MOTION AND RIGIDITY OF THE CARIBBEAN PLATE AND GEODETIC OBSERVATIONS OF DOMINICA, LESSER ANTILLES

by

JAMIE MILLER

Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2013

Copyright © by Jamie Miller 2013
All Rights Reserved

Dedication
For Paul

Acknowledgements

I would like to express the deepest appreciation to my committee chair, Glen Mattioli for accepting a non-traditional student, introducing me to geodesy, and providing me with great opportunities for science and adventure. I would like to thank my committee members for their input and guidance. I thank my parents, Jim and Annette Tomlin for their support over these many years and for taking me to my first volcano at the age of three. I still remember the smell and have ever since been intrigued with how the Earth works. My entire family has always provided me with the love and support needed to achieve goals, my house is back open for pool parties! Thanks go to my sons, Harrison and Houston, who both served as outstanding field hands in Dominica. And most of all, I thank my husband, Paul, without whom, this literally would not have been possible. His expertise in all things technical, as well as his ability to "hold down the fort" has afforded me the luxury of doing the things I love.

Abstract
 MOTION AND RIGIDITY OF THE CARIBBEAN PLATE, AND GEODETIC OBSERVATIONS OF DOMINICA, LESSER ANTILLES

Jamie Miller, PhD

The University of Texas at Arlington, 2013

Supervising Professor: Glen S. Mattioli
The currently accepted kinematic model of the Caribbean plate presented by DeMets et al. (2007), is based on velocities from 6 continuous and 14 campaign GPS sites. This work attempts to refine the current plate model by evaluating data from an expanded number of stations with an improved spatial distribution. As a measure to better constrain the eastern margin, a study has been conducted on the island of Dominica, which includes campaign GPS data collected over the last decade. The analysis of data from 117 sites includes campaign data in addition to the data from the continuous GPS stations that comprise COCONet. An updated velocity field for the Caribbean plate is presented and an inversion of the velocities for 24 sites yields a plate angular velocity that differs from previously published models. It is determined that a 2 plate model for the Caribbean is a more suitable fit of the data, which suggests that the Caribbean is undergoing deformation within its interior. Analyses for possible east-west deformation across the Lower Nicaraguan Rise and Beata Ridge are presented.

Table of Contents

Acknowledgements iv
Abstract v
List of Figures viii
List of Tables xi
Chapter 1 Tectonic Setting 1
1.1 The Caribbean Plate 1
2.2 Dominica and the Central Lesser Antilles 6
Chapter 2 GPS Data 11
2.1 Campaign GPS Data Acquisition 11
2.2 Continuous GPS Data Acquisition 12
2.3 GPS Data Processing. 12
2.4 GOAII-6.1.2 vs. 6.2 14
Chapter 3 Geodetic Observations of Dominica, Lesser Antilles 18
3.1 Introduction 18
3.2 Volcanic History of Dominica 19
3.3 Results 24
3.4 Data Analysis and Discussion 37
3.5 Conclusion 46
Chapter 4 The Caribbean Plate 48
4.1 Introduction 48
4.2 The 1-plate model 52
4.3 The 2-plate model 58
4.4 The rigidity of the Caribbean plate 65
4-5 Kinematic versus dynamic model of the Caribbean 74
4-6 Conclusion 76
Appendix A Dominica Campaign Site Descriptions 77
Appendix B COCONet Time Series 103
Appendix C Dominica site equipment history 153
Appendix D Inversion Input Files 155
Appendix E Inversion Results 166
References 179
Biographical Information 184

List of Figures

Figure 1-2 Reconstructions of the Caribbean at 120 Ma and 90 Ma 3
Figure 1-3 Reconstructions of the Caribbean at 72 Ma and $49 \mathrm{Ma} . ~ 4 ~ 4 ~$
Figure 1-4 Reconstructions of the Caribbean at 22 Ma and today 5
Figure 1-5 Tectonic setting of the Caribbean plate.. 6
Figure 1-6 Lesser Antilles Arc regional seismicity ... 8
Figure 1-7 Map of Lesser Antilles ... 9
Figure 1-8 Location of Dominica within the Lesser Antilles .. 10
Figure 2-1 Comparative time series for site CRO1.. 16
Figure 2-2 Comparative time series for site CN07... 17
Figure 3-1 Location of Dominica .. 18
Figure 3-2 Geologic map of Dominica from Smith et al. (2013)....................................... 22
Figure 3-3 A petrogenic model for the geologic evolution of Dominica 23
Figure 3-4 Dominica campaign GPS site location map ... 25
Figure 3-5 Time series for site ATRU ... 26
Figure 3-6 Time series for site BELV .. 26
Figure 3-7 Time series for site BOTG ... 27
Figure 3-8 Time series for site BRDX ... 27
Figure 3-9 Time series for site CNCD... 28
Figure 3-10 Time series for site COHT .. 28
Figure 3-11 Time series for site CONN.. 29
Figure 3-12 Time series for site FRSH .. 29
Figure 3-13 Time series for site GOMM.. 30
Figure 3-14 Time series for site GSAV ... 30
Figure 3-15 Time series for site MHAM 31
Figure 3-16 Time series for site MTNV 31
Figure 3-17 Time series for site NEWF 32
Figure 3-18 Time series for site NVEN 32
Figure 3-19 Time series for site SCTT 33
Figure 3-20 Time series for site SOIE 33
Figure 3-21 Time series for site SPAG 34
Figure 3-22 Time series for site SPNG 34
Figure 3-23 Time series for site TETE 35
Figure 3-24 Time series for site WOTT. 35
Figure 3-25 Dominica horizontal velocities reported by James (2008) 39
Figure 3-26 Dominica horizontal velocities (2001-2007). 40
Figure 3-27 Dominica residual horizontal site velocities (2001-2012). 41
Figure 3-28 Dominica surface deformation 43
Figure 3-29 Dominica vertical site velocities (2001-2012) 45
Figure 4-1 Caribbean GPS station site map 49
Figure 4-2 Demets et al. (2007) velocity vectors and updated values. 53
Figure 4-3 Caribbean horizontal site velocities 57
Figure 4-4 Horizontal velocities for sites on the Caribbean plate. 59
Figure 4-5 Data importance 63
Figure 4-6 Euler pole locations 64
Figure 4-7 Faults and earthquakes of the Caribbean 65
Figure 4-8 Motion along Lower Nicaraguan Rise with respect to a fixed east plate. 67
Figure 4-9 Motion along Lower Nicaraguan Rise with respect to a fixed west plate 68
Figure 4-10 Motion along the Beata Ridge with respect to fixed east plate. 69

Figure 4-11 Motion along the Beata Ridge with respect to fixed west plate.
Figure 4-12 Dominica residual velocities, 1-plate model versus 2-plate model................ 72
Figure 4-13 Western site residual velocities, 1-plate model versus 2-plate model........... 73
Figure 4-14 Caribbean principle stress directions (van Benthem, 2013).......................... 74
Figure 4-15 Caribbean effective strain rate (van Benthem, 2013).................................... 75

List of Tables

Table 2-1 Velocity summary for sites CRO1 and CN07 15
Table 3-1 Dominica site velocity summary 36
Table 4-1 Caribbean velocity summary, sorted by site ID. 50
Table 4-2 Caribbean velocity summary, sorted by site occupation length 51
Table 4-3 Best-fitting Caribbean plate velocity vector information 55
Table 4-4 Occupation history and velocities 58
Table 4-5 Site data importance values 62
Table 4-6 Best fitting Caribbean angular velocity vectors 64

Chapter 1

Tectonic Setting

1.1 The Caribbean Plate

The Caribbean began to develop less than 200 Ma ago with the breakup of Pangaea (Burke, 1988). Following the opening of the Gulf of Mexico in the mid-late Jurassic, the proto-Caribbean ocean formed as North and South America moved away from each other in Early Cretaceous (Ross and Scotese, 1988). A subduction zone was created as the eastward motion of the Caribbean plate met the rifting of the Atlantic. Reconstructions by Mann et al. (2007), from 165 Ma to the present, provide an overview of the tectonic history of this region (Figure 1-1, Figure 1-2, Figure 1-3, Figure 1-4). The late Jurassic (165 Ma) reconstruction shows the landmasses prior to the separation of North and South America and the rotation of the Maya block southward. At this time, an eastward dipping subduction zone formed the western margin of the Americas. In the early Cretaceous, the proto-Caribbean seaway was beginning to form as extension between North and South America progressed. As the Cretaceous period continued, much of the proto-Caribbean crust was consumed by the advancement of the GuerreroCaribbean arc from the west (Figure 1-2). During the late Cretaceous, the Caribbean large igneous province (CLIP) was formed by volcanism associated with the Galapagos hotspot (Figure 1-2). The province is characterized by a number of volcanic plateaus separated by deep basins of thinner crust with volcanic under-plating (Mauffret and Leroy, 1997). ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ age determinations place the main pulse of flood-basalt magmatism at 89 Ma , followed by a second pulse at ca. 75 Ma (Hoernle et al., 2004). As the Cretaceous period ended, the Caribbean arc was situated next to the thick buoyant CLIP and the two continued to migrate northeastward until part of the arc collided with the Bahaman carbonate platform in the Eocene.

Figure 1-1 Reconstructions of the Caribbean at 165 Ma and 144 Ma Key to abbreviations: $N=$ Nicaragua, $N R=$ Nicaraguan rise, $\mathrm{C}=$ Cuba, $\mathrm{M}=$ Maya block, $G=G u e r r e r o ~ t e r r a n e, ~ C L I P=C a r i b b e a n ~ l a r g e ~ i g n e o u s ~ p r o v i n c e, ~ Y=Y u c a t a ́ n ~ b a s i n, ~$ CT=Cayman trough, and LA=Lesser Antilles. Countries of Costa Rica and Panama correspond to approximate area of Chorotega block; countries of Honduras, Nicaragua, and Guatemala correspond to Chortis block. (Mann et al., 2007)

Figure 1-2 Reconstructions of the Caribbean at 120 Ma and 90 Ma
Key to abbreviations: N=Nicaragua, NR=Nicaraguan rise, C=Cuba, M=Maya block, $G=G u e r r e r o ~ t e r r a n e, ~ C L I P=C a r i b b e a n ~ l a r g e ~ i g n e o u s ~ p r o v i n c e, ~ Y=Y u c a t a ́ n ~ b a s i n, ~$ CT=Cayman trough, and LA=Lesser Antilles. Countries of Costa Rica and Panama correspond to approximate area of Chorotega block; countries of Honduras, Nicaragua, and Guatemala correspond to Chortis block. (Mann et al., 2007)

Figure 1-3 Reconstructions of the Caribbean at 72 Ma and 49 Ma Key to abbreviations: N=Nicaragua, NR=Nicaraguan rise, $\mathrm{C}=\mathrm{Cuba}, \mathrm{M}=$ Maya block, $G=$ Guerrero terrane, CLIP=Caribbean large igneous province, $Y=Y u c a t a ́ n ~ b a s i n, ~$ CT=Cayman trough, and LA=Lesser Antilles. Countries of Costa Rica and Panama correspond to approximate area of Chorotega block; countries of Honduras, Nicaragua, and Guatemala correspond to Chortis block. (Mann et al., 2007)

Figure 1-4 Reconstructions of the Caribbean at 22 Ma and today
Key to abbreviations: $\mathrm{N}=$ Nicaragua, $\mathrm{NR}=$ Nicaraguan rise, $\mathrm{C}=$ Cuba, $\mathrm{M}=$ Maya block,
$G=$ Guerrero terrane, CLIP=Caribbean large igneous province, $Y=$ Yucatán basin,
CT=Cayman trough, and LA=Lesser Antilles. Countries of Costa Rica and Panama correspond to approximate area of Chorotega block; countries of Honduras, Nicaragua, and Guatemala correspond to Chortis block. (Mann et al., 2007)

Figure 1-5 Tectonic setting of the Caribbean plate.
(Giunta and Orioli, 2011)
Today, the eastern edge of the Caribbean plate is marked by a westward dipping subduction zone that has produced the Lesser Antilles (LA) island arc, an approximately 850 km long volcanic island arc that trends north-south and extends from Venezuela in the south to the Greater Antilles (Puerto Rico-Virgin Islands platform) in the north. The LA arc is a result of the North and South American plates being subducted beneath the Caribbean plate. The Greater and Lesser Antilles are separated by the Anegada Passage, a probable Neogene graben complex (Bouysse et al., 1990). To the west of the Lesser Antilles Arc lies the Grenada Basin, which is bordered on its western side by the Aves Ridge.

2.2 Dominica and the Central Lesser Antilles

The Lesser Antilles Island arc has a complex history, and has probably been active since the Early Cretaceous (Bouysse, 1988). With the onset of the early Eocene, the volcanic landscape began to develop. Its trace can be identified from Grenada, in the
south, to Anguilla, in the north; however, the arc does not display uniform morphology along its entire length. The Dominica Passage, a deep (1200 m) structure that cuts through the arc serves as a marker between the distinct morphologies of the northern and southern portions of the arc (Bouysse et al., 1990). The current arc is considered to be composed of two segments, each with unique characteristics. The section north of Martinique experiences high seismicity (Smith et al., 2013) (Figure 1-6), has a history of large magnitude earthquakes (Wadge and Shepard, 1984), and a subduction rate of $\sim 2 \mathrm{~cm} / \mathrm{yr}$ (DeMets et al., 2000; 2007) along a slab that dips $50^{\circ}-60^{\circ}$. The segment that extends south of St. Lucia has not had large historical earthquakes, nor does it experience the seismic activity that the north does (Figure 1-6). The subduction in the southern segment is slower and shallower than in the north $\left(1.8 \mathrm{~cm} / \mathrm{yr}\right.$ at $\left.45^{\circ}-50^{\circ}\right)$ (DeMets et al., 2010). North of Dominica, the 50 km wide Kallinago depression separates two distinct volcanic chains (Figure 1-7). The outer arc, to the east, is the remnant of earlier volcanism and is known as the Limestone Caribees, while the inner arc, known as the Volcanic Caribees, to the west, began activity in the Burdigalian (~ 20 Ma) and is still active today. South of Dominica, the older and younger igneous arcs are superimposed. The Tiburon and Barracuda, aseismic ridges, both of which trend ESEWNW, are currently being subducted beneath the Lesser Antilles Arc.

Figure 1-6 Lesser Antilles Arc regional seismicity
(Smith et al., 2013, DeMets et al., 2010, Mann et al., 2002)
Figure reproduced from Smith et al., 2013: Regional seismicity from the IRIS and NEIC
catalogs for all earthquakes of magnitude greater than M4 from 1906 to 2010.
Magnitudes are shown as scaled circles and the hypo central depths and coded using the colors shown in the legend in the upper right. Topography and bathymetry from ETOPO1, which were reformatted and released by NOAA (http://www.ngdc.noaa.gov/mgg/global/global.html). Contours are in meters. The trace of the intersection of the crystalline lithospheres of the North American or South American plates and the overriding Caribbean plate is modified from Mann et al., 2002. Note the increased seismicity north of $15^{\circ} \mathrm{N}$ and the high concentration of shallow crustal seismicity along the arc.

Figure 1-7 Map of Lesser Antilles
Reproduced from Smith et al. (2013): Map showing location of potentially active volcanoes: 1-Mount Scenery; 2-The Quill; 3-Mount Liamuiga; 4-Nevis Peak; 5-Soufrière Hills; 6-La Soufrière; 7-Morne aux Diables; 8-Morne Diablotins; 9-Morne Trois Pitons; 10Wotten Waven caldera; 11-Valley of Desolation; 12-Watt Mountain; 13-Morne Anglais; 14-Grand Soufrière Hills; 15-Morne Plate Pays; 16-Mount Pelée; 17-Soufrière volcanic center; 18- Soufrière; 19-Kick 'em Jenny (submarine); Mount St. Catherine. Also shown is the subdivision of the Lesser Antilles into Limestone Caribee and Volcanic Caribee island arcs (after Roobol abd Smith, 2004). Islands are S-Saba; E-St. Eustatius; SM-St. Martin; K-St. Kitts; N-Nevis; MT-Montserrat; A-Antigua; G-Guadeloupe; L-St. Lucia; V-St. Vincent; GR-Grenadines; GD-Grenada.

Of particular interest here is the island of Dominica (Figure 1-8). The predominantly andesitic volcanic island sits in the Central Lesser Antilles, either side of which, differences exist in the tectonics and the resulting morphology of the arc system. At this location in the arc, the subducted slab has a dip angle of $\sim 50^{\circ}-60^{\circ}$ and subduction is nearly normal (James, 2008). The Wadati-Benioff zone is at its deepest here, with earthquakes reaching a maximum depth of $\sim 210 \mathrm{~km}$ (Smith et al., 2013). Dominica should be free from significant arc-parallel extension that is present both to the north, due to sinistral oblique subduction, and to the south, due to dextral oblique subduction (DeMets et al., 2000).

Figure 1-8 Location of Dominica within the Lesser Antilles

Chapter 2

GPS Data

2.1 Campaign GPS Data Acquisition

GPS data from the Island of Dominica have been collected during GPS campaigns that began in 2001. The University of Arkansas Geodesy Lab began geodetic measurements of the Island by installing and occupying nine sites (James, 2008). Expansions of the network have been completed over the years; three sites were added in 2003, six were added in 2004, five were added in 2006, and the final four were added in 2007 to complete the 27 site network (James, 2008). Each of the sites consists of a stainless steel Bevis pin drilled and then epoxied into bedrock, a building, or other edifice deemed stationary with reference to the surrounding landscape. Details regarding each individual site are available in the site descriptions located in the Appendix of this manuscript.

A variety of equipment was used to collect GPS data. During the 2011 and 2012 field campaigns, 4 types of mounts were used: 0.2 m and 0.5 m spike mounts, a 1.5 m tetrapod, and a standard surveyor's tripod with a tribrach. The type of mount used for any given site was dictated by the environment of the individual sites. The receiver/antenna combination was either an Ashtech $\mu-Z$ receiver with a Dorn-Margolin choke ring antenna or a Trimble R7 receiver with a Zephyr geodetic antenna. Both receivers are dual frequency and record L1 and L2 code and phase data. A typical 12 volt lead-acid car battery with a solar panel was used to power each station. Data was collected at each site for three consecutive UTC days with a 30 second sampling interval and an elevation mask of 10°. At the end of a site occupation, the data from the receiver was downloaded using receiver specific software onto a laptop and transferred to the server at UTA using WinSCP.

2.2 Continuous GPS Data Acquisition

Continuous GPS data were obtained from the open data archive at UNAVCO (www.unavco.org). Since the focus of this work is the Caribbean, the data collected are from sites within the Continuously Operating Caribbean Observational Network (COCONet - http://coconet.unavco.org). COCONet is an NSF-funded, internationally collaborative effort aimed at developing a large-scale geodetic and atmospheric infrastructure in the Caribbean that forms the backbone for a broad range of geoscience and atmospheric investigations (Braun et al., 2012)

2.3 GPS Data Processing

All GPS data for this study have been processed using an absolute point positioning strategy using GIPSY-OASIS II (versions 6.1.2 and 6.2). GIPSY (GNSSInferred Positioning SYstem) and OASIS (Orbit Analysis and SImulation Software), together, comprise a software package that has been developed by the Jet Propulsion Laboratory (JPL) and is maintained by the Near Earth Tracking Applications and Systems groups. For our purposes, this software will be used for terrestrial positioning (Webb and Zumberge, 1995; Gregorius, 1997; Turner, 2010). The initial calculated positions are non-fiducial and in the free frame, or satellite reference frame. These positions are then translated, rotated, and scaled into the International GNSS Service 2008 (IGS08), using X-files from JPL (Zumberge et al., 1997), and then into a more useable, plate-based reference frame with the DeMets et al. $(2000,2007)$ version of the GPS-derived Euler pole for the Caribbean to examine site velocities relative to the fixed Caribbean plate.

GIPSY - OASIS II (GOAII) was developed to solve for precise positions from GPS data collected in the field and consists of numerous individual programs and modules that can be tailored to suit the needs of any user. For GOAll to be used, the raw
data, or GPS observables, must be converted from the receiver specific formatting to the Receiver Independent Exchange Format (RINEX) using TEQC (Estey and Meertens, 1999) and named according to GIPSY format, which then allows the data to be run in an automated manner using a UNIX script originally authored by Charles DeMets and significantly modified over the years by Glen S. Mattioli. Turner (2003) provides a detailed description of the steps involved in the processing of GPS data using GIPSYOASIS II software to calculate precise point positions, these steps are presented here with minor modifications.

