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Abstract

SPARSE SENSING IN BIG DATA

Junjie Chen, Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: Qilian Liang

Big data requires exceptional technologies to efficiently process large quantities

of data within tolerable elapsed times. While the potential benefits of Big Data are

significant, there are still a lot of technical challenges that must be solved to fully

realize this potential for Big Data.

For processing, transporting and storing large data sets of enormous sizes,

data need to be greatly compressed. In this thesis, several sparse sensing algorithms

- compressive sensing (CS), co-prime sampling and nested sampling are studied for

Big Data, in theory and applications.

Error performance bounds of noisy compressive sensing are derived based on

information theory and estimation theory. Information rate distortion function is

a measure as the number of bits per symbol to be stored or transmitted under the

constraint of a distortion. Rate distortion performance for scalar quantization of

measurement observation is derived. Based on this, reconstruction rate distortion

is also studied for CS. In addition, we study the real-world applications of CS in

Big Data, to Synthetic Aperture Radar (SAR), radar sensor networks (RSNs), and

underwater acoustic sensor networks (UWASNs).
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Besides, properties of two new sparse sampling schemes, i.e., coprime sampling

and nested sampling are investigated, such as rate distortion function, since sparse

sampling can cause possible distortion because less number of samples are used.

Theoretical analysis of how these two sparse sampling methods affect the power

spectral density is given as well. A secure transmission scheme for Big Data based

on coprime sampling and nested sampling is provided as well.

In addition, a hybrid sparse sampling approach is proposed, which combines

nested sampling and compressive sensing to reduce the number of symbols, and rate

distortion function is used as a criteria to determine how many bits should be used to

represent the symbols during this process. We show that with this hybrid approach,

less number of bits is required to represent the sensed information.

Finally, since LTE has been a Big Data consumer with ample data, how to

allocate resources in the era of Big Data in telecommunications becomes a new issue.

A bandwidth allocation method based on smartphone users personality traits and

channel condition is studied in a unified mathematical framework in this dissertation.

In conclusion, facing “huge storage and bandwidth costs” challenges for Big

Data, several approaches of sparse sensing in Big Data are studied, in theory and

applications. Summary of contributions in this dissertation and future works are

provided at the end.
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Chapter 1

Introduction

We are awash in a flood of data today. Data are flooding in at rates never seen

before-doubling every 18 months [1], as a result of greater access to customer data

from public, proprietary, and purchased sources, as well as new information gathered

from Web communities and newly deployed smart assets. Data is being collected

and transmitted at unprecedented scale [2] [4] in a wide range of application areas

nowadays. Oil companies, telecommunication companies, and other data-centric

industries have had huge data for long time. The phrase “Big Data” refers to large,

diverse, complex, distributed data sets generated from instruments, sensors, Internet

transactions, email, video, click streams, and all other digital sources available today

and in the future, as defined by U.S. National Science Foundation in its recent

solicitation.

Big Data is an emerging phenomenon characterized by the three Vs [3]: volume,

velocity, and variety. The volume of data has increased from terabytes to petabytes

and is encroaching on exabytes. Some pundits are suggesting that zettabytes (1021)

are reachable within the next several years. Velocity is concerned with not only how

fast we accumulate data, but also how fast some of the data that we already have

is changing. Some systems accumulate data at the rate of multiple petabytes per

year; some systems have stored data that changes at the rate of terabytes per year.

Changing data usually lags accumulating data by several orders of magnitude. Data

accumulating at a multiple petabyte rate requires terabits to petabits of transport

1



capacity. Finally, the variety and modality of data is continually evolving; it may be

both structured and unstructured.

Nowadays, decisions can be made based on the data itself, which is different

from previously, when decisions were made based on guesswork, or on all kinds of

designed models of reality. Such Big Data analysis now drives nearly every aspect of

our modern society. How we handle the emergence of an era of Big Data is critical.

Research on Big Data could be potentially improved by some inferential techniques.

While the potential benefits of Big Data are significant, and some initial successes

have already been achieved, there are still a lot of technical challenges that must

be solved to fully realize this potential for Big Data. For example, a large-scale

smartphone data collection campaign named as LDCC, was described in [7], and the

collected data was first stored in the device and then uploaded to server. Approx-

imately 270 TB of raw data would be generated in [8], which was a big challenge

for data storage or analysis. Facing “huge storage and bandwidth costs” problem,

Bennett et al discussed research challenges for big data and information systems in

[9]. And recently, many efforts have been made to develop appropriate compression

techniques for Big Data to enable storage and transmission requirements. As pointed

by Leavitt [10], one big problem for Big Data is how organizations store and keep up

with this tsunami of information. And scaling storage efficiently with no effect on

performance is very challenging. Since data collection has been the principle bottle-

neck, challenges related to data storage, processing, analysis for Big Data was also

emphasized in [11]. Chen et al. foresaw the emergence of Business Intelligence and

Analytics, which will require techniques for collecting, analyzing, processing, and vi-

sualizing large scale mobile and sensor data in [12]. Several solutions were proposed

to store and retrieve large amount of data in Big Data [13]. For example, Google

File System (GFS) attempt to provide the robustness, scalability, and reliability [13].
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Cohen et al. provided a parallel database design that supports SQL and MapRe-

duce scripting on top of a DBMS to integrate multiple data sources [14]. Sun et al.

[15] proposed cost-effective approaches that enable multi-tenancy at several levels to

make Big Data analytic solutions more affordable.

Traditional compression methods are based on Nyquist sampling rate, which

will have poor efficiency in terms of both sampling rate and computational complex-

ity. Unlike traditional compression techniques, some sparse sampling algorithms have

been proposed to overcome Nyquist sampling requirement, like compressive sensing,

nested sampling and coprime sampling [135][136]. In this thesis, several approaches

of sparse sensing in Big Data - compressive sensing, co-prime sampling and nested

sampling are studied in theory and applications.

This thesis is organized as follows. Chapter 2 discusses compressive sensing

theoretically for the probability of error and rate distortion performance. Besides, ap-

plications of CS to Synthetic Aperture Radar (SAR), radar sensor networks (RSNs),

and Underwater Acoustic Sensor Networks (UWASNs) are also provided. Chapter

3 shows two new sparse sampling algorithms - co-prime sampling and nested sam-

pling. Information-theoretic rate distortion performance is analyzed for these two

sparse sampling methods. The analytical derivation of their spectrum efficiency are

also presented in this chapter. A secure transmission for Big Data based on coprime

sampling and nested sampling is also given in this chapter. Based on their unique

advantages, a hybrid approach of nested sampling and compressive sensing is pro-

posed in Chapter 4, which is efficient to represent huge amount of data, especially

in Big Data, while keeps the signal’s statistical information. And theoretical rate

distortion performance of the proposed hybrid approach is analyzed as well. Since

LTE has been a Big Data consumer with ample data, how to allocate resource in

the new era of Big Data in telecommunications becomes a new issue. A bandwidth

3



allocation method based on smartphone users personality traits and channel condi-

tion is studied in a unified mathematical framework in Chapter 5. Conclusions and

future works are provided in Chapter 6.
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Chapter 2

Compressive Sensing

2.1 Introduction

Compressive sensing (CS) is a signal processing technique for efficiently ac-

quiring and reconstructing a signal, by finding solutions to underdetermined linear

systems. This takes advantage of the signal’s sparseness or compressibility in some

domain, allowing the entire signal to be determined from relatively few measure-

ments.

This chapter is organized as follows. Section 2.2 gives a brief introduction

of CS. Section 2.3 gives the detailed theoretical analysis of CS, in which Section

2.3.1 shows the derivation of the theoretical bounds of the probability of error. The

analytical derivation of the rate distortion performance are presented in Section

2.3.2. Section 2.4 gives the real-world applications of CS in Big Data, to Synthetic

Aperture Radar (SAR), radar sensor networks (RSNs), and underwater acoustic

sensor networks (UWASNs). Section 2.5 summarizes the results.

2.2 Compressive Sensing: An Overview

For an N -dimensional signal x, which is assumed to be K-sparse with respect

to some basis matrix Ψ [16] [17] [19], it can be represented as x = Ψθ, or θ = ΨTx,

where Ψ is some orthogonal N -by-N sensing matrix and θ ∈ RN has only K nonzero

entries.

The signal will be sampled using the measurement vectors φi, i = 1, · · · ,M :

yi = ⟨x,φi⟩ (2.1)
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Formula (2.1) could be denoted using y = Φx = ΦΨθ, where y is the vector of

observations and Φ (M-by-N , M < N) is the measurement operator which models

the measurement system.

Compressive sensing is based on recovering θ via convex optimization [19] [20].

When y = ΦΨθ and θ is sparse with respect to Ψ, we are seeking θ consistent with

y and such that Ψ−1x has few nonzero entries.

In order to recover a K-sparse vector θ [16] [17][19], the number of measure-

ments M must be at least greater than K but can be significantly smaller than the

signal dimension, i.e., K < M ≪ N (M ≥ K log(N/K)).

The reconstruction of the sparse vector θ can be achieved by searching for the

sparsest vector θ̂ consistent with the measurements, given the measurements y. This

is usually referred to as the l0 optimization problem,

θ̂ = argmin∥θ∥l0 subject to y = ΦΨθ (2.2)

where the l0 pseudo-norm corresponds to the number of non zero elements. As it

is well known, this is a combinatorial problem which cannot be solved directly in

practice.

And researchers proved that if the RIP (restricted isometry property) holds,

then the following linear program gives an accurate reconstruction [16] [17] [19]:

θ̂ = argmin∥θ∥l1 subject to y = ΦΨθ (2.3)

With noise introduced,

y = ΦΨθ + w = Φx+ w s.t. ∥w∥l2 ≤ ϵ (2.4)

where w is a random noise whose size can be bounded ∥w∥l2 ≤ ϵ. Therefore, the

recovery process here is solving the problem:

θ̂ = argmin ∥θ∥l1 s.t. ∥y − ΦΨθ̂∥l2 ≤ ϵ (2.5)
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2.3 Theoretical Analysis

2.3.1 Theoretical Bounds for the Probability of Error

The results in this chapter are derived under the following assumptions:

(1) The source information x ∈ RN is K−sparse in the sparsity basis Ψ (there are

only K non-zero entries in θ = ΨTx), and each element of x is an i.i.d. Gaussian

random variable with zero mean and variance σ2
x.

