
NOVEL METHODS FOR ENTITY-CENTRIC INFORMATION EXPLORATION

by

NING YAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2013

Copyright c© by NING YAN 2013

All Rights Reserved

I leave no trace of wings in the air, but I am glad I have had my flight.

— Fireflies by Rabindranath Tagore (1928)

ACKNOWLEDGEMENTS

I would like to thank my supervising professor Dr. Chengkai Li for his continuous

patience of motivating and discussing over various research topics. I feel benefited from not

only his rigorous reasoning logic but also the correct attitude towards academic research.

The concepts and habits accumulated these years would be a fortune for a lifetime.

I would also like to thank Dr. Gautam Das, Dr. Leonidas Fegaras, and Dr. Ramez

Elmasri for serving in my dissertation committee and for providing invaluable advice

throughout the progress of my doctoral studies.

I would like to thank my lab-mates in Innovative Database and Information Systems

Research (IDIR) Lab — Xiaonan Li, Nandish Jayaram, Naeemul Hassan, Afroza Sultana,

Gensheng Zhang, Abolfazl Asudeh, Wei Xiang, for collaborating on research projects and

for gaming together.

Finally, I would like to thank my wife Lingjia Gong, who has been taken care of my

life and has always been supportive for what I am doing.

November 21, 2013

iv

ABSTRACT

NOVEL METHODS FOR ENTITY-CENTRIC INFORMATION EXPLORATION

NING YAN

The University of Texas at Arlington, 2013

Supervising Professor: Chengkai Li

We witness an unprecedented proliferation of entity graphs that capture entities (e.g.,

persons, products, organizations) and their relationships. Such entity data gradually evolves

into the most comprehensive knowledge graph ever built by human beings. The flourish of

entity data also boosts a growing demand for entity-centric information exploration tasks.

Different from traditional information retrieval tasks that are based on statistics of text

terms, entity-centric information exploration tasks are usually based on metrics over enti-

ties, their relationships, or graph structures.

In this work, we identified two essential tasks in entity-centric information explo-

ration: 1) how to do faceted navigation over a set of homogeneous entities, utilizing entity

relationships and concept hierarchies; 2) how to assist users in attaining a quick and rough

preview of huge entity graphs.

As an approach for the first problem, we proposed a novel method that dynamically

discovers a query-dependent faceted interface for a set of Wikipedia articles resulting from

a keyword query. We further extended this method into a general framework for faceted

interface discovery for Web documents. Our model leverages the collaborative vocabularies

in Wikipedia, such as its category hierarchy and intensive internal hyperlinks, for building

v

faceted interfaces. We proposed metrics for ranking both individual facet hierarchies and

faceted interfaces (each with k facet hierarchies). We then developed faceted interface

discovery algorithms that optimize these ranking metrics.

As an approach for the second problem, we proposed a novel method that generates

preview tables for entity graphs. The preview tables consist of important entities and re-

lationships from entity graphs, which can help users quickly understand such graphs. We

studied various scoring measures for the goodness of preview tables. Based on these s-

coring measures, we formulated several optimization problems that look for the optimal

previews with the highest aggregated scores, under various constraints on preview size and

distance between preview tables. We proved that the optimization problems under distance

constraint are NP-complete. We then designed a dynamic-programming algorithm and an

Apriori-style algorithm for finding optimal previews.

For both problems, we conducted experiments as well as user studies for evaluating

our proposed models, ranking measures, and algorithms. The results demonstrated the effi-

ciency and effectiveness of our proposed methods for discovering query-dependent faceted

interfaces and generating preview tables.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . x

LIST OF TABLES . xii

Chapter Page

1. INTRODUCTION . 1

2. DYNAMIC DISCOVERY OF QUERY-DEPENDENT FACETED INTERFACES

FOR WEB DOCUMENTS . 9

2.1 A Generic Model for Faceted Interfaces and its Instantiation for Faceted

Search over Web Documents . 17

2.1.1 A Generic Model of Faceted Interfaces 18

2.1.2 Instantiation of the Generic Model for Faceted Interfaces over Web

Documents . 20

2.1.3 Definitions of Concepts and Faceted Interface Discovery Problem . 23

2.2 Facet Ranking . 26

2.2.1 Single-Facet Ranking . 27

2.2.2 Multi-Facet Ranking . 31

2.3 Algorithms . 33

2.3.1 Relevant Category Hierarchy (Algorithm 1) 34

2.3.2 Ranking Single Facet (Algorithm 2 and 3) 37

2.3.3 Searching for k-Facet Interface (Algorithm 4) 40

2.4 System Implementation . 41

vii

2.4.1 Facetedpedia . 41

2.4.2 Facetednews . 44

2.5 Evaluation . 45

2.5.1 User Studies . 46

2.5.2 Characteristics of Generated Faceted Interfaces 51

2.5.3 Efficiency Evaluation . 53

3. GENERATING PREVIEW TABLES FOR ENTITY GRAPHS 55

3.1 Preview Discovery Problem . 57

3.2 Scoring Measures for Previews . 61

3.2.1 Preview Scoring . 62

3.2.2 Key Attribute Scoring . 62

3.2.3 Non-Key Attribute Scoring . 64

3.3 Optimal Previews under Size and Distance Constraints 66

3.4 Algorithms . 72

3.4.1 A Brute-Force Algorithm . 72

3.4.2 A Dynamic-Programming Algorithm for Concise Preview Discov-

ery Problem . 75

3.4.3 An Apriori-style Algorithm for Tight / Diverse Preview Discovery

Problem . 77

3.5 Evaluation . 80

3.5.1 Accuracy of Preview Scoring Measures 80

3.5.2 Efficiency of Optimal Preview Discovery Algorithms 85

3.5.3 Sample Optimal Previews . 89

4. RELATED WORK . 91

4.1 Faceted Search Systems: A Comparative Study 91

4.2 Other Related Work to Faceted Search . 94

4.3 Related Work to Generating Preview Tables for Entity Graphs 96

5. CONCLUSION . 98

REFERENCES . 99

BIOGRAPHICAL STATEMENT . 106

LIST OF ILLUSTRATIONS

Figure Page

2.1 The faceted search interfaces of Newegg.com and NCSU library catalog. . . 10

2.2 The faceted search interface of Facetedpedia 11

2.3 Examples of exploring Facetedpedia. 12

2.4 The faceted search interface of Facetednews. 14

2.5 The generic model for faceted interfaces. 18

2.6 Instantiations of the generic faceted interface model for different scenarios. . 19

2.7 Instantiation of the generic model for Facetedpedia. 22

2.8 The concept of facet for documents. 24

2.9 The navigation on a 2-facet interface. 27

2.10 Navigational costs of facets. 30

2.11 The sequences of navigational steps. 32

2.12 The architecture of Facetedpedia. 41

2.13 The architecture of Facetednews. 44

2.14 Root Categories in Facetedpedia Sample Interfaces. 47

2.15 Root Categories in Facetednews Sample Interfaces 47

2.16 Average ratings of compared systems for 12 queries. 50

2.17 Average ratings of compared systems for 3 general questions. 51

2.18 Characteristics of faceted interfaces produced in Facetedpedia. 51

2.19 Characteristics of faceted interfaces produced in Facetednews. 52

2.20 Execution time of Facetedpedia and Facetednews. 53

3.1 An Excerpt of an Entity Graph. 56

x

3.2 A Two-Table Preview of the Entity Graph in Figure 3.1. 57

3.3 The Schema Graph for the Entity Graph in Figure 3.1. 57

3.4 Construction of Graphs for Reduction from the Clique Problem to the Opti-

mal Diverse Preview Discovery Problem. 71

3.5 Precision-at-K of Key Attribute Scoring. 81

3.6 Efficiency Evaluation of Optimal Concise Preview Discovery Algorithms. . . 86

3.7 Efficiency Evaluation of Optimal Tight and Diverse Preview Discovery Al-

gorithms. 86

4.1 Taxonomies of faceted search systems. 93

LIST OF TABLES

Table Page

2.1 Characteristics of the Wikipedia dataset. 42

2.2 Querie Keywords for Evaluation. 48

3.1 Notations . 58

3.2 Mean Reciprocal Rank of Non-Key Attribute Scoring. 81

3.3 Pearson Correlation Coefficient for Key Attribute Scoring and Non-Key At-

tribute Scoring. 84

3.4 Samples of Optimal Concise Previews. 88

3.5 Samples of Optimal Tight and Diverse Previews. 89

xii

CHAPTER 1

INTRODUCTION

We witness in many domains an unprecedented proliferation of entity graphs that

capture entities (e.g., persons, products, organizations) and their relationships. Sometimes

there are also concept (or category) hierarchies over entity graphs describing type infor-

mation of entities. Real-world entity graphs include knowledge bases (e.g., DBpedia [1],

YAGO [2], Probase [3] and Freebase [4], which powers Google’s knowledge graph 1), so-

cial graphs, drug and disease databases, gene and protein databases, and program analysis

graphs, to name just a few. Entity graphs are often represented as RDF triples, due to

heterogeneity of entities and the often lacking schema in data. The Linking Open Data 2

community has interlinked billions of RDF triples spanning over several hundred datasets.

Many other entity graph datasets are also available from various data repositories such as

Amazon’s Public Data Sets, 3 Data.gov 4 and NCBI’s databases 5. Users and developers

are tapping into entity graphs for numerous applications, including search, recommenda-

tion systems, business intelligence and health informatics.

The flourish of entity graphs boost a growing demand for entity-centric information

exploration tasks where entity graphs are involved. Compared with traditional information

retrieval tasks that are based on statistics of text terms, entity-centric information explo-

ration tasks are based on metrics over entities, entity relationships, or entity graph struc-

1http://www.google.com/insidesearch/features/search/knowledge.html
2http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/

LinkingOpenData
3http://aws.amazon.com/publicdatasets/
4http://www.data.gov/
5http://www.ncbi.nlm.nih.gov/

1

tures. On one hand, entity graphs can help information exploration tasks by serving as

knowledge facilities for understanding or browsing external data sources. On the other

hand, huge entity graphs themselves are hard for end users or developers to comprehend.

Thus there is a pressing need to study how to improve the understanding process of entity

graphs.

In this dissertation, we focus on two aspects of entity-centric information exploration,

i.e., using entity graphs to browse external data sources and understanding entity graphs

themselves. Specifically, we formulate two concrete goals: 1) given a set of Web documents

, how to utilize entity graph including entities, relationships, and a concept hierarchy to

navigate these documents; and 2) how to derive a set of preview tables to browse important

entities and relationships in entity graphs. Towards these goals, we propose the following

two innovative approaches:

• Faceted Interface Discovery.

We propose innovative methods for dynamic discovery of query-dependent faceted

interfaces over Wikipedia articles. We further extend the discovery method to a

framework that could discover such an interface for general Web documents.

• Optimal Preview Discovery.

We propose innovative methods for generating preview tables for entity graphs which

help end users and developers for quick and better understanding of such graphs.

Below we briefly highlight these two approaches.

1. Dynamic Discovery of Query-Dependent Faceted Interfaces for Web Documents.

(Chapter 2):

We first study how to utilize entity graphs to browse Web documents. Faceted

search [5] is a useful technique for information exploration, especially when a us-

er needs to browse through a long list of articles or objects, which, without necessary

auxiliary facility, could be time consuming and painstaking. A faceted interface for a

2

set of objects is a set of category hierarchies, where each hierarchy corresponds to an

individual facet (dimension, attribute, property) of the objects. The user can navigate

an individual facet through its hierarchy of categories and ultimately a specific facet

value if necessary, thus reaching those objects associated with the chosen categories

and value on that facet. The user navigates multiple facets and the intersection of

the chosen objects on individual facets are brought to the user’s attention. The pro-

cedure hence resembles repeated constructions of conjunctive queries with selection

conditions on multiple dimensions.

Wikipedia has become the largest encyclopedia ever created, whose pages have grown

over 3.5 million English articles. The prevalent manner in which web users access

Wikipedia articles is keyword search. Keyword search has been effective in finding

specific web pages matching the keywords. Therefore it may well satisfy users when

they are casually interested in a single topic and use Wikipedia as a dictionary or en-

cyclopedia for that topic. However, Wikipedia has now become a primary knowledge

source for many users and even an integral component in the knowledge management

systems of businesses for decision-making. It is thus typical for a user to explore a

set of relevant articles, instead of targeting a particular article, for more sophisticated

information discovery and exploratory tasks. With only keyword search, one would

have to digest the potentially long list of search result articles, follow hyperlinks to

connected articles, adjust the query, perform multiple searches, and synthesize in-

formation manually. This procedure is often time-consuming and error-prone. A

faceted interface can facilitate the process of exploring articles in Wikipedia.

Different from previous approaches, we aim at developing methods that are fully au-

tomatic and dynamic in both facet dimension generation and category hierarchy con-

struction. Toward this goal, we propose a general faceted search model and a general

framework for faceted interface discovery which is instantiated into two prototype

3

systems, Facetedpedia and Facetednews, for exploring Wikipedia articles and news

articles, respectively. Our model utilizes the collaborative vocabularies in Wikipedia,

such as its category hierarchy and intensive internal hyperlinks, for building faceted

interfaces. Given the sheer size and complexity of Wikipedia data, the search space

of possible choices of faceted interfaces is prohibitively large. We propose metric-

s for ranking individual facet hierarchies by user navigational cost, and metrics for

ranking interfaces (each with k facet hierarchies) by both average pair-wise facet

similarities and average navigational costs. We thus develop faceted interface dis-

covery algorithms that optimize for these ranking metrics. We conduct experimental

evaluation and user studies to verify the effectiveness of the proposed metrics, the

algorithms, and the prototype systems.

2. Generating Preview Tables for Entity Graphs (Chapter 3):

We then study how to utilize entity graphs to gain a quick and better understanding of

themselves. It can be a challenging task to select entity graphs for a particular need,

given abundant datasets from many sources and the oftentimes scarce information

available for the datasets. While sources such as the aforementioned data reposi-

tories often provide dataset descriptions, typically users cannot get a direct look at

an entity graph itself before fetching the data. To this end, we propose methods to

automatically produce preview tables for entity graphs. Given an entity graph with

many types of entities and relationships, we generate a set of tables, each of which

for an important entity type. Each table comprises a set of attributes, each of which

corresponds to a relationship associated with the entity type. Each tuple in the table

consists of an entity belonging to the entity type and its related entities for the table

attributes. Such preview tables would be helpful for quick understanding of entity

graphs.

4

Several other approaches are arguably less adequate for gaining a quick overview of

entity graphs.

(1) The first solution is to visualize a data graph [6]. The whole graph can be large.

For instance, in a September 2012 snapshot of the “film” domain of Freebase, there

are 190K vertices (i.e., entities) and 1.6M edges (i.e., relationships). Given the sheer

size and complexity of such data, a visualization tool is more effective for showing

either the macro structure of the data graph or the local details surrounding individual

nodes.

(2) The second solution is to show a schema graph corresponding to the data graph.

The schema graph is generated by merging entity graph vertices of the same entity

type and merging edges of the same relationship type. Although a schema graph is

much smaller than the corresponding entity graph, it is not small enough for easy

presentation and quick preview.

(3) The third approach is to present a summary of the schema graph. Schema summa-

rization has been investigated for relational databases [7, 8, 9], XML [9] and graph-

s [10, 11]. While Section 4.3 discusses these works in more detail, we note that the

preview tables proposed in this paper are different in several significant ways. It is

unclear how to apply these methods on an entity graph or its schema graph, due to

differences in data models. Some of these methods [7, 8, 9] work on relational and

semi-structured data, instead of graph data. Some [9, 10, 11] produce trees or graphs

as output instead of flat tables. Although it is plausible that some of these approaches

can be adapted for entity graphs, there are more profound reasons that can render

them ineffective. First, schema summary can still be quite large. For instance, the

method in [7, 8] clusters the tables in a database but does not reduce the number of

tables or the complexity of database schema. If we treat each entity type as a table

and its neighboring entity types in the schema graph as the table attributes, the num-

5

ber of tables would equal the number of entity types. Second, schema summarization

is for helping database administrators and programmers in gaining a detailed under-

standing of a database in order to form queries. Our goal is to assist users in attaining

a quick and rough understanding, before they decide to investigate the entity graph in

more detail and fetch the complete dataset. Therefore we look for a structure much

smaller than the schema summaries in the aforementioned works.

In our definition (details in Section 3.1), a preview is a set of preview tables, each

of which has a key attribute (corresponding to an entity type) and a set of non-key

attributes (each corresponding to a relationship type). Given an entity graph and its

schema graph, there is thus a large space of possible previews. Our goal is to find

an “optimal” preview in the space. To this end, we tackled several challenges: (1)

We discerned what factors contribute to the goodness of a preview and proposed sev-

eral scoring functions for key and non-key attributes as well as preview tables. The

scoring functions are based on several intuitions related to how much information a

preview conveys and how helpful it is to users. (2) Based on the scoring measures, a

preview’s score is maximized when it includes as many tables and attributes as pos-

sible. However, the purpose of having a preview is to help users attain a quick under-

standing of data and thus a preview must fit into a limited display space. Considering

the tradeoff, we enforced a constraint on preview size. Furthermore, we considered

enforcing an additional constraint on the pairwise distance between preview tables.

Given the spaces of all possible previews, we formulated the optimization problem

of finding an preview with the highest score among those satisfying the constraints.

The optimization problems are non-trivial, as we proved that they are NP-complete

under distance constraints. (3) The search space of previews grows exponentially

by data size and the constraints. A brute-force approach is thus too costly. For effi-

ciently finding optimal previews, we design a dynamic programming algorithm and

6

an Apriori [12]-style algorithm. We conduct experiments on the Freebase dataset to

verify the accuracy and efficiency of our methods.

Overall, this dissertation makes the following contributions:

• Concepts

We propose the concepts of query-dependent faceted interfaces for navigating Web doc-

uments and preview tables for previewing entity graphs. (Section 2.1)

• Systems

We build systems Facetedpedia and Facetednews instantiated from the generic frame-

work of faceted interface discovery. To the best of our knowledge, these systems are the

first attempt of dynamic discovery of query-dependent faceted interface for text docu-

ments. We also build a system that generates preview tables for entity graphs.

• Metrics

Based on a user navigation model, we propose metrics for measuring the “goodness” of

facets, both individually and collectively. (Section 2.2) We propose methods for mea-

suring the goodness of preview tables based on several intuitions. (Section 3.2) We thus

formulate the problems of optimal faceted interface discovery and optimal preview dis-

covery based on these measures.

• Algorithms

We develop effective and efficient algorithms for discovering faceted interfaces in the

large search space of possible interfaces. (Section 2.3) We develop a dynamic-programming

algorithm and an Apriori-style algorithm for finding optimal previews. (Section 3.4)

• Evaluations

For faceted interface discovery over Web documents, we conduct user study to evaluate

the effectiveness of our prototype systems by comparing with alternative approaches.

We also conduct experiments to quantitatively evaluate the quality and efficiency. (Sec-

7

tion 2.5) For generating preview tables for entity graphs, we conduct extensive experi-

ments and user study to verify the accuracy of the scoring measures, the efficiency of the

algorithms, and the overall effectiveness of preview tables discovered. (Section 3.5)

The rest of the dissertation is organized as follows. Chapter 2 studies the problem

of dynamic faceted interface discovery for web documents. Chapter 3 studies the problem

of generating preview tables for entity graphs. The survey of the literature related to this

dissertation is provided in Chapter 4, and the conclusions are detailed in Chapter 5.

8

CHAPTER 2

DYNAMIC DISCOVERY OF QUERY-DEPENDENT FACETED INTERFACES FOR

WEB DOCUMENTS

In this chapter, we investigate methods for dynamically discovering query-dependent

faceted interfaces over Web documents. Given a set of result documents from a keyword

search query, the objective is to produce a faceted interface for exploring the result docu-

ments.

We often experience faceted interfaces when shopping at E-commerce websites such

as Amazon.com and Newegg.com. For example, when a customer is shopping for LCDs on

Newegg.com, she can first issue a keyword query such as “Samsung LCD”. The website

will then return a list of LCDs. In addition, a faceted interface will be generated on the

resulting web page, for exploring the LCDs (see Figure 2.1 (left)). The customer can

narrow down her search results by facets on dimensions such as price and screen size.

Today, many systems can generate faceted interfaces for relational data such as the product

catalogs behind online stores similar to Newegg.com. Similar faceted interfaces are used in

searching library catalogs by metadata fields such as genre, subject, etc. One such example

is http://www.lib.ncsu.edu/catalog/ (Figure 2.1 (right)).

However, many document collections do not come with structured schema or meta-

data. Hence facets must be discovered from the text content of documents. There are only

few such systems that discover faceted interface for document exploration. Furthermore,

no prior system dynamically discovers query-dependent interfaces for the resulting docu-

ments of keyword search. In this section we propose a framework for dynamic discovery

of query-dependent faceted interface from Web documents. The framework is instantiat-

9

Figure 2.1: The faceted search interfaces of Newegg.com (left) and NCSU library catalog
(right).

ed into two systems: Facetedpedia 1 [13, 14] and Facetednews 2, which are for exploring

Wikipedia and news articles, respectively.

We use the following example as our motivating example throughout this chapter.