1. The program Ninja translates the rinex files into a FORTRAN binary file, removes outliers, and detects cycle slips. The data are decimated into 300 second intervals and data for each satellite are merged into a qm file.
2. Individual qm files are merged into a single file, the QMfile, by the program merge_qm. A namelist is created from the QMfile called qregress.nml.
3. The qregress.nml namelist is used to derive qregress, which does the physical modeling of the receiver measurements. In our analysis scheme, qregress uses final precise satellite orbits, clocks, and earth orientation parameters provided by JPL. Qregress applies the physical models (receiver location time dependence, tidal effects, polar motion and earth rotation, nutation, procession, perturcation, rotation, geocenter offset, and coordinate scaling) to the orbits and observations and outputs a regress file, rgfile, which contains the parameter partials and nominal values.
4. The rgfile is used by the program wash_nml to create a wash.nml file. The rgfile and the wash.nml files are the input for the preprefilter, prefilter, and filter modules. The filter module runs the Square Root Information Filter, which processes small batches of data sequentially and produces the accume.nio, smooth.nio, and uinv.nio files.
5. Smapper follows the filtering process and smoothes and maps the covariance, sensitivity, and solution of the parameter estimation.
6. Postfit computes the post-fit data residuals.
7. Postbreak searches for cycle slips missed by Ninja and modifies the QMfile if cycle slips are detected and reruns GIPSY.
8. Edtpnt2 adds or deletes data points to or from the filtered solution to remove outliers. After Edtpnt2 is run, smapper and postfit are rerun.
9. The stacov module produces the final solution files in text format.

The data were initially processed using GOAll version 6.1.2, but discrepancies prompted an evaluation of the processing system, whereby, it was determined that version 6.2 generated more precise results. The 6.2 version provides for the resolution of the ambiguity that exists within the first cycle of data collected by the GPS receivers. The most notable improvement is seen in the vertical velocity component, which is a result of the software and processing scheme incorporating the antenna's absolute phase center information into the analysis, in addition to using VMF1 grid files for tropospheric estimates. Figure 2-1 compares time series for site CRO1, using various versions of the GOAll software: a) version 6.1.2, b) version 6.2 with ambiguity resolution and c) version 6.2 without ambiguity resolution. Note that for sites with large amounts of data (CRO1 has almost 18 years of continuous data), the north and east components of the velocity show very little variation. The vertical velocity in this example is $-0.4 \pm 0.9 \mathrm{~mm} / \mathrm{yr}$ when processed with version 6.1.2 versus $-1.2 \pm 0.7 \mathrm{~mm} / \mathrm{yr}$ when processed with version 6.2 , which incorporates the phase center specifications for the antenna used at this site. For sites with fewer data (CN07 has been collecting data for approximately 1 year), larger variations are seen in all three velocity components. Figure 2-2 compares time series for the site CN07 using various versions of GOAll: a) version 6.1.2, b) version 6.2 with ambiguity resolution, c) version 6.2 without ambiguity resolution, and d) version 6.2 with ambiguity resolution and an antenna offset correction. It is interesting to note that even when using version 6.2 , which incorporates the antenna phase center information, there still exists, in some cases, an offset in the time series due to a change in the antenna type. On January 30, 2013 at site CNO7, the antenna was changed from a Trimble model 57971 to a Trimble model 59800. An offset in the vertical component is apparent in Fig. 2-2 (b) and the correction for the offset can be seen in Fig. 2-2 (d). Table 2-1 outlines the
velocity values generated by the various versions of the software for both of these sites. It is clear to see that for sites with shorter observation time spans, the variations in the processing have a much larger impact on the result. The most obvious discrepancy for site CN07 is in the vertical component where there is an approximately 22 mm difference between the result that was calculated using the absolute phase center information for the two different antennas and the result that also made a correction for the offset that still existed after the absolute phase centers were considered. Inconsistencies are expected to be more commonly observed in the vertical component; however, for CN07, we also see a significant variation in the east component, which is nearly within error of the previous estimates, but still is noteworthy. For this study, if an offset was observed and corrected, the final velocity values used for the kinematic analysis were those generated by the version 6.2 with ambiguity resolution and offset corrections. Offset corrections can be seen in the times series in Appendix B.

Table 2-1 Velocity summary for sites CRO1 and CNO7 Values generated with various versions of GOAll relative to ITRF08.

SITE CRO1 (observation span 17.67 yr)	rate in $\mathrm{mm} / \mathrm{yr}$		
GOAII version	north	east	vertical
6.1 .2	13.6 ± 0.3	11.2 ± 0.5	-0.4 ± 0.9
6.2 without ambigiuity resolution	13.6 ± 0.3	11.1 ± 0.4	-1.4 ± 0.7
6.2 with ambigiuty resolution	13.6 ± 0.3	11.0 ± 0.3	-1.2 ± 0.7

SITE CNO7 (observation span 1.09 yr)	rate in $\mathrm{mm} / \mathrm{yr}$		
GOAII version	north	east	
vertical			
6.1 .2	7.3 ± 1.4	-3.4 ± 2.1	
6.2 without ambigiuity resolution	8.3 ± 1.3	-8.3 ± 1.8	
6.2 with ambigiuty resolution	8.5 ± 1.3	-6.5 ± 1.5	
6.2 w/amb and offset correction	9.4 ± 1.3	-4.3 ± 1.4	

Figure 2-1 Comparative time series for site CRO1.
a) GOAll version 6.1.2 b) GOAll version 6.2 with ambiguity resolution
c) GOAll version 6.2 without ambiguity resolution. CRO1 is located on St. Croix.

Figure 2-2 Comparative time series for site CN07.
CN07 is located in Puerto Plata, Dominican Republic. a) GOAll v. 6.1.2 b) GOAll v. 6.2 with ambiguity resolution c) GOAll v. 6.2 without ambiguity resolution d) v. 6.2 with ambiguity resolution and offset correction. Vertical dashed line marks the antenna change from TRM57971 to TRM59800, no radome is used at this site.

Chapter 3
 Geodetic Observations of Dominica, Lesser Antilles

3.1 Introduction

Although people living in close proximity to volcanoes have always been able to observe changes in the Earth's surface prior to an eruption, it has only been within the last century that measurements of ground deformation have been used to infer subsurface activity. It is the desire of volcanologists, who work in the field of monitoring volcano behavior, that precise surface deformation measurements may one day be used as a predictive tool to forecast eruptions. Today, surface displacements can be measured using space-based observing platforms and these measurements are routinely used in numerical models that evaluate the rheologic and geometric conditions (Poland et al., 2006).

The Commonwealth of Dominica is a volcanic island located in the central portion of the Lesser Antilles Arc on the eastern edge of the Caribbean Sea (Figure 3-1). The Island is approximately $750 \mathrm{~km}^{2}$ and has one of the highest concentrations of potentially active volcanoes in the world (Smith et al., 2013).

Figure 3-1 Location of Dominica

As a result of earthquake swarms in the southern portion of the Island in 2001, the University of Arkansas Geodesy Lab completed the installation and occupation of nine sites in the summer of 2001. Expansions of the Dominica GPS network have included three additional sites in 2003, six additional sites following a seismic swarm in 2004, and the final four sites were added in 2007 to complete the 27 station network (James, 2008) (Figure 3-4). Analysis of the data collected between 2001 and 2007, appeared to indicate that a geodetic signature was emerging as a result of some type of intrusive igneous activity (James, 2008), perhaps the pressurization of a shallow magma chamber. The residual velocities for Dominica were still relatively small with respect to their errors in 2008. Field campaigns were conducted during the summers of 2011 and 2012, during which 22 of the previously established 27 sites were re-occupied. Specifics regarding each individual site are located in Appendix A of this manuscript. The additional data has reduced the site velocity errors to reasonable values in order to make a conclusion regarding the relationship between geodetic signatures observed and any tectonic, seismic, or volcanic activity on Dominica.

3.2 Volcanic History of Dominica

The volcanics on the Island are predominantly andesitic and display a range of morphologies, which indicates a variation in eruption style through time. The geology of the Island (Figure 3-2) can be divided into 4 stratigraphic divisions based on age: Division 1 (upper Miocene) is dominated by mafic volcanism; Division 2 (upper Pliocene to lower Pleistocene) is characterized by the development of two large stratovolcanoes over a 2 million year period; Division 3 (lower to upper Pleistocene) represents a general hiatus in major activity, and Division 4 (upper to Pleistocene to Holocene) is characterized by the formation of numerous Pelean centers throughout the island (Smith et al., 2013). The
igneous activity that began as minimally contaminated basaltic magmas ponding at the crust-mantle boundary was followed by fractionation and rise of the magma, which generated distinct basic and intermediate suites. The mid-crustal magma chambers that sat below the stratovolcanoes then served as barriers to the continued rise of magma, which resulted in the Division 3 quiescence. The magma eventually found its way around the chambers as numerous sills were emplaced into the lower crust. The sills served to reactivate the volcanism, which was then dominated by andesitic and dacitic composition. A mid-crustal batholith was postulated to exist below Dominica as a result of the amalgamation of the various chambers and an illustration of evolution is presented in Figure 3-3 (Smith et al., 2013). Dominica's volcanics are in contrast to a typical system, where each individual volcano is underlain by an independent volcanic system, with a unique composition, that, over a period of 0.5-1 million years will evolve and eventually become extinct (Christiansen, 1979). It has been proposed that when a magma reaches a crystallization state of $>50 \%$, that magma can no longer be erupted (Carmichael, 2002). This means that what was once a feeder system for a volcano can become the barrier to more magma rising, and even if the magma finds its way to the surface, it remains geochemically distinct from other volcanic centers (Gunn et al., 1974, Smith and Roobol, 1990). Such is not the case with Dominica, where the products of the numerous volcanic centers are remarkably homogeneous, which suggests that magma mixing within the batholith was very efficient (Smith et al., 2013). This same type of system, on a smaller scale, can be seen under the Soufriere Volcanic Complex on St Lucia (Schmitt et al., 2010). The development of an extensive zone of melting due to a sustained mantle basalt flux is attributed to the fact that the leading edge of the Caribbean plate is undergoing near normal convergence with the subducting North and South American plates (Smith et al., 2013). Convergence becomes more oblique as one moves away
from Dominica, both to the north and the south along the Lesser Antilles (DeMets et al., 2000; 2007). Another factor that will support a sustained flux of material from the mantle is the steeply descending slab that is seen at Dominca. The Waditi-Benioff Zone beneath central and western portions of the island are deeper than that for any other island, with the exception of a small portion beneath northern Martinique (Smith et al., 2013). Also unique to Dominica are calderas, which are not common in oceanic island-arc settings (Hughes and Mahood, 2008). The calderas at Morne Trois Pitons and Wotten Waven are evidence that the system has had the capability of generating large-scale eruptions. These two calderas along with Morne Diablotins have generated a total volume of ignimbrite in excess of $60 \mathrm{~km}^{3}$ (Carey and Sigurdsson, 1980). Geothermal features coincident with the "seismo-thermal" zones indicate that the system is still active, and currently, the country, with the assistance of Iceland, is drilling test wells to ascertain the viability of harnessing the Island's geothermal potential.

The last magmatic eruption on Dominica was ~ 450 years ago and current active volcanism is concentrated in "seismo-thermal" zones, which are a reflection of the "live" portions of the amalgamated batholith. It stands to reason that monitoring this system will not only provide data about surface deformation related to igneous activity, but would also provide valuable information for Dominica's emergency management response teams, in the event that the current status of the system changes in the near future.

Figure 3-2 Geologic map of Dominica from Smith et al. (2013)

Figure 3-3 A petrogenic model for the geologic evolution of Dominica (Smith et al., 2013). Site map at left. Diagrammatic sketches to show the development of magmatic systems on Dominica over time. Horizontal and vertical scales are the same, height of volcanic centers not to scale. (A) Stratigraphic Division 1 - upper Miocene: independent volcanic systems involving ponding of mantle-derived basalt at the crust mantle boundary ($\sim 15 \mathrm{~km}$) and mid-crustal magma chambers that become more developed over time; MBD-Morne Bois Diables, MF-Morne Fraser, MLS-Morne La Source, GM-Grand Marigot. (B) Stratigraphic Division 2 - upper Pliocene to lower Pleistocene: two separate volcanic systems - proto-Morne Diablotins (pMD) in the north and Cochrane-Mahaut (CM) in the south. More extensive development of basaltic accumulation zone at crust-mantle boundary ($\sim 18 \mathrm{~km}$) and well-developed mid-crustal magma chambers under each center. Mantle derived basaltic magmas continue to reach surface from lower accumulation zone. Initiation of basaltic sill and/or dike injection under future proto-Morne aux Diables.(C) Stratigraphic Division 3 - lower to upper Pleistocene: development of large crust-mantle zone of accumulation (26 km) beneath most of Dominica and formation of a mid-crustal "proto-pluton" under proto-Morne Diablotins (pMD) and Cochrane-Mahaut (CM) centers that effectively blocks the rise of

Figure 3-3 continued:
new magma, causing termination of activity at these centers. Continued influx of basaltic magma accommodated by the injection of lower crustal sills and/or dikes that has the effect of progressively heating up the lower crust. Development of a zone of melting and magma accumulation under proto-Morne aux Diables stratovolcano (PMAD) in the north. Rise of basaltic magma through unaltered oceanic crust ($\mathrm{Moho}=\sim 20 \mathrm{~km}$) in the south produced a mid-crustal magma chamber that was the source for the Foundland stratovolcano (FND). (D) Stratigraphic Division 4 - upper Pleistocene to Holocene: Increase in mantle flux continues injection of sills and/or dikes beneath most of southern and central Dominica, producing a "hot zone" under the island and generation of intermediate and hybrid magmas. The "proto-pluton" is no longer a barrier to the rise of intermediate magmas. Greatest flux is under southern Dominica, as suggested by the presence of most of the potentially active centers and the caldera-forming eruptions of Morne Trois Pitons (MTP) stratovolcano and Wotten Waven caldera (WW). Mid-crustal magma chambers expand and eventually merge to form mid-crustal batholith under most of the island. Expansion of magmatic system beneath Morne aux Diables (MAD) to form new volcanic zone under northern Dominica and the surrounding seafloor. MD-Morne
Diablotins, MM-Mosquito Mountain, M-Morne Anglais, MPP-Morne Plat Pays. Format for sketches modified from de Silva (2008). Figure reproduced from Smith et al. (2013).

3.3 Results

A time series plot has been generated for each campaign GPS observation station (Figure 3-4) in Dominica and these are presented in Figure 3-5 through Figure 3-24. The results were analyzed with an absolute point positioning strategy using GOAll version 6.2, and final precise orbits, clocks and earth orientation parameters obtained from Jet Propulsion Laboratory (JPL). The reference frame used was IGS08. The plots include all available data for the particular site, the red dots are the daily position estimates, the blue lines are the predicted plate rates in IGS08 held fixed (horizontal) and the green lines are the least squares best fit site rates in IGS08 with respect to the Caribbean plate rate (CA). White noise (WN) and and flicker noise (FN) amplitudes are lowest in the north direction and highest in the vertical, and it has been established that white noise in the vertical component is higher for stations located in tropical regions $\left(\pm 23^{\circ}\right)$ (Mao et al., 1999). Table 3-1 is the velocity summary for the Dominica campaign

GPS sites; note that FN values are at the default level and that the default estimate for Random Walk Noise (RWN) is fixed at $1 \mathrm{~mm} / \mathrm{sqt}$ (yr) of monument noise.

Figure 3-4 Dominica campaign GPS site location map
Black dots indicate the location of GPS sites with associated marker name, red triangles are volcanic centers, gold circles mark the 2001 seismic swarm and blue circles mark the 2004 seismic swarm. Epicenter data courtesy of the Seismic Research Unit at the University of the West Indies.

Red dots are the daily position estimates ($16-24 \mathrm{hr}$ occupations). The blue lines are the predicted plate rates in IGS08 held fixed (horizontal). The green lines are the least squares best-fit site rates in IGS08 with respect to the Caribbean plate rate (CA). $\mathrm{WN}=$ white noise and $\mathrm{FN}=$ flicker noise estimates.

BOTG Coordinate changes - CA is fixed stacovs used no_AMB

GNDI 2013 Jun 11 11:22:49 MattloluTA
Figure 3-7 Time series for site BOTG

BRDX Coordinate changes - CA is fixed stacovs used AMB

GWI 2013 Jun 11 11:28:26 Mattioluta
Figure 3-8 Time series for site BRDX

Red dots are the daily position estimates ($16-24$ hr occupations). The blue lines are the predicted plate rates in IGS08 held fixed (horizontal). The green lines are the least squares best-fit site rates in IGS08 with respect to the Caribbean plate rate (CA). $\mathrm{WN}=$ white noise and $\mathrm{FN}=$ flicker noise estimates.

CNCD Coordinate changes - CA is fixed stacovs used AMB

GWID 2013 Jun $1113: 03: 34$ mattoluTa
Figure 3-9 Time series for site CNCD

COHT Coordinate changes - CA is fixed stacovs used AMB

GMJ 2013 Jun 11 13:06:26 matbolivTA
Figure 3-10 Time series for site COHT

Red dots are the daily position estimates ($16-24 \mathrm{hr}$ occupations). The blue lines are the predicted plate rates in IGS08 held fixed (horizontal). The green lines are the least squares best-fit site rates in IGS08 with respect to the Caribbean plate rate (CA). $\mathrm{WN}=$ white noise and $\mathrm{FN}=$ flicker noise estimates.

CONN Coordinate changes - CA is fixed stacovs used AMB

GWI2 2013 Jun 11 13:12:00 MattlolvTA
Figure 3-11 Time series for site CONN

FRSH Coordinate changes - CA is fixed stacovs used AMB

GWI 2013 Jun 11 14:38.57 MattiluUTA
Figure 3-12 Time series for site FRSH

Red dots are the daily position estimates ($16-24$ hr occupations). The blue lines are the predicted plate rates in IGS08 held fixed (horizontal). The green lines are the least squares best-fit site rates in IGS08 with respect to the Caribbean plate rate (CA). $\mathrm{WN}=$ white noise and $\mathrm{FN}=$ flicker noise estimates.

CWD 2013 Jun 11 14:43:26 mattoluvta
Figure 3-13 Time series for site GOMM

GMJ 2013 Jun 11 14:48:31 Mattolvia
Figure 3-14 Time series for site GSAV

Red dots are the daily position estimates ($16-24 \mathrm{hr}$ occupations). The blue lines are the predicted plate rates in IGS08 held fixed (horizontal). The green lines are the least squares best-fit site rates in IGS08 with respect to the Caribbean plate rate (CA). $\mathrm{WN}=$ white noise and $\mathrm{FN}=$ flicker noise estimates.

Red dots are the daily position estimates ($16-24$ hr occupations). The blue lines are the predicted plate rates in IGS08 held fixed (horizontal). The green lines are the least squares best-fit site rates in IGS08 with respect to the Caribbean plate rate (CA). $\mathrm{WN}=$ white noise and $\mathrm{FN}=$ flicker noise estimates.

NEWF Coordinate changes - CA is fixed stacovs used AMB

GMID 2013 Jun 11 15:00:21 mattloluta
Figure 3-17 Time series for site NEWF

NVEN Coordinate changes - CA is fixed stacovs used AMB

GW3 2013 Jun 1115:22:02 MattonvTA
Figure 3-18 Time series for site NVEN

Red dots are the daily position estimates ($16-24$ hr occupations). The blue lines are the predicted plate rates in IGS08 held fixed (horizontal). The green lines are the least squares best-fit site rates in IGS08 with respect to the Caribbean plate rate (CA). $\mathrm{WN}=$ white noise and $\mathrm{FN}=$ flicker noise estimates.

Red dots are the daily position estimates ($16-24 \mathrm{hr}$ occupations). The blue lines are the predicted plate rates in IGS08 held fixed (horizontal). The green lines are the least squares best-fit site rates in IGS08 with respect to the Caribbean plate rate (CA). WN = white noise and $\mathrm{FN}=$ flicker noise estimates.

SPAG Coordinate changes - CA is fixed stacovs used AMB

GWD 2013 Uun 11 15:33:20 mattiluUTA
Figure 3-21 Time series for site SPAG

SPNG Coordinate changes - CA is fixed stacovs used AMB

GMS 2013 Jun 11 17:20:22 MattoluTA
Figure 3-22 Time series for site SPNG

Red dots are the daily position estimates ($16-24$ hr occupations). The blue lines are the predicted plate rates in IGS08 held fixed (horizontal). The green lines are the least squares best-fit site rates in IGS08 with respect to the Caribbean plate rate (CA). $\mathrm{WN}=$ white noise and $\mathrm{FN}=$ flicker noise estimates.

