to achieve both these

objectives by running just one test.

Taking ASv2, the availability application shown in Figure 1, and following the

design of the impulse test, constant peak traffic is sent during the beginning of the

test, followed by a surge in incoming requests and then the load level is dropped to

0.2X and then back to the peak level. The expected behavior of the application is

to process the peak level loads and then throttle incoming requests when the load is

increased three times. During this time the throttled requests would timeout. When

the TPS (transaction per second) rate is dropped and brought back to processing

levels, the application is expected to resume normal behavior. In this example we

are comparing the performance of the latest release of ASv2, release 4.2.2 with the

previous release 3.21.3.

Figures 2.11 and 2.12 show how the application is throttling requests and

throwing proper alerts during the traffic surge duration and when exceptions occur

or a particular threshold level is reached, respectively.

Figure 2.11. The application throttles requests during the traffic surge as expected..

Running an impulse test we observe that the application is working as expected

during the initial peak phase and the traffic surge phase. But the test is also designed

to evaluate the performance of the application standalone. For the new release of

ASv2, we observe an increase in response times and a decrease in transaction process-

34

Figure 2.12. The application produces and logs alerts for exceeded thresholds and
exceptions during the traffic surge as expected..

ing that indicates a performance issue with the application as shown in Figures 2.13

and 2.14.

This kind of behavior where the application stops processing incoming trans-

actions after wide fluctuations in traffic levels can be easily discovered by an impulse

test because the application under test is being subjected to similar traffic patterns

as in production without resetting its state. Individual conventional tests like load,

soak or stress tests do not emulate real world production traffic variations. With

every new test, setting up a fresh environment, generating new load, restarting and

monitoring the application and then measuring performance resets the application

35

Figure 2.13. Application TPS decreases during the traffic surge as expected, but does
not recover after the traffic surge to before-surge levels, which indicates a performance
bug; TPS = transactions per second..

Figure 2.14. Response times for Release 4.2.2(dotted lines) vs. Response times for
Release 3.21.3 (solid lines)..

state with every new test case thereby reducing the chances of finding traffic pattern

induced performance bugs.

36

For our example once we see that response times have increased, we can actu-

ally look at some of the finer grained metrics like the JVM heap (Figure 2.15) and

garbage collection times (Figure 2.16) to investigate the cause of the performance bot-

tleneck. Looking at the heap usage behavior of the new release, it is evident that the

application is using more heap memory to process transactions than in the previous

release. With no added functionality to the new release, this is a concern. Also the

new release has more frequent and bigger garbage collection times vs. the old release.

So the application is spending more time in processing normal traffic loads and after

the traffic surge is continuously running out of memory and is being stopped more

often due to garbage collection pauses and therefore is unable to process incoming

transactions. This ultimately leads to higher response times and lower TPS.

Figure 2.15. Heap usage increased from ASv2 release 3.21.3 (red) to release 4.2.2
(blue)..

37

Figure 2.16. Both GC times and frequency increase from ASv2 release 3.21.3 (red)
to release 4.2.2 (blue); GC = garbage collection..

Conventional tests where traffic levels do not emulate the fluctuating behavior of

a real world production environment are not sufficient for identifying memory leaks or

insufficient alerting or threshold/throttle mechanisms. These issues that invariably

affect the system availability and stability are more visible when a more realistic

production scenario is simulated. The impulse test can be designed to check that

the application, once live, will not only perform well standalone but also integrate

seamlessly with the other components. If issues are observed during the traffic surge

or trough durations, it indicates that the application is unstable and these problems

need to be resolved before it can go live. Running impulse tests has led to discovering

not only the performance issues but also design issues with thresholds, timeouts and

alerting in our test environment, which in turn has led to an increase in the availability

of our systems.

38

Figure 2.17. The overall availability of the entire online shopping application (shown
in percent) has increased in recent years..

Figure 2.17 shows the availability percentage numbers for the airline services

system of which ASv2 and most of the airline shopping applications are part of, for

the last three years. Designing impulse tests to match production traffic patterns

as described in this chapter has played a big role in improving the availability and

stability of the environment.

2.7 Impulse Test vs. Conventional Tests

As mentioned earlier, the impulse test is a combination of various conventional

tests. It saves time since it needs to be run once but it can still discover performance

as well as engineering design bottlenecks that would otherwise have to be uncovered

by running individual load, soak or stress tests. Testing is an important phase of

the software development lifecycle right before the application/s go live. It is critical

to discover all performance and system issues before production deployment but it

is also important to accomplish these tasks within a short timeframe. Impulse tests

realize both these objectives.

As seen in Figure 2.3 the shopping application cluster is made up of applications

that take care of domestic, international and historical travel requests. Using impulse

39

tests and setting up the environment as shown in Figure 2.4, we can uncover issues

for various applications in an end-to-end setup. This not only helps with performance

evaluation but also validation of throttle, timeouts and alerts between the interacting

applications. From the impulse test results Figure 2.18 shows that the client side

response time for a particular incoming shopping transaction (Expedia) has increased

for the new release.

Figure 2.18. New release of shopping application (represented by the red line) shows
an increase in response times for Expedia (EXPD) transactions as compared to the
current release (represented by the green line).

Figure 2.19 shows that the new release of the scheduler application from Fig-

ure 2.3 has an increase in it’s residual memory.

One of the advantages of running an impulse test that emulates production

traffic profiles is that, it is able to uncover issues that might not be easily identifiable

by running conventional tests. As an example take the case of a conventional 48 hour

load test. Here the incoming traffic is incrementally increased and then is kept a

40

Figure 2.19. The scheduler application’s residual memory for the new re-
lease(represented by the red solid line) shows an increase as compared to the old
release (represented by the green solid line).

constant level for the entire duration of the test. The traffic profile for this load test

is as shown in Figure 2.20.

The elapsed time measurement is taken during the test duration for both the

current and the new release. The graphical representation of the elapsed time is shown

in Figure 2.21.The difference between the measurements for the two releases is not

visible from the graph and hence the certification numbers are shown in Figure 2.22.

As can be seen from Figure 2.22, the elapsed times for the new releases fall

under the acceptable criteria and therefore are green. When the same releases are

41

Figure 2.20. Traffic Profile for a Conventional Load Test for an Airline Shopping Ap-
plication.Red solid lines represent the new release and the green solid lines represent
the current release.

tested using an impulse test, the results differ. The impulse test uses a production

like traffic profile as shown in Figure 2.23

Once again the elapsed time measurement is taken during the test duration for

both the current and the new release. The graphical representation of the elapsed

time is shown in Figure 2.24 and the certification numbers are shown in Figure 2.25.

As can be seen from Figure 2.25 there is a major difference in the elapsed times

for the new vs. the current release. This difference would have never been discovered

if we were not using a production like traffic profile. So instead of running individual

conventional tests that take longer to discover performance issues, the impulse test

can uncover performance bottlenecks in one run.

42

Figure 2.21. Elapsed Time Measurement for Conventional Load Test for New (rep-
reseneted by the color green) vs. Current (represeneted by the color red) Airline
Shopping Release.

Figure 2.22. Certification Numbers for Elapsed Time After a Conventional Load Test
for an Airline Shopping Application.

2.8 Guidelines for designing thresholds, timeouts, and alerts

In this section, we will give a brief overview of how to implement thresholds,

timeouts and alerts in applications. These are tenets learned from experience of

managing the online application described in the previous section.

43

Figure 2.23. Production Like Traffic Profile for an Impulse Test for an Airline Shop-
ping Application. Red solid lines represent the new release and the green solid lines
represent the current release .

2.8.1 Thresholds

The goal of process or connection thresholds is to provide a configuration point

within the application that permits the application to protect itself against external

or internal processing issues. An example of this protection is a client call to a server

process that does not respond, resulting in a spin-up of process threads or depletion

of pooled threads within the calling client. This section outlines threshold control

points within application modules and further details related logging and monitoring

activity used to manage these control points. The combination of these provides a

real-time view of application stability during both normal traffic processing as well

as during traffic surges.

An individual application needs to protect itself from a traffic surge and hence

establish control points that can be defined using the following rules of thumb.

44

Figure 2.24. Elapsed Time Measurement for Impulse Test for New (represented by
the color red) vs. Current (represented by the color green) Airline Shopping Release.

Figure 2.25. Certification Numbers for Elapsed Time After an Impulse Test for an
Airline Shopping Application.

• No single connection, process or I/O interface activity should deplete the main

application process of resources to the point at which a module is unable to

respond to input transaction requests.

45

• Each connection, process or I/O Interface should be monitored in real-time

to provide an early warning mechanism for the operational coverage teams if

processing stability goes out of normal range.

Threshold controls can be implemented either logically or physically within the ap-

plication.

• Logical Control - A logical control can be described as a gating mechanism

within the application. It can be implemented to permit only a given number of

processes into a controlled area within the application. If the area is saturated,

the next calling process is refused entry and continues down a non-successful

path.

• Physical Control - A physical control consists of an independent set of instances

of a controlled resource (i.e. threads, memory, and connections) and is utilized

through a process handoff activity. If the physical allocation of the controlled

resource is depleted, the next calling process hand off is refused and the calling

process continues down a non-successful path.

The following should be kept in mind when implementing thresholds.

• The calling process in either of these threshold control mechanisms should never

be permanently blocked. However it may be placed under a timed wait and retry

condition. If such a retry condition is desired, the retry wait period must be

accounted for in the allocation of process threads controlling the calling process

driving requests against the controlled resource.

• Timeouts play a key role on a threshold configuration quantity at both entry

to the controlled resource and process longevity within the controlled resource

sub-service area.

46

2.8.2 Timeouts

Timeouts allow efficient usage of constrained resources. So instead of the end

user waiting indefinitely for a response and the request waiting indefinitely in the

queue to be processed, a timeout will let the request expire after a set value. This

in turn prevents the system from getting overwhelmed with waiting requests and the

customer from expecting a response when there is a possibility that the request will

not be processed at all or will take longer than expected. While timeouts alleviate

the waiting condition for a downstream server they may also cause usage of upstream

servers to go up. Hence it is vital during performance tests to ensure that the waiting

times set by the timeout value do not lead to the depletion of upstream resources.

Timeouts typically apply in the following situations.

• Process activity that leaves the immediate application and uses a sub-service

module to drive a transaction reply (client to server relationship).

• Process activity that leaves the immediate host and uses a remote logic compo-

nent on another host to satisfy a processing need.

• Process activity that enters a sub-service pool of process threads to perform a

parallel or serial long running activity.

While timeouts facilitate the release of a wait condition (client call to remote

server), they also have the ability to drive up the use of a constrained upstream

resource (input connection pool to this server). Therefore the use of timeouts must be

closely observed to determine that no wait period has the ability to deplete upstream

resource allocation.

2.8.3 Alerting

It is imperative that an application triggers an alert if a critical event occurs.

When a system is properly configured to trigger alerts on critical events, it helps

47

improve its operability and availability. Timely alerts with clear instructions can have

a significant impact on mean time to recovery (MTTR) during outages. The event

could be anything from system resource utilization metrics going over a particular

threshold to an interfacing component becoming unresponsive. There can also be

monitoring and alerting set for specific processes or application logs. Figure 2.26

shows an example of setting up alerts for a memory exception that gets logged in the

application logs.

Figure 2.26. Example of how to look for string patterns in Application Logs and then
set Alerts..

Setting up such a trigger is vital to maintain the operability as well as the

reliability of the entire system. These alerts can initiate the timely correction of these

situations and often prevent the end user from experiencing service deterioration. It

will also prevent the issues from propagating to other tiers and thereby causing the

system to become unstable.

2.9 Test Data Correlation

The decision to deploy a particular release in production depends on the results

from performance tests, which therefore should be reliable, giving stakeholders the

confidence to trust the numbers. Even though performance engineers and application

48

teams try to create a test environment that mirrors production, it usually does have

certain differences. That is, the test environment is typically a scaled down version

of the production environment. For example, the storage area network used for

databases in test might be slower than the one being used in production or the

network configurations might be different. For this reason it is common practice to

set a 5% plus or minus acceptable range between the test and production numbers.

In this step, we compare results from the test environment with actual performance

numbers seen in production. This enables improving the test harness, test cases, data

collection procedures, scripts and workload analysis. Correlation needs to be done

for each metric that is collected during tests.

The process of test data correlation is to take the 95% percentile value for each

measured performance metric during a successful test and then compare that with

the 95% percentile value of the same metric in production after the new release has

been deployed. During testing, scenarios of varying load along with peak traffic are

simulated during a 48 hour interval, so resource utilization numbers measured during

tests might be higher than those observed in production. This along with incorporat-

ing the differences associated with the test environment as compared to production is

the reason why a plus minus 5% range between the numbers is considered acceptable.

The duration over which the numbers are collected in production also needs to be

closely monitored. Performance tests are run for short durations as compared to the

life of an application when deployed in production. The traffic profile used during

testing which might contain new types of transactions might become live only after a

few days of application deployment. For this reason the metrics in production should

be collected after a few days of the application going live. This will give us a basis

to compare the performance of the same release under the same traffic profile in the

two environments.

49

Table 2.3. Correlating production and test for Airline A.

Release pLab Obs PROD Avg. % Diff from PROD Range
2008.10.06 1.32 0.61 +114.77
2009.00.00 0.66 0.64 +0.00
2009.01.01 0.81 0.45 +55.24
2009.02.02 0.51 0.39 +21.07
2009.03.01 0.93 0.47 +77.73
2009.04.02 0.85 0.42 +90.10
2009.05.00 0.53 0.41 +0.00
2009.06.00 0.50 0.54 +0.00
2009.07.02 0.59 0.50 +0.00
2009.08.00 0.56 0.55 +0.00
2009.09.01 0.60 0.58 +0.00
2009.10.01 0.66 0.57 +2.81
2009.11.02 0.55 0.58 +0.00
2009.12.01 0.80 0.56 +31.03

2.9.1 Example: Correlation for Airline A

Table 2.3 shows the correlation of exist times even called elapsed time (the

time taken by a piece of software to execute a particular transaction) for the sample

flight shopping application between test and production. The difference between

exist times numbers recorded in test are massively different from the ones that were

recorded from the release in production. This indicates that changes have to be made

either to the environment setup, data collection technique, test scenarios or even

the workload being used. Since the test results are not comparable to production

numbers, the tests being run are not reliable. After changed are made to better the

system from release 2009.05.00 onwards correlation data looks more favorable. This

exercise ensures that proper tests are being run using the right traffic profiles.

50

2.10 Related Work

This chapter extends [4] where the authors had briefly described the impor-

tance of adding certification and correlation to a standard software lifecycle. In this

chapter the additional steps are illustrated in detail with the help of real world ex-

amples. It also introduces the setup of the test environment that is used for the

certification process along with a test called impulse test. Traffic levels in a produc-

tion environment are neither constant nor contain only traffic spikes and surges. Real

traffic loads vary widely and contain both peaks and troughs. This chapter describes

a new performance test called impulse test that is designed to imitate real live traf-

fic more closely and includes the characteristics of several conventional performance

tests. The design of this test consists of a period of peak load, followed by a short

load surge, a load drop, and a subsequent peak load. Impulse tests are designed to

uncover not only individual performance bugs but also the end-to-end application

behavior, including its throttling, timeouts and alerting mechanisms. Impulse test

combines the features of a stress, load and soak test in one, saving time of running

each of these tests individually but still being able to identify bottlenecks. The test

environment is setup with two identical paths for the application under test and then

the impulse test is run simultaneously on both paths with the same input requests to

record the performance numbers for the applications deployed in both paths under

the same conditions. These performance numbers are then used for certification and

correlation.

A lot of work has been done in the field of performance testing and measure-

ment [5, 6, 7, 8]. But the majority of the research is devoted to web testing and load

drivers that can drive traffic to web applications. [9] discusses what metrics should

be collected during testing to measure performance, which are limited to client side

response times and errors. It also explains how Little’s Law can be used to determine

51

if test results are close to numbers calculated by the law. How well a particular piece

of code will perform is dependent on more than just how much throughput it can

sustain or how fast it processes transactions.

[3] describes testing processes and automation taking web applications as ex-

amples. [10] describes the importance of workload analysis and gathering of test

requirements and explains how test cases and traffic profiles can be created. [11]

talks about performance testing in distributed computing environments and how per-

formance test cases can be derived from system architecture design. In addition to

this emphasis also needs to be given to a procedure to confirm that the test cases,

data collection and workload used during testing are emulating real world scenarios.

The certification and correlation phases described in this chapter, added to the gen-

eral performance testing guideline will help in determining all factors, system and

application that affect the performance of a particular piece of code. These two steps

will not only be able to provide the necessary performance evaluation process but also

help in validating that the right set of activities are being followed during testing.

52

CHAPTER 3

SOFTWARE TESTABILITY

3.1 Introduction

Every major industry today (banking, travel, social media and gaming, enter-

tainment, retail, etc.) is dependent on computers in the backend to sustain their

business. With more and more users online it is necessary for businesses to deploy re-

liable and stable computer systems that can be accessed 24x7 and provide all needed

services in a timely fashion. With end users being spread out all over the world

accessing systems at different time zones, it leads to the need of computer systems

to be complex and distributed but at the same time to have uptimes of higher than

99.999%. Managing such environments and maintaining their high availability and

dependability can be an arduous task. Different teams are responsible for different

components and pieces of software that will eventually make the whole end-to-end

system. Each team has its own coding and programming language standards, operat-

ing system and hardware requirements, documentation, risk and release management

practices. Once development is complete each one of these components needs to inte-

grate with other pieces of software and work seamlessly to provide services to the end

user. It is the responsibility of each individual team to validate and test their software

before deploying in production but often this kind of individual testing does not give

an accurate assessment of the performance of the entire system. Most of the research

today on testability is dedicated to finding ways in which to make the software code

more efficient and on how to add probes that would enable the ease the creation of

test cases and testing the code. When the end goal is the smooth working of an en-

53

tire end-to-end production environment that can at any given point of time be made

of several different components ensuring functional soundness of individual pieces of

software, though vital, is only part of the effort. Design standardization across the

entire organization for engineering aspects like timeouts, throttles and alerts when a

particular metric goes over a specified threshold or establishing the use of a common

instrumentation strategy across all development teams or uniformity in the data/-

metrics that are being collected when the application is live, creation of a consistent

test harness and standard processes for setting up a test environment all eventually

lead to, only the simplicity and ease of testing but also help in establishing a stable

and robust production environment. These common software testability practices

help with not only uncovering performance issues but also the timely resolution of

problems. When there is a common instrumentation strategy for example and a stan-

dard list of the metrics that need to be collected, it helps testers with the discovery

of bottlenecks but also helps the operations team when the application goes live in

production. An example of this can be seen in the next sub-section.

3.1.1 Example: Insufficient Instrumentation of a Commercial Hotel Booking Appli-

cation

Figure 3.1 shows the setup used for performance testing of a hotel booking

application. The load driver on the left generates XML requests to check hotel prices

and places the requests in a queue. The requests are picked up by the application

that in turn uses a backend simulator to get the prices for specific hotels.

The load driver then picks up the responses from the queue and produces a

final report as shown in Figure 3.2.

The Load driver is the only component in this system that is creating any sort

of logs or reports. It is definitely essential to have good logging and reporting on the

54

Load Driver
BBIS Application Simulator

3. Pick up XML

4. Place Response in
Queue

1. Send Request

2. Put XML Request in
Queue

5. Pick
up

Response
from
Queue

6. Send Response

7. Generate Test
Report

MQ Queue

Figure 3.1. Data Flow for Hotel Booking Application.

Figure 3.2. Test Logs for Hotel Booking Application.

load driver side in order to gauge the client side behavior of any system. But there

are certain major gaps in the information that has been generated at the end of the

test. The report gives a detailed analysis of the response times, which is excellent but

does not provide complete data about the XMLs. By looking at the totalWASSent,

totalWasReceived and the totalNotReceived numbers, we know that out of the total

number of XMLs generated some were lost but with simply the load driver side logs to

55

look at, it is impossible to identify the root cause for these missing messages. There

is also no way to investigate the cause of the huge response times - the delays could

be on the queue, application, simulator or even the network side. There is also no

record of the percentage of errors or the types of errors that might have occurred

during testing that might have caused the number of lost XMLs.

This system is an example of insufficient logging at the load driver end as

well as lack of any kind of logging at the application side which would ultimately

lead to inconclusive testing. Logging is just one of the attributes that facilitates

software testability. Performance or non-functional testing is a critical and a multi-

faceted task with the goal being to catch all performance bottlenecks during the

testing phase. With so many variants like hardware, software, operating systems,

different timeouts and throttling levels for each application, alerting thresholds and

diverse instrumentation practices, it becomes tricky to accomplish this task. Hence

it is of utmost importance to educate development teams and standardize certain

features that are part of software testability that will ultimately not only facilitate

testing but also the help reduce the costs associated with monitoring a distributed

production system. Adopting common practices reduces cost by avoiding one-off

solutions developed by application teams. It also allows teams to focus on product

differentiation and not spend time and resources on common utilitarian functions. In

addition it also contributes to operational stability and improves application time to

market.

3.2 Software Testability

Software testability covers various areas of software engineering. It is a pro-

cess by which one can assess how good or bad a modified piece of software would

perform. Testability is the inherent property of a piece of software and the degree

56

to which the artifact makes it easy to assess its performance and functionality in

the context of a given test (test goals, methods, scenarios and resources). Certain

software characteristics make it easier or harder to test it and to analyze the results.

These software attributes define software testability. Hence designing for testability

should not only help improve the probability of finding the system’s defects during

test executions but also help with the deployment of a fully functional and stable pro-

duction environment along with its monitoring and problem resolution. For a system

to be testable, it must be possible to control each of the inputs into the system and

thereby the internal state and then, to observe each output of the system including

any side-effects. Testing is typically done using a test harness - which could be an

automated, in order to run tests for the piece of code. This could include functional

testing tools as well as performance testing tools. Software Testability is an important

concept and designing for testability reduces the cost associated with development

and increases reliability of any testing effort both for ad hoc development as well as

for teams/organizations with a high level of process maturity. Building software and

other system components with good testability leads to simplification of test oper-

ations, reduction of test costs and increase in software quality which in turn helps

with establishing a stable end-to-end system. Several characteristics enable the ease

of software application testing. These factors can be categorized as internal, external

and environmental as shown in Figure 3.3. These factors as described in more detail

later in the chapter, and have been collected from experience working in the industry

and the published work such as [12], also discussed in this chapter.

A few of these factors such as controllability, operability, coding standards and

observability are well studied as guidelines or high level abstractions and listed in [13],

[14] and [15]. As is evident from Figure 3.3, coding standards and development of

efficient applications is just one of the many features that enable software testability.

57

Figure 3.3. Software Testability Enablers.

A lot of research work has been dedicated to this one aspect and hence in this chapter

we will look at some of other tenets that are most often ignored but nonetheless are

vital in not only reducing testing efforts but also improving the overall operations

of the production environment and reducing cost when managing large, distributed

systems. The two factors selected and described from each of the categories - internal,

external and environmental are selected from experience that are known to be critical

aspects to improve testability but are not often discussed in this detail. The follow-

ing sections give practical examples of how implementing these software testability

facilitators help with the overall improvement of software quality, ease of testing as

well as reduction in development and operational costs.

58

3.3 Characteristics of Software Applications that Affect Testability

The first category we will discuss deals with the internal features of the software

application that affect testability as shown in Figure 3.4. The application scenarios

mentioned here are from existing travel legacy applications that still need to be sup-

ported. A few of these challenges can be avoided by redesigning and rearchitecting

these legacy application solutions but that is a costly endeavor and hence need to be

supported as is.

Figure 3.4. Characteristics of Software Applications that Affect Testability.

1. Controllability

• GUI Based Applications

Challenge: Ease of use and understandability by the end user has led to many

applications being GUI based. Where these GUIs lead the customers to effort-

lessly navigate through a particular application, running consistent automated

59

performance tests for such applications is most difficult. The main reason for

this is that a slight change in the GUI - be it changing the position of a button

or adding a new menu, basically makes the test script unusable. Some of the

other reasons that make it harder to test GUI based applications are:

• The business as well as the database logic is highly coupled with the GUI

• They use their own libraries to draw Gantt charts and other elements on

the canvas. These elements are often dynamic - the content changes based

on the backend database.

• The existing testing tools including Load Runner are able to create static

test scripts where the user clicks are recorded for a particular instance of

the GUI, but stop working when the GUI content changes.

• These applications do not have an API for testing

• Only possible approach to testing is to send GUI events (like mouse presses,

key presses etc.) to the application.

Solution: One way to overcome the issue of writing reusable test scripts for

GUI based applications is to provide a scriptable interface for all key functions.

This could be an API in a standard programming language, a shell interface,

a messaging interface or an HTTP interface. This is extremely important for

GUI interfaces because as discussed above they are difficult to script - the

scripts often depend on the screen position of various objects and are therefore,

quite fragile. A ”fake” interface that invokes the same function as a button

click does go a long way towards making your scripts more reliable. Consider

the example in Figure 5. This is a JBoss based application that has a front

end GUI. In order to circumvent the GUI and create good test scripts that

will exercise all the functionalities of the application and business logic, the

application team will create an API which would in turn let the load driver to

60

invoke actions/functionalities without the need to clicks on the buttons on the

GUI. This can be achieved by utilizing RMI calls that mimic user clicks on the

GUI. Do keep in mind that the API is part of a normal thick client GUI and

has all its parts except the GUI itself. This enables the creation of full client

sessions emulating real clients.

2. Observability

• Instrumentation and Data

Instrumentation is one of the most important features that will not only help in

identifying issues but also help in resolving them. Using a standard instrumen-

tation technique which is exposed to the applications via an API, for the entire

organization helps ease not only problem identification and resolution during

performance testing but also once the application is deployed in production.

Through consistent instrumentation, operational visibility is improved thereby

leading to improved stability. Common monitoring tools provide a method of

quickly observing both application performance as well as an end-to-end view

for both operations and application teams. When teams adopt common in-

strumentation tools, the data including application metrics, billing, security

and errors can be stored in a common repository without difficulty. From this

repository business object reports can be used to derive accurate forecasting

and capacity data. Operations team also have a consistent and reliable tool to

help them with their day to day work. In addition, capturing all data in com-

mon repository allows for reducing the infrastructure footprint by eliminating

redundant data storage used by different application teams.

61

3.3.1 What to Instrument?

This sub-section deals with what metrics are important to measure. As dis-

cussed in the related work section the most common metrics collected during

performance assessment are response times, throughput and then server specific

utilization data like CPU and memory. Though vital these metrics do not cover

the total performance measurement of a particular application. I.e., without

the right kind of metrics as shown in the example in Figure 3.1 and Figure

3.2, it is impossible to validate the performance of an application, identify per-

formance issues or assess how a particular piece of software will behave when

it takes real customer traffic in the production environment. The following is a

list of a few significant metrics that are often overlooked but have shown to be

important from experience, grouped by the location at which they are collected

– the application side, server on which the application is running and also from

the database side (if any). These metrics help with identifying both perfor-

mance bottlenecks as well as measuring application behavior. Application side

metrics:

• Failed transaction count

• Type of alerts and errors

• Heap memory

• Threads

• Inbound and outbound connections

• Elapsed and cpu times

As seen from example for Figure 3.1, it is of utmost importance to measure

the number of failed transaction count and the alerts and errors. This helps

with tracking the functional performance of an application from one release to

another. Memory utilization metric and thread usage help in ensuring the health

62

of the application at any given point of time. Metrics that measure connections

and the processing times for the transactions help troubleshoot performance

issues for the specific application. Server side metrics:

• File descriptors

• Context switching

• Process/threads created per second

• Paging (swapping memory to or from disk)

• Process CPU and memory

• Load average

Just as with the application side metrics the operating system metrics help

keep track of the health of the server on which the application is running.