(2) This chapter analyzes both the general case without any assumption of the mea-

surement matrix and the special case with Bernoulli measurement matrix of com-

pressive sensing. For the special case, the measurement matrix Φ is Bernoulli matrix,

that is, the entries of φm,n are i.i.d. with Pr(φm,n = ±1) = 0.5. In addition, the

measurement matrix Φ is known for both the transmitter and the receiver in advance.

φm,n =

⎧
⎪⎨

⎪⎩

+1, prob = 1
2

−1, prob = 1
2

(2.6)

(3) Random Noise: each elements of the noise vector w ∈ RM is also an i.i.d. Gaus-

sian random variable with zero mean and variance σ2
w.

(4) The observations are y = Φx+w, for the special case with Bernoulli measurement

matrix,

ym =
N∑

n=1

φm,nxn + wm =
N1∑

i=1

(+1)xi +
N2∑

j=1

(−1)xj + wm (2.7)

N1 +N2 = N (2.8)

Because Pr(φm,n = ±1) = 0.5, if the length N of x is large enough, from the Strong

Law of Large Number Theorem, with high probability, N1 = N2 =
N
2 ,

ym =
N

2

N1∑

i=1

xi −
N

2

N2∑

j=1

xj + wm (2.9)
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As each of xn is an i.i.d. Gaussian random variable with zero mean and variance σ2
x,

and each noise wm also follows Gaussian with zero mean and variance σ2
w, ym is also

a Gaussian random variable.

Since y = Φx + w, we could notice that the mean of y is 0, with covariance

matrix Cyy.

(5) Quantization: Let a finite discrete set C ⊂ RM be a codebook. A mapping

from RM to the codebook C is a quantizer as RM → C with y → L ∈ C, where

L is a quantization level. Quantization of a signal results in some distortion of

the signal. The performance of a quantizer is often described by its rate distortion

function[114][112].

(6) Rate distortion theory: Information rate distortion function is a measure of

distortion between the original source and its representation. From [36], we know

that information rate distortion function is defined as

R(D) = min
Ed(XL,X̂L)≤D

I(XL; X̂L) (2.10)

where I(XL; X̂L) is the mutual information between XL and X̂L.

2.3.1.1 Lower Bound for the Probability of Error

Theorem 1. In noisy CS, consider x ∼ N (0, σ2
xIN ), w ∼ N (0, σ2

wIM), and the

entries of φm,n are i. i. d. with Pr(φm,n = ±1) = 0.5, then the lower bound of the

probability of error will be as follows,

Pe ≥ 1−
1
2 log(

Nσ2
x+σ2

w
σ2
w

)M + 1
1
2 log[(2πeσ

2
x)

N ]
(2.11)

Proof: As each xn is a Gaussian i.i.d random variable, and Cx = σ2
xIN , the

entropy of x can be expressed as [36],

h(x) =
1

2
log(2πeσ2

x)
N (2.12)
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As shown above, y = Φx + w, we know that x ∼ N (0, σ2
xIN), and w ∼

N (0, σ2
wIM), then the covariance matrix of y should be calculated as,

Cyy = E[(y − Φµx)(y − Φµx)
T ]

= E[(Φ(x − µx) + w)(Φ(x− µx) + w)T ]

= ΦE[xxT ]ΦT + Cw

= ΦCxxΦ
T + Cw

(a)
= (Nσ2

x)IM + σ2
wIM

= (Nσ2
x + σ2

w)IM (2.13)

where equation (a) follows from the fact that Pr(φm,n = ±1) = 0.5, if the

length N of x is large enough, when m ̸= m′, E[(
∑N

n=1 φm,nφm′,n] = 0, therefore,

ΦΦT = N · IM .

Since y = Φx + w, we could notice that the mean of y is 0, with covariance

matrix Cyy, i.e., y ∼ N (0, (Nσ2
x + σ2

w)IM).

The joint likelihood function is,

py|x(y; x) =
1

2π(Nσ2
x + σ2

w)
M
2

exp(−1

2
yT · C−1

yy · y) (2.14)

py|x(y; x) =
1

2π(Nσ2
x + σ2

w)
M
2

exp(− 1

2(Nσ2
x + σ2

w)
∥ y − Φx ∥2) (2.15)

Fisher’s Information could be calculated as [113]

[I(x)]i,j = −E[
∂2 ln p(y; x)

∂xi∂xj
] =

1

Nσ2
x + σ2

w

ΦTΦ (2.16)

Therefore, the Cramer-Rao Lower Bound [113] for the estimator x̂ is

E{∥ x̂− x ∥2} ≥ Tr{I−1} = (Nσ2
x + σ2

w)Tr{(ΦTΦ)−1} (2.17)
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the entropy of y can be expressed as,

h(y) =
1

2
log(2πe(Nσ2

x + σ2
w))

M (2.18)

Since x and y are joint Gaussian random variables, with covariance matrix Cxy

Cxy =

⎛

⎜⎝
Cxx Cov(x, y)

Cov(y, x) Cyy

⎞

⎟⎠

Cov(x, y) is the covariance matrix between x and y, where

Cov(xn, ym) = φm,nσ
2
x (2.19)

The determinant of a block matrix: Suppose A, B, C, and D are matrices

of dimension (n × n), (n × m), (m × n) and (m ×m)respectively, when A or D is

invertible, the determinant of the block matrix could be calculated using

det

⎛

⎜⎝
A B

C D

⎞

⎟⎠ = det(A)det(D − CA−1B)

or,

det

⎛

⎜⎝
A B

C D

⎞

⎟⎠ = det(D)det(A− BD−1C)

As both Cxx and Cyy are invertible matrices, the calculation of the determinant

of Cxy will be

det(Cxy) = det(Cxx) · det(Cyy − Cov(y, x)C−1
xx Cov(x, y))

= (σ2
x)

N · det(Cyy − Cov(y, x)(σ2
xIN)

−1Cov(x, y))

= (σ2
x)

N · det(Cyy −
1

σ2
x

Cov(y, x)Cov(x, y))

(b)
= (σ2

x)
N · det(Cyy −

1

σ2
x

(Nσ4
x)IM)

= (σ2
x)

N · det((Nσ2
x + σ2

w)IM − (Nσ2
x)IM)

= (σ2
x)

N (σ2
w)

M (2.20)
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where equation (b) follows from the fact that Cov(y, x)M×N = Cov(x, y)TN×M , as

Pr(φm,n = ±1) = 0.5, if the length N of x is large enough,

Cov(ym, xn) · Cov(xn, y
′
m)

T =

⎧
⎪⎨

⎪⎩

σ2
x, if m = m′

0, if m ̸= m′
(2.21)

Therefore, we could obtain

Cov(y, x)M×N · Cov(x, y)N×M = (Nσ2
x)IM (2.22)

From our derivation above, we could achieve the entropy of the joint Gaussian

variables of x and y,

h(x, y) =
1

2
log[(2πe)M+Ndet(Cxy)]

=
1

2
log[(2πe)M+N(σ2

x)
N((σ2

w)
M ] (2.23)

As the process of compressive sensing forms a Markov chain with x −→ y −→

x̂, where x is the information source, y = Φx+w is the compressed observation using

compressive sensing, and x̂ is the estimated information.

By the data-processing inequality, since the process of compressive sensing

forms a Markov chain with x −→ y −→ x̂, I(x; x̂) ≤ I(x; y), therefore, h(x|x̂) ≥

h(x|y). Therefore, we could get,

h(x|y) ≤ 1 + Pe · h(x) (2.24)
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From Fano’s inequality, we could get the lower bound of the probability of

error, as shown

Pe ≥
h(x | y)− 1

h(x)

(c)
=

h(x, y)− h(y)− 1

h(x)

=
1
2 log[(2πe)

M+N(σ2
x)

N ((σ2
w)

M ]
1
2 log[(2πeσ

2
x)

N ]
−

1
2 log[(2πe)

M(Nσ2
x + σ2

w)
M ] + 1

1
2 log[(2πeσ

2
x)

N ]

= 1−
1
2 log(

Nσ2
x+σ2

w
σ2
w

)M + 1
1
2 log[(2πeσ

2
x)

N ]
(2.25)

where equation (c) comes from the fact of entropy property h(x|y) = h(x, y)− h(y).

This lower bound of the probability of error could be validated from a different

proof as follows:

From information theory, we know the relationship between the mutual infor-

mation and entropy as

I(x; y) = h(y)− h(y|x) (2.26)

As the measurement matrix Φ is known in advance, and conditioning reduces

mutual information [36]

I(x; y|Φ) ≤ I(x; y)

= h(y)− h(y|x)
(d)
= h(y)− h(w)

=
1

2
log(2πe(Nσ2

x + σ2
w))

M − 1

2
log(2πeσ2

w)
M

=
1

2
log(

Nσ2
x + σ2

w

σ2
w

)M (2.27)

where equation (d) follows from the fact that when the source information x and

measurement matrix Φ are given, h(y|x) = h(w).
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Fano’s inequality could be expressed using mutual information as,

Pe(x ̸= x̂|Φ) ≥
h(x|y)− 1

h(x)

(e)
= 1−

I(x; y|Φ) + 1

h(x)

≥ 1−
1
2 log(

Nσ2
x+σ2

w
σ2
w

)M + 1
1
2 log[(2πeσ

2
x)

N ]
(2.28)

where equation (e) follows from the fact that I(x; y) = h(x)− h(x|y)

From analysis, we notice that if σ2
x ≥ 1, and the length N of information is

sufficient large, 1
1
2 log[(2πeσ2

x)
N ]

≈ 0, therefore,

(1). If (2πeσ2
x)

N ≥ (Nσ2
x+σ2

w
σ2
w

)M , then Pelb ≥ 0, this means that perfect reconstruction

of the information vector is impossible, as there will always be certain error.

(2). If (2πeσ2
x)

N ≤ (Nσ2
x+σ2

w
σ2
w

)M , then Pelb ≤ 0, this means that perfect reconstruction

of the information vector is possible.