Red dots are the daily position estimates ($16-24$ hr occupations). The blue lines are the predicted plate rates in IGS08 held fixed (horizontal). The green lines are the least squares best-fit site rates in IGS08 with respect to the Caribbean plate rate (CA). $\mathrm{WN}=$ white noise and $\mathrm{FN}=$ flicker noise estimates.

Table 3-1 Dominica site velocity summary
Sites are sorted by time span of data available. Location is given in degrees of latitude (Lat), longitude (Long) and height above ellipsoid (HAE) in meters. North (Vn), East (Ve), and vertical (Vv) velocities are presented in a fixed-Earth reference frame as well as a fixed-Caribbean reference frame (revised from DeMets et al., 2007, personal communication to Glen S . Mattioli). WN= white noise, $\mathrm{FN}=$ flicker noise and rwn=random walk. Note that all flicker noise values are the default since the number of observations falls below the threshold.

Site ID	Lat (N)	Long (E)	HAE (m)	IGS2008 (mm/yr) - No Common Mode Correction													CAR rate		CAR Fixed Velocity (mm/yr)								Obs
				Vn	Err	WN	FN	Ve	Err	WN	FN	Vv	Err	WN	FN	rwn	Vn	Ve	Vn	Err	Ve	Err	Vv	Err	Epoc	Years	No.
SH	. 34	298.691	724.100	15	0.8	9.4	4.0	10.7	1.2	10.0	8.0	2.4	1.7	13.6	2.	1.0	14.88	12.07	0.2	0.80	-1.37	1.20	2.40	1.70	01.4452-2012.	.990	21
BELV	15.29	298.75	161.09	17.1	0.6	5.2	4.0	13.6	1.0	4.9	8.0	2.8	2.1	24.	12.0	1.0	14.90	12.09	2.20	0.6	1.51	1.00	2.8	2.1	2001.4397-201	10.9906	25
OTT	15.317	298.661	229.84	14.8	0.7	6.1	4.0	11.5	1.1	8.1	8.0	6.5	2.0	23.3	12.0	1.0	14.87	12.07	0.0	0.70	-0.57	1.10	6.50	2.00	2001.4452-2012.433	98	25
CASS	15.241	298.709	-33.59	14.0	0.6	4.4	4.0	11.8	1.1	7.8	8.0	0.2	1.8	14.9	12.	1.0	14.89	12.10	-0.89	0.6	-0.3	1.10	0.20	1.80	001.4288-2012.4167	. 98	20
WF	15.379	298.7	143.59	14.3	0.6	2.3	4.0	11.6	1.0	4.6	8.0	3.5	1.6	12.2	12.0	1.0	14.89	12.05	-0.59	0.60	-0.45	1.00	-3.50	1.60	01.4425-2012.419	10.9769	23
SCTT	15.21	29	1.7	13.	0.7	4.5	4.0	12.2	1.1	5.7	8.0	-2.7	1.9	15.5	12.0	1.0		12.11	-1.16	0.70	0.09	1.10	-2.70	1.90	001.4342-201	10.14	19
R	15.58	98.	7.71	11.1	0.9	10.2	4.0	12.1	1.3	13.1	8.0	5.1	3.1	40.4		1.0		11.96		0.90	0.14		5.10	3.10	2001.4342-2011.576	10.1425	26
OMM	15.28	298.63	209.16	13.7	0.7	6.7	4.0	13.0	1.1	7.9	8.0	1.3	2.2		12.0	1.0		12.08		0.70	0.92		-1.		2001.4397-2011.55	0.11	26
CNCD	15.5	298.7	4.5	14.2	0.7	6.2	4.0	11.8	1.1	6.0	8.0	5.6	2.5	29.9		1.0				0.70	-0.20		5.60	2.50	01.4534-2011.54	10.0877	25
SOIE	15.58	298.684	-34.64	17	1.2	10.9	4.0	9.4	1.7	11.6	8.0	0.2	2.1	10.4	12.0	1.0		11.9	2.72		-2.57		0.2	2.10	2003.4726-2011.568	8.09	20
SPNG	15.347	298.631	306.878	14.7	0.9	9.7	4.0	16.1	1.9	23.2	8.0	-6.	3.5	48.5	12.0	1.0	14.86	12.06	-0.16		4.04	1.90	-6.40	3.50	2003.4753-2011.532	8.0575	47
TETE	15.23	298.657	14.40	14	0.9	4.6	4.0	13.6	1.6	8.4	8.0	3.9	3.0	21	12.0	1.0	14.87	12.1	-0.37	0.90	1.50	1.60	3.90	3.00	2004.4658-2012.44	. 98	17
SPAG	15.526	298.531	324.523	12.6	1.2	10.5	4.0	10.3	1.5	9.2	8.0	0.9	2.7	21.3	12.0	1.0	14.83	11.98	-2.23	1.20	-1.68	1.50	0.90	2.70	2004.4795-2012.446	7.9672	21
BRDX	15.23	298.681	44.10	13.	0.9	5.0	4.0	9.9	1.8	11.3	8.0	9.9	4.9	39.9	12.0	1.0	14.88	12	-1.18	0.90	-2.20	1.80	9.90	4.90	2004.4768-2012.424	7.9481	15
C	15.478	298.551	239.061	14.3	1.0	5.2	4.0	10.0	1.8	9.5	8.0	0.7	2.7	14.0	12.0	1.0		12.00	-0.54	1.00	-2.00	1.80	0.70	2.70	2004.4904-2011.5685	7.0781	17
ATRU	15.61	298.597	-35.7	17	1.4	8.3	4.0	10.4	1.6	4.4	8.0	4.2	3.2	18	12.0	1.0	14.85	11.96	2.75	1.40	-1.56	1.60	4.20	3.20	2004.4822-2011.54	7.0589	14
GSAV	15.	298.550	8.93		1.2	7.8	4.0	10.4	1.7	7.9	8.0	7.7	4.5	32.8	12.0	1.0			-1.24			1.70	-7.70	4.50	2004.4904-2011.5329	7.04	16
CONN	15.63	298.	57.54	17	1.3	6.0	4.0	10.5	2.4	10.1	8.0	-4.6	3.7	17.2	12.0	1.0		11.95	2.36	1.30	-1.45	2.40	-4.60		2006.4589-2011.557	.	22
NVEN	15.45	98.658	293.57		1.3	3.8	4.0	11.3	2.1	3.7	8.0	5.5	3.6	11.4	12.0	1.0		12.02	0.23	1.30	-0.72	2.10	. 50	3.60	006.4589-2011.5	. 0.0904	13
BOTG	15.2	298.618	1.35	15.1	1.7	7.9	4.0	14.9	2.8	12.1	8.0	-0.9	9.1	52	12.0	1.0	14.86	12.08	0.24	1.70	2.82	2.80	-0.90	9.10	2006.4726-2011.538	5.0658	17
MTNV	15.38	298.663	6.17	16.	1.2	2.4	4.0	13.5	3.0	9.2	8.0	2.5	5.1	17.6	12.0	1.0	14.87	12.05	2.03	1.2	1.45	3.0	2.50	0	2007.4699-2012.413	4.9441	9
MHAM	15.3	298.6	616.3		1.6	3.0	4.0	11.1	3.0	6.0	8.0	-8.7	4.8	10.9	12.0	1.0	14	12	1.0	1.60	-0.	3.00	8.70	4.80	2007.4726-2011.56	4.08	9

3.4 Data Analysis and Discussion

In order to evaluate the current data and compare it to data collected by previous researchers, all position estimates must be in the same reference frame. Figure 3-25 shows the site velocities published by James (2008), generated using data from 2001 through 2007, processed as absolute point positions with GIPSY-OASIS II (GOAII) v. 5, in the IGS2005 reference frame using final precise Earth orientation parameters, clocks and orbits from JPL. These initial results suggested that there may be observable surface deformation on Dominica. For example, in the northern part of Dominica, sites CONN, ATRU, SOIE, and CABR appear as if they may be pointed away from a crustal magmatic source, which may be an indicate the inflation of that source. The errors for these velocities, as indicated by the red ovals in the figure are too large, however, to make any robust conclusion. In fact, in most cases, the errors are as large, or larger, than the values themselves. The IGS2005 data products were deprecated by JPL in August 2011. A major reprocessing effort was undertaken by the JPL orbit analysis group (Desai et al., 2012) to generate new orbits, clocks and ephemerides using updated Earth models including solid Earth tides and loading, tropospheric models, and absolute phase center corrections for both the GPS SV emitters and ground based tracking stations.

Accordingly, since I collected data post 2011 and wanted to take advantage of the new JPL data products in IGS08, I reprocessed all the data from Dominica as well as across the Caribbean using the same methods, models and GOAll version as used by JPL. The data presented here is in the IGS08 reference frame. Figure 3-26 presents James' data reprocessed using GOAII (v. 6.2) in the IGS08 reference frame. The reprocessing with the updated software and new reference frame are broadly similar. The minimal effect of the upgraded software may partially be due to the fact that the

Dominican GPS sites do not use radomes. A radome will effect the GPS signal, which must be corrected properly, and it has been shown that with the new processing software, the misreporting of the type of radome in the metadata produces erroneous results. A notable difference in azimuth is seen at sites SPAG and BOTG, but the variations fall within error. Figure 3-27 is the James (2008) data plus data collected during the 2011 and 2012 field seasons. These are processed with GOAll version 6.2 in the IGS08 reference frame. It is clear to see that the additional data has drastically reduced the velocity errors for all the sites. Nine of the sites have a decade's worth of data, which now allows confident conclusions about the surface velocity field to be made.

Figure 3-25 Dominica horizontal velocities reported by James (2008)
Values are 2001-2007 data processed with GIPSY-OASIS II (v. 5) in the IGS05 reference frame. Red triangles are volcanic centers, blue circles are epicenters of 2001 seismic swarm, yellow circles are epicenters of 2004 seismic swarm (data courtesy of the Seismic Research Center at the University of the West Indies). Error ellipses are 1σ.

Figure 3-26 Dominica horizontal velocities (2001-2007).
Values are 2001-2007 data reprocessed with GIPSY-OASIS II (v 6.2) in the IGS08 reference frame. Red triangles are volcanic centers, blue circles are epicenters of 2001 seismic swarm, yellow circles are epicenters of 2004 seismic swarm (data courtesy of the Seismic Research Center at the University of the West Indies). Error ellipses are 1σ.

Figure 3-27 Dominica residual horizontal site velocities (2001-2012).
Values are 2001-2012 data, processed using GIPSY-OASIS II (v. 6.2) in the IGS08 reference frame. Red triangles are volcanic centers, blue circles are epicenters of 2001 seismic swarm, yellow circles are epicenters of 2004 seismic swarm (data courtesy of the Seismic Research Center at the University of the West Indies). Error ellipses are 1σ.

Although most of the Dominica site velocities do not exhibit significant residual velocity, some minor motion can be identified. In Figure 3-28 A, the northern sites of SOIE. ATRU, and CONN seem to have a sinistral motion with respect to sites CABR, SPAG, COHT and GSAV along the trace delineated by the 2004 seismic swarm, which is designated by yellow circles. This motion is consistent with data presented by Smith et al., 2013 and the models of van Benthem, 2013. In Figure 3-28, image C shows focal mechanisms for earthquakes in the central Lesser Antilles. Note the shallow earthquake focal mechanisms in the area of Dominica, Figure 3-28 C (colored yellow in a red oval), the majority of which indicate sinistral strike slip motion (Smith et al., 2013). Although the convergence at Dominica is considered nearly normal, there is a slight obliquity to both the CA-NA and CA-SA relative motion vectors defined by MORVEL (DeMets et al., 2010) and presented by Smith et al. (2013) (Figure 3-28 B). For a rate of $20 \mathrm{~mm} / \mathrm{yr}$, a simple calculation of the obliquity of convergence yields an arc-parallel rate of $\sim 3.5 \mathrm{~mm} / \mathrm{yr}$ to the northwest. Northwest motion on the forearc side would generate sinistral motion along faults in the area of the 2004 seismic swarm. Van Benthem (2013) presents a map of principle stress directions for the Caribbean. Note the location of Dominica (Figure 3-28 B), with the principle stress arrows in the vicinity, indicating a tensional environment. The conditions here are consistent with those necessary for the emplacement of a NWtrending dike, as is seen on Monserrat to the north (Wadge et al.1984; Mattioli et al.; 1998; Linde et al., 2010).

Figure 3-28 Dominica surface deformation
(A) Dominica velocity map as described in Figure 3-27 with possible sinistral strike-slip motion marked by dashed black line. (B) Principal stress directions (van Benthem, 2013). (C) Focal mechanisms are from the Global CMT project (Ekstrom et al., 2012, http://www.globalcmt.org). Mapped faults are from various sources including Feuillet et al., 2002 and Roobol and Smith, 2004. Moment tensor solutions are color coded as follows: yellow (shallow, 10-30 km), green (intermediate, 30-70 km), and blue (deep, >70 km). Yellow vectors indicate South America-Caribbean motion and red vectors indicate North America-Caribbean motion (DeMets et al., 2010). Figured modified based on Smith et al. (2013).

If you ignore the direction of the residual velocity, in general, the horizontal velocities (Figure 3-27) in the northern part of Dominica are greater than in the south, while the vertical component velocities show the opposite, such that, velocities in the south are greater than in the north (Figure 3-29). The central, eastern portion of the island, consisting of sites CNCD, NVEN, NEWF, MHAM, FRSH and WOTT appear to be very stable, with almost zero motion with respect to the Caribbean plate. The lack of movement at WOTT is surprising however, since it is close to currently active geothermal features and the location of geothermal test wells. SPNG and BOTG show small easterly directed motion, but there does not seem to be any distinguishable pattern among the horizontal velocities of the southern sites with respect to the 2001 seismic swarm (designated by blue circles). The vertical velocity field, however, may show a pattern such that the sites north (SPNG, WOTT, MHAM, FRSH, BOTG, and NEWF) of the 2001 seismic swarm show subsidence, while the sites (BELV, BRDX, and TETE) south of the swarm show uplift (Figure 3-29). The subsidence demonstrated by sites WOTT and MHAM may be attributed to the fact that they are located within, or on the borders of, caldera structures identified in Figure 3-2. The elongate pattern seen in the distribution of motion associated with the seismic swarms could also be consistent with the emplacement of dikes.

Figure 3-29 Dominica vertical site velocities (2001-2012)
Values are 2001-2012 data, processed using GIPSY-OASIS II (v. 6.2) in the IGS08 reference frame. Black arrows indicate up or down vertical motion, thin black line at the end of each arrow is the 1σ error associated with that vector. Red triangles are volcanic centers, blue circles are hypocenters of 2001 seismic swarm, while yellow circles are hypocenters of 2004 seismic swarm.

3.5 Conclusion

GPS data collection on the Island of Dominica has proven to be challenging in a variety of ways. The climate is conducive to high weathering rates, the infrastructure is generally substandard, and the topography and vegetation make observations nearly impossible in many areas. Yet, despite the challenges, over a span of a decade, teams have been successful collecting high precision GPS data. Evaluation of the data by James (2008) after the 2007 field season suggested that a recognizable surface deformation signature, associated with recent shallow seismicity, was going to emerge. Figure 3-26 and Figure 3-27 are horizontal velocity maps of the Dominica campaign GPS data. Figure 3-26 is the data used by James, 2008, reprocessed in IGS08, and Figure $3-27$ is the same data plus additional epochs of data collected in 2011 and 2012. It is clear that the addition of the 2011 and 2012 data has served to reduce the error on the horizontal velocities significantly. It is also evident that there is no significant and easily discernable signature related to volcanic processes present in the velocities. The velocity field for Dominica indicates that the points measured are generally tracking the motion of the Caribbean plate. If, in fact, there is subtle subsurface igneous activity, it has been demonstrated that intermittent (bi-annual) campaign GPS is not an effective monitoring tool to observe subtle surface deformation changes in a tropical environment. The last eruptions on Dominica occurred approximately 450 years ago, and since then, the island has only experienced shallow seismic swarms, geothermal activity and phreatic activity (Smith et al., 2013). The low deformation rate observed here suggests that a majority of the batholith is partially solidified, and that any volcanic activity is a result of basaltic injection at the base of the batholith (Smith et al., 2013). Perhaps Dominica is entering a new phase in its volcanic history, one that will be dominated by the behavior of its midlevel island-arc batholith. The fact that there seems to be no significant residual surface
deformation in Dominica relative to the Caribbean plate, suggests that inclusion of the velocities from Dominica may help define the motion of the eastern part of the Caribbean plate.

Chapter 4

The Caribbean Plate

4.1 Introduction

One of the issues distinctive to the Caribbean plate, which renders the determination of its motion problematical, is the lack of any subaerial landmass in its interior. In an attempt to study and mitigate the natural hazards that occur in the Caribbean, the Continuously Operating Caribbean GPS Observational Network (COCONet) was initiated in 2011 (Braun et al., 2012). The purpose of this NSF-funded international consortium is to develop a large-scale geodetic and atmospheric infrastructure in the Caribbean to serve as the backbone for a wide range of geoscience investigations. The network currently collects data from a combination of 60+, previously established and newly installed stations. COCONet data, in conjunction with campaign GPS data will be analyzed to evaluate the motion and rigidity of the Caribbean plate. Since the campaign GPS data from Dominica has shown that the island is closely tracking the Caribbean plate at a majority of the 27 sites, data from some of those sites will be useful in constraining the motion of the easternmost edge of the plate. All data from the Caribbean sites were processed as described in Chapter 2. Figure $4-1$ is a map showing the locations of the sites used for this study; Table 4-1 and Table 4-2 are velocity summaries of those sites.

Figure 4-1 Caribbean GPS station site map
Site locations available from UNAVCO at http://www.unavco.org. Black lines delineate putative faults, site names in black were used for inversion.

Table 4-1 Caribbean velocity summary, sorted by site ID.

Table 4-2 Caribbean velocity summary, sorted by site occupation length

4.2 The 1-plate model

The currently accepted definition for the motion of the Caribbean with respect to the ITRF, which serves as the foundation for this study, is presented by DeMets et al. (2007), and Figure $4-2$ is a velocity map of the 15 sites from that study. The GPS processing software, methods and global reference frame have been updated since 2007, so it is necessary to reprocess all the data using the current software version and reference frame, so direct comparisons can be made. Figure 4-2 presents three sets of velocity vectors. The black arrows are the velocity vectors from Demets et al. (2007) with respect to ITRF2005. The first step was to update the original data to the current reference frame. The current global reference fame is ITRF2008, which outperforms ITRF2005 in terms of determining station positions and velocities (Altamimi et al., 2011). The improvement in the IGS solutions are a result of, among other things, new absolute phase center offsets and more advanced tropospheric modelling. The precise orbit and clock files, used by GIPSY-OASIS II for terrestrial positioning, have also been recalculated by JPL and the combination of the newest software and products will yield better results than those processed analyzed by DeMets et al. (2007). The red arrows represent the same data, for the same epochs, reprocessed with GOAll v. 6.2 in the ITRF2008 reference frame. Finally, any additional data collected between 2007 and 2013 were added and also processed in GOAll v. 6.2 in the IGS08 reference frame. The last revision to the site velocities is represented by the yellow vectors in Figure 4-2.

Figure 4-2 Demets et al. (2007) velocity vectors and updated values. Black arrows are Demets, 2007 original values with respect to ITRF2005.
Red arrows are the 2007 sites and epochs, but processed with updated software and reference frame. Yellow arrows are the red arrows plus any additional data available from 2007 to the present.

The process of updating the reference frame (black arrows to red arrows), resulted in minor directional changes, but in a few cases, a notable change in the resulting rate. In general, the ITRF2008 results are rotated towards the north relative to the ITRF2005 results. For example, the ITRF2005 north and east velocities for PUEC (eastern Nicaragua) were 2.8 ± 4.4 and 6.4 ± 5.9 (DeMets et al., 2007), respectively, and when reprocessed with respect to ITRF2008, the north and east velocities are now $6.1 \pm$ 1.1 and 11.0 ± 2.0. All of the sites, when reprocessed in ITRF2008 versus ITRF2005 yield an improvement in the velocity uncertainty. Between 2006 and 2013 additional data were collected at sites GLCO, MNTO, PORT, PUEC, TEUS, and CRO1. These data have been included in the yellow velocity vectors shown in Figure 4-2. Any site with updated data produces an additional reduction in error and some minor variations in direction are also apparent.