Performance issues with the server can also cause issues with the application,

so it is critical to have the hardware monitors in place. Measuring file descriptors

helps knowing how many more threads for a process can be sustained on the

server. Context switching, CPU, load average and memory all help with tracking

the performance profile of the application. Huge number of context switching,

paging and memory swaps are clear indicators of a performance bottleneck.

Database side metrics:

• Connections

• Threads

• Types of alerts and errors

• Server utilization metrics

Similarly instrumenting the database ensures the end to end stability of the

system. The database server utilization and thread pool numbers as well as

the exceptions and the alerts thrown are all needed to monitor the system at

any given point of time. The data that is collected during testing as well as

63

when the application goes live in production should include both key metrics

and critical events. A common instrumentation solution described in the next

chapter ensures that both these aspects of performance measurement are taken

care of. Accurate logging of key system metrics and errors, both internal and

external (responses to downline requests) helps with the following:

• improves visibility into the working of the system

• simplifies troubleshooting and

• enables predictive alerting

3.3.2 NOFEP

In order to further explain the importance of standardizing the collection of

these finer metrics, consider the following application NOFEP (No Open Front

End Processor) whose architecture is shown in figure 3.5

Figure 3.5. NOFEP Architecture.

64

This application is a front end application that accepts tens of thousands of

client connections to route messages from the clients to the hosts. It is capa-

ble of processing thousands of TPS. NOFEP uses two threads per connection -

one for reading and one for writing, using blocking calls. The application uses

send() and recv() and blocks them until a send/receive is complete. Using asyn-

chronous send/recv would be a performance issue because then the application

would have to iterate over all open connection looking for I/O ready sockets.

The problem with this kind of design is that the server struggles to scale be-

yond 20K connections due to the large number of threads that are being created.

Even opening of the connections is slow due to the thread creation time. With

30K connections open, the server can spend 50% or more of CPU time in the

kernel due to scheduling. The Figures 3.6, 3.7 and 3.8 show the number of

connections that can be opened during a specific time duration, the server CPU

usage and the load average on the server during the time the connections were

being established.

These issues with thread contention and scheduling would never be discovered

if there was no context switching data or load average data to look at. Once the

performance bottleneck and its cause has been identified, it is easy to redesign

the application and resolve the issue. Standardization of collecting finer metrics

like threads and context switching and making them part of the process of

designing for software testability, not only assists with discovering performance

bottlenecks during testing but also helps with improving the architecture and

hence performance of an application, as in this case. In order to get over this

thread contention problem the application was redesigned using the epoll system

to manage connections. Epoll allows specification of a set of connections which

the operating system places in a table. Then one can block until a connection

65

Figure 3.6. Time taken to create connections with existing NOFEP architecture.

Figure 3.7. CPU usage of a NOFEP server with existing architecture.

is ready to read/write. This allows one thread to handle many connections as

shown in Figure 3.9.

66

Figure 3.8. Load average of a NOFEP server with existing architecture.

The application now uses a pool of reader and writer threads to transfer mes-

sages from the client to the host. And the improvement in resource utilization

and the time to create the connections is immediately visible along with the

increase in the number of connections that the application can now handle as

can be seen in Figure 3.10.

The CPU utilization numbers as well as the load average on the NOFEP server

has gone down when using the new NOFEP architecture as shown in Fig-

ures 3.11 and 3.12.

This example just goes to show that collecting more fine grained metrics helps

with better evaluation of the application’s performance. Using these metrics

would not only help with detecting performance bottlenecks but like in our case,

also help with improving the architecture and hence increase the productivity

of the application.

67

Figure 3.9. New NOFEP architecture.

3.3.3 Standard Instrumentation

Instrumentation is one of the most important features that will not only help

in identifying issues but also help in resolving them. The next chapter will de-

scribe a standard instrumentation tool built keeping in mind the characteristics

of software testability. Using a standard instrumentation technique which is

exposed to the applications via an API called enterprise instrumentation API,

for the entire organization helps ease not only problem identification and res-

olution during performance testing but also once the application is deployed

in production. Through consistent instrumentation, operational visibility is

improved thereby leading to improved stability. Common monitoring tools pro-

vide a method of quickly observing both application performance as well as

68

Figure 3.10. Time taken to create connections using the new NOFEP architecture.

Figure 3.11. CPU usage of a NOFEP server running the new architecture.

69

Figure 3.12. Load average of a NOFEP server with the new architecture.

an end-to-end view for both operations and application teams. When teams

adopt common instrumentation tools, the data including application metrics,

billing, security and errors can be stored in a common repository. From this

repository business object reports can be used to derive accurate forecasting

and capacity data. Operation teams also have a consistent and reliable tool

to help them with their day to day work. In addition, capturing all data in a

common consolidated repository allows for reducing the infrastructure footprint

by eliminating redundant data storage used by different application teams.

3.4 Characteristics External to Software Application that Affect Testability

In this next section we will look at two factors external to the software applica-

tion that can have direct or indirect affect the testability of the application but are

often ignored. A list of these factors [12] is shown in Figure 3.13. One of these

70

features that will be discussed is coding standards. Even though there are numerous

papers and research done on ways to improve code quality in order to ease testing,

little has been said about incorporating engineering tenets in the code design. We

will discuss a couple of those in this section.

Figure 3.13. Characteristics External to Software Application that Affect Testability.

1. Test Suites

Creating the right test harness and scripts thereby developing the correct test

suite is of utmost importance in performance testing. In order to accomplish

this task it is necessary for application teams to design their systems such that

it can be isolated from various external dependencies. The mock/simulator

implementation for every external dependency can have various levels of so-

phistication:

• Simple mock with a constant and uniform response,

• Record and replay, or

71

• Simulating specific data conditions

A sample of an automated test harness in an environment using a mock is shown

in Figure 3.14. Usually simulators/mocks are used in the test environment to

emulate the processing of complex backend applications or third party software.

In cases of record and playback at the test script side in an environment using

a simulator it is important to synchronize the test script and the simulator.

The main reason for that is to make certain that both the traffic generator and

the mock use the same delay between transactions so that actual results being

generated during the test match the expected test results. The test entries are

taken from the application logs in production and contains the delays recorded

between the transactions. The test scenario and entries file contains these delays

as recorded in production. Both the simulator and the test script also need to

read the same configuration file that describes the test scenario and test entries.

There is an additional component used in this kind of setup - expected results

generator. The results generator reads the configuration file, parses the scenario

and creates graphs for the various metrics plotting the expected behavior. These

expected results are stored in a database. While the test script is running, it

records the responses from the test environment and stores the test data in a

database. Either during the test or after full completion the comparison and

reporting component can be used to see how well the test is emulating the

expected scenario.

2. Coding Standards

Every developer is habituated to writing code his/her way even when using the

same programming language. This often leads to being innovative during the

testing phase to detect bottlenecks. Enforcing coding standards may reduce the

effort spent during testing and also increase the quality of the reports.

72

Figure 3.14. Example of an Automated Test Harness in a Test Environment with
Backend Simulators/Mocks.

For example assertions can be used at run time when available in the develop-

ment language and can be used through an interface or a test tool. Most of the

work when it comes to software testability is centered on coding standards. So

in this chapter we will look (at a very high level) at two engineering aspects -

timeouts and throttles that should be part of the application design and code.

These features help with the overall stability and reliability of the end-to-end

system and are discussed in detail in Chapter 2.

(a) Timeouts Timeout is a feature/setting that enables applications to handle

a lack of response (or extended latency) by logging and returning an error

to the end user that initiated the request. All timeouts should be associated

with some kind of post timeout action. Timeouts should be set for:

• The application’s connection(s) to a database(s) or directory(ies)

• Responding to an incoming transaction

73

• Communication between its different tiers. This includes Web/App

and App/App transactions

• Receiving a response to a connection the application makes to an ex-

ternal resource

(b) Throttles Throttling allows workload to be adjusted without causing any

major failure or performance degradation. It is critical that all applications

are designed with throttling controls for smooth operation even during

times of unexpected peak loads. All throttle events should be logged and

instrumented with alerts and/or alarms. Throttles should be employed for

• Applications to protect themselves from unexpectedly high rate of

incoming requests

• Databases to set a ceiling on the number of connections that can be

opened in order to protect itself from overload

3.5 Environmental Characteristics that Affect Software Testability

Last but not the least are the environmental software testability enablers as

shown in Figure 3.15. Establishing a standard way of setting up the test environment

is vital because it introduces common best practices that are then utilized for every

application, organization wide. Every application is tested and measured using similar

processes.

1. Test Environment

Setting up an environment that mirrors production is ideal for assessing the

behavior of any application. But due to the differences in hardware and/or

network configurations, it is not always possible to setup an environment that

replicates production. When it comes to setting up a test environment, it is not

74

Figure 3.15. Environmental Characteristics that Affect Software Testability.

always just the type of hardware that needs to be considered. Figure 3.16 shows

some of the factors that need to be considered when creating a test environment.

Differences in the network configurations and even operating systems or software

versions have to be taking into account. For example using the same jdk version

in test as the application will use in production plays a big part is accurately

assessing its performance. Other factors that should be considered are the

tools that will be used to monitor the environment and collect data during

testing, interactions between various components that make up the environment

and even backend processes like cleanup batch jobs or end of the day report

tasks that might run on a server in production but not in a test environment.

Establishing common methods and processes of setting up test environments

not only facilitates the ease of testing different applications but also provides

a common benchmark to create a test bed that is as similar to production as

possible.

75

Factors to
Consider

Hardware

Configuration/

OS

Hardware
Specification

Network

Network

Architecture

End User
location

Load Balancing
Implication

Tools

Load Driver
Limitations

Impact of
Monitoring

Tools

Software

Software
License

Constraints
Software on

Shared/Virtual
Environment

Logging Levels

External
Factors

Interaction
with Other

Systems

Batch Process/
Updates

Figure 3.16. Factors to Consider When Setting Up a Test Environment.

2. Test Tool

A good test tool or test harness is needed to run valid performance tests that

emulate real world scenarios. Load drivers and test scripts play a vital part in

performance testing, and hence they have to be created carefully. The same

principles that are followed to develop a good piece of software need to be used

to create test scripts. Test tools are a vital part of the success of a performance

testing project. They drive the traffic, they simulate the test cases - both

destructive as well as happy path scenarios and they record the client side

76

experience metrics like response times. Just like any other software, test scripts

and tools should have the following qualities:

• Readability: It is important to have readable scripts that incorporate clean

logic and are easy to understand. It makes it easier for a new tester to

take over and work with them.

• Extensibility: This allows for script changes to be made and more test

scenarios to be added in order to assess an application’s performance.

• User friendliness: Test scripts do not need to have a GUI interface to run,

but even when a command line is being utilized it should be simple and

easy to understand and use.

• Efficiency: For many cases in performance testing it is required to simulate

thousands of concurrent users or transactions at the same time, which

might require running multiple instances of the script. Therefore it is

important for these scripts to be efficient and light weight and use minimal

server resources.

• Reusability: A production environment is usually made up of numerous

applications and components that work together to process user requests.

This leads to the importance of reusability - to be able to reuse pieces of

a test script code to build scripts for other applications.

• Atomicity: Test scripts need to have a modular design, where each module

is dedicated to a implementing a specific logic or test case. This speeds up

the modification and enhancement process.

• Correctness: It is essential that the test scripts are able to simulate all doc-

umented test scenarios correctly in order to ensure successful performance

testing.

77

In addition to satisfying the above mentioned requirements and generating traf-

fic, a test tool needs to perform certain other functionalities. It needs to keep

track of user side metrics like errors percentage, response times and throughput.

If need be it should also be capable of recording and playing back production

traffic. A more detailed description of test scripts/tools will be provided in

Chapter 5.

78

CHAPTER 4

ENTERPRISE INSTRUMENTATION: A LIGHTWEIGHT CROSS-PLATFORM

LOW-OVERHEAD MONITORING TOOL FOR DISTRIBUTED SOFTWARE

APPLCIATIONS

4.1 Introduction

Monitoring distributed software applications is a crucial component of practical

software engineering [13, 14]. Companies in every major industry rely on custom

distributed applications to sustain their business. To serve their users around the

world these applications are expected to function 24x7. Managing such applications

and maintaining their high availability requires close monitoring. Figure 4.1 gives an

overview of a real distributed software application. The figure shows the production

environment of our online travel shopping applications. The system is composed of

various components, including a load balancer (F5), individual applications such as

the BBIS hotel booking application, message queues (MQ), databases, the backend

mainframe system (TPF), as well as an interface for terminal users, who are usually

travel agents. The deployed software is written in different languages and is running

on different operating systems. Communication between the various components uses

different protocols—HTTP, TCP/IP, CORBA, and middleware messaging.

Monitoring distributed applications is challenging as it tries to satisfy two main

conflicting goals. (1) On the one hand, software engineers want to collect data that

is as detailed and comprehensive as possible, as having fine-grained runtime data for

the entire system is useful in software analysis and maintenance tasks. (2) On the

other hand, collecting any monitoring data is an overhead that can be very expensive,

79

as the monitoring tool consumes computing and communication resources of the very

machines and networks it monitors. Any monitoring tool therefore tries to both

maximize the utility of the data it collects and minimize the overhead it incurs.

In addition to these conflicting two main goals, existing monitoring tools also

try to optimize other goals, such as ease of deployment and providing an integrated

solution. These additional goals however conflict with the two main goals, as both

ease of deployment and a highly integrated tool can lead to collecting data that is

less useful while incurring a higher runtime overhead.

Specifically, we found that many existing monitoring tools utilize generic pro-

gram instrumentation facilities to collect data. This is convenient in program deploy-

ment, as it can automatically instrument different kinds of applications. However it

also limits the applicability of the approach to the platforms it supports. Practical

business applications are often implemented on a wide mix of hardware and software

platforms as well as communication protocols, which increases the risk that some part

of the system is not supported by such a generic instrumentation approach. In addi-

tion, such a general approach also leads to bloat, as it may insert monitoring probes

that are not needed for the specific application, which causes unnecessary overhead.

To provide an integrated solution, many existing monitoring tools also utilize

their own custom communication techniques to propagate monitoring data from the

monitored entities to repositories or analysis nodes. Such an integrated solution may

be useful in some situations, but it can also lead to undesired overhead. Such custom

communication techniques often run on the very nodes that are monitored and there-

fore consume resources that could otherwise be used by the monitored application.

Examples of such custom communication techniques include hierarchies of filtering

nodes that are co-located with the monitored application.

80

In this chapter we describe our in house built lightweight instrumentation and

monitoring tool EI (Enterprise Instrumentation), which provides detailed monitoring

data on a wide range of platforms and communication networks yet imposes very

little overhead on the monitored machines. Specifically, EI provides an API that

can be called from a variety of platforms, including Java, .Net, C++ and C envi-

ronments. The API is simple and customized to avoid the overhead of more generic

instrumentation approaches.

Internal LDAPExternal LDAP

BBIS
Java, LinuxNOFEP

C++,
Solaris

MOM

EI LDAP

AgSS

TAM

PSS-SessionMgr
AAA

PSS/TPF

TPFC
Mainframe

USG,
Java,

Windows

SSG
Java,
Linux

MOM-API

E
I-
A
P
I

PSS-API

M
O
M
-A
P
I

P
S
S
-A
P
I

PSS terminal access path

F5

E
I-A
P
I

PSS Terminal Traffic

User Message Traffic

EI Logon/Logoff Traffic
(authentication)

EI Transaction Traffic
(authorization)

MOM Traffic

PSS terminal control

H
S
S
P
-A
P
I

USG-MQ

Pub/Sub Traffic

Pub/Sub
MQ

EI Logging API

C
lient

Server

CLR DB
MySQL

CLR
MySQL

Sub-API

E2E Fabric System

Liberty
fabric system user

Java, Linux

MOM-API

allocate

Session DB

consolidate-session-info

EI Security Manager
Java, Linux

Prognosis
Bridge

monitor/ alerts

Sub-API

Pub/Sub

PSS CORBA access path

EI Logging API

F
I
R
E
W
A
L
L
/
s

E
I-A
P
I

SiteMinder
C++, Windows

Figure 4.1. Design excerpt of a real distributed travel shopping application. The
upper right shows key components of our EI monitoring tool, including various in-
stances of the instrumentation library (EI API), the shared Pub/Sub communication
medium, and the Consolidated Logging Repository (CLR)..

81

To propagate data from the monitored application to analysis nodes, EI lever-

ages the well-known advantages of publish/subscribe systems and message queues,

which separate processing logic (i.e., monitoring activities) from communication con-

cerns. A key observation is that this separation of concerns allows us to separate

the places at which the concerns are handled. This separation can preserve comput-

ing resources on the monitored machines for the application and thus yield better

end-to-end performance.

The development of EI was motivated by a study of existing monitoring tools.

We describe the result of this study for a well-known representative example tool,

DynaTrace, and describe how EI compares with DynaTrace in a practical example

scenario. DynaTrace was chosen as a comparison tool over other methods like Net-

Logger, Tealeaf and ClickTale because of it’s use in the industry and proven reliability.

Some of it’s current customers are Macy’s, Linkedin, Zappos and so on. DynaTrace

was chosen as a viable solution because of the assurance that it would be supported

and maintained as compared to exiting open source solution that rely on users to

fix bugs and maintain the code. Specifically, we found that existing solutions often

fail to support one or more of the platforms employed in a business application or

a communication protocol. In addition to supporting a wide range of platforms, EI

also imposes a very low overhead.

4.2 Background: DynaTrace

Several monitoring tools have been described in the literature. A representative

example tool is DynaTrace, which is widely available. DynaTrace injects into the

various software components of a distributed application light-weight agents. These

Agents place sensors on component boundaries and on rich clients and browsers for

full end-to-end monitoring.

82

After injection, these agents collect data at the OS and application level, such

as payload, response times, class and method information, and SQL statements. Dy-

naTrace can tag and track individual transactions across individual components and

machines, which allows engineers to keep track of each incoming transaction and the

path it traverses.

DynaTrace has its own communication mechanism, which consists of a hierarchy

of data processing and communication nodes. That is, the agents forward sensor data

to the DynaTrace data collector and server nodes for further analysis.

4.3 Overview of Enterprise Instrumentation (EI)

Figure 4.2 shows the four main components of the Enterprise Instrumentation

(EI) tool.

1. The EI API is the entry point that collects data from the monitored application.

2. Pub/Sub is the communication medium EI uses to propagate data from API

instances to the repository.

3. The main EI data sink is the Consolidated Logging Repository CLR.

4. The monitoring GUI provides a dashboard of EI and the monitored application.

The EI API can be added to an application by including in the application the EI

libraries. The application can then use EI by using the libraries to create a EI logger

(or collector) object and sending messages through the logger (or collector). EI sends

these messages to their destination as configured by the logging mechanism, which

could be via a file, a JMS Pub/Sub system, or other means.

• EI API

The EI API is written in Java, C, and C++ to accommodate the different

programming languages used in the production environment. It can be called

from different platforms including .Net, Java, C and C++. It has the ability to

83

1. Instrumented Application using Enterprise
Instrumentation API

1. Instrumented Application using Enterprise
Instrumentation API NAS

2. Pub/Sub

3. CLR

Business
Object

Reports

4. Monitoring GUI

Application Logs

Event

Metrics,
Audit/

Security,
Billing,
Logging

Metrics,
Audit/

Security

Real Time
Monitoring

Historical
Reporting

Troubleshooting

Figure 4.2. Overview of the main EI components - 1. EI API, 2. Pub/Sub, 3. CLR
and 4. Monitoring GUI collecting various monitoring data, i.e., application metrics
and audit, security, and billing data. NAS = network-attached storage; pub/sub =
publish-subscribe..

track metrics for incoming transactions based on their unique identifiers. One

of the major advantages of using the EI API to measure metrics, is that it can

be used to gather information for not only application or client side or server

utilization data but also data that is internal to the production system. For

example the billing data metrics that are collected by the API are not directly

84

gathered from incoming transactions but EOD (End of Day) files that keep

track of the ours of usage of a particular service/product by an airline and/or

travel agent. More details are in section 4.6.3.

The API is used to collect required metrics for performance evaluation in a stan-

dard format, which in turn eases problem identification and resolution during

testing and production use.

• CLR

When teams adopt a common monitoring tool such as EI, the monitoring data

such as application metrics, billing, security, and errors can be stored in a

common repository. This repository can be used for reporting and forecasting.

• Pub/Sub

This solution uses network attached storage (NAS) to store application logs.

For redundancy purposes the application logs are stored in NAS along with

being sent to CLR through pub/sub.

EI uses a publish-subscribe (pub/sub) technique [15, 16] to send all instru-

mented application data to the repository. This middleware component is de-

ployed on dedicated servers thereby eliminating loss of data due to a hardware

failure on the application servers. The advantage of using a publish/subscribe

technique is that it ensures that the application processing does not stop due

to contentions or queue fill ups. This is due to the fact that the application is

the publisher and hence simply sends out the various metrics to the appropriate

topic/queue on the pub/sub server and then continues with its transaction pro-

cessing. The subscriber associated with the topic is then responsible for writing

the data to CLR.

• Monitoring GUI

85

EI also has a monitoring GUI, which serves as a dashboard for teams to ensure

that all applications and systems are working as expected. As can be seen

from Figure 4.2, the solution not only provides a capability to collect and view

metrics while the application is live but also provides means to store and view

historical data.

4.4 EI Log Types and Configuration

An application can generate five types of logging data with EI: application,

audit, billing, metrics, and security. All of this data can be collected and retained in

a centralized repository via the following steps.

1. Capture application measurements

2. Summarize measurements into time intervals (i.e., minute, hour, and day)

3. Consolidate data that is older than the retention period for that summary level

As new data is added to the CLR centralized repository and summarized each

day, users can analyze and report the CLR data using Business Objects or ad-hoc

SQL queries.

4.4.1 Log Types

• Application: Application-specific logging events, such as error messages and de-

tails about individual transactions can be generated at various levels of detail.

For example, this fine-grained logging allows tagging and end-to-end tracking

of individual transactions across applications and machines, which collects data

that is very similar to the end-to-end transaction tracking provided in Dyna-

Trace.

• Audit: Logging events that show application usage and critical changes in ap-

plication state at various levels of detail for historical research into the usage

86

patterns of the application can also be generated. The Audit logging type is

used to report application usage events that may be of interest during appli-

cation audits. This information ranges from changes to critical data elements

managed by an application to critical, infrequently used functions within an

application.

Audit and Security logging are different flavors of the same logging type. The

distinction between Security and Audit logging types provides an application

with the opportunity to log these events at different levels as well as differentiate

general audit events from those with security implications.

• Billing: Logging events that show application usage or critical changes in ap-

plication state for charging customers for the use of the application can also

be generated using the EI tool. The data elements generated by this type of

logging is usually specific to the billing model of the application.

• Metrics: The normal usage for logging metrics is for XML-formatted summary

metric records that are published every minute. For example, for a Java ap-

plication these metrics include data on garbage collection and general JVM

behavior.

• Security: Logging events that show application security functions such as au-

thentications, authorizations for specific requests, and session destruction for

historical research into the security aspects of the application can also be gen-

erated using the EI tool.

4.4.2 Configuration

All basic configuration elements for logging can be provided through either

file- or LDAP-based configuration. The logging client API always expects to find

87

a file-based configuration to provide the connection information required to retrieve

configuration settings from an LDAP environment.

File-based configuration can be implemented quickly and does not depend on

external LDAP components. Our EI implementation uses log4J and log4cplus for the

Java and C/C++ EI libraries respectively.

LDAP can be used to centralize the set of logging configuration settings for

all application instances and modifying the logging levels for the different types at

runtime. If the specified LDAP repository is unavailable at application instance

startup, EI falls back to the properties of the file-based configuration.

4.5 EI Implementation

The EIAPI is added to an application by including the EIAPI jars and the

third-party support libraries in a Java project, creating a logger or collector) object,

and sending messages through the logger (or collector). These are sent as configured

via a log4j mechanism to their destination - anything from a file to a JMS (Java

Message Service) Pub/Sub system. When using EI, each application calls the EI

API to send instrumentation data to the common repository. Applications can call

the API with the transaction identifier before it is transformed, thereby keeping

track of each transaction during the entire end-to-end processing, including message

transformations.

EI benefits from using a mature communication channel (i.e., publish/subscribe)

that is backed up by reliable message queues. This communication channel provides

guarantees even in the case of hardware or software failures. That is, even if a node

crashes, monitoring data is still queued in the communication channel and will be

available once the node becomes available again.

88

The EI API also has a failover mechanism. When any appender error occurs,

there is a risk of losing a record that could not be published. To avoid this, the API

has implemented a failover logging mechanism. EI API provides its own ErrorHandler

called EIAPIErrorHandler. This handler performs the following three operations.

• Logs to system.err when the corresponding appender fails for the first time.

This output can be redirected to either the terminal screen or sent out as a file

attachment in an email for notification purposes.

• Delegates the record that its appender was unable to send to a secondary ap-

pender.

• Informs any registered AppenderErrorListeners about the error. This way the

application can extend EIAPIErrorHandler with any custom failover logic.

In our EI implementation we use a publish/subscribe tool from TIBCO called

Enterprise Message Service (EMS), which implements Java Message Service (JMS).

JMS provides asynchronous communication, which the EI API uses to connect the

EI API with the publish/subscribe communication channel.

4.6 EI API Implementation Details

This section describes some of the metrics in detail that can be collected using

the EI API. The metrics described here fall under the Application EI API metrics

category and the last section talks about the Billing metric briefly. The examples in

the following section are specific to Java applications but there are corresponding C

and C++ EI API codes that are available.

4.6.1 Summary Customer Metrics (SCM)

Summary Customer Metrics (SCM) logging provides an application with the

ability to log information about the operation of the application. This is used to

89

monitor the performance of the application and tune it to peak efficiency. Figure 4.3

depicts the logical view of how SCM can be collected using the EI API.

Application

EI API

FileSystem

PubSub
MO
M

MQ

CLR
subscriber Oracle

CLR
subscriber Oracle

Nightly sync

 1 minute SCM

SCM

M
O
M

Figure 4.3. Logical View of Summary Customer Metrics Collected Using EI API.

Information can be logged in a way such that the structure of metrics within a

transaction and its larger context can be preserved. If an incoming transaction spawns

multiple sub-transactions, the metrics for each of these transactions will be stored

in hierarchical way to preserve the parent-children structure. The SCM message

structure enables flexibility by allowing the data collection point to be defined as any

type of entity rather than just a service or a user.

The log header contains all the information that is common across all records

in the message. The authentication identifier (AthID) and serverMethodName are

90

added at the data collection point for every transaction as they can change over the

processing duration of the transaction. Any number of log entries may be in a record,

and log entries may have sub entries, which would indicate a set of metrics associated

by a parent/child relationship. An example might be a service associated with a

subservice call. All log entries are identified with a minimum a name and type, but

additional attributes may be added as well to further define the data collection point.

A SummaryCustomerMetricsLogger is created and all transaction activity is

processed through it. The logger is stateless so that it can be employed in a multi-

threaded environment. SummaryCustomerMetricsLogger logger = new SummaryCus-

tomerMetricsLogger(); Once a logger is created, transactions may be logged to it.

Transactions are begun and named, and then actions are performed through the

logger on the transaction. Log log = logger.begin(transactionName); A child trans-

action is begun be referencing the parent log, a name, and a child type. Log log =

logger.begin(log, transactionName, transactionType);

Values are placed into transactions to record (and update) performance met-

rics, critical events, and any other statistical value. logger.addStatistic(log, keyName,

value); Custom statistics can be created and applied to a key as well. Statistic-

sContainer container = new StatisticsContainer(keyName, count, total, minimum,

maximum, sumOfSquares); logger.addStatistic(log, keyName, container);

4.6.1.1 Transaction Details

The metrics for a transaction are collected and placed into a TransactionDe-

tails object. Transactions require setting the identity of the application performing

logging. The identity consists of three parts: the Node, the Application Name, and

the Instance. The Application Identity needs to uniquely name the running applica-

tion. The Instance identity identifies the unique instance. If there is more than one

91

instance of the application running on the same machine, then the Instance Identity

differentiates those instances. They need to be non-empty strings. The Node Identity

is not usually set. The node identity defines the machine on which the application

runs. By default the Node Identity is the host’s fully qualified domain name.