Example 1 (Motivating Example). Imagine that a user is exploring information about

action films in Wikipedia. The Facetedpedia system takes a keyword query, say, “us ac-

tion film”, as the input and obtains a ranked list of Wikipedia articles from an external

search engine. It will create a faceted interface, as shown in Figure 2.2, for navigat-

ing these articles. The system dynamically derives k facets (region (A)) for covering the

top s result articles (region(C)) (s=234 in the example). Figure 2.2 only shows three

1http://idir.uta.edu/facetedpedia/
2http://idir.uta.edu/facetednews/

10

Figure 2.2: The faceted search interface of Facetedpedia generated for keywords “us action
film”.

of the generated facets: (1) American actors by state; (2) American film directors; (3)

Film production companies of the United States. Other facets include Academy award

winners, American film screenwriters, and so on. Each facet is associated with a hierar-

chy of categories. Each article can be assigned to the nodes in these hierarchies, with an

assignment representing an “attribute” value of the article.

On each facet, the user can navigate through a category path which is formed by

parent-child relationships between categories in the Wikipedia category system. 3 4 In

Figure 2.3a, the user selects category New York actors under American actors by state

3A Wikipedia article may belong to one or more categories. These categories are listed at the bottom of

the article.
4The Wikipedia category system is at http://en.wikipedia.org/wiki/Wikipedia:

Categorization.

11

(a) Facetedpedia interface after selecting one navigational path:
“American actors by state>New York actors>Tom Cruise”.

(b) Facetedpedia interface after selecting two navigational paths:
“American actors by state>New York actors>Tom Cruise” and
“Film production companies of Untied States>Paramount Pictures”.

(c) Facetedpedia interface after selecting two navigational paths:
“American actors by state>New York actors>Tom Cruise” and
“American film directors>Steven Spielberg”.

Figure 2.3: Examples of exploring Facetedpedia.

12

and she further selects attribute value Tom Cruise under New York actors. A user nav-

igational path is then added in region (B) of Figure 2.3a. There are four articles sat-

isfying the chosen navigational path, and they are shown in region (C) of Figure 2.3a.

The user could further add another facet condition Paramount Pictures under category

Film production companies of Untied States. The result interface is shown in Figure 2.3b.

Here another navigational path is added to region (B) of Figure 2.3b and the Wikipedia ar-

ticles covered by both paths are shown in region (C) of Figure 2.3b.

If the user is not satisfied with current results, she could remove certain navigational

path by clicking “[remove]” in front of that particular path. For example, she could remove

the path Film production companies of Untied States> Paramount Pictures and add an-

other path American film directors>Steven Spielberg. The result interface is shown in

Figure 2.3c. In this way, the user filters the large number of result articles and finds those

matching her interests. When the user clicks one particular article title in region (C), the

corresponding Wikipedia article would be brought to the user by the system. (This part of

the interface is omitted.)

Based on the same framework beneath Facetedpedia, Facetednews is a faceted search

system for news articles (Figure 2.4). In a traditional news search engine, a user can search

by keywords (e.g. “nba games”) and then navigate through the result articles one by one. In

Facetednews, several facets relevant to the news articles are generated to help the user nar-

row down her targets. If she wants to read articles related to Boston Celtics players, she can

select category Boston Celtics players under facet National Basketball Association players by club.

If she is further interested in US players who have played in Olympic games, she can add

another facet condition Olympic Basketball play

-ers of the United States. This scenario is shown is Figure 2.4. Two navigational paths

are added to region (B). She can proceed to read any article in region (C), which contains

13

Figure 2.4: The faceted search interface of Facetednews.

articles at the intersection of the two chosen navigational paths. She can also add more

paths to region (B).

Motivated by the examples in previous chapter, we study the problem of dynamic

discovery of query-dependent faceted interfaces for Web documents. Given a set of top-s

ranked articles as the search result from a keyword query, our goal is to produce an interface

of multiple facets for exploring these result articles. Specifically, we focus on automatic

and dynamic discovery of faceted interfaces. The facets could not be pre-computed due

to the query-dependent nature of our proposed system. In applications where faceted in-

terfaces are deployed for relational tuples or schema-available objects, the tuples/objects

are captured by prescribed schemata with clearly defined dimensions (attributes), therefore

a query-independent static faceted interface (either manually or automatically generated)

may suffice. On the contrary, Web documents lack such pre-determined dimensions that

could fit all possible dynamic query results. Therefore efforts on static facets would be fu-

14

tile. Even if the facets can be pre-computed for some popular queries, say, based on query

logs, the computation must be automatic and dynamic. Given the sheer size and rapid

growth of document corpora, the large number of attribute values that can be associated

with documents, and the complexity of category systems such as the Wikipedia category

system, a manual approach would be prohibitively time-consuming and cannot scale to stay

up-to-date.

Dynamic discovery of query-dependent faceted interfaces for Web documents is a

non-trivial undertaking. Below we briefly summarize the main challenges in realizing a

faceted search system with such capability and our main ideas:

Challenge 1: The facets and their category hierarchies are not readily available.

Our concept of faceted interface is built upon two pillars: facets (i.e., dimensions or

attributes) and the category hierarchy associated with each facet. The definition of “facet”

itself for documents does not arise automatically, leaving alone the discovery of a faceted

interface. Therefore we must answer two questions: (1) facet identification – What are

the facets of Web documents? and (2) hierarchy construction – Where does the category

hierarchy of a facet come from?

In this chapter we propose a generic model for faceted interfaces, which can be in-

stantiated into different particular systems. Specifically, we instantiate the model into two

prototype systems, Facetedpedia and Facetednews, for faceted search over Wikipedia and

news articles, respectively. In instantiating the generic model, various sources may be used

for identifying facet attributes from Web documents. For each document, the named enti-

ties appearing in it represent important attributes of that document. Various named entity

catalogs can be used in identifying entity mentions in documents. Particularly, a Wikipedia

article can be viewed as the description of an entity. Hence Wikipedia itself is a high-quality

and comprehensive entity catalog. In addition to treating entities mentioned in articles as

facet attributes, we may also use other approaches. For example, if two entities co-occur

15

frequently in a corpus, one can serve as an attribute of the other. This is particularly useful

in Facetedpedia, where Wikipedia is both the text corpus and the named entity catalog.

Another example is to use categories of Wikipedia articles as their attributes. Furthermore,

metadata of articles can also be utilized in forming facet attributes. Once the facet attributes

are identified, category hierarchies of facets can be constructed by utilizing various infor-

mation sources such as thesaurus (e.g., WordNet [15]), taxonomy (e.g., YAGO [2]), and

folksonomy (e.g., Wikipedia category system).

Challenge 2: We need metrics for measuring the “goodness” of facets both individually

and collectively.

Given a set of documents, there may be a large number of candidate facets. Hence

a goodness metric for ranking the facets is necessary. Since the ultimate objective of a

faceted interface over Web documents is to help users explore the documents, it is natural to

optimize for finding facets effective for user navigation. A good facet should help users find

desirable documents conveniently. Hence we propose to rank facets by their navigational

costs, i.e., the amount of effort undertaken by users during navigation, based on a user

navigation model.

The problem gets more complex when finding multiple facets to form a faceted in-

terface, because the utilities of multiple facets do not necessarily build up linearly. Since

the facets in an interface should ideally describe diverse aspects of the Web documents, a

set of individually “good” facets may not be “good” collectively. Our idea is to avoid over-

lap between multiple facets and more specifically to optimize for small average pair-wise

similarity between facets.

Challenge 3: We must design efficient faceted interface discovery algorithms based on the

ranking criteria.

A straightforward approach for faceted interface discovery is to enumerate all pos-

sible faceted interfaces and apply our ranking metrics directly to find the best interface.

16

Such a brute-force method results in exhaustive examination of all possible combinations

of facets. This can easily be a prohibitively large search space. Furthermore, the interac-

tions between the facets in a faceted interface make the computation of its exact ranking

score intractable.

Our faceted interface discovery algorithm hinges on two ideas: (1) reducing the

search space; and (2) searching the space efficiently. There are two search spaces in finding

a good faceted interface– the space of facets and the space of faceted interfaces. To reduce

the space of candidate facets, we focus on a subset of “safe reaching facets”. To further

reduce the space of faceted interfaces, we rank facets individually by their navigational

costs and only consider the top ranked facets that do not subsume each other. Instead of

exhaustively examining all possible interfaces, we design a hill-climbing based heuristic

algorithm that optimizes for both the average navigational cost and the pair-wise similarity

of multiple facets.

The rest of the chapter is organized as follows. In Section 2.1, we propose the gener-

ic model of faceted interface and formally define the various relevant concepts. Section 2.2

discusses the metrics for ranking facets. We present our facet discovery algorithm in Sec-

tion 2.3. Section 2.4 discusses important implementation details and Section 2.5 presents

the results of user study and experimental evaluation.

2.1 A Generic Model for Faceted Interfaces and its Instantiation for Faceted Search over

Web Documents

In this section we first present a generic model of faceted interfaces, to explain the

basic concepts in faceted search systems. We then discuss how to instantiate the model to

Facetedpedia and Facetednews, which are our faceted search systems for Wikipedia and

news articles, respectively. Finally we formally define the concepts in this model.

17

Facet1

attributes

targets

category

supercategory

Facet2

Figure 2.5: The generic model for faceted interfaces.

2.1.1 A Generic Model of Faceted Interfaces

Figure 2.5 is a generic model that shows the basic components in faceted interfaces

and their relationships. Most faceted search interfaces consist of three levels: targets, at-

tributes, and category hierarchies. The targets are the objects that users browse and search

for. Examples of targets include database records, merchandise, photos, videos, web book-

marks, library collections, news articles, and Wikipedia entities (e.g., people, places, or-

ganizations, etc.), depending on application scenarios. The attributes are the features of

the targets. Examples include database schema attributes, product features (e.g., price,

manufacturer, size, etc.), tags on social media objects such as photos, videos, and book-

marks, metadata of library collections, terms in articles, and named entities related to target

entities. The attributes of objects are partitioned into multiple facets, each of which corre-

sponds to a dimension of attributes for exploring the objects. In some systems, each facet

is simply a flat group of attribute values. In other systems, the attribute values in each facet

can be further organized into a category hierarchy, which ideally presents the IS-A relation-

ships between category-subcategory and category-attribute. Various ways can be exploited

in constructing category hierarchy. For instance, a category hierarchy can be derived from

a folksonomy such as the Wikipedia category system, a thesaurus such as WordNet, or a

domain-specific taxonomy (e.g., the city-state-country hierarchy for places).

18

Value1 Value2 Value3 Value4

Tuple1 Tuple2 ….

Entity1 Entity2 Entity3 Entity4

Document1 Document2 …

Tag1 Tag2 Tag3 Tag4

Object1 Object2 …

(a) Relational Database (b) Text Document (c) Social Media (d) Bibliographic Database

Publication1 Publication2 ...

Term1 Term2 Term3 Term4

targets

attributes

category

hierarchy

(Relational

Schema)

(Folksonomy) (WordNet) (Ontology)

Figure 2.6: Instantiations of the generic faceted interface model for different scenarios.

Figure 2.6 shows several possible instantiations of the above generic model for build-

ing faceted interfaces in various applications. Note that the figure is only for illustration

purpose. It is not meant to cover all possible scenarios of instantiation. For each scenario

in the figure, we show what are the targets, the attributes, and the categories, to instantiate

the model. Figure 2.6(a) shows that each facet over a relational database table corresponds

to an attribute in its schema. Attribute values in a facet can be hierarchically organized by

a domain-specific taxonomy or simply alphabetically ordered. The same instantiation can

be used for faceted search over products in online stores and museum and library collec-

tions. Figure 2.6 (b) shows how to build a faceted interface for Web documents based on

the generic model. The attributes are named entities appearing in target documents and/or

related to the documents. The categories of these named entities and the super-categories

of the categories form the category hierarchies of facets. These hierarchies are based on

a folksonomy such as the Wikipedia category system. The details of this instantiation are

given in Section 2.1.2. Figure 2.6(c) is an instantiation of the model for faceted search

over social media objects (e.g., videos and photos) and social bookmarks. Each tag is an

attribute. Related tags are put together as a facet and hierarchically organized by concepts

from a thesaurus taxonomy such as WordNet [15]. By choices made on multiple facets, a

user can find those objects that have the specified tags or have tags belonging to the chosen

concepts. Figure 2.6(d) shows how to instantiate the model for a faceted interface over

19

a bibliographic database (e.g., PubMed 5). The attributes are the scientific terms appear-

ing in target objects, i.e., publications. The terms are organized into multiple facets with

hierarchical categories, based on specialized taxonomies such as the Gene Ontology 6.

2.1.2 Instantiation of the Generic Model for Faceted Interfaces over Web Documents

In this section we provide detailed discussion of Figure 2.6(b), i.e., how to instantiate

the generic model for faceted search over Web documents. Specifically, we explain its

instantiation into two prototype faceted search systems, Facetedpedia and Facetednews, for

Wikipedia articles and news articles, respectively.

The basic components in the generic model are targets, attributes, and category hi-

erarchies. Hence the key to realization of the model is to instantiate these basic compo-

nents. In applications where faceted interfaces are deployed for relational tuples or schema-

available objects, the tuples/objects are captured by prescribed schemata with clearly de-

fined attributes (cf. Figure 2.6(a)). On the contrary, Web documents lack such prede-

termined schemata. To address this challenge, the basis of our instantiation is to exploit

user-generated collaborative vocabulary in Wikipedia such as its “grassroots” category

system and its heavily interlinked articles. The collaborative vocabulary represents the col-

lective intelligence of many users and rich semantic information, and thus constitutes the

promising basis for forming faceted interfaces. With regard to the concept of facet attribute,

the Wikipedia articles (i.e., entities) hyperlinked from or related to a search result article

(i.e. target article) are exploited as its attributes. With regard to the concept of category

hierarchy, the Wikipedia category system provides the category-subcategory relationships

between categories, allowing users to go from general to specific concepts during explo-

ration.
5http://www.ncbi.nlm.nih.gov/pubmed/
6http://www.geneontology.org/

20

In Facetedpedia, the targets are Wikipedia articles, each of which is an encyclope-

dia entry describing the corresponding entity. For each target entity, its attributes are also

Wikipedia entities. They co-occur frequently with the target entity within syntactical u-

nits such as sentences or paragraphs in some text corpus. The premise is that if an entity

co-occurs frequently with the target entity, there is a good chance that they are highly

related. Specifically we use Wikipedia itself as the text corpus for measuring degree of co-

occurrence, although other text corpora can also serve the purpose, after Wikipedia entities

appearing in documents are annotated. The attribute entities can also be identified by mul-

tiple ways together. For example, attribute entities of a target entity can be the hyperlinked

entities in the target. In Wikipedia, the fact that the authors of an article (target entity)

collaboratively made hyperlinks to other entities is an indication of the significance of the

hyperlinked entities in describing the target entity.

In Facetednews, the targets are news articles. Similar to Facetedpedia, Facetednews

also uses Wikipedia entities as attributes of target articles. Specifically, given a target

article, its attribute entities are mentioned in the article itself. The attribute entities are

recognized by entity annotation techniques and particularly entity annotation systems de-

veloped for annotating by Wikipedia. We use Wikifier7 [16] for such purpose. Given a

Web document, Wikifier adds hyperlinks to Wikipedia entities in the document. It does so

by matching token sequences in the document with titles of Wikipedia entities and disam-

biguating among candidate matches. After annotation, the news articles in Facetednews are

enriched with semantic attributes that are helpful in faceted navigation. This instantiation

is applicable to not only news articles but also general Web documents, which extends the

application scenarios of our generic model.

Since both Facetedpedia and Facetednews use Wikipedia entities as attributes of tar-

get articles, the instantiation of category hierarchies is the same in the two systems, by

7http://www.nzdl.org/wikification/docs.html

21

{Tom Cruise} {Paramount_Pictures} {Steven Spielberg}

American actors by state

New York actorsCalifornia_actors

Film_production

companies_of_the

United_States

American film directors

Cinema_of_the_United_States

B

A

supercategorycategory

attribute entity

category

target entity

B

A

C

Top_Gun Minority_Report_(film)C

attribute entity

Figure 2.7: Instantiation of the generic model for Facetedpedia. Two highlighted naviga-
tional paths corresponding to Figure 2.3c.

exploiting the Wikipedia category system. 8 The Wikipedia category system consists of a

large hierarchy of categories. Its root is Category:Fundamental categories. 9 Starting from

the root, a category may contain multiple subcategories and multiple instance articles. Sub-

categories cover Wikipedia articles under more specific concepts, while supercategories

cover more general concepts. Articles contained in a category and its subcategories are in-

stances of the concept covered by the category. Hence the Wikipedia category system is a

hierarchy formed by supercategory-subcategory relationships and category-instance article

relationships.

In both Facetedpedia and Facetednews, each facet is a sub-hierarchy of the Wikipedi-

a category system. A facet groups together highly-related attribute entities (which are

Wikipedia articles themselves). Therefore a facet corresponds to a conceptual dimension

8Note that the generic model of faceted interfaces is not limited to the specific Wikipedia category system.

Ideally, any category hierarchy from a well-structured taxonomy such as WordNet [15] or YAGO [2] can be

exploited as the category hierarchy in the model.
9http://en.wikipedia.org/wiki/Category:Fundamental_categories

22

and each attribute entity in it corresponds to a value on the dimension. The hierarchy of

categories in the facet helps users to explore from general categories to more specific ones,

then to instance articles of categories (i.e., attribute entities), and finally to target entities

that attain the attribute entities.

Example 2 (Instantiate the Generic Model for Facetedpedia). Figure 2.7 shows an example

of instantiating the generic model into Facetedpedia. The target entities are two Wikipedi-

a articles Top Gun and Minority Report (film). The attribute entities are Tom Cruise,

Paramount Pictures, and Steven Spielberg. The two facets are sub-hierarchies under cate-

gories American actors by state and American film directors. The three boxes on the right

side of the figure represent Wikipedia pages A, B, and C. In this particular example, we

consider the hyperlinked entities on a target article as the attribute entities of that target.

Hence Tom Cruise is an attribute entity of target entity Top Gun, according to Wikipedia

page C, which is the article for the target entity itself. New York actors is a category of

attribute entity Tom Cruise, according to Wikipedia page B, which is the article for the

attribute entity itself. American actors by state is a supercategory of New York actors, by

Wikipedia page A.

2.1.3 Definitions of Concepts and Faceted Interface Discovery Problem

We now formally define the concepts of faceted interfaces for Web documents, based

on the aforementioned instantiation of our generic model. We also provide the specification

of faceted interface discovery problem.

Definition 1 (Target Article, Attribute Entity). Given a keyword query q, the set of top-

s ranked result articles from search engine, T ={p1, ..., ps}, are the target articles of q.

Each target article can have multiple attribute entities, each of which is a Wikipedia article

(entity). The relationship between a target article p and its attribute entity p′ is represented

as p → p′. The relationship can be established by different measures, such as p and p′ co-

23

c1

c2
c4

c5

c11

c7 c8 c10

c12

p’1 p’2 p’3 p’4 p’5

p1 p2 p3 p4 p5 p6

supercategory

category of

attribute entity

attribute entity

target article

c14

p’6 p’7 p’8

c3

p7

F1

F2

F5F3

F4

c6

F’2

c9

p’9

c13

Figure 2.8: The concept of facet for documents.

occurring enough number of times (when p itself is also a Wikipedia entity), p′ is mentioned

in article p or simply hyperlinked from p, and so on. Given T , the set of attribute entities

is A={p′1, ..., p′m}, where each p′i is an attribute entity of at least one target article pj∈T .

Definition 2 (Category Hierarchy). A category hierarchy is a connected, rooted directed

acyclic graph H(rH, CH, EH), where the node set CH={c} is a set of categories, the edge

set EH= {c99Kc′} is a set of supercategory(c)-subcategory(c′) relationships, and rH is the

root ofH.

Definition 3 (Facet). A facet F(r, CF , EF) is a rooted and connected subgraph of the cate-

gory hierarchyH(rH, CH, EH), where CF⊆CH, EF⊆EH, and r∈CF is the root of F .

Example 3 (Running Example). In Figure 2.8 there are 7 target articles (p1, . . ., p7) and

9 attribute entities (p′1, . . ., p
′
9). The category hierarchy has 14 categories (c1, . . ., c14).

The figure highlights 6 facets (F1, . . ., F5, and F ′2). For instance, F2 is rooted at c2 and

consists of 3 categories (c2, c7, c8) and 2 edges (c299Kc7, c299Kc8). There are many more

facets since every rooted and connected subgraph of the hierarchy is a facet. Note that the

figure may give the impression that edges such as c1199Kc14 and c7⇒p′1 are unnecessary

since there is only one choice under c11 and c7, respectively. The example is small due to

space limitations. Such single outgoing edge is very rare in a real category hierarchy of a

24

folksonomy such as Wikipedia category hierarchy. We will use Figure 2.8 as the running

example throughout the section.

The categories in a facet can “reach” target articles T through attribute entities A.

That is, by following the category-subcategory hierarchy of the facet, we can find a catego-

ry, then find an attribute entity belonging to the category, and finally find the target articles

that have the attribute. All such target articles are called the reachable target articles. A

facet is a safe reaching facet if ∀c∈CF , there exists a target article p∈T such that c reaches

p, i.e., there exists c99K...⇒p′←p, a navigational path of F , starting from c, that reaches p.

In order to capture the notion of “reach”, we formally define navigational path as follows.