We could observe that Theorem 1 provides a special case of the lower bound

of the probability of error for compressive sensing when the measurement matrix

Φ follows Bernoulli distribution with Pr(φm,n = ±1) = 0.5. We will give a more

general lower bound of the probability of error without such special assumption of

the matrix matrix Φ, as shown in Theorem 2:

Theorem 2. In noisy CS, consider x ∼ N (0, σ2
xIN ), w ∼ N (0, σ2

wIM), and the

measurement matrix is Φ, then the lower bound of the probability of error will be as

follows,

Pe ≥
N log[2πeλxymin ] +M log(

λxymin
λymax

)

N log[2πeσ2
x]

(2.29)

Proof: Since the information vector x follows Gaussian distribution, and the

noise vector w also follows Gaussian distribution, no matter what kind of measure-

ment matrix Φ, the observation vector y = Φx + w should also follows Gaussian

distribution.
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h(y) =
1

2
log[(2πe)M · det(Cyy)] (2.30)

h(x, y) =
1

2
log[(2πe)N+M · det(Cxy)] (2.31)

As we know that the determinant of a matrix is the product of its all eigenval-

ues, therefore, we could express the determinants of the covariance matrices as,

det(Cyy) =
M∏

i=1

λi
y, det(Cxy) =

N+M∏

j=1

λj
xy (2.32)

Therefore, from Fano’s inequality, we could achieve the lower bound of the

probability of error in a more general case,

Pe ≥
h(x, y)− h(y)− 1

h(x)

=
1
2 log[(2πe)

M+N
∏N+M

j=1 λj
xy]

1
2 log[(2πeσ

2
x)

N ]
−

1
2 log[(2πe)

M
∏M

i=1 λ
i
y] + 1

1
2 log[(2πeσ

2
x)

N ]
(f)

≥
1
2 log[(2πe)

M+N(λxymin)
M+N ]

1
2 log[(2πeσ

2
x)

N ]
−

1
2 log[(2πe)

M(λymax)
M ] + 1

1
2 log[(2πeσ

2
x)

N ]

= (1 +
M

N
)
log(

λxymin
λymax

)

log(2πeσ2
x)

+
log(2πeλymax)

log(2πeσ2
x)

− 1
N
2 log(2πeσ2

x)

(g)
≈

N log[2πeλxymin ] +M log(
λxymin
λymax

)

N log[2πeσ2
x]

(2.33)

where inequality (f) follows from the fact that
∏N+M

j=1 λj
xy ≥ (λxymin)

M+N , and
∏M

i=1 λ
i
y ≤ (λymax)

M . Approximation (g) follows from the fact that when the length

N of x is sufficient large, and σ2
x ≥ 1, then 1

N
2 log(2πeσ2

x)
= 0.

From analysis, we conclude that:

(1). If (2πeλxymin)
N ≥ ( λymax

λxymin
)M , then Pelb ≥ 0, this means that perfect reconstruc-

tion of the information vector is impossible, as there will always be certain error.

(2). If (2πeλxymin)
N ≤ ( λymax

λxymin
)M , then Pelb ≤ 0, this means that perfect reconstruc-

tion of the information vector is possible.
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2.3.1.2 Upper Bound for the Probability of Error

Theorem 3. In noisy CS, consider x ∼ N (0, σ2
xIN ), w ∼ N (0, σ2

wIM), and the

measurement matrix is Φ, then the upper bound of the probability of error will be as

follows,

Pe ≤
1

(2π)N/2 · det(( 1
σ2
x
IN + 1

σ2
w
ΦTΦ)−1)1/2

(2.34)

Proof: y = Φx+w. As each of xn is an i. i. d. Gaussian random variable with

zero mean and variance σ2
x, and each noise wm also follows Gaussian with zero mean

and variance σ2
w, we know that x ∼ N (0, σ2

xIN), and w ∼ N (0, σ2
wIM).

Using Bayesian estimator[113],

BMSE(x̂) = E[(x− x̂)2] =

∫∫
(x− x̂)2p(y; x) dy dx (2.35)

The estimator tries to find x̂ that minimizes BMSE(x̂), that is,

x̂ = argmin
x

BMSE(x̂) (2.36)

The following estimation could be derived

x̂ = E[x | y] (2.37)

For the assumed compressive sensing scheme, we could get the estimated x̂ as

x̂ = E[x|y]

= E[x] + CxyC
−1
yy (y − E[x])

= (
1

σ2
x

IN +
1

σ2
w

ΦTΦ)−1ΦTy/σ2
w (2.38)

Besides, we could also get the following covariance matrix[113]

Cx|y = E[(x− E[x|y])(x− E[x|y])T |y]

= (
1

σ2
x

· IN +
1

σ2
w

ΦTΦ)−1 (2.39)
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The error between x and x̂ is

ε = x− x̂ = x− E[x|y] (2.40)

Since estimator in (2.38) is an affine transformation of Gaussian random vec-

tor y, hence x̂ is multivariate Gaussian. Estimation error ε = x − x̂ is an affine

transformation of jointly Gaussian vectors x and y, hence ε is also Gaussian.

The mean of ε is calculated as

Ex,y[ε] = Ex,y[x− E[x|y]

=

∫∫
(x− E[x|y])p(y; x) dy dx

=

∫
[

∫
(x− E[x|y])p(y|x) dx]p(y) dy = 0 (2.41)

The covariance of ε is

E[εεT ] = Ex,y[(x− E[x|y])(x− E[x|y])T ] = Cx|y (2.42)

As y = Φx + w, and x and y are jointly Gaussian random variables, the error

vector ε follows Gaussian distribution with mean 0 and covariance matrix Cx|y.

We could get the error vector’s probability distribution function (pdf)[113] as

follows,

p(ε) =
1

(2π)N/2 · det(Cx|y)1/2
exp(−1

2
εT · Cx|y · ε) (2.43)

For Gaussian distribution, we know that the probability achieve the maximum

value at its mean value, therefore,

p(ε) ≤ p(0) =
1

(2π)N/2 · det(Cx|y)1/2

=
1

(2π)N/2 · det(( 1
σ2
x
IN + 1

σ2
w
ΦTΦ)−1)1/2

(2.44)
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Theorem 4. In noisy CS, if x ∼ N (0, σ2
xIN), w ∼ N (0, σ2

wIM), and the entries of the

measurement matrix φm,n follows Bernoulli distribution with Pr(φm,n = ±1) = 0.5,

then the upper bound of the probability of error will be as follows,

Pe ≤
1

( 2πσ2
xσ2

w
σ2
w+Mσ2

x
)N/2

(2.45)

When the measurement matrix Φ is Bernoulli matrix, the entries of φm,n are

i.i.d. with Pr(φm,n = ±1) = 0.5, and if the length N of x is sufficiently large,

ΦTΦ = M · IN , from which we could achieve the result in Theorem 4.

Theorem 5. In noisy CS, if x ∼ N (0, σ2
xIN), w ∼ N (0, σ2

wIM), and the entries of the

measurement matrix φm,n follows Bernoulli distribution with Pr(φm,n = ±1) = 0.5,

then the upper bound of the probability of error will be as follows,

Pe ≤ 1− (πeσ2
x)

−N
2 2

−N
2 (

Nσ2
x+σ2

w
Mσ2

x
−ln(

Nσ2
x+σ2

w
Mσ2

x
))

(2.46)

Proof: From a linear minimum mean square error (MMSE) estimator, because

y = Φx+w, y ∈ RM , Φ ∈ RM×N , and w ∈ RM , x ∼ N (0, σ2
xIN), and w ∼ N (0, σ2

wIM)

are independent.

Since estimator in (2.38) is an affine transformation of Gaussian random vector

y, hence x̂ is multivariate Gaussian. Thus the estimated expression for linear MMSE

estimator also follows Gaussian distribution, with mean and auto-covariance given

by,

x̂ = E[x|y] = (
1

σ2
x

IN +
1

σ2
w

ΦTΦ)−1ΦT y/σ2
w (2.47)

E[x̂] = E[x] = 0 (2.48)

Cx̂ = CxyC
−1
yy Cyx

= CxxΦ
T (ΦCxxΦ

T + Cw)
−1ΦCxx

= σ4
xΦ

T (σ2
xΦΦ

T + σ2
wIM)−1Φ (2.49)
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Therefore, x̂ ∼ N (0, Cx̂), and its probability density function could be ex-

pressed as,

p(x̂) =
1

(2π)N/2det1/2(Cx̂)
exp(−1

2
x̂T · C−1

x̂ · x̂) (2.50)

As we know, the source signal x ∼ N (0, σ2
xIN ), its probability density function

is,

p(x) =
1

(2πσ2
x)

N/2
exp(−1

2
xT · (σ2

xIN)
−1 · x) (2.51)

From information theory [36], we know that if x and x̂ are independent with

x ∼ p(x), and x̂ ∼ p(x̂), then

Pr(x = x̂) ≥ 2−H(p(x))−D(p(x)∥p(x̂)) (2.52)

where D(p(x)∥p(x̂)) is the Kullback-Leibler distance between two probability mass

functions p(x) and p(x̂) which is defined as

D(p(x)∥p(x̂)) =
∑

p(x) log
p(x)

p(x̂)
(2.53)

Therefore, the probability of error between x and x̂ is upper bounded by

Pe = Pr(x ̸= x̂) = 1− Pr(x = x̂)

≤ 1− 2−H(p(x))−D(p(x)∥p(x̂))

= 1− 2−
1
2 log(2πeσ2

x)
N · 2−D(p(x)∥p(x̂))

= 1− (2πeσ2
x)

−N/22−D(p(x)∥p(x̂)) (2.54)

When the measurement matrix Φ is Bernoulli matrix, the entries of φm,n are

i.i.d. with Pr(φm,n = ±1) = 0.5, and if the length N of x is sufficiently large,

ΦTΦ = M · IN , and ΦΦT = N · IM , therefore,

Cx̂ = σ4
xΦ

T (σ2
xΦΦ

T + σ2
wIM)−1Φ

=
Mσ4

x

Nσ2
x + σ2

w

IN (2.55)
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and

det(Cx̂) = (
Mσ4

x

Nσ2
x + σ2

w

)N (2.56)