A transaction record is created when transactions are logged. Each of these

transaction records is sent to the TransactionSummaryAppender. It then produces

a summary record of all of the log events that have the same origin. The summary

record is generated as a stamped XML document and the following is a sample of the

kind of document that gets created:

2012-01-23 12:34:56.789 TransactionSummaryAppender-PublishThread

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<log>

<version>1.3.2</version>

<timestamp>2012-01-12 12:34:56.789 -0500</timestamp>

<node-id>MYCOMPUTER</node-id>

<app-id>MyApp</app-id>

<instance-id>MyInst</instance-id>

<transaction-summary level="20000">

<statistic key="TransactionName/END" count="1" />

<statistic key=" TransactionName/DURATION" count="1" total="78"

average="78" min="78" max="78" stddev="0.0"

sumSquares="6084" />

<statistic key=" TransactionName/BEGIN" count="1"></statistic>

</transaction-summary>

</log>

92

The timestamp and thread name are delivered according to the log4j settings.

The message itself is generated without line breaks. It is represented here with line

breaks for readability. The transaction-summary tag holds all of the statistics. Each

event such as the beginning or ending of a transaction is represented as a statistic. The

same statistic is counted as well as totaled and averaged. The minimum, maximum,

standard deviation, and sum-of-squares are also computed for each event statistic

that is being collected. A few of the architectural goals for this particular metric type

are as follows:

• Collects metrics broken out by service and customer

• Allows applications that are already collecting metrics data to simply report

that data

• Provides standard metrics collection

– count, total, average, min, max and standard deviation

• Support hierarchical transactions

– Nested transactions,

– attributes and

– updating values at various levels

4.6.2 JVM Metrics

The objective is to develop an Appender that collects the JVM metrics. Java

has a set of platform MBeans (Managed Beans) for monitoring and management of

the Java virtual machine, which can be used to collect this information. It needs to

collect these metrics in a configurable interval and then summarize them, so it can be

logged as a Metrics Record. It can also be easily integrated with Application Metrics.

Figure 4.4 depicts the logical view of how an application can use the EI API to collect

JVM data.

93

Pub/Sub
Appender

SCM
Logger

Pub/Sub

CLR

Monitoring
GUI

mBean Server

Application

EI API

JVM
Metrics

Data

Figure 4.4. Logical View of Application Using EI API to Collect JVM Data.

MBean mappings are much more versatile because JMX poller resolves those

at runtime. Basically, an MBean mapping is an expression that can contain static

and dynamic parts. A static part is any constant text you want. A dynamic part

on the other hand is a character sequence contained in a pair of special brackets

which at runtime will result in a different value for various MBeans. An example of a

dynamic expression part would be: ”$objectName.name”. Every mapping expression

is resolved to a static text (even its dynamic parts) before being logged as an SCM

record. Both MBean expressions and attribute expressions are placed in the generated

SCM records. Sometimes it might be useful to use a custom name for them instead

of a complicated expression as a metric name. For example, it might be useful to log

”java.lang:type=Memory.HeapMemoryUsage.Max” as just ”MEM.MaxHeapUsage”.

94

The EI API allows these customizations for name mappings of both MBeans and

their attributes.

4.6.2.1 Polling Interval

The JMX Poller allows for a granular configuration of the polling interval. It

is required to set a global interval for the Poller but intervals can also be set on a

per MBean or even per attribute basis. All interval configurations may be combined

in a single configuration. This results in a tree of intervals. Some nodes in the tree

may be empty. Others will contain a valid interval. Obviously, every attribute will

get polled at only one interval. To determine this interval, EI API uses the ”deepest

node is the most important” approach. For example, this tree of intervals:

• Global interval (60)

– First MBean (30)

∗ First attribute (15)

∗ Second attribute

– Second MBean

∗ First attribute (20)

∗ Second attribute

will cause the EI API to use the following polling intervals:

1. First MBean.First attribute - every 15 seconds

2. First MBean.Second attribute - every 30 seconds

3. Second MBean.First attribute - every 20 seconds

4. Second MBean.Second attribute - every 60 seconds

The default configuration is to poll some default JVMmetrics every few seconds.

The poller can be configured programmatically as follows:

95

// Most of configuration is built using the builder pattern.

// Every configuration object is immutable once created

MBean mem = new MBean.Builder("MEMORY", new

ObjectName("java.lang:type=Memory"))

.addAttributes("ObjectPendingFinalizationCount")

.addAttributes(new Attribute("Verbose", "V"))

.setMapping("MEM")

.setInterval(30)

.build();

MBean pool = new MBean.Builder("MEMORY_POOL ",

new ObjectName("java.lang:type=MemoryPool,name=*"))

.addAttributes(new Attribute("PeakUsage.Max", "PeakUsage.Max", 15))

.build();

JMXPollerConfiguration configuration = new JMXPollerConfiguration.Builder()

.setEnabled(true)

.setInterval(60)

.addMBean(mem).addMBean(pool)

.build();

LogManager.instance().getJMXPoller().configure(configuration);

A list of the JVM metrics that can be collected using the EI API are as follows:

4.6.3 Billing

The Billing logging type is used to report application usage events for which

customers may be charged usage fees for the application. The data elements generated

by this type of logging are usually specific to the billing model of the application.

These include, but are not limited to, service information and information about the

96

Table 4.1. JVM Metrics Collected Using EI API

mBean Name Attribute Name Interval [s]
java.lang:type=Memory HeapMemoryUsage.Init 60
java.lang:type=Memory HeapMemoryUsage.Used 60
java.lang:type=Memory HeapMemoryUsage.Committed 60
java.lang:type=Memory HeapMemoryUsage.Max 60
java.lang:type=Memory NonHeapMemoryUsage.Init 60
java.lang:type=Memory NonHeapMemoryUsage.Used 60
java.lang:type=Memory NonHeapMemoryUsage.Committed 60
java.lang:type=Memory NonHeapMemoryUsage.Max 60
java.lang:type=Memory ObjectPendingFinalizationCount 60
java.lang:type=MemoryPool,name=* CollectionUsage.Init 60
java.lang:type=MemoryPool,name=* CollectionUsage.Used 60
java.lang:type=MemoryPool,name=* CollectionUsage.Committed 60
java.lang:type=MemoryPool,name=* CollectionUsage.Max 60
java.lang:type=MemoryPool,name=* PeakUsage.Init 60
java.lang:type=MemoryPool,name=* PeakUsage.Used 60
java.lang:type=MemoryPool,name=* PeakUsage.Committed 60
java.lang:type=MemoryPool,name=* PeakUsage.Max 60
java.lang:type=MemoryPool,name=* Usage.Init 60
java.lang:type=MemoryPool,name=* Usage.Used 60
java.lang:type=MemoryPool,name=* Usage.Committed 60
java.lang:type=MemoryPool,name=* Usage.Committed 60
java.lang:type=GarbageCollector,name=* CollectionCount 60
java.lang:type=GarbageCollector,name=* CollectionTime 60
java.lang:type=ClassLoading LoadedClassCount 60
java.lang:type=ClassLoading TotalLoadedClassCount 60

application invoking a billable service. Figure 4.5 shows the logical view of how the

billing data is collected for an application. Billing provides metrics categorized

by service for a customer. To identify the customer, the customer PCC (Pseudo

City Code) can be obtained from a user supplied session object. Billing logging is

currently used for Open Systems billing for non-TPF requests coming in through the

web. Billing is available using Summary Customer Metrics.

The EIAPI has added Customer Attributes to Billing. There are two ways to

add these attributes. In the Service Builder method, note that we support adding

custom attributes on the Billing Client level. Adding attributes on Service level is

97

USG application

EI API

FileSystem

PubSub
MO
M

MQ

CLR
subscriber Oracle

CLR
subscriber Oracle

Nightly sync
SQL Access

 1 minute SCM Billing

KDM
Billing

 EOD SCM Billing

LDAP

Figure 4.5. Logical View of Application Collecting Billing Information.

not yet supported. This is an example of adding attributes using UserData plus the

Billing API.

/* Create new user data with custom attributes */

UserData userData = new UserData(new

DefaultSessionImpl("ID","Type",Level.DEBUG,Level.DEBUG,Level.DEBUG,Level.DEBUG));

userData.addAdditionalAttribute("ApplicationId","App_ID1");

userData.addAdditionalAttribute("CustomerID",String.valueOf(new

Long(1)));

userData.addAdditionalAttribute("UserID",String.valueOf(new

Integer(3)));

98

userData.addAdditionalAttribute("ServiceID",String.valueOf(new

CustomServiceId()));

billingsCollector.appendService("SomeService","1.0", userData);

This is an example of adding billing attributes at a service level:

/* Create attributes with the service builder */

BillingServiceUsageBuilder serviceBuilder =

new BillingServiceUsageBuilder("S1Name", "S1Version")

.begin(userData1).usingCpuFor(2L, 4L)

.with("IPAddress", "192.168.1.0")

.with("User", "BritishAirways")

.commit()

.begin(userData2)

.with("IPAddress", "192.168.222.111")

.with("User", "AirCanada")

.usingCpuFor(4L, 6L)

.commit();

BillingsCollector billingsCollector = collectors.get();

billingsCollector.appendService(serviceBuilder.build());

4.7 Experience in the Sabre Production Environment

Once we have a uniform way of collecting data from every application it is easy

to display that information and monitor the performance of an application during per-

formance testing and production. Since all monitoring data are stored in a database,

it is easy to view historical data for applications at the server level and then trend

the data as seen for our shopping application example in Figure 4.6.

99

The graph shows data for an entire year, from September 2010 to September

2011. It indicates the number of processes, of both the system and the application

running on a particular server (swshlc113). The numbers below the graph indicate

the average, minimum, and maximum number of system processes currently (at the

time of the snapshot) running and blocked. The system total indicates the number of

processes running on a particular day of the month. This kind of data is important

for identifying trends for a given system. Figure 4.6 shows that the number of system

processes running at any given point of time are pretty constant at 2.2K.At regular

intervals approximately every 3 months the number of processes goes down which

could indicate maintenance window for the server. The time interval of interest here is

when the number suddenly goes up to more than 6k. This is the time frame that needs

to be investigated. The increase could be contributed to a new application/process

being installed on the server could be the result of a malfunctioning process. The

instant availability of data to the application as well as the operations team facilitates

in finding out root cause of such discrepancies in the performance trends.

The different types of data logged by EI help in identifying trends and patterns

for potential problems. It can also be used in problem localization, for example, in

classifying a problem as a user error or an application problem.

Thresholds and alerts can be setup on these performance metrics for better

visibility. This is especially true for client side and resource metrics. Alerts set on

response times and CPU usage on the shopping application behavior shown in Fig-

ures 4.7 and 4.8 alert our operations and application teams of potential performance

issues. For example Figure 4.7 is showing an increase in the application elapsed times

as the incoming transaction per second (TPS) rate is increasing. Similarly Figure 4.8

is showing that the user CPU time is constantly increasing till it reaches a 100while

the CPU idle usage is decreasing as time progresses. Both these characteristics are

100

Figure 4.6. Yearly historical process data on a given server collected in CLR to
identify performance trends. The graph shows the total number of processes running
on the server on a particular day for each month from September 2010 to September
2011..

a cause of concern. It indicates that the application is not performing as expected

and is using up the entire CPU to process the incoming traffic rate. Alerts could be

set up for these major metrics - elapsed/processing times and CPU usage and the

teams - application as well as operations will be instantly notified when a particular

threshold for these metrics is reached. Threshold levels for metrics that affect the

client can be set keeping in mind user defined SLAs where as thresholds for server

side metrics like CPU can be determined using operational standards.

The screen-shots of Figures 4.9 and 4.10 are examples of the kinds of metrics

EI can collect. Fine-grained metrics are needed to evaluate application performance.

For example, Figure 4.9 displays information about the application process (uptime,

server name, port, release number, etc.), operating system resource information (free

memory, used virtual memory, system load, etc.), and client side metrics (total re-

quests sent to the application, response times, failed transactions, etc.). During pro-

101

Figure 4.7. End-to-end system response time increases as TPS is increasing in the
shopping application of Figure 4.1. .

Figure 4.8. CPU usage on one of the two shopping servers. The corresponding graph
of the second server is very similar. CPU usage is increasing with the TPS increase
of Figure 4.7..

102

Figure 4.9. Fine-grained performance data collected in CLR: Response times, elapsed
times, up-times, and failed transactions..

duction incidents when an operations team member that is not knowledgeable about

the workings of the application needs to inform the on-call and/or development team,

this kind of information comes in handy. Its shows all the major application deploy-

ment related details as well as processing and client side metrics. The operations

team can quickly access this data and get the right team on call to investigate issues.

Similarly, Figure 4.10 shows the types of errors that have occurred during the

application runtime. Such an error report makes troubleshooting easier. For example,

error code 5011 and the description NO FARE FOR CLASS USED indicates that

fares are missing for a particular passenger booking class. The issue can be fixed by

updating the appropriate fare table.

4.8 Comparison With a Third-Party Monitoring Tool: DynaTrace

We compared our EI monitoring tool with DynaTrace in March 2011. The

tests were run on part of the system as shown in figure 4.1. The BBIS hotel shopping

103

Figure 4.10. Example fine-grained error statistics collected in CLR..

application was taken as the pilot application for these comparisons and was setup in

the test environment which is part of the end to end system shown in Figure 4.1.

Both instrumentation techniques were used to measure the application side

method call times and page loads. The DynaTrace server, client and agents were

installed on the BBIS application server. To measure the EI API times , a version of

BBIS that makes use of the API was used. Simple use cases as shown in Table 4.2

and Table 4.3. Figure 4.11 shows the logical view of activity flow that was followed

and the method calls and page loads that were measured. The logical view of the

actions that were tested are shown in Figure 4.11 We focus our comparison on two

Package Selection
Page

(Hotel+Car)/
(Hotel+Flight)

Hotel Page

Shopping Total
Page Reservation Page Landing PageCustomer

Information PageLanding Page

Confirmation Page

Shop Select
Product

Figure 4.11. Logical View of User Actions Done During Testing.

104

key aspects, the ability of the tool to work with different communication protocols

and platforms and the runtime overhead.

4.8.1 Cross-Platform Functionality

Solutions such as DynaTrace are typically easy to install and use, as long as

they are used with a limited set of standard platforms and languages such as Java,

.Net, C/C++, and Cobol. If the system to be monitored contains software running

on specialized platforms such as legacy TPF mainframe systems then using such

solutions becomes very complex or even impossible.

For example, DynaTrace provides an extension point via an instrumentation

API. However, this API is not mature enough to, for example, defer the instrumenta-

tion start call, which is needed when significant processing must occur before calling

Start(). For example, our travel application in several cases first parses the header of

an incoming request to determine which application it needs to be sent to. However

DynaTrace does not allow calling Start() after performing such parsing tasks.

DynaTrace’s support for different communication protocols is also limited, as

it cannot track individual transactions if the message or transaction is transformed

during processing. However such transformations are performed routinely by existing

systems. For example, an incoming HTTP request could be transformed into an XML

format and then fed to the next processing unit, and transformed back to HTTP in

the reply message. In such cases, the extra transaction tag DynaTrace adds to the

header is lost, together with all associated instrumentation data. The third-party

components performing such transformations are not aware of such additional tags

and therefore drop them during transformations.

105

4.8.2 Runtime Overhead

In this section we will compare the response times for the different method calls

as well as the time it takes to render the web pages between DynaTrace and the EI

API. The reason to choose response time for comparison is that this the metric that is

most affected by changing the technique in how application data is being accumulated

and archived in the repository. Both these methods - DynaTrace as well as the EI

API have a very small footprint and therefore a minimal overhead is added to the OS

resource utilization metrics.

Table 4.2. Increase in response time for method calls when using DynaTrace compared
to our EI tool.

Test case Request DynaTrace [s] EI [s] Diff
Shopping url 1 4.62 3.24 -42%
BookRoomRun url 2 4.09 3.10 -32%
BookRoomRun url 3 10.25 9.24 -11%
Shopping url 4 6.47 6.10 -6%
Shopping url 5 6.19 5.89 -5%
BookRoomRun url 6 8.58 8.64 1%

As will be seen by the data one major drawback is the additional processing

overhead associated with DynaTrace. Using a hotel shopping application several tests

were run to determine the overhead added due to DynaTrace as compared to the in

house built enterprise solution. DynaTrace was configured to collect the same metrics

in the same granularity and frequency as the in house built instrumentation technique.

Tables 4.2 and 4.3 show the difference in the response times for specific method

calls as well as the times taken to load particular customer pages. The comparison was

done on two levels - gathering metrics for page calls as a customer browses through

the application to shop for and then book a hotel room; and the different method

106

calls that were made during this process. In both cases, for a majority of the time

DynaTrace added an overhead which resulted in an increase in the response times as

compared to EI.

The test cases in Table 4.2 refers to the activities/method calls being performed

whereas the Request column refers to the different page URLs that are being used to

process those activities. For simplicity purposes, the pages have been names URL 1,

URL 2 and so on. The DynaTrace and EI columns show the time taken by the

method calls when using these two different instrumentation techniques. Similarly in

Table 4.3, Test Case refers to the kind of activity being performed, Transaction refers

to the various web pages that have to be loaded based on a particular activity and

the DynaTrace and EI columns refer to the time taken to load the different pages

when these two instrumentation techniques are used.

Table 4.3. Increase in response time when delivering pages, using DynaTrace as
compared to our EI tool.

Test case Transaction DynaTrace [s] EI [s] Diff

BookRoomRun Pkg selection 4.09 3.10 -32%
Shopping Shopping Total 27.68 24.25 -14%
BookRoomRun Confirmation 6.68 5.90 -13%
BookRoomRun Customer Info 6.50 6.04 -8%
Shopping Product Page 6.47 6.10 -6%
Shopping Landing Page 1 12.37 11.76 -5%
BookRoomRun Landing Page 2 23.86 23.44 -2%
BookRoomRun Reserv. Total 52.44 52.83 1%
BookRoomRun Product Select 9.04 10.26 12%

The higher overhead of DynaTrace can presumably be attributed to the fact

that there is a two step extra processing required, where the sensors collect the data

at every hop and then send it to the agents which in turn forward it to the metrics

107

database. These additional steps, an overhead, that cause a slight increase in the

response times. By using the EI API the metric data push is part of the regular

application processing, a one step process. Once the data has been pushed on to the

Pub/Sub topic, it is not the functionality of the application or any of it’s components

to push it to the data repository. This prevents additional time to be recorded to the

end to end response time.

4.9 Related Work

Monitoring of computer systems is essential in not only keeping track of any

potential bottlenecks that might occur while live but also in establishing traffic trends

and patterns. Several articles and research work have focused on varying forms of

monitoring systems. [17] discusses a system management system called PARMON to

monitor large homogenous and heterogeneous clusters of workstations. It monitors

system utilization data and presents it in a graphical view for better understanding.

[18] is another framework called Pulsar that monitors UNIX hardware resources. The

frequency of monitoring can be configured. A set of Unix commands are sent at the

configured interval to collect resource utilization information. X window is used to

send out alerts/alarms when utilization crosses a particular threshold. Another flexi-

ble monitoring framework called Provider-side Metric Collector (MeCo) is described

in [19]. The MeCo component is deployed within the provider host and gathers

data pertaining to the service usage from an observed server platform. The data is

propagated to a Measurement Service for evaluation of the relevant SLAs. Deploy-

ment of the MeCo Framework comprises positioning relevant MeCo objects within

the service platform, configuring the MOM subsystem and activating the Measure-

ment Service.[20] talks about a framework called ZeliGrid that can be used with Grid

applications and works using the resource constraint values to maintain system avail-

108

ability for applications with specific performance requirements. The author of [21]

describes a set of tools called Falcon that support three distinct tasks - (1)captures

performance data/information at the application level, (2)analyzes this performance

data either by using programs or users and (3) takes steering decisions or actions de-

pending on the data analysis. The framework achieves low latency by only capturing

application attributes that are required for program steering. Sensors are used to

collect the application data. The Enterprise Instrumentation tool described in this

chapter relates to these papers in terms of the motivation. All the above mentioned

monitoring tools intend to capture performance data to ensure that the resources

and applications are working without incident. EI and the frameworks described in

[19] and [21] have application monitoring as the common goal. EI is an API based

approach whereas [21] uses sensors.

The Grid Monitoring Architecture GMA is a very general reference architec-

ture [22]. EI and all related tools fit this architecture. EI can be further classified

as a level-2 monitoring system, consisting of data sensors, producers, re-publishers

(a communication channel), and consumers [23]. In the following we discuss closely

related monitoring systems, which are either also level-2 systems or level-3 systems

(where the latter have a hierarchy of republishing nodes).

[24] talks about a monitoring framework that takes the programming code as

an input and then decides where to add monitoring and measurement. A specifica-

tion language is used to enter questions in standard format and then the framework

decides where to add instrumentation in the code. This automation tool is useful for

functional testing where programmers instead of using profilers can use this frame-

work to automate the process of adding instrumentation points. This is different from

the EI tool described in the chapter where the API helps collect performance data not

only on an application level but also client side and billing information. The authors

109

of [25] and [26] talk about monitoring in the Cloud. In the cloud environment where

there are numerous layers’ services and dependencies, it is difficult to keep track of

SLAs. [25] proposes describing SLAs and their dependencies in term of a Web Ser-

vice Modeling Ontology to build a knowledgebase whereas [26] describes a multi

layer monitoring system that can be reconfigured in terms of the monitoring interval

as well as parameters. The EI tool differs from these frameworks in terms of what

it can instrument and measure. Customized paramerts as well as instrumentation

points outside the application code can be defined to be measured.

GridEye provides a SOA-based architecture that conforms to the GMA Grid

Monitoring Architecture [27]. Sensors deployed across the system collect information

in real time which is stored by the producer component and stored in a local database.

This information is used by consumers and a performance forecasting component.

SCALEA-G utilizes two sets of sensors, one for application data and one for

system metrics [28]. The data is stored in buffers and a XML-based instrumentation

request language is used to for interaction between the information requester and the

instrumentation service.

NetLogger collects event logs across a distributed system using an API similar

to EI [29]. It also has an interface to monitor these events and tools for visualizing

log data. However NetLogger sends all logs to the same port of the same machine,

whereas EI separates monitoring from communication concerns and leverages a ma-

ture publish/subscribe communication channel.

GLIMPSE is another publish-subscribe based architecture for collecting sys-

tem information [30]. It is a model-driven approach where events are defined by

consumers and then translated to a GLIMPSE specific event language using model

driven transformations.

110

Zhang et al. performed a detailed comparison of the related monitoring sys-

tems Globus Monitoring and Distributed System (MDS), Relational-Grid Monitoring

Architecture (R-GMA), and Hawkeye [31]. However, their work analyzes the per-

formance of individual components on a synthetic workload, whereas we compared

end-to-end performance in a practical example scenario. R-GMA makes use of a

publisher-subscriber model and Hawkeye uses agents on systems to collect data. Af-

ter running several tests to evaluate the scalability of the different components in

these frameworks, the authors observed that each of these was comparable in terms

of scalability. Caching helps with speeding up the data collection.

111

CHAPTER 5

TEST HARNESS AND SCRIPT DESIGN PRINCIPLES FOR AUTOMATED

TESTING

5.1 Introduction

Retaining customer loyalty in today’s competitive world is directly related to

revenue and hence a huge priority for any industry. This in turn signifies the im-

portance of deploying reliable and stable applications that in no way cause any kind

of service disruption. To ensure this is the case when applications are run in the

production environment, good functional as well as non functional testing becomes

important. Manual testing is still very much alive and is used in some shape or form

to run functional tests across every industry. Manual testing is a good way test the

front end web or GUI user interface.

But for non functional testing where in most cases hundreds or even thousands

of transactions per second need to be simulated for applications with no GUI or web

interface, using manual testers is not an option. Performance (non functional) testing

also requires emulating production like scenarios and testing every application that

is part of the end-to-end data flow path, instead of just the user interface. In a com-

puting environment each user request passes through several software components,

including user-facing servers, load-balancers, middle-ware systems, database servers,

and back-end applications. Any of these components could modify a user request in a

subtle way. For example an incoming request that goes through an enterprise service

bus or a message based middleware system gets transformed when the message header

gets modified by adding application specific parameters to match its native format.

112

There are several commercially available and open source load drivers that

are widely used for purposes of performance testing such as Load Runner, SoapUI,

SOATest and JMeter. Load Runner and JMeter enable record and playback of web

user transactions. SoapUI and SOATest enable the creation of test scripts that use

SOAP XMLs. But an organization might have its own customized format of incoming

requests that may not be supported by existing tools or may be using protocols like

CORBA that may not be supported by current test tools. Recording production

logs for these kinds of situations and playing them back against the applications

in a test environment is not possible with the currently available test tools. In a

complex computing environment where input messages are transformed and may use

a different protocol to bridge the communication between applications, customized

test tools and scripts have to be developed from scratch. Since load drivers and test

scripts play such a vital part in performance testing, they have to be created carefully.

The same principles that are followed to develop a good piece of software need

to be used to create test scripts. Test scripts are a vital part of the success of a

performance testing project. They drive the traffic, they simulate the test cases - both

destructive as well as happy path scenarios and they record the client side experience

metrics like response times. Just like any other software, test scripts should have the

following qualities:

1. Readability: It is important to have readable scripts that incorporate clean logic

and are easy to understand. It makes it easier for a new tester to take over and

work with them.

2. Extensibility: This allows for script changes to be made and more test scenarios

to be added in order to assess an application’s performance.

113

3. User friendliness: Test scripts do not need to have a GUI interface to run, but

even when a command line is being utilized it should be simple and easy to

understand and use.

4. Efficiency: For many cases in performance testing it is required to simulate

thousands of concurrent users or transactions at the same time, which might

require running multiple instances of the script. Therefore it is important for

these scripts to be efficient and light weight and use minimal server resources.

5. Reusability: A production environment is usually made up of numerous appli-

cations and components that work together to process user requests. This leads

to the importance of reusability - to be able to reuse pieces of a test script code

to build scripts for other applications.

6. Atomicity: Test scripts need to have a modular design, where each module is

dedicated to a implementing a specific logic or test case. This speeds up the

modification and enhancement process.

7. Correctness: It is essential that the test scripts are able to simulate all docu-

mented test scenarios correctly in order to ensure successful performance testing.

In addition to satisfying the above mentioned requirements and generating traffic, a

test script needs to perform certain other functionalities. Just like a manual tester

records the software behavior corresponding to each click of the button or action,

the test script needs to do the same. It needs to keep track of user side metrics

like errors percentage, response times and throughput. If need be it should also be

capable of recording and playing back traffic. In addition to this there are some pre

and post test activities like setting up the environment and creating a report after

the test is complete, that should also be automated in order to successfully create a

complete framework for testers. The next section will describe the factors that should

114

be considered when building such a complete test harness along with the design for

developing test scripts.

5.2 Test Harness and Script Design Priciples

For complete automation of testing we need to build a harness around the

environment that incorporates test scripts. Scripts will work properly once the pre

and post test work is done efficiently. In this section we will describe attributes of

a good test harness as well as a test script. When customized test tools are being

created they have to fulfill certain requirements in addition to generating traffic and

simulating the needed test scenarios for the test environment. This section describes

the complete solution needed to be developed in order to run a successful test. The

test tools and scripts need to execute both pre and post test activities, in order to

create a complete framework for testing purposes.