Definition 4 (Navigational Path). With respect to target articles T , attribute entitiesA, and

a facet F(r, CF , EF), a navigational path in F is a sequence c199K...99Kct⇒p′←p, where,

• for 1≤i≤t, ci∈CF , i.e., ci is a category in F;

• for 1≤i≤t−1, ci99Kci+1∈EF , i.e., ci+1 is a subcategory of ci (in category hierarchyH)

and that category-subcategory relationship is kept in F .

• p′∈A, and ct is a category of p′ (represented as ct ⇒ p′);

• p∈T , and p′ is an attribute entity of p (represented as p→ p′).

Given a navigational path c199K...99Kct⇒p′←p, we say that the corresponding cat-

egory path c199K...99Kct reaches target article p through attribute entity p′, and we also

say that category ci (for any 1≤i≤t) reaches p through p′. Interchangeably we say p is

reachable from ci (for any 1≤i≤t).

Definition 5 (Faceted Interface). Given a keyword query q and the corresponding target

articles T , a faceted interface I={Fi} is a set of safe reaching facets of T . That is, ∀Fi∈I ,

Fi safely reaches T .

Example 4 (Navigational Path and Faceted Interface). Continue the running example. In

Figure 2.8, I={F2,F5} is a 2-facet interface. Two examples of navigational paths are

25

c299Kc8⇒p′3←p5 and c599Kc13⇒p′9←p5. However, {F ′2,F5} is not a valid faceted inter-

face becauseF ′2 is not a safe reaching facet, as category c6 cannot reach any target articles.

Based on the formal definitions, the Faceted Interface Discovery Problem over Web

documents is: Given a category hierarchy H(rH, CH, EH), for a keyword query q and its

resulting target articles T and corresponding attribute entities A, find the “best” faceted

interface with k facets. We shall develop the notion of “best” in Section 2.2.

2.2 Facet Ranking

The search space of the faceted interface discovery problem is prohibitively large.

Given the set of s target articles to a keyword query, T , there are a large number of at-

tribute entities which in turn have many categories associated with complex hierarchical

relationships. To just give a sense of the scale, in Wikipedia there are about 3 million En-

glish articles. The category systemH contains close to half a million categories and several

million category-subcategory relationships. By definition, any rooted and connected sub-

graph of H that safely reaches T is a candidate facet, and any combination of k facets

would be a candidate faceted interface. Given the large space, we need ranking metrics for

measuring the “goodness” of facets, both individually and collectively as interfaces.

Given that faceted interfaces are for users to navigate through the associated category

hierarchies and to ultimately reach the target articles, it is natural to rank them by the users’

navigational cost, i.e., the amount of effort undertaken by the users during navigation. The

“best” k-facet interface is the one with the smallest cost. Therefore as the basis of such

ranking metrics, we model users’ navigational behaviors as follows.

A user navigates in multiple facets in a k-facet interface. At the beginning, the nav-

igation starts from the roots of all k facets. At each step, the user picks one facet and

examines the set of subcategories available at the current category on that facet. She fol-

26

Step 1 Step 2

c2

c7 c8

p’1 p’2 p’3

p1 p2 p3 p4 p5 p6 p7

c5

c11

c12

c14

p’6 p’7 p’8 p’9

c13

c2

c7 c8

p’1 p’2 p’3

p1 p2 p3 p4 p5 p6

c5

c11

c12

c14

p’6 p’7 p’8 p’9

c13

Step 3

c2

c7 c8

p’1 p’2 p’3

p1 p2 p4 p5 p6

c5

c11

c12

c14

p’6 p’7 p’8 p’9

c13

Step 4

c2

c8

p’2 p’3

p4 p5 p6

c5

c12

p’7 p’8 p’9

c13

Step 5

c2

c8

p’3

p5

c5

p’9

c13

Figure 2.9: The navigation on a 2-facet interface I = {F2,F5}.

lows one subcategory to further go down the category hierarchy. Alternatively the user may

select one of the attribute entities reachable from the current category. The selections made

on the k facets together form a conjunctive query. After the selection at each step, the list

of target articles that satisfy the conjunctive query are brought to the user. The navigation

terminates when the user decides that she has seen desirable target articles.

Example 5 (Navigation in Faceted Interface). Continue the running example in Figure 2.8.

Consider a faceted interface I={F2,F5}. A sequence of navigational steps on this inter-

face are in Figure 2.9. At the beginning, the user has not selected any facet to explore,

therefore all 7 target articles are available (step 1). Once the user decides to explore F2

which starts from c2, p7 is filtered out since it is unreachable from F2 (step 2). The user

then selects c5, which further removes p3 from consideration (step 3). After the user further

explores F2 by choosing c8 (step 4), c11 is not a choice under c5 anymore because no target

articles could be reached by both c299Kc8 and c599Kc11. The user continues to explore

F5 by choosing c13 (step 5), which removes p′2 and also trims down the satisfactory target

articles to {p5}. The user may decide she has seen desirable articles and the navigation

stops.

2.2.1 Single-Facet Ranking

In this section we focus on how to measure the cost of an individual facet. Based

on the navigational model, we compute the navigational cost of a facet as the average cost

27

of its navigational paths. Intuitively a low-cost path, i.e., a path that demands small user

effort, has a small number of steps and at each step only requires the user to browse a small

number of choices. Therefore, we formally define the cost of a navigational path as the

summation of fan-outs (i.e., number of choices) at every step, in logarithmic form. 10

Definition 6 (Cost of Navigational Path). With respect to target articles T , the correspond-

ing attribute entities A, and a facet F(r, CF , EF), the cost of a navigational path in F is

cost(l) = log2(fanout(p
′)) +

∑
c∈{c1,...,ct}

log2(fanout(c)) (2.1)

where l=c199K...99Kct⇒p′←p.

In Formula 2.1, fanout(p′) is the number of (directly) reachable target articles

through the attribute entity p′,

fanout(p′) = |Tp′ | (2.2)

Tp′ = {p|p ∈ T ∧ p→ p′} (2.3)

In Formula 2.1, fanout(c) is the fanout of category c in F ,

fanout(c) = |Ac|+ |Cc| (2.4)

where Ac is the set of attribute entities belonging to c,

Ac = {p′|p′ ∈ A ∧ c⇒ p′} (2.5)

and Cc is the set of subcategories of c in F ,

Cc = {c′|c′ ∈ CF ∧ c 99K c′ ∈ EF} (2.6)

Note that we made several assumptions for simplicity. The cost formula only cap-

tures “browsing” cost. A full-fledged formula would need to incorporate other costs, such
10The intuition behind the logarithmic form is: When presented with a number of choices, the user does

not necessarily scan through the choices linearly but by a procedure similar to binary search.

28

as the “clicking” cost in selecting a choice and the cost of “backward” navigation when a

user decides to change a previous selection. Furthermore, we assume the user always com-

pletes a navigational path till reaching target articles. In reality, however, the user may stop

in the middle when she already finds desirable articles reachable from the current selection

of category. We leave the investigation of more sophisticated models to future study.

Example 6 (Cost of Navigational Path). We continue the running example. Given l= c5

99K c12⇒p′8←p6, a navigational path of F5 in Figure 2.8, cost(l)=fanout(c5)

+fanout(c12)+ fanout(p′8)=log2(3)+log2(2)+log2(3)=4.17.

Albeit the basis of our facet ranking metrics, the definition of navigational cost is

not sufficient in measuring the goodness of a facet. It does not consider such a scenario

that a facet cannot fully reach all the target articles in T , which presents an unsatisfactory

user experience. In fact, low-cost and high-coverage could be two qualities that compete

with each other. On the one hand, a low-cost facet could be one that reaches only a small

portion of the target articles. On the other hand, a comprehensive facet with high coverage

may tend to be wider and deeper, thus more costly. Therefore we must incorporate into the

cost formula the notion of “coverage”, i.e., the ability of a facet to reach as many target

articles as possible. To combine navigational cost with coverage, we penalize a facet by

associating a high-cost pseudo path with each unreachable article. We then define the cost

of a facet as the average cost in reaching each target article.

Definition 7 (Cost of Facet). With respect to target articles T , the cost of a safe reaching

facet F(r, CF , EF), cost(Fr), is the average cost in reaching each target article. The cost

for a reachable target article is the average cost of the navigational paths that start from r

and reach the target, and the cost for an unreachable target is a pseudo cost penalty.

cost(Fr) =
1

|T |
× (
∑
p∈Tr

cost(Fr, p) + penalty × |T − Tr|) (2.7)

29

c2

c7 c8

p’1 p’2 p’3

p1 p2 p3 p4 p5 p6

c4

c10

p’4 p’5

p1 p2 p3 p4 p5 p1 p2 p4 p5 p6 p7

F2 F4 F5

c3

c7 c8

p’1 p’2 p’3

p1 p2 p3 p4 p5 p6

F3

c9

p’4

c5

c11

c12

c14

p’6 p’7 p’8 p’9

c13

6
2

=T F

286.3)(cost 2 =F

16),(cost
2

2 =∈∑ Tp
pF

F

6
3

=T F

787.3)(cost 3 =F

51.19),(cost
3

3 =∈∑ Tp
pF

F

5
4

=T F

679.3)(cost 4 =F

755.11),(cost
4

4 =∈∑ Tp
pF

F

6
5

=T F

394.3)(cost 5 =F

755.16),(cost
5

5 =∈∑ Tp
pF

F

F1 (Figure 9) 7
1

=T F 873.34),(cost
1

1 =∈∑ Tp
pF

F

982.4)(cost 1 =F

Figure 2.10: Navigational costs of facets.

where cost(Fr, p) is the average cost of reaching p from r,

cost(Fr, p) =
1

|lp|
×
∑
l∈lp

cost(l) (2.8)

where lp is the set of navigational paths in F that reach p from r,

lp = {l|l = r 99K ...⇒ p′ ← p} (2.9)

In Formula 2.7, penalty is the cost of the aforementioned expensive pseudo path that

“reaches” the unreachable target articles, i.e., T −Tr, for penalizing a facet for not reaching

them. Its value is empirically selected (Section 2.5) and is at least larger than the highest

cost of any path to a reachable target article.

Example 7 (Cost of Facet). We continue the running example. Figure 2.10 shows the

costs of the 5 highlighted facets in Figure 2.8, together with their category hierarchies and

reachable attribute entities and target articles. It does not show F1 which is Figure 2.8

itself excluding c6. The costs of facets are obtained by Formula 2.7, with penalty=7. For

instance, cost(F2)=
1
7
×(
∑

p∈{p1,p2,p3,p4,p5,p6}cost(F2, p)+penalty

× |T −TF2|)=1
7
×(16+7×1)=3.286. F2 andF5 achieve lower costs than other facets. Even

though the paths in F4 are cheap, F4 has higher cost due to the penalty for unreachable

30

target articles (p6 and p7). F1 is even more costly due to its wider and deeper hierarchy,

although it reaches all target articles.

2.2.2 Multi-Facet Ranking

Even with the cost metrics for individual facets, measuring the “goodness” of a

faceted interface, i.e., a set of facets, is nontrivial. This is because the best k-facet interface

may not be simply the set of cheapest k facets. The reason is that when a user navigates

multiple facets, the selection made at one facet has impact on the available choices on other

facets, as illustrated by Example 5.

To directly follow the approach of ranking faceted interfaces by navigational cost, in

principle we could represent the navigational steps on multiple facets as if the navigation

is on one “integrated” facet. To illustrate, consider the navigation on a 2-facet interface

I={F2,F5} from Figure 2.8. Two possible sequences of navigational steps are shown in

Figure 2.11(a). One is c2, c5, c8, c13, p′9, p
′
3, p5, which are the steps taken by the user in

Figure 2.9, followed by choosing p′9, p
′
3, and finally p5. (Remember, for simplification of

the model, we assumed that the user will always complete navigational paths till reaching

target articles.) At each step, the available choices from both facets are put together as the

choices in the “integrated” facet. Note that after c8 is chosen, c12 and c13 are still valid

choices but c11 is not available anymore because c11 cannot reach the target articles that

c8 reaches. For the same reason, after c13 is chosen, p′3 is still a valid choice but p′2 is not

anymore. The other highlighted sequence is c5, c11, c2, c7, p′1, c14, p
′
6, p1. There are many

more possible sequences not shown in the figure due to space limitations.

With the concept of “integrated” facet, one may immediately apply Definition 7 to

define the cost of a faceted interface. That entails computing all possible sequences of

interleaving navigational steps across all the facets in a faceted interface. The interaction

31

start

c5c2

c7 c8 c5 c11 c12c2

c7 c8 c11 c12

p’2 p’3 c12

p’3 p’9

p’3

p5

c2 c14

c7 c14

p’1 c14

p1

c14

c13

c13

c13

p’6

c2 c3

c7 c8 c3

c7 c8

c7 c8c2

c7 c8c9

c9

c2 c4

c7 c8 c4

c7 c8

c2

c10p’4

p’2 p’3 c10

p’5p’2 p’3

p’2 p’3

p5

c10p’4

c2

c7

p’1

p1

(a) I={F2,F5} (b) I={F2,F3} (c) I={F2,F4}

start start

c9

Figure 2.11: The sequences of navigational steps.

between facets is query- and data-dependent, rendering such exhaustive computation prac-

tically infeasible.

However, the “integrated” facet does shed light on what are the characteristics of

good faceted interfaces. In general an interface should not include two facets that overlap

much. Imagine a special case when two facets form a subsumption relationship, i.e., the

root of one facet is a supercategory of the other root. Presenting both facets would not

be desirable since they overlap significantly, thus cannot capture the expected properties

of reaching target articles through different dimensions. As a concrete example, consider

the navigational steps of F2 and F3 in Figure 2.11(b). After the user selects c2 from F2

and then c3 from F3, the available choices become {c7, c8, c9}, which all come from the

“dimension” F3. The same happens if the user selects c3 and then c2.

Based on the above observation, we propose to capture the overlap of k facets by

their average pair-wise similarity. The pair-wise similarity of two facets is the degree of

overlap of their category hierarchies and associated attribute entities, defined below.

32

Definition 8 (Average Similarity of k-Facet Interface). The average pair-wise similarity of

a k-facet interface is

sim(I = {F1, ...,Fk}) =

∑
1≤i<j≤k sim(Fi,Fj)
k(k − 1)/2

(2.10)

where the similarity between two facets sim(Fi,Fj) is defined by an extension of overlap

coefficient [17],

sim(Fi,Fj) =
|CFi

⋂
CFj
|+ |AFi

⋂
AFj
|

min(|CFi
|, |CFj

|) + min(|AFi
|, |AFj

|)
(2.11)

where CFi
is the set of categories in Fi (Definition 3) and AFi

is the set of attribute entities

reachable from Fi,

AFi
= {p′|p′ ∈ A ∧ ∃c ∈ CFi

s.t. c⇒ p′} (2.12)

Example 8 (Similarity of Facets). Consider facets F1,. . .,F5 in Figure 2.8. sim(F2,F3)=

|CF2
⋂
CF3 |+|AF2

⋂
AF3 |

min(|CF2 |,|CF3 |)+min(|AF2 |,|AF3 |)
=

|{c7,c8}|+|{p′1,p′2,p′3}|
min(|{c2,c7,c8}|,|{c3,c7,c8,c9}|)+min(|{p′1,p′2,p′3}|,|{p′1,p′2,p′3,p′4}|)

=5/6.

Other pari-wise facet similarities are computed in the same way. The average pari-wise

similarity of faceted interface I={F2,F3,F5} is sim(I) = (sim(F2,F3) + sim(F2,F5)

+ sim(F3,F5))/3 = 5/18.

For multi-facet ranking, we do not design a single function to combine the average

pair-wise similarity of facets in a faceted interface with its navigational cost, since the mea-

sures of similarity and navigational cost are of different natures. Instead, in Section 2.3.3

we discuss how to search the space of candidate interfaces by considering both measures.

2.3 Algorithms

A straightforward approach for faceted interface discovery is to enumerate all possi-

ble k-facet interfaces with respect to category hierarchy H and apply our ranking metrics

directly to find the best interface. Such a brute-force method results in the exhaustive ex-
33

amination of all possible combinations of k instances of all possible facets, i.e., rooted

and connected subgraphs of H. Clearly it is a prohibitively large search space, given the

sheer size and complexity of the category system in Wikipedia. The brute-force technique

would be extremely costly. Therefore finding the best k-facet interface is a challenging

optimization problem.

Our k-facet discovery algorithm hinges on (1) reducing the search space; and (2)

searching the space effectively and efficiently.

Reducing the Search Space: There are two search spaces in finding a good k-facet interface:

the space of facets and the space of k-facet interfaces, which are sets of k facets. To

reduce the space of candidate facets, we focus on a subset of the safe reaching facets,

RCH-induced facets, which are the facets that contain all the descendant categories of

their roots (Section 2.3.1). To further reduce the space of faceted interfaces, we rank the

facets individually by their navigational costs (Section 2.3.2) and only consider the top

ranked facets that do not subsume each other (Section 2.3.3).

Searching the Space: Instead of exhaustively examining all possible interfaces, we design

a hill-climbing based heuristic algorithm to look for a local optimum (Section 2.3.3). To

further tackle the challenge of modeling the interactions of multiple facets in measuring the

cost of an interface, the hill climbing algorithm optimizes for both the average navigational

cost and the pair-wise similarity of the facets.

Based on these ideas, our k-facet discovery algorithm consists of three steps: con-

struction of relevant category hierarchy, ranking single facet, and searching for k-facet

interface.

2.3.1 Relevant Category Hierarchy (Algorithm 1)

By Definition 5, the facets in a faceted interface must be safe reaching facets, i.e.,

they do not contain “dead end” categories that cannot reach any target articles. Therefore

34

Algorithm 1: Construct RCH and Get Attribute Entities
Input: T : target articles;H: category hierarchy.

Output: A:attribute entities;RCH:relevant category hierarchy.

// get attribute entities.

1 A←∅; CRCH←∅; ERCH←∅

2 foreach p ∈ T do

3 foreach p→ p′ do

4 A←A∪{p′}

// start from the categories of attribute entities.

5 foreach p′ ∈ A do

6 foreach c⇒ p′, i.e., a category of p′ do

7 CRCH ← CRCH ∪ {c}

// recursively obtain the supercategories.

8 C←CRCH; C ′ ← ∅

9 while C is not empty do

10 foreach c ∈ C do

11 foreach c′ 99K c ∈ EH do

12 ERCH ← ERCH ∪ {c′ 99K c}

13 if c′ /∈ CRCH then

14 CRCH ← CRCH ∪ {c′}; C ′ ← C ′ ∪ {c′}

15 C ← C ′; C ′ ← ∅

16 return A andRCH(rH, CRCH, ERCH)

35

the categories appearing in any safe reaching facet could only come from the relevant

category hierarchy (RCH), which is a subgraph of the Wikipedia category hierarchy H,

defined below.

Definition 9 (Relevant Category Hierarchy). Given category hierarchyH(rH, CH, EH), tar-

get articles T , and attribute entities A, the relevant category hierarchy (RCH) of T is a

subgraph of H. Given any category in RCH, it is either directly a category of some at-

tribute entity p′∈A or a supercategory or ancestor of such categories. There exists an edge

(category-subcategory relationship) between two categories inRCH if the same edge exists

inH. By this definition the root ofH is also the root ofRCH.

The procedural algorithm for getting RCH is in Algorithm 1. Based on definition,

straightforwardly we can prove every safe reaching facet of the target articles T is a (rooted

and connected) subgraph of RCH. However, not every rooted and connected subgraph of

RCH is a safe reaching facet. Therefore, even though RCH is much smaller than H, the

search space is still very large. Hence we further shrink the space by considering only one

type of safe reaching facets, theRCH-induced facets.

Definition 10 (RCH-Induced Facet). Given the relevant category hierarchyRCH of target

articles T , a facetF(r, CF ,EF) isRCH-induced if it is a rooted induced subgraph ofRCH,

i.e., in F all the descendants of the root r and their category-subcategory relationships are

retained fromRCH.

Example 9 (RCH andRCH-Induced Facet). Continue the running example. In Figure 2.8,

the RCH contains all the categories in the category hierarchy H except c6 (and thus the

edge c299Kc6), since c6 cannot reach any target article. F2 is an RCH-induced facet, but

would not be if it does not contain c7 (or c8).

Note that everyRCH-induced facet is safe reaching, and the single-facet ranking and

the searching for k-facet interfaces are performed on it.

36

Algorithm 2: Facet Ranking
Input: T :targets;A:attributes;RCH:relevant category hierarchy.

Output: In: top nRCH-induced facets with smallest costs.

// get reachable target articles for each attribute entity.

1 foreach p′∈A do

2 Tp′ ← {p|p ∈ T ∧ ∃ p→ p′}

3 fanout(p′)← |Tp′ |

4 initialize visited(r) to be False for every r ∈ CRCH.

5 ComputeCost(rH) // recursively compute the costs of allRCH-induced

facets, starting from the root ofRCH.

6 In← the top nRCH-induced facets with the smallest costs.

7 return In

2.3.2 Ranking Single Facet (Algorithm 2 and 3)

Among all RCH-induced facets, only top n facets with the smallest navigational

costs are considered in searching for a k-facet interface (k < n). In ranking facets by their

costs, one straightforward approach is to enumerate all RCH-induced facets and to sep-

arately compute the cost of each facet by enumerating all of its navigational paths. This

approach is exponentially complex due to repeated traversal of the edges inRCH, because

RCH-induced facets would have many common categories and category-subcategory rela-

tionships.