For compressive sensing, as M < N , σ2
x > 0 and σ2

w > 0, we could conclude

that
Mσ4

x

Nσ2
x + σ2

w

<
Mσ4

x

Nσ2
x

=
M

N
σ2
x < σ2

x (2.57)

As we know, The Kullback-Leibler divergence between two multivariate normal

distributions of the dimension N with the means µ0, µ1 and their corresponding

nonsingular covariance matrices Σ0,Σ1 is:

DKL(N0∥N1) =
1

2
(tr(Σ−1

1 Σ0) + (µ1 − µ0)
TΣ−1

1 · (µ1 − µ0)−N − ln(
detΣ0

detΣ1
))(2.58)

Therefore, the Kullback-Leibler divergence between the source signal x and the

estimated signal x̂ could be achieved as,

D(p(x)∥p(x̂)) = 1

2
(N

Nσ2
x + σ2

w

Mσ2
x

−N − ln(
σ2N
x

( Mσ4
x

Nσ2
x+σ2

w
)N

))

=
1

2
(N

Nσ2
x + σ2

w

Mσ2
x

−N −N ln(
Nσ2

x + σ2
w

Mσ2
x

))

=
N

2
(
Nσ2

x + σ2
w

Mσ2
x

− 1− ln(
Nσ2

x + σ2
w

Mσ2
x

)) (2.59)

Since
Nσ2

x + σ2
w

Mσ2
x

=
N

M
+

σ2
w

Mσ2
x

>
N

M
> 1 (2.60)

In compressive sensing, when the number of M and N are sufficiently large,

σ2
w

Mσ2
x
→ 0.

We notice that when a > 1, then a−1 > ln a, therefore, from the analysis above,

D(p(x)∥p(x̂)) > 0 is concluded, which satisfy the requirement of the Kullback-Leibler

distance.
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Hence, the upper bound of the probability of error will become

Pe ≤ 1− (2πeσ2
x)

−N/22−D(p(x)∥p(x̂))

= 1− (2πeσ2
x)

−N/22
−N

2 (
Nσ2

x+σ2
w

Mσ2
x

−1−ln(
Nσ2

x+σ2
w

Mσ2
x

))

= 1− (πeσ2
x)

−N/22
−N

2 (
Nσ2

x+σ2
w

Mσ2
x

−ln(
Nσ2

x+σ2
w

Mσ2
x

))
(2.61)

2.3.1.3 Numerical Results

In the simulation, we choose the signal variance normalized to σ2
x = 1, the

sampling rate is M/N .

Fig. 2.1 shows the lower bound of the probability of error for different N

with SNR = 20dB, from which we could observe that with the increase of source

dimension N , the lower bound of the error probability becomes lower, and when

the lower bound of the probability achieves 0, the sampling rate almost converges

at around 0.2. When the sampling rate is less than 0.2, it is never possible for

compressive sensing to perfectly recover all information, as the lower bound of the

probability of error is greater than 0. When the sampling rate is larger than 0.2,

the lower bound of the probability of error is non-positive, which implies that it is

possible for compressive sensing to perfectly reconstruct all information.

This result provides us an reference of the probability of error of compressive

sensing, when designing the measurement matrix, to make sure the perfect recon-

struction of information, the sampling rate should choose no less than 0.2 when

SNR = 20dB.

Fig. 2.2 shows the lower bound of the probability of error for different N

with different Signal-to-Noise Ratio (SNR), from which we could observe that with

the increase of SNR, the lower bound of the error probability becomes lower. For

example, if SNR = 0dB, when the sampling rate M/N ≤ 0.3, it is impossible
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Figure 2.1. Lower Bound of Pe with SNR = 20dB.

to perfect reconstruct the original information, however, if the SNR is increased

to SNR = 40dB, at the sampling rate of M/N = 0.3, perfect reconstruction is

possible, as the lower bound of the probability of error is non-positive at this point,

and perfect recovery could be achieved when M/N ≥ 0.18. This implies that when

the SNR is higher, the compression of the original information source could be very

high, i.e., much less number of M is required, with the error probability performance

guaranteed, while when the SNR is low, compressive sensing could not perform well,

M should not be chosen very small.

Fig. 2.3 gives the relationship of SNR and the lower bound of the probability

of error for compressive sensing with different sampling rate. It is obvious that

when sampling rate M/N = 0.1, in the range of −10dB ≤ SNR ≤ 40dB, the

lower bound of the probability of error is always a high positive value, which means

that this compression using sampling rate M/N = 0.1 is too aggressive, and perfect

reconstruction is impossible in this case. With the increase of the sampling rate
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Figure 2.2. Lower Bound of Pe with Different SNR.

to M/N = 0.2, when SNR ≥ 20dB, the lower bound of the probability of error

is a non-positive value, and perfect recovery is possible. When M/N = 0.3, then if

SNR ≥ 0dB, perfect recovery is possible. We can notice that when the sampling rate

is high, with M/N = 0.4, or M/N = 0.5, in the range of −10dB ≤ SNR ≤ 40dB,

the lower bound of the probability of error is always a negative value, and it is always

possible to perfect reconstruct the original information.

These results provide us some kind of reference of the probability of error of

compressive sensing, from our analysis, we conclude that when using compressive

sensing, to make sure the perfect reconstruction of information, the dimension M of

the measurement matrix should be determined based on the SNR, this is a tradeoff

between the sampling rate and the error probability performance.
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2.3.2 Rate Distortion Performance

The Gaussian assumption is a classical modeling assumption heavily used in

areas such as Signal Processing and Communication System [41]. Assume the com-

ponents of x to be identical and independent (i.i.d.) Gaussian N(0, σ2
xIN). Treat

the error to be the unknown perturbation n bounded by ϵ, i.e., ∥n∥l2 ≤ ϵ. In this

chapter, we always use underline symbols to represent the random variables (r.v.s),

for example, the original signal x and the compressed signal y.

2.3.2.1 Rate Distortion Performance for Scalar Quantization of Measurement Ob-

servation

As we know, the random source y ∈ RM , and the distortion associated with

the quantizer [45] is D(C) = E[∥ y − q(y) ∥22]. Here, squared-error distortion is used

as the distortion measure.
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Let the rate of the codebook C be R = 1
M log2 |C|. For a given code rate R, the

distortion rate function is given by [45]

Dy(R) = inf
C: 1

M log2 |C|≤R
D(C) = inf

C: 1
M log2 |C|≤R

E[∥ y − q(y) ∥22] (2.62)

For the quantization of compressive sensing, the quantization functions for all the

coordinate of y are assumed to be the same. The corresponding distortion rate

function is,

Dy(R) = inf
C: 1

M log2 |C|≤R
E[

M∑

i=1

|yi − q(yi)|2] (2.63)

The high-rate operational distortion rate function for scalar quantization is

given in [29], as D(R) = 1
122

2h(X)−2R, where h(X) is the differential entropy of the

source, for a given distortion constraint
∑

iDqi ≤ D. For Gaussian source with

zero mean and variance σ2, h(X) = 1
2 log(2πeσ

2), then R(D) = 1
2 log(

πeσ2

6D ), i.e.,

D(R) = πe
6 σ

22−2R. Under the fact that for high-rate uniform scalar quantization,

the step size [30] is ∆i =
√

6 log2 e
λ , if 1

2λ ≤ σ2
i .

As shown before, y follows Gaussian distribution with y ∼ N (0, (Nσ2
x+σ2

w)IM).

For scalar quantization of y, its corresponding distortion rate function is given as,

Dy(R) =
πe

6
(Nσ2

x + σ2
w)2

−2R (2.64)

uniform scalar quantization step size ∆i =
√

6 log2 e
λ , if 1

2λ ≤ Nσ2
x + σ2

w.

The distortion rate function of uniform scalar quantization of a Gaussian ran-

dom variable was shown in [31][28][111] as limR→∞
22R

R D∗
u,s,g(R) = 4

3σ
2 log 2.

Therefore, the distortion rate function for uniform scalar quantization[28] of

the compressed signal y ∼ N (0, (Nσ2
x + σ2

w)IM) could be expressed as,

lim
R→∞

22R

R
D∗

y,u(R) =
4

3
(Nσ2

x + σ2
w) log 2 (2.65)
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The received signal after quantization has noise introduced, indicated as v,

which also follows Gaussian distribution v ∼ N (0, σ2
vIM). Therefore, the received

signal at the decoder is

ri = q(yi) + vi, i = 1, 2, · · · ,M (2.66)

Theorem 6. The measurement rate distortion function for the scalar quantization

of the measurement vector of compressive sensing with random noise is

Ry(D) =
M∑

i=1

(p(ri) log
1

p(ri)
− 1

2
log 2πe

D

M
) (2.67)

with p(ri) shown in expression (2.68) and (2.71) for uniform quantization and non-

uniform quantization of the measurement observation respectively.

(1). For Uniform Quantization

Assume the measurement vector y is uniformly quantized into L levels, where ∆

is the step size. For a uniform quantizer [45][114][112], for an input signal amplitude

in the range (l − 1)∆ ≤ yi < l∆, the output levels are specified as q(yi)l =
1
2(2l −

1)∆, l = 1, · · · , L.

The probability distribution function of the received signal at the decoder could

be calculated as,

p(ri) =
L∑

l=1

P{ri|q(yi) =
(2l − 1)∆

2
}P{(q(yi) =

(2l − 1)∆

2
}

=
L∑

l=1

N (
(2l− 1)∆

2
, σ2

v)Pr{((l− 1)∆ ≤ yi < l∆)}

=
L∑

l=1

N (
(2l− 1)∆

2
, σ2

v)[Q(
(l − 1)∆√
Nσ2

x + σ2
w

) +Q(
−l∆√

Nσ2
x + σ2

w

)] (2.68)

where Q(·) is the Gaussian Q-function.