In order to define a best-fitting angular velocity vector for Caribbean plate motion relative to IGS08, the velocities of the 15 original sites will be inverted using an inversion algorithm written by DeMets (the code, called GCCM was provided to G. Mattioli). The north and east components for each site are weighted in the inversion by the reciprocal of their squared 1 sigma uncertainties, ensuring that velocities from sites with long continuous time series contribute more to the final solution than those occupied infrequently (DeMets et al., 2007). The inversion of the velocities generates an estimate of an Euler pole for the motion defined by the specified set of sites. An Euler pole is the fixed point around which a rigid body will rotate on a sphere (Fowler, 1990).

In order to test the validity of the current 1-plate model for the Caribbean, the inversion for: 1) the original sites with the original epochs, updated to the current reference frame and 2) the original sites with all data available through 2013. The results
are listed in Table 4-3, and inversion input files and inversion results are available in Appendix E.

Table 4-3 Best-fitting Caribbean plate velocity vector information

Best-fitting Caribbean plate angular velocity vector information					
plate pair	no. of sites	angular velocity vector			reduced χ^{2}
		λ	φ	ω	
		$\left({ }^{\circ} \mathrm{N}\right)$	(${ }^{\text {E }}$)	${ }^{\circ} \mathrm{m} . \mathrm{y}^{-1}$	
CA-ITRF2000 published value by Demets et al., 2007	15	36.30	-98.50	0.2550	0.54
CA-IGS08 (original epochs - GOAll v. 6.2)	15	37.49	-102.62	0.2423	1.33
CA-IGS08 (all data available through 2013-GOAll v. 6.2)	15	37.02	-103.18	0.2438	1.71

Small variations are seen in the latitude (λ), longitude (φ), and rotation (ω) of the estimated Euler pole, but the increase in the reduced χ^{2} value is of concern here. χ^{2} is the sum of the squared weighted residual values from the inversion output. The reduced χ^{2} is the χ^{2} divided by the degrees of freedom, and is a statistical measure of the goodness of fit (Bevington, 1969). The reduced χ^{2} value should decrease as a model improves its fit to the data. The reduced χ^{2} value of the inversion including only the original dataset was 1.33 , while the reduced χ^{2} for the inversion with the enhanced dataset was 1.71. In this case, adding additional GPS data (i.e. extending the timeseries) to the existing model, changed the velocity estimates, and thus resulted in a worse fit. The degraded fit suggests that the 15 site, 1 -plate model defined by Demets et al. (2007) may no longer be valid, and a new more complex model needs to be developed.

Perhaps the addition of more sites will improve the fit of the model. Figure 4-3 presents the 117 COCONet and campaign sites that were analyzed for consideration as part of the Caribbean plate. All sites were processed as described in Chapter 2 and the time series are located in Appendix B. Once the sites were processed, they were sorted
by their deviation from the currently accepted plate motion. Any site outside of 2σ variation were not included and sites within 2σ variation underwent further scrutiny. Any site whose velocity is affected by a zone of plate boundary deformation, or has been established in the literature to be part of another plate also was excluded. Data from some sites in the highly concentrated GPS campaign region of Dominica were eliminated to reduce spatial redundancy. This process narrowed the list of 117 sites down to 24 that are considered "on plate" and these are designated by red arrows in Figure 4-3.

Figure 4-3 Caribbean horizontal site velocities
Red arrows are on-plate and blue arrows are off-plate.

Table 4-4 Occupation history and velocities

	country	site	lat	long	station days occupied per calendar year														site velocity $\mathrm{mm} \mathrm{yr}^{-1}$with respect to IGS08 with respect to IGS08	
			(${ }^{\text {N }}$)	(${ }^{\text {W) }}$	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	North	East
1	Honduras	CMP1	14.5090	85.7146	3					2									5.8 ± 2.0	13.0 ± 2.7
2	Honduras	GLCO	15.0300	86.0699	2				3	2					4				7.0 ± 1.2	11.2 ± 2.0
3	Honduras	MNTO	14.9170	86.3805	3				3						3				6.7 ± 1.0	10.7 ± 1.4
4	Honduras	SFDP	14.9660	86.2449	3				3										6.7 ± 2.1	12.0 ± 3.1
5	Nicaragua	PORT	12.5731	85.3671	3		4	4			4		4				4		7.4 ± 0.8	9.8 ± 1.2
6	Nicaragua	PUEC	14.0421	83.3820		4		4			4								6.5 ± 1.7	10.6 ± 2.5
7	Nicaragua	RIOB	12.9209	85.2206	4		4	4											6.2 ± 3.3	11.2 ± 6.8
8	Nicaragua	TEUS	12.4098	85.8136	5		5	5			4						4		5.9 ± 0.6	9.7 ± 0.9
9	Columbia	SANA	12.5238	81.7294	1994 (9), 1996 (3), 1998 (6), 2000 (6), 2003 (5)													44	7.2 ± 0.7	13.1 ± 1.1
10	Virgin Isl.	CRO1	17.7569	64.5843	1995-2002 (2285)			362	360	168	363	361	360	354	287	364	362	157	13.6 ± 0.3	11.0 ± 0.3
11	Venezuela	AVES	15.6670	63.6183	1994 (18), 1998 (10)														14.3 ± 2.0	10.3 ± 2.8
12	Matinique	FSD0	14.7348	61.1467	$\begin{aligned} & 1994 \text { (4), } 1998 \text { (6), } 1999 \text { (4) } \\ & 1994 \text { (5), } 1998 \text { (11), } 1999 \text { (4) } \end{aligned}$														15.9 ± 1.7	12.0 ± 3.9
13	Matinique	FSD1	14.7349	61.1465															16.3 ± 1.7	13.3 ± 2.1
14	Ant./Barb.	RDON	16.9340	62.3460													217	85	15.2 ± 1.9	11.2 ± 2.2
15	Grenada	GRE0	12.2220	61.6400								188	360	354	326	365	363	103	15.2 ± 0.5	13.5 ± 0.7
sites added																				
16	Guadeluope	ABMF	16.2623	61.5275											122	353	317	185	14.4 ± 0.8	12.0 ± 0.9
17	Martinique	LMMF	14.5948	60.9962											122	355	362	184	15.0 ± 0.8	12.5 ± 0.9
18	Columbia	SANO	12.5800	81.7160								24	360	354	363	365	257	103	6.9 ± 0.6	12.1 ± 0.8
19	Virgin Isl.	VIKH	17.7160	64.7980							118	263	236	306	360	362	363	103	13.6 ± 0.6	10.8 ± 0.6
20	Barbuda	CN00	17.6685	61.7856													132	150	12.6 ± 3.8	11.2 ± 7.4
21	Columbia	CN35	13.3755	81.3629													114	154	3.0 ± 4.0	9.2 ± 7.7
22	Dominica	CASS	15.2409	61.2911		4		3	5		3	4					3		13.7 ± 0.9	11.8 ± 1.8
23	Dominica	CNCD	15.5118	61.2783		5		3	6		4	3				4			14.7 ± 1.0	11.5 ± 1.4
24	Dominica	FRSH	15.3402	61.3094		4		3	4		3	4					4		14.5 ± 1.2	10.7 ± 1.5
sites removed																				
	Barbados	BARB	13.0879	59.6091	192	26	1999	(115)											17.1 ± 1.9	8.1 ± 1.0
	Dom. Rep.	ROJO	17.9040	71.6745		2	1994	(9), 19	95 (2),	1998									9.1 ± 0.9	9.1 ± 1.6

4.3 The 2-plate model

The data from the 24 sites (Figure 4-3) that appear to move with the Caribbean plate are inverted to see how the result compares to the DeMets et al. (2007) 15 site, 1 -plate model. BARB and ROJO have been removed from the original 15 sites, and 11 new sites have been added). I have chosen to remove BARB and ROJO because their velocities are inconsistent with the sites considered "on-plate". BARB, in Barbados is likely affected by active shortening of the accretionary wedge (Speed et al., 1982), and ROJO, in the Dominican Republic is very near the Enriquillo-Plaintain Garden fault which experiences slip on the order of $\sim 20 \mathrm{~mm} / \mathrm{yr}$ (Manaker et al., 2008). Visual inspection of the velocity map for these sites (Figure 4-3, red vectors) suggests that there are two distinct populations of horizontal velocity vectors. To better visualize the differences in azimuth between the two populations, the velocities are plotted on a compass diagram (Figure 4-4, inset), and it appears to verify that there are two distinct vector populations
for the 24 sites considered "on plate": The eastern site velocities are represented by the blue arrows and the western site velocities by the red arrows in Figure 4-4. The western site velocities have a greater easterly component, while the eastern sites display stronger northerly motion.

Figure 4-4 Horizontal velocities for sites on the Caribbean plate.
Arrows represent horizontal velocity vectors with respect to IGS08, blue arrows represent the eastern Caribbean sites and the red arrows represent the western Caribbean sites.
Inset is a compass plot of Caribbean velocity vectors, azimuth and magnitude in $\mathrm{mm} / \mathrm{yr}$ is shown.

Since it appears that the eastern and western sites have unique and independent motion, I will test whether a 2-plate model fits all the reprocessed data better by examining both options. First, the 24 sites are inverted, assuming all sites are on 1 plate, with respect to a fixed IGS08 reference frame and the reduced χ^{2} is 0.75 . When the inversion is run using 2 plates, with the sites split into an eastern group and a western group, the 2-plate model yields a reduced χ^{2} of 0.60 . Although the resulting reduced χ^{2} value is improved, the F-ratio test must be employed to confirm that the improvement is not merely an artifact of adding three additional adjustable parameters (Stein and Gordon, 1984). There are 3 adjustable parameters for a 1-plate model, which are, latitude, longitude, and rotation rate of the pole. A 2-plate model doubles the adjustable parameters to 6 , since a latitude, longitude and rotation rate must be defined for 2 poles. The equation for the F test for the validity of adding $\mathrm{n}^{\text {th }}$ term is shown below (Stein and Gordon, 1984):

$$
F=\frac{\frac{\chi^{2}(r)-\chi^{2}(p)}{p-r}}{\frac{\chi 2(p)}{N-p}}
$$

$N=$ number of data
$p=$ degrees of freedom for a 2-plate model
$r=$ degrees of freedom for a 1-plate model

The F value calculated, $F=4.94$, for $v_{1}=3$ and $v_{2}=42$, generates a 99.5% confidence that a 2-plate model is a statistically significant improvement over the 1-plate model.

Figure 4-5 (A, B) shows and Table 4-5 Site data importance values by site, which is the percentage that each site contributes to the final solution. A continuous site with a long occupation history is weighted more in the inversion than the data from campaign
sites that are intermittantly occupied. These data importance values are determined from the relative uncertainties of the individual site velocities and the site location with respect to other sites and the pole of rotation (Minster et al., 1974). The DeMets et al. (2007) values are also shown in Figure 4-5 (A) and Table 4-5. It is important to note that their solution relies heavily on site CRO1 ($\sim 41 \%$), which was a concern stated by the authors at the time of publication. The heavy reliance of the model on CRO1 (St. Croix) forced DeMets et al. (2007) to consider the possibility that the assumption that CRO1 accurately records the motion of the undeforming Caribbean lithosphere may be incorrect. Enough data has been collected from the eastern Caribbean (Table 4-5 and Figure 4-5 B), since the DeMets et al. (2007) study, such that the plate motion model's dependence on CRO1 has been reduced to 17.7% (Table 4-5). The site data importances, in general, are more evenly distributed both numerically and spatially. The east versus west site data importance for DeMets et al. (2007) was 62% versus 38%, whereas the value for the 24 site 2 -plate model is 49% versus 51%. The data are now nearly equally weighted, so neither region of the Caribbean plate has a dominating effect on the resulting kinematic model.

The spatial distribution of the site data importance is now adequate to support improved confidence in the inversion results. Figure 4-6 is a map showing the derived Euler poles for the Caribbean as determined by various authors. Although there are small variations seen in the pole of rotation based on the reference frame and the software version used, all of the poles for models that hold the Caribbean as a single rigid plate, plot in the similar vicinity. Note that if the Caribbean is considered as two plates, the pole for the east-Caribbean is farther east than all other results and the pole for westCaribbean shows significant disparity, with its location north of $58^{\circ} \mathrm{N}$. Another important feature is that the pole estimation determined by Altamimi et al. (2007) for the Caribbean
is based on 3 sites: St. Croix, Puerto Rico, and Barbados. I have excluded data from Barbados and Puerto Rico from my inversions, because of their proximity to zones of active deformation and thus I would consider this pole location to be the least reliable.

Table 4-5 Site data importance values

site importance (\%)		
Miller, 2013	DeMets, 2007	site
17.7	41.7	CRO1
12.5	17.7	Honduras sites
8.5	14.8	SANA
1.2	6.3	FSD0/1
15.2	5.9	Nicaragua sites
0.5	2.9	AVES
14.2	new site	SANO
11.3	new site	GREO
7.1	new site	VIKH
6.6	new site	Dominica sites
2.6	new site	LMMF
1.9	new site	ABMF
0.7	new site	RDON
0.3	new site	CN35
0.1	new site	CNOO
removed from inversion	6.5	BARB
removed from inversion	4.3	ROJO
100\%	100\%	total
east versus west importance		
49.0\%	62.0\%	eastern sites
51.0\%	38.0\%	western sites

Values for velocities of Caribbean GPS sites used to derive the best-fitting CA-ITRF2008 angular velocity vector. Values for DeMets et al. (2007) 15-sites.

Figure 4-5 Data importance
Data importance values for velocities of Caribbean and Central American GPS sites used to derive the best-fitting Caribbean-ITRF2008 angular velocity vector. Values plotted are those that contributed $>1 \%$ to the solution. All importance values are listed in Table 4-5. (A) Values for DeMets et al. (2007) 15-site 1-plate model. (B) Values for 24-site 2-plate model. Note the different scales for (A) and (B).

Table 4-6 Best fitting Caribbean angular velocity vectors

Best-fitting Caribbean plate angular velocity vector information					
plate pair	no. of sites	angular velocity vector			
			λ	φ	ω
			$\left({ }^{\circ} \mathrm{N}\right)$	$\left({ }^{\circ} \mathrm{E}\right)$	${ }^{\circ} \mathrm{m} . \mathrm{m}^{-1}$
			39.32	-104.28	0.2410
CA-ITRF2005 published value by Altamimi et al.	15	36.30	-98.50	0.2550	
CA-ITRF2005 published value by Demets et al., 2007	15	37.49	-102.62	0.2423	
CA-IGS08 data through 2007, reprocessed	15	37.02	-103.18	0.2438	
CA-IGS08 data through 2013, reprocessed	24	37.19	-101.95	0.2545	
CA-IGS08, 1-plate model result	14	35.79	-97.18	0.2802	
CA(east)-IGS08, 2-plate model result	10	58.51	-145.36	0.1321	
CA(west)-IGS08, 2-plate model result					

Figure 4-6 Euler pole locations.
Error ellipses are 1σ.

4.4 The rigidity of the Caribbean plate

Based on the F-test, I can infer that the east and west Caribbean are moving at different rates and directions, and since we can see in Figure 4-7, that despite the fact that there is very little seismicity in the interior of the Caribbean, I conclude that there is ongoing internal deformation and therefore the Caribbean plate is non-rigid. To investigate possible structures that may serve as a boundary between east and west Caribbean blocks, and a location where such deformation might occur, I consider geomorphologically prominent features, the locations of known and putative faults, and observed earthquake hypocenters (Figure 4-7).

Figure 4-7 Faults and earthquakes of the Caribbean Red circles are earthquake hypocenters (IRIS data, http://www.iris.edu). Black lines delineate putative faults.

Two features that appear to separate the Caribbean into east and west sections are the Lower Nicaraguan Rise and the Beata Ridge (Figure 1-5). Mauffret and Leroy (1999) conclude on the basis of marine seismic profiles, that the Beata Ridge shows clear evidence of compression and transpression. They estimate that the ridge has accommodated $9 \pm 1.5 \mathrm{~mm} \mathrm{yr}^{-1}$ of shortening since the early Miocene. To test this proposal, we use the 2-plate model, based on the inversion of the 24 sites (10 on the western block and 14 on the eastern block) and the derived poles to predict the relative motion of the east and west sections relative to each other along both the Beata Ridge and the Lower Nicaraguan Rise. The results for the predicted motion along the Lower Nicaraguan Rise are presented in Figure 4-8 and Figure 4-9. I calculate less than 1 mm of relative motion between the east and west sides of the Lower Nicaraguan Rise, which indicates that it is not a likely candidate for the location of any significant intraplate deformation. The 2-plate model, however, predicts an average velocity of $3 \mathrm{~mm} / \mathrm{yr}$ along the Beata Ridge with the motion oblique to the boundary (Figure 4-10 and Figure 4-11). This prediction corroborates the transpessional environment described by Maufrett and Leroy (1999), which includes a pop-up structure, reverse faults, and an inverted basin, identified through interpretation of seismic reflection profiles.

Figure 4-8 Motion along Lower Nicaraguan Rise with respect to a fixed east plate. Red arrows are motion predicted by a 2-plate model with respect to a fixed east plate. Blue arrows are velocities measured with respect to IGS08.Error ellipses are 1σ.

Figure 4-9 Motion along Lower Nicaraguan Rise with respect to a fixed west plate.
Red arrows are motion predicted by a 2-plate model with respect to a fixed east plate. Blue arrows are velocities measured with respect to IGS08. Black star is predicted Euler pole for the rotation of Caribbean-east with respect to a fixed Caribbean-west..

Error ellipses are 1σ.

Figure 4-10 Motion along the Beata Ridge with respect to fixed east plate.
Red arrows are motion predicted by a 2-plate model with respect to a fixed east plate. Blue arrows are velocities measured with respect to IGS08. Error ellipses are 1σ.

Figure 4-11 Motion along the Beata Ridge with respect to fixed west plate.
Red arrows are motion predicted by a 2-plate model with respect to a fixed east plate. Blue arrows are velocities measured with respect to IGS08. Black star is predicted Euler pole for the rotation of Caribbean-east with respect to a fixed Caribbean-west.

Error ellipses are 1σ.

Once new Caribbean poles for a 2-plate model are adopted, a re-plotting of the residual velocity maps is required, using the new Caribbean-east and Caribbean-west rates. Minimal change is expected for sites in the eastern block the previous model and the one that was used for the initial kinematic analysis (DeMets et al., 2007) was overly dependent on the eastern sites to define its pole. Figure 4-12 shows the Dominica residual velocity rates plotted in black for the 1-plate model and red for the 2-plate model. The red is superimposed on the black since the difference is virtually insignificant. The scale has been magnified in this image to make the vectors easier to see. The western sites show more variation in the residuals (Figure 4-13), due to the large disparity in the location of the Euler pole when the western sites are isolated.

Figure 4-12 Dominica residual velocities, 1-plate model versus 2-plate model. Black arrows represent residual velocity with respect to a fixed 1-plate Caribbean. Red arrows represent residual velocity with respect to a fixed East Caribbean plate. Error ellipses are 1σ. Note scale difference between this figure and figures 3-26 and 3-27.

Figure 4-13 Western site residual velocities, 1-plate model versus 2-plate model.
Black arrows represent residual velocity with respect to a fixed 1-plate Caribbean. Red arrows represent residual velocity with respect to a fixed West Caribbean plate. Error ellipses are 1σ.

A dynamic model of the Caribbean is presented by van Benthem (2013), which supports the kinematic 2-plate model I have proposed. He identifies the forces contributing to the dynamics of the Caribbean plate as: (1) pull by the Maracaibo slab, which is largely counteracted by slab resistive forces, (2) frictional forces with the surrounding plates, perhaps combined with (3) trench suction at the southern Lesser Antilles (van Benthem, 2013). Figure 4-14 presents van Benthem's map of principle stresses for the Caribbean. Note that in the area of Beata Ridge (marked with a red oval), where we suspect a transpessional environment, the primary stress direction is compressional and oriented approximately E-W.

Figure 4-14 Caribbean principle stress directions (van Benthem, 2013) Red oval marks the area of the Beata Ridge.

Van Benthem (2013) also identifies mechanisms for plate boundary deformation in the NE Caribbean as "Bahamas collision" and "slab edge push". His "slab edge push" model predicts uplift for the interior of the Caribbean plate, roughly at the location of the Beata Ridge (Figure 4-15) (van Benthem, 2013). In both models, predicted strain rates are higher for eastern versus western Caribbean, with a demarcation that lies along the Beata Ridge.

Figure 4-15 Caribbean effective strain rate (van Benthem, 2013)
Strain rate is Myr^{-1}. Black crosses denote the principle strain rate directions. The top panel is the Bahamas collision model for present day and the bottom panel is the slab edge push (SEP) model for present day.