To avoid the costly exhaustive method, we design a recursive algorithm that calcu-

lates the navigational costs of all RCH-induced facets by only one pass depth-first search

of RCH. The details are in Algorithm 2. The essence of the algorithm is to, during the

recursive traversal of RCH, record the number of navigational paths in a facet in addition

37

Algorithm 3: ComputeCost(r)
Input: r: the root of anRCH-induced facet.

Output: cost(Fr): cost of Fr; cost(Fr, p): average cost of reaching target

article p from Fr; pathcnt(Fr, p): number of navigational paths

reaching p from Fr; Tr: reachable target articles of r.

1 if visited(r) then

2 return

3 visited(r)← True;

4 Cr←{c|r 99K c ∈ ERCH} // subcategories of r.

5 foreach c ∈ Cr do

6 ComputeCost(c)

7 Ar←{p′|p′ ∈ A ∧ r ⇒ p′} // attribute entities belonging to r.

8 fanout(r)← |Ar| + |Cr|

9 Tr← (∪p′∈ArTp′)
⋃

(∪c∈CrTc) // reachable target articles of r.

10 foreach p ∈ Tr do

11 pathcnt(Fr, p)←|{p′|p′∈Ar,p∈Tp′}|+
∑

c∈Cr pathcnt(Fc, p)

12 cost1←
∑

p′∈Ars.t.p∈Tp′
(log2(fanout(r)) + log2(fanout(p

′)))

13 cost2←
∑

c∈Cr(log2(fanout(r))+cost(Fc, p))×pathcnt(Fc, p)

14 cost(Fr, p)← cost1+cost2
pathcnt(Fr,p)

15 cost(Fr)←
∑

p∈Tr cost(Fr, p)+penalty×|T − Tr|

16 return

38

Algorithm 4: k-Facet Interface Selection
Input: In: the top nRCH-induced facets with the smallest costs.

Output: Ik: a discovered faceted interface with k facets (k<n).

// remove subsumed facets from In

1 In−←{Fc|@Fc′ ∈ In s.t.Fc is subsumed by Fc′ , i.e., c is a descendant category

of c′}

// hill climbing

2 Ik ← a random k-facet subset of In−; I ′← In−\Ik

3 repeat

55 make Ik=<Ik[1],...,Ik[k]> sorted in increasing order of cost.

6 make I ′=<I ′[1],...,I ′[n−k]> sorted in increasing order of cost

7 for i = k to 1 step −1 do

8 for j = 1 to n−k do

9 Inew←(Ik\{Ik[i]}) ∪ {I ′[j]}

10 S1←
∑
Fc,Fc′∈Inew,Fc 6=Fc′

sim(Fc,Fc′)

11 C1←
∑
Fc∈Inew

cost(Fc)

12 S2←
∑
Fc,Fc′∈Ik,Fc 6=Fc′

sim(Fc,Fc′)

13 C2←
∑
Fc∈Ikcost(Fc)

14 if (S1≤S2 and C1<C2) or (S1<S2 and C1≤C2) then

15 Ik ← Inew; I ′← In−\Ik

16 go to line 5

17 until Ik does not change;

18 return Ik

39

to its navigational cost. The bookkeeping is performed for each reachable target article

because the cost is averaged across all such articles by Definition 7. The cost of a facet

rooted at r can be fully computed based on the recorded information of the facets rooted at

r’s direct subcategories, without accumulating the individual costs of the facets rooted at

r’s descendants. Therefore it avoids the aforementioned repeated traversal of RCH. More

specifically, the lines 11-14 in Algorithm 3 are for computing cost(Fr, p) in Formula 2.7.

However, the algorithm does not compute it by a direct translation of Formula 2.8 and 2.1,

i.e., enumerating all the navigational paths that reach p. Instead, line 12 gets cost1, the

total cost of all the navigational paths r⇒p′←p, i.e., the ones that reach p without going

through any other categories; line 13 computes cost2, the total cost of all the navigational

paths that go through other categories, by utilizing cost(Fc, p) and pathcnt(Fc, p) of the

subcategories c, but not other descendants. We omit the formal correctness proof.

2.3.3 Searching for k-Facet Interface (Algorithm 4)

Algorithm 4 searches for k-facet interface. To reduce the search space, our algorith-

m only considers In, the top n facets from Algorithm 2. We further reduce the space by

excluding those top ranked facets that are subsumed by other top facets (line 1). In other

words, we only keep In− , the maximal antichain of In based on the graph (category hi-

erarchy) subsumption relationship. This is in line with the idea of avoiding large overlap

between facets (Section 2.2.2).

Given In− , instead of exhaustively considering all possible k-element subsets of In− ,

we apply a hill-climbing method to search for a local optimum, starting from a random k-

facet interface Ik. At every step, we try to find a better neighboring solution, where a

k-facet interface Inew is a neighbor of Ik if they only differ by one facet (line 9). Given

the k×(n−k) possible neighbors at every step, we examine them in the order of average

navigational costs (line 5, 6, and 9). The algorithm jumps to the first encountered better

40

Figure 2.12: The architecture of Facetedpedia.

neighbor. The algorithm stops when no better neighbor can be found. As the goal function

to be optimized in hill-climbing, Inew is considered better if the facets of Inew have both

smaller pair-wise similarities and smaller navigational costs than that of Ik (line 14). The

idea of considering both similarity and cost is motivated in Section 2.2.2.

2.4 System Implementation

The generic model (Section 2.1), ranking metrics (Section 2.2), and algorithms (Sec-

tion 2.3) are instantiated into two prototype systems: Facetedpedia and Facetednews. Be-

low we introduce the implementation details of both systems.

2.4.1 Facetedpedia

In Facetedpedia, the targets are Wikipedia entities (i.e., articles). The attributes of

a target are Wikipedia entities that co-occur at least twice with the target entity in the text

corpus– Wikipedia itself. The Facetedpedia system mainly consists of four components:

preprocessing Wikipedia data dump, categorization, facet discovery, and Facetedpedia web

41

Table 2.1: Characteristics of the Wikipedia dataset.

number of articles 2,445,642

number of hyperlinks between articles 109,165,108

average number of hyperlinks per article 45

number of distinct categories 329,007

average number of categories per article 3

number of category-subcategory relationships 731,097

GUI. The architecture of the system is shown in Figure 2.12. We further elaborate the

implementation of the four components as follows.

• Preprocessing Wikipedia Data Dump

We used the Wikimedia MySQL data dump generated on July 24th 200811 and

loaded the data into our local database. In particular, we used the tables page.sql,

pagelinks.sql, categorylinks.sql, and redirect.sql, which provide all the relevant da-

ta, including the hyperlinks between articles, categories of articles, and the catego-

ry system. We performed several preprocessing tasks on these tables. One major

preprocessing task is to clean the original category hierarchy to make it cycle-free.

Although cycles should usually be avoided as suggested by Wikipedia, the category

system in Wikipedia contains a small number of elementary cycles 12 (594 detect-

ed in the dataset) due to various reasons. We applied depth-first search algorithm

to detect elementary cycles in the original dataset. The category hierarchy is made

acyclic by removing the last encountered edge in each elementary cycle during the

depth-first search. Other preprocessing steps include: removing tuples irrelevant to

11http://download.wikimedia.org
12A cycle is elementary if no vertices in the cycle (except the start/end vertex) appear more than once.

42

articles and categories; replacing redirect articles by their original articles; removing

special articles such as lists and stubs. We also applied basic performance tuning

of the database, including creating additional indexes on page id in various tables.

The characteristics of the dataset are summarized in Figure 2.1. The total size of the

tables is 1.2GB.

• Categorization

A faceted interface is more effective on a set of homogeneous target entities. In

our implementation, we exploited the DBpedia ontology13 for assigning Wikipedia

entities to about 80 pre-determined domains (e.g., People, Places, etc). This is done

offline and the categorization result of all Wikipedia entities is stored in a database

table.

When a user issues a keyword search query, the query is sent to an external search

engine which returns a ranked list of Wikipedia entities (i.e., articles). The returned

entities are most likely from different domains, thus Facetedpedia asks the user to

select one particular domain of her interest. An alternative approach is to let Faceted-

pedia select the dominant or largest domain of result entities automatically. However,

the user may like to select from other domains of her interest. A k-facet interface is

then discovered for the top-s search result entities belonging to the chosen domain.

In our implementation, we use Google.com as the external search engine.

• Facet Discovery

The facet discovery component is a multi-thread background daemon program. The

main process creates a new thread for each user session. The main process pre-loads

all the preprocessed tables (1.2GB in total) into memory. After the user chooses a

target domain, a new thread is created to run the facet ranking and search algorithms

and generate the resulting faceted interface.

13http://wiki.dbpedia.org/Ontology

43

AQUAINT-2
Dataset

Wikifier

Annotated
News

Facet
Discovery

search result
articles

Faceted
Interface

Solr
Search Engine

keyword query

News
Articles

Facetednews

Figure 2.13: The architecture of Facetednews.

• Facetedpedia Web GUI

The generated faceted interface, including information such as the category hierarchy

of each facet and the entities reachable from each category in the hierarchy, is stored

in a database. The GUI is a dynamic web page implemented using Ajax. It reads

the generated interface data from the database, displays the faceted interface, and

updates the interface based on the user’s navigation.

2.4.2 Facetednews

In Facetednews, the targets are news articles and the attributes are Wikipedia entities,

as mentioned in Section 2.1. Facetednews mainly consists of three components: prepro-

cessing news data, facet discovery, and Facetednews web GUI. The system architecture is

shown in Figure 2.13. In Facetednews we do not categorize news articles. We did not find

it empirically important to require news articles to be “homogeneous” in order to make a

faceted interface over the news articles effective. The implementation of facet discovery

and web GUI components in Facetednews is similar to that in Facetedpedia. In order to

apply our faceted interface discovery algorithm to news articles, we implemented two ad-

44

ditional functionalities to preprocess data– indexing and annotating news articles, which

we further elaborate below.

• Indexing news articles using Apache Solr

We used AQUAINT-2 dataset14 as our news corpus. It consists of 907K news articles

from 6 news agencies in the period of October 2004 – March 2006. We index the

news articles and provide full-text search over the articles, by using the Apache Solr

full-text search engine 15. For a keyword query to the Facetednews web GUI, the

search system returns a list of news articles, which become the target articles for

facet discovery. We did not use a commercial news search engine to fetch news

articles for queries, to avoid the overhead of query-time news article extraction and

annotation. That way we can stay focused on our objective of investigating how to

construct faceted interfaces over news articles.

• Annotating news articles using Wikifier

We applied Wikifier [16] to annotate news articles, i.e., to identify Wikipedia entity

names mentioned in the articles. For discovering faceted interfaces over the news

articles, the identified entities are their attribute entities. Over the 907K news articles

in AQUAINT-2 corpus, Wikifier detected over 13 million attribute entities, i.e., in

average 14 attribute entities for each news article.

2.5 Evaluation

Our experiment was conducted on a Dell PowerEdge 2900 III server running Linux

kernel 2.6.27, with dual quad-core Xeon 2.0 GHz processors, 2x6MB cache, 8GB RAM,

and three 1TB SATA hard drivers in RAID5.
14http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=

LDC2008T25
15http://lucene.apache.org/solr/

45

2.5.1 User Studies

We conducted user studies 16 to evaluate the effectiveness of both Facetedpedia and

Facetednews. For faceted interface discovery over Wikipedia articles, we compared the

results generated from three systems: Facetedpedia, Castanet [18], and Faceted Wikipedia

Search [19]. We obtained the implementation of Castanet from its authors. Note that Cas-

tanet is intended for static, short, and domain-specific documents with limited vocabularies.

Nevertheless, we applied Castanet on dynamic keyword search results over Wikipedia. We

used the same graphical user interface for both systems to make the comparison indepen-

dent from interface design difference. As for Faceted Wikipedia Search, we do not have

the implementation of its internal algorithms. Thus, we utilized its online service for our

user studies. This might lead to biases in system preference due to different GUI design.

For faceted interface discovery over news articles, we compared the results generated from

Facetedpedia and Castanet. As explained in Section 4.1, Faceted Wikipedia Search is i-

napplicable for faceted interfaces over general Web documents, since it uses Wikipedia

infoboxes for generating facets.

In Facetedpedia, each query is sent to Google with site constraint site:en.wikipedia.org

to get the top 200 (s=200) English Wikipedia articles. In Facetednews, each query is sent

to our local Solr search engine to get the top 400 (s=400) news articles. The relevant cat-

egory hierarchy (RCH) is then generated by applying Algorithm 1 on the aforementioned

MySQL database. By default, Algorithm 2 (facet ranking) returns top 200 (n=200) facets

and Algorithm 4 (faceted interface selection) generates 20 facets (k=20). The value of

penalty in Definition 7 was empirically selected by investigating the relationship between

number of unreachable target articles (|T −Tr|) and the total navigational cost of reachable

targets (
∑

p∈Tr cost(Fr, p)).

16All the survey pages we used for our user studies are provided at http://idir.uta.edu/

facetsurvey/.

46

us action film computer scientist
American_actors_by_state Association_of_American_Universities

American_writers Liberal_democracies

American_film_directors Software_companies_of_the_United_States

Academy_Awards Companies_in_the_NASDAQ-100_Index

Liberal_democracies Host_cities_of_the_Summer_Olympic_Games

Expatriates_in_the_United_States History_of_human-computer_interaction

Film_directors_by_genre Xerox

Film_score_composers_by_nationality !!!_albums

Fictional_secret_agents_and_spies Computer_hardware_companies

English_film_actors Companies_established_in_the_1980s

us country singer best seller book
Albums_by_year American_writers_by_genre

Liberal_democracies American_writers_by_state

Singles_by_year English-language_films

Radio_formats American_military_personnel_of_World_War_II

American_record_labels Faculty_by_university_or_college_in_the_United_States

Companies_based_in_New_York_City People_by_high_school_in_the_United_States

Nashville,_Tennessee People_of_English_descent

2000s_films American_actors_by_state

Spoken_articles Agnostics_by_nationality

County_seats_in_Tennessee Screenwriters_by_nationality

Figure 2.14: Root categories of 10 facets in the faceted interfaces generated by Facetedpe-
dia for 4 queries.

nba pc game
National_Basketball_Association_draft_picks Companies_in_the_NASDAQ-100_Index

20th_century_births Companies_established_in_the_1980s

National_Basketball_Association_players_by_club Companies_listed_on_the_Hong_Kong_Stock_Exchange

National_Basketball_Association_teams Dow_Jones_Industrial_Average

United_States_communities_with_African_American Networking_hardware_companies

Basketball_players_at_the_2004_Summer_Olympics Companies_established_in_the_1970s

DuPage_County,_Illinois Companies_based_in_Tokyo

Port_cities_in_the_United_States Entertainment_Software_Association

Olympic_basketball_players_by_country 20th_century_births

McDonald's_High_School_All-Americans Companies_listed_on_the_Tokyo_Stock_Exchange

ford microsoft
Car_manufacturers Companies_in_the_NASDAQ-100_Index

Ford Liberal_democracies

Liberal_democracies Living_people

Federal_countries American_chief_executives

Bus_manufacturers Circulating_currencies

Truck_manufacturers Currencies_of_Asia

Companies_based_in_Metro_Detroit Web_service_providers

G8_nations Microsoft_employees

Companies_listed_on_the_New_York_Stock_Exchange Companies_established_in_the_1990s

Motor_vehicle_manufacturers_based_in_Michigan American_billionaires

Figure 2.15: Root categories of 10 facets in the faceted interfaces generated by Facetednews
for 4 queries.

47

Table 2.2: Querie Keywords for Evaluation.

Query ID Facetedpedia Query ID Facetednews

1 us action film 1 nba

2 us national park 2 ford

3 us country singer 3 mobile phone

4 album 4 pc game

5 us film star 5 layoff

6 pc game 6 bankruptcy

7 computer scientist 7 tsunami

8 football player 8 president election

9 software 9 microsoft

10 best seller book 10 asia market

11 american writer 11 texas university

12 interstate highway 12 terrorism

Both Factedpedia and Facetednews were evaluated for 12 keyword queries, listed in

Figure 2.2. For Facetedpedia, we made the query keywords distributed across different do-

mains. For Facetednews, we chose keywords based on news events during the correspond-

ing period of the news corpus. Figure 2.14 shows a sample of resulting facets produced

by Facetedpedia for 4 of the queries. For each query, it shows the root categories of 10

facets in the faceted interface discovered by the system. Figure 2.15 shows the same for

Facetednews.

Both Factedpedia and Facetednews were evaluated by the same group of 18 voluntary

users. For each system, we partitioned the 12 queries into 3 batches (4 queries in each

batch) and asked each user to participate in one batch in evaluating the system’s produced

48

faceted interfaces for the query results. Thus, each batch of queries were evaluated by 6

users.

In evaluating the systems for a query, the query keywords and search objective de-

scription were shown to the users. The users were asked to explore the query’s target arti-

cles using the generated faceted interfaces. For Wikipedia articles, the users were present-

ed three different interfaces generated by Facetedpedia, Castanet, and Faceted Wikipedia

Search, respectively. For news articles, the interfaces generated by Facetednews and Cas-

tanet were shown. After exploring these interfaces, the users were asked to provide re-

sponses in the form of ratings. The ratings were in 5-point scale– 1:“useless”, 2: “not that

useful”, 3:“neutral”, 4:“useful to some extent”, 5:“very useful”. The average ratings over

the 12 queries are shown in Figure 2.16.

From Figure 2.16, we see that both Facetedpedia and Facetednews got higher rat-

ings than Castanet in all queries. The results are due to the following main advantages of

Facetedpedia over Castanet. First, Facetedpedia uses entities related to documents as their

attributes, while Castanet only uses general thesaurus concepts. This makes the facet at-

tributes in Facetedpedia more detailed and specific. Second, Facetedpedia uses Wikipedia

category system for hierarchical organization of categories in facets, while to organize the

general concepts, Castanet uses WordNet which is not as diverse and rich in semantics as

the Wikipedia category system.

Figure 2.16 also shows that Facetedpedia outperformed Faceted Wikipedia Search in

ratings. As discussed in Section 4.1, Faceted Wikipedia Search uses Wikipedia infoboxes

in building facets. The infobox of a Wikipedia article is essentially a collection of attribute-

value pairs related to the article. Such structured and table-like metadata makes the gen-

erated facets accurate. Given that Facetedpedia directly creates faceted interfaces for Web

documents without relying on such metadata, the better ratings obtained by Facetedpedia

verify the effectiveness of the proposed methods.

49

1.5

2

2.5

3

3.5

4

4.5

5

U
se

r
R

a
ti

n
g

s
Facetedpedia Castanet Faceted Wikipedia Search

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11 12

U
se

r
R

a
ti

n
g

s

Query ID

1.5

2

2.5

3

3.5

4

4.5

5

U
se

r
R

a
ti

n
g

s

Facetednews Castanet

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11 12

U
se

r
R

a
ti

n
g

s

Query ID

(a) Facetedpedia vs. other systems. (b) Facetednews vs. other systems.

Figure 2.16: Average ratings of compared systems for 12 queries.

In addition to the pre-defined queries, each user was also asked to query the systems

with open queries, i.e., arbitrary query keywords that the user came up with during user

study. The user was then asked to provide response to three general questions R1-R3, as

follows:

• R1: Does the system provide diverse and rich facets? (Being “diverse” means the

generated facets cover the target articles from different angles and being “rich” means

the generated facets have detailed information about the target articles’ attributes.)

• R2: Does the system provide precise facets? (Being “precise” means the generated

facets cover the target articles in a conceptually correct manner.)

• R3: Your overall rating of the system.

The responses to these general questions are also ratings at 5-point scale, ranging from 5

(the best score) to 1 (the worst score).

The rating results for the 3 general questions are shown in Figure 2.17. We see

that Facetedpedia and Facetednews received much higher ratings than Castanet on all three

questions. With regard to producing diverse and rich interfaces (R1), Facetedpedia received

stronger ratings than Faceted Wikipedia Search. This is because Faceted Wikipedia Search

does not produce query-dependent facets. For target Wikipedia entities in the same domain,

it always uses the same set of facets. For instance, if the target entities are people, facets

50

1.5

2

2.5

3

3.5

4

4.5
U

se
r

R
a

ti
n

g
s

Facetedpedia

Castanet

Faceted

0

0.5

1

R1 R2 R3

General Questions

Faceted

Wikipedia

Search

1.5

2

2.5

3

3.5

4

4.5

U
se

r
R

a
ti

n
g

s

Facetednews

Castanet

0

0.5

1

R1 R2 R3

U
se

r
R

a
ti

n
g

s

General Questions

(a) Facetedpedia vs. other systems. (b) Facetednews vs. other systems.

Figure 2.17: Average ratings of compared systems for 3 general questions.

coverage average pairwise similarity average category width average path length

Hill-climbing 96% 0.134 3.4 4.5

Top-k 95% 0.231 3.7 4.8

Random-k 79% 0.126 4.5 8.2

Figure 2.18: Characteristics of faceted interfaces produced by various algorithms in
Facetedpedia.

related to age, gender, citizenship will be used, no matter if they are politicians or actors.

Hence query-dependent facets such as the movies related to the actors and the political

events related to the politicians may not appear as facets. On question R2 and R3, the

ratings of Faceted Wikipedia Search are very close to that of Facetedpedia. This can be due

to that Faceted Wikipedia Search creates facets over structured infoboxes. Hence the facets

are always accurate to some extent, no matter if the facets are useful for a particular query

or not.