(2). For Non-uniform Quantization

25



Assume the measurement vector y is quantized into L non-uniform levels. For

non-uniform quantization [45][114], we still represent the output levels as q(yi)l, when

the input signal amplitude is in the range yl−1 ≤ yi < yl. For an L-level quantizer,

the end points are y0 = −∞ and yL = ∞. The resulting distortion is

D =
L∑

l=1

∫ yk

yk−1

f(ỹk − y)p(y)dy (2.69)

In the case of mean square value of the distortion,

yl =
1

2
(ỹl + ỹl+1) (2.70)

The probability distribution function of the received signal at the decoder could be

calculated as,

p(ri) =
L∑

l=1

P{ri|q(yi) = q(yi)l}P{(q(yi) = q(yi)l}

=
L∑

l=1

N (q(yi)l, σ
2
v)Pr{(yl−1 ≤ yi < yl)}

=
L∑

l=1

N (q(yi)l, σ
2
v)[Q(

yl−1√
Nσ2

x + σ2
w

) +Q(
−yl√

Nσ2
x + σ2

w

)] (2.71)

Proof. The measurement rate distortion function with squared-error distortion mea-

sure in this quantization process could be expressed as,

Ry(D) = min
p(r|y):

∑
(y,r) p(y,r)d(y,r)≤D

I(r; y)

= min
p(r|y):

∑
(y,r) p(y,r)d(y,r)≤D

h(r)− h(r|y)

≥ min
p(r|y):

∑
(y,r) p(y,r)d(y,r)≤D

h(r)− h(r − y)

≥ min
p(r|y):

∑
(y,r) p(y,r)d(y,r)≤D

M∑

i=1

(h(ri)− h(ri − yi))

≥ min
p(r|y):Ed(y,r)≤D

M∑

i=1

(h(ri)− h(N (0, E(ri − yi)
2)))

≥ min
p(r|y):Ed(y,r)≤D

M∑

i=1

(h(ri)−
1

2
log 2πeDi) (2.72)
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where E(ri − yi)2 ≤ Di, with
∑M

i=1Di = D, and h(ri) = −p(ri) log p(ri).

The problem of finding the rate distortion function could be solved by solving

the following optimization problem,

Ry(D) = min∑
Di=D

M∑

i=1

max{(p(ri) log
1

p(ri)
− 1

2
log 2πeDi), 0} (2.73)

Construct the function below using Lagrange multipliers,

J(D) =
M∑

i=1

(p(ri) log
1

p(ri)
− 1

2
log 2πeDi) + λ

M∑

i=1

Di (2.74)

Differentiating with respect to Di, and setting equal to 0, we will get

∂J(D)

∂Di
= −1

2

1

Di
+ λ = 0 (2.75)

or

Di = λ∗ (2.76)

Therefore, equal distortion for each random variable is achieved.

As
∑M

i=1Di = D, we could obtain that

Di =
D

M
(2.77)

Hence, the rate distortion function for the uniform quantization process of the

measurement vector y is

Ry(D) =
M∑

i=1

(p(ri) log
1

p(ri)
− 1

2
log 2πe

D

M
) (2.78)

with p(ri) shown in expression (2.68) and (2.71) for uniform quantization and non-

uniform quantization of the measurement observation respectively.

2.3.2.2 Reconstruction Rate Distortion - Squared Error Distortion

From CS literature, we know that the reconstruction distortion is dependent

on the distortion in the measurement [28].
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The received signal before reconstruction is described in equation (2.66)

r = q(y) + v = Φx+ e+ v = Φx+ n (2.79)

where e ∈ RM is the quantization error, and v ∈ RM is the noise introduced to the

received signal, n = e + v.

Theorem 7. The reconstruction rate distortion function of noisy compressive sens-

ing could be expressed as,

Rx(D) =
N∑

i=1

(
DiNΦ2

s,i

ϵ2M
log(

2πeσ2DiNΦ2
s,i

ϵ2M
) +

ϵ2M − 2DiNΦ2
s,i

2ϵ2M
log 2πeσ2

x) (2.80)

where

Di =

⎧
⎪⎨

⎪⎩

ϵ2M
NΦ2

s,i
2
−[ 1

ln 2+λ ϵ2M
NΦ2

s,i
]
, if λ > − NΦ2

s,i

ϵ2M ln 2

ϵ2M
2NΦ2

s,i
, if λ ≤ − NΦ2

s,i

ϵ2M ln 2

(2.81)

where λ is chosen so that
∑N

i=1Di = D.

Proof. From noisy compressive sensing, we know that[114]

∥n∥l2 = ∥r − Φx̂∥l2 ≤ ϵ (2.82)

and r is a M-dimensional signal, the measurement matrix Φ’s dimension is M ×N ,

and the dimension of (x− x̂) is N × 1. Using (·)k to represent the k−th element of

the M × 1 vector (Φ(x− x̂)), we could get the following

∥r − Φx̂∥l2 =

√√√√
M∑

k=1

|(Φ(x− x̂))k|2 ≤ ϵ (2.83)

which means that
M∑

k=1

|(Φ(x− x̂))k|2 ≤ ϵ2 (2.84)

Let Φk ∈ R1×N (k = 1, . . . ,M) denote the k−th row of the measurement

matrix Φ, i.e.,
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ΦM×N =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Φ1

Φ2

...

ΦM

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

The above inequality could be extended as[112],

(Φ1(x− x̂))2 + (Φ2(x− x̂))2 + · · ·+ (ΦM(x− x̂))2 ≤ ϵ2 (2.85)

We could further derive the above inequality as

(Φ1(x− x̂) + Φ2(x− x̂) + · · ·+ ΦM (x− x̂))2

M
(i)

≤ (Φ1(x− x̂))2 + (Φ2(x− x̂))2 + · · ·+ (ΦM(x− x̂))2

≤ ϵ2 (2.86)

Here, (i) comes from the inequality that a21 + a22 + · · ·+ a2n ≥ (a1+a2+···+an)2

n .

Extracting all the (x− x̂) on the left side of the inequality,

((Φ1 + Φ2 + · · ·+ ΦM)(x− x̂))2

M
≤ ϵ2 (2.87)

Using Φs to represent the summation of all the rows of Φ, i.e., Φs,1×N =

Φ1 + · · ·+ ΦM ,

(Φs(x− x̂))2

M
≤ ϵ2 (2.88)

Therefore,
N∑

i=1

(Φs,i(xi − x̂i))
2 ≤ Mϵ2 (2.89)

Φs,i is the i−th element of Φs,1×N . Similarly, xi and x̂i are the i−th element of xN×1

and x̂N×1. Which is equivalent to

N∑

i=1

Φ2
s,i(xi − x̂i)

2 ≤ Mϵ2 (2.90)

29



As compressive sensing is used to compress huge amounts of data, which means

that the length N of original signal xN×1 is large enough. Since the measurement

matrix Φ is a randomly generated Bernoulli matrix, with the entries of φm,n i.i.d,

Pr(φm,n = ±1) = 0.5, when the dimension of the measurement matrix is sufficient

large, each element Φs,i, i = 1, 2, · · · , N of the summation of all the rows of Φ will

tend to a constant Φs,c.

Φ2
s,c

N∑

i=1

(xi − x̂i)
2 ≤ Mϵ2 (2.91)

Hence,

E(x̂− x)2 ≤ ϵ2M

NΦ2
s,c

(2.92)

This provides us a numerical upper bound of the mean squared error (MSE)

of compressive sensing, which depends on our choice of Φ, the dimension N of the

original signal x, the dimension M of the compressed signal y, and the noise bound

∥n∥l2 ≤ ϵ.

For scalar quantization of y, the corresponding reconstruction distortion rate

function is upper bounded by,

Dx(R) ≤ πe2−2R

6

ϵ2M

NΦ2
s,c

(2.93)

Since y = Φx + w, we could notice that the mean of y is 0, with covariance

matrix Cyy, i.e., y ∼ N (0, (Nσ2
x + σ2

w)IM).

The joint likelihood function is,

py|x(y; x) =
1

2π(Nσ2
x + σ2

w)
M
2

exp(−1

2
yT · C−1

yy · y) (2.94)

which is

py|x(y; x) =
1

2π(Nσ2
x + σ2

w)
M
2

· exp(− 1

2(Nσ2
x + σ2

w)
· ∥ y − Φx ∥2) (2.95)
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Lemma 1. For any unbiased estimator x̂ of compressed signal x in noisy

compressive sensing with random noise x, i.e., y = Φx + w, the Cramer-Rao Lower

Bound for the estimator x̂ is

E{∥ x̂− x ∥2} ≥ Tr{I−1} = (Nσ2
x + σ2

w)Tr{(ΦTΦ)−1} (2.96)

Proof. Fisher’s Information could be calculated as [113]

[I(x)]i,j = −E[
∂2 ln p(y; x)

∂xi∂xj
] =

1

Nσ2
x + σ2

w

ΦTΦ (2.97)

Therefore, the Cramer-Rao Lower Bound [113] for the estimator x̂ is

E{∥ x̂− x ∥2} ≥ Tr{I−1} = (Nσ2
x + σ2

w)Tr{(ΦTΦ)−1} (2.98)

From expression (2.98) we know the Cramer-Rao Lower Bound for the estima-

tor x̂ is

E{∥ x̂− x ∥2} ≥ var(x̂) ≥ (Nσ2
x + σ2

w)Tr{(ΦTΦ)−1} (2.99)

For scalar quantization of y, the corresponding reconstruction distortion rate

function is lower bounded by,

Dx(R) ≥ πe2−2R

6
(Nσ2

x + σ2
w)Tr{(ΦTΦ)−1} (2.100)

Similarly, for uniform scalar quantization of y, the corresponding reconstruction

distortion rate function is bounded by,

lim
R→∞

22R

R
Dx,u(R) ≥ 4

3
(Nσ2

x + σ2
w)Tr{(ΦTΦ)−1} log 2 (2.101)

and

lim
R→∞

22R

R
Dx,u(R) ≤ 4

3

ϵ2M

NΦ2
s,c

log 2 (2.102)
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Using the definition of rate distortion function, we can get the rate distortion

function of compressive sensing,

Rx(D) = min
p(x̂|x):

∑
(x,x̂) p(x,x̂)d(x,x̂)≤D

I(x; x̂)

= h(x)− max
E{d(x,x̂)}≤D

h(x− x̂|x̂)

≥ h(x)− max
E{d(x,x̂)}≤D

h(x− x̂)

=
N∑

i=1

(h(xi)− max
E{d(xi,x̂i)}≤Di

h(xi − x̂i)) (2.103)

For squared-error distortion, Ed(xN , x̂N) ≤ D, where d(xN , x̂N) =
∑N

i=1(xi −

x̂i)2 and
∑N

i=1Di = D.