4-6 Conclusion

It is with confidence that I conclude that the east and west sides of the Caribbean display unique motion and that the Caribbean is not a single rigid plate. E-W shortening is likely occurring in the area of the Beata Ridge, a theory supported by seismic data, kinematic and dynamic modeling. The adoption of a 2 -plate model would have implications in various areas of Caribbean studies, including geodesy and neotectonics. Poles associated with a 2-plate model highlight the inconsistencies with the Euler pole for the Caribbean plate as defined by ITRF2008. Any models used to assess regional hazards associated with plate motion would need to be reevaluated, especially for the Western Caribbean.

Appendix A

Dominica Campaign Site Descriptions

Modified from James, 2008
ATRU
Site is located at Atru Bay on the coast near the north end of Dominica (fig. A-1).
The end of the journey to this site requires a descent down a steep switch backed driveway to a plot of land that was for sale in 2011. At the end of the driveway, there is a relatively flat open field (fig. A-1) to the Atlantic Ocean. Once parked at the end of the driveway, you will be facing east to the Atlantic. Park here and head out on foot south/southeast across the field approximately 100 yards to a grove of palms. There is a subtle opening in the trees, which may once have been a "trail". Enter the trees and follow the "trail" towards the ocean. As you emerge from the trees, it is necessary to scale down a small ($3-5 \mathrm{~m}$) drop to the rocks on the shore. Once at the bottom, you are very near the site. The pin is located in a boulder approximately 2 m from the base of the $\sim 5 \mathrm{~m}$ cliff you just scaled down. The cliff may be a source of multipath interference and certainly limits the sky view available to the west of this site. Antenna should be elevated as much as possible to reduce the influence of this cliff. The site is not secure, however there is relatively low traffic and as such, security is not a major concern.

Installation: June 2004, stainless steel Bevis pin set with epoxy in a 0.5 " hole in andesitic bedrock.

Figure A-1 Dominica campaign site (A) ATRU, 2012 looking back across the field from the palm grove towards the parking area (B) ATRU, 2012

BELV

Site is located in an andesite boulder on a hillside at Belvedere Estates on the east coast of Dominica. There is a road (two strips of concrete) that will take you this location. The road has some precarious spots so proceed with caution. The landowner is Edward Joseph, he is very friendly and if present, can show you where the pin is located. When you get close using GPS, look for a shed (fig. A-2). Park near the shed, cross the road and cut through the trees. The boulder is located in the field just north of the shed. The field is no longer used for grazing cows as it had been in the past so the vegetation was chest high. You will need a machete for this site. Edward cut a path for us and cleared around the boulder.

Installation: June 2001, stainless steel Bevis pin set with epoxy in a 0.5 " hole.
Site requires either a tripod or tetrapod for setup due to a small mounting area on the surface of the boulder.

Figure A-2 Dominica campaign site (A) BELV, 2012 Edward Joseph's shed, place to park and cross through trees (B) BELV, 2012 (C) BELV, 2006 (D) BELV, 2006

BOIL
This site is on the shore of boiling lake and is a 16 mile round trip on foot.
Installation: 2007

BOTG
Site is located in a mostly buried boulder at the Botanical Gardens in Roseau (fig. A-3). The boulder is located inside a fence with a locked gate that contains the parrot house. Access is very limited so coordination with the Forestry Division is required. Permissions were required from not only the Forestry Division, but from the person in charge of the Aviary. A new addition to the site in 2011 was an RV (fig. A-3) that is parked very near the pin and will not be removed. Proximity to the Parrot House as well as the height of the surrounding fence means that tripod or tetrapod antennae mount is preferred.

Installation: June 2006, stainless steel Bevis pin set with epoxy in a $0.5^{\prime \prime}$ hole.

Figure A-3 Dominica campaign site (A) BOTG, 2011 (B) BOTG, 2011

BRDX
Site located in andesite boulder in a small orchard above a farm just east of TETE (fig. A-4). Take the roads most of the way up to the site and park near the cell tower. Take the path that leads away from the cell tower through the trees to an open field. The site has been overgrown with trees that may require trimming. The landowner was in the process of planting something in the open field so site may be obscured in future visits.

Installation: June 2004, stainless steel Bevis pin set with epoxy in a 0.5 " hole.
Any type of antenna mount may be used.

Figure A-4 Dominica campaign site (A) BRDX, 2011 (B) BRDX, 2011

CABR
Government permission from the Forestry Division is needed in order to work at this location. In 2011 and 2012 permission was granted by Jacqueline Andre. In 2012, the department instituted a lengthy application process for working in the parks. An exception was granted for us since we were working with the Office of Disaster Management. It was necessary however, to first get permission from the Office of Disaster Management before requesting the permission from the Forestry Division.

Site is located in Cabrits National Park at the North end of the Island (fig. A-5). As you enter the park (which may require finding someone to lift the gate) you will pass a building on the left associated with the ship docks. After passing the docks, you should be able to see a four sided archway. You need to drive through the archway (even though it looks like it is for foot traffic) and head uphill. Before heading through the arch, find a park representative to show the permission letter to and confirm that it is ok to set up equipment. The road up the hill is narrow and cobblestone as you pass through the outer wall of Fort Shirley. Pass the restored portion of the fort and look for a newer
concrete road and follow it uphill a little bit further. There is an old dirt road (4 wheel drive required) that leads over to the parade grounds (fig. A-5) just north of the fort, take this road or park and walk from here. Cross the parade grounds (which may require clearing a path), enter the forest on the other side and look for the ruins of the commandants quarters (fig. A-5). Follow the trail that leads up the hill from here, cross through the ruins of the Douglas Bay Battery (fig. A-5) and keep going. Near the end of the trail, you should find some small cannons. If you are looking along the firing trajectory of the cannons, the site is behind you. Bushwhack to the highest point you can find, the pin is located in an andesite boulder (fig. A-5) most likely overgrown with trees. Depending on where you park, the hike to the site will be a 1-2 mile roundtrip so plan accordingly.

Installation: June 2001, stainless steel Bevis pin set with epoxy in a 0.5 " hole.
Any type of antenna mount may be used, but a tetrapod is the best choice.

(A)
(B)

Figure A-5 Dominica campaign site (A) CABR, 2011 Ruins of the Douglas Bay Battery must be passed through to reach the site (B) CABR, 2006 (C) CABR, 2011, ruins of the commandants quarters (D) CABR, 2011, parade grounds overgrown, follow the signs to Douglas Bay Battery

CASS
Site is located in bedrock on the southern coast, at Zandoli Inn (fig. A-6).
Permission may be gained from Jen (the owner) who may be reached by email through the Zandoli Inn website (http://www.zandoli.com). The groundskeeper's name is Daison, he knows the location of the site and is most helpful. The site is located on the cliffs above the ocean just off of one of the hotel's walking paths. Park in the hotel parking and head towards the hotel. Take a left at the hotel and head down the stairs to the trails.

Cross the creek and continue to choose the "high road" trails. After walking 100 yards or so, parallel to the coastline, start looking for a place to cut through the trees and emerge onto rocky cliffs. The pin is located in a rock near the tree line. A spike mount is preferred for antennae setup at this site.

Installation: June 2001, stainless steel Bevis pin set with epoxy in a 0.5 " hole

(A)
(B)

Figure A-6 Dominica campaign site (A) CASS, 2012 (B) CASS, 2006

CNCD
Site is located on the road that leads from the airport to Ponde Casse (fig. A-7), approximately 3.5 km after the road turns away from the ocean (this road was closed in 2011 and 2012 so 4 wheel drive was required). The site is located on a large boulder (requires scrambling up) on private property on the south side of the road. The nearest most notable landmark is the pink modern style house just to the north of the property.

The property owners were not present, but the caretakers of the property were able to grant permission for access, and showed us to and cleared the site which was quite overgrown.

Installation: June 2001, stainless steel Bevis pin set with epoxy in a 0.5" hole. A spike mount is preferable for this site.

Figure A-7 Dominica campaign site (A) CNCD, 2006 (B) CNCD, 2006

COHT

Site is located just off the main road near Colihaut (fig. A-8). The pin is located on the top of a large andesite outcrop on the south side of road which will most likely be obscured by foliage. There is a spot to pull off the road just uphill from the site. The landowner's name is Emmanuel, he lives up the mountain. The working surface around the pin is very small which makes it unsuitable for a tetrapod. A carefully placed tripod or a spike mount will work at this location.

Installation: June 2006, stainless steel Bevis pin set with epoxy in a 0.5 " hole

(A)

Figure A-8 Dominica campaign site (A) COHT, 2012 Place to park, site is located at the top of the peak shown (B) COHT, 2012

CONN
Site is located in large andesite boulder on top of a hill in a clearing at Connor Estates (fig. A-9). The owner of the property is Andre and in 2011, the property was for sale. His nephew was in the process of building the next house to the north. There is a driveway up to the property, but I do not recommend driving on it. We parked at the base and walked up towards the house. Before you get to the house, cut left through the grove of fruit trees. The boulder is located on the slope between the trees and the road. Andre is very friendly and says researchers are always welcome. A spike mount is best for this location.

Installation: June 2006, stainless steel Bevis pin set with epoxy in a 0.5 " hole

Figure A-9 Dominica campaign site (A) CONN, 2011 (B) CONN, 2011, path up to house with new concrete

ELOI
Site is located in bedrock on the floor of an abandoned quarry (fig. A-10). Any type of antenna mount could be implemented at this site. This site was not occupied due to time and logistical constraints.

Installation: June 2003, stainless steel Bevis pin set with epoxy in a 0.5 " hole.

Figure A-10 Dominica campaign site (A) ELOI, 2006 (B) ELOI, 2006

FRSH
Site is located near the shore of Freshwater Lake in the National Park at the base of Morne Microtrin (fig. A-11). Government permissions are required in order to work on this site. The road to this location is well paved. Take the road all the way to the park, drive past the park buildings and through a green metal gate where you may park. The pin is located in a buried boulder at ground level and very difficult to find. In 2012, it was completely covered with soil and chest high foliage. A tripod or tetrapod is needed for this site.

Installation: June 2001, stainless steel Bevis pin set with epoxy in a 0.5 " hole.

(A)
(B)

(C)

Figure A-11 Dominica campaign site (A) FRSH, 2012, looking at park entrance with lake to right and site to rear (B) FRSH, 2012, view of site from parking area (C) FRSH, 2012

GOMM
Site is located in a small concrete roof of the pool equipment building adjacent to the pool at Gommier Estates (fig. A-12). The house belongs to the Scotia Bank, and the main office must be contacted for permission to access the site. It is easiest to make an appointment with the bank manager and visit the bank in person for permission. Once at the site, the caretakers can unlock the gate next to the pool equipment house. A spike mount is the ideal for this location.

Installation: June 2001, stainless steel Bevis pin set with epoxy in a 0.5 " hole.

Figure A-12 Dominica campaign site (A) GOMM, 2011, the estate where the site is located (B) GOMM, 2011, view of the pool equipment building (C) GOMM, 2011, pin located very near the end of Glen Mattioli's pointed finger (D) GOMM, 2006

Site is on top of a large andesitic outcrop on the property of the Stonehedge Safari Hotel (fig. A-13). The road to the hotel is through a grassy field that leads to an oceanside cliff. A spike mount is required, the area around the site is very limited. A black plastic water tank has recently been installed very near the site which creates an obstruction that may cause interference. Owner is very friendly and helpful, his presence insures the security of this location.

Installation: June 2004, stainless steel Bevis pin set with epoxy in a 0.5 "hole.

Figure A-13 Dominica campaign site (A) GSAV, 2011 Harrison Miller pointing to site (B) GSAV, 2011 site installed

GUIG

Site is located in a small concrete foundation atop a hill at Point Guignard on the west coast of the island (fig. A-14). The land has changed hands twice since the site was installed. Wayne Abraham attempted unsuccessfully to find the current owner for permission. There is a fence with a locked gate and "no trespassing" signs posted so permission is required. There are stairs that lead to the site.

Installation: June 2006, stainless steel Bevis pin set with epoxy in a 0.5 " hole.

Figure A-14 Dominica campaign site (A) GUIG, 2006 (B) GUIG, 2006

MHAM

Site is located in a boulder in a field near Middleham Falls (fig. A-15). Follow GPS along the road to Middleham and park near the house shown in figure A-15. Cross through an orchard and head downhill from the road. The ground is very soft so a tripod/tetrapod is best. In 2011, the site was overgrown with ground cover.

Installation: June 2007, stainless steel Bevis pin set with epoxy in a 0.5 " hole.

Figure A-15 Dominica campaign site (A) MHAM, 2011

MNTV
The site is located in a boulder on a slope behind a green bar/restaurant facility that is only open sporadically. The owner does not live in the country, the next door neighbor's name is Alan and he knows the location of the pin. This location is pretty close to the road and easy to get to. Park at the green guard hut shown in figure A-16, cross the courtyard and head uphill. A tripod/tetrapod is best for this location.

Installation: June 2007, stainless steel Bevis pin set with epoxy in a 0.5 " hole.

Figure A-16 Dominica campaign site (A) MTNV, 2011 (B) MTNV, 2012 (C) MTNV, 2011, parking location (D) MTNV, 2006

NEWF
Site is located on an andesite boulder in a field (fig. A-17). Landowner approval is required. The owner's name is Joseph (767-617-2333) and he will demand payment for land use. In 2012, he was paid $\$ 400$ (Caribbean) for 4 occupation days. Although at first meeting, he may seem confrontational, he is very helpful. If you arrange a time with him, he will clear a path to and around the site, and will assist with the transport of gear. He knows the location of the site, which will be difficult to find without him due to the overgrowth. In 2012, the boulder in figure A-17 was surrounded by head-height foliage.

Installation: June 2001, stainless steel Bevis pin set with epoxy in a 0.5 " hole.

Figure A-17 Dominica campaign site (A) NEWF, 2012, location to park (B) NEWF, 2012, looking north, site is approximately 100 m into the field, entirely obscured by vegetation
(C) NEWF, 2006 (D) NEWF, 2006

NVEN
Site is located in a concrete foundation at the edge of a field (fig. A-18). The road to this location is in very poor condition, four-wheel drive required. Following GPS, you will be able to drive most of the way to this site. You will walk approximately 75 yards along a dasheen field to its back edge where the slab is located. In 2011, the concrete slab was completely overgrown and not visible (fig. A-18). Any type of standard antenna mount will work for this location. The landowner is Mathew Bernard (277-6063) and he is very friendly. Notify him or a neighbor before setting up equipment.

Installation: June 2004, stainless steel Bevis pin set with epoxy in a 0.5 " hole

(A)
(B)

Figure A-18 Dominica campaign site (A) NVEN, 2011 before cleared (B) NVEN, 2011 cleared (C) NVEN, 2006 (D) NVEN, 2006

SCTT
Site is located in a boulder on top of Scott's Head at the southern tip of the Island (fig. A-19). In 2011 it had been completely covered with soil and vegetation. A narrow land bridge (rocky beach) is crossed before heading up the hill. The dirt road that leads up to the tower was drivable in 2011 and you can park and turn around at the tower. The short walk up to the peak from here begins with concrete stairs and ends with a scramble.

Installation: June 2001, stainless steel Bevis pin set with epoxy in a $0.5^{\prime \prime}$ hole

Figure A-19 Dominica campaign site (A) SCTT, 2011 view of land bridge and tower to park near (B) SCTT, 2011 installed

SOIE
Site is located at Point La Soie on the north coast of the island (fig. A-20). Park on the shoulder and walk about 300 m along a path through the orchard towards the coast. The path to take used to be a dirt road but trees have been cut down to block passage. Any mount may be used, the area surrounding the site is flat and rocky adjacent to the coast.

Installation: June 2003, stainless steel Bevis pin set with epoxy in a 0.5 " hole

Figure A-20 Dominica campaign site (A) SOIE, 2011

SPAG
Site is located in an andesite boulder at the base of cellular towers atop Morne Espagnole (fig. A-21). The road to the top is very steep with tight switchbacks (even by Dominica standards), it is not advisable to drive the entire way to the top. A spike mount is required for this site. The site is near the cable and wireless long-range transmission antennae.

Installation: June 2004, stainless steel Bevis pin set with epoxy in a 0.5 " hole.

Figure A-21 Dominica campaign site (A) SPAG, 2012 (B) SPAG, 2012

SPNG
Site sits in andesite boulder on the grounds of Springfield Estates. Take the steps that lead down to the river from the main porch and make an immediate right once at the base of the rock wall that provides support for the porch. The pin is in a boulder next to the wall that will probably be covered with foliage. A tetrapod works best at this location. AC power is available with use of extension cords from the main facility.

Installation: June 2004, stainless steel Bevis pin set with epoxy in a 0.5 " hole

TETE

Site located in andesite boulder near the top of Tete Morne (fig. A-22). It is in a clearing located behind a large cylindrically shaped concrete structure (fig. A-22) just before the end of the 4×4 road leading to the mountain top. Any type of antennae mount is suitable for this location. In 2012 we encountered the landowner, who was friendly, tending crops on this property.

Installation: June 2004, stainless steel Bevis pin set with epoxy in a 0.5 " hole

Figure A-22 Dominica campaign site (A) TETE, 2012 (B) TETE, 2012, park at this location and take a path to the left of this concrete structure

WOTT
Site located on the roof of the primary schoolhouse in Wotten Waven (fig. A-23). Either a tall ladder or a ladder placed in the bed of a truck will be required to access the site. The pin is set into the roof just behind the basketball goal. We stayed at Archbold Tropical Research Center (Springfield Guesthouse), and were able to borrow a ladder from the caretaker Desmond.

Installation: June 2001, stainless steel Bevis pin set with epoxy in a 0.5 " hole

Figure A-23 Dominica campaign site (A) WOTT, 2012 (B) WOTT, 2012

WQ95
Site located on the roof of what used to be WQ95 radio station (fig. A-24). In 2011/2012, the building was owned by Dragon Windows (www.dragonwindows.com), but no one was ever present. Numerous unsuccessful attempts in 2011/2012 were made to gain permission to install. A spike mount is required for this location.

Installation: June 2006, stainless steel Bevis pin set with epoxy in a 0.5 " hole

(A)

Figure A-24 Dominica campaign site (A) WQ95, 2006 (B) WQ95, 2006

Appendix B
COCONet Time Series

For all time series in this Appendix:

Red dots are the daily position estimates ($16-24 \mathrm{hr}$ occupations).
Blue lines are the predicted plate rates in IGS08 held fixed (horizontal).
Green lines are the least squares best-fit site rates in IGS08 with respect to the Caribbean plate rate (CA).
$\mathrm{WN}=$ white noise estimates
FN = flicker noise estimates
Black vertical dotted lines indicate when a correction has been made for an offset created either by a seismic event or an antenna change.

These data have been processed using GIPSY-OASIS II version 6.2, with ambiguity resolution on, using VMF1GRID for tropospheric corrections, and using absolute antenna phase center information.