2.5.2 Characteristics of Generated Faceted Interfaces

In discovering faceted interfaces, our algorithm in Section 2.3 optimizes for mainly

3 objectives– high coverage of target articles, low overlap between multiple facets, and low

navigational cost. To evaluate if the algorithms meet these objectives, we measured the

characteristics of the faceted interfaces produced by our algorithms by four measures, as

51

coverage average pairwise similarity average category width average path length

Hill-climbing 93% 0.111 3.4 3.3

Top-k 91% 0.218 3.5 3.6

Random-k 84% 0.190 31.5 11.7

Figure 2.19: Characteristics of faceted interfaces produced by various algorithms in
Facetednews.

follows. (1) Coverage– the percentage of target articles that can be reached from a faceted

interface; (2) Average pairwise similarity of the facets in a faceted interface– Equation 2.10;

(3) Average category width– the average fan-out of all the categories in all k facets of a

faceted interface; (4) Average path length– the average length of all possible navigational

paths in all k facets of a faceted interface.

We measured these values for three algorithms: hill-climbing (Algorithm 4), top-

k which selects the top k facets ranked by Algorithm 2, and random-k which chooses k

random facets from the top n facets ranked by Algorithm 2. Figure 2.18 and Figure 2.19

show the measured results, for Facetedpedia and Facetednews, respectively. All the values

are averaged over the queries listed in Figure 2.2.

From the results, we see that hill-climbing and top-k had much better coverage than

random-k. This verifies that our single-facet ranking (Algorithm 2) is effective in choosing

high quality individual facets. In terms of average pari-wise facet similarity, hill-climbing

and random-k performed much better than top-k. This verifies that highly ranked facets

may substantially overlap. Hence simply choosing the top k facets will result in redun-

dant faceted interfaces, which are worse than even randomly chosen interfaces, in terms

of pari-wise similarity. hill-climbing achieves not only high coverage but also small over-

lap. Looking into detailed intermediate results, we observed that the hill-climbing method

started with choosing top k facets and gradually replaced some facets to make them less

similar to each other, while still maintaining the high ranks of chosen facets. In terms of

average category width and average path length, hill-climbing was slightly better than top-k

52

1

2

3

4

5

6

7

8

9

10
E

xe
cu

ti
o

n
 t

im
e

 (
s)

0

1

50 100 150 200 250 300 350

Number of target Wikipedia articles

0.5

1

1.5

2

2.5

E
xe

cu
ti

o
n

 t
im

e
 (

s)

0

100 200 300 400 500 600 700

Number of target news articles

(a) Facetedpedia (b) Facetednews

Figure 2.20: Execution time of Facetedpedia and Facetednews.

and significantly better than random-k, which chose very wide or deep facets from time to

time. The average category width and path length attained by hill-climbing were around 3

and 4. Therefore the fan-outs of categories and the lengths of navigational paths are within

a reasonable range for users.

2.5.3 Efficiency Evaluation

We evaluated the scalability of our approach by measuring the average execution

time of discovering k=20 facets for varying number of target articles (s from 50 to 350 for

Facetedpedia and from 100 to 700 for Facetednews). As can be seen from Figure 2.20,

both systems scaled well since the execution time increased linearly with the number of

target articles. It also shows that both systems achieved fairly fast response without much

performance optimization. (Our facet discovery program was running on a single server

without exploiting optimization techniques such as parallel processing for ranking facets

and memory caching of data or results.) In average it took 5 seconds for Facetedpedia

to discover top 20 facets for 200 Wikipedia articles, and 1.5 seconds for Facetednews to

discover top 20 facets for 200 news articles. Facetednews ran faster than Facetedpedia,

since the attribute entities in news articles are usually not as diverse as the ones in Wikipedia

53

articles. Thus the size of relevant category hierarchy (RCH) in Facetednews is usually

much smaller than that in Facetedpedia.

54

CHAPTER 3

GENERATING PREVIEW TABLES FOR ENTITY GRAPHS

In this chapter, we study the problem of generating preview tables for entity graphs.

Figure 3.1 is a tiny excerpt of an entity graph, in which the edge labeled Actor between

nodes Will Smith and Men in Black captures the fact that the person is an actor in the film.

Given an entity graph with many types of entities and relationships, we generate a set of

tables, each of which for an important entity type. Each table comprises a set of attributes,

each of which corresponds to a relationship associated with the entity type. Each tuple in

the table consists of an entity belonging to the entity type and its related entities for the

table attributes.

Figure 3.2 is a conceivable preview of the entity graph in Figure 3.1. It consists of

two preview tables—the upper table has attributes FILM, Director and Genres, and the lower

table has attributes FILM ACTOR and Award Winners. In this preview, entities of types FILM

and FILM ACTOR are deemed of central importance in the entity graph. Hence, FILM and

FILM ACTOR are the key attributes of the two tables, respectively, marked by the underlines

beneath them. Attributes Director and Genres in the upper table are considered highly related

to FILM entities. Similarly, Award Winners in the lower table is highly related to FILM ACTOR

entities. The two tables contain 4 and 2 tuples, respectively. For instance, the first tuple of

the upper table is t1 = 〈Men in Black,Barry Sonnenfeld, {Action Film, Science Fiction}〉.

The tuple indicates that entity Men in Black belongs to type FILM and has a relationship

Director from Barry Sonnenfeld and has relationship Genres to both Action Film and Science

Fiction.

55

Figure 3.1: An Excerpt of an Entity Graph.

The proposed preview tables are for compact presentation of important types of en-

tities and their relationships in an entity graph. They assist users in attaining a quick and

rough preview of the schema of the data. The tuples in the tables further give the users an

intuitive understanding of the data. (Note that it is only necessary to show a few sample tu-

ples instead of all.) The preview tables can be shown in a limited display space for a user to

browse and explore, before the user decides to spend more time and resources (which may

be monetary) to investigate the entity graph in more detail and fetch the complete entity

graph.

The rest of this chapter is organized as follows. In Section 3.1, we define various

concepts and the preview discovery problem. Section 3.2 presents our ideas on scoring

measures. In Section 3.3, we formulate the optimal preview discovery problem and prove

56

FILM Director Genres
t1 Men in Black Barry Sonnenfeld {Action Film, Science Fiction}
t2 Men in Black II Barry Sonnenfeld {Action Film, Science Fiction}
t3 Hancock Peter Berg -
t4 I, Robot Alex Proyas {Action Film}

FILM ACTOR Award Winners
t5 Will Smith Saturn Award
t6 Tommy Lee Jones Academy Award

Figure 3.2: A Two-Table Preview of the Entity Graph in Figure 3.1. (The upper and lower
tables are for the subgraphs #1 and #2 in Figure 3.3, respectively.)

Figure 3.3: The Schema Graph for the Entity Graph in Figure 3.1.

its NP-completeness under distance constraint. Section 3.4 explains the algorithms. Sec-

tion 3.5 presents the evaluation results.

3.1 Preview Discovery Problem

An entity graph is a directed graph Gd(Vd, Ed) with vertex set Vd and edge set Ed.

Each vertex v ∈ Vd represents an entity and each edge e(v, v′) ∈ Ed represents a directed

relationship from entity v to v′. The entity graph Gd is actually a multigraph since there

can be multiple edges between two vertices. (E.g., in Figure 3.1, there are two edges Actor

and Executive Producer from entity Will Smith to entity I, Robot.)

57

Table 3.1: Notations

Gd(Vd, Ed) an entity graph

v ∈ Vd an entity

e(v, v′) ∈ Ed a directed relationship from entity v to entity v′

Gs(Vs, Es) a schema graph

τ ∈ Vs an entity type

γ(τ, τ ′) ∈ Es a relationship type from entity type τ to entity type τ ′

T a preview table

T.key the key attribute of T

T.nonkey the non-key attributes of T

T.τ the set of entities of type τ , which is the key attribute of T

t ∈ T a tuple t in preview table T

t.τ t’s value on τ which is the key attribute of T

t.γ t’s value on non-key attribute γ

P = {P[1], ...,P[k]} a preview, which consists of k preview tables

Popt an optimal preview

S(P) the score of preview P

S(T) the score of preview table T

Scov(τ), Swalk(τ) score of key attribute τ based on coverage and random walk

Sτcov(γ), S
τ
ent(γ) score of non-key attribute γ based on coverage and entropy

T the space of all possible preview tables

P the space of all possible previews

dist(τ, τ ′) distance between τ and τ ′ in schema graph Gs

58

Each entity is labeled by a name. For simplicity and intuitiveness of presentation, we

shall mention entities by their names, assuming all entities have distinct names, although

in reality they are distinguished by unique identifiers. Each entity belongs to one or more

entity types, underlined in Figure 3.1. (E.g., Will Smith belongs to types FILM ACTOR and

FILE PRODUCER and I, Robot belongs to type FILM.) Each relationship belongs to a rela-

tionship type. (E.g., the edge from Will Smith to Men in Black has type Actor.) The type of a

relationship determines the types of its two end entities. For instance, an edge of type Actor

is always from an entity belonging to FILE ACTOR to an entity belonging to FILM. We will

mention edges by the surface names of their relationship types. Two different relationship

types may have the same surface name for intuitively expressing their meanings, although

underlyingly they have different identifiers. For instance, the Award Winners edge from Will

Smith to Saturn Award and the Award Winners edge from Barry Sonnenfeld to Razzie Award

belong to two different relationship types. The former is for relationships from FILM ACTOR

to AWARD, while the latter is for relationships from FILM DIRECTOR to AWARD.

Given an entity graph Gd(Vd, Ed), its schema graph is a directed graph Gs(Vs, Es),

where each vertex τ ∈ Vs represents an entity type and each directed edge γ(τ, τ ′) ∈ Es

represents a relationship type from entity type τ to τ ′. An edge γ(τ, τ ′) ∈ Es if and only

if there exists an edge e(v, v′) ∈ Ed where e has type γ, v has type τ and v′ has type

τ ′. Figure 3.3 shows the schema graph corresponding to the entity graph in Figure 3.1.

Note that a schema graph is also a multigraph as there can be multiple relationship types

between two entity types. For example, from entity type FILM PRODUCER to FILM there are

two relationship types—Producer and Executive Producer. It is clear from the above definitions

that, given a data graph, the corresponding schema graph is uniquely determined.

Definition 11 (Preview Table and Preview). Given an entity graph Gd(Vd, Ed) and its

schema graph Gs(Vs, Es), a preview table T is a table with a mandatory key attribute

(denoted T.key) and at least one non-key attributes (denoted T.nonkey). T corresponds

59

to a star-shape subgraph of the schema graph Gs(Vs, Es). The key attribute corresponds

to an entity type τ ∈ Vs, and each non-key attribute corresponds to a relationship type

γ(τ, τ ′) ∈ Es or γ(τ ′, τ) ∈ Es. Note that the edges from and to an entity are both impor-

tant. Hence, the non-key attributes of T include both γ(τ, τ ′) and γ(τ ′, τ).

The preview table T consists of a set of tuples. The number of tuples in T equals

the number of entities of type τ , which is the key attribute of T , i.e., |T | = |T.τ | and

T.τ = {v|v ∈ Vd ∧ v has type τ}.

Given an arbitrary tuple t ∈ T , we denote t’s key attribute value by t.τ . We denote

its values on a non-key attribute γ by t.γ.

Each tuple t ∈ T thus attains a distinct value on the key attribute τ . Its value on

a non-key attribute γ(τ, τ ′) is a set—the set of entities in entity graph Gd incident from

t.τ through an edge of type γ(τ, τ ′). More formally, t.γ(τ, τ ′) = {u|u ∈ Vd ∧ e(t.τ, u) ∈

Ed∧u belongs to type τ ′}. Symmetrically, its value on a non-key attribute γ(τ ′, τ) is the set

of entities inGd incident to t.τ through an edge of type γ(τ ′, τ). More formally, t.γ(τ ′, τ) =

{u|u ∈ Vd ∧ e(u, t.τ) ∈ Ed ∧ u belongs to type τ ′}.

A preview P is a set of preview tables, i.e., P = {P [1], ...,P [k]}, where ∀i 6=

j,P [i].key 6= P [j].key, k 6 |Vs| is the total number of preview tables. Note that |Vs|

is the number of vertices in Gs, i.e., the number of entity types in Gd.

According to Definition 11, the upper and lower tables in Figure 3.2 correspond

to the star-shape subgraphs #1 and #2 in Figure 3.3, respectively. The key attribute in

the upper table is FILM with its non-key attributes are Director, Genres. Similarly, the key

attribute in the lower table is FILM ACTOR with its non-key attributes are Award Winners. Due

to the aforementioned symmetric relation, if there exists a preview table with key attribute

DIRECTOR, it may have Film as one of its non-key attributes. It is worth noting that, although

each tuple’s value on the key attribute is non-empty, unique and single-valued, its value on

a non-key attribute can be empty (e.g., t3.Genres in Figure 3.2), duplicate (e.g., t1.Director

60

and t2.Director in Figure 3.2) and multi-valued (e.g., t1.Genres and t2.Genres in Figure 3.2).

It also follows that a preview table is not a relational table.

By Definition 11, every vertex τ in a schema graph can serve as the key attribute

of a candidate preview table, which also includes at least one non-key attribute—an edge

incident on τ . We use T to denote the space of all possible preview tables. A preview

is a set of preview tables. We use P to denote the space of all possible previews. Note

that P ⊂ 2T, i.e., not every member of the power set 2T is a valid preview, because by

Definition 11 preview tables in a preview cannot have the same key attribute.

Problem Statement:

Given an entity graph Gd(Vd, Ed) and its corresponding schema graph Gs(Vs, Es),

the preview discovery problem is to find Popt—the optimal preview among all possible

previews. We shall develop the notion of goodness for a preview and define its measures in

Section 3.3.

3.2 Scoring Measures for Previews

In this section, we discuss the scoring functions for measuring the goodness of pre-

views for entity graphs. While it is possible to propose many conceivable scoring measures,

we present measures based on two intuitions: 1) a good preview should relate to as many

entities and relationships as possible; and 2) a good preview should be helpful for users to

understand or to browse the entity graph. The first intuition is obvious, as a preview relating

to only a small number of entities or relationships will inevitably lose lots of information

thus leads to poor comprehensibility of the original graph. The second intuition tries to

model the goodness of previews based on users’ behaviors of browsing the entity graph

and the preview tables using the same ideas behind PageRank algorithm [20] and decision

tree learning [21].

61

3.2.1 Preview Scoring

We measure the score of a preview by aggregating the scores of each individual

preview tables, and we measure the score of a preview table by aggregating the scores of

its key attribute and non-key attributes. We further elaborate the scoring measures for key

and non-key attributes in Sections 3.2.2 and 3.2.3.

The aggregated score of a preview P = {P [1], ...,P [k]} is simply given by the

summation of individual preview tables’ scores:

S(P) =
k∑
i=1

S(P [i]), (3.1)

where S(P [i]) is the score of a preview table P [i], defined as:

S(P [i]) = S(τ)×
∑

γ∈P[i].nonkey

Sτ (γ), (3.2)

where S(τ) is the score of the key attribute of P [i] (i.e., P [i].key=τ) and Sτ (γ) is the score

of a non-key attribute γ with regard to the key attribute τ .

In the above definition, the score of a preview table equals the product of its key

attribute’s score and the summation of its non-key attributes’ scores. The definition gives

the key attribute τ much higher importance than any individual non-key attribute, because

the preview table centers around the entities of type τ and describes their non-key attributes,

i.e., their relationships with other entities.

3.2.2 Key Attribute Scoring

• Coverage-based scoring measure:

Given an entity graph Gd(Vd, Ed) and its corresponding schema graph Gs(Vs, Es),

the key attribute τ of a candidate preview table T corresponds to an entity type, i.e.,

τ ∈ Vs. If the entity graph consists of many entities of type τ , including T in the

62

preview makes the preview relevant to all those entities. The coverage-based scoring

measure thus defines the score of τ as the number of entities bearing that type:

Scov(τ) = |{v|v ∈ Vd ∧ v has type τ}|

For example, given the entity graph in Figure 3.1 and the corresponding schema

graph in Figure 3.3, the coverage-based score of the key attribute FILM is Scov(FILM) =

4.

• Random-walk based scoring measure:

We consider a random walk process over a graphG converted from the schema graph

Gs(Vs, Es), inspired by the PageRank algorithm for Web page ranking. In G, the

vertices are entity types and the edges are undirected. The edge between τi and τj in

G is weighted by the number of relationships (i.e., the number of edges) in the entity

graph between entities of types τi and τj . We denote the weight by wij , defined as

follows.

wij = wji =
∑

γ(τi,τj)∈Es

|{e|e ∈ Ed ∧ e has type γ(τi, τj)}|

+
∑

γ(τj ,τi)∈Es

|{e|e ∈ Ed ∧ e has type γ(τj, τi)}|

The transition matrix M is a |Vs| × |Vs| matrix where an element Mij corresponds to

the transition probability from τi to τj in G. Mij equals the ratio of wij to the total

weight of all edges incident on τi in G:

Mij =
wij∑
k wik

For example, the transition probability from FILM to FILM GENRE is MFILM,FILM GENRE

= wFILM,FILM GENRE/(wFILM,FILM GENRE + wFILM,FILM ACTOR + wFILM,FILM DIRECTOR

+ wFILM,FILM PRODUCER) = 5/(5 + 6 + 4 + 3) = 0.28. The transition probability from

FILM to FILM PRODUCER is MFILM,FILM PRODUCER = wFILM,FILM PRODUCER/(wFILM,FILM GENRE

63

+ wFILM,FILM ACTOR + wFILM,FILM DIRECTOR + wFILM,FILM PRODUCER) = 3/(5 + 6 + 4 + 3) =

0.17.

Suppose a user traverses in G, either by going from an entity type τi to another

entity type τj through the edge between them with probability Mij or by jumping

to a random entity type. Entity types that are more likely to be visited by the user

are of higher importance. The random walk process will converge to a stationary

distribution which represents the chances of entity types being visited. The stationary

distribution π of the random walk process is given as follows. Note that a similar idea

was applied in [7] for ranking relational tables by importance.

π = πM

The random-walk based score of a candidate key attribute τi is:

Swalk(τi) = πi,where πi is the stationary probability of τi.

3.2.3 Non-Key Attribute Scoring

• Coverage-based scoring measure:

The coverage-based scoring measure for non-key attribute is similar to that for key

attribute. Given an entity graph Gd(Vd, Ed) and its schema graph Gs(Vs, Es), con-

sider a candidate preview table T with key attribute τ . A non-key attribute γ of T

corresponds to a relationship type, i.e., γ ∈ Es. If the entity graph contains many

edges (i.e., relationships) belonging to the type γ, incorporating such a relationship

type into the table T makes it relevant to all those relationships and their correspond-

ing entities. The coverage-based scoring measure thus defines the score of γ as the

number of relationships bearing that type:

Sτcov(γ) = |{e|e ∈ Ed ∧ e has type γ}|

64

For example, given the entity graph in Figure 3.1 and the corresponding schema

graph in Figure 3.3, the coverage-based scores of non-key attributes Director and Gen-

res are SFILM
cov (Director) = 4 and SFILM

cov (Genres) = 5.

The coverage-based scoring measure for non-key attribute is symmetric, i.e., given

γ(τ, τ ′) (or γ(τ ′, τ)) ∈ T.nonkey, Sτcov(γ) ≡ Sτ
′
cov(γ). Both τ and τ ′ can be the key

attribute of a different preview table, in which γ is a non-key attribute. The scores of

γ in the two tables are equal.

• Entropy-based scoring measure:

For a preview table T with key attribute τ , we measure the goodness of a non-key

attribute γ(τ, τ ′) (or γ(τ ′, τ)) by how much information it provides to T , for which

the entropy of γ (H(γ)) is a natural choice of measure:

Sτent(γ) = H(γ) =
∑
j=1

nj
|t.γ|

log(
|t.γ|
nj

),

where nj is the number of tuples in T that attain the same jth attribute value u

on non-key attribute γ(τ, τ ′) (or γ(τ ′, τ)), i.e., u ∈ Vd ∧ u has type τ ′ and nj =

|{v|v ∈ T.τ ∧ e(v, u) ∈ Ed (or e(u, v) ∈ Ed) ∧ e has type γ}|. |t.γ| is the number

of distinct non-key attribute values of γ(τ, τ ′) (or γ(τ ′, τ)). Continue with the ex-

ample above, the entropy-based scores of non-key attributes Director and Genres are

SFILM
ent (Director) = (2/4) log(4/2) + (1/4) log(4/1) + (1/4) log(4/1) = 0.45, and

SFILM
ent (Genres) = (2/3) log(3/2) + (1/3) log(3/1) = 0.28. Note that for two values

on a multi-valued attribute (e.g., {Action Film, Science Fiction} and {Action Film} on

FILM.Genres in Figure 3.2), we consider them equivalent if and only if they have the

same set of component values. It is easy to see that, by definition, the entropy-based

scoring measure for non-key attribute is asymmetric, i.e., given γ(τ, τ ′) (or γ(τ ′, τ))

∈ T.nonkey, Sτent(γ) 6≡ Sτ
′
ent(γ).

65

3.3 Optimal Previews under Size and Distance Constraints

In this section, based on the scoring measures defined in Section 3.2, we formulate

several optimization problems that look for the optimal previews with best scores under

various constraints on preview size and distance between preview tables. We prove that

some of these optimization problems are NP-complete.