One of the major advantages of creating a test script over manual testing is the

ease of repeating tests. It also saves time and increases efficiency, but if tasks like

starting up the test environment, validating it, running a single user validation test,

collecting data after the test and so on are still being done manually it defeats the

purpose of automating the testing process. If an organization or a particular team

is serious about investing the time and effort to automate testing, all the processes

mentioned above have to be part of that automation activity.

5.2.1 Test Harness Definitions

Some of the terms that will be used to describe the test harness are defined

here:

115

• Instance: Every individual component of the data flow path or application is

called an instance. It can be the application itself, the load balancer or even

the database.

• Test Environment: A test environment is made up of a number of instances.

• Configuration File: The XML configuration file is a definition of the test en-

vironment. It describes each instance in terms of the server name/IP, port,

application directory, users and related instances. Providing the correct details

in this configuration file is of utmost importance since the test harness will read

this file and then perform the associated activities like starting up the environ-

ment and validating it. We have used XML to define the test environment but a

different language or any user defined structure can easily be used for the same

purpose.

• Activity Script: In addition to the environment definition file, there will also

be scripts that will allow the test harness to perform certain tasks - like using

secure shell to log on to a particular server and then change directory to the log

files and either backup or remove (as specified) the files.

5.2.1.1 Test Harness Activities

Before a test can be run, it is vital to ensure that the environment is setup

properly and all instances in the environment have been started and are running.

This can be verified by sending either single user traffic for a few minutes to make

sure that each of the instances are receiving the requests and processing them or a

single transaction that will go through each of the instances and make certain that

they are running correctly. Some of the basic functionalities that the test harness

must accomplish are as follows:

116

• Clean: The clean command will read the environment configuration file, secure

shell login to each instance server and remove or backup the log files using an

activity script.

• Validate: This is the step where the test harness tool reads in the configuration

file and parses it to retrieve the test environment instance definitions. It then

locates the servers in the environment dedicated to the instances and the associ-

ated activity scripts. It then logs in to each of the instance servers and confirms

that the server and instance are both ready to receive traffic. The validation

process could consist of the following but is not limited to checking that:

1. The proper directory structure for the test exists

2. The instance specific configuration files exist and are correct

3. The disk space on the server is sufficient to run a test

4. Instance specific data collectors are running

Activity scripts for each of these actions can be created to automate the valida-

tion process. Failure of any of these scripts implies that a server or an instance

is not setup correctly. The test harness should report the error and abort. The

process of validation works as shown in Figure 5.1.

• Start-Environment: This command also used the configuration file as an input

and is used to bring up the instances that make up the test environment in

the specified sequence. There might be a case where an instance’s startup

is dependent on another application being up and running. This sequence is

identified in the configuration file and an activity script is used to point to the

proper directory and execute the startup command for a particular instance.

• Ping: This is the option that will enable sending a single user or a single trans-

action through the environment to validate its setup. The XML defines the

user credentials used to logon to the server, the request as well as the pattern

117

Figure 5.1. Step by Step Visualization of the Validation Activity of the Test Harness.

to look for in the response. If the response does not match the defined pattern,

the harness will record the error message and abort.

• Start-Test: This command will pick up the associated activity scripts and exe-

cute them to start a performance test.

• Stop-Test: This will stop the test that is currently being run in the environment.

• Stop-Environment: This will take the configuration file as an input and an

activity script to stop all the instances that make up the test environment

5.2.2 Test Script Design

Test scripts are part of the automated test harness. It is extremely critical to

create good scripts in order to successfully run a performance test. As mentioned

in section 1, creating test scripts is very similar to writing code for an application.

Before an application undergoes functional or performance assessment, testers need

118

to document all the scenarios that will be executed. These become the requirements

and use cases for the test script to fulfill. The development of an application is never

static - maintenance and enhancements to the functionalities are done constantly to

improve its performance and capabilities. This implies that test scripts assessing

the performance of an application also need to be modified constantly enabling the

addition of new test cases. Incorporating the qualities mentioned in section 1 will

ease this process

Good documentation and modularity helps with the modification of test scripts.

There is some documentation available on how scripts should be written in order to

simulate real user behavior. Adding delays between transactions going through the

test environment is one of the most common practice to emulate user actions. Most

of the work is concentrated on applications that have a web interface where users

are simulated to imitate the number of peak users at any given point of time when

the application goes live. Almost all test tools available in the market are also able

to record user actions for a particular web application and play them. Running

tests for backend applications that process the transactions is also important. Web

transactions are usually transformed before they reach the backend applications and

may use protocols other than HTML for processing traffic. In such cases test tools

where you can write a script using customized protocols or traffic formats are limited.

Recording production logs for such traffic and then playing them back in the test

environment is also to some degree restrictive when using commercially available

traffic drivers. In such situations testers have to write their own scripts that will

drive traffic.

The other factor to keep in mind when writing test scripts is the use of simulators

or mocks. Usually in a test environment simulators are used to stub out applications

that might be external to an organization’s network or might be a third party product.

119

These stubs are referred to in this chapter as mocks. In such cases test scripts need to

be synchronized with these simulators in order to execute the test cases where traffic

playback is involved

5.2.2.1 General Test Script Design Principles for Environments without Mocks

One efficient way to create a test script that is bound to be changed constantly

is to design it as shown in Figure 5.2. The test script is capable of collecting logs in

any format from applications running in production and using them as requests for

playing back the traffic to the same applications in test environment. These requests

are collected in a text file and the script can then add headers or footers as necessary

before sending them to the target server. The script uses transactions per second

(TPS) method for setting the transmission rate with possible limits to the number of

open connections.

The first step in this design is to collect the requests from production that will

be replayed during testing. Usually there are multiple servers running in production

for the same application. Depending on the configuration, each of these servers might

be processing a particular kind of request or requests are simply being load balanced

among these boxes. Either way the script that collects the input requests needs to

round robin among all the servers. This ensures that data is being sampled uniformly

among all available servers. This also makes certain that all input traffic types are

collected because there may be certain scenarios where specific incoming transactions

are routed to particular servers. Performance tests are run from anywhere between 48

- 72 hours or longer. For this reason the request collector needs to record enough traffic

to last that test duration. The traffic can be in any format as long as the application

under test can recognize and process them. The test scenario, traffic format and part

of the test environment are described using a configuration file. The test script needs

120

Figure 5.2. General Test Script Design for Environments without Mocks. Additional
Components Needed for Environments with Mocks are shown in Figure 5.6.

to be general enough to process any kind of acceptable format. After reading the

input request format from the configuration file the test script decides which internal

module to call for processing. Once the test script reads the test scenario details -

TPS levels to set at the start of the test, TPS increments during the test, the test

duration, server or servers to send traffic to, where to read the input requests from

and where to write the test logs to: it simulates the scenario. The script logs the

responses sent from the test environment along with the time the environment took

to process the transaction. Once the test is complete, the script spits out a summary

report that details the TPS during the test duration, the transaction processing times

as well as the number of the erroneous responses and types if errors that occurred

during testing.

121

Factors that should be considered when creating test scripts are described as

follows:

1. Clear Directory Structure

Just like a clear directory structure needs to be created for a piece of software,

the different input and output files for the test script need to be well structured

also. This enables easy and comprehensive understanding of the test script and

all its associated parts which in turn helps in managing the development of test

scripts. A sample directory structure is shown in Figure 5.3.

Figure 5.3. Sample Directory Structure for Easy Test Script Development and Man-
agement.

2. Test Script Configuration File

The configuration file is the core piece of the test script. This is the file that

describes the test scenario in detail. A sample of the configuration file is shown

in Figure 5.4. The file details the format of the input requests, the directory

from where the script can read the requests and the directory where the logs

will be written to. It also describes the TPS levels, user ramp ups and ramp

downs, duration of the test, the server or group of servers that are to receive

the traffic, the port on which to send traffic and if applicable the size of the

122

responses. A console port to see the steps being executed by the script are also

defined in the configuration file.

Figure 5.4. Sample Test Scenario Configuration File that Clearly Describes Detailed
Test Scenario, Interactive Console Features, Request and Log Directories. Configu-
ration Files Simplify the Test Script Development and Ease Maintainability.

3. Test Script Console

The script can be run disconnected in the background so as to not need a

constant console. Screen or any other console virtualization tool can be used

for that. But the script can also be run using a console port to control and

monitor the progress. The console serves the purpose of controlling the test

as it is running. For example functions like increasing or decreasing the TPS

123

by 10%, increasing the frequency the report status, changing the request file or

resetting the TPS levels while a test is running, is not possible is the script is

running in the background. But if needed a console can be opened on a port

specified in the configuration file and control the test.

4. Self Tuning Capability

If the test script is not being run in the interactive console mode, the self

tuning functionality needs to be added in order to adjust the TPS levels during

tests. There are times when the applications under test might be encountering

a processing error and therefore the TPS rate increases during tests. Or there

might be a case where due to specific huge requests, the applications take longer

to process requests and therefore the TPS decreases. In such cases the test script

should have the capability to self tune and adjust the TPS to the target level.

5. Test Script Logs

Both basic statistics and detailed logging should be supported by the script.

The logs at a minimum should keep track of the name of the server where the

request was sent, the timestamp at which the request was sent, TPS, the request

and response size, the time it took to process the request and the status of the

processing. The test script is basically simulating client side actions and logging

this data will give a fair idea of how the application will perform in terms of

end user experience when it goes live. Logging in a comma delimited file will

make it easier to open up the data in an Excel or another tool and view.

6. Post Test Report

As stated earlier the test script also needs to create a report at the end of the

test. Figure 5.5 shows a sample output from the script after a test. Note that

apart from recording the numbers of errors that occurred during the test, it

is also critical to record the kind of errors that occurred. For this reason the

124

script not only receives and logs the responses from the test environment, but

also needs to parse it to see if it was an erroneous response. Keeping track of

the types of errors during tests helps in investigating the offending transaction

or even component.

Figure 5.5. Sample Post Test Report for a Script. Automated Generation of Such
Reports Helps Identify the Types of Errors and Application Behavior during Testing.

Developing the main script as general as possible and then customizing it using

configuration files is good practice in order to facilitate the addition of new test cases

with little to no effort. Following this design pattern and accommodating the pre and

post test activities creates a complete harness that will enable the proper automation

125

of the testing process. This facilitates the creation of a useful alternative to manual

testing.

Testers ensure that the environment is setup correctly, run traffic through the

environment, record the types of errors and bugs that occurred during testing and

then create a report at the end of testing. The test harness design described in this

section incorporates and automates all these activities and provides a complete testing

framework.

5.2.2.2 General Test Script Design Principles for Environments with Mocks

Usually simulators/mocks are used in the test environment to emulate the pro-

cessing of complex backend applications or third party software. In cases of record and

playback at the test script side in an environment using a simulator it is important

to synchronize the test script and the simulator as shown in Figure 5.6. The main

reason for that is to make certain that both the traffic generator and the mock use

the same delay between transactions so that actual results being generated during the

test match the expected test results. The test entries are taken from the application

logs in production and contains the delays recorded between the transactions. The

test scenario and entries file contains these delays as recorded in production. Both

the simulator and the test script also need to read the same configuration file that

describes the test scenario and test entries.

There is an additional component used in this kind of setup - expected results

generator. The results generator reads the configuration file, parses the scenario and

creates graphs for the various metrics plotting the expected behavior. These expected

results are stored in a database. While the test script is running (keeping in mind

the design factors mentioned in the previous section), it records the responses from

the test environment and stores the test data in a database. Either during the test

126

or after full completion the comparison and reporting component can be used to see

how well the test is emulating the expected scenario.

Figure 5.6. Test Script Design for Environments with Mocks. Basic Test Script
Design Principles - replaying traffic, reading configuration file and creating reports
are based According to Figure 5.2.

Due to the synchronization between the test script and the mock, results gener-

ated while a particular test is running should match the expected results. This is an

indication that the script and the applications in the test environment are performing

as expected. Let’s take the example of a simple test scenario where the test is being

run for 30 minutes. During this time a total of 11000 connections are being opened

initially and then after 5 minutes additional 3000 are opened every 30 seconds and a

constant TPS level of 600 is maintained for the entire duration of the test. The graph

in Figure 5.7 shows the expected results plotted against the actual results compiled

during testing. Discrepancies between the expected and actual results as shown in

the figure implies that there is some kind of difference between how the real envi-

127

ronment would have behaved with the test entries and scenario as compared to the

test environment. This will encourage the test team to investigate and identify the

culprit component in the test environment - be it hardware, software or configuration

related thereby improving the overall the test environment setup and increasing the

confidence in the results.

Figure 5.7. Actual vs. Expected Test Results.

5.3 Test Harness Example

Let’s take a look at how a test harness and script created using the design

principles mentioned in the chapter will help in automated testing of backend appli-

cations. Consider a flight shopping application as shown where the incoming client

request XMLs are guided to a pool of web servers and are then load balanced to go a

pool of shopping servers. These shopping servers transform the XMLs adding specific

128

headers to the requests and put them in a MOM (Message Oriented Middleware)

queue. These messages are then picked up by the scheduling application that talks

to an Oracle database. The scheduling application finds the available schedules for

the origin and destination cities and dates specified in the input request and puts the

response in the MOM queue. The shopping servers will then pick up the responses

and send them back to the client.

It is difficult to find a test tool that will be able to read the format of the trans-

formed XMLs and then generate thousands of TPS in order to rigorously test these

backend applications that do not have a GUI or web interface. The test harness and

script described in the chapter can easily accomplish the task. An XML configuration

file can be created to explain the test environment and all the instances. The harness

will then be able to read this configuration file, enable remote login to each instance

server and achieve the tasks mentioned in section 2.1.1. Figure 5.8 shows how the

sequence of activities followed by the harness and script.

The other advantage of using an automated test harness that starts and val-

idates a test environment and then initiates the test script that drives traffic, is

repeatability. It is of utmost importance to make certain that an application is thor-

oughly tested before it is deployed in production. Newer releases of the application

are created to add more functionality. So how do we make sure that the new release

is performing the same or better than the previous release? With the configuration

file describing the test environment as well as the test scenario that is ultimately

read by the harness, recreating test situations is easy. Results of two releases can be

compared knowing that all activities followed to run a particular test were the same

for both the releases. Figure 9 shows a sample report created by the test script after

two releases were tested using the harness.

129

Figure 5.8. Sequence of Activities for Test Harness and Script.

5.4 Related Work

The academia as well as the industry is interested in finding novel ways to

efficiently automate testing. Manual testing is tedious and not suitable for uncov-

ering performance issues in complex computing environments. Automation provides

repeatable and predictable test executions. But more often than not the focus is

directed on improvising the methods to create test script that interact with web or

GUI interfaces. This is extremely valuable since having good test scripts that emulate

user behavior leads to well organized and competent testing of software. [32] talks

about how using XML to create simple and flexible scripts and third party validation

and parsing tools reduces development. [33] describes how using python can benefit

testers by creating real time dynamic test scripts and a script interpreter that exe-

cutes these scripts within 10 ms. [34], [35] take up the task of writing test scripts

130

for GUI based applications based on the REST and UML models respectively. They

describe an automated way to create test scripts that can be easily changed as the

GUI interface changes. [36] presents methods and algorithms to create automated

tests cases and test data for hybrid systems. Automated testing is not just bound to

creating and running scripts that simulate the various test cases. In order to create

a fully automated testing framework, pre and post test activities also need to be

included. [37], [38] describe the importance of record and playback during testing.

[37] illustrates the method of selective record and playback between a sub system

and the rest of the application. [38] introduces a personal virtual computer recorder

model that enables the capture of user interactions while operating a desktop while

[39] describes one of the ways to automate usability evaluation by tracing user inter-

actions and playing them back. The authors of [40] observe that steps like changing

configurations, creating post test reports along with data analysis need to be part

of the automation process along with the test scripts. This paper addresses these

pre and post test activities and describes a test harness that will be able to com-

pletely automate the testing process along with providing factors to consider during

the design of extensible and easy to maintain test scripts.

131

CHAPTER 6

DESIGN OF EXPERIMENTS (DOE) FOR PERFORMANCE EVALUATION OF

SOFTWARE APPLICATIONS

6.1 Introduction

So far in this dissertation we’ve gone over a few areas of performance testing

such as the process, the tests, creation of an automated test harness and scripts and

the monitoring and instrumentation of a piece of code and proposed solutions that

improve the existing methods. When evaluating each of these proposed techniques,

tests were run on real world travel applications. Tests can be interpreted as exper-

iments. The general process of running a performance test is to list out the input

parameters, setup the environment for the code under test, collect the data during

the test and then analyze it and derive conclusions from this data. These steps are

similar to how an experiment is defined. Experiments are run in all fields of study

and are run on a given set of elements. Data is collected and observations are made

while the experiment is running in order to arrive at a particular conclusion. And so

performance tests run in order to validate how well a particular piece of code is work-

ing, are nothing but experiments. Design of Experiments is a specific field of study

that deals with how to construct experiments/tests when there are multiple factors

being used. ANOVA or analysis of variance is then used to determine which factor

most or least affected the result of the experiment. In order to save time and still run

useful experiments when there are multiple factors to consider, certain guidelines help

with constructing good experiments. The following is a list of such guidelines [41] :

132

1. Identification of The Problem: For an IT company the mission is to continually

improve products and processes. In our study the objective is to improve the

process of finding bottlenecks in applications located in a tier other than the

front end tier. This includes finding pressure points that might be introduced

due to the interactions with other pieces of code. The problem in this case is to

identify the factors that could cause bottlenecks to occur in a computer system

and experiment with techniques to discover and reduce these bottlenecks.

2. Formally Defining the Problem: This next step takes care of the requirement

gathering phase - what needs to be simulated and how it will be done, what are

the factors to consider that could have direct or indirect effect on the system.

3. Identifying Points of Instrumentation: The end result of designing an experi-

ment for software applications is to reduce the possibility of any disruption to

service available to the end user. So components/metrics are chosen to be in-

strumented if they have a direct impact on the quality of the service/product. So

in our study where software applications are being simulated and experiments

are being designed to find bottlenecks, the measurable metric of importance will

be the end to end response time. The end to end response time is the time that

the customer sees as the total time it took for the system as a whole to process

his/her request.

4. Identifying the Input Parameters/Factors to the Experiment: Just like the

points of instrumentation in the system, factors (input variables) used in the

experiment have to be measurable and/or distinguishable. The factors must be

such that they can be controlled. The design of experiment methods will help in

the determination of what combination of factors should be used to run the ex-

periments and therefore it is essential to have distinguishable and controllable

input parameters. Everything that affects the value of the response variable

133

is a potential factor to be used in the experiment when it comes to software

applications.

5. Step-by-Step Process Planning of The Experiment: The step-by-step planning

of how to run the experiment is termed as layout of the design. The system

under test is called the experiment unit. Ideally we would want the experi-

ment unit to be affected only by the input parameters that were chosen for

the experiment but more often than not there are unknown factors that could

affect the experiment unit. These unknown factors could be environment re-

lated or could be noise. So to reduce the effect of these factors, randomization

of the experiment is recommended. This basically implies a randomization of

the combination of factors that are being used as input. Unfortunately com-

plete randomization is not always possible but restricted randomization is. The

restriction on randomization is called restriction error.

6. Development of The Mathematical Model: The mathematical model (wherever

possible) could help with the analysis of the data that is collected during the

experiment. The model should be derived in such a way that it contains all in-

formation about the input parameters used in the experiment along with their

specific values/levels. The mathematical model should also take into consider-

ation the restriction error, if it was used during the experiment.

7. Assessment of The Experiment Design: This next step involves using various

techniques to derive the appropriate analysis of variance or ANOVA table. The

detailed description of what the table contains will be discussed in a later section

in this chapter. The ANOVA table helps identify the effects of the different

input parameters that were used during the experiment on the data that was

collected.

134

8. Redesigning The Experiment: if issues are found in the original design of ex-

periment, this is the time to redesign it. The new layout can be compared

to the original and then the better solution can be chosen to run the actual

experiments.

9. Data Collection during The Experiment: Data collected during the experiment

is of utmost importance. It is looking at this data that the stakeholders can

make an informed decision about the experiment unit. Therefore it is critical to

know what data has to be collected in order to properly assess the experiment

unit. In the case of the software application, as mentioned in an earlier point -

response times are collected because they have a direct impact on how the end

user perceives the service/product.

10. Data Analysis: Another essential step when running an experiment is data

analysis. It is not sufficient to simply collect the data during the experiment

but it is also important to analyze it correctly. Outliers should be kept in

mind or ignored based on the historical data for the experiment unit. A visual

display of the data in the form of graphs is usually the best method in presenting

information to various stakeholders.

11. Implementation: Last but not the least is the process of implementing the

recommendations gathered from the experiment to the actual system. Therefore

it is critical to develop a realistic type of experiment, ensure proper running of

it and collecting, analyzing and then presenting dependable data.

The main objective to study DOE methods in our study is to use them to

establish the input test cases that would help evaluate the performance of a backend

software application. We will be using an airline shopping application that interacts

with different components to process incoming transactions. The goal is to assess it’s

performance not only as it relates to TPS, as existing performance tests do, but to

135

evaluate it based on other factors that might have a direct or an indirect impact on

how well it performs. Since we will be dealing with multiple factors, each of them

having multiple levels/values, we want to choose the best DOE method to run the

tests. At a very high level, following are the steps we want to follow:

1. Choose factors that could affect the application’s performance

2. Looking at the production data, choose the appropriate levels for each of the

factors

3. Select the most suitable and practical DOE method to setup our test cases.

These test cases will be used to run tests on the pilot application to assess it’s

performance.

4. Choose a pilot, which in our case will be an airline shopping application

5. Propose a solution that will help evaluate performance and detect pressure

points using state space models

The following sections contain common knowledge on Design of Experiments

available in various text books like [41]

6.2 Background - Terminology of DOE

This section explains the terminology used for experimental designs:

• Factor: An input parameter that will be used to run an experiment on a par-

ticular unit is termed as a factor. In case of performance evaluation of software

applications, that we are interested in, factors would be parameters like TPS

(transactions per second), queue lengths and so on.

• Factor Levels: A particular value of a factor is termed as it’s level. A factor

could have any number of levels. So if we take the example of TPS as a factor,

it’s levels would be the exact numeric values - 20, 50, 100 and so on.

136

• Scenario: An experiment scenario can be defined as a combination and permu-

tation of all the factors and their corresponding levels.

• Simulation: The simulation is itself a model of some real-world system, process,

or entity.

• Experimental Unit: The system under test is termed as the experimental unit.

Data and observations are captured for this unit during tests. In our study this

is the airline shopping application.

6.2.1 One Factor Experimental Design

This section will introduce how DOE works when there is a single factor with

different levels to be implemented on an experimental unit/s. The next sections will

detail how multiple factors affect the layout of the experiment. The section will also

introduce the notation [41] that will be used going forward.

The different levels for a particular factor will be described using the subscript

i, that ranges from 1 to I. This basically implies that there a total of I different levels

for a specific factor. An experiment unit will be described by the index e, that ranges

from 1 to E. This implies that there are E different experiment units and therefore

the total number of experiments that will be run are IE. In our case where we will

be implementing the DOE method on an airline shopping application so J = 1. A

balanced experiment is one where each of the I different levels are applied to the

same number of experiment units. The notation yij indicates that this is the output

measurement when level i of a particular factor was applied to the eth experiment

unit.

So now in order to create a mathematical model for the experiment, we assume

that the output measurement yie is the results of the model as shown in Equation (6.1)

137

yie = μ+ Ai + εe(i) (6.1)

where μ is the overall mean of the process, Ai is the differential effect due to the

ith level of a fixed factor A and εe(i) is a random error component. We will assume

that

I∑
i=1

Ai = 0 (6.2)

εe(i) Normal(0, σ2) (6.3)

The assumption that
∑I

i=1 Ai = 0 can be made without loss of generality be-

cause if
∑I

i=1 Ai were equal to some value C, we could replace μ with μ + C and

∑I
i=1 Ai would then be equal to 0. Likewise we can assume that εe(i) has mean 0.

The mean of all the measurements taken during the experiment is nothing but

the natural estimate of μ. The differential effect of level i for factor A from the mean

is Ai. So to calculate the natural estimate for Ai, we will need the mean of all the

data collected during the experiment for the ith level of factor A and then subtracting

the overall mean will give us the natural estimate for Ai.

ȳi. =
E∑

e=1

yie/(E) (6.4)

ȳ.. =
I∑

i=1

E∑
e=1

yie/(IE) (6.5)

So in order to infer the effect of Ai on the experimental unit, the analysis of

variance table can be used as shown in Table 6.1

6.2.2 Factorial Experimental Design

In the last section we saw how the mathematical model can be derived for a

single factor A with levels from 1 to I represented by the subscript i. In more practical

138

Table 6.1. ANOVA for One Factor Design. df represents the Degrees of Freedom, SS
the Sum of Squares, MS is the Mean Squares and F is the Calculated F-value

Source df SS MS F

Ai I - 1 E
∑I

i=1(ȳi. − ȳ..)
2 SS(A)/(I-1) MS(A)/MS(ε)

εe(i) I(E-1)
∑I

i=1

∑J
e=1(yie − ȳi.)

2 SS(ε)/[I(E-1)]

Total IE-1
∑I

i=1

∑E
e=1(yie − ȳ..)

2

scenarios, there is usually more than one factor that is applied to the experiment unit.

This section will briefly describe these scenarios and the design of experiments for

them. Designs with more than one factor are termed as factorial designs and each

level of these factors is applied to the experimental unit. For terminology purposes

just as in the previous section, the various factors will be represented with upper case

letters. The different levels of the factors will be labeled with the subscript i, ranging

from 1 to I. Similarly the levels for the second factor will be denoted by j, ranging

from 1 to J. For the one factor model seen in the previous section, the model was

written as

yie = μ+ Ai + εe(i) (6.6)

where μ is the overall mean and Ai is the differential effect of factor A with a

restriction
∑I

i=1 Ai = 0. εe(i) is the random error term assumed to be Normal(0, σ2).

So now in order to extend equation (6.6) from one factor to multiple factors, it

is important to understand how multiple factors affect the experimental unit. Since

equation (6.6) is applicable for a single factor, the measurements are taken for each

specific level for factor A. In order to assess the effect of the factor on the end result,

the mean levels of the factor were used for the ANOVA calculation. Now that we

have multiple factors, instead of individual means the interaction among the different

factors is more important. This interaction is termed as random factor. In order to

139

utilize the random factor, it is assumed that factor A is distributed Normal(0, σ2
A)

where σ2
A is independent of σ2 and is called the error term. If the effect of a random

factor is significant, it’s variance is calculated i.e. estimate σ2
A. The individual means

of a random factors are not useful.

So now if two different factors Ai and Bj are included in an experiment, their

interaction term ABij will also be included. Thus for a two factor design, the model

becomes:

yijk = μ+ Ai +Bj + ABij + εk(ij) (6.7)

where i ranges from 1 to I indicating I different levels for factor A, j ranges from

1 to J indicating J different levels for factor B and k ranges from 1 to K indicating

that each of the ij combinations of factors A and B occurs K times. Keeping this

notation in mind, a three factor model can be written as:

yijkl = μ+ Ai +Bj + ABij + Ck + ACik +BCjk + ABCijk + εl(ijk) (6.8)

The extension to more than three factors follows the same pattern as (6.7) and

(6.8).

6.2.2.1 ANOVA Table for Factorial Designs

The natural estimate for Ai would be Âi = ȳi..− ȳ...,, if there were two factors

Ai and Bj and there were K repetitions for the various factor level combinations.