MARC Coordinate changes - CA is fixed stacovs used AMB

Appendix C
Dominica site equipment history

Appendix D
Inversion Input Files

DeMets, 2007 values, 1-plate, 15 sites, ITRF fixed

DeMets et al., 2007 values-updated, 1-plate, 15 sites, ITRF fixed

2 plates, 24 sites, Caribbean (east) fixed

	cw it ve	12.92	274.78	$8 \quad 0.429$	tim
	Cw it	12.92	274.78	0.00000 Co	coeff. for RIOB
	ce it vn	17.76	295.42	1.360 .030	CRO1 ITRF08 17.6740 yrs \#= 6018
	ce it ve	17.76	295.42	$1.10 \quad 0.031$	CRO1 Start/stop times:1995.7822-2013.4562
	ce it cv	17.76	295.42	-0.01438 Co	coeff. for CRO1
	ce it v.	16.93	297.65	$1.47 \quad 0.151$	RDON ITRF08 1.2860 yrs \#= 403
	it v	16.93	297.65	1.040 .129	RDON Start/stop times:2012.3975-2013.6836
	ce it cv	16.93	297.65	0.02801	coeff. for RDON
	cw it	13.38	278.64	$0.30 \quad 0.400$	CN35 ITRF08 0.7389 yrs \#= 268
	cw it ve	13.38	278.64	$0.92 \quad 0.767$	CN35 Start/stop times:2012.6899-2013.4288
	cw it cv	13.38	278.64	-0.01010 Co	coeff. for CN35
	it it vn	16.26	298.47	. 440.082	ABMF ITRF08 2.8438 yrs \#= 977
sit	it it ve	16.26	298.47	$1.20 \quad 0.089$	ABMF Start/stop times:2010.6671-2013.5110
site	it it c	16.26	298.47	-0.03874 Co	coeff. for ABMF
site	it it vn	12.22	298.36	1.520 .049	GREO ITRF08 5.9397 yrs \#= 4214
site	it it ve	12.22	298.36	$1.36 \quad 0.052$	GREO Start/stop times:2007.4863-2013.4260
site	it it	12.22	298.36	-0.11443 Co	coeff. for GREO
site	it it vn	14.59	299.00	1.500 .080	LMMF ITRF08 2.8438 yrs \#= 1023
te	it it ve	14.59	299.00	$1.25 \quad 0.091$	LMMF Start/stop times:2010.6671-2013.5110
te	it it	14.59	299.00	0.01081 Cor	coeff. for LMMF
site	it it vn	14.73	298.85	1.580 .122	FSDO ITRF08 5.4685 yrs \#= 14
site	it it ve	14.73	298.85	1.310 .318	FSDO Start/stop times:1994.3986-1999.8671
te	it it cv	14.73	298.85	0.00000 Co	coeff. for FSDO
site	it it	14.73	298.85	1.630 .167	FSD1 ITRF08 5.4575
site	it it ve	14.7	298.85	1.330 .214	FSD1 Start/stop times:1994.4096-1999.8671
te	it it cv	14.73	298.85	0.00000 Co	coeff. for FSD1
site	it it	15.24	298.71	1.400 .063	CASS ITRF08 10.9879 yrs \#= 20
site	it it ve	15.2	298.71	0.111	CASS Start/stop times:2001.4288-2012.4167
ite	it it cv	15.24	298.71	0.00000 Cor	. coeff. for ceSS
ite	it it vn	15.34	298.69	1.510 .084	FRSH ITRFO8 10.9906 yrs \#= 21
site	it it ve	15.3	298.69	. 070.117	FRSH Start/stop times:2001.4452-2012.4358
site	it it cv	15.34	298.69	0.00000 Co	coeff. for FRSH
ite	it it vn	15.51	298.72	$1.42 \quad 0.071$	CNCD ITRF08 10.0877 yrs \#= 25
site	it it ve	15.51	298.72	1.180 .109	CNCD Start/stop times:2001.4534-2011.5411
site	it it	15.51	298.72	0.00000 Co	coeff. for CNCD
t	it it vn	15.67	296.38	$1.42 \quad 0.132$	AVES ITRF08 3.8740 yrs \#= 28
site	it it ve	15.67	296.38	$1.13 \quad 0.231$	AVES Start/stop times:1994.3740-1998.2479
site	it it	15.67	296.38	0.00000 Co	coeff. for AVES
site	it it vn	17.67	298.21	$1.26 \quad 0.384$	CN00 ITRF08 0.7689 yrs \#= 282
t	it it ve	17.67	298.21	$1.12 \quad 0.737$	CNOO Start/stop times:2012.6407-2013.4096
site	it it C	17.	298.21	-0.00308 Cor	coeff. for CNOO
site	it it vn	17.72	295.20	$1.36 \quad 0.057$	VIKH ITRF08 6.7644 yrs \#= 2170
site	it it ve	17.72	295.20	$1.08 \quad 0.044$	VIKH Start/stop times:2006.6425-2013.4068
site	it it cv	17.72	295.20	-0.00329 Cor	. coeff. for VIKH
site	it it v	15.	273.93	. 110.095	GLCO ITRF08 10.2882 yrs \#= 13
site	it it ve	15.03	273.93	1.080 .184	GLCO Start/stop times:2000.1790-2010.4671
t	it it cv	15.03	273.93	0.00000 Co	. Coeff. for GLCO
site	it it vn	14.97	273.76	0.660 .138	SFDP ITRF08 4.3607 yrs \#=
site	it it ve	14.97	273.76	. 130.244	SFDP Start/stop times:2000.1762-2004.5369
site	it it CV	14.97	273.76	0.00000	. coeff. for SFDP
site	it it vn	14.92	273.62	$0.67 \quad 0.062$	MNTO ITRF08 10.2991 yrs \#= 9
site	it it ve	14.92	273.62	$1.10 \quad 0.112$	MNTO Start/stop times:2000.1680-2010.4671
te	it it cv	14.92	273.62	0.00000	coeff. for Mnto
site	it it v.	14.51	274.29	$0.54 \quad 0.167$	CMP1 ITRF08 5.2142 yrs \#=
site	it it ve	14.51	274.29	1.170 .236	CMP1 Start/stop times:2000.1926-2005.4068
site	it it cV	14.51	274.29	0.00000 Cor	. coeff. for CMP1
site	it it	14.04	276.62	$0.61 \quad 0.107$	PUEC ITRF08 5.1233 yrs \#= 13
site	it it ve	14.04	276.62	$1.10 \quad 0.197$	PUEC Start/stop times:2001.0397-2006.1630
site	it it cv	14.04	276.62	0.00000 Cor	coeff. for PUEC
site	it it	12.58	278.28	0.690 .061	SANO ITRFO8 5.4932 yrs \#= 1764
site	it it v	12	278.28	$1.25 \quad 0.063$	SANO Start/stop times:2007.9356-2013.4288
site	it it cv	12.58	278.28	0.11575 Cor	. coeff. for SANO
site	it it vn	12.57	274.63	0.730 .057	PORT ITRF08 11.9563 yrs \#= 22
site	it it ve	12.57	274.63	0.950 .110	PORT Start/stop times:2000.6134-2012.5697
site	it it cv	12.57	274.63	0.00000 Co	. Coeff. for PORT
site	it it vn	12.52	278.27	0.720 .066	SANA ITRF08 9.1616 yrs \#= 22
ite	it it ve	12.52	278.27	1.310 .115	SANA Start/stop times:1994.1082-2003.2699
site	it it cv	12.52	278.27	0.00000 Cor	. Coeff. for SANA
site	it it vn	12.41	274.19	0.590 .058	TEUS ITRF08 11.9836 yrs \#= 23
site	it it ve	12.41	274.19	$0.97 \quad 0.090$	TEUS Start/stop times:2000.5888-2012.5724
te	it it cv	12.41	274.19	0.00000 Co	. coeff. for TEUS
t	it it vn	12.92	274	0.670 .250	RIOB ITRF08 2.5496 yrs \#= 12

```
site it it ve 12.92 274.78 1.18 0.429 RIOB Start/stop times:2000.6025-2003.1521
site it it cv 12.92 274.78 0.00000 Corr. coeff. for RIOB
site it it vn 17.76 295.42 1.36 0.030 CRO1 ITRF08 17.6740 yrs #= 6018
site it it ve 17.76 295.42 1.10 0.031 CRO1 Start/stop times:1995.7822-2013.4562
site it it cv 17.76 295.42 -0.01438 Corr. coeff. for CRO1
site it it vn 16.93 297.65 1.47 0.151 RDON ITRF08 1.2860 yrs #= 403
site it it ve 16.93 297.65 1.04 0.129 RDON Start/stop times:2012.3975-2013.6836
site it it cv 16.93 297.65 0.02801 Corr. coeff. for RDON
site it it vn 13.38 278.64 0.30 0.400 CN35 ITRF08 0.7389 yrs #= 268
site it it ve 13.38 278.64 0.92 0.767 CN35 Start/stop times:2012.6899-2013.4288
site it it cv 13.38 278.64 -0.01010 Corr. coeff. for CN35
```


1 plate, 24 sites, ITRF2008 fixed


```
ca it cv 12.92 274.78 0.00000 Corr. coeff. for RIOB
ca it vn 17.76 295.42 1.36 0.030 CRO1 ITRF08 17.6740 yrs #= 6018
ca it ve 17.76 295.42 1.10 0.031 CRO1 Start/stop times:1995.7822-2013.4562
ca it cv 17.76 295.42 -0.01438 Corr. coeff. for CRO1
ca it vn 16.93 297.65 1.47 0.151 RDON ITRF08 1.2860 yrs #= 403
ca it ve 16.93 297.65 1.04 0.129 RDON Start/stop times:2012.3975-2013.6836
ca it cv 16.93 297.65 0.02801 Corr. coeff. for RDON
ca it vn 13.38 278.64 0.30 0.400 CN35 ITRF08 0.7389 yrs #= 268
ca it ve 13.38 278.64 0.92 0.767 CN35 Start/stop times:2012.6899-2013.4288
ca it cv 13.38 278.64 -0.01010 Corr. coeff. for CN35
```

2 plates, 24 sites, Caribbean (west) fixed

	ce it vn	17.76	295.42	1.36	0.030	CRO1 ITRF08 17.6740 yrs \#= 6018
	ce it ve	17.76	295.42	1.10	0.031	CRO1 Start/stop times:1995.7822-2013.4562
	ce it cv	17.76	295.42	-0.01		coeff. for CRO1
	ce it vn	16.93	297.65	1.47	0.151	RDON ITRF08 1.2860 yrs \#= 403
	ce it	16.93	297.65	1.04	0.129	RDON Start/stop times:2012.3975-2013.6836
	ce it cv	16.93	297.65	0.028		coeff. for RDON
	cw it	13.38	278.64	0.30	0.400	CN35 ITRF08 0.7389 yrs \#= 268
	it	13.38	278.64	0.92	0.767	CN35 Start/stop times:2012.6899-2013.4288
	it cv	13.38	278	-0.010		coeff. for CN35
	it it	16.26	298.47	1.44	0.082	ABMF ITRF08 2.8438 yrs \#= 977
si	it it ve	16.26	298.47	1.20	0.089	ABMF Start/stop times:2010.6671-2013.5110
site	it it c	16.26	298.47	-0.038	74 Co	coeff. for ABMF
site	it it vn	12.22	298.36	1.52	0.049	GRE0 ITRF08 5.9397 yrs \#= 4214
si	it it	12.22	298.36	1.36	0.052	GREO Start/stop times:2007.4863-2013.4260
site	it it cv	12.22	298.36	-0.114	43 Co	coeff. for Greo
site	it it vn	14.59	299.00	1.50	0.080	LMMF ITRF08 2.8438 yrs \#= 1023
sit	it it ve	14.59	299.00	1.25	0.091	LMMF Start/stop times:2010.6671-20
site	it it	14.59	299.00	0.010		coeff. for LMMF
si	it it vn	14.73	298.8	1.58	0.122	FSDO ITRF08 5.4685 yrs \#= 14
site	it it ve	14.73	298.85	1.31	0.318	FSDO Start/stop times:1994.3986-1
site	it it cv	14.73	298.85	0.000		coeff. for FSDO
si	it it vn	14.73	298.85	1.63	0.167	FSD1 ITRF08 5.4575 yrs \#=
si	it it ve	14.73	298.85	1.33	0.214	FSD1 Start/stop times:1994.4096-1999.8671
sit	it it cv	14.73	298.85	0.000	0	coeff. for FSD1
site	it it	15.24	298.71	1.40	0.063	CASS ITRF08 10.9879 yrs \#= 20
si	it it ve	15	298.	1.18	0.111	CASS Start/stop times:2001.4288-2012.4167
si	it it cv	15.24	298.71	0.000	0 Co	coeff. for ceSS
site	it it	15.34	298.69	. 51	0.084	FRSH ITRF08 10.9906 yrs \#= 21
site	it it	15	298.69	1.07	0.117	FRSH Start/stop times:2001.4452-2012.4358
site	it it cv	15.34	298.69	0.000	$0 . \mathrm{Co}$. coeff. for FRSH
si	it it vn	15.51	298.72	1.42	0.071	CNCD ITRF08 10.0877 yrs \#= 25
site	it it ve	15.51	298.72	1.18	0.109	CNCD Start/stop times:2001.4534-2011.5411
sit	it it cv	15.51	298.72	0.000		. coeff. for CNCD
si	it it vn	15.67	296.38	1.42	0.132	AVES ITRF08 3.8740 yrs \#= 28
site	it it ve	15.67	296.38	13	0.231	AVES Start/stop times:1994.3740-19
site	it it	15.67	296.38	0.000		coeff. for AVES
si	it it vn	17.67	298.21	1.26	0.384	CNOO ITRF08 0.7689 yrs \#= 282
site	it it ve	17.67	298.21	1.12	0.737	CNOO Start/stop times:2012.6407-2013.4096
site	it it cv	17.67	98.2	-0.00308		coeff. for CNOO
si	it it vn	17	295.20	1.36	0.057	VIKH ITRF08 6.7644 yrs \#= 2170
si	it it ve	17.72	295.20	1.08	0.044	VIKH Start/stop times:2006.6425-2013.4068
site	it it c	17	295.20	-0.0032		coeff. for VIKH
si	it it	15.03	273.93	0.71	0.095	GLCO ITRF08 10.2882 yrs \#= 13
si	it it ve	15.03	273.93	1.08	0.184	GLCO Start/stop times:2000.1790-2010.4671
site	it it cv	15.03	273.93	0.000	0 Co	. coeff. for GLCO
site	it it v	14.	273	0.66	0.138	SFDP ITRF08 4.3607 yrs \#=
si	it it ve	14.97	273.76	1.13	0.244	SFDP Start/stop times:2000.1762-2004.5369
site	it it cv	14.97	273	0.000		. coeff. for SFDP
site	t it vn	14	273	0.67	0.062	MNTO ITRFO8 10.2991 yrs \#=
si	it it ve	14.92	273.62	1.10	0.112	MNTO Start/stop times:2000.1680-20
si	it it CV	14.92	273.62	0.000		. coeff. for Mnto
site	it it vn	14.51	274.29	0.54	0.167	CMP1 ITRF08 5.2142 yrs \#= 6
site	it it ve	14.51	274.29	1.17	0.236	CMP1 Start/stop times:2000.1926-2005.4068
site	it it cv	14.51	274.29	0.000		coeff. for CMP1
si	it it vn	14.04	276.62	0.61	0.107	PUEC ITRF08 5.1233 yrs \#= 13
si	it it ve	14.04	276.62	1.10	0.197	PUEC Start/stop times:2001.0397-2006.1630
si	it it cv	14.04	276.62	0.000		. coeff. for PUEC
S	it it vn	12.	278.28	0.69	0.061	SANO ITRF08 5.4932 yrs \#= 1764
si	it it ve	12.	278.28	1.25	0.063	SANO Start/stop times:2007.9356-2013.4288
site	it it cV	12.58	278.28	0.115		. coeff. for SANO
si	it it	12.57	274.63	0.73	0.057	PORT ITRF08 $11.9563 \mathrm{yrs} \#=22$
site	it it ve	12.57	274.63	0.95	0.110	PORT Start/stop times:2000.6134-2012.5697
site	it it cv	12.57	274.63	0.000	0 Co	. coeff. for PORT
si	it it vn	12.52	278.27	0.72	0.066	SANA ITRF08 9.1616 yrs \#= 22
si	it it ve	12.52	278.27	1.31	0.115	SANA Start/stop times:1994.1082-2003.2699
site	it it cv	12.52	278.27	0.000		. coeff. for SANA
site	it it vn	12.41	274.19	0.59	0.058	TEUS ITRF08 11.9836 yrs \#= 23
site	it it v	12.41	274.19	0.97	0.090	TEUS Start/stop times:2000.5888-2012.5724
site	it it cV	12.41	274.19	0.000		. coeff. for TEUS
site	it it vn	12.92	274.78	0.67	0.250	RIOB ITRF08 2.5496 yrs \#= 12
site	it it ve	12.92	274.78	1.18	0.429	RIOB Start/stop times:2000.6025-2003.1521
site	it it c	12	27	0.		coeff. for RIOB

```
site it it vn 17.76 295.42 1.36 0.030 CRO1 ITRF08 17.6740 yrs #= 6018
site it it ve 17.76 295.42 1.10 0.031 CRO1 Start/stop times:1995.7822-2013.4562
site it it cv 17.76 295.42 -0.01438 Corr. coeff. for CRO1
site it it vn 16.93 297.65 1.47 0.151 RDON ITRF08 1.2860 yrs #= 403
site it it ve 16.93 297.65 1.04 0.129 RDON Start/stop times:2012.3975-2013.6836
site it it cv 16.93 297.65 0.02801 Corr. coeff. for RDON
site it it vn 13.38 278.64 0.30 0.400 CN35 ITRF08 0.7389 yrs #= 268
site it it ve 13.38 278.64 0.92 0.767 CN35 Start/stop times:2012.6899-2013.4288
site it it cv 13.38 278.64 -0.01010 Corr. coeff. for CN35
```

Appendix E
Inversion Results

DeMets et al., 2007 values, 1 plate, 15 sites, ITRF fixed

```
*********INVERSION RESULTS - CDeMets *****
>> File header is
caribbean gps site velocities - IGS08
----------- INPUT DATA STATISTICS -------------
# PLATES: 2 # of DATA: 30 DOF: 27
Fixed plate is it
Optimal angular velocities are in file fort.7
    BEGIN ITERATIVE SEARCH
Results from Iteration 0
-------------------------
> Trial angular velocities
ca 0.000 0.000 0.5000
> Chi**2 Reduced Chi**2
    ********* ********
> Convergence criteria are: 0.009459633 0.003273831
0.002573694
Results from Iteration 1
-------------------------
> Trial angular velocities
> ca 37.494 -102.620 0.2423
> Chi**2 Reduced Chi**2
    35.846 1.3276
> Convergence criteria are: 0.000000000 0.000000000
0.000000000
----------- END ITERATIVE SEARCH -------------
    The best fitting angular velocities are:
plate id Lat Long W deg/Myr
----- -- ------ ------ ------
    it 0.0 0.0 .00
    ca 37.494-102.620 0.2423
Final chi**2 and reduced chi**2 are 35.846 and 1.3276
```

2D 1-sigma error ellipse and 1D 1-sigma angular velocity uncertainty

Data Type	\# Data	Chi**2	Data Importance
Rates	0	0.00	0.00
Transforms	0	0.00	0.00
Slip vectors	0	0.00	0.00
Baselines	0	0.00	0.00
Vn/Ve pairs	30	35.85	3.03

Plate IDs	Data Type	Lat (N)	Long (E)	Datum	S.D.	Pred	Wt. Res.	Imp.	Pred. az CCW of E	SITE
ca it	vn	15.67	296.38	1.420	0.132	1.346	0.559	0.065	90.00	AVES
ca it	ve	15.67	296.38	1.130	0.231	1.131	-0.005	0.024	0.00	AVES
ca it	vn	13.09	300.39	1.710	0.186	1.459	1.348	0.159	90.00	BARB
ca it	ve	13.09	300.39	0.810	0.104	1.244	-4.176	0.039	0.00	BARB
ca it	vn	14.51	274.29	0.540	0.167	0.622	-0.493	0.079	90.00	CMP1
ca it	ve	14.51	274.29	1.170	0.236	1.076	0.398	0.023	0.00	CMP1
ca it	vn	17.76	295.42	1.300	0.039	1.318	-0.465	0.701	90.00	CRO1
ca it	ve	17.76	295.42	1.100	0.047	1.049	1.087	0.564	0.00	CRO1
ca it	vn	14.73	298.85	1.580	0.122	1.417	1.338	0.098	90.00	ESD0
ca it	ve	14.73	298.85	1.310	0.318	1.180	0.410	0.013	0.00	ESD0
ca it	vn	14.73	298.85	1.630	0.167	1.417	1.277	0.052	90.00	FSD1
ca it	ve	14.73	298.85	1.330	0.214	1.180	0.703	0.028	0.00	FSD1
ca it	vn	15.03	273.93	0.800	0.133	0.609	1.433	0.128	90.00	GLCO
ca it	ve	15.03	273.93	0.990	0.321	1.053	-0.197	0.013	0.00	GLCO
ca it	vn	14.92	273.62	0.690	0.134	0.598	0.684	0.130	90.00	MNTO
ca it	ve	14.92	273.62	1.170	0.246	1.057	0.459	0.021	0.00	MNTO
ca it	vn	12.57	274.63	0.590	0.289	0.634	-0.154	0.025	90.00	PORT
ca it	ve	12.57	274.63	1.330	0.380	1.157	0.455	0.010	0.00	PORT
ca it	vn	14.04	276.62	0.500	0.230	0.705	-0.891	0.033	90.00	PUEC
ca it	ve	14.04	276.62	1.300	0.441	1.102	0.449	0.007	0.00	PUEC
ca it	vn	12.92	274.78	0.670	0.250	0.640	0.121	0.034	90.00	RIOB
ca it	ve	12.92	274.78	1.180	0.429	1.143	0.086	0.007	0.00	RIOB
ca it	vn	17.90	288.33	0.910	0.093	1.100	-2.044	0.081	90.00	ROJO
ca it	ve	17.90	288.33	0.910	0.161	0.998	-0.545	0.049	0.00	ROJO
ca it	vn	12.52	278.27	0.720	0.066	0.763	-0.650	0.342	90.00	SANA
ca it	ve	12.52	278.27	1.310	0.115	1.169	1.227	0.105	0.00	SANA
ca it	vn	14.97	273.76	0.660	0.138	0.603	0.411	0.121	90.00	SFDP
ca it	ve	14.97	273.76	1.130	0.244	1.055	0.306	0.022	0.00	SFDP
ca it	vn	12.41	274.19	0.750	0.209	0.619	0.628	0.051	90.00	TEUS
ca it	ve	12.41	274.19	1.040	0.362	1.163	-0.339	0.011	0.00	TEUS