By Equation 3.1 (or any other monotonic aggregate function), the score of a pre-

view monotonically increases by its member preview tables—the more preview tables in

a preview, the higher its score. Similarly by Equation 3.2, the score of a preview table

monotonically increases by its non-key attributes. The properties are formally stated in the

following two propositions. Recall that P and T denote the space of all possible previews

and all possible preview tables.

Proposition 1. Given previews P1,P2 ∈ P, if P1 ⊇ P2, then S(P1) ≥ S(P2).

Proposition 2. Given preview tables T1, T2 ∈ T, if T1.key = T2.key and T1.nonkey ⊇

T2.nonkey, then S(T1) ≥ S(T2).

By the above propositions, a preview’s score is maximized when it includes as many

tables and attributes as possible. However, the purpose of having a preview is to help users

attain a quick understanding of data and thus a preview must fit into a limited display space.

Therefore the size and the goodness score of a preview present a tradeoff. Considering the

tradeoff, we enforce a constraint on preview size, given by a pair of integers (k, n), where

k is the number of allowed preview tables and n is the number of allowed attributes in the

tables. The previews satisfying the size constraint are called concise previews.

Furthermore, we consider enforcing an additional constraint on the pairwise distance

between preview tables. The distance between two preview tables T1 and T2 (denoted

dist(T1, T2)) is the length of the shortest undirected path1 between their key attributes

1An undirected path in a directed graph is a path in which the edges are not all oriented in the

same direction.

66

T1.key and T2.key in schema graph Gs. Recall that the key attributes are vertices (i.e.,

entity types) in Gs. For example, the distance between the two tables in Figure 3.2 is 1,

which is the shortest path length for entity types FILM and FILM ACTOR in schema graph

in Figure 3.3. Similarly, for two tables whose key attributes are FILM and AWARD, their

distance would be 2.

Based on the above notion of distance, the constraint on table distance is given by

an integer d, which is the maximum (minimum) distance between preview tables. The

previews satisfying the distance constraint are called tight (diverse) previews. Intuitively

speaking, the preview tables in a tight preview are highly related to each other due to their

short pairwise distance, while the preview tables in a diverse preview are not tightly related

to each other and cover different types of concepts. Arguably, both types of previews are

useful for understanding an entity graph. We shall compare them empirically in Section 3.5.

Given the spaces of all possible concise, tight and diverse previews, we formulate

three optimization problems of finding an optimal preview—a preview with the highest

score among the corresponding space of previews. Below we formally define the three

types of previews and the corresponding optimization problems.

67

Definition 12 (Concise, Tight and Diverse Previews). Given the size constraint (k, n), a

concise preview has k preview tables (i.e., key attributes) and no more than n non-key

attributes in the tables. 2 The space of all concise previews is

Pk,n = {P
∣∣ P ∈ P, |P| = k,

k∑
i=1

|P [i].nonkey| ≤ n}.

Given the size constraint (k, n) and the distance constraint d, a tight preview (diverse

preview) is a concise preview in which the distance between any pair of preview tables is

smaller (greater) than or equal to d. The space of all tight previews is

Pk,n,≤d = {P
∣∣ P ∈ Pk,n,∀T1, T2 ∈ P , dist(T1, T2) ≤ d}.

The space of all diverse previews is

Pk,n,≥d = {P
∣∣ P ∈ Pk,n,∀T1, T2 ∈ P , dist(T1, T2) ≥ d}.

Definition 13 (Optimal Preview Discovery Problems). The optimization problem of finding

an optimal preview is defined as follows, where P can be any of the aforementioned three

spaces—Pk,n, Pk,n,≤d and Pk,n,≥d. Note that the arg max function may return a set of

optimal previews due to ties in scores.

Popt ∈ arg max
P∈P

S(P) (3.3)

The optimal preview discovery problems are non-trivial. Particularly, we prove that

the optimal preview discovery problem in the spaces of both tight previews (Pk,n,≤d) and

diverse previews (Pk,n,≥d) is NP-complete.
2A preview with less than n non-key attributes may outscore another preview with exactly n

non-key attributes. Further, a set of k entity types may have only less than n edges in the schema

graph. Hence, the condition |P[i].nonkey| ≤ n instead of |P[i].nonkey| = n. On the other hand,

it is safe to assume that an entity graph with practical significance always has more than k entity

types under any reasonably small k. Therefore an optimal preview always should have exactly k

preview tables, given the monotonic scoring function (cf. Equation 3.1).

68

Theorem 1. The optimal tight preview discovery problem is NP-complete.

Proof. The decision version of the optimal tight preview discovery problem is

TightPreview(Gs, k, n, d, s)—Given a schema graph Gs, decide whether there exists such

a preview P that (1) P has k tables and no more than n non-key attributes; (2) the distance

between every pair of preview tables is not greater than d; and (3) the preview’s score is at

least s, i.e., S(P) ≥ s.

First, we show that TightPreview(Gs, k, n, d, s) is in NP. This is because checking

whether a preview satisfies the above three conditions can be accomplished in polynomial

time. Consider a schema graphGs, in which the scores of candidate key attributes (i.e., ver-

tices ofGs) and non-key attributes (i.e., edges ofGs) are computed. Such checking includes

counting tables and non-key attributes, computing pairwise table distance, and computing

the preview’s score by aggregating over the scores of its key and non-key attributes.

Next, we construct a reduction, in polynomial-time, from the NP-complete Clique

problem to TightPreview(Gs, k, n, d, s). Recall that the decision version of Clique(G, k)

is to, given a graph G(V,E), decide whether there exists a clique in G with k vertices. The

reduction is by constructing a schema graph Gs from G. For simplicity of exposition, in

both this proof and the proof of Theorem 2, we assume the schema graph Gs is undirected

and every edge γ in Gs corresponds to the same relationship type. This assumption is

made without loss of generality. Note that our following proof casts no requirement on the

score of a preview (i.e., s = 0) and thus no requirement on the scores of key and non-key

attributes in Gs. Hence, edge orientation and its corresponding relationship type bears no

significance in the proof.

In detail, we construct a schema graph Gs(Vs, Es) from G through a vertex bijection

f : V → Vs:

69

• ∀e(v, v′) ∈ E, there exists an edge (i.e., relationship type) γ(τ, τ ′) ∈Es, where τ = f(v)

and τ ′ = f(v′).

• ∀γ(τ, τ ′) ∈ Es, there exists an edge e(v, v′) ∈ E, where v = f−1(τ) and v′ = f−1(τ ′).

Clique(G, k) is thus reduced to TightPreview(Gs, k, k, 1, 0) by the above bijections. A

“yes” answer to TightPreview(Gs, k, k, 1, 0) also confirms the existence of a clique of size

k in G, i.e., a “yes” answer to Clique(G, k).

The NP-completeness of the optimal diverse preview discovery problem is also based

on a reduction from the Clique problem, although the proof is more complex.

Theorem 2. The optimal diverse preview discovery problem is NP-complete.

Proof. The decision version of the optimal diverse preview discovery problem is

DiversePreview(Gs, k, n, d, s)—Given a schema graph Gs, decide whether there exists

such a preview P that (1) P has k tables and no more than n non-key attributes; (2) the

distance between every pair of preview tables is not smaller than d; and (3) the preview’s

score is at least s, i.e., S(P) ≥ s.

First, DisversePreview(Gs, k, n, d, s) is in NP. The proof is essentially the same as

in Theorem 1 for TightPreview(Gs, k, n, d, s).

Next, we construct a reduction, in polynomial-time, from the NP-complete Clique(G, k)

to DiversePreview(Gs, k, n, d, s). The reduction is also by constructing a schema graph

Gs(Vs, Es) from G. It is similar to the reduction for TightPreview(Gs, k, n, d, s) in Theo-

rem 1, but also bears two important differences. (1) Gs contains a special vertex, denoted

τ0, that is directly connected to every other vertex in Gs. (2) Barring τ0 and all its incident

edges, Gs is the complement graph of G—There is still a vertex bijection f : V → Vs,

but an edge exists between two vertices in Gs if and only if there is no edge between the

corresponding vertices in G. In detail, the construction of Gs from G is as follows:

70

Figure 3.4: Construction of Gs (Right) from G (Left), for Reduction from the Clique Prob-
lem to the Optimal Diverse Preview Discovery Problem.

• ∀τ, τ ′ ∈ Vs\{τ0}, γ(τ, τ ′) ∈ Es if and only if @e(v, v′) ∈ E, where v = f−1(τ) and

v′ = f−1(τ ′).

• ∀τ ∈ Vs\{τ0}, γ(τ0, τ) ∈ Es.

Clique(G, k) is thus reduced to DiversePreview(Gs, k, k, 2, 0) by the above construction

of Gs. A “yes” answer to DiversePreview (Gs, k, k, 2, 0) also confirms the existence of a

clique of size k in G, i.e., a “yes” answer to Clique(G, k).

To understand why Clique(G, k) is reduced to DiversePreview (Gs, k, k, 2, 0) by

the construction of Gs from G in the proof of Theorem 2, consider Figure 3.4. The figure

shows an example with G (left) and the constructed schema graph Gs (right), where the

gray vertex in Gs is τ0. Consider an arbitrary pair of vertices (v, v′) in G and their corre-

sponding vertices (τ, τ ′) in Gs. On the one hand, if v and v′ are not directly connected in G

(e.g., v1 and v6), an edge between τ and τ ′ (i.e., τ1 and τ6) is included into Gs. When find-

ing a diverse preview where pairwise table distance must be at least 2, τ and τ ′ will never

be chosen as the key attributes of two tables in the preview. Correspondingly, this means a

clique must not include both v and v′. On the other hand, if v and v′ are directly connected

in G (e.g., v1 and v2), there must not be a direct edge between τ and τ ′ (i.e., τ1 and τ2) in

Gs. The distance between τ and τ ′ is exactly 2, since they are only indirectly connected

through τ0. They will thus be considered in choosing the key attributes of two tables in

71

a diverse preview where pairwise table distance must be at least 2. Correspondingly, the

directly connected v and v′ are thus considered together in forming a clique.

3.4 Algorithms

In this section we discuss algorithms for solving the optimal preview discovery prob-

lem. As given in Equation 3.3, the problem is to find a preview with the highest score

among candidate previews, where the space of candidates can be concise previews (Pk,n),

tight previews (Pk,n,≤d) or diverse previews (Pk,n,≥d). Recall that we use S(τ) to denote the

score of a candidate key attribute τ for a preview table T and Sτ (γ) to denote the score of

a candidate non-key attribute γ(τ, τ ′) (or γ(τ ′, τ)) for T whose key attribute is τ .

Before we present the algorithms, consider the space of all possible previews. Every

entity type τ can be the key attribute of a preview table T . Suppose Γτ denotes the set

of all edges (i.e., relationship types) incident on τ in schema graph Gs. Any γ ∈ Γτ can

be a candidate for the non-key attributes of T . By the scoring function in Equation 3.2

and the problem formulation in Equation 3.3, the non-key attributes of T must have the

highest scores among the candidates in Γτ . This is formally stated in Theorem 3, which is

an important property used by our algorithms.

Theorem 3. Suppose an optimal (concise, tight or diverse) previewPopt contains a preview

table T ∈ T with key attribute τ . If T has m non-key attributes, they must be the top-m

non-key attributes by scores, i.e., ∀γ, γ′ ∈ Γτ , if γ ∈ T.nonkey and γ′ /∈ T.nonkey, then

Sτ (γ) ≥ Sτ (γ).

3.4.1 A Brute-Force Algorithm

This section presents a brute-force algorithm for the optimal preview discovery prob-

lem, shown in Algorithm 5. It enumerates all possible k-subsets of entity types, as the k en-

tity types in each subset form the key attributes of k preview tables in a preview P (Line 4).

72

For a candidate key attribute τ , the elements in the set of its candidate non-key attributes Γτ

are ordered by their scores. We denote these candidates in descending order of scores by

γτ1 , γτ2 , and so on (Line 2). Suppose preview table T uses τ as its key attribute. Each table

must contain at least one non-key attribute, according to Definition 11. Hence, γτ1 (i.e.,

the candidate non-key attribute with the highest score) must be included into T.nonkey

(Line 8), by Theorem 3. Further, among the remaining candidate non-key attributes for the

k entity types, the top-(n−k) candidates by scores must be included into P (Lines 11–14),

by Theorem 3. Note that, since the sorted list of candidate non-key attributes for each τ

is already created (Line 2), it is unnecessary to do a full sorting in order to determine the

top-(n−k) candidates Γ. Instead, a simple merge operation on the k sorted lists will get Γ.

73

Algorithm 5: Brute-Force Algorithm for Optimal Preview Discovery
Input : schema graph Gs, size constraint (k, n)

Output: an optimal preview Popt

1 foreach τ ∈ Vs do

2 〈γτ1 , γτ2 , . . .〉 ← sort the candidate non-key attributes γτj ∈ Γτ by their scores

Sτ (γτj);

3 max score← 0; Popt ← ∅;

4 foreach k-subset of Vs (denoted V) do

5 score← 0; P ← ∅; i← 1;

6 foreach τ ∈ V do

7 P [i].key = τ ;

8 P [i].nonkey = {γτ1};

9 score = score+ S(τ)× Sτ (γτ1);

10 i← i+ 1;

11 Γ← top-(n−k) candidate non-key attributes from all τ ∈ V in descending

order of S(τ)× Sτ (γτj);

12 foreach γτj ∈ Γ, where τ = P [x].key do

13 score← score+ S(τ)× Sτ (γτj);

14 P [x].nonkey ← P [x].nonkey
⋃
{γτj };

15 if score > max score then

16 max score← score;

17 Popt ← P;

18 return Popt;

The complexity of this algorithm is O(KN logN +
(
K
k

)
(k + n)), where K = |Vs|

is the number of candidate key attributes, N = 2|Es| is the number of candidate non-key

74

attributes for all candidate key attributes,
(
K
k

)
is the number of k-subsets, and KN logN

is for sorting individual lists of candidates (Line 2), in which each list contains at most N

elements.

Algorithm 5 is for finding one of the optimal previews. To find all optimal previews,

it needs simple extension to deal with ties in scores, which we will not further discuss.

The same brute-force algorithm is applicable for optimal preview discovery in all

three types of spaces—concise, tight and diverse previews. The pseudo code in Algo-

rithm 5 is for concise previews and does not enforce distance constraint, for simplicity of

presentation. Enforcing distance constraint for tight/diverse previews is straightforward, by

performing distance check on every pair of preview tables in each k-subset of entity types.

3.4.2 A Dynamic-Programming Algorithm for Concise Preview Discovery Problem

As the combinatorial number of k-subsets grows exponentially, the performance of

the above brute-force algorithm becomes unacceptable for finding an optimal preview un-

der modest size constraints. We thus developed a dynamic-programming algorithm to more

efficiently discover optimal concise previews.

Consider an arbitrary order on all K entity types—τ1, . . . , τK . We use Popt(k, n, x)

to denote an optimal concise preview among the first x entity types τ1, . . . , τx. Thus the

optimal concise preview discovery problem is to find Popt(k, n,K). Popt(k, n, x) can be

constructed from the solutions to smaller problems, in two ways. (1) It can be equal to

Popt(k, n, x − 1), i.e., its k tables and n non-key attributes are from the first x − 1 entity

types and the x-th entity type τx does not contribute anything. (2) It can be the union of

Popt(k− 1, n−m,x− 1) and a table Tmx . Popt(k− 1, n−m,x− 1) is an optimal preview

with k − 1 tables and n −m non-key attributes among the first x − 1 entity types. Tmx is

the table whose key attribute is τx and whose non-key attributes are the top-m elements in

Γτx—the sorted list of candidate non-key attributes for τx. The number m is between 1 and

75

n − (k − 1) (or less if there are less than n − (k − 1) elements in Γτx), since each of the

k−1 tables in Popt(k−1, n−m,x−1) must contribute at least one non-key attribute. The

optimal substructure of the problem is formally given as follows.

Popt(k, n, x) = arg max
P∈P(k,n,x)

S(P)

P(k, n, x) =

Popt(k, n, x−1),

Popt(k−1, n−1, x−1)
⋃
{T 1

x},

Popt(k−1, n−2, x−1)
⋃
{T 2

x},

...

Popt(k−1, k−1, x−1)
⋃
{T n−(k−1)x }

,

where Tmx .key = τx and Tmx .nonkey = top-m candidate non-key attributes in Γτx . Note that

the optimal substructure is inapplicable when previews must satisfy distance constraint in

addition to size constraint (details omitted). Therefore the dynamic-programming algorith-

m is for concise previews but not tight/diverse previews.

The pseudo code of the dynamic-programming algorithm is shown in Algorithm 6.

Its complexity isO(KN logN+Kkn2). Similar to Algorithm 5, Algorithm 6 is for finding

one optimal preview. Finding all optimal previews requires simple extension to deal with

ties in scores, which we will not further discuss.

Both Algorithm 5 and 6 assume that, given any k entity types (key attributes), they

always together have at least n non-key attributes. That may not be true in reality. In fact,

for two previews with the same number of tables, the preview with less non-key attributes

may have the higher score than the other preview. Note that, in Equation 3.3, the optimal

preview is not required to have exactly n non-key attributes. It is simple to extend Algo-

rithm 5 and 6 to fully comply with the definition. Given any entity type τ , if it has less than

n candidate non-key attributes, we can simply pad the sorted list Γτ by pseudo non-key

attributes with zero scores.
76

Algorithm 6: Dynamic-Programming Algorithm for Optimal Concise Preview

Discovery
Input : schema graph Gs, size constraint (k, n)

Output: an optimal concise preview Popt

1 foreach x← 1 to K do

2 〈γτx1 , γτx2 , . . .〉 ← sort the candidate non-key attributes γτxj ∈ Γτx by their

scores Sτx(γτxj);

3 for x← 1 to K do

4 for i← 1 to min(k, x) do

5 for j ← i to n do

6 Popt(i, j, x)← Popt(i, j, x− 1);

7 for m← 1 to min(j − i+ 1, |Γτx|) do

8 Tmx .key ← τx;

9 Tmx .nonkey ← top-m candidate non-key attributes in Γτx;

10 P ← Popt(i− 1, j −m,x− 1)
⋃
{Tmx };

11 if S(P) > S(Popt(i, j, x)) then

12 Popt(i, j, x)← P;

13 Popt ← Popt(k, n,K);

14 return Popt;

3.4.3 An Apriori-style Algorithm for Tight / Diverse Preview Discovery Problem

Since the dynamic-programming algorithm is inapplicable when previews must sat-

isfy distance constraint, we propose an efficient algorithm for optimal tight/diverse preview

discovery, shown in Algorithm 7. It consists of two steps—(1) finding k-subsets of entity

types (i.e., vertices in Gs) satisfying the distance constraint (Lines 1– 14) and (2) for each

77

Algorithm 7: Apriori-style Algorithm for Optimal Tight/Diverse Preview Discovery
Input : schema graph Gs, size constraint(k, n), distance constraint d

Output: an optimal tight/diverse preview Popt

1 L2 ← ∅;

2 foreach i← 1 to K do

3 foreach j ← i+ 1 to K do

4 if dist(τi, τj) ≤ d then /* ≥ d for diverse preview */

5 L2 ← L2 ∪ {〈i j〉};

6 i← 3;

7 while i ≤ k and Li−1 6= ∅ do

8 Li ← ∅;

9 foreach A,B ∈ Li−1 s.t. (∀j < i− 1 : A[j] = B[j]) and (A[i− 1] < B[i− 1]) do

/* ≥ d for diverse preview */

10 if dist(τA[i−1], τB[i−1]) ≤ d then

11 Li ← Li ∪ {〈A[1] . . . A[i− 1] B[i− 1]〉};

12 i← i+ 1;

13 if Lk = ∅ then

14 return ∅;

15 max score← 0;

16 foreach A ∈ Lk do

17 P ← ComputePreview(A);

18 if score(P) > max score then

19 max score← score(P);

20 Popt ← P;

21 return Popt;

78

qualifying k-subset of entity types, forming a preview under the size constraint, computing

its score and choosing a preview with the highest score (Lines 15– 20).

The first step is essentially finding k-cliques in a graph converted from the schema

graph Gs, in which vertices are considered adjacent if they are within distance d (for tight

previews) or apart by at least distance d (for diverse previews). The k-clique problem is

well-studied and many efficient algorithms have been designed in the past. Our method is

inspired by the well-known Apriori algorithm [12] for frequent itemset mining. In [22],

an algorithm was proposed for finding k-cliques (where edges correspond to metabolite

correlations) by similar ideas, although the connection to Apriori was not made. Their

experimental results demonstrated superior efficiency in comparison with the more well-

known Bron-Kerbosch algorithm [23]. Nevertheless, the two broad steps of our optimal

tight/diverse preview discovery algorithm are independent from each other, and thus any

more efficient or even approximate algorithm for finding k-cliques can be plugged into it

to further improve its execution efficiency.

In more details, the first step of Algorithm 7 iteratively generates a k-subset of entity

types by merging two (k−1)-subsets. Entity types are arbitrarily ordered as τ1, . . . , τK . In

the i-th iteration of the algorithm, if two (i−1)-subsets A and B only differ by their last

entity types τA[i−1] and τB[i−1], and the distance between their last entity types satisfies the

distance constraint, a candidate i-subset is generated by appending τB[i−1] to the end of A.