Ed(xi, x̂i) = p(xi, x̂i)(xi − x̂i)
2 ≤ Di (2.104)

So that

max p(xi, x̂i)(xi − x̂i)
2 = p(xi, x̂i)

ϵ2M

NΦ2
s,i

≤ Di (2.105)

Therefore, we could obtain that,

p(xi, x̂i) ≤
NΦ2

s,cDi

ϵ2M
(2.106)

There are two cases[114][112]:
NΦ2

s,cDi

ϵ2M < 1
2 , or

NΦ2
s,cDi

ϵ2M ≥ 1
2 . The entropy

function of a source is a concave function, which means that it will reach its global

maximum value when the probability of the source equals to 1/2. If the probability

is less than 1/2, the entropy function is a monotone increasing function. And if

the probability is greater than 1/2, the entropy function function is a monotone

decreasing function. Since compressive sensing is used to compress huge number of

data in practice, the joint probability of each elements is usually very small, i.e.,

p(xi, x̂i) << 1/2. To find the maximum value of the entropy h(x− x̂) with distortion

constraint D, we conclude that if
NΦ2

s,cDi

ϵ2M ≥ 1
2 , maxh(xi − x̂i) = h(12) = 1

2 ; and if
NΦ2

s,cDi

ϵ2M < 1
2 , then

max h(xi − x̂i) = h(
NΦ2

s,cDi

ϵ2M
) = −

NΦ2
s,cDi

ϵ2M
log(

NΦ2
s,cDi

ϵ2M
) (2.107)
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Therefore, the corresponding reconstruction rate distortion function of noisy com-

pressive sensing is,

Rx(D) ≥
N∑

i=1

(h(xi)− max
E{d(xi,x̂i)}≤Di

h(xi − x̂i))

=
N∑

i=1

(
log 2πeσ2

x

2
+

NΦ2
s,cDi

ϵ2M
log(

NΦ2
s,cDi

ϵ2M
))

s.t.
N∑

i=1

Di = D (2.108)

Using Lagrange multipliers to construct the function,

J(D) =
N∑

i=1

(
log 2πeσ2

x

2
+

NΦ2
s,cDi

ϵ2M
log(

NΦ2
s,cDi

ϵ2M
)) + λ

N∑

i=1

Di (2.109)

Differentiating with respect to Di, and setting equal to 0,

∂J(D)

∂Di
=

NΦ2
s,c

ϵ2M
log(

NΦ2
s,cDi

ϵ2M
) +

NΦ2
s,c

ϵ2M ln 2
+ λ = 0 (2.110)

Solving the equation above will get Di as,

Di =
ϵ2M

NΦ2
s,c

2
−[ 1

ln 2+λ ϵ2M
NΦ2

s,c
]
, s.t.

N∑

i=1

Di = D (2.111)

λ could be solved by this condition,

ϵ2M

NΦ2
s,1

2
−[ 1

ln 2+λ ϵ2M
NΦ2

s,1
]
+ · · ·+ ϵ2M

NΦ2
s,N

2
−[ 1

ln 2+λ ϵ2M
NΦ2

s,N
]
= D (2.112)

If maxh(xi− x̂i) = h(12) =
1
2 , set

NΦ2
s,iDi

ϵ2M = 1
2 , we will get the choice of λ = − NΦ2

s,i

ϵ2M ln 2 .

From all the above derivation and with λ obtained, we can get the rate distor-

tion function of compressive sensing as shown in Theorem 7.

As x follow i.i.d. Gaussian distribution N(0, σ2
xIN), assume σ2

x > 1
2πe , i.e.,

log(2πeσ2
x) > 0.
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From the above result, we could conclude that if Di falls in the following range,

the minimum rate in equation (2.80) is a positive value, which means that we could

not use any bit rate less than this minimum rate.

ϵ2M

2πeσ2NΦ2
s,i

< Di <
ϵ2M

2NΦ2
s,i

(2.113)

This conclusion is very important, for the reason that it provides a theoretical

minimal useful bit rate, i.e., a meaningful lowest data rate for noisy compressive

sensing with particular distortion constraint. And this has great significance in the

design and transmission in real application of compressive sensing.

Theorem 8. The reconstruction rate distortion function[114][110][109] with uniform

scalar quantization of the measurement observation for noisy compressive sensing is

Rx,u(D) =
N∑

i=1

(
4DiNΦ2

s,i

M2∆2
log(

8πeσ2DiNΦ2
s,i

M2∆2
) +

M2∆2 − 8DiNΦ2
s,i

2M2∆2
log 2πeσ2

x)(2.114)

where

Di =

⎧
⎪⎨

⎪⎩

M2∆2

4NΦ2
s,i
2
−[ 1

ln 2+λ M2∆2

4NΦ2
s,i

]
, if λ > − 4NΦ2

s,i

M2∆2 ln 2

M2∆2

8NΦ2
s,i
, if λ ≤ − 4NΦ2

s,i

M2∆2 ln 2

(2.115)

where ∆ is the step size, with |yi−q(yi)| ∈ [−∆
2 , ∆

2 ), λ is chosen so that
∑N

i=1Di = D.

Proof. If we assume the received signal after quantization has no other noise intro-

duced, i.e., v = 0, therefore, the signal at the decoder will be, r = q(y) = Φx + e,

where e is the quantization error.

∥n∥l2 = ∥r − Φx̂∥l2 = ∥q(y)− Φx̂∥l2 ≤ ϵ (2.116)

For uniform scalar quantization, it is well known that,

|yi − q(yi)| ∈ [
−∆

2
,
∆

2
) (2.117)

Therefore,

∥y − q(y)∥l2 =
√∑

M

|yi − q(yi)|2 ≤
√

M(
∆

2
)2 =

∆

2

√
M (2.118)
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In this case, the quantization error e is treated as noise n, and the decoding

is to reconstruct the source signal from r = q(y) = Φx + e with constraint that

∥n∥l2 ≤ ϵ, hence, it could be concluded that ϵ = ∆
2

√
M .

Therefore, the reconstruction rate distortion function of uniform scalar quan-

tization will be expressed as Theorem 8.

Similarly, if Di falls in the following range, the minimum rate in equation

(2.114) is always a positive value.

M2∆2

8πeσ2NΦ2
s,i

< Di <
M2∆2

8NΦ2
s,i

(2.119)

(1). For Uniform Quantization

Table 2.1 shows Max(1960)’s results [45] for optimum step sizes of uniform

quantization for a Gaussian random variable.

Table 2.1. Optimum Step Sizes for Uniform Quantization of a Gaussian Random
Variable

output levels △opt Dmin 10logDmin(dB)
2 1.596 0.3634 -4.4
4 0.9957 0.1188 -9.25
8 0.5860 0.03744 -14.27
16 0.3352 0.01154 -19.38
32 0.1881 0.00349 -24.57

The optimum step sizes’ △opt values for different numbers of output levels (L)

could be read from Table 2.1. For example, for the uniform quantization of the com-

pressed signal y, Gaussian r.v.s with zero mean and unit variable, σ2
y = Nσ2

x+σ2
w = 1,

with the quantization level L = 8, ϵ equals to 0.293
√
M , the corresponding recon-

struction rate distortion function for this eight-level uniform quantized compressive

sensing could be achieved.

35



(2). For Non-uniform Quantization

Table 2.2 shows Max(1960)’s results [45] for the optimum eight-level quantizer

of a Gaussian distributed signal amplitude with zero mean and unit variance. It is

obvious that, the step size of non-uniform quantizer is much less than that of uniform

quantizer for smaller signal; and for larger signal, the case is opposite. Here, only

small signal, i.e., k = 1, 2, · · · , L− 1, is considered, except the cases when k = 0 and

k = L.

Table 2.2. Optimum Eight-level Quantizer for a Gaussian Random Variable

level k xk x̃k

1 -1.748 -2.152
2 -1.050 -1.344
3 -0.5006 -0.7560
4 0.0 -0.2451
5 0.5006 0.2451
6 1.050 0.7560
7 1.748 1.344
8 ∞ 2.152

For eight-level non-uniform quantization of zero mean unit variance Gaussian

r.v.s, when k = 1, 2, · · · , 7,

|Y − Yq| ≤ max{−1.344− (−1.748)

2
,
(−0.7560)− (−1.050)

2
, · · · } = 0.202 (2.120)

∥Y − Yq∥l2 =
√∑

M

|Y − Yq|2 ≤ 0.202
√
M (2.121)

In this case, ϵ = 0.202
√
M .

It is clear that for eight-level uniform quantization, ϵ = 0.293
√
M , and for

eight-level non-uniform quantization, ϵ = 0.202
√
M . As 0.202 < 0.293, and log func-
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tion is a monotone increasing function, the lower bound of R(D) for non-uniform

quantization is smaller than that of uniform quantization, which indicates that using

non-uniform quantization, a much lower bit rate for compression or transmission for

compressive sensing could be used than uniform quantization under our assumption

that the original source x follows Gaussian distribution. This property also proves

that non-uniform quantization is much more efficient in the application of compres-

sive sensing[114].

2.3.2.3 Reconstruction Rate Distortion - Hamming Distortion

Hamming distortion is worth analyzing in compressive sensing, as for the sparse

source (for example, in cognitive ratio, for unlicensed users, the spectrum is sparse),

the support detection is also very important.