DeMets et al., 2007 values-updated, 1 plate, 15 sites, ITRF fixed

```
*********INVERSION RESULTS - CDeMets *****
>> File header is
caribbean gps site velocities - IGSO8
----------- INPUT DATA STATISTICS --------------
# PLATES: 2 # of DATA: 30 DOF: 27
Fixed plate is it
Optimal angular velocities are in file fort.7
----------- BEGIN ITERATIVE SEARCH --------------
Results from Iteration 0
> Trial angular velocities
l ca 0.000 0.000 0.5000
> Chi**2 Reduced Chi**2
    ******** *******
> Convergence criteria are: 0.009501628 0.003308453 0.002562150
Results from Iteration 1
> Trial angular velocities
> ca 37.017 -103.183 0.2438
> Chi**2 Reduced Chi**2
        46.118 1.7081
> Convergence criteria are: 0.000000000 0.000000000 0.000000000
----------- END ITERATIVE SEARCH ---------------
The best fitting angular velocities are:
plate id Lat Long W deg/Myr
----- -- ------ -------------
it \(0.0 \quad 0.0 \quad .00\)
    ca 37.017-103.183 0.2438
Final chi**2 and reduced chi**2 are 46.118 and 1.7081
2D 1-sigma error ellipse and 1D 1-sigma angular velocity uncertainty
Plate Ellipse axes azimuth of major axis rot. rate
        id major minor (CCW from east) uncert.
        -- ----- ----- ---------------- -------
        carlll
Data Type # Data Chi**2 Data Importance
```

Rates	0	0.00	0.00
Transforms	0	0.00	0.00
Slip vectors	0	0.00	0.00
Baselines	0	0.00	0.00
Vn/Ve pairs	30	46.12	3.02

Plate IDs	Data Type	Lat (N)	Long (E)	Datum	S.D.	Pred	Wt. Res.	Imp.	Pred. az CCW of E	SITE
ca it	vn	15.67	296.38	1.420	0.132	1.380	0.302	0.042	90.00	AVES
ca it	ve	15.67	296.38	1.130	0.231	1.122	0.035	0.012	0.00	AVES
ca it	vn	13.09	300.39	1.710	0.186	1.494	1.163	0.096	90.00	BARB
ca it	ve	13.09	300.39	0.810	0.104	1.236	-4.095	0.020	0.00	BARB
ca it	vn	14.51	274.29	0.540	0.167	0.651	-0.662	0.026	90.00	CMP1
ca it	ve	14.51	274.29	1.170	0.236	1.064	0.450	0.012	0.00	CMP1
ca it	vn	17.76	295.42	1.360	0.029	1.352	0.283	0.788	90.00	CRO1
ca it	ve	17.76	295.42	1.100	0.033	1.039	1.838	0.590	0.00	CRO1
ca it	vn	14.73	298.85	1.580	0.122	1.451	1.059	0.061	90.00	FSD0
ca it	ve	14.73	298.85	1.310	0.318	1.171	0.437	0.007	0.00	FSD0
ca it	vn	14.73	298.85	1.630	0.167	1.451	1.073	0.032	90.00	FSD1
ca it	ve	14.73	298.85	1.330	0.214	1.171	0.743	0.014	0.00	FSD1
ca it	vn	15.03	273.93	0.710	0.095	0.638	0.762	0.084	90.00	GLCO
ca it	ve	15.03	273.93	1.080	0.184	1.041	0.213	0.019	0.00	GLCO
ca it	vn	14.92	273.62	0.670	0.062	0.626	0.703	0.203	90.00	MNTO
ca it	ve	14.92	273.62	1.100	0.112	1.045	0.494	0.052	0.00	MNTO
ca it	vn	12.57	274.63	0.730	0.057	0.663	1.177	0.219	90.00	PORT
ca it	ve	12.57	274.63	0.950	0.110	1.146	-1.780	0.058	0.00	PORT
ca it	vn	14.04	276.62	0.610	0.107	0.734	-1.160	0.052	90.00	PUEC
ca it	ve	14.04	276.62	1.100	0.197	1.090	0.049	0.017	0.00	PUEC
ca it	vn	12.92	274.78	0.670	0.250	0.668	0.007	0.011	90.00	RIOB
ca it	ve	12.92	274.78	1.180	0.429	1.132	0.113	0.004	0.00	RIOB
ca it	vn	17.90	288.33	0.910	0.093	1.132	-2.392	0.044	90.00	ROJO
ca it	ve	17.90	288.33	0.910	0.161	0.987	-0.477	0.025	0.00	ROJO
ca it	vn	12.52	278.27	0.720	0.066	0.793	-1.099	0.118	90.00	SANA
ca it	ve	12.52	278.27	1.310	0.115	1.158	1.323	0.053	0.00	SANA
ca it	vn	14.97	273.76	0.660	0.138	0.631	0.207	0.040	90.00	SFDP
ca it	ve	14.97	273.76	1.130	0.244	1.043	0.357	0.011	0.00	SFDP
ca it	vn	12.41	274.19	0.590	0.058	0.647	-0.984	0.220	90.00	TEUS
ca it	ve	12.41	274.19	0.970	0.090	1.151	-2.014	0.088	0.00	TEUS

1 plate, 24 sites, ITRF08 fixed

```
*********INVERSION RESULTS - CDeMets *****
>> File header is
caribbean gps site velocities - IGSO8
----------- INPUT DATA STATISTICS --------------
# PLATES: 2 # of DATA: 48 DOF: 45
Fixed plate is it
Optimal angular velocities are in file fort.7
----------- BEGIN ITERATIVE SEARCH ---------------
Results from Iteration 0
> Trial angular velocities
l ca 0.000 0.000 0.5000
> Chi**2 Reduced Chi**2
    ******** *******
> Convergence criteria are: 0.009459468 0.003462410 0.002684867
Results from Iteration 1
> Trial angular velocities
> ca 37.185 -101.950 0.2545
> Chi**2 Reduced Chi**2
        34.020 0.7560
> Convergence criteria are: 0.000000000 0.000000000 0.000000000
----------- END ITERATIVE SEARCH ---------------
The best fitting angular velocities are:
plate id Lat Long W deg/Myr
----- -- ------ -------------
\begin{tabular}{cccc} 
it & 0.0 & 0.0 & .00 \\
ca & \(37.185-101.950\) & 0.2545
\end{tabular}
Final chi**2 and reduced chi**2 are 34.020 and 0.7560
2D 1-sigma error ellipse and 1D 1-sigma angular velocity uncertainty
Plate Ellipse axes azimuth of major axis rot. rate
        id major minor (CCW from east) uncert.
        -- ----- ----- --------------------------
        carlll
Data Type # Data Chi**2 Data Importance
```

Rates		0		0.00		0.00				
Transforms		0		0.00		0.00				
Slip vectors		0		0.00		0.00				
Baselines		0		0.00		0.00				
$\mathrm{Vn} / \mathrm{Ve} \mathrm{p}$	airs	48		34.02		2.99				
Plate IDs	Data Type	Lat (N)	Long (E)	Datum	S.D.	Pred	Wt. Res.	Imp.	Pred. az CCW of E	SITE
ca it	vn	16.26	298.47	1.440	0.082	1.463	-0.283	0.057	90.00	ABMF
ca it	ve	16.26	298.47	1.200	0.089	1.162	0.422	0.039	0.00	ABMF
ca it	vn	12.22	298.36	1.520	0.049	1.460	1.223	0.168	90.00	GRE0
ca it	ve	12.22	298.36	1.360	0.052	1.309	0.979	0.117	0.00	GRE0
ca it	vn	14.59	299.00	1.500	0.080	1.479	0.261	0.062	90.00	LMMF
ca it	ve	14.59	299.00	1.250	0.091	1.227	0.247	0.038	0.00	LMMF
ca it	vn	14.73	298.85	1.580	0.122	1.475	0.864	0.026	90.00	FSD0
ca it	ve	14.73	298.85	1.310	0.318	1.221	0.279	0.003	0.00	FSDO
ca it	vn	14.73	298.85	1.630	0.167	1.475	0.930	0.014	90.00	FSD1
ca it	ve	14.73	298.85	1.330	0.214	1.221	0.507	0.007	0.00	FSD1
ca it	vn	15.24	298.71	1.400	0.063	1.470	-1.118	0.097	90.00	CASS
ca it	ve	15.24	298.71	1.180	0.111	1.202	-0.197	0.025	0.00	CASS
ca it	vn	15.34	298.69	1.510	0.084	1.470	0.478	0.054	90.00	FRSH
ca it	ve	15.34	298.69	1.070	0.117	1.198	-1.094	0.023	0.00	FRSH
ca it	vn	15.51	298.72	1.420	0.071	1.471	-0.715	0.076	90.00	CNCD
ca it	ve	15.51	298.72	1.180	0.109	1.192	-0.110	0.026	0.00	CNCD
ca it	vn	15.67	296.38	1.420	0.132	1.400	0.154	0.018	90.00	AVES
ca it	ve	15.67	296.38	1.130	0.231	1.170	-0.174	0.006	0.00	AVES
ca it	vn	17.67	298.21	1.260	0.384	1.455	-0.509	0.002	90.00	CNOO
ca it	ve	17.67	298.21	1.120	0.737	1.108	0.017	0.001	0.00	CNOO
ca it	vn	17.72	295.20	1.360	0.057	1.363	-0.049	0.148	90.00	VIKH
ca it	ve	17.72	295.20	1.080	0.044	1.083	-0.074	0.097	0.00	VIKH
ca it	vn	15.03	273.93	0.710	0.095	0.618	0.973	0.072	90.00	GLCO
ca it	ve	15.03	273.93	1.080	0.184	1.091	-0.057	0.009	0.00	GLCO
ca it	vn	14.97	273.76	0.660	0.138	0.611	0.355	0.035	90.00	SFDP
ca it	ve	14.97	273.76	1.130	0.244	1.093	0.153	0.005	0.00	SFDP
ca it	vn	14.92	273.62	0.670	0.062	0.606	1.036	0.173	90.00	MnTo
ca it	ve	14.92	273.62	1.100	0.112	1.095	0.048	0.025	0.00	mnto
ca it	vn	14.51	274.29	0.540	0.167	0.631	-0.546	0.023	90.00	CMP1
ca it	ve	14.51	274.29	1.170	0.236	1.115	0.235	0.006	0.00	CMP1
ca it	vn	14.04	276.62	0.610	0.107	0.719	-1.016	0.045	90.00	PUEC
ca it	ve	14.04	276.62	1.100	0.197	1.142	-0.213	0.008	0.00	PUEC
ca it	vn	12.58	278.28	0.690	0.061	0.780	-1.482	0.132	90.00	SANO
ca it	ve	12.58	278.28	1.250	0.063	1.210	0.638	0.078	0.00	SANO
ca it	vn	12.57	274.63	0.730	0.057	0.644	1.508	0.189	90.00	PORT
ca it	ve	12.57	274.63	0.950	0.110	1.200	-2.276	0.028	0.00	PORT
ca it	vn	12.52	278.27	0.720	0.066	0.780	-0.910	0.102	90.00	SANA
ca it	ve	12.52	278.27	1.310	0.115	1.212	0.849	0.025	0.00	SANA
ca it	vn	12.41	274.19	0.590	0.058	0.627	-0.645	0.189	90.00	TEUS
ca it	ve	12.41	274.19	0.970	0.090	1.206	-2.625	0.042	0.00	TEUS
ca it	vn	12.92	274.78	0.670	0.250	0.650	0.081	0.010	90.00	RIOB
ca it	ve	12.92	274.78	1.180	0.429	1.186	-0.013	0.002	0.00	RIOB
ca it	vn	17.76	295.42	1.360	0.030	1.370	-0.322	0.325	90.00	CRO1
ca it	ve	17.76	295.42	1.100	0.031	1.083	0.539	0.326	0.00	CRO1
ca it	vn	16.93	297.65	1.470	0.151	1.438	0.209	0.021	90.00	RDON
ca it		16.93	297.65	1.040	0.129	1.131	-0.709	0.014	0.00	RDON
ca it		13.38	278.64	0.300	0.400	0.794	-1.234	0.003	90.00	CN35
ca it	ve	13.38	278.64	0.920	0.767	1.177	-0.335	0.001	0.00	CN35

2 plates, 24 sites, ITRF08 fixed

```
*********INVERSION RESULTS - CDeMets *****
>> File header is
caribbean gps site velocities - IGS08
----------- INPUT DATA STATISTICS --------------
# PLATES: 3 # of DATA: 48 DOF: 42
Fixed plate is it
Optimal angular velocities are in file fort.7
----------- BEGIN ITERATIVE SEARCH --------------
Results from Iteration 0
> Trial angular velocities
ce ce.000 0.000 0.5000
cw 0.000 0.000 0.5000
> Chi**2 Reduced Chi**2
    ***************
> Convergence criteria are: 0.009469778 0.002309885 0.002412420
Results from Iteration 1
--------------------------
> Trial angular velocities
> ce 35.789 -97.178 0.2802
cw 58.506 -145.355 0.1321
> Chi**2 Reduced Chi**2
        25.148 0.5988
> Convergence criteria are: 0.000000000 0.000000000 0.000000000
----------- END ITERATIVE SEARCH ---------------
The best fitting angular velocities are:
plate id Lat Long W deg/Myr
----- -- ------ -------------
            it 0.0 0.0 .00
            ce 35.789 -97.178 0.2802
            CW 58.506-145.355 0.1321
Final chi**2 and reduced chi**2 are 25.148 and 0.5988
2D 1-sigma error ellipse and 1D 1-sigma angular velocity uncertainty
Plate Ellipse axes azimuth of major axis rot. rate
    id major minor (CCW from east) uncert.
    -- ----- ----- -------------------------
    ce 6.59 0.51 156.49 0.0313
```

CW 33.29 1.5				161.47			0.0285			
Data Type		\# Data		Chi**2		Importance				
Rates			0				00			
Transfor	ms		0			0	0			
Slip ve	tors		0							
Baselin			0			0	00			
Vn/Ve pa	irs			25			97			
Plate IDs	Data Type	Lat (N)	Long (E)	Datum	S.D.	Pred	Wt. Res	Imp.	Pred. az CCW of E	SITE
ce it	vn	16.26	298.47	1.440	0.082	1.474	-0.414	0.066	90.00	ABMF
ce it	ve	16.26	298.47	1.200	0.089	1.175	0.282	0.050	0.00	ABMF
ce it	vn	12.22	298.36	1.520	0.049	1.470	1.017	0.192	90.00	GRE0
ce it	ve	12.22	298.36	1.360	0.052	1.347	0.259	0.480	0.00	GRE0
ce it	vn	14.59	299.00	1.500	0.080	1.493	0.088	0.083	90.00	LMMF
ce it	ve	14.59	299.00	1.250	0.091	1.250	-0.003	0.070	0.00	LMMF
ce it	vn	14.73	298.85	1.580	0.122	1.488	0.757	0.034	90.00	FSD0
ce it	ve	14.73	298.85	1.310	0.318	1.243	0.210	0.005	0.00	FSD0
ce it	vn	14.73	298.85	1.630	0.167	1.488	0.852	0.018	90.00	FSD1
ce it	ve	14.73	298.85	1.330	0.214	1.243	0.405	0.012	0.00	FSD1
ce it	vn	15.24	298.71	1.400	0.063	1.483	-1.311	0.121	90.00	CASS
ce it	ve	15.24	298.71	1.180	0.111	1.221	-0.366	0.038	0.00	CASS
ce it	vn	15.34	298.69	1.510	0.084	1.482	0.335	0.067	90.00	FRSH
ce it	ve	15.34	298.69	1.070	0.117	1.216	-1.249	0.034	0.00	FRSH
ce it	vn	15.51	298.72	1.420	0.071	1.483	-0.887	0.095	90.00	CNCD
ce it	ve	15.51	298.72	1.180	0.109	1.209	-0.267	0.037	0.00	CNCD
ce it	vn	15.67	296.38	1.420	0.132	1.398	0.166	0.021	90.00	AVES
ce it	ve	15.67	296.38	1.130	0.231	1.186	-0.244	0.008	0.00	AVES
ce it	vn	17.67	298.21	1.260	0.384	1.465	-0.533	0.003	90.00	CNOO
ce it	ve	17.67	298.21	1.120	0.737	1.111	0.012	0.001	0.00	CNOO
ce it	vn	17.72	295.20	1.360	0.057	1.354	0.100	0.269	90.00	VIKH
ce it	ve	17.72	295.20	1.080	0.044	1.087	-0.151	0.152	0.00	VIKH
cw it	vn	15.03	273.93	0.710	0.095	0.660	0.525	0.107	90.00	GLCO
Cw it	ve	15.03	273.93	1.080	0.184	1.109	-0.156	0.056	0.00	GLCO
cw it	vn	14.97	273.76	0.660	0.138	0.659	0.007	0.055	90.00	SFDP
cw it	ve	14.97	273.76	1.130	0.244	1.109	0.086	0.032	0.00	SFDP
cw it	vn	14.92	273.62	0.670	0.062	0.658	0.193	0.293	90.00	MNTO
Cw it	ve	14.92	273.62	1.100	0.112	1.109	-0.082	0.147	0.00	MNTO
CW it	vn	14.51	274.29	0.540	0.167	0.663	-0.734	0.029	90.00	CMP1
cw it	ve	14.51	274.29	1.170	0.236	1.116	0.228	0.030	0.00	CMP1
Cw it	vn	14.04	276.62	0.610	0.107	0.678	-0.634	0.068	90.00	PUEC
Cw it	ve	14.04	276.62	1.100	0.197	1.128	-0.144	0.039	0.00	PUEC
Cw it	vn	12.58	278.28	0.690	0.061	0.688	0.032	0.508	90.00	SANO
cw it	ve	12.58	278.28	1.250	0.063	1.149	1.603	0.340	0.00	SAN0
Cw it	vn	12.57	274.63	0.730	0.057	0.665	1.142	0.220	90.00	PORT
cw it	ve	12.57	274.63	0.950	0.110	1.140	-1.725	0.121	0.00	PORT
cw it	vn	12.52	278.27	0.720	0.066	0.688	0.485	0.393	90.00	SANA
Cw it	ve	12.52	278.27	1.310	0.115	1.150	1.395	0.112	0.00	SANA
Cw it	vn	12.41	274.19	0.590	0.058	0.662	-1.241	0.255	90.00	TEUS
cw it	ve	12.41	274.19	0.970	0.090	1.140	-1.894	0.185	0.00	TEUS
cw it	vn	12.92	274.78	0.670	0.250	0.666	0.016	0.011	90.00	RIOB
cw it	ve	12.92	274.78	1.180	0.429	1.136	0.102	0.008	0.00	RIOB
ce it	vn	17.76	295.42	1.360	0.030	1.362	-0.082	0.536	90.00	CRO1
ce it	ve	17.76	295.42	1.100	0.031	1.086	0.438	0.518	0.00	CRO1
ce it	vn	16.93	297.65	1.470	0.151	1.444	0.170	0.022	90.00	RDON
ce it	ve	16.93	297.65	1.040	0.129	1.140	-0.773	0.018	0.00	RDON
cw it		13.38	278.64	0.300	0.400	0.690	-0.975	0.013	90.00	CN35
cw it	ve	13.38	278.64	0.920	0.767	1.141	-0.289	0.002	0.00	CN35