In the second step, for each candidate k-subset of entity types, a preview is computed

(ComputePreview(A) in Line 17 of Algorithm 7). The details of function ComputePreview

are omitted. It follows Theorem 3 and is essentially the same as Lines 5– 14 in Algorith-

m 5, which is described in Section 3.4.1. The score of each preview is computed (details

also the same as in Lines 5– 14 of Algorithm 5) and a preview with the highest score is

returned.

79

3.5 Evaluation

We conducted experiments to evaluate the preview scoring measures’ accuracy (Sec-

tion 3.5.1), the preview discovery algorithms’ efficiency (Section 3.5.2) as well as the over-

all quality of discovered previews (Section 3.5.3). All experiments were conducted on a

DELL T100 server running Ubuntu 8.10. The server has Dual Core Xeon E3120 proces-

sors, 6MB cache, 4GB RAM, and two 250GB RAID1 SATA hard drivers. The entity graph

used in our experiment is a dump of Freebase at September 28, 2012.3 The dataset is im-

ported into a MySQL database. All algorithms are implemented in C++ and compiled with

‘-O2’ optimization in GCC-4.3.2.

In Freebase, the entire entity graph is partitioned into many domains. We pre-

computed the schema graphs as well as all scoring measures in Section 3.2 for several

domains of different sizes and used these schema graphs in our evaluation. Both a schema

graph and the scoring measures of its vertices and edges can be incrementally updated (de-

tails omitted). Our work currently is limited to named entities, thus all numeric attribute

values from the data dump have been removed. Note that a schema graph may be discon-

nected. To ensure the convergence of random walk process in such a graph, we added a

small transition probability 10−5 to every pair of entity types.

3.5.1 Accuracy of Preview Scoring Measures

We conducted two experiments to evaluate the accuracy of the scoring measures for

both key and non-key attributes presented in Section 3.2. One experiment compares the

ranking orders of candidate key (non-key) attributes by the scoring measures with the gold

standard ranking orders obtained from Freebase.com. The other experiment calculates the

correlation between the pairwise order between candidate key (non-key) attributes by the

3https://developers.google.com/freebase/data

80

0 10 20 30 40 50 60

K (books)

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on
-a

t-
K

0 5 10 15 20 25 30 35 40

K (film)
0 10 20 30 40 50 60 70

K (location)

0 10 20 30 40 50

K (music)

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on
-a

t-
K

0 2 4 6 8 10 12 14 16 18

K (people)
0 5 10 15 20 25 30 35

K (tv)

Coverage Random Walk

Figure 3.5: Precision-at-K of Key Attribute Scoring.

scoring measures and the pairwise order collected from user study using crowd-sourcing

service.

3.5.1.1 Comparison with Gold Standard

Table 3.2: Mean Reciprocal Rank of Non-Key Attribute Scoring.

Domain Coverage Entropy Domain Coverage Entropy

books 0.8 0.786 music 0.528 0.589

film 0.2 0.25 people 0.708 0.606

location 0.55 0.592 tv 0.622 0.379

81

We collected gold standard data for the 6 largest entity domains in Freebase—“books”,

“film”, “location”, “music”, “people” and “tv”. For each domain, Freebase offers an en-

trance page showing 6 major entity types in that domain. A user can choose to browse

entities in any of the 6 types. 4 As such entrance pages were manually created by Freebase,

our conjecture is that they are of high quality and reflect the most popular entity types. We

thus treated the 6 entity types listed in the entrance page of a domain as the gold standard

for top-6 key attributes in that domain.

For both the coverage-based and the random-walk based scoring measures in Sec-

tion 3.2.2, we ranked all candidate key attributes by their scores. We calculated the ac-

curacy of a scoring measure by several widely-used IR evaluation measures, including

Precision-at-K (P@K), Mean Average Precision (MAP) and Normalized Discounted Cu-

mulative Gain (nDCG) [24]. Since they demonstrate similar results, we only report P@K

due to space limitations. For a scoring measure for key attributes, P@K is the percentage

of its top-K results that belong to the aforementioned gold standard top-6 key attributes.

The results are shown in Figure 3.5. For both the coverage-based and the random-walk

based scoring measures, P@10 is above 0.4 in 5 out of the 6 domains, which means the

top-10 results contain at least 4 of the 6 gold standard key attributes.

For each entity type, Freebase offers a table for users to browse and query the entities

belonging to that type. 5 Regardless of the entity type, that table always has 3 common

columns for recording names, types and article contents of entities. The table also has 3

or less type-dependent non-key attributes manually selected by Freebase editors. Although

4As of September 28, 2012, the entrance pages to these 6 domains were all under “Featured Data”

on Freebase.com. For instance, http://www.freebase.com/view/film was the entrance

page for domain “film”. These pages have become unavailable.
5http://www.freebase.com/music/artist?instances=, for instance, would display a

table for type ARTIST in “music” domain.

82

Freebase allows users to add more attributes into this table, we believe that the original 3

type-dependent attributes in general bear higher quality. We thus treated these attributes as

the gold standard for top non-key attributes for that entity type.

For both the coverage-based and the entropy-based scoring measures in Section 3.2.3,

we ranked all candidate non-key attributes by their scores. We calculated the accuracy of a

scoring measure by Mean Reciprocal Rank (MRR) [24] instead of P@K as there are only

3 or less gold standard answers for top non-key attributes in each entity type. For a scoring

measure for non-key attributes, the reciprocal rank is the multiplicative inverse of the rank

of the first gold standard non-key attribute among its ranking results. MRR is the average

reciprocal rank across all entity types with at least 5 candidate non-key attributes. (If an en-

tity type has only less than 5 candidates, the gold standard answers are ranked deceptively

high. Thus we exclude such entity types, to obtain more accurate evaluation.) The results

are shown in Table 3.2. In every domain except “film” and for both the coverage-based

and the entropy-based measures, MRR is above 0.5. This means in average a gold standard

non-key attribute appeared in the top-2 ranked results. The lower MRR for “film” domain

is from only one entity type and thus is not truly indicative, since only one entity type in

that domain has at least 5 candidate non-key attributes.

83

3.5.1.2 User Study

Table 3.3: Pearson Correlation Coefficient for Key Attribute Scoring (Upper) and Non-Key

Attribute Scoring (Lower).

Domain Coverage Random Walk Domain Coverage Random Walk

books 0.55 0.43 music 0.33 0.46

film 0.48 0.25 people 0.31 0.29

location -0.17 -0.08 tv 0.69 0.65

Domain Coverage Entropy Domain Coverage Entropy

books 0.43 0.43 music 0.42 0.41

film 0.35 0.35 people 0.43 0.43

location 0.20 0.21 tv 0.47 0.47

We conducted an extensive user study in Amazon Mechanical Turk (AMT)6—a pop-

ular crowdsourcing service—and measured the correlation between our scoring measures

and users’ opinions with regard to key and non-key attributes ranking. We explain the user

study procedure for evaluating key attribute ranking in one domain, since the procedure is

repeated for all 6 gold standard domains and is the same for both key and non-key attribute

ranking.

Given a domain, we randomly generated 50 pairs of entity types, i.e., candidate key

attributes. Each pair was presented to 20 AMT workers. The workers were asked which of

the 2 entity types in the pair is more important. Hence, we collected 1, 000 opinions in total.

We then constructed two lists—X and Y , each of which contains 50 values corresponding

6https://www.mturk.com/mturk/

84

to the 50 pairs. A value inX represents the difference in the ranking positions (by our scor-

ing measures) of the two entity types in the corresponding pair. A value in Y represents the

difference in the numbers of AMT workers favoring the two entity types. The correlation

between X and Y is measured by Pearson Correlation Coefficient (PCC) [25] as follows.

PCC =
E(XY)− E(X)E(Y)√

E(X2)− (E(X))2
√

E(Y 2)− (E(Y))2
(3.4)

The PCC value ranging from −1 to 1 indicates the degree of correlation between

the pairwise ranking orders produced by our scoring methods and the pairwise preferences

given by AMT workers. A PCC value in the ranges of [0.5,1.0], [0.3,0.5) and [0.1,0.3)

indicates a strong, medium and small positive correlation, respectively. The PCC values

for the 6 gold standard domains are shown in Tables 3.3. For 5 out of the 6 domains, the

results show at least a medium positive correlation between our scoring measures and AMT

workers. For domain “location”, small positive correlations are shown for non-key attribute

scoring and even a negative correlation was obtained for key-attribute scoring. This appears

to be largely due to AMT workers’ unfamiliarity with many entity types in this domain such

as country-specific geographical concepts (e.g., JAPANESE SUBPREFECTURE).

3.5.2 Efficiency of Optimal Preview Discovery Algorithms

This section presents results on the efficiency of the optimal preview discovery algo-

rithms in Section 3.4. On optimal concise preview discovery, we compared the Brute-Force

Algorithm 5 and the Dynamic-Programming Algorithm 6. Specifically, we compared their

execution times by varying: (1) size of schema graph (i.e., number of candidate key at-

tributes (K) and number of candidate non-key attributes (N)); (2) number of preview tables

(i.e., key attributes) in a preview (k); and (3) maximum number of non-key attributes in a

preview (n). For (1), we fixed k=5, n=10 and experimented with 3 domains—“basketball”

(B), “architecture” (A), and “music” (M). They differ greatly in the sizes of their schema

85

Brute-Force Algorithm Dynamic-Programming Algorithm

B A M

101

104

107

domain

E
xe

cu
tio

n
Ti

m
e

(m
s)

k=5,n=10

3 6 9

k

music,n=20

8 12 16 20

n

music,k=6

Figure 3.6: Efficiency Evaluation of Optimal Concise Preview Discovery Algorithms.

Brute-Force Algorithm Apriori-style Algorithm

101

104

107

E
xe

cu
tio

n
Ti

m
e

(m
s)

k=5,n=10,d=2 music,n=20,d=2 music,k=6,d=2 music,k=6,n=16

B A M

101

104

107

domain

k=5,n=10,d=4

3 6 9

k

music,n=20,d=4

8 12 16 20

n

music,k=6,d=4

2 4 6

d

music,k=6,n=16

Figure 3.7: Efficiency Evaluation of Optimal Tight (Upper) and Diverse (Lower) Preview
Discovery Algorithms.

86

graphs (B: K=6, N=21; A: K=23, N=48; M: K=46, N=133). For (2), we varied k from

3 to 9, fixed n=20 and used “music” domain. For (3), we varied n from 8 to 20, fixed k=6

and used “music” domain.

On optimal tight/diverse preview discovery, we compared the Brute-Force Algorith-

m 5 and the Apriori-style Algorithm 7, by varying not only the aforementioned 3 parame-

ters but also the distance constraint on d. When we varied other parameters, d is fixed at 2

and 4 for tight and diverse previews, respectively. When we fixed other parameters, d was

varied from 2 to 6.

The results are shown in Figure 3.6 and Figure 3.7. In all results, the execution

time is averaged across 3 runs, and execution time less than 1 millisecond is rounded to

1 millisecond. The results show that both the Dynamic-Programming and the Apriori-

style algorithms outperformed the Brute-Force algorithm in execution time by orders of

magnitude in most cases. The exceptions are the smallest domain “basketball” and when

the number of requested preview tables is small (k=3). In these cases, the overheads of

more complex data structures and calculations in the advanced algorithms outweighed their

benefits.

Figure 3.7 shows that the Apriori-style algorithm did not perform well for d=6 in tight

preview discovery and d=2 in diverse preview discovery. It is due to the excessive number

of candidate k-subsets that satisfy the distance constraint in such cases. For instance, the

diameter of a schema graph typically is not large. In the schema graph of “film” domain,

the longest path length is 7 and the average path length is around 3–4. Setting distance

constraint d=6 in finding tight previews will make most previews “tight”. It is unnecessary

to enforce such a distance constraint.

87

Table 3.4: Samples of Optimal Concise Previews.

Key attributes Non-key attributes (Target entity types)

Domain=“film”, KS=Coverage, NKS=Coverage, k=5, n=10

FILM CHARACTER Portrayed in films (FILM, FILM ACTOR)

FILM ACTOR Film performances (FILM, FILM CHARACTER)

FILM Performances (FILM ACTOR, FILM CHARACTER),

Genres (FILM GENRE), Runtime (FILM CUT),

Country of origin (COUNTRY),

Directed by (FILM DIRECTOR),

Languages (HUMAN LANGUAGE)

FILM DIRECTOR Films directed (FILM)

FILM CREWMEMBER Films crewed (FILM, FILM CREW ROLE)

Domain=“music”, KS=Random Walk, NKS=Coverage, k=5, n=10

MUSICAL RECORDING Releases (MUSICAL RELEASE),

Tracks (RELEASE TRACK),

Recorded by (MUSICAL ARTIST)

MUSICAL RELEASE Tracks (MUSICAL RECORDING),

Track list (RELEASE TRACK)

RELEASE TRACK Release (MUSICAL RELEASE),

Recording (MUSICAL RECORDING)

MUSICAL ARTIST Tracks recorded (MUSICAL RECORDING)

MUSICAL ALBUM Releases (MUSICAL RELEASE),

Release type (MUSICAL ALBUM TYPE)

Domain=“tv”, KS=Random Walk, NKS=Entropy, k=5, n=10

TV EPISODE Previous episode (TV EPISODE),

Next episode (TV EPISODE),

Performances (TV ACTOR, TV CHARACTER),

Season (TV SEASON), Series (TV PROGRAM) ,

Personal appearances

(PERSON, PERSONAL APPEARANCE ROLE)

TV PROGRAM Regular acting performances

(TV ACTOR, TV CHARACTER, TV SEASON)

TV SEASON Episodes (TV EPISODE)

TV ACTOR TV episode performances

(TV EPISODE, TV CHARACTER)

TV DIRECTOR TV episodes directed (TV EPISODE)

88

Table 3.5: Samples of Optimal Tight (Upper) and Diverse Previews (Lower).

Key attributes Non-key attributes (Target entity types)

Domain=“film”, KS=Coverage, NKS=Coverage, k=5, n=10, d=2

FILM Performances (FILM CHARACTER, FILM ACTOR),

Genres (FILM GENRE), Runtime (FILM CUT),

Country of origin (COUNTRY),

Directed by (FILM DIRECTOR),

Languages (HUMAN LANGUAGE)

FILM DIRECTOR Films directed (FILM)

FILM PRODUCER Films produced (FILM)

FILM WRITER Film writing credits (FILM)

FILM EDITOR Films edited (FILM)

Domain=“film”, KS=Coverage, NKS=Coverage, k=5, n=10, d=4

FILM CHARACTER Portrayed in films (FILM, FILM ACTOR),

Portrayed in films (dubbed) (FILM, FILM ACTOR)

FILM CREWMEMBER Films crewed (FILM, FILM CREW ROLE)

PERSON OR ENTITY Films appeared in (FILM, TYPE OF APPEARANCE)

APPEARING IN FILM

FILM FESTIVAL Individual festivals (FILM FESTIVAL EVENT),

Location (LOCATION),

Focus (FILM FESTIVAL FOCUS),

Sponsoring organization (SPONSER)

FILM COMPANY Films (FILM)

3.5.3 Sample Optimal Previews

To demonstrate the combined effectiveness of both scoring measures and preview

discovery algorithms, Table 3.4 presents the optimal concise previews in 3 selected domains

by 3 different combinations of key attribute scoring (KS) and non-key attribute scoring

(NKS) measures. The size constraint is set as k=5 and n=10. All result previews show

that the selected key and non-key attributes have covered important entity types and their

important relationship types. Further, Table 3.5 shows the optimal tight (d=2) and diverse

(d=4) previews in “film” domain by one particular choice of key and non-key attribute

89

scoring measures. We see that, in the tight preview result, the chosen key attributes are

all highly related to one entity type FILM. In the diverse preview result, the chosen key

attributes are far less related to each other. Both verify the effectiveness of the concepts of

tight/diverse previews.

Note that in the generated previews, certain non-key attributes represent relationship

types involving more than two entity types. An example in Table 3.4 is Portrayed in films,

which is a non-key attribute of entity type FILM CHARACTER. Different from other non-key

attribute such as Films directed, it represents a 3-way relationship among FILM CHARACTER,

FILM and FILM ACTOR. For instance, Agent J is a FILM CHARACTER played by FILM ACTOR

Will Smith in FILM Men in Black. To present the values of such a multi-way non-key attribute

in a preview table, we employ a simple approach of presenting values for all participating

entity types in this relationship. It is arguable that this approach widens the preview table,

which to some extent violates a given size constraint. An alternative solution is to use

separate preview tables for all multi-way relationships. These pose interesting directions

for our future work.

90

CHAPTER 4

RELATED WORK

This chapter reviews the related work of this dissertation. In Section 4.1, we con-

duct a comparative study of various faceted search systems based on two taxonomies that

characterize faceted search systems. In Section 4.2, we summarize other work related to

faceted search systems based on aspects such as personalization, query log, and user be-

havior modeling. In Section 4.3, we discuss research work related to generating preview

tables for entity graphs.

4.1 Faceted Search Systems: A Comparative Study

Faceted interface has become influential over the last few years and we have seen

an explosive growth of interests in its application [26, 27, 5, 27, 5, 18, 28, 29, 30, 31,

32, 33, 34, 19, 35, 36]. Commercial faceted search systems have been adopted by ven-

dors (such as Endeca, IBM, and Mercado), as well as E-commerce websites (e.g., e-

Bay.com, Amazon.com). The utility of faceted interfaces was investigated in various s-

tudies [26, 5, 37, 27, 38, 37, 39, 5], where it was shown that users engaged in exploratory

tasks often prefer such result grouping over simple ranked result list (commonly provided

by search engines), as well as over alternative ways of organizing retrieval results, such as

clustering [40, 41, 38].

To the best of our knowledge, we are the first to propose a query-dependent faceted

search framework that discovers both facet dimensions and category hierarchies dynamical-

ly. We also demonstrate our framework through two novel application systems: Facetedpe-

dia and Facetednews. Existing research prototypes and commercial faceted search systems

91

mostly cannot be applied to meet our goals, because they either are based on manual or

static facet construction, or are for structured records or text collections with prescribed

metadata. Very few have investigated the problem of dynamic discovery of both facet di-

mensions and their associated category hierarchies.

There exist some previous works on enabling faceted search over Wikipedia. How-

ever, they are different from this work, as explained below. CompleteSearch [42] supports

query completions and query refinement in Wikipedia by a special type of “facets” on

three dimensions that are very different from our notion of general facets: query comple-

tions matching the query terms; category names matching the query terms; and categories

of result articles. Recently, another faceted interface for Wikipedia, Faceted Wikipedi-

a Search [19], has been developed as part of the DBpedia project [1]. Their facets are

pre-extracted from Wikipedia infobox attributes. Therefore the facets are not dynamically

built and hardly query-dependent, as the system often provides the same set of facets for

different search result articles. On the contrary, Facetedpedia is fully dynamic and query-

dependent. Moreover, it exploits more than 700K Wikipedia categories, in comparison

with 1800 pre-extracted attributes from infobox in Faceted Wikipedia Search [19], which

makes the facets generated by Facetedpedia more diverse and semantics-rich. Another ad-

vantage of our proposed approach is that it can be easily generalized for non-Wikipedia

text documents, where infobox does not exist.

• Figure 4.1(a): Taxonomy by Facet Types and Semantics

Previous systems roughly belong to two groups on this aspect. In some systems the

facets are on relational data (e.g., Endeca, Mercado, [31, 35, 36]) or structured at-

tributes in schemata (e.g., [27, 33, 34]) and the hierarchies on attribute values are pre-

defined based on domain-specific taxonomies. The hierarchies could even be man-

ually created, thus could contain rich semantic information. In some other systems

a facet is a group of textual terms, over which the hierarchy is built upon thesaurus-

92

se
m
a
n
ti
cs

o
f
 h
ie
ra
rc
h
ie
s

ri
ch

[Stoica et al. 2007]

[Diederich and

Balke 2008]

[Ben-Yitzhak et al. 2008,

Debabrata et al. 2008,

Yee et al. 2003]

Facetedpedia

Facetednews

Endeca

Mercado

types of facets

se
m
a
n
ti
cs

o
f
 h
ie
ra
rc
h
ie
s

structured text

sh
al
lo
w

[Dakka and Ipeirotis

2008, Dakka et al. 2005]

Balke 2008]

[Hahn et al. 2010]

[Roy et al. 2008,

Kashyap et al. 2010]*

[Pound et al. 2011]*

h
ie
ra
rc
h
y

co
n
st
ru
ct
io
n

au
to
m
at
ic
al
ly

d
is
co
v
er
ed

[Dakka and Ipeirotis 2008]

[Stoica et al. 2007]

[Diederich and Balke 2008]

[Dakka et al. 2005]

Facetedpedia

Facetednews

facet identification

h
ie
ra
rc
h
y

co
n
st
ru
ct
io
n

predefined automatically discovered

p
re
d
ef
in
ed

Endeca, Mercado

[Debabrata et al. 2008]

[Ben-Yitzhak et al. 2008,

Yee et al. 2003]

[Hahn et al. 2010]

[Roy et al. 2008,

Kashyap et al. 2010]*
[Pound et al. 2011]*

(a) Facet types and semantics. (b) Automation and dynamism.