The sum of squares for A, SS(A) would be JK
∑I

i=1 Â
2
i which implies this is the sum

of squares of the natural estimates of Ai for all data. If I is the estimated average

minus one, the df would be I - 1. Similarly for Bj, SS(B) will be IK
∑J

j=1 B̂
2
j and

the corresponding df(B) will be J - 1.

140

Table 6.2. ANOVA for Three Factor Design.df represents the Degrees of Freedom, SS
the Sum of Squares and MS is the Mean Squares

Source df SS MS

Ai I - 1 JKL
∑I

i=1(¯yi... − ¯y....)
2 SS(A)/(I-1)

Bj (J-1) IKLsumJ
j=1(ȳ.j. − ¯y....)

2 SS(B)/(J-1)

ABij (I - 1)(J-1) KL
∑I

i=1

∑J
j=1(¯yij.. − ȳi.. − ¯y.j.. + ¯y....)

2 SS(AB)/(I-1)(J-1)

Ck K - 1 IJL
∑K

k=1(¯y..k. − ¯y....)
2 SS(C)/(K-1)

ACik (I-1)(K-1) JL
∑I

i=1

∑K
k=1(¯yi.k. − ¯yi... − ¯y..k. + ¯y....)

2 SS(AC)/(I - 1)(K - 1)

BCjk (J-1)(K-1) IL
∑J

j=1

∑K
k=1(¯y.jk. − ¯y.j.. − ¯y..k. + ¯y....)

2 SS(BC)/(J - 1)(K - 1)

ABCijk (I - 1)(J - 1)(K - 1) L
∑I

i=1

∑J
j=1

∑K
k=1(¯yijk. − ¯yij.. − ¯yi.k.−

¯y.jk. + ¯yi... + ¯y.j.. + ¯y..k. − ¯y....)
2

SS(ABC)/df(ABC)

εl(ijk) IJK(L - 1)
∑I

i=1

∑J
j=1

∑K
k=1

∑L
l=1(yijkl − ¯yijk.)

2 SS(ε)/IJK(L− 1)

Total IJKL - 1
∑I

i=1

∑J
j=1

∑K
k=1

∑L
l=1(yijkl − ¯y....)

The sum of squares for the natural estimate for all data, SS(AB) can be calcu-

lated as K
∑I

i=1

∑J
j=1(ȳij. − ȳi.. − ȳ.j. + ȳ...)

2. And therefore the number of averages

estimated minus one for the overall average minus the df for A and the df for B, will

the df for the interaction between the two factors and can be represented as follows:

(IJ − 1−(I − 1)− (J − 1) = IJI − J + 1 = (I − 1)(J − 1)

Using the same logic the differential effect of the combination of the levels i,

j and k minus all the three main effects and all three factor interactions will be

used to calculate the factor interaction for ABCijk. The SS(ABC) is the square

of all terms summed for all the data and the df can be represented as: df(ABC) =

(IJK−1)−(I−1)−(J−1)−(K−1)−(I−1)(J−1)−(I−1)(K−1)−(J−1)(K−1) =

(I − 1)(J − 1)(K − 1).

The ANOVA for three factor designs is shown in table 6.2.

6.2.3 Orthogonal Main Effect Designs - OMEDs and Taguchi Method

The factorial design method works well when all factors in the experiment have

the same number of levels. When there are situations where the number levels maybe

141

different for different factors, orthogonal main effect designs work better. When using

these techniques it is not required to run the same number of experiments for each of

the levels for each factor. As seen in the previous sections full factorial designs use all

possible combinations for the factor levels to create the complete experiment layout.

In cases where a large number of factors are applied to the experimental unit under

evaluation, factorial methods result in a significantly large number of experiments.

When using orthogonal techniques a subset of these experiments are selected without

losing the overall effect. The process of choosing the subset of experiments from

the larger set that guarantees similar results is called partial fraction experiment.

Even though orthogonal methods are widely used, there are no standard guidelines

on how to apply these methods to the experimental unit or how to analyze the data

that is collected during the experiments. Taguchi created some general policies on

how to select the number of experiments to run for multiple factor, multiple level

experiments.

An orthogonal array created by Taguchi is used as a benchmark to select the

right subset of experiments to run. Even though the number of experiments is reduced

from the factorial design, the selection intends to still produce data that will help

analyze the total effect of the all the factors on the experimental unit. The process of

designing experiments using the Taguchi method is described in the flowchart below

[42]:

The Taguchi orthogonal array has columns and rows as shown in Figure 6.6

taken from [42] where the columns represent the number of levels and the rows

represent the number of factors. The experiment array can be selected from this

general orthogonal array by looking at the column and row that corresponds to the

experiment’s factor and level numbers. The subscripts in the Figure 6.6 are the

number of experiments that need to be run. Each of these numbers has a standard

142

Determine the factors

Identify the Test Conditions

Design the Matrix Experiment

Define the Data Analysis Procedure

Conduct Desgined Experiments

Analyze the Data

Predict the Performance at

Individual Factor Factor Interaction ANOVA and S/N
Analysis

Validation Experiment

Figure 6.1. Execution Steps for the Taguchi Method of Design of Experiments.

predefined array associated with it. Experiments are then run by looking at the factor

and level combinations from these standard arrays.

Let’s take a look at an example from [42] on how to use the Taguchi orthogonal

array. Assume that we need to run an experiment that has four factors and each of

these factors consists of three levels. The following equation can be used to calculate

the minimum number of experiments that need to be run.

N = 1 +
NV∑
i=1

(Li − 1) (6.9)

143

where NV is the total number of variables and L is the total number of levels for each

factor.

So using the Equation (6.9) the number of experiments to be run can be looked

up from Figure 6.6. The Taguchi array points to L9 for this particular setup. The

L9 array is shown in Table 6.3

Table 6.3. Layout of L9 Orthogonal Array

Experiment Number Variable 1 Variable 2 Variable 3 Variable 4 Performance Value
1 1 1 1 1 p1
2 1 2 2 2 p2
3 1 3 3 3 p3
4 2 1 2 3 p4
5 2 2 3 1 p5
6 2 3 1 2 p6
7 3 1 3 2 p7
8 3 2 1 3 p8
9 3 3 2 1 p9

The rows in this array specify the combination of the levels to use for each

of the factors for each of the experiments. So for example, experiment number two

will be run using level one for factor/variable one and then level two values for the

remaining factors. A total of nine experiments will be run, data and observations

will be gathered for each experiment and then analysis will be performed on the

resulting data set to draw conclusions about the experiments. Just like in factorial

design methods, analysis of variance ANOVA on the data collected at the end of

the experiments can be used to analyze the effect of the factors on the results. Also

redesigning and re-selecting factors for the experiments to optimize results is part of

this process.

144

6.3 Design of Experiments for Performance Evaluation of Software Applications

In this study we are looking at non client interfacing software applications and

how we can evaluate their performance. There are numerous conventional tests like

the load, soak, stress, capacity, destructive and so on that can be run for this purpose.

All these existing tests that are performed in order to evaluate the performance of

a software application are dependent one varying input factor - load or transactions

per second(TPS). These tests are defined based on varying the level of load driven

through the application. With this kind of an approach, a number of tests have to

run in sequence to find the various bottlenecks in the application. Varying just load

levels may not even uncover all the issues. In general numerous factors have direct or

indirect influence on the application’s performance. There is an obvious correlation

between TPS and the performance of the application but as seen in the previous

chapters there are multiple other factors that can affect how well a piece of software

performs. For middle tier applications (non client interfacing) as shown in Figure 6.2,

interact with both front-end and back-end components and databases, engineering

artifacts like timeout and throttles becomes all the more important.

So when we design an experiment/test we need to consider all factors that might

affect the application for a proper assessment. And this is where the knowledge from

the previous sections in this chapter comes in handy. There are numerous factors that

can affect the performance of an application. These factors could occur any place in

the setup:

• Server/hardware itself

• Application code

• A middleware component

• Resource - operating system or configurable resource like database connection

pool

145

Web Server

Application

Cache

Database

Client

Client Interfacing
Application

Middle Tier
Application Interacts
with both Frontend

and Backend
Applications

Backend Database

Figure 6.2. Multi-Tier Architecture of Software Applications.

And some of the factors that could affect application performance are :

1. OS resource exhaustion - lowering kernel parameters to load applications and

simulate such scenarios

2. Timeouts from downstream applications

3. Increase in I/O wait times due to NAS or file systems

4. Asynchronous logging - running the application when disk is full

5. F5 health check scenarios - e.g. stopping one of the instances of tomcat and

then checking if F5 has identified that an application is down

6. Sending extremely large requests to the applications so that MOM queues come

into play

7. Application not draining ”responses” from MOM Queue response side

146

8. Database connections exceeded (usually a jdbc pool full)

9. Database exceeds SGA and PGA limits (running out of memory)

10. JVM out of threads

11. JVM out of memory

12. Malformed request formats (Data in XML that was not expected/expected so

data patches have to be added)

13. Bad data on file (fares, rules, taxes etc)

14. Database not responsive (could be listener down) (deadlocks and how the app.

responds to this)

15. Slowdown or loss of connection

16. Delayed responses (responses being sent in chunks)

17. Testing concurrency race conditions by slowing down of Java threads at random

places

18. Database sessions exceeded (in database) - (parameters in init.ora file)

19. Database cursors exceeded (in database) - (parameters in init.ora file)

20. Database table space full (throw an error, retain the transaction and log an

error)

21. Database temp space full (throw an error, retain the transaction and log an

error)

22. User credential failure - fallback account could be used

23. Embedded applications - managing memory footprint (Active MQ embedded

with Application on the same VM)

24. User credentials - authorization and authentication scenarios

25. Network packet loss —- Important in the database layer

26. URL not responding in cases of web applications like SSW

27. MOM and or database issues - queues filling up or database timeouts

147

28. Network packet corruption

29. Running out of file descriptors which leads to no tcp/ip connections - test to

see that file descriptors are set properly

30. Running another instance of the same application on the same server

31. Wrong user starting up the application -test user privileges

32. Killing the application using kill -9 (killing parent or a child process by this

hard kill and then issues when starting up the application, consistency check

by application when started up again)

33. Ownership and permissions changes while the application is running

34. JVM not responding

35. Server temp space full - database and OS server (Oracle should store transaction

to play back if running out of temp space) how the app. reacts to such issues

is important

In addition to these, specifically for the airline shopping application, factors like

time of day, rules for domestic and international shopping requests and number of sub-

transactions for a single incoming transaction will also affect its performance. We’ve

seen that there are different techniques available to setup experiments with factors

and their levels in order to accomplish the goal of assessing application performance.

Instead of using all the factors listed above to design experiments in order to evaluate

performance, we will use the top eight factors that have caused severities in production

for the airline application. The data has been collected by looking at the severity

causes for the application over the last two years. The highest priority factors that

have affected software performance are as follows:

1. Incoming transactions per second (TPS)

2. Workload/Traffic types

3. Timeout values

148

4. Throttle levels

5. Database connection thread pool

6. Queue size

7. Application connection thread pool

8. Payload size

When designing the experiment each of these factors is determined by five levels.

If we went with factorial DOE, we would have to run 58 = 390625 experiments or

tests with the different combinations of levels for each of the factors. Since this is not

feasible, we will be using Taguchi’s orthogonal arrays to setup the tests. ANOVA will

be used to determine the effect each of these factors on the application’s performance.

The client response time will be used to measure the performance of the software.

As will be seen in later chapters, the state of the application is measured by different

parameters - response time, CPU, memory, disk and number of core dumps. Out of

these, response time and core dumps are the only parameters that have direct impact

to the end user. Operating system resource utilization going over a pre-determined

threshold may cause the server to become unstable but as long as the application

is processing incoming transactions within SLA (Service Level Agreement) defined

times, the end user does not get affected. It’s only when the application crashes or

the response times go over the SLA, is the customer affected and that is treated as

unacceptable application behavior.

Another reason to go with the Taguchi orthogonal arrays was because of the

uneven number of levels for the factors that have been chosen in our case. These

arrays are effective even when the number of the levels among the various factors are

not balanced.

149

6.3.1 Orthogonal Array DOE Setup for Evaluating Performance of Airline Shopping

Application

In order to choose the right orthogonal array to run the tests for performance

assessment of the airline shopping application, it is required to now determine the

levels for each of the eight factors - TPS, workload type, timeout values, throttle

levels, database and application thread pools, queue size and payload size. The

Taguchi orthogonal array will then help us decide the number of tests/experiments

to run and the exact combination of the levels to use for each of the tests. In our

setup we are selecting the levels for the various factors using production data. The

historical production traffic profile contains both peak as well as normal traffic levels.

We are selecting the values for the levels using these profiles. If stress test kind of

scenarios need to be tested, higher values for the levels can be chosen.

In order to find the levels for TPS to use in the tests, we will first look at the

percentage distribution of the different payload types that the shopping application

processes in one day. Figure 6.3 shows a pie chart with the percentages for the various

traffic types/payloads that go through the application.

We will pick the top four traffic types that the application processes any given

day for the tests and find the data distribution for them. According to Figure 6.3, the

top four payloads are: INTLWPI1, LFSTREAM, ATSEILF1 and ATSEILF2. The

data distribution for the traffic types is shown in Figure 6.4. All of these distributions

are multimodal.

The levels for TPS are chosen after creating a frequency histogram for the

different distributions. The histogram for the TPS of the airline shopping application

is shown in Figure 6.5. The top five highest frequency TPS numbers are then chosen

for the tests.

150

Figure 6.3. Percentage Distribution of Traffic Types for Airline Shopping Application.

So after looking at the production traffic profile and distribution, the levels for

TPS and the payload types are chosen as shown in Table 6.4.

Just like choosing the TPS and payload type levels, the levels for the other

factors are selected looking at the factor values in the production environment. The

queue size and application timeout levels are shown in Table 6.5, throttle and pay-

load size levels in Table 6.6 and the database and application thread pool levels in

Table 6.7.

Once the factors and their corresponding levels have been chosen, it is now time

to look at the Taguchi orthogonal array to decide how many experiment need to be

151

log10(as.numeric(ELAPSEDTIME))

D
en
si
ty

0.0

0.5

1.0

1.5

−2 0 2 4 6

ATSEILF1 ATSEILF2

INTLWPI1

−2 0 2 4 6

0.0

0.5

1.0

1.5

LFSTREAM

Figure 6.4. Data Distribution of Incoming Transactions for Four Airline Shopping
Workload Types. The X-axis represents the logarithmic scale of base 10 and Y-axis
represents the kernel density function of the data.

run. The orthogonal array where the rows and columns depict the factors and levels

respectively is shown in Figure 6.6 taken from [42].

We have eight factors each with five levels (with the exception of payload types

that has four). Looking up the corresponding row and column for our setup, L50

is the standard array that will be used to specify the combinations of the levels for

the various factors that will ultimately be used to run the tests. The L50 standard

array is as shown in Table 6.8. The L50 is defined for twelve factors with five levels

152

Figure 6.5. The Frequency Histogram for Airline Shopping Application TPS.

each but since in our scenario we have only eight factors, we will use the first eight

columns of the array.

This is step one of setting up the tests to evaluate performance of a backend

software application. In the next chapter, we will learn about Markov models and

then put everything together to run tests for an airline shopping application. The

153

Table 6.4. TPS and Workload Type Levels for Performance Evaluation DOE

TPS

Levels

15
25
35
42
48

Workload Type

Levels

INTLWPI1
LFSTREAM
ATSEILF1
ATSEILF2

Table 6.5. Queue Size and Timeout Levels for Performance Evaluation DOE

Queue Size

Levels

500
1000
1050
2000
2050

Timeout Value [seconds]

Levels

10
12
15
18
20

Table 6.6. Throttle and Payload Size Levels for Performance Evaluation DOE

Throttle Threshold

Levels

20
25
30
45
50

Payload Size [Kb]

Levels

20
35
45
65
75

Table 6.7. DB and Application Thread Pool Levels for Performance Evaluation DOE

DB Threads

Levels

100
200
300
400
500

App. Threads

Levels

100
200
300
400
500

154

Figure 6.6. The Taguchi Othogonal Array Selector.

test cases defined using L50 in this chapter will be used as an input for the simulation

setup described in Chapter 8 section 8.6.

Table 6.8: L50 Standard Orthogonal Array to Decide Combinations of Levels for

Factors

Experiment No. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 2 2 2 2 2 2 2 2 2 2

3 1 1 3 3 3 3 3 3 3 3 3 3

4 1 1 4 4 4 4 4 4 4 4 4 4

5 1 1 5 5 5 5 5 5 5 5 5 5

6 1 2 1 2 3 4 5 1 2 3 4 5

7 1 2 2 3 4 5 1 2 3 4 5 1

8 1 2 3 4 5 1 2 3 4 5 1 2

9 1 2 4 5 1 2 3 4 5 1 2 3

10 1 2 5 1 2 3 4 5 1 2 3 4

11 1 3 1 3 5 2 4 4 1 3 5 2

12 1 3 2 4 1 3 5 5 2 4 1 3

13 1 3 3 5 2 4 1 1 3 5 2 4

Continued on Next Page. . .
155

Table 6.8 – Continued

Experiment No. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

14 1 3 4 1 3 5 2 2 4 1 3 5

15 1 3 5 2 4 1 3 3 5 2 4 1

16 1 4 1 4 2 5 3 5 3 1 4 2

17 1 4 2 5 3 1 4 1 4 2 5 3

18 1 4 3 1 4 2 5 2 5 3 1 4

19 1 4 4 2 5 3 1 3 1 4 2 5

20 1 4 5 3 1 4 2 4 2 5 3 1

21 1 5 1 5 4 3 2 4 3 2 1 5

22 1 5 2 1 5 4 3 5 4 3 2 1

23 1 5 3 2 1 5 4 1 5 4 3 2

24 1 5 4 3 2 1 5 2 1 5 4 3

25 1 5 5 4 3 2 1 3 2 1 5 4

26 2 1 1 1 4 5 4 3 2 5 2 3

27 2 1 2 2 5 1 5 4 3 1 3 4

28 2 1 3 3 1 2 1 5 4 2 4 5

29 2 1 4 4 2 3 2 1 5 3 5 1

30 2 1 5 5 3 4 3 2 1 4 1 2

31 2 2 1 2 1 3 3 2 4 5 5 4

32 2 2 2 3 2 4 4 3 5 1 1 5

33 2 2 3 4 3 5 5 4 1 2 2 1

Continued on Next Page. . .

156

Table 6.8 – Continued

Experiment No. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

34 2 2 4 5 4 1 1 5 2 3 3 2

35 2 2 5 1 5 2 2 1 3 4 4 3

36 2 3 1 3 3 1 2 5 5 4 2 4

37 2 3 2 4 4 2 3 1 1 5 3 5

38 2 3 3 5 5 3 4 2 2 1 4 1

39 2 3 4 1 1 4 5 3 3 2 5 2

40 2 3 5 2 2 5 1 4 4 3 1 3

41 2 4 1 4 5 4 1 2 5 2 3 3

42 2 4 2 5 1 5 2 3 1 3 4 4

43 2 4 3 1 2 1 3 4 2 4 5 5

44 2 4 4 2 3 2 4 5 3 5 1 1

45 2 4 5 3 4 3 5 1 4 1 2 2

46 2 5 1 5 2 2 5 3 4 4 3 1

47 2 5 2 1 3 3 1 4 5 5 4 2

48 2 5 3 2 4 4 2 5 1 1 5 3

49 2 5 4 3 5 5 3 1 2 2 1 4

50 2 5 5 4 1 1 4 2 3 3 2 5

157

CHAPTER 7

STATE SPACE MODELS - MARKOV MODELS FOR PERFORMANCE

EVALUATION OF SOFTWARE APPLICATIONS

7.1 Introduction

Dynamic computer systems like the ones were are considering in this study

can be represented in an efficient manner by Markov chains/graphs. They provide a

means to mathematically describe these systems as well as have standard associated

algorithms and methods to analyze them. These processes are especially useful in

deriving performance and dependability measures for these systems. A Markov chain

comprises of states and the changing from one state of the system to another is

called a transition. There is a unique probability associated with changing from

one state to another and that is termed as the transition probability. Therefore in

general a Markov process can be defined as consisting of set of states along with a

transition matrix that lists the probabilities of transitioning from one state to another.

The following sections contain some background knowledge on Markov models. This

common literature is available in numerous text books like [43].

7.2 Background - Markov Models

The fundamentals of queuing theory also form the basic concepts of Markov

models. Both fields of study share the underlying mathematical models and theorems.

Any Markov process can be defined by defining the underlying stochastic process. A

stochastic process helps with defining a relationship between elements in a possibly

158

infinite set of random elements. A series of random experiments can then be run on

the set and results analyzed to make decisions on the set as a whole.

Definition: A stochastic process can be described as Xt : t ∈ T where each

random element Xt is indexed by a time parameter t ∈ T such that T ⊆ R+ = [0,∞).

The state space of the stochastic process can thus be defined as the set of all possible

values Xt (for each t ∈ T).

When dealing with a discrete parameter set T, the stochastic process is called a

discrete parameter process and T is represented by a subset of N0 = 0, 1, ...; otherwise

the process is called a continuous parameter process. The state space of the resulting

stochastic process when T is either discrete or continuous can also be discrete or

continuous respectively.

Definition: A stochastic process (discrete or continuous) Xt : t ∈ T can be

termed a Markov process (discrete or continuous if for all 0 = t0 < t1 < ... <

tn < tn+1 and all si ∈ S the conditional CDF (Cumulative Distribution Function)

of Xtn+1 depends only on the last previous value Xtn and not on the earlier values

Xt0 , Xt1 , ...Xtn−1 :

P (Xtn+1 ≤ sn+1|Xtn = sn, Xtn−1 = sn−1, ...Xt0 = s0) = P (Xtn+1 ≤ sn+1|Xtn = sn)

(7.1)

Definition: A time homogeneous Markov process is one where it’s conditional

CDF of Xtn+1 does not depend on the observation time, that is t0 = 0

P (Xtn+1 ≤ sn+1|Xtn = sn) = P (Xtn+1−tn ≤ sn+1|X0 = sn) (7.2)

7.2.1 Discrete Time Markov Chains

Equation (7.2) describes an important property of a Markov chain called the

Markov property. This property basically states that the entire history of a Markov

159

chain is summarized in the current state Xtn . This implies that given the present

state of the chain, a future state is conditionally independent of the past state/s.

Definition: A discrete time markov chain (DTMC) can be defined to consist of

an underlying stochastic process X + 0, X1,, Xn=1, ... at the consecutive points of

observation 0,1,...,n + 1 if the following Markov property holds for all n ∈ N0 and all

si ∈ S:

P (Xn+1 = sn+1|Xn = sn, Xn−1 = sn−1,, X0 = S0) = P (Xn+1 = sn+1|Xn = Sn)

(7.3)

Given an initial state s0, DTMC evolves over time according to the transition

probabilities. The right hand side of the equation (7.3) defines the conditional pmf

(probability mass function) of transitions from state sn at time step n to state sn+1

at time step (n+1). So if S = 0,1,2,.., the conditional pmf of the process’s one step

transition from state i to state j at time n can be written as:

p
(1)
ij (n) = P (Xn+1 = sn+1 = j|Xn = sn = i) (7.4)

In the case of a homogeneous process, the conditional pmf is independent of

time steps and therefore equation (7.4) reduces to:

pij = p
(1)
ij = p

(1)
ij (n) = P (Xn+1 = j|Xn = i) = P (X1 = j|X0 = i), ∀n ∈ T (7.5)

Keeping the above definitions in mind, if we start from an initial state i, the

probability that the DTMC will go to some state j (including the possibility of j =

i), follows that
∑

i pij = 1 where 0 ≤ pij ≤ 1. The resulting one step transition

probabilities pij for the model can be written as a matrix P:

P = [pij] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p00 p01 p02 · · ·
p10 p11 p12 · · ·
p20 p21 p22 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

160

Generally a directed graph is used to visually represent a finite-state DTMC,

where i of the chain is depicted by a vertex and a one step transition from state i to

j by an edge marked with the one step transition probability pij.

Example: As an example from [43] consider the transition probability matrix

shown below with state space S = {0,1}.

P =

⎛
⎜⎝0.75 0.25

0.5 0.5

⎞
⎟⎠ (7.6)

According to the matrix (7.6), an event at any given point of time can transition

the DTMC from state 0 to state 1 with a probability of 0.25. Similarly a state

transition can occur from state 1 to state 0 with a probability of 0.5 at the next

time step. The probability that the DTMC stays in state 0 or state 1 at any given

time step is 0.75 and 0.5 respectively. These state transitions for the DTMC can be

represented as a directed graph as shown in Figure 7.1.

0 1

1/4

3/4 1/2

1/2

Figure 7.1. Example of a discrete-time Markov chain referring to Equation (7.6).

A n-step transition probability can be derived by repeatedly applying one-step

transitions. If we describe the probability that the Markov process p
(n)
ij (k, l) transi-

tions from state i at time k to state j at time l in exactly n = l - k steps, the following

can be derived:

p
(n)
ij (k, l) = P (Xl = j|Xk = i), 0 ≤ k ≤ l (7.7)

161

The theorem of total probability can be applied to any given state i and any

given time values k and l such that
∑

j pij
(n)(k, l) = 1 where 0 ≤ pij

(n)(k, l) ≤
1. Keeping this in mind and combining it with the Markov property, the n-step

transition probability can be calculated by recursively applying the one-step transition

probabilities. The state transitions of Markov process can be split into sub transitions.

For example a transition from state i at time k to state j at time l divided into

transitions from state i at time k to an intermediate state h at time m and from this

independent state h to state j at time l, where k<m<l and n = l− k. This condition

leads to the well known system of Chapman-Kolmogorov equations:

pij
(n)(k, l) =

∑
(h∈S)

p
(m−k)
ih (k,m)p

(l−m)
hj (m, l), 0 ≤ k<m<l (7.8)

In this equation (7.8), the Markov property, is the product of the terms on

the right hand side. Just as in the one-step transition probability case, the n-step

transition probability can also similarly be reduced since pij
(n) = pij

(n)(k, l) depends

only on the difference n = l − k and not the actual values of k and l:

pij
(n) = P (Xk+n = j|Xk = i) = P (Xn = j|X0 = i), ∀k ∈ T (7.9)

7.2.2 Calculating State Transition Probabilities

So now that we’ve seen how a Markov process can be mathematically defined

and how the states transition from one to another based on a probability, in this sub

section we will see how to calculate these transition probabilities. We will extend the

example from section 7.2 about rainy and sunny days. So let’s assume we are trying

to build a state space model for the days of the week. The SSM has two states -

Rainy and Sunny. Figure 7.2 shows a graphical version of the SSM.

162

R S

?

? ?

?

Figure 7.2. State Space Model for Rainy and Sunny Days in a Week.

Let’s assume that the following sequence for the days of the week:

R S S S R S R

then the following transition probabilities can be calculated looking at the sequence:

P (R|S) = 2/2 = 1,

P (R|R) = 0,

P (S|R) = 2/4 = 0.5 and

P (S|S) = 2/4 = 0.5

and the state space model can can now be redrawn with the respective transition

probabilities as shown in Figure 7.3:

R S

0

1 0.5

0.5

Figure 7.3. State Space Model for Rainy and Sunny Days in a Week with Transition
Probabilities.

7.3 State Space Models for Evaluating Performance of Software Applications

The information in the previous sections can be applied to software applications.

A piece of code performing a particular functionality can be considered as going

through different states in order to successfully process incoming transactions. The

163

software’s state can be defined in terms of its resource utilization metrics and the

time it takes to process a particular transaction. The state will be represented by a

vector of numeric values - each a measure of the various resource utilization metrics

and the response times. So the state of an application at any point of time t will

be represented as St = <S1t, S2t, ...Snt> where n is the total number of numeric

values used to measure the state of the application. For any application running in

a production environment - these values come from monitors already in place that

instrument the code at all times. For the travel applications that are being considered

in this study, we are using the Enterprise Instrumentation API to get these metrics.