2 plates, 24 sites, Caribbean (west) fixed

```
*********INVERSION RESULTS - CDeMets *****
>> File header is
caribbean gps site velocities - IGS08
----------- INPUT DATA STATISTICS ---------------
# PLATES: 3 # of DATA: 48 DOF: 42
Fixed plate is cw
Optimal angular velocities are in file fort.7
----------- BEGIN ITERATIVE SEARCH --------------
Results from Iteration 0
> Trial angular velocities
lit 0.000 0.000 0.5000
ce 0.000 0.000 0.5000
> Chi**2 Reduced Chi**2
    ******** *******
> Convergence criteria are: 0.007983810 0.001967615 0.001429710
Results from Iteration 1
----------
> Trial angular velocities
> it -58.506 34.645 0.1321
> ce 15.210 -81.341 0.1952
> Chi**2 Reduced Chi**2
        25.148 0.5988
> Convergence criteria are: 0.000000000 0.000000000 0.000000000
_---------- END ITERATIVE SEARCH ---------------
    The best fitting angular velocities are:
plate id Lat Long W deg/Myr
----- -- ------ ------- ------
            CW 0.0 0.0 .00
            it -58.506 34.645 0.1321
            ce 15.210 -81.341 0.1952
Final chi**2 and reduced chi**2 are 25.148 and 0.5988
2D 1-sigma error ellipse and 1D 1-sigma angular velocity uncertainty
Plate Ellipse axes azimuth of major axis rot. rate
    id major minor (CCW from east) uncert.
    -- ----- ----- --------------------------
    it 33.29 1.54 18.53 0.0285
```

ce	5.25		1.73	9.29			0.0739			
Data Type		\# Data		Chi**	Data Imp		ortance			
Rates			0				00			
Transfo	rms		0			0	00			
Slip ve	ctors		0				00			
Baselin			0				00			
$\mathrm{Vn} / \mathrm{Ve} \mathrm{p}$	airs			25			97			
Plate IDs	Data Type	Lat (N)	Long (E)	Datum	S.D.	Pred	Wt. Res	Imp.	Pred. az CCW of E	SITE
ce it	vn	16.26	298.47	1.440	0.082	1.474	-0.414	0.066	90.00	ABMF
ce it	ve	16.26	298.47	1.200	0.089	1.175	0.282	0.050	0.00	ABMF
ce it	vn	12.22	298.36	1.520	0.049	1.470	1.017	0.192	90.00	GRE0
ce it	ve	12.22	298.36	1.360	0.052	1.347	0.259	0.480	0.00	GRE0
ce it	vn	14.59	299.00	1.500	0.080	1.493	0.088	0.083	90.00	LMMF
ce it	ve	14.59	299.00	1.250	0.091	1.250	-0.003	0.070	0.00	LMMF
ce it	vn	14.73	298.85	1.580	0.122	1.488	0.757	0.034	90.00	FSD0
ce it	ve	14.73	298.85	1.310	0.318	1.243	0.210	0.005	0.00	FSD0
ce it	vn	14.73	298.85	1.630	0.167	1.488	0.852	0.018	90.00	FSD1
ce it	ve	14.73	298.85	1.330	0.214	1.243	0.405	0.012	0.00	FSD1
ce it	vn	15.24	298.71	1.400	0.063	1.483	-1.311	0.121	90.00	CASS
ce it	ve	15.24	298.71	1.180	0.111	1.221	-0.366	0.038	0.00	CASS
ce it	vn	15.34	298.69	1.510	0.084	1.482	0.335	0.067	90.00	FRSH
ce it	ve	15.34	298.69	1.070	0.117	1.216	-1.249	0.034	0.00	FRSH
ce it	vn	15.51	298.72	1.420	0.071	1.483	-0.887	0.095	90.00	CNCD
ce it	ve	15.51	298.72	1.180	0.109	1.209	-0.267	0.037	0.00	CNCD
ce it	vn	15.67	296.38	1.420	0.132	1.398	0.166	0.021	90.00	AVES
ce it	ve	15.67	296.38	1.130	0.231	1.186	-0.244	0.008	0.00	AVES
ce it	vn	17.67	298.21	1.260	0.384	1.465	-0.533	0.003	90.00	CNO 0
ce it	ve	17.67	298.21	1.120	0.737	1.111	0.012	0.001	0.00	CNOO
ce it	vn	17.72	295.20	1.360	0.057	1.354	0.100	0.269	90.00	VIKH
ce it	ve	17.72	295.20	1.080	0.044	1.087	-0.151	0.152	0.00	VIKH
cw it	vn	15.03	273.93	0.710	0.095	0.660	0.525	0.107	90.00	GLCO
cw it	ve	15.03	273.93	1.080	0.184	1.109	-0.156	0.056	0.00	GLCO
cw it	vn	14.97	273.76	0.660	0.138	0.659	0.007	0.055	90.00	SFDP
cw it	ve	14.97	273.76	1.130	0.244	1.109	0.086	0.032	0.00	SFDP
cw it	vn	14.92	273.62	0.670	0.062	0.658	0.193	0.293	90.00	MNTO
cw it	ve	14.92	273.62	1.100	0.112	1.109	-0.082	0.147	0.00	MNTO
Cw it	vn	14.51	274.29	0.540	0.167	0.663	-0.734	0.029	90.00	CMP1
cw it	ve	14.51	274.29	1.170	0.236	1.116	0.228	0.030	0.00	CMP1
cw it	vn	14.04	276.62	0.610	0.107	0.678	-0.634	0.068	90.00	PUEC
cw it	ve	14.04	276.62	1.100	0.197	1.128	-0.144	0.039	0.00	PUEC
cw it	vn	12.58	278.28	0.690	0.061	0.688	0.032	0.508	90.00	SAN0
CW it	ve	12.58	278.28	1.250	0.063	1.149	1.603	0.340	0.00	SAN0
CW it	vn	12.57	274.63	0.730	0.057	0.665	1.142	0.220	90.00	PORT
cw it	ve	12.57	274.63	0.950	0.110	1.140	-1.725	0.121	0.00	PORT
cw it	vn	12.52	278.27	0.720	0.066	0.688	0.485	0.393	90.00	SANA
cw it	ve	12.52	278.27	1.310	0.115	1.150	1.395	0.112	0.00	SANA
cw it	vn	12.41	274.19	0.590	0.058	0.662	-1.241	0.255	90.00	TEUS
cw it	ve	12.41	274.19	0.970	0.090	1.140	-1.894	0.185	0.00	TEUS
cw it	vn	12.92	274.78	0.670	0.250	0.666	0.016	0.011	90.00	RIOB
cw it	ve	12.92	274.78	1.180	0.429	1.136	0.102	0.008	0.00	RIOB
ce it	vn	17.76	295.42	1.360	0.030	1.362	-0.082	0.536	90.00	CRO1
ce it	ve	17.76	295.42	1.100	0.031	1.086	0.438	0.518	0.00	CRO1
ce it	vn	16.93	297.65	1.470	0.151	1.444	0.170	0.022	90.00	RDON
ce it	ve	16.93	297.65	1.040	0.129	1.140	-0.773	0.018	0.00	RDON
cw it		13.38	278.64	0.300	0.400	0.690	-0.975	0.013	90.00	CN35
cw it	ve	13.38	278.64	0.920	0.767	1.141	-0.289	0.002	0.00	CN35

2 plates, 24 sites, Caribbean (east) fixed

```
*********INVERSION RESULTS - CDeMets *****
>> File header is
caribbean gps site velocities - IGS08
----------- INPUT DATA STATISTICS ----------------
# PLATES: 3 # of DATA: 48 DOF: 42
Fixed plate is ce
Optimal angular velocities are in file fort.7
----------- BEGIN ITERATIVE SEARCH --------------
Results from Iteration 0
> Trial angular velocities
> it 0.000 0.000 0.5000
> CW 0.000 0.000 0.5000
> Chi**2 Reduced Chi**2
    ******** *******
> Convergence criteria are: 0.008726351 0.003592960 0.001876711
Results from Iteration 1
*
> Trial angular velocities
> it -35.789 82.822 0.2802
> CW -15.210 98.659 0.1952
> Chi**2 Reduced Chi**2
        25.148 0.5988
> Convergence criteria are: 0.000000000 0.000000000 0.000000000
----------- END ITERATIVE SEARCH ---------------
    The best fitting angular velocities are:
    plate id Lat Long W deg/Myr
----- -- ------ ------------
            ce 0.0 0.0 .00
            it -35.789 82.822 0.2802
            CW -15.210 98.659 0.1952
Final chi**2 and reduced chi**2 are 25.148 and 0.5988
2D 1-sigma error ellipse and 1D 1-sigma angular velocity uncertainty
Plate Ellipse axes azimuth of major axis rot. rate
    id major minor (CCW from east) uncert.
    -- ----- ----- ------------------------
    it 6.59 0.51 23.51 0.0313
```


References

Altamimi, Z., Collilieux, X., \& Métivier, L., 2011, ITRF2008: an improved solution of the international terrestrial reference frame: Journal of Geodesy, 85(8), p. 457-473.

Argus, D.F., Gordon, R.G., DeMets, C., 2011, Geologically current motion of 56 plates relative to the no-net-rotation reference frame: Geochem. Geophys. Geosyst., v. 12, n. 11, doi 10.1029/2011GC003751.

Benford, B., DeMets, C, Calais, E., 2012, GPS estimates of microplate motions, northern Caribbean: evidence for a Hispaniola microplate and implications for earthquake hazard, Geophys. J. Int., 191, p. 481-490, doi: 10.1111/j.1365-246X.2012.05662.x.

Benford, B., DeMets, C., Tikoff, B., Williams, P., Brown, L., Wiggins-Grandison, M., 2012, Seismic hazard along the southern boundary of the Gonave microplate: block modelling of GPS velocities from Jamaica and nearby islands, northern Caribbean: Geophys. J. Int., 190, p. 59-74, doi: 10.1111/j.1365-246X.2012.05493.x.

Bertiger, W., Desai, S. D., Haines, B., Harvey, N., Moore, A. W., Owen, S., \& Weiss, J. P., 2010, Single receiver phase ambiguity resolution with GPS data. Journal of Geodesy, 84(5), 327-337.

Bevington, P. R., 1969: Data Reduction and Error Analysis for the Physical Sciences, McGraw Hill, Inc

Bouysse, P., Westercamp, D., 1990, Subduction of Atlantic aseismic ridges and Late Cenozoic evolution of the Lesser Antilles island arc: Tectonophysics, 175, p. 349-380.

Bouysse, P., Westercamp, D., Andreieff, P., 1990, The Lesser Antilles Island Arc: Proceedings of the Ocean Drilling Program, Scientific Results, V. 110.

Burke, K., 1988, Tectonic Evolution of the Caribbean: Annual Review of Earth and Planetary Sciences, v. 16, p. 201-230.

Bouysse, P., 1988, Opening of the Grenada back-arc basin and evolution of the Caribbean plate during the Mesozoic and Early Paleogene: Tectonophysics, 149, p. 121143.

Braun, J.J., Calais, E., Feaux, K.F., Mattioli, G., Miller, M., Wang, G., 2012, http://nldr.library.ucar.edu/repository/collections/OSGC-000-000-009-040

Carey, S.N., and Sigurdsson, H., 1980, The Roseau ash: Deep sea tephra deposits from a major eruption on Dominica, Lesser Antilles arc: Journal of Volcanology Geothermal Research, v. 7, p. 67-86.

Carmichael, I. S. E., 2002, The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105-99$\left.{ }^{\circ} \mathrm{W}\right)$ Mexico: Contributions to Mineralogy and Petrology, v. 143, p. 641-663.

Christiansen, R. L., 1979, Cooling units and composite sheets in relation to caldera structure: Ash Flow Tuffs, Geological Society of America Special Paper 180, p. 29-41.

DeMets, C., Gordon, R. G., Argus, D. F., 2010, Geologically current plate motions, Geophysical Journal International, v. 181, no. 1, p. 1-80, doi: 10.1111/j.1365246X.2009.04491.x

DeMets, C., Jansma, P. E., Mattioli, G. S., Dixon, T. H., Farina, F., Bilham, R., Mann, P., 2000, GPS geodetic constraints on Caribbean-North America plate motion, Geophysical Research Letters, 27(3), p. 437-440.

DeMets, C., Mattioli, G.S, Jansma, P. E., Rogers, R.D., Tenorio, C., Turner, H.L., 2007, Present motion and deformation of the Caribbean plate: Constraints from new GPS geodetic measurement from Honduras and Nicaragua: Geological Society of America Special Paper 428, p. 21-36.

Deng, J., Sykes, L.R., 1995. Determination of the Euler pole for contemporary relative motion of Caribbean and North American plates using slip vectors of interplate earthquakes: Tectonics, 14 (1), p. 39-53.

Dixon, T.H., Farina, F., DeMets, C., Jansma, P., Mann, P., Calais, E., 1998. Relative motion between the Caribbean and North American plates and related boundary zone deformation from a decade of GPS observations: J. Geophys. Res. 103 (B7), p. 1515715183.

Dow, J.M., Neilan, R. E., and Rizos, C., The International GNSS Service in a changing landscape of Global Navigation Satellite Systems, Journal of Geodesy (2009) 83:191198, DOI: 10.1007/s00190-008-0300-3

Estey, L.H., Meertens, C.M., 1999, TEQC: the multi-purpose toolkit for GPS/GLONASS data: GPS solutions 3.1, p. 42-49.

Fowler, C. M. R., 1990, The Solid Earth: An Introduction to Global Geophysics. Cambridge University Press.

Giunta, G. and Orioli, S., 2011, The Caribbean Plate Evolution: Trying to Resolve a Very Complicated Tectonic Puzzle, New Frontiers in Tectonic Research - General Problems, Sedimentary Basins and Island Arcs, Prof. Evgenii Sharkov (Ed.), ISBN: 978-953-307-595-2, InTech, DOI: 10.5772/18723.

Gregorius, T., 1997, An Introduction to GIPSY-OASIS II, Jet Propulsion Laboratory User Manual: JPL Technical Document D-11088, California Institute of Technology.

Gunn, B.M., Roobol, M.J., and Smith A.L., 1974, The petrochemistry of Pelean-type volcanoes of Martinique: Geological Society of America Bulletin, v. 85, p. 1023-1030.

Hoernle, K., Hauff, F., van den Bogaard, P., 2004, 70 m.y. history (139-69 Ma) for the Caribbean large igneous province: Geology, v. 32, no. 8, p. 697-700, doi:
10.1130/G20574.1.

Hopp, H., Weinzierl, W., Becel, A., Charvis, P., Evain, M., Flueh, E.R., Gailler, A., Galve, A., Hirn, A., Kandilarov, A., Klaeschen, D., Laigle, M., Papenberg, C., Planert, L., Roux, E., Trail and Thales teams, 2011, Deep Structure of the Central Lesser Antilles Island Arc: Relevance for the formation of continental crust: Earth and Planetary Science Letters, v. 304, p. 121-134, doi:10.1016/j.epsl.2011.01.024.

Hughes, G., and Mahood, G., 2008, Tectonic controls of the nature of large silicic calderas in volcanic arcs: Geology, v. 36, p. 627-630.

James, S., 2008, Volcanic Processes Inferred from GPS Geodesy, Dominica, Lesser Antilles, M.S. August, 2008, University of Arkansas, 101 p.

Linde, A. T., Sacks, S., Hidayat, D., Voight, B., Clarke, A., Elsworth, D., Widiwijayanti, C., 2010, Vulcanian explosion at Soufrière Hills Volcano, Montserrat on March 2004 as revealed by strain data: Geophysical Research Letters, 37(19).

Manaker, D. M., Calais, E., Freed, A. M., Ali, S. T., Przybylski, P., Mattioli, G., De Chabalier, J. B., 2008, Interseismic plate coupling and strain partitioning in the northeastern Caribbean: Geophysical Journal International, 174(3), p. 889-903.

Mann, P., Calais, E., Ruegg, J., DeMets, C., Jansma, P., Mattioli, G., 2002, Oblique collision in the northeastern Caribbean from GPS measurements and geological observations, Tectonics, 21(6), 1057, doi: 10.1029/2001TC001304

Mann, P., Rogers, R., Gahagan, L., 2007, Overview of plate tectonic history and its unresolved tectonic problems: Central America: Geology, resources and hazards, v. 1, p. 201-237.

Mao, A., Harrison, C.G.A., Dixon, T.H., 1999, Noise in GPS coordinate time series: Journal of Geophysical Research, v. 104, p. 2797-2816, doi:10.1029/2001TC001304.

Mattioli, G. S., Dixon, T. H., Farina, F., Howell, E. S., Jansma, P. E., \& Smith, A. L., 1998, GPS measurement of surface deformation around Soufrière Hills Volcano, Montserrat from October 1995 to July 1996: Geophysical Research Letters, 25(18), p. 3417-3420.

Maufrett, A., Leroy, S., 1999, Neogene intraplate deformation of the Caribbean plate at the Beata Ridge: Caribbean Basins, Sedimentary Basins of the World, 4 edited by Mann, p. 627-669.

Maufrett, A., Leroy, S., 1997, Seismic stratigraphy and structure of the Caribbean Igneous province: Tectonophysics v. 283, p. 61-104.

Minster, J. B., Jordan, T.H., Molnar, P., Haines,.E., 1974, Numerical modelinf of instantaneous plate tectonics: Geophysical Journal of the Royal Astronomical Society, v. 36, p. 541-576.

Poland, M., Hamburger, M., Newman, A., 2006, The changing shapes of active volcanoes: History, evolution and future challenges for volcano geodesy: Journal of

Volcanology and Geothermal Research, v. 150, 13 p. doi:
10.1016/j.volgeores.2005.11.005

Roobol, J.M., and Smith, A.L., 2004, Geologic Map of Dominica, West Indies. Geology Department, University of Puerto Rico at Mayaguez.

Ross, M., and Scotese, C., 1998, A hierarchical tectonic model of the Gulf of Mexico and Caribbean region: Tectonophysics, v. 155, p. 139-168, doi: 2103/10.1016/0040-1951(88)90263-6.

Ruiz, M., Galve, A., Monfret, T. Sapin, M., Charvis, P., Laigle, M., Evain, M., Hirn, A., Fleuh, E., Gallart, J., Diaz, J., Lebrun, J.F., and The Lesser Antilles Thales Scientific Party, 2011, Seismic activity offshore Martinique and Dominica Islands (Central Lesser Antilles subduction zone) from temporary onshore and offshore seismic networks: Tectonophysics, article in press, doi:10.1016/j.tecto.2011.08.006.

Schmitt, A. K., Stockli, D. F., Lindsay, J. M., Robertson, R., Lovera, O. M., \& Kislitsyn, R., 2010, Episodic growth and homogenization of plutonic roots in arc volcanoes from combined U-Th and (U-Th)/He zircon dating: Earth and Planetary Science Letters, 295(1), p. 91-103.

Smith, A.L., Roobol, M.J., Mattioli, G.S., et al., 2013, The Volcanic Geology of the MidArc Island of Dominica, Lesser Antilles - The surface expression of an island-arc batholith: Geological Society of America Special Papers, 496, 1-2, doi:10.1130/2013.2496

Smith, A.L., and Roobol, M.J., 1990, Mt. Pelée, Martinique: A study of an active island arc volcano: Geological Society of America Memoir 175, 105p

Smith, A.L., Roobol, J.M., Rheubottom, A., Kirkley, J., Freeman, Z., Karnes, K., Hinojosa, I., Stultz, H., Harris, S., and Pacheco, O., 2003, The geology of Dominica, Lesser Antilles: Geological Society of America, v. 35, no. 6, p. 323-324.

Speed, R. C., and Larue, D. K., 1982, Barbados: Architecture and implications for accretion: Journal of Geophysical Research: Solid Earth (1978-2012), 87(B5), p. 3633-3643.

Stein, S., and Gordon, R.G., 1984, Statistical tests of additional plate boundaries from plate motion: Earth and Planetary Science Letters, v. 69, p. 401-412, doi: 10.1016/0012-821X(84)9019805

Turner, H.L., 2003, Strain/Slip partitioning along the Middle America Trench in Nicaragua: Constrained by GPS Geodesy, M.S. Thesis. University of Arkansas.

Turner, H.L., 2010, Forearc kinematics in obliquely convergent margins: examples from Nicaragua and the Northern Lesser Antilles, PhD dissertation. University of Arkansas.
van Benthem, S. A. C., Plate dynamics, mantle structure and tectonic evolution of the Caribbean region, PhD dissertation. Utrecht University.

Wadge, G., and Shepherd, J. B., 1984, Segmentation of the Lesser Antilles subduction zone: Earth Planet. Sci. Lett., v. 71, p. 297-304.

Webb, F., Zumberge, J., 1995, An introduction to GIPSY/OASIS II, JPLM D-11088. Jet Propulsion Laboratory, California Institute of Technology.

Zumberge, J., Heflin, M., Jefferson, D., Watkins, M., Webb, F., 1997, Precise point positioning for the efficient and robust analysis of GPS data from large networks: Journal of Geophysical Research, v. 102, no. B3, p. 5005-5017

Biographical Information
Jamie Miller earned a B.S. in Geology and an M.S. in Environmental Science and Engineering from the University of Texas at Arlington. She is currently an Assistant Professor of Geology at Tarrant County College and plans to continue her career as a teaching professor. Jamie enjoys teaching students in the field and her research interests include volcanic processes, tectonics, and geodesy.