Using the definition of rate distortion function, we can get the rate distortion

function as,

R(D) = min
p(x̂|x):

∑
(x,x̂) p(x,x̂)d(x,x̂)≤D

I(x; x̂)

= min
p(x̂|x):

∑
(x,x̂) p(x,x̂)d(x,x̂)≤D

h(x)− h(x|x̂) (2.122)

From Fano’s Inequality, we know that for the compressive sensing estimator x̂

such that x → y → x̂, with Pe = Pr(x ̸= x̂), we have

1 + Peh(x) ≥ h(x|x̂) (2.123)

For Hamming distortion, we know that D = Ed(x, x̂) = Pr(x ̸= x̂) = Pe,

which could result this

1 +Dh(x) ≥ h(x|x̂) (2.124)
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Therefore, we have

I(x; x̂) = H(x)−H(x|x̂)

≥ h(x)− (1 +Dh(x))

=
1−D

2
log(2πeσ2

x)
N − 1 (2.125)

We could conclude that using Hamming distortion, the rate distortion is

R(D) ≥ 1−D

2
log(2πeσ2

x)
N − 1 (2.126)

2.3.2.4 Reconstruction Rate Distortion - Upper Bound

As we know, rate is always less than the capacity for a valid communication

system, i.e.,

R(D) < C =
1

2
log(1 +

S

N
) (2.127)

Assume the components of X be i.i.d. Gaussian N(0, σ2). Because X is K sparse,

we can get that the efficient power for X is S = Kσ2. And the noise power equals

to the total distortion D. From this analysis, we can get the upper bound of rate

distortion function R(D),

R(D) <
1

2
log(1 +

Kσ2
x

D
) (2.128)

2.4 Applications of CS in Big Data

Some applications of compressive sensing in Big Data will be shown in this

Section.

First, the compression of real Synthetic Aperture Radar (SAR) Raw Data will

be discussed. Due to the low computational resources of the acquisition platforms

and the steadily increasing resolution of SAR systems, huge amounts of data are

collected and stored, which cannot generally be processed on board and must be
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transmitted to the ground to be processed and archived. we test the sparsity of the

real SAR raw data (obtained by University of Kansas in Greenland, 2010), compress

it using compressive sensing, and then recover the original signal using several CS

recovery algorithms, and compare these methods’ performance. This is of great

significance to help us perform further research in the applications of CS to real SAR

raw data.

Radar sensor networks (RSNs) have been recently considered to overcome the

performance degradation of a single radar. Due to the expansion of data introduced

to RSNs, the compression of received data is a design challenge of future RSNs. A

new efficient and effective sampling method for real Radar Sensor Networks based on

compressive sensing is also introduced in this Section. Numerical results will show

that our proposed algorithm’s performance is more efficient with correlations among

the sensor data considered, without introduce any computation complexity. With

more sensor nodes, our algorithm is more efficient, which significantly reduces the

data gathered.

Due to limited bandwidth, poor-quality communication channels, and limited

storage capacity for underwater acoustic sensor nodes in underwater acoustic sensor

networks (UWASNs), compressive sensing was applied to UWASNs to compress the

UWASNs data to enable storage and transmission requirements. The rate distortion

performance in UWASNs was studied, with or without correlation among sensor

readings. The compression of real-world underwater acoustic sensor network data

was applied to verify the theoretical results derived.

2.4.1 Synthetic Aperture Radar (SAR)

This work addresses the use of compressive sensing to compress real Synthetic

Aperture Radar (SAR) raw data. Due to the low computational resources of the
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acquisition platforms and the steadily increasing resolution of SAR systems, huge

amounts of data are collected and stored, which cannot generally be processed on

board and must be transmitted to the ground to be processed and archived. Although

compressive sensing (CS) has been proposed and studied by a lot of researchers, al-

most none of them touches the real application of it. While, in this section, we test

the sparsity of the real SAR raw data (obtained by University of Kansas in Green-

land, 2010), compress it using compressive sensing, and then recover the original

signal using several CS recovery algorithms (Basis Pursuit, Matching Pursuit and

Orthogonal Matching Pursuit), and compare these methods’ performance. Simula-

tion results are presented to prove the successful application of CS to real SAR raw

data. When proper sparsity matrix is chosen, the real SAR data could be trans-

formed to sparse signal. Using our designed algorithm, the positions and the exact

values of the SAR raw data can be almost perfectly recovered with a very low MSE

at a sampling ratio of 1/8. This is of great significance to help us perform further

research in the applications of CS to real SAR raw data.

Synthetic Aperture Radar (SAR) [47] is a well established imaging technology

that has become critical for remote sensing and observation applications. SAR ex-

ploits the motion of a moving platform, such as a plane or a satellite, to create a

synthetic aperture much larger than the real aperture of the antenna carried by the

moving platform. This allows SAR systems to image very large land swaths with

extremely high precision.

The success of SAR has resulted in a demand for increasing resolution and fi-

delity from the imaged area [48]. One of the main challenges in satisfying this demand

is dealing with the huge amount of data acquired. It is necessary to develop effec-

tive compression algorithms that can efficiently and effectively compress this huge

amount of SAR data. Besides, an important challenge with typical satellite-borne
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Figure 2.4. SAR image of University of Kansas - Greenland - 2010.

SAR data compression is that the acquired data is not processed on the satellite,

but transmitted to a ground station for processing. The reason is that the data pro-

cessing step, is hard to be performed on-board. Therefore, appropriate techniques,

which compress the SAR raw data to enable storage and transmission requirements,

have to be developed. A significant consideration for such algorithms is their com-

putational complexity, as they are required to operate using the limited hardware

on-board a satellite.

The state-of-the-art in SAR raw data compression is driven by the requirement

of high compression ratio at low complexity. And many efforts have been made to

develop suitable compression techniques [52] of the bit stream necessary for SAR raw

data coding [49], such as adaptive scalar [50] and vector quantization [51] techniques.

Transform coding algorithms including discrete cosine transform (DCT) and wavelet

transform (WT) based methods [54] [55] also have been used to compress the SAR

data by many researchers in recent years.
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However, these traditional compression methods [52] are based on Nyquist

rate − sampling at a high rate and then eliminating redundancy by compressing a

large amount of data, which will have poor efficiency in terms of both sampling rate

and computational complexity. Unlike traditional compression methods, compressive

sensing provides us a new point of view, with a high compression ratio, which could

compress the real SAR data significantly with small computational complexity. The

key point of compressive sensing is to exploit redundancy in the data modeled as

sparsity in an appropriate basis.

Although compressive sensing (CS) has been proposed and studied by a lot of

researchers, almost none of them touches the real application of it. While, in this

section, we test the sparsity of the real SAR raw data, compress it using compressive

sensing, and then recover the original signal using several CS recover algorithms

(Basis Pursuit, Matching Pursuit and Orthogonal Matching Pursuit), and compare

these methods’ performance.

The real SAR raw data we used in this section was obtained by University of

Kansas from Greenland island in 2010. Here we express our gratitude to University

of Kansas for sharing these SAR raw data for our research. They developed and

deployed a wideband 8-channel synthetic aperture radar (SAR) at Summit Camp,

Greenland (72.5783◦ N and 38.4596◦ W)[53]. We used the channel 2’s SAR raw data

obtained in 2010, Data 20100510 07.mat. Figure 1 shows the SAR raw data image

of channel 2. The vertical axis represents the depth in ice, while the horizontal axis

represents the distance the radar travels.

Our simulation results are presented to prove the successful application of CS

to SAR raw data. Using our designed algorithm, we could almost perfectly recover

the SAR raw data at a compression ratio of 1/8. This is of great significance to

help us do further research in CS and the real application of CS. Besides that, this
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research provides some real instruction of apply CS to compress huge amount of SAR

raw data.

For the sparse properties of DWT, we use wavelet transform to make the real

SAR raw data sparse. The most commonly used set of discrete wavelet transforms

was formulated by the Belgian mathematician Ingrid Daubechies in 1988 [56]. The

Daubechies wavelets are a family of orthogonal wavelets defining a discrete wavelet

transform and characterized by a maximal number of vanishing moments for some

given support. With each wavelet type of this class, there is a scaling function which

generates an orthogonal multiresolution analysis. This formulation is based on the

use of recurrence relations to generate progressively finer discrete samplings of an

implicit mother wavelet function; each resolution is twice that of the previous scale.

In our research, we use 6-level “Daubechies” wavelet decomposition of the real SAR

raw data.

As random matrices are largely incoherent [18] with any fixed basis Ψ. Select

an orthobasis Φ uniformly at random, which can be done by orthonormalizing n

vectors sampled independently and uniformly on the unit sphere. Then with high

probability, the coherence between Ψ and Φ is about
√
2 logn. By extension, random

waveforms with independent identically distributed (i.i.d.) entries, e.g., Gaussian or

±1 binary entries, will also exhibit a very low coherence with any fixed represen-

tation Ψ. Therefore, in this section, we choose Gaussian Random Matrix as the

measurement matrix Φ.

In this section, we use three different reconstruction algorithms to recover the

real SAR raw data: basis pursuit (BP), matching pursuit (MP), and orthogonal

matching pursuit (OMP).
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Basis pursuit [57] is the mathematical optimization problem of the form:

min∥x∥1 subject to y = Ax (2.129)

where x is a N ×1 solution vector, y is a M ×1 vector of observations, A is a M ×N

transform matrix, and M < N .

Basis Pursuit is usually applied in cases where there is an underdetermined

system of linear equations y = Ax that must be satisfied exactly, and the sparsest

solution in the l1 sense is desired. It can be thought of as a least square problem

with an l1 regularizer.

Matching pursuit (MP) was proposed in [58] and [59]. Matching pursuit is a

type of numerical technique which involves finding the “best matching” projections

of multidimensional data onto an over-complete dictionary D.

The first extension of Matching Pursuit (MP) is its orthogonal version : Or-

thogonal Matching Pursuit (OMP) [60]. The main difference with MP is that coef-

ficients are the orthogonal projection of the signal on the dictionary D.

2.4.1.1 Algorithm

The procedure of our algorithm can be described as follows,

Step 1: Obtain the original SAR raw datas’s amplitude x;

Step 2: Perform a DWT to the signal x, to get the sparse signal xs.

Step 3: Using a random measurement matrix (Random Gaussian Matrix, random

binary matrix, etc.) to compress the sparse signal xs and get the compressed data y.

Step 4: Recover sparse x̂s from y using several recovery algorithms (BP, MP or

OMP).