State space models especially Markov chains/graphs are a popular choice for

finding anomalies in computer system networks and also for predicting throughput

and capacity. There most common usage is to mine for data when large volumes of

information is available and it becomes difficult for a manual inspection of that data

to identify anomalies. A similar thought process can be applied to software applica-

tions. Any production deployed application is instrumented extensively to monitor

it’s operation and health. It is absolutely acceptable for an application to be gen-

erating Gigabytes of data in a day. Though measures like file rotation are always

put in place to avoid the risk of running out of disk space on a server to ensure that

the application processing is never affected. To correctly predict the performance

of a middle tier application (not client interfacing application), it becomes an even

more tedious job. In order to fulfill a task these applications need to interact with

other pieces of code, middleware components, use different communication protocols,

transform payloads, talk to databases and so on to process transactions. In a live

production environment, the input to a system as well as it’s output is always unpre-

dictable. All applications are thoroughly assessed using performance and functional

164

tests - the environments in which these tests are performed are usually scaled down

versions of the production environment.

7.4 Related Work

Numerous research papers exist in the area of finding pressure points or bot-

tlenecks in application using different techniques. Markov models or chains are a

popular choice for this purpose as well as to predict performance for standalone ap-

plications. One of the disadvantages of using of a Markov chain is that it can contain

an infinite number of states when simulating a real world application. Tremendous

amount of work has been done to reduce the state map of applications. This becomes

even more critical when dealing with big multifaceted pieces of code. Using hidden

Markov models (HMM) is one way to achieve the goal. The authors of [44] using

HMM to create the first state of the model and then split the new states that are

created later by splitting existing states. HMMs are Markov chains where the state

is not directly observable [45]. There are several other approaches to split states one

of which is successive state splitting (SSS) and is used by authors in [46]. Another

technique to restrict the number of states created in a model is to aggregate states

where new states are not created if no new state representative factors are found.

Research work has also been done to automate the creation of Markov models.

[47] describes a way to dynamically create a Markov chain where meeting certain

criteria leads to duplicating the states and their transitions. This technique can lead

to a larger number of states but the state representatives remain the same until a

new state representative factor is identified. Another algorithm proposed in [48] is

called the Augmented Markov Model (AMM). AMM is a method where new states are

created only when the incoming data is identified as new. The transition probabilities

165

then adjusted based on the new states. After the model is created dynamically in

this manner, it is not updated in the prediction phase.

As stated earlier one of the major applications of Markov chains is to detect

anomalies in large volumes of data. Two of the most commonly used techniques are

supervised and unsupervised and are described in [49]. Supervised methods make

use of machine learning algorithms on a set of pre-classified data. The data is then

categorized as either normal or as an anomaly. The objective of the supervised al-

gorithms is to achieve a high recall percentage of both of these classifications. When

using these algorithms there is a possibility of imbalance occurring in the two cate-

gories. One of the ways to alleviate the imbalance is by using a different sampling

scheme to change the data distribution. Over [50] and under [51] sampling are the

two most commonly used techniques for this. The authors in [52] combine the two

methods and propose SMOTE - an optimized technique that combines both over and

under sampling. Then a boosting method is applied by the authors in [53] to further

improve the technique by applying optimization to the weighted classifier. There are

several cost and scoring algorithms that further try to minimize cost and errors of

these techniques [54, 55, 56]

The authors of [57] use Markov models to detect an anomaly - cyber attack in

a computer system. The Markov techniques are used to profile the operations of the

system by looking at the historical data. The paper presents a learning and inference

algorithms that takes into account the observations of the system as time goes on

and then computes the probability of how close the observations match the normal

profile of the system. The lower the probability of the greater the chance that the

observed activity is an anomaly, which in this cases implies a cyber attack. [58] and

[59] propose anomaly detection methods using hidden Markov models and Bayesian

networks respectively. The techniques involve a training phase where ordering of

166

events is computed. When new activities are observed an inference phase occurs

which decides if an anomaly has been detected or not.

The authors of [60] talk about evaluating software performance using it’s archi-

tecture. The underlying assumption is that the a particular architecture effects the

quality of the software. The quality attributes are nothing but performance attributes

of the application and this paper uses Discrete Time Markov Models to compare dif-

ferent architectural styles and then use response time to assess the performance of

the software. The batch-sequential, parallel , fault tolerant and call and return archi-

tecture styles are modeled using DTMC. The model enables to count the number of

times a particular state is visited in the model which in turn enables the calculation

of the response time at each of these states in the software system. Since response

time is a quality attribute that specifies how well a piece of software is performing,

this process is able to assess performance.

[61] proposes a Markov model and queuing network based method to eval-

uate the system reliability, performance and availability. The solution takes into

account different parameters such as software architecture, non functional attributes

of components that make up the system, fault recovery strategies and the hardware.

Specifically the model takes into account attributes like restarts, retries, reboots and

repairs in the system. The model is created using deployment information for the

software, machine specifications, architecture and client workload data. Just like in

[60], the processing time is calculated using the number of times a particular node in

the model is visited, restart overhead and availability of the underlying hardware.

[62] and [63] use DTMCs to create a vector space of formal languages and

propose a metric based solution that identifies the total variation of new observations

as compared to the language. Each new observation is a new state that is marked

by a real value according to the design specifications of the implementer and his/her

167

perception of the state’s impact on the overall performance on the software. The

states are marked good or bad depending on the cost associated with the event that

created the state. The DTMC then tries to disable as many bad states as possible, in

order to enhance the performance of the system. [64] proposes a semi-Markov model

to evaluate performance of a software application which is an extension of the solution

proposed in [62] and [63].

The solution proposed in this study (described in the next chapter) differs from

these existing methods in that, instead of assessing how well the software is working

it actually tries to identify bottlenecks in the system that may degrade performance.

Current Markov models used for performance evaluation, depend on either the under-

lying architecture/hardware or predefined costs are associated with the states being

created in order to mark them good or bad. The model is created based on histori-

cal data and any major change in the new states being created as compared to the

historical data, causes the model to mark the states as an anomaly. In our proposed

solution the bottlenecks are not detected by creating the model beforehand. Client

side input (traffic) along with attributes of the software itself as well as it’s interacting

components is taken into account to detect pressure points. The method is not de-

pendent on the server it is running on and/or the architecture and so is more flexible

to be adapted for different kinds of applications. The other major difference is that

in our proposed solution we are not using the application’s historical data/profile to

detect pressure points. We’ve seen from the previous chapters, that the application’s

profile changes from one release to another because of various reasons - new function-

ality has been added or it supports a new traffic type and so on. So a deviation of

historical data is not always the best way to detect an anomaly. In our solution, the

pressure points are being identified based on the varying combination of input traffic

and other configuration and component parameters.

168

CHAPTER 8

EVALUATING PRESSURE POINTS IN A COMPUTER SYSTEM FOR END TO

END PERFORMANCE EVALUATION

8.1 Introduction

Previous chapters have covered the different aspects of performance testing.

The major goal of testing software before it is deployed to avoid any issues that

might impact the end customer. Any kind of incident that can cause disruption

of service is detrimental to business. This is especially true for the travel industry.

Computer systems that cater to airlines, business and leisure travelers, hotel suppliers

and cruise companies need to be up and running 24X7, 365 days a year. There is

no acceptable downtime for these systems. Airlines in various parts of the world

are dependent on their day to day operations on these computer systems. Travelers

need to access flight/hotel/car/rail and cruise information at any time of the day.

Flights departing on time, passengers being able to checkin, security checks, crew

control, air traffic control, landing gate assignments and more are all dependent on

the availability of these systems. It therefore becomes even more critical to establish

stable and reliable systems in production and minimize any disruption to services

that cater to the different needs of airlines and passengers alike.

In order to provide any service to the end customer - be it an airline operations

team, an airline gate agent, a travel agent or a traveler - multiple systems have to

work together to process any single kind of transaction. Figure 8.1 shows an example

of a part of such a system. The figure is a simplified illustration of how the self service

checkin process happens.

169

Figure 8.1. Different Systems Work Together to Enable Self Service Checkin for
Travelers.

A passenger has an option to checkin using his/her mobile device, a web inter-

face or a kiosk at the airport. The incoming transactions from any of these interfaces

needs to go through a tier one firewall and a load balancer as well as a web server that

contains the business logic to either reject or forward the transaction to the tier two

systems. Tier two contains the main application servers with an instance of each web,

mobile and kiosk to process the incoming transactions from the specific interface re-

spectively. The load balancer in tier two will direct the traffic to the least busy server.

The application servers talk to the database to store the incoming transactions and

then forward it to the main TPF/mainframe system to process the passenger checkin

request. It is in the mainframe system that the PNR (Passenger Name record) is

retrieved, security checks are done and the seat map algorithm assigns the seat and

prints the boarding pass.

So as can be seen from this example to seamlessly checkin a passenger for a

particular flight, several components and systems come into play. Figure 8.2 shows

170

that every incoming and outgoing communication link to and from a system is a

potential pressure point.

System A

System B

System C

Database

Incoming Request

Output Response

System A writes to System B

System A talks to
System C using MQ
queues

System A writes to the database

Figure 8.2. Performance bottlenecks for an application can be found at each commu-
nication link (incoming and outgoing) with other components.

The situation amplifies when we have multiple systems interacting with each

other to process a particular transaction. It is therefore critical to not only test

applications standalone but to also determine how well they operate in conjunction

with other applications in order to fulfill a business functionality. More often than

not due to test environment or resource and/or time constraints, performance testing

becomes an after thought. Even when testing is targeted, it is usually executed on

the application standalone. Conventional tests like soak, load, capacity and stress

tests that rely on varying incoming traffic levels to find performance bottlenecks, fail

to push the boundaries of the system under test. This chapter will describe how this

can be avoided and how the system under test can be pushed to operate in scenarios

171

that are outside the normal processing boundaries. The next section will throw light

on how to identify pressure points in systems.

As mentioned in Chapter 6, the goal of this part of the dissertation is to evalu-

ate the performance of a backend software application. This implies we want to assess

performance based on factors that take into account the workings of the application

under test as well as the applications it is interacting with and any other middleware

component that it is using to successfully complete processing of an incoming trans-

action. We have already chosen a pilot - airline shopping application and we have

already done part of the work, which is to identify the factors and their levels that will

make up the test cases in Chapter 6. In Chapter 7, we’ve studied about state space

models specifically Markov models and now in this chapter we will see how we can put

together this knowledge and come up with algorithms that will enable the assessment

of application performance along with detection of pressure points/bottlenecks. So

to enumerate what has been accomplished so far:

1. Factors were picked that could affect the application’s performance

2. Looking at the production data, appropriate levels were chosen for each of the

factors

3. Since we ended up with 8 factors with 5 levels each, we used the Taguchi Or-

thogonal Array DOE method to setup our test cases

4. The L50 array in the standard Taguchi orthogonal array corresponded to our

factors and levels

5. So 50 test cases were setup according to the L50 array

6. An airline shopping application was chosen as the pilot application

So we have the input(test cases) ready for the performance tests and we’ve seen how

Markov models work. Now in this chapter we will see what are pressure points and

172

then utilize the knowledge learnt in Chapter 7 to create algorithms using SSMs that

will help evaluate a backend application’s performance and detect bottlenecks.

8.2 Background - What is a Pressure Point or a Bottleneck?

This particular section will describe the characteristics of pressure points and

their analysis. This is common text book knowledge and can be found in any soft-

ware performance analysis book like [65]. A pressure point is another name for

a bottleneck. In a distributed multi-tiered environment these bottlenecks could be

either hardware or software related. In this chapter we will be concentrating on soft-

ware related pressure points. After the rigorous functional and non functional testing

it is rare to find performance issues in the software code standalone. Problems oc-

cur when multiple pieces of code, middleware components, databases and different

communication protocols interact in order to complete a business functionality.

The basic concepts involved with hydrodynamics are also applicable to software

systems. So in order to study what a pressure point is, we will look at examples from

hydraulics. The capacity of a software application can be compared to a series of

pipes of varying capacity. The output from one pipe is the input to another which is

similar to two interacting pieces of code. For example in Figure 8.3, the pipe with

the most restrictive flow (number two) is the bottleneck for the entire system. It is

this limited capacity of pipe number two establishes the total amount water that can

flow through the system which is finally the capacity for the end to end system.

So in order to identify a bottleneck, the simple logic shown in Figure 8.4 from

[65] can be applied. It helps identify which pipe/system is able to or unable to handle

the incoming input capacity.

This same concept can be applied to software applications. More often than not

bottlenecks occur because one system is processing faster than another and is either

173

1

2
3

4
Water
Flow In

Water
Flow Out

Figure 8.3. The Pipes in Hydraulics are Similar to Software Application’s Capacity
Measurements.

waiting for a response from a slow upstream or downstream application or is flooding

the slower system. So any increase in end user response times and/or timeouts due

to processing slowdown at any tier is a bottleneck. A bottleneck can occur because of

increase in volume and/or an event that could indirectly cause capacity issues. And

this is one of the major shortcomings of using existing performance tests that rely on

finding bottlenecks by varying load. Keeping in mind the similarity between software

and the study of hydraulics, the following list describes some of the most common

characteristics of a pressure point.

1. Pressure Points Are Not Always Caused Because of Load:

Figure 8.5 is another representation of the same kind of bottleneck as shown

in Figure 8.3. In this figure, water is moving at a velocity of 1 in the larger

diameter side of the pipe as compared to the smaller diameter side of the pipe

(velocity of 4). The water in the larger diameter pipe has to wait till it gets

to the smaller diameter part before it can flow at a higher velocity because of

the principle of conservation of mass. This characteristic of the water to wait

and flow at a lower velocity is the formation of a queue. This is an example

of a queuing bottleneck. In software applications an indicator of this kind of

a pressure point is when the code picking up messages is slower than the code

putting in messages on the queue.

174

Start

Determine Capacity of
System at Time t

Use Capacity of System at
Time t as Input for Next

System

Can Next System
Process All

Incoming Input?

System Capacity does
not Change

Is There
Another
System?

STOP: System Capacity is
Known

Reduce Input to Match
System Capacity

NO

YES

NO

YES

Figure 8.4. Steps for Detecting Bottlenecks in a System.

10 SQ. IN.

4 SQ. IN.

Velocity = 1

Velocity = 4

Figure 8.5. Example of a Pressure Point Due to Queueing.

175

2. Pressure Point Indicators Can be Observed Anywhere in the System:

Critical bottleneck is another concept in hydrodynamics. It is defined as the

one bottleneck if not resolved that dictates the characteristics of a system flow.

Figure 8.6. Example Showing a Critical Bottleneck.

As can be seen from Figure 8.6, there are three sets of restrictions that are

constraining the flow of water. Restriction number 2 is the critical bottleneck,

because it is obstructing the water flow the most. This basically implies that

removing the other restrictions will not help with the overall water flow unless

and until the critical bottleneck is removed. This is also applicable to software

systems. If there was one component that is taking longer to process incoming

transactions, adding capacity to the other components in the system will not

fix the issue, unless and until the slow component is fixed.

3. Different Paths Through the System Can Cause Different Pressure Points:

Consider Figure 8.7 which is an example of a closed hydraulic system. The

figure shows that one system could have multiple paths for the water to flow

through.

176

Re
se

rv
oi

r

Pump

Release
Valve

Directional Control Valves

Figure 8.7. Different Paths Through the System can Cause Different Pressure Points.

The more paths there are in a system for the water to flow through, the more

difficult it becomes to detect the bottlenecks plus the more points where bot-

tlenecks could occur. This theory can be applied to software systems too. The

more interacting applications there are in a system, the more places where

pressure points could occur and the more complex it becomes to detect and

troubleshoot them.

8.3 Pressure Points in Computer Systems

Identifying bottlenecks in hydraulics is very similar to finding bottlenecks in a

piece of software code. In the system depicted in Figure 8.7, the various components

like the pipe, a pump, valves and a reservoir can be compared to the computer network

and other hardware items like web servers, routers, load balancers, application servers

and so on. Just as shown in Figure 8.7, water can flow through different paths, in

a computer system the incoming customer request goes through various systems and

177

paths to get processed. Each one of these paths could be a potential pressure point. In

order to prevent disruption of service to the customer it therefore becomes necessary

to study each and every path going in and out of a particular system. Figure 8.2

illustrates just this notion.

To understand the criticality of performing this task and how important it is

in troubleshooting issues let’s take a look at two real world travel applications where

service disruption occurred not due to the standalone application itself but because

of slow down of a backend interacting application and a database issue.

1. Example 1: IET - Interline Electronic Ticketing:

This example describes the airline ticketing system. Multiple applications work

in conjunction to perform the one task of issuing airline tickets to passengers.

Figure 8.8 shows the various components apart from the software applications

themselves that make up this piece of functionality.

Consider just part of this system - Ticketing Hub (IET/TKTHUB) The TK-

THUB System consists of one independent ServiceMix instance running in its

own JVM. Data is input into the system from PSS (Passenger Service System),

CTS (Common Translation Service) and WNP (External Reservation System)

via various message queues provided by a set of MOM servers. Data is streamed

out to internal and external customers via other MQs depending upon the des-

tination. All data is persistently stored in an Oracle database cluster. The

following context diagram 8.9 provides a high level view of all external inter-

faces to/from the TKTHUB ServiceMix instances.

A new release of an interline electronic ticketing application is deployed in pro-

duction after all functional and load tests have been successfully completed.

The interline ticketing application sends transactions out to various suppliers

to get data to process tickets for passengers that have booked flights on differ-

178

Figure 8.8. An example of an airline ticketing system.

ent airlines for the same itinerary. These messages are placed on a middleware

IBM MQ queue and once the responses are received, the application reads the

messages off of the queue and sends it out to the PSS system for ticketing

purposes.

The application passes all average and peak load tests and is deployed in pro-

duction but after its successful run for a few days, customers start observing

long delays and ultimately timeouts for requests. These timeouts are not re-

179

DB Cluster

PSS

MOM Server

TKTHUB ServiceMix

CTS

IETHUB GUI External Systems
Sabre Systems

T2 Systems

MOM Server

Metric
Collector

WNP

MOM Server

MOM Server

T2 DMS

Figure 8.9. Context Diagram for Interline Electronic Ticketing (IET)/TKTHUB.

lated to an issue within the application itself but because of the slow down in

a backend system like T2 DMS (Ticketing Data Mangement Service).

2. Example 2: PWS: Payment Web Services:

Another example of a system - payment web services, that has been fully tested

and deployed in production starts seeing timeouts for a particular mode of

payment - pay me later, for a single airline - Vietnam airlines. Figure 8.10

shows the logical view of the sequence of steps needed to fulfill the pay me later

option.

For the pay me later mode of payment, the application is looking at the database

tables to validate that the transaction does not previously exist. In the test en-

vironment where data volumes in the tables is small, all test cases dealing with

this mode of payment passed. In production where these tables are huge, full

table scans take time and transactions start to timeout. In the real world sce-

nario, where the ticketing and payment processes are asynchronous, customers

180

Customer Creates
Booking via Web
using “Pay Later”

Option

PNR Created and
priced awaiting
Payment

Hold for Funds sent to
PWS via USG
(ePaymentRQ).

PWS retrieves
message from MOM
Queue and inserts
record into PWS DB
for future retrieval

Customer Proceeds to
Remote Payment

Location (i.e Kiosk or
SmartLink ATM) to
pay for ticket

Remote Payment Location
(i.e Kiosk or SmartLink
ATM) issues Validate
Payment via USG
(ePaymentRQ)

PWS retrieves Validate
Payment message from
MOM Queue and queries
PWS DB for PNR record

Validate Payment
confirms PNR is still
available for Payment
and proceeds to
Confirm Payment

Confirm Payment
updates PNR with
FOP and approval
code for ticket
issuance

For VN, Confirm
Payment pushes PNR

to PSS queue
monitored by Sabre
SmartFlow App

SmartFlow retrieves
PNR from PSS queue
and issues Ticket

Confirm Payment inserts
record into PWS DB for
audit purposes as well as
retrieval in the event of a

cancellation

Confirm Payment returns
response to third party

vendor indicating successful
transaction

USG places message
on MOM Queue for
consumption by PWS

End of
Hold Funds
Process

USG places Validate
Payment message on
MOM Queue for

consumption by PWS

End of
Collect Funds
Process

Figure 8.10. Sequence of steps for pay me later option for payment web service
application.

are being issued tickets without payments being received. This has massive

impact on business.

Software applications do not work standalone in production and are not de-

pendent on just incoming TPS (transactions per second). They interact with

various other components in the system and are impacted by different parame-

ters. It is therefore of utmost importance to thoroughly test the software as well

as how it communicates with other systems before it is deployed. It is essential

to find out under what conditions the code will fail, what would be the impact

of such a failure in order to design a fault tolerant system. A stable working

environment is directly related to how well the business does in terms of cost

and customer loyalty.

181

8.4 Characteristics and Behaviors of Software Application Pressure Points

The main objective is to evaluate and proactively predict the performance and

profile of a software system that is dependent on multiple varying input parameters

in a large scale distributed system. The applications considered would not be client

interfacing web based applications but ones that interact with multiple components to

process incoming transactions as shown in Figure 8.2. The purpose is to find pressure

points for the application as well as all in communication links with other systems

and/or middleware components and database. Pressure points are any application

resource that can become exhausted thereby restricting or degrading service level

performance. Examples of pressure points include: CPU, memory, disk, network,

code loops, locks, file handles, stack/heap settings, buffers, threads, connections and

so on. Performance is measured in terms of different SLAs.

A potential pressure point could be anywhere in the system. In order to trou-

bleshoot, the first action is to identify where the bottleneck exists. It could be any of

the following:

• Server/hardware itself

• Application code

• A middleware component

• Resource - operating system or configurable resource like database connection

pool

Once we have identified the point of the bottleneck, we need to identify the behavior.

In this study we will concentrate on application and resource utilization bottlenecks.

Keeping in mind the similarities between the bottleneck characteristics between the

two fields of study - hydraulics and software engineering, we can enumerate the fol-

lowing behaviors:

• Is the resource being shared?

182

1. Is the bandwidth between the two components of interest being shared?

2. Is one component utilizing more resources/bandwidth than the other?

3. What is the method of control? Is it peer to peer, token based or so on?

4. Is there data collision?

5. Is one more component faster/slower in processing than the other?

6. What happens if the sender is blocked or down?

7. What happens of the receiver is blocked or down?

8. Is the connection link between the two components broken?

9. What are different kinds of data flow routing methods?

– Redirect e.g. Big-IP/F5

– Load balancing e.g. Round robin routing of data

– Allocation e.g. MQ based data routing

– Blocking e.g. Firewall with rules for incoming transactions

These behaviors can be measured in terms of

1. the underlying resource utilization numbers

• CPU

• Memory

• Disk

• I/O

2. pool sizes for thread pools in terms of their

• minimum value

• maximum value

• start value at the time of application initialization

• increment level

• number of active threads at a particular time

3. Service Level Agreement (SLA) numbers e.g. client side response times

183

8.5 End-to-End Performance Evaluation of Software Applications

Now that we’ve seen the characteristics of pressure points and identified how to

detect them by looking at the different behaviors, we will now describe a method to

discover bottlenecks in an application. We will use the concepts of state space models,

specifically Markov models and experimental design algorithms as described in the

previous two chapters. Markov models have been used as a solution to detect pressure

points in the application because they provide an efficient way to identify anomalies

(which in our case are the pressure points). As seen from section 7.4 in Chapter 7, a

lot of work has been done to detect anomalies using Markov models. To summarize

once again how this proposed solution differs from the existing work in that instead of

assessing how well the software is working it actually tries to identify bottlenecks in the

system that may degrade performance. Current Markov models used for performance

evaluation, depend on either the underlying architecture/hardware or predefined costs

are associated with the states being created in order to mark them good or bad. The

model is created based on historical data and any major change in the new states

being created as compared to the historical data, causes the model to mark the states

as an anomaly. In our proposed solution the bottlenecks are not detected by creating

the model beforehand. Client side input (traffic) along with attributes of the software

itself as well as it’s interacting components is taken into account to detect pressure

points. The method is not dependent on the server it is running on and/or the

architecture and so is more flexible to be adapted for different kinds of applications.

The other major difference is that in our proposed solution we are not using the

application’s historical data/profile to detect pressure points. We’ve seen from the

previous chapters, that the application’s profile changes from one release to another

because of various reasons - new functionality has been added or it supports a new

traffic type and so on. So a deviation of historical data is not always the best way

184

to detect an anomaly. In our solution, the pressure points are being identified based

on the varying combination of input traffic and other configuration and component

parameters.

As described at length in Chapter 6, the DOE techniques specifically the Taguchi

Orthogonal arrays have been used to run tests on the software application with vary-

ing combinations of levels for the selected factors. The following sub-section will

describe the different algorithms that will help us create the application state model

and identify states that can be termed as pressure points. Just as a reminder, in the

cases of the airline shopping application (our pilot software application) states are

deemed as pressure points/bottlenecks only if they exist for durations greater than

15 minutes.

8.5.1 Creating a Node Cluster

A state in the Markov model can also be called a node. In order to restrict

the number of states/nodes that the application can transition to in the state space

model (SSM), we will assume that each node belongs to a cluster. A cluster is a set

of real world events/states. At any given point of time, t, if there exists clusters, each

one of these clusters will be represented by a node termed Ncentroid. This particular

node is the centroid for the cluster and therefore will be used when calculating where

a new state will be added to the model.

An event at time t, creates a new state/node Snew. The algorithm nodeInCluster

will be used to place this new node/state into either one of the existing clusters in

the model, SSM or form a new cluster. This decision is based on how close or far

the new state is to the nodes in an existing cluster. The nearest neighbor clustering

algorithm will be used to make this decision. A threshold will be chosen to decide

185

how close or far the new states are to the existing states in the clusters. The nearest

neighbor clustering algorithm used in nodeInCluster is explained next.

The goal of the nearest neighbor clustering algorithm is to pair an instance x

with a corresponding label y to create <x, y>. In our case the instance is the state

Snew and the lables are the existing clusters in the SSM. So for any new instance

without a label the algorithm needs to categorize instances with their labels. Assume

that instance x is a member of the set X, while label y is a member of set Y. Thus the

algorithm is nothing but a function F : X → Y . So to draw a parallel to our case, the

algorithm will try and place Snew in one of the clusters that already exits(depending

on how close Snew is to the Ncentroid of the clusters) or create a new cluster.

We will be using the Euclidean distance function to calculate how close or how

far Snew is from the existing Ncentroid of the different clusters. The Euclidean function

to find the distance between two points x and y is as follows:

d(x, y) = ‖xy‖ =
√

(x1 − y1)2 + (x2 − y2)2 + ...(xn − yn)2 =
√
(
∑n

i=1(xi − yi)2)

Here the Cartesian coordinates for the points x and y are (x1, x2, ...xn and

(y1, y2, ...yn respectively. This simple nearest neighbor clustering method will be used

in our state space model to add new application output states to the closest cluster.

This will prevent the resulting model from consisting of infinite number of states.

• Algorithm 1 - nodeInCluster:

Assume that at time t - 1, there exists a cluster Ct−1 and there is a state space

model/Markov model M for the application. It will become clear when looking at the

createSSM algorithm next how the clusters are created. At time t, an event Et occurs

that changes the state of the application and a new state is created Snew. The centroid

node in M that represents the cluster Ct−1 is denoted by Ncentroid. The decision to

whether create a new cluster Ct at time t and add the new state to that new cluster

or to add it to the existing cluster can be decided by the nodeInCluster algorithm

186

shown in Figure 8.11. According to the nearest neighbor clustering algorithm, the

closer two nodes are to each other the smaller the distance between them. Keeping

this in mind, an appropriate threshold - th is chosen when determining if a node

should be added to an existing cluster or if it should form a new cluster.