Figure 4.1: Taxonomies of faceted search systems. (Works marked by * do not support
category hierarchy on facet.)

based IS-A relationships (e.g., [18]) or frequency-based subsumption relationships

between general and specific terms (e.g., [28, 29]). These systems cannot leverage as

much semantic information. The work [32] is in the middle of Figure 4.1(a) since it

has both structured dimensions and a subsumption-based topic taxonomy. In Faceted

Wikipedia Search [19] the facets are from metadata (i.e., attributes in Wikipedia in-

foboxes) of its target data. Hence it is in the middle along the dimension of type of

facets.

In contrast, our framework enables semantics-rich facet hierarchies (distilled from

Wikipedia category system) over text attributes (Wikipedia article titles). In the ab-

sence of predefined schemata, it builds facet hierarchies with abundant semantic in-

formation from the collaborative vocabulary in Wikipedia category system, instead

of relying on IS-A or subsumption relationships.

• Figure 4.1(b): Taxonomy by Degree of Automation and Dynamism

93

When building the two pillars in a faceted interface, namely the facet and the hierar-

chy, our framework is both automatic and dynamic, as motivated in Chapter 2. On

this aspect, none of the existing systems could be effectively applied, because none

is fully automatic in both facet identification and hierarchy construction.

In some systems (e.g., Endeca, Mercado, [31, 34, 27, 33, 35]) the dimensions and

hierarchies are predefined, therefore they do not discover the facets or construct the

hierarchy. In [33, 31, 35, 19] a subset of interesting/important facets are automati-

cally selected from the predefined ones. In [28, 29] the set of facets are predefined,

but the hierarchies are automatically created based on subsumption. In [32] only one

special facet (a topic taxonomy) is automatically generated and the rest are prede-

fined. In [36] facets are automatically discovered, but it does not use hierarchies on

facets.

With respect to the automation of faceted interface discovery, the closest work to ours

is the Castanet algorithm [18]. The algorithm is intended for short textual descrip-

tions with limited vocabularies in a specific domain. It automatically creates facets

from a collection of items (e.g., recipes). The hierarchies for the multiple facets are

obtained by first generating a single taxonomy of terms by IS-A relationships from

WordNet and then removing the top-level nodes from the taxonomy.

4.2 Other Related Work to Faceted Search

In Section 4.1 we compare our work with prior systems that focus on constructing

faceted interfaces. In this section we provide further discussion on other aspects of faceted

search systems such as personalization, query log, and user behavior modeling. We also

provide a brief discussion of related works on querying and exploring Wikipedia.

94

Koren et al. [43] studied how to incorporate user preferences into faceted search by

a probabilistic user relevance model. This work also studied how to jump start the person-

alization by a collaborative user relevance model, when there is no cumulated preferences

data for an individual user. In [44] the authors study faceted exploration of image search

results. For building facets, they use the internal semi-structured data sources in a search

engine related to images instead of image metadata. For several pre-defined domains (e.g.

locations, movies, etc), they extract a number of relationships (e.g. subsumes, played in,

has cast) to form facet dimensions. The work ranks facets based on statistical analysis of

image search query logs and users’ tagging behavior. Pound et al. [36] proposed a query-

log mining approach that discovers facets for structured data sources from keyword search

query logs. Kules et al. [45] applied techniques such as eye tracking, stimulated recall in-

terviews, and direct observation to study user navigation behaviors over faceted interfaces.

The results showed that faceted interfaces are useful in searching library catalogs. The s-

tudy also measured the amount of time that users spend on each component of a faceted

interface.

Various approaches have been pursued for enhancing keyword search on Wikipedi-

a. PowerSet 1 uses natural language processing techniques to support simple questions

and direct answers. CompleteSearch proactively supports query formulation (by present-

ing relevant completions) and query refinement through categories (by presenting matching

categories) [42]. Several works explicitly support structured queries on Wikipedia. DBPe-

dia [1] allows users to ask expressive queries against structured information extracted from

Wikipedia. [46] uses relational tables to support SQL-style queries over the extracted in-

formation. [47, 48] studied how to rank resulting entities of keyword queries. Li et al. [49]

propose a structured query mechanism, entity-relationship query, for searching entities in

Wikipedia corpus by their properties and inter-relationships. An entity-relationship query

1http://www.powerset.com

95

consists of multiple predicates on desired entities. The semantics of each predicate is spec-

ified with keywords. Entity-relationship query searches entities directly over text instead of

pre-extracted structured data stores. YAGO [2] supports semantic queries over a knowledge

base on Wikipedia. Semantic Wikipedia [50] extends Wikipedia to allow users to manually

specify the types of hyperlinks and data values in articles. [51] automatically creates and

enhances various structures in Wikipedia, including infoboxes and link structures. Such

manually or automatically generated information could be useful in creating faceted inter-

faces since they explicitly provide the attributes of articles and the relationships between

articles.

4.3 Related Work to Generating Preview Tables for Entity Graphs

DataGuides [52] is among the earliest approach to constructing structural summaries

for semi-structured databases. In semi-structured databases, there are usually no fixed

schema available. Those databases are hard to use and comprehend for end users. The

summary dynamically generated, i.e., DataGuides, servers as the meta data of for tradition-

al databases. They are helpful for database browsing, query formulation as well as means

guiding query processor and query optimization for semi-structured databases.

There are also many work related to schema summarization for relational databas-

es [7, 8, 9], XML [9] and general graph data [10, 11]. Below we briefly summarize these

work. The notion of summary in [7, 8] refers to clustering the tables in a database by their

semantic roles and similarities as well as identifying direct join relationships and indirect

join paths between the tables. Given a pre-defined relational schema, [7] generates a sum-

mary consists of several clusters of relational tables, which could potentially improve users

understanding of the database schema. The clusters are obtained by a weighted k-center

algorithm in which the weights of tables are determined by a random walk process over the

96

schema graph and the table distance or similarity is based on the number of tuples partici-

pating in the join relationship between two tables. [8] further studies, given a set of query

tables, how to find the most relevant tables as well as direct join relationships and indirect

join paths between the tables. The results preserve most important or informative join path

between query tables and form a succinct summary graph for users’ digest. [9] produces

schema summarization for relational databases and XML data. Its summary is in the form

of a condensed schema tree where a node may correspond to multiple nodes or a trunk in

the original schema tree. The summary balances coverage and importance of the elements

in the schema tree. The graph summarization in [10, 11] groups graph nodes based on their

attribute similarity and allows users to browse the summary from different grouping gran-

ularities. [10] enables OLAP-style operations (i.e., SNAP and k-SNAP) over graph data

and derive graph summaries by grouping nodes based on the similarity of their categorical

attributes. The SNAP operation generates a summary graph by grouping nodes based on

user-selected node attributes and relationships, while the k-SNAP operation further allows

users to control the resolutions of summaries and provides the drill-down and roll-up abili-

ties to navigate through summaries with different resolutions. These operations helps users

view the original graph at different granularities. [11] extends the method by automatically

categorizing numerical attributes. It also studies how to find the most insightful summary

from summaries of different granularities. In Chapter 1, we explained why these method-

s are inapplicable or ineffective for producing preview tables from entity graphs, due to

different data models in input and output as well as different goals.

There are many work on graph clustering [53]. They are not effective for generat-

ing preview tables, since clustering focuses on partitioning but does not present a concise

structure. On the contrary, preview tables only contain a small number of key attributes

(vertices) and non-key attributes (edges) in a schema graph.

97

CHAPTER 5

CONCLUSION

In this dissertation, we studied two aspects of entity-centric information exploration:

using entity graphs to browse external data sources and understanding entity graphs. We

tackled two specific objectives: faceted interface discovery for Web documents and optimal

preview discovery for entity graphs.

The first objective is to develop methods that discover query-dependent faceted inter-

faces dynamically and automatically to help users navigate Wikipedia articles and general

Web documents. Toward this goal, we proposed a generic faceted search model that is

instantiated into two faceted search systems– Facetedpedia and Facetednews. Given the

sheer size and complexity of the exploited Wikipedia data, there is a prohibitively large

space of possible faceted interfaces. We proposed metrics for ranking faceted interfaces

as well as efficient algorithms for discovering them. Our experimental evaluation and user

study verify the effectiveness of our methods in generating useful faceted interfaces over

both Wikipedia and news articles.

The second objective is to develop methods that generate preview tables for enti-

ty graphs. The problem is challenging due to the scale and complexity of such graphs.

We proposed scoring measures for both key attributes and non-key attributes in each of

the individual preview tables, as well as the aggregation method for multiple preview ta-

bles. We proved that the optimal preview discovery problem under distance constraint is

NP-complete. We designed efficient algorithms for discovering optimal previews. Our

experiments on the Freebase dataset verified the accuracy and efficiency of our proposed

methods.

98

REFERENCES

[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “DBpe-

dia: A nucleus for a web of open data,” in Proceedings of the 6th internation-

al The semantic web and 2nd Asian conference on Asian semantic web conference

(ISWC’07/ASWC’07), 2007, pp. 722–735.

[2] F. M. Suchanek, G. Kasneci, and G. Weikum, “YAGO: a core of semantic knowledge,”

in Proceedings of the 16th international conference on World Wide Web (WWW),

2007, pp. 697–706.

[3] W. Wu, H. Li, H. Wang, and K. Q. Zhu, “Probase: A probabilistic taxonomy for text

understanding,” in Proceedings of the 2012 ACM SIGMOD International Conference

on Management of Data, ser. SIGMOD ’12. New York, NY, USA: ACM, 2012, pp.

481–492. [Online]. Available: http://doi.acm.org/10.1145/2213836.2213891

[4] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: A

collaboratively created graph database for structuring human knowledge,” in

Proceedings of the 2008 ACM SIGMOD International Conference on Management

of Data, ser. SIGMOD ’08. New York, NY, USA: ACM, 2008, pp. 1247–1250.

[Online]. Available: http://doi.acm.org/10.1145/1376616.1376746

[5] M. A. Hearst, “Clustering versus faceted categories for information exploration,”

Commun. ACM, vol. 49, pp. 59–61, April 2006.

[6] I. Herman, G. Melançon, and M. S. Marshall, “Graph visualization and navigation

in information visualization: A survey,” IEEE Transactions on Visualization and

Computer Graphics, vol. 6, no. 1, pp. 24–43, Jan. 2000. [Online]. Available:

http://dx.doi.org/10.1109/2945.841119

99

[7] X. Yang, C. M. Procopiuc, and D. Srivastava, “Summarizing relational databases,”

Proceedings of the VLDB Endowment, vol. 2, no. 1, pp. 634–645, Aug. 2009.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1687627.1687699

[8] ——, “Summary graphs for relational database schemas,” PVLDB, vol. 4, no. 11, pp.

899–910, 2011.

[9] C. Yu and H. V. Jagadish, “Schema summarization,” in Proceedings of

the 32Nd International Conference on Very Large Data Bases, ser. VLDB

’06. VLDB Endowment, 2006, pp. 319–330. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=1182635.1164156

[10] Y. Tian, R. A. Hankins, and J. M. Patel, “Efficient aggregation for graph

summarization,” in Proceedings of the 2008 ACM SIGMOD International Conference

on Management of Data, ser. SIGMOD ’08. New York, NY, USA: ACM, 2008, pp.

567–580. [Online]. Available: http://doi.acm.org/10.1145/1376616.1376675

[11] N. Zhang, Y. Tian, and J. M. Patel, “Discovery-driven graph summarization,” in Pro-

ceedings of the IEEE 24th International Conference on Data Engineering (ICDE),

2010, pp. 880–891.

[12] R. Agarwal and R. Srikant, “Fast algorithms for mining association rules,” in Pro-

ceedings of the 20th International Conference on Very Large Data Bases., 1994, pp.

487–499.

[13] C. Li, N. Yan, S. B. Roy, L. Lisham, and G. Das, “Facetedpedia: dynamic genera-

tion of query-dependent faceted interfaces for wikipedia,” in Proceedings of the 19th

international conference on World wide web (WWW), 2010, pp. 651–660.

[14] N. Yan, C. Li, S. B. Roy, R. Ramegowda, and G. Das, “Facetedpedia: enabling query-

dependent faceted search for wikipedia,” in Proceedings of the 19th ACM internation-

al conference on Information and knowledge management (CIKM), 2010, pp. 1927–

1928.

100

[15] C. Fellbaum, “WordNet: An electronic lexical database.” MIT Press, 1998.

[16] D. Milne and I. H. Witten, “Learning to link with wikipedia,” in Proceeding of the

17th ACM conference on Information and knowledge management (CIKM), 2008, pp.

509–518.

[17] C. J. V. Rijsbergen, Information Retrieval, 2nd ed. Newton, MA, USA: Butterworth-

Heinemann, 1979.

[18] E. Stoica, M. A. Hearst, and M. Richardson, “Automating creation of hierarchical

faceted metadata structures,” in Proceedings of the Human Language Technology

Conference (NAACL-HLT), 2007, pp. 244–251.

[19] R. Hahn, C. Bizer, C. Sahnwaldt, C. Herta, S. Robinson, M. Bürgle, H. Düwiger, and

U. Scheel, “Faceted wikipedia search,” in Business Information Systems. Springer,

2010, pp. 1–11.

[20] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,”

in Proceedings of the seventh international conference on World Wide Web, 1998, pp.

107–117. [Online]. Available: http://dl.acm.org/citation.cfm?id=297805.297827

[21] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, no. 1, pp.

81–106, Mar. 1986. [Online]. Available: http://dx.doi.org/10.1023/A:1022643204877

[22] F. Kose, W. Weckwerth, T. Linke, and O. Fiehn, “Visualizing plant metabolomic

correlation networks using clique-metabolite matrices.” Bioinformatics, vol. 17,

no. 12, pp. 1198–1208. [Online]. Available: http://dblp.uni-trier.de/db/journals/

bioinformatics/bioinformatics17.html#KoseWLF01

[23] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an undirected graph,”

Communications of the ACM, vol. 16, no. 9, pp. 575–577, Sept. 1973. [Online].

Available: http://doi.acm.org/10.1145/362342.362367

[24] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Information Retrieval.

NY, USA: Cambridge University Press, 2008.

101

[25] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum

Associates, 1988.

[26] A. S. Pollitt, “The key role of classification and indexing in view-based searching,” in

Proceedings of the 63rd International Federation of Library Associations and Institu-

tions General Conference (IFLA), 1997.

[27] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst, “Faceted metadata for image search

and browsing,” in Proceedings of the SIGCHI conference on Human factors in com-

puting systems (CHI), 2003, pp. 401–408.

[28] W. Dakka, P. G. Ipeirotis, and K. R. Wood, “Automatic construction of multifaceted

browsing interfaces,” in Proceedings of the 14th ACM international conference on

Information and knowledge management (CIKM), 2005, pp. 768–775.

[29] W. Dakka and P. Ipeirotis, “Automatic extraction of useful facet hierarchies from text

databases,” 2008, pp. 466–475.

[30] K. A. Ross and A. Janevski, “Querying faceted databases,” in Semantic Web and

Databases, ser. Lecture Notes in Computer Science, C. Bussler, V. Tannen, and I. Fun-

dulaki, Eds., vol. 3372. Springer Berlin / Heidelberg, 2005, pp. 199–218.

[31] S. B. Roy, H. Wang, G. Das, U. Nambiar, and M. Mohania, “Minimum effort driven

dynamic faceted search in structured databases,” in Proceedings of the 17th ACM

conference on Information and knowledge management (CIKM), 2008, pp. 13–22.

[32] J. Diederich and W.-T. Balke, “FacetedDBLP - navigational access for digital li-

braries,” Bulletin of IEEE Technical Committee on Digital Libraries, vol. 4, Spring

2008.

[33] D. Debabrata, R. Jun, N. Megiddo, A. Ailamaki, and G. Lohman, “Dynamic faceted

search for discovery-driven analysis,” in Proceeding of the 17th ACM conference on

Information and knowledge management (CIKM), 2008, pp. 3–12.

102

[34] O. Ben-Yitzhak, N. Golbandi, N. Har’El, R. Lempel, A. Neumann, S. Ofek-Koifman,

D. Sheinwald, E. Shekita, B. Sznajder, and S. Yogev, “Beyond basic faceted search,”

in Proceedings of the international conference on Web search and web data mining

(WSDM), 2008, pp. 33–44.

[35] A. Kashyap, V. Hristidis, and M. Petropoulos, “Facetor: cost-driven exploration of

faceted query results,” in Proceedings of the 19th ACM international conference on

Information and knowledge management (CIKM), 2010, pp. 719–728.

[36] J. Pound, S. Paparizos, and P. Tsaparas, “Facet discovery for structured web search: a

query-log mining approach,” in Proceedings of the 2011 international conference on

Management of data (SIGMOD), 2011, pp. 169–180.

[37] W. Pratt, M. A. Hearst, and L. M. Fagan, “A knowledge-based approach to organizing

retrieved documents,” in Proceedings of the sixteenth national conference on Arti-

ficial intelligence and the eleventh Innovative applications of artificial intelligence

conference innovative applications of artificial intelligence (AAAI/IAAI), 1999, pp.

80–85.

[38] M. Käki, “Findex: search result categories help users when document ranking fails,”

in Proceedings of the SIGCHI conference on Human factors in computing systems

(CHI), 2005, pp. 131–140.

[39] K. Rodden, W. Basalaj, D. Sinclair, and K. Wood, “Does organisation by similarity

assist image browsing?” in Proceedings of the SIGCHI conference on Human factors

in computing systems (CHI), 2001, pp. 190–197.

[40] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey, “Scatter/gather: a

cluster-based approach to browsing large document collections,” in Proceedings of

the 15th annual international ACM SIGIR conference on Research and development

in information retrieval (SIGIR), 1992, pp. 318–329.

103

[41] O. Zamir and O. Etzioni, “Grouper: a dynamic clustering interface to web search

results,” in Proceedings of the eighth international conference on World Wide Web

(WWW), 1999, pp. 1361–1374.

[42] H. Bast and I. Weber, “The CompleteSearch engine: Interactive, efficient, and towards

IR & DB integration,” in Conference on Innovative Data Systems Research (CIDR),

Asilomar, CA, USA, 2007, pp. 88–95.

[43] J. Koren, Y. Zhang, and X. Liu, “Personalized interactive faceted search,” in Pro-

ceeding of the 17th international conference on World Wide Web (WWW), 2008, pp.

477–486.

[44] R. van Zwol, B. Sigurbjornsson, R. Adapala, L. Garcia Pueyo, A. Katiyar, K. Ku-

rapati, M. Muralidharan, S. Muthu, V. Murdock, P. Ng, A. Ramani, A. Sahai, S. T.

Sathish, H. Vasudev, and U. Vuyyuru, “Faceted exploration of image search result-

s,” in Proceedings of the 19th international conference on World wide web (WWW),

2010, pp. 961–970.

[45] B. Kules, R. Capra, M. Banta, and T. Sierra, “What do exploratory searchers look at in

a faceted search interface?” in Proceedings of the 9th ACM/IEEE-CS joint conference

on Digital libraries (JCDL), 2009, pp. 313–322.

[46] E. Chu, A. Baid, T. Chen, A. Doan, and J. Naughton, “A relational approach to incre-

mentally extracting and querying structure in unstructured data,” in VLDB, 2007.

[47] H. Zaragoza, H. Rode, P. Mika, J. Atserias, M. Ciaramita, and G. Attardi, “Ranking

very many typed entities on Wikipedia,” in CIKM, 2007, pp. 1015–1018.

[48] A.-M. Vercoustre, J. A. Thom, and J. Pehcevski, “Entity ranking in Wikipedia,” in

SAC, 2008, pp. 1101–1106.

[49] X. Li, C. Li, and C. Yu, “Entity-relationship queries over Wikipedia,” ACM Transac-

tions on Intelligent Systems and Technology (TIST) (In press), 2012.

104

[50] M. Völkel, M. Krötzsch, D. Vrandecic, H. Haller, and R. Studer, “Semantic Wikipedi-

a,” in Proceedings of the 15th international conference on World Wide Web (WWW),

2006, pp. 585–594.

[51] F. Wu and D. S. Weld, “Autonomously semantifying Wikipedia,” in Proceedings of

the sixteenth ACM conference on Conference on information and knowledge manage-

ment (CIKM), 2007, pp. 41–50.

[52] R. Goldman and J. Widom, “Dataguides: Enabling query formulation and

optimization in semistructured databases,” in Proceedings of the 23rd International

Conference on Very Large Data Bases, ser. VLDB ’97, San Francisco, CA, USA,

1997, pp. 436–445. [Online]. Available: http://dl.acm.org/citation.cfm?id=645923.

671008

[53] S. E. Schaeffer, “Survey: Graph clustering,” Computer Science Review, vol. 1, no. 1,

pp. 27–64, Aug. 2007. [Online]. Available: http://dx.doi.org/10.1016/j.cosrev.2007.

05.001

105

BIOGRAPHICAL STATEMENT

Ning Yan was born in Tai’an, a beautiful city of Shandong Province in China. The

city is located at the foot of Mount Tai which has been a place of worship for at least 3,000

years and served as one of the most important ceremonial centers of ancient China.

He then spent seven years of his life in Nanjing, China, and graduated with a Bache-

lor of Engineering degree in Software Engineering and a Master of Engineering degree in

Computer Science both from Southeast University in 2005 and 2008, respectively.

As a doctoral student in University of Texas at Arlington, he is doing research main-

ly focusing on Web data mining, information retrieval, and database management system.

Compared with elegant theoretic results, he is more interested in building real world appli-

cations that have great impacts.

106