Is d() <= th?
Yes

No

New state created

Event at time t

 represents in
M;

node_in_cluster = true node_in_cluster = false

Figure 8.11. nodeInCluster Algorithm Decides Whether to Add a Node to an Existing
Cluster or Form a New Cluster.

187

8.5.2 Creating the State Space Model

In this sub-section, we will look at an algorithm that will help us facilitate the

creation of the state space model for our pilot application. The algorithm is general

enough to be used for any software code.

• Algorithm 2 - createSSM:

So now that we’ve seen how the algorithm nodeInCluster determines where a new

state/node should be put:

1. added to an existing cluster (if it exists) depending on how similar the new state

is to the states in that cluster; calculated using the nearest neighbor clustering

algorithm

2. or a new cluster created with the new state

let’s see how the state space model gets created. Keeping in mind all the background

information described in the previous chapter on Markov models on how the transi-

tion probabilities are determined and how new events create new states, createSSM

will describe the process of building a state space model(SSM) for any software ap-

plication. Once again assume that at time t - 1, there exists a cluster Ct−1 and there

is a state space model/Markov model M for the application. At time t, an event Et

occurs that changes the state of the application and a new output state is created

Snew. The current node in M that represents the cluster Ct−1 is denoted by Ncentroid.

Figure 8.12 represents the steps in the algorithm. The output of the nodeIn-

Cluster algorithm is used to determine where to place the new state Snew. Once this

new state is placed in a cluster, the size of the cluster is calculated. A new edge is

created from the Ncentroid to Snew, if it doesn’t exist. This implies a state transition

and therefore the transition probability has to be calculated. The transition proba-

bility in this case is the number of times there is a transition from Ncentroid to Snew

divided by the size of the cluster represented by Ncentroid.

188

Event at time t

 Is M Empty?

New state created

New state added to
new cluster

 = =

 = 1 ;

Yes

 =
 + 1

node_in_cluster
= true

 c (=
c (

Add Edge (
to M

 =
Edge(/
c (

Yes

 No

New state added to
new cluster

 = 1;
Add Edge(

to M

 c (=

 =
Edge(/
c (

 No = =

Figure 8.12. createSSM Algorithm to Build a State Space Model For a Software
Application.

8.5.2.1 createSSM Example

Before we move onto the algorithm that will help us determine if the new state

created in our model is a pressure point or not, let’s take an example of how the cre-

ateSSM algorithm works. We will take an example of a travel shopping application

where the state of the application is described by the measure of it’s response time,

189

CPU, memory, disk, I/O usage and number of core dumps. So keeping the same

notation as mentioned in the previous chapter: St = <S1t, S2t, ...Snt> will basically

imply that at any given time t, the state of the shopping application can be repre-

sented as St = <respone− timet, CPUt,memoryt, diskt, iot, count(core− dumps)t>.

According to the nearest neighbor clustering algorithm, the smaller the distance be-

tween the neighbors there is a greater possibility of them being in the same cluster.

Keeping this in mind, we will choose a threshold value of 0.2 to compare distances

between nodes and then decide which cluster they fall into.

Let’s consider the states of the application as shown in Table 8.1:

Table 8.1. Sample State Space Data for Travel Shopping Application

Time State Space Vector
Time 1 <5.6, 2, 2, 0.5, 0.1, 0>
Time 2 <5.6, 2, 3, 0.7, 0.4, 0>
Time 3 <5.6, 2.1, 3, 0.7, 0.4, 0>
Time 4 <5.6, 2, 3, 0.5, 0.1, 0>
Time 5 <7, 2.2, 3, 0.7, 0.8, 0>
Time 6 <7, 2, 3, 0.7, 0.8, 0>
Time 7 <12, 3.6, 4, 2.1, 1.8, 0>
Time 8 <12.5, 3.8, 4, 2.5, 2, 0>
Time 9 <5.6, 2.1, 3, 0.7, 0.4, 0>

So following the createSSM algorithm, the following steps will be implemented:

1. At time 1 the model is empty, so the state vector <5.6, 2, 2, 0.5, 0.1, 0> will be

the first node in the model, M. SizeCluster1 = 1.

2. At time 2, a new event creates a new state vector Snew = <5.6, 2, 3, 0.7, 0.4, 0>.

The distance between the Ncentroid and this new state will be calculated and

compared to the threshold we’ve chosen. The distance between the two nodes

needs to be calculated in order to either add the new state to the existing

190

cluster or create a new cluster. d(Ncentroid, Snew) = 1.063. This is greater than

the threshold chosen and hence the new state will not be added to the existing

cluster but will be added to the model, M as a new node. SizeCluster2 = 1

and Probtransition(N1, N2) = 1/1

3. At time 3 there is a new state vector <5.6, 2.1, 3, 0.7, 0.4, 0>. The distance

between the two existing clusters and the third node will be calculated to deter-

mine which cluster it will be a part of. d(N1, Snew) = 1.0676 and d(N2, Snew) =

0.1 which is less than our chosen threshold of 0.2 and hence this new state

vector will be added to the cluster of N2. So now SizeCluster2 = 2 and

Probtransition(N2, N2) = 1/2

4. Similar processing will be done at each of the steps when a new state is created.

d(N1, Snew) = 1 and d(N2, Snew) = 0.3605. Since both distances are greater

than the threshold of 0.2, a new node will be created in M. SizeCluster3 = 1

and Probtransition(N2, N3) = 1/2.

5. New state vector = <7, 2.2, 3, 0.7, 0.8, 0>. d(N1, Snew) = 1.878, d(N2, Snew) =

1.469 and d(N3, Snew) = 1.5905. A new node N4 is added to M. SizeCluster4 =

1 and Probtransition(N3, N4) = 1/1.

6. New state vector = <7, 2, 3, 0.7, 0.8, 0>. d(N1, Snew) = 1.868, d(N2, Snew) =

1.456, d(N3, Snew) = 1.577 and d(N4, Snew) = 0.2. This new state is added to

the cluster of node N4. SizeCluster4 = 2 and Probtransition(N4, N4) = 1/2

7. New state vector = <12, 3.6, 4, 2.1, 1.8, 0>. d(N1, Snew) = 7.278, d(N2, Snew) =

6.959, d(N3, Snew) = 7.068 and d(N4, Snew) = 5.5605, so a new node N5 will be

added to M. SizeCluster5 = 1 and the transition probability Probtransition(N4, N5) =

1/2.

8. Distances for the new state vector<12.5, 3.8, 4, 2.5, 2, 0> are as follows: d(N1, Snew) =

7.903, d(N2, Snew) = 7.592, d(N3, Snew) = 7.711, d(N4, Snew) = 6.204 and

191

d(N5, Snew) = 0.6999, so a new node N6 is added to M. SizeCluster6 = 1

and the transition probability Probtransition(N5, N6) = 1/1.

9. At time step 9, the new state vector is <5.6, 2.1, 3, 0.7, 0.4, 0>. d(N1, Snew) =

1.067, d(N2, Snew) = 0.1, d(N3, Snew) = 0.374, d(N4, Snew) = 1.459, d(N5, Snew) =

6.937 and d(N6, Snew) = 7.569, so the new state is added to the cluster N2.

SizeCluster2 = 3 and Probtransition(N6, N2) = 1/1.

Figure 8.13 is the end result of the above mentioned steps at each time interval.

6

24

5 1

3

1/1

1/2
1/21/1

1/2

1/2

1/1

1/1

Figure 8.13. Resulting SSM for the createSSM Algorithm Example.

8.5.3 Finding Pressure Point States in the State Space Model

This sub-section will describe the algorithm that helps identify pressure point

states in a software application.

• Algorithm 3 - findPressurePoint:

This algorithm is an add on to the createSSM algorithm that actually creates the

Markov model. As mentioned earlier, the state of the application is measured using

different parameter metrics - response time, OS resource utilization measures and

the number of core dumps. Out of these only two effect the end user directly -

response time and core dumps. Response times going over a particular SLA or the

application crashing are signs of performance issues. So out of all the metrics that

192

are used to measure the state of the application at any given point of time t, the

findPressurePoint algorithm tries to find states where the response time is over the

SLA and/or a core dump has been encountered. As has been mentioned in the

previous chapters the profile of the incoming transactions is such that there might

be traffic peaks and troughs, so in order to process the peaks, the application could

go over the specific response time SLA. Such a situation is not necessarily a pressure

point but a simple spike in the normal day-to-day processing. In order to characterize

that the application is under performance degradation, the response times have to

be over the SLA for a continued duration. From an airline operational point of

view where application availability needs to be high, 15 minutes of application not

meeting SLA thresholds has been deemed as a severity. For the shopping application,

response times under 5 seconds are considered good, times between 5 and 8 seconds are

considered acceptable and anything over 8 seconds for long durations is unacceptable.

findPressurePoint algorithm will adhere to the same conditions. On the other hand a

single core dump will be deemed a severity and the state will be tagged as a pressure

point. So if and only if there is a core dump(which implies an application crash) or

the response time measurements for the application output states is greater than the

specified SLA for 15 minutes or greater, the states will be marked as pressure point.

Figure 8.14 is a visual representation of the algorithm.

8.6 Simulation Setup

So to understand how a backend software application’s performance can be

evaluated using the proposed solution, let’s look at the high level steps:

1. Factors were picked that could affect the application’s performance: In our case

we looked at the production severities from the last two years and picked the top

8 factors that caused them, namely - TPS, queue lengths, throttle values, time-

193

Event at time t

(,) Is M Empty?

New state created

New state added to
new cluster

 = =

 = 1 ;

Yes

 =
 + 1

node_in_cluster
= true

 count(,) =
count(,) + 1

Add Edge (,)
to M

 =
Edge(,)/
count(,)

Yes

 No

New state added to
new cluster

 = 1;
Add Edge(,)

to M

 count(,) = 1;
 =

Edge(,)/
count(,)

 No = =

A

Mark as Pressure
Point for Application

Yes

A

No
pressurePoint ==

true

out values, transaction types, payload sizes, database and application thread

pools.

2. Looking at the production data, appropriate levels were chosen for each of

the factors: In order to make sure that we were using cases that emulate the

194

 = < , , , , , >

 =

 = 0

>=

T = t + 1

 + 1

pressurePoint = true

pressurePoint = false

Yes

 No Yes

No

Yes

 No

Figure 8.14. findPressurePoint Algorithm to Identify Performance Issues for Software
Applications.

production environment, we chose the levels for each of our factors by looking at

the production workload profile and configuration settings for factors. 5 levels

were chosen for each of the factors, except for workload type that was set to 4

levels.

3. Since we ended up with 8 factors with 5 levels each, we used the Taguchi Or-

thogonal Array DOE method to setup our test cases: DOE techniques help in

setting up test cases where there are multiple factors and levels. Instead of

choosing factorial designs where we would have to setup 312,500 test cases, we

195

chose the Taguchi orthogonal method. It is a DOE method that reduces the

number of test cases to be run without limiting the impact each one of the

factors could have on the end result.

4. The L50 array in the standard Taguchi orthogonal array corresponded to our

factors and levels: The standard array is shown in Figure 6.6 and looking up

the rows and columns that correspond to the number of factors (8) and levels

(5), we get L50.

5. So 50 test cases were setup according to the L50 array: The L50 array is as

shown in Table 6.8, where each rows describes one test case with combination

of the factor levels to use.

6. An airline shopping application was chosen as the pilot application

7. createSSM, nodeInCluster and findPressurePoint algorithms help in creating the

state space model for our pilot application and identify the pressure points as

the different test cases are run against it: Once we have the test scenarios ready

and the application is setup with it’s interacting components and database in

our case, the different tests can now be run. Each input test case is an event

and the SSM algorithms then capture the states of the application, create the

state clusters and identify pressure points if the application is in a state where

the response time is greater than the specified SLA for 15 minutes or more or

if core dump occurs.

In order to run through these steps, a simulation tool called extendsim was used.

extendsim is a commercially available tool that is used for high performance evaluation

of computer systems. Step one was to simulate the working of the airline shopping

application. Since this application is a non client interfacing application, it interacts

with various other components in the system. A simple representation of the data

flow path for the pilot application is shown in Figure 8.15.

196

Web Server F5 Load Balancer

Shopping
Application

Shopping
Application

Availability
Application

Schedule Finder Oracle Database

Oracle Database

Shopping
Application Cluster Database Cluster

Figure 8.15. Simple Representation of Shopping Application With Backend Compo-
nents - Availability and Schedule Finder along with the Database Server Pool..

Figure 8.15 shows a cluster of shopping application servers but for simulation

purposes, we will use a single instance of the shopping, availability and schedule finder

applications. Figure 8.16 is the environment as setup in extendsim.

Figure 8.16. Simulation Setup for Shopping Application and Backend Components
Shown in Figure 8.15 in extendsim..

Figure 8.16 corresponds to the data flow path for the airline shopping applica-

tion shown in Figure 8.15. There is an input item that will simulate the incoming

197

traffic to the shopping application based on a lookup table at each discrete time step.

One of the lookup tables is shown in Figure 8.17 for the different levels of the pay-

load size and the processing times for each on the shopping application side. The

second table shows the how the other factors can be setup in the simulation tool as

attributes. When the simulation is run the values for the various attributes/factors

will be picked up from these lookup tables.

Figure 8.17. The Different Simulation Factors and Their Levels Can be Setup as
Attributes in extendim.

Similar tables are setup for the remaining applications that form the simulation

environment for the different factors being used in the experiments.

1. Incoming transactions per second (TPS)

2. Workload/Traffic types

3. Timeout values

4. Throttle levels

5. Database connection thread pool

6. Queue size

7. Application connection thread pool

198

8. Payload size

The resource items are added in the simulation setup to emulate the database

and application side thread pools. The values for these correspond to the levels de-

scribed in Chapter 6. Even though there are two database instances in the simulation

setup, they both point to a single common shopping application database. The L50

array that contains the combinations of the levels for the different factors is stored in

the database. Each set of the experiment is run corresponding to the records in the

database. Once this application environment is setup the three algorithms described

in the previous section are added to the simulation - nodeInCluster, createSSM and

findPressurePoint are used to iterate through the states of the application at discrete

time intervals. The setup is shown in Figure 8.18

Figure 8.18. Simulation Setup for Airline Shopping Application and findPressurePoint
Algorithm to Identify Pressure Point States.

199

8.7 Simulation Results

Once the simulation is run with the varying input parameters based on the L50

Taguchi orthogonal array, the output data is collected and the following graphs show

the various plots for the output state parameters. Figure 8.19 shows the response

times for the output states. States that have response times over the SLA for a

minimal of 15 time steps are the ones that will be treated as the pressure points.

During the tests run with the simulation setup, pressure point states were found and

are marked as shown in Figure 8.19.

Figure 8.19. Response Time Plot for Simulation Data with Response Times Greater
Than the SLA Marked as Pressure Point.

Figures 8.20, 8.21 and 8.22 are plots for the corresponding OS resource uti-

lization measures for CPU, memory and Disk during the simulation. As can be seen

from the plots, the application is CPU intensive. The variation in the application’s

200

Figure 8.20. CPU Usage Plot for Simulation Data.

processing times causes variations in the CPU usage but not as much with memory

and disk usage.

Table 8.2 shows the transition probability matrix for the different states that

were created after the simulation. Each of these states represents a cluster of the

most similar states.

Last but not the least we will look at the ANOVA calculations for the various

factors and their effect on the response time of the application. To calculate the

ANOVA we used R. The R statements and their outputs are shown below. The

ANOVA, F and p-value calculations were performed for the different factors used in

the tests. As a standard p values smaller than 5% or 0.05 imply greater significance.

So as can be seen from the ANOVA calculation output - TPS, queue lengths, throttle

levels, database thread pool and payload sizes were the most significant factors during

the tests. We did not see any timeouts during the tests which implies that all incoming

201

Figure 8.21. Memory Usage Plot for Simulation Data.

Figure 8.22. Disk Usage Plot for Simulation Data.

202

States 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0 0.0 0.02 0.05 0.07 0.05 0.05 0.06 0.01 0.06 0.07 0.06 0.04 0.03 0.04 0.06 0.07 0.0 0.02 0.01 0.07 0.05 0.07 0.03
1 0.04 0.0 0.05 0.05 0.01 0.07 0.03 0.06 0.06 0.03 0.02 0.07 0.04 0.05 0.07 0.04 0.07 0.01 0.0 0.03 0.09 0.07 0.05
2 0.09 0.01 0.0 0.09 0.02 0.02 0.09 0.05 0.01 0.01 0.04 0.08 0.06 0.06 0.03 0.08 0.0 0.05 0.03 0.0 0.05 0.08 0.04
3 0.01 0.01 0.07 0.0 0.01 0.07 0.04 0.07 0.07 0.05 0.03 0.05 0.07 0.06 0.03 0.04 0.05 0.06 0.04 0.04 0.01 0.03 0.07
4 0.02 0.02 0.07 0.04 0.0 0.07 0.09 0.09 0.1 0.06 0.03 0.01 0.0 0.01 0.04 0.01 0.02 0.05 0.11 0.05 0.04 0.02 0.06
5 0.08 0.03 0.07 0.08 0.03 0.0 0.09 0.08 0.05 0.04 0.04 0.01 0.07 0.03 0.04 0.04 0.02 0.0 0.06 0.06 0.02 0.05 0.0
6 0.04 0.09 0.02 0.04 0.08 0.01 0.0 0.02 0.08 0.01 0.05 0.0 0.09 0.02 0.04 0.05 0.03 0.05 0.06 0.01 0.09 0.01 0.09
7 0.04 0.0 0.05 0.02 0.02 0.07 0.02 0.0 0.04 0.05 0.03 0.06 0.07 0.07 0.04 0.04 0.06 0.07 0.07 0.0 0.07 0.09 0.01
8 0.08 0.08 0.0 0.0 0.07 0.0 0.01 0.09 0.0 0.03 0.06 0.01 0.01 0.07 0.07 0.08 0.06 0.05 0.06 0.09 0.03 0.03 0.01
9 0.01 0.04 0.06 0.06 0.09 0.03 0.09 0.06 0.01 0.0 0.03 0.02 0.04 0.07 0.05 0.08 0.07 0.02 0.06 0.04 0.05 0.01 0.0
10 0.01 0.06 0.06 0.05 0.07 0.06 0.06 0.0 0.01 0.03 0.0 0.01 0.04 0.07 0.04 0.07 0.03 0.01 0.03 0.08 0.05 0.07 0.09
11 0.06 0.05 0.06 0.08 0.03 0.05 0.08 0.03 0.01 0.04 0.0 0.0 0.02 0.02 0.09 0.05 0.0 0.05 0.05 0.08 0.08 0.06 0.02
12 0.01 0.03 0.04 0.02 0.0 0.01 0.04 0.05 0.1 0.03 0.06 0.0 0.0 0.09 0.07 0.07 0.02 0.07 0.09 0.09 0.08 0.0 0.04
13 0.07 0.07 0.03 0.07 0.03 0.06 0.04 0.06 0.06 0.05 0.0 0.07 0.07 0.0 0.02 0.05 0.01 0.04 0.06 0.07 0.06 0.01 0.02
14 0.06 0.06 0.04 0.06 0.05 0.05 0.0 0.08 0.0 0.02 0.04 0.01 0.01 0.07 0.0 0.07 0.03 0.01 0.07 0.08 0.05 0.08 0.05
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16 0.03 0.06 0.01 0.09 0.04 0.09 0.07 0.08 0.01 0.06 0.06 0.01 0.03 0.0 0.01 0.03 0.0 0.04 0.08 0.09 0.1 0.02 0.01
17 0.08 0.09 0.04 0.02 0.08 0.05 0.0 0.03 0.08 0.01 0.02 0.06 0.08 0.02 0.02 0.02 0.06 0.0 0.02 0.04 0.09 0.06 0.03
18 0.02 0.03 0.03 0.01 0.07 0.1 0.1 0.05 0.05 0.02 0.03 0.03 0.01 0.09 0.05 0.04 0.0 0.09 0.0 0.05 0.03 0.07 0.03
19 0.04 0.1 0.1 0.02 0.11 0.02 0.0 0.01 0.02 0.11 0.05 0.01 0.1 0.07 0.05 0.04 0.0 0.02 0.04 0.0 0.03 0.04 0.01
20 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0
21 0.01 0.05 0.08 0.09 0.08 0.03 0.01 0.07 0.01 0.06 0.04 0.06 0.05 0.02 0.06 0.05 0.07 0.03 0.01 0.06 0.02 0.0 0.05
22 0.06 0.05 0.07 0.03 0.08 0.06 0.02 0.07 0.08 0.01 0.02 0.01 0.07 0.05 0.09 0.05 0.01 0.06 0.06 0.05 0.0 0.02 0.0

Table 8.2. Transition Probabilities of the State Space Model Generated as a Result
of the Simulation

transactions were processed by the application. In turn this also means that the

application was able to handle all incoming traffic. This is the reason why the timeout

values and the application thread pool did not play a significant role in the output

(response times).

> ANOVACalc <- read.table("C:/temp/sim-data.txt", sep=",",

header=T,quote="")

> head(ANOVACalc)

respTime tps queuelen throttle.level timeout.value db.threads

app.threads payload.size payload.type

1 9.10 48 1050 50 20 400

300 45 INTLWPI1

2 3.00 35 2000 40 30 500

200 45 INTLWPI1

3 9.50 48 2050 35 20 200

100 20 LFSTREAM

203

4 4.23 15 2050 50 10 100

400 35 INTLWPI1

5 4.44 35 2050 50 15 400

200 35 LFSTREAM

6 9.50 25 1000 50 10 100

200 75 ATSEILF2

> aovObject <- aov(ANOVACalc\$respTime ~ ANOVACalc\$tps +

ANOVACalc\$queueLen + ANOVACalc\$throttle.level +

ANOVACalc\$timeout.value + ANOVACalc\$db.threads +

ANOVACalc\$app.threads + ANOVACalc\$payload.size)

> summary(aovObject)

Df Sum Sq Mean Sq F value Pr(>F)

ANOVACalc\$tps 4 4421 4421 27.577 6.48e-07 ***

ANOVACalc\$queueLen 4 3935 328 2.046 0.0256 *

ANOVACalc\$throttle.level 4 1120 428 2.186 0.0131

ANOVACalc\$timeout.value 3 237 237 1.477 0.2267

ANOVACalc\$db.threads 4 687 357 2.033 0.0221

ANOVACalc\$app.threads 4 943 2.569 0.357 0.550

ANOVACalc\$payload.size 3 833 10.921 3.520 0.0018

Residuals 122 19556 160

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

204

8.8 Proposed Solution vs. Conventional Performance Tests

As seen from the previous chapters the performance of an application is de-

pendent on numerous factors, especially if it’s a middle tier non client interfacing

application. This is due to the fact that it interacts with other applications, the

database, middleware components like queues and it could also be using techniques

to transform messages and/or different protocols to communicate. Keeping this in

mind the proposed solution uses multiple input factors to validate the performance

of the application. In conventional performance tests as well as the impulse test

described in Chapter 2 rely on varying incoming transaction rates to evaluate the

application. The impulse tests are an improvement on the existing conventional tests

in that, they emulate production traffic profiles but still the piece of code under test

is being verified using two factors - TPS and workload types. Transaction rate is ob-

viously an important variable but since we need to learn how the software will behave

standalone as well as when integrated with other components, it becomes important

to test it against different factors.

The reason for running performance tests is to identify and fix bottlenecks in

advance, before the software is deployed in production. This implies putting the

application through different scenarios that might occur in production and then eval-

uating how well it behaves under those scenarios. There is no way to test the code for

all combinations and permutations of cases that might occur but a tester’s responsi-

bility is to run tests that cover as many cases as possible that cover both the happy

path as well failure paths. The objective is to make the application work outside it’s

normal processing boundaries. In order to do so we have to utilize factors that affect

the processing of the application. TPS is just one of those factors and therefore it is

possible to miss cases that could cause service disruptions in production if we chose

just this one factor. So even though it will be impossible to run each and every sce-

205

Figure 8.23. Response Time Plot for Test Run on Real World Airline Shopping Ap-
plication Using Proposed Solution vs. Regular Performance Test. The Combination
of Multiple Factors Pushes the Application Over It’s Response Time SLAs Before an
Increase in TPS in a Regular Performance Test Does.Pressure Points are Detected
Using Proposed Solution but Not Using a Regular Test..

nario with each and every factor that could possibly have any effect on the workings

of the application, the proposed solution uses 8 such factors. These factors cover the

client side, the application configuration, the interacting application processing times

as well as the middleware component configuration. Taking all these variables as pa-

rameters in the tests cover the end to end performance evaluation of the application.

To compare the results from the proposed solution to those of a conventional

performance test that uses TPS and workload types as it’s input factors, we will use

206

Figure 8.24. CPU and Memory Usage Plot for Test Run on Real World Airline
Shopping Application Using Proposed Solution vs. Regular Performance Test. The
OS Utilization is Higher for the Proposed Solution Since It Pushes the Application
Outside It’s Normal Processing Boundaries..

response times and CPU and memory usage data. Instead of running the comparison

using simulations, both the proposed solution and the conventional performance test

are implemented on the real world shopping application. Due to time constraints

instead of running all 50 test scenarios and using all 8 factors, this test uses TPS,

workload types and sizes, queue depth, throttle and timeout factors and their corre-

sponding levels as described in Chapter 6. As compared to this, the regular perfor-

mance test will simply use the varying TPS factor levels and workload types. The test

was run for 16 hours and some of the common performance metrics were measured.

Figure 8.23 shows the processing time graph for the application.

As can be seen from the graph the proposed solution pushes the application out-

side it’s normal processing boundaries. The combination of factors being used, cause

the application to go over it’s SLA way before the TPS pushes it over the SLA when

207

Figure 8.25. Queue Depth Utilization Percentage for Real World Airline Shopping
Application Workload Types Using Proposed Solution and Using the Queue Depth
Factor Levels from Chapter 6.

running a regular performance test. In the case of the conventional test, no pressure

points will be found since the response time spikes are not sustained for a continuous

duration of 15 minutes or more. Whereas the proposed DOE solution shows, that the

application will hit a pressure point trying to process incoming transactions because

of other combination of factors. Similarly Figure 8.24 shows the CPU and memory

usage plot.

As expected since the code is processing under scenarios that require it to use

more OS utilization is the case of the proposed DOE solution as compared to the

regular test. Figure 8.25 shows the percentage utilization of the queue depth for the

proposed solution as the queue depth factor is varied. When conventional tests are run

in this manner, they fail to identify pressure points that could occur in production

when factors outside the application change - like processing times for interacting

applications. These scenarios can only be discovered if we are running tests that take

them into consideration.

As can be seen from Figure 8.26 when the application uses the proposed so-

lution, it had to throttle incoming transaction plus some of the transactions timed-

208

out. While the application when under a conventional performance test is processing

transactions normally with a few timeout transactions at the end of the test. Using

multiple factors to run performance tests helps to detect bottlenecks that are related

to other parameters too as compared to simply TPS related pressure point states.

As can be seen from this data, a conventional test depending on what values have

been chosen for the various factors of the interacting components, could miss finding

pressure points. Service disruption due to performance related issues in the produc-

tion environment need to be avoided at all costs since they not only cause customer

dissatisfaction but could also lead to revenue loss.

Figure 8.26. Errors Including Timeouts and Throttled Transactions for the Shopping
Application Using the Proposed Solution (LHS) vs. Errors for a Regular Test (RHS).

8.9 Performance Prediction Using SSMs

Now one of the major advantages of using SSMs - in our case the Markov models

is that it can predict a future state. This is in addition to the fact that these models

can be used to detect anomalies. Once we’ve build the initial state space model and

have the state transition probabilities, it is now possible to predict the probability of

being in a pressure point state, given the current state of the application.

209

A lot of work has been done in the field of performance evaluation using such

models. [66] proposes a new metric called Performance Nonscalability likelihood

(PNL) that is then used to predict if an increase in the workload will introduce a

bottleneck in the system. The paper studies the workload - different types of incom-

ing transactions and then profiles the application for each one of them, measuring

it’s processing times, database access times and so on. PNL measures performance

degradation at a particular load level. A stochastic process is used to compute the

states of the application which are then marked 1 if performance is unacceptable or

0 if it is acceptable. The state probability distribution is generated and then PNL is

used to predict performance given a particular workload level. The authors of [67]

use Markov chains to evaluate the performance of large scale stateful web services.

The paper proposes techniques to build test cases and datasets that emulate pro-

duction scenarios. These techniques rely on the incoming traffic to the production

system and then applying data sanitization processes that strip the data of sensitive

information but still preserve their stateful nature. Markov chains are used for data

mining the large volume of logs from production and then identifying load patterns.

The assumption is made that the incoming traffic profile remains the same over long

durations of time. Once the load patterns are discovered, they are played back in the

test environment.

[68] propose algorithms to automatically generate test suites for telecommuni-

cation systems but can be generalized for other applications. One of the algorithms

uses Markov chains to generate the state space model for the application under test

by utilizing the incoming traffic to the application. A similar approach is presented

in [69]. The traffic profile for the application is used to create the state space model

using Markov chains. Each one of these states is then used as a test case to load

test the application. The path of execution from initial state to any particular state

210

represented by the Markov model is verification of it’s proper run. Any deviation in

the execution path points to a potential problem in the system.

A number of solutions exist to run tests where multiple factors can affect the

performance the application. [70] proposes a fractional factorial solution where fac-

tors affecting the performance are first analyzed to find their interaction effects, and

then only factors that have a major impact on the application’s performance are used.

Two levels for each of the chosen factors are selected and test cases generated using

the fraction factorial DOE method. The cases study names the factors as A, B, C

and so on, so it is hard to tell what factors were really chosen. The authors of [71]

propose to use distributed continuous quality assurance DCQA processes to divide

the QA regression test cases into smaller tasks and then distributing these tasks to

be run by the end users and development teams that are distributed rather than

running them in one lab. The special DCQA environment has been created for this

that intelligently distributes tasks. All factors that are used to decide the breaking

up of the tasks are assumed to be interacting and DOE methods are used to find their

main effects. This helps in reducing the large number of tasks into smaller ones. The

case studies provided in the paper take into account hardware and OS configuration

related factors and software SLAs for response times and memory footprint. Another

paper [72] uses DOE General Linear Model method to tune storage systems. The pa-

per takes into account three factors that affect storage performance - cache partition

size, LUN strip size and cache segment size with three levels to find their interaction

and effect on performance. All other factors are kept constant.

All these solutions that use Markov models to build the state space model for

the application and then predict bottlenecks are all based on incoming workload.

As we’ve seen from several real world application examples in this document, per-

formance degradation of an application can be due to several combinations of other

211

factors. The solution that we’ve proposed, takes into consideration not only the client

side metrics, but also the application specific configuration parameters, middleware

component factors and interacting application factors that all have an effect on the

overall performance. The workload profile for an application changes over time, as

new features are added to releases and/or new transaction types come in, so the ex-

isting solutions have to be changed continuously. The DOE orthogonal array method

used in our solution takes into account all the factors that help build the state space

model and have more than 2 (fractional factorial methods) or 3 (GLM method) pro-

posed in the papers. The combination of using these factors as well as the state space

model helps us in finding bottlenecks that may be related to the interacting appli-

cation or the middleware component or the database and not just workload related

pressure points. The application states will also help us in predicting performance.

So now to see how performance prediction can work in our case, let’s once again

take the table of events 8.1. The sequence of state transitions probabilities can be

summarized as follows:

Table 8.3. State Transition Probabilities for Example State Table 8.1

States 1 2 3 4 5 6
1 0 1 0 0 0 0
2 0 0.5 0.5 0 0 0
3 0 0 0 1 0 0
4 0 0 0 0.5 0.5 0
5 0 0 0 0 0 1
6 0 1 0 0 0 0

According to the transition probabilities, the sequence of states is 1 2 2 3 4 4 5

6. Once we have this sequence and the transition probabilities between the states, we

can use the Markov model property to predict the transition probabilities at a future

212

time step. So say at time n we are in state 3, using the following Markov property

we can predict the probability of transitioning from state 3 to all other states at any

time step in the future.

π(1) = π(0)P (8.1)

π(2) = π(1)P = π(0)P 2 (8.2)

π(n) = = π(0)P n (8.3)

where π is the initial state vector and P is the state transition probability matrix

and n denotes the time step.

So in this example if at step n we are in state 3 and we wanted to find out the

state transitions at time step n = 4, we would have the following:

[
0 0 1 0 0 0

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

0 0.5 0.5 0 0 0

0 0 0 1 0 0

0 0 0 0.5 0.5 0

0 0 0 0 0 1

0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4

=

[
0 0 1 0 0 0

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.125 0.125 0.5 0.25 0

0 0.0625 0.0625 0.375 0.25 0.25

0 0.5 0 0.125 0.125 0.25

0 0.5 0.25 0.0625 0.0625 0.125

0 0.25 0.25 0.5 0 0

0 0.125 0.125 0.5 0.25 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=[
0 0.5 0 0.125 0.125 0.25

]

213

So at time n + 4, the application has a 50% probability of being in state 2,

12.5% probability to be in either state 4 or 5 and a 25% probability to be in state 6.

Apart from being able to predict the state transition probabilities at a given

time in the future, there are a few other statistical observations that can be made

using Markov chains. In our case since we are using Markov models to describe the

performance profile of an application, using the transition probabilities we will be able

to tell how many time steps later from each state will the application get back to the

bottleneck state. Taking the same experiment setup that we described in section 8.6

and to keep the example manageable we’ll simply run four test cases, generate the

states and the state transition probabilities. And using the data we will now be able

to predict not only the probability of being in any one of these states in the future

but also the first time the pressure point state occurs again (assuming that we see one

during the initial run) and also the recurrence probability of this bottleneck state at

a future time step. The state transition probabilities for four test cases chosen from

the orthogonal array built in Chapter 6, is as shown in Table 8.4.

Table 8.4. State Transition Probabilities for Four Test Cases Run From the Taguchi
Orthogonal Array for an Airline Shopping Application

States 0 1 2 3 4 5 6 7 8
0 0 0.5 0 0 0 0.5 0 0 0
1 0.33 0 0.34 0 0.33 0 0 0 0
2 0 0.5 0 0.5 0 0 0 0 0
3 0 0 0.33 0 0.34 0 0 0 0.33
4 0 0 0 0 1 0 0 0 0
5 0.33 0 0 0 0.34 0 0.33 0 0
6 0 0 0 0 0 0.5 0 0.5 0
7 0 0 0 0 0.34 0 0.33 0 0.33
8 0 0 0 0.5 0 0 0 0.5 0

214

In this particular case we have one pressure point state - state 4. According

to the Markov model definition this state is an absorbing state and the others can

be termed transient states. So for any Markov chain that has r absorbing states and

t transient states, the canonical representation of the chain’s transition probability

matrix can be written as:

⎛
⎜⎝Q R

O I

⎞
⎟⎠

Here Q is a t X t matrix, I is a r X r identity matrix, R is a nonzero t X r matrix

and O is a r X t zero matrix. The fundamental matrix F = inv(I◦Q), which implies

F = I +Q+Q2 + err, where err is the error term. So now for our example we want

to find the number of time steps it would take to get the bottleneck state (state 4)

from any initial state. This is called the mean first passage time. In order to do that,

we can rewrite the transition probability matrix for our case shown in Table 8.4,in

it’s canonical form:

Table 8.5. Canonical State Transition Probability Matrix for Table 8.4

States 0 1 2 3 5 6 7 8 4
0 0 0.5 0 0 0.5 0 0 0 0
1 0.33 0 0.34 0 0 0 0 0 0.33
2 0 0.5 0 0.5 0 0 0 0 0
3 0 0 0.33 0 0 0.34 0 0.33 0.33
5 0.33 0 0 0 0 0 0 0 0.34
6 0 0 0 0 0.5 0 0.5 0 0
7 0 0 0 0 0 0.33 0 0.34 0.33
8 0 0 0 0.5 0 0 0.5 0 0
4 0 0 0 0 0 0 0 0 1

215

From the canonical transition probability matrix, 8.5, the Q matrix can be

calculated as:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.5 0 0 0.50 0 0

0.33 0 0.34 0 0 0 0 0

0 0.5 0 0.5 0 0 0 0

0 0 0.33 0 0 0.34 0 0.33

0.33 0 0 0 0 0 0 0

0 0 0 0 0.5 0 0.5 0

0 0 0 0 0 0.33 0 0.34

0 0 0 0.5 0 0 0.5 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Given this the fundamental matrix F can be calculated:

F = 1
8

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

14 9 4 3 9 4 3 2

6 14 6 4 4 2 2 2

4 9 14 9 3 2 3 4

2 4 6 14 2 2 4 6

6 4 2 2 14 6 4 2

4 3 3 3 9 14 9 4

2 2 2 4 4 4 14 6

2 3 4 9 3 4 9 14

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The fundamental matrix, F represents the number of times the application stays

in a particular state before it hits the bottleneck state (state 4 in our case). So these

are the time steps at each state before the application hits state 4 for the first time.

In order to find the number of time steps it takes to get to the bottleneck state, we

will use one of the Markov model theorems that states that is the chain starts at state

Si, and ti is the number of steps before the chain gets to a target state and t is a

column vector such that it’s ith entry is ti, then the following is true: t = Fc. Here c

216

is another column vector with all entries being 1. So in our case

Fc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6

5

6

5

5

6

5

6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

From this we can conclude that if the initial starting state is 0, it will take us 6

time steps to get to the bottleneck state. If we start at state 2, it will take us 5 steps

to get to our pressure point state and so on.

In addition to the two above stated statistical observations, Markov chains and

their transition probabilities can be used to determine a sequence of states in the

future. Let’s assume that instead of having a single state pressure point node in the

SSM, we now have a specific sequence of states that point towards a bottleneck. Let’s

assume that the sequence of states can be represented as x and has a length L and

we are interested in finding out the probability of x occurring given a model M. The

probability of x can be determined as:

Pr(x) = Pr(xL, xL−1,x1) = Pr(xL|xL−1, ...x1).P r(xL−1|xL−1, .., x1).P r(x1)

We know that for a Markov chain, the probability of each xi depends only on

the value of xi−1. Therefore

Pr(x) = Pr(xL|xL−1).P r(xL−1|xL−2)...P r(x2|x1).P r(x1) = Pr(x1)
L∏
i=2

Pr(xi|xi−1)

(8.4)

217

Consider the following transition probability matrix for four states shown in

Table 8.6:

Table 8.6. Sample Initial State Transition Probability Matrix

States 0 1 2 3
0 0.18 0.274 0.426 0.12
1 0.171 0.368 0.274 0.188
2 0.161 0.339 0.375 0.125
3 0.079 0.355 0.384 0.182

So now if we know that the state sequence 3 3 3 3 points to a bottleneck,

we can find the probability of such a sequence occurring in the future by using the

Equation (8.4) and calculating the following:

Pr(3333) = Pr(3).P r(3|3).P r(3|3).P r(3|3)
Now from common probability knowledge, we know that given two events the

conditional probabilities can be calculated as follows:

P (A|B) = A∩B
P (B)

and

P (B) = n(B)
n(A∪B)

Where P (A|B) is the probability of A given B, P(B) represents the probability

of B, n(A ∪ B) is the count of the total number of elements in the set and n(B) is

the total number of occurrences of B in n(A∪B). In our case the elements of the set

are equivalent to the states of the application. Let’s assume that when we run the

different test cases in a particular order, we observe the following application state

sequence

1 2 0 3 3 2 1

we can now find the probability of occurrence for the pressure point state 3 3 3 3

by calculating the individual probabilities and the conditional probabilities of the

218

specific states occurring in a particular order in the future by looking at the normal

application state sequence 1 2 0 3 3 2 1:

Pr(0) = 1
7

Pr(1) = 2
7

Pr(2) = 2
7

Pr(3) = 2
7

Pr(3|3) = 0.182
2
7

So using the conditional probability formaula shown in Equation (8.4) for a

Markov chain sequence,

Pr(3333) = 2
7
.0.1822

7

.0.1822
7

.0.1822
7

= 0.07689

Therefore there is a 7.689% chance that the application will run into a pressure

point state in the future. It is these kind of statistical observations that can be used

to proactively evaluate an application’s performance over time. Since the underlying

model was built using test cases that contained factors from production, it will give

be a pretty good representation of what could happen when the application is live.

If the model contains a bottleneck state or a sequence of states that could cause a

bottleneck, it then becomes easy to detect under what scenario the issue happens and

also predict the probability of it occurring again in the future. Since we are now able

to calculate the probability of the application running into a pressure point at any

given point of time, plus we know what combination of factor levels caused the issue,

it becomes easier to work on a solution before the incident happens again.

219

REFERENCES

[1] T. Nivas, “Test harness and script design principles for automated testing of

non-gui or web based applications,” in Proc. International Workshop on E2E

Test Script Engineering, 2011.

[2] J. Meier, C. Farre, P. Bansode, S. Barber, and D. Rea, Performance Testing

Guidance for Web Applications, ser. Patterns and Practices. Microsoft Press,

Nov. 2007.

[3] T. Riley and A. Goucher, Beautiful Testing. O’Reilly, Oct. 2009.

[4] T. Nivas and C. Csallner, “Managing performance testing with release certifica-

tion and data correlation,” in 19th ACM SIGSOFT Symposium on the Founda-

tions of Software Engineering (FSE), Industry Track. ACM, Sept. 2011.

[5] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox, “Cap-

turing, indexing, clustering, and retrieving system history,” in Proc. 20th ACM

Symposium on Operating Systems Principles (SOSP), Oct. 2005, pp. 105–118.

[6] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Perracotta: Mining tem-

poral API rules from imperfect traces,” in Proc. 28th International Conference

on Software Engineering (ICSE). ACM, May 2006, pp. 282–291.

[7] G. Everett and R. McLeod Jr., Software Testing: Testing Across the Entire

Software Development Life Cycle. Wiley, July 2007.

[8] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “An automated approach

for abstracting execution logs to execution events,” Journal of Software Mainte-

nance, vol. 20, no. 4, pp. 249–267, 2008.

220

[9] R. K. Mansharamani, A. Khanapurkar, B. Mathew, and R. Subramanyan, “Per-

formance testing: Far from steady state,” in Proc. 34th Annual IEEE Inter-

national Computer Software and Applications Conference Workshops (COMP-

SACW). IEEE, July 2010, pp. 341–346.

[10] E. J. Weyuker and F. I. Vokolos, “Experience with performance testing of soft-

ware systems: Issues, an approach, and case study,” IEEE Transactions on Soft-

ware Engineering (TSE), vol. 26, no. 12, pp. 1147–1156, Dec. 2000.

[11] G. Denaro, A. Polini, and W. Emmerich, “Early performance testing of dis-

tributed software applications,” in Proc. 4th ACM International Workshop on

Software and Performance (WOSP). ACM, Jan. 2004, pp. 94–103.

[12] G. Shah, “Software - testability,” DeveloperIQ, Jan. 2009.

[13] J. Gao and M.-C. Shih, “A component testability model for verification and

measurement,” in Proc. 29th Annual International Computer Software and Ap-

plication Conference (COMPSAC). IEEE, July 2005, pp. 211–218.

[14] Z. Balaton and G. Gombás, “Resource and job monitoring in the grid,” in Proc.

9th International Conference or Parallel Processing (Euro-Par). Springer, Aug.

2003, pp. 404–411.

[15] B. M. Oki, M. Pflügl, A. Siegel, and D. Skeen, “The information bus - an archi-

tecture for extensible distributed systems,” in Proc. 14th ACM Symposium on

Operating System Principles (SOSP). ACM, Dec. 1993, pp. 58–68.

[16] A. Chan, “Transactional publish / subscribe: The proactive multicast of

database changes,” in Proc. ACM SIGMOD International Conference on Man-

agement of Data (SIGMOD). ACM, June 1998, p. 521.

[17] R. Buyya, “Parmon: A portable and scalable monitoring system for clusters,”

Software—Practice & Experience (SP&E), vol. 30, no. 7, pp. 723–739, June 2000.

221

[18] R. A. Finkel, “Pulsar: An extensible tool for monitoring large Unix sites,”

Software—Practice & Experience (SP&E), vol. 27, no. 10, pp. 1163–1176, Oct.

1997.

[19] S. E. Parkin and G. Morgan, “Toward reusable SLA monitoring capabilities,”

Software—Practice & Experience (SP&E), vol. 42, no. 3, pp. 261–280, Mar. 2012.

[20] A. Sztajnberg, R. S. Granja, J. Cesário, and A. F. A. Monteiro, “An integration

experience of a software architecture and a monitoring infrastructure to deploy

applications with non-functional requirements in computing grids,” Software—

Practice & Experience (SP&E), vol. 41, no. 1, pp. 103–127, Jan. 2011.

[21] W. Gu, G. Eisenhauer, K. Schwan, and J. S. Vetter, “Falcon: On-line monitoring

for steering parallel programs,” Concurrency—Practice & Experience (CP&E),

vol. 10, no. 9, pp. 699–736, Aug. 1998.

[22] R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, B. Tierney, and R. Wolski,

“A grid monitoring architecture,” Global Grid Forum, Tech. Rep. GWD-Perf-

16-1, July 2001.

[23] S. Zanikolas and R. Sakellarioui, “A taxonomy of grid monitoring systems,”

Future Generation Computer Systems, vol. 21, no. 1, Jan. 2005.

[24] Y. Liao and D. Cohen, “A specificational approach to high level program mon-

itoring and measuring,” IEEE Transactions on Software Engineering (TSE),

vol. 18, no. 11, pp. 969–979, Nov. 1992.

[25] A. V. Dastjerdi, S. G. H. Tabatabaei, and R. Buyya, “A dependency-aware

ontology-based approach for deploying service level agreement monitoring ser-

vices in Cloud,” Software—Practice & Experience (SP&E), vol. 42, no. 4, pp.

501–518, Apr. 2012.

[26] G. Katsaros, G. Kousiouris, S. V. Gogouvitis, D. Kyriazis, A. Menychtas,

and T. A. Varvarigou, “A self-adaptive hierarchical monitoring mechanism for

222

clouds,” Journal of Systems and Software (JSS), vol. 85, no. 5, pp. 1029–1041,

May 2012.

[27] W. Fu and Q. Huang, “GridEye: A service-oriented grid monitoring system with

improved forecasting algorithm,” in Proc. 5th International Conference on Grid

and Cooperative Computing (GCC) Workshops. IEEE, Oct. 2006, pp. 5–12.

[28] H. L. Truong and T. Fahringer, “SCALEA-G: A unified monitoring and perfor-

mance analysis system for the grid,” Scientific Programming, vol. 12, no. 4, pp.

225–237, Dec. 2004.

[29] D. Gunter and B. Tierney, “NetLogger: A toolkit for distributed system perfor-

mance tuning and debugging,” in Proc. 8th IFIP/IEEE International Symposium

on Integrated Network Management (IM). Kluwer, Mar. 2003, pp. 97–100.

[30] A. Bertolino, A. Calabrò, F. Lonetti, and A. Sabetta, “GLIMPSE: A generic

and flexible monitoring infrastructure,” in Proc. 13th European Workshop on

Dependable Computing (EWDC). ACM, May 2011, pp. 73–78.

[31] X. Zhang, J. L. Freschl, and J. M. Schopf, “A performance study of monitoring

and information services for distributed systems,” in Proc. 12th International

Symposium on High-Performance Distributed Computing (HPDC). IEEE, June

2003, pp. 270–282.

[32] D. Johnson and P. Roselli, “Using xml as a flexible portable test script language,”

in Proc. Systens and Readiness Technology Conference, 2003.

[33] b. L. Y. Y. Chonwu Jiang and C. Liui, “Study on real-time test script in auto-

mated test equipment,” in Proc. 8th International Conference on Maintainability

and Safety, 2009.

[34] Q. X. M. Grechanik and C. Fu, “Maintaining and evolving gui-directed test

scripts,” in Proc. 31st International Conference on Software Engineering, 2009.

223

[35] B. H. R. S. Marlon Vieira, Johanne leduc and J. Kaszmeir, “Automation of

gui testing using a model-driven approach,” in Proc. International Workshop on

Automation of Software Test, 2006.

[36] J. P. Bahareh Badhan, martin Franzle and T. Teige, “Test automation for hybrid

systems,” in Proc. 3rd International Workshop on Software Quality Assurance,

2006.

[37] A. Orso and B. Kennedy, “Selective capture and replay of program executions,”

in Proc. 3rd International Workshop in Dynamic Analysis, 2005.

[38] D. P. S. P. Oren Laadan, Ricardo Baratto and J. Nieh, “A personal virtual

computer recorder,” in Proc. 21st Symposium on Operating System Principles,

2007.

[39] M. Ivory and M. Hearst, “The state of the art in automating usability evaluation

of user interfaces,” in Proc. Computing Surveys, 2001.

[40] R. W. Stefan Berner and R. K. Keller, “Observations and lessons learned from

automated testing,” in Proc. 27th International Conference on Software Engi-

neering, 2005.

[41] T. J. Lorenzen and V. L. Anderson, Design of Experiments: A No-Name Ap-

proach.

[42] B. T. Stephanie Fraley, Mike Oom and J. Zalewski, The Michigan Chemical

Process Dynamics and Controls Open Text Book. Available Online, 2007.

[43] H. d. M. Gunter Bolch, Stefan Greiner and K. S. Trivedi, Queueing Networks and

Markov Chains: Modeling and Performance Evaluation with Computer Science

Applications.

[44] U. N. Bhat and G. K. Miller, Elements of Applied Stochastic Processes, 3rd ed.

John Wiley and Sons, 2002.

224

[45] M. Black and Y. Yacoob, “Recognizing facial expressions in image sequences

using local parameterized models of image motion.”

[46] M. Ostendorf and H. Singer, “Hmm topology design using maximum likelihood

successive state splitting.”

[47] G. Cormack and R. Horspool, “Data compression using dynamic markov mod-

eling.”

[48] D. Goldberg and M. J. Mataric, “Coordinating mobile robot group behavior

using a model of interaction dynamics,” in Proc. 3rd International Conference

on Autonomous Agents. IEEE, May 1993, pp. 1–5.

[49] J. S. Aleksandar Lazarevic and V. Kumar, “Pakdd 2004 tutorial: Data min-

ing for analysis of rare events: A case study in security, financial and medical

applications,” in Proc. Pacific-Asia Conference Knowledge Discovery and Data

Mining, 2004.

[50] C. Ling and L. C, “Data mining for direct marketing: Problems and solutions,” in

Proc. International Conference of Knowledge Discovery and Data Mining, 1998.

[51] K. M and M. S, “Addressing the curse of imbalanced training sets: One sided

selection,” in Proc. International Conference of Machine Learning, 1997.

[52] L. H. N. Chawla, K. Bowyer and P. Kegelmeyer, “Smote: Synthetic minority

over-sampling technnique.”

[53] N. Chawla and A. Lazarevic, “Smoteboost: Improving the prediction of minority

class in boosting,” in Proc. Pacific-Asia Conference on Knowledge Discovery and

Data Mining, 2003.

[54] P. Domingos, “Metacost: A general method for making classifiers cost-sensitive,”

in Proc. International Conference of Knowledge Discovery and Data Mining,

1993.

225

[55] J. Z. W. Fan, S. Stolfo and P. Chan, “Adacost: Misclassification cost-sensitive

boosting,” in Proc. International Conference of Machine Learning, 1999.

[56] K. Ting, “A comparative study of cost-sensitive bossting algorithms,” in Proc.

International Conference of Machine Learning, 2000.

[57] Y. Z. N.Ye and C. Borror, “Robustness of the markov chain model for cyber

attack detection,” IEEE Transactions on Reliability, vol. 53, no. 1, pp. 116 –

123, Mar. 2004.

[58] Q. Z. N. Ye and M. Xu, “Probabilistic networks with undirected links for anomaly

detection,” in Proc. SMC Information Assurance and Security Workshop, 2000.

[59] W. DuMouchel, “Computer intrusion detection based on bayes factors for com-

paring command transition probabilities,” National Institute of Statistical Sci-

ences [Available: http://www.niss.org/download-abletechreports.html].

[60] G. G. S.M. Sharafi and S. Emadi, “An analytical model for performance evalua-

tion of software architectural styles,” in 2nd International Conference on Tech-

nology and Engineering, 2010.

[61] V. Sharma and K. Trivedi, “Reliability and performance of component based

software systems with restarts, retries, reboots and repairs,” in 17th International

Symposium on Software Reliability, 2006.

[62] X. Wang and A. Ray, “Signed real measure of regular languages,” in Proc.of

American Control Conference. IEEE, May 2002.

[63] A. Ray and S. Phoha, “A language measure of discrete event automata,” in

International Federation of Automatic Control World Congress. IEEE, July

2002.

[64] A. R. Hong Yiguang, K.S. Trivedi and S. Phoha, “Sofwtare performance analysis

using a language measure,” in Proc.of American Control Conference, 2003.

226

[65] R. Jain, The Art of Computer Systems Performance Analysis. John Wiley and

Sons, Inc., 1991.

[66] E. Weyuker and A. Avritzer, “A metrics for predicting the performance of an

application under growing workload,” IBM Systems Journal, vol. 41, no. 1, pp.

45–54, Sept. 2002.

[67] C. S. K. G. H. S. Marcelo De Barros, Jing Shiau and J. Forsmann, “Web service

wind tunnel: On performance testing large scale stateful web services,” in Inter-

national Conference on Dependable Systems and Networks. IEEE, June 2007,

pp. 612 – 617.

[68] A. Avritzer and E. J. Weyuker, “The automatic generation of load test suites

and the assessment of the resulting software,” IEEE Transactions on Software

Engineering (TSE), vol. 21, no. 9, pp. 705–716, Sept. 1995.

[69] A. Avritzer and B. Larson, “Load testing software using deterministic state test-

ing,” in Proc. International Symposium on Software Testing and Analysis (IS-

STA). ACM, June 1993, pp. 82 – 88.

[70] T. Berling and P. Runeson, “Efficient evaluation of multifactor dependent system

performance using fractional factorial design,” IEEE Transactions on Software

Engineering, vol. 29, no. 9, pp. 769 – 781, Sept. 2003.

[71] A. F. Karr and A. A. Porter, “Distributed performance testing using statitical

modeling,” in Proc. International Workshop on Advances in Model based Testing.

ACM, July 2005, pp. 1 –7.

[72] D. P. B. Prabu Dorairaj and L. P. Kantam, “Performance tuning of storage sys-

tem using design of experiments,” in Proc. 33rd International Computer Mea-

surement Group Conference, Dec. 2007.

227

BIOGRAPHICAL STATEMENT

Tuli Nivas received her Master of Computer Science degree from the Univer-

sity of Texas at Arlington. She is currently working with Sabre Holdings Inc., a

leading travel IT company with headquarters in Southlake, Texas. She is part of

the Enterprise Engineering group and her focus has been performance and system

engineering. Tuli has designed, architected and helped implement various solutions

for running performance tests, setting up monitoring and building automation for

different airline solutions. Her interests lie in different technologies including cloud

and virtualization for distributed systems.

Tuli is active in writing papers and attending performance engineering confer-

ences and has also taught classes at Sabre to teach various groups about the impor-

tance and the process of proactive engineering.

228