Step 5: Get the recovered SAR signal x̂ using the inverse wavelet transform.
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Step 6: Compare the MSE (Mean Square Error) of the original SAR raw data x and

recovered x̂; original sparse signal xs and the recovered x̂s.

2.4.1.2 Simulation Results

Because the phase of the SAR raw data is either 2.5656 or -0.5760 in radians, in

the data process, we can use a particular method to store these phases. In this part,

we get the amplitude of the SAR raw data to do the compression and reconstruction.

In Figures 2.5, and 2.6, we give an example of the sparsity properties of the SAR raw

data. Here, the total number of the original data N = 3300, M = N/8 and K = 79

(N is the original SAR raw data’s dimension, M is the compressed data’s dimension,

while K is the number of non-zero elements, which satisfies M ≥ K log(N/K)), with

the compression ratio equaling to 1/8. Figure 2.6 shows the recovered sparse signal

using the Basis Pursuit(BP).

From our results, we observe that after the wavelet transform, the original

SAR raw data is transformed to K non-zero elements, K = 79. Here we use Random

Gaussian Matrix as the random measurement matrix to do the compression. In the

reconstruction process, comparing Figures 2.5 and 2.6, we find both the positions

and the exact values of the K non-zero elements can be almost perfectly recovered,

with very low MSE as shown in the later part of this section.

Using the algorithm discussed above, in Figures 2.7, 2.8, 2.9, and 2.10 we

show SAR data’s compression and reconstruction performance. Figure 2.7 gives the

original SAR raw data, while the other three figures show the reconstructed SAR

raw data using BP, MP and OMP. Here, the three figures all use compression ratio

of 1/8. We can analyze from these figures that using our algorithm, almost all these

three reconstruction methods work well for this real SAR raw data, and BP and
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Figure 2.5. SAR signal in sparse basis-Original.
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Figure 2.6. SAR signal in sparse basis-Recovered.
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Figure 2.7. SAR signal - Original.

OMP give a little better performance than MP, because we could notice there are

some noise features in the recovered signal using MP.

In this part, we simulate SAR raw data using three different recovery algorithms

− basis pursuit (BP), matching pursuit (MP), and orthogonal matching pursuit

(OMP). In this simulation process, we did not use a large number of samples, and

thus time saving looks not that big; while in real applications, facing to a huge

amount of SAR data, time cost is really an essential element for us to consider.

Besides the time cost, reconstruction performance is also very important. From the

elapsed CPU time shown in Table 2.3, we can observe that BP costs the longest

time to implement. MP and OMP use much less time. Here, the elapsed CPU time

1 was obtained using tic and toc in MATLAB2010. While from the performance

point of view, we notice that MP gives the worst performance, while BP and OMP

are much better. We could also observe from these figures that, BP would achieve

1Windows Vista, 32-bit Operating System with Intel Core 2 Duo CPU E8600 @3.33GHz and

4.00 GB RAM
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Figure 2.8. SAR signal recovered-BP.
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Figure 2.9. SAR signal recovered-MP.
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Figure 2.10. SAR signal recovered-OMP.

good reconstruction performance when the compression ratio is greater than 0.15

(with -60dB MSE), MP is nearly 0.18 (with -60dB MSE), while OMP is 0.12 (with

MSE as low as -270dB). Considering both aspects of time consumption and MSE

performance, we could conclude OMP is the best algorithm for SAR data recovery

in these three methods.

This comparison of different reconstruction algorithms is significantly mean-

ingful, as it can give us further instructions in the compression and reconstruction

of a huge amount of real SAR raw data.

Table 2.3. Elapsed CPU time of three different recovery algorithms for SAR raw
data: BP, MP, and OMP

Methods BP (seconds) MP (seconds) OMP (seconds)
Elapsed CPU time 133.327777 61.399212 27.507376
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Figure 2.11. SAR data reconstruction performance-BP .
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Figure 2.12. SAR data reconstruction performance-MP .
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Figure 2.13. SAR data reconstruction performance-OMP .

2.4.2 Radar Sensor Networks (RSNs)

Radar sensor networks (RSNs) have attracted a lot of interest in many civilian,

military, biomedical applications, and academia [80] [67] [82] [83]. RSNs consists of

multiple collaboratively operating radar sensors which have capabilities of sensing,

signal processing and wireless communication [62]. Radar sensors are deployed ubiq-

uitously and networked together in an ad-hoc form to perform a lot of tasks such

as surveillance, battlefield, disaster relief, search and rescue, etc. Realistic RSNs are

described in details in the literature [61]. Each radar sensor in a RSNs is monostatic

and contains only one transmitting and receiving element. Compared to a single

radar sensor, RSNs has advantages in improving the system sensitivity, reducing

obscuration effects and vulnerability, and increasing the detection performance.

However, some challenging problems such as energy efficiency, interference sup-

pression, networking between sensors, and reducing communication cost need to be

considered. And a lot of work have been done to try to solve these problems [72]
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[76] [66] [67]. The importance of global communication cost reduction is obvious

because radar sensor networks are typically composed of hundreds to thousands of

radar sensors, generating tremendous amount of radar sensor data. Due to the re-

source limitations of sensor nodes [63](processing, memory, bandwidth and energy,

etc), the gathered data of sensor nodes has to be compressed quickly and precisely

for transmission and recovery. It is necessary to develop effective compression al-

gorithms that can efficiently and effectively compress these huge amounts of highly

redundant data [79].

The states of art radar systems [68] apply a large bandwidth and an increasing

number of channel produce huge amount of data, based on Nyquist rate - sampling at

a high rate and then eliminating redundancy by compressing a large amount of data,

which will have poor efficiency in terms of both sampling rate and computational

complexity. Achieving adequate wideband radar signal (which can be compressed

into a short duration pulse) requires both a high sampling frequency and a large

dynamic range. Currently available A/D conversion technology is a limiting factor

in the design of ultra wideband radar systems, because in many cases the required

performance is either beyond what is technologically possible or too expensive. More-

over, radar sensor networks (RSNs) have been recently considered to overcome the

performance degradation of a single radar. Due to the expansion of data introduced

to RSNs, the compression of received data is a design challenge of future RSNs. The

emerging theory of Compressive Sensing (CS) [77][26] has provided a new framework

for signal acquisition and it has gained increased interests over the past few years. CS

is an alternative to the Nyquist rate for the acquisition of ’sparse’ signals. Consider

a signal that is sparse in some basis (often using a wavelet-based transform coding

scheme).The basic idea of compressive sensing is projecting the high dimensional

signal onto a measurement matrix, which is incoherent with the sparsifying basis,
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resulting to a low dimensional sensed sequence. Then with a relatively small number

of appropriately designed projection measurements, the underlying signal may be

recovered exactly [18]. In contrast to the common framework of first collecting as

much data as possible and then discarding the redundant data by digital compression

techniques, CS seeks to minimize the collection of redundant data in the acquisition

step.

As the nodes in sensor networks have limited computing ability and storage

capacity, some researchers focus on finding new data compression algorithm. For

example, [63] proposed a sampling frequency control algorithm which adjusted the

sampling frequency on sensed data dynamically, and a data compression algorithm

was adopted to reduce the amount of transmitted data. [64], proposed to compress

the historical information from the sensor nodes using the Adaptive Learning Vector

Quantization (ALVQ) algorithm, which captured the prominent features of the data

and further compress all the other data with these features. In [65], the authors

proposed a Compressed Kalman Filtering (CKF) algorithm to reduce the transmitted

data for wireless sensor networks. CS has the advantage of compress the redundant

data into a much smaller amount, therefore, a lot of researchers have already begun

to apply CS to compress the tremendous amount of radar sensor data in RSNs.

However, most existing work did not fully consider the correlations among sensors.

Taking full advantage of the correlations among the sensor data is a demanding

approach to reduce the cost of communication. In this section, we mainly consider

how to compress the huge amount of data gathered by multiple sensors in RSNs.

Although there are some existing work trying to compress the tremendous amount of

data in RSNs, as we will show, their results are not that efficient. In [74], the authors

compress large-scale data in wireless sensor networks (WSNs), while, they directly

let all sensors’ reading form a large vector to compress, without considering the
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correlation between sensor signals. Giorgio [73] recently proposed a joint Principal

Component Analysis (PCA) and Compressive Sensing (CS) algorithm to sense and

compress the large data sets in real WSN scenarios. However, we will show in this

section that this algorithm is not efficient although it considers the correlation of

sensor signals. In [75], the proposed joint recovery for distributed compressive sensing

is a good and mature method for sensor networks. However, this recovery method

uses the optimization of both common component and innovation component, which

introduces more computation complexity in the recovery process. [79] assume that

only a subset of all the sensors is active at each sampling instant, it is possible to

estimate the sample values at all the sensors. While this result is based on certain

assumptions, which is not always realistic in real case.

In this section, we propose a new efficient and effective sampling method for real

Radar Sensor Networks based on compressive sensing. Our algorithm neither requires

any new optimization method, nor needs complex pre-processing before compression.

We will compare our algorithm’s performance and complexity with some existing

work, such as joint PCA & CS, DCS, and traditional CS. Numerical results will

show that our proposed algorithm’s performance is more efficient with correlations

among the sensor data considered, without introduce any computation complexity.

With more sensor nodes, our algorithm is more efficient, which significantly reduces

the data gathered. Besides that, our algorithm requires no new recovery algorithm,

and regular recovery of CS is enough. This is a big advantage of our algorithm,

especially for the hardware design.

2.4.2.1 Radar Sensor Networks Description

As lower frequencies have better penetrating properties. UWB radar uses a

large spectrum in combination with lower frequencies which makes it suitable for
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Effective Isotropic Radiated Power. For each radar sensor, each scan is shown as

Figure 2.15.

Table 2.4. PulsOn220 Specifications

Parameter UWB (P220)
Central Freq. 4.3 GHz
Bandwidth% 53.48

10dB Bandwidth 2.3 GHz
Pulse type 1st order Gaussian Monocycle

Pluse Duration 430 pS
Pluse Length 0.13 m
Resolution 6.5 cm

Power Consumption 5.7 Watts
Pulse Repetition Freq. 9.6 MHz

EIRP -12.8 dBm

For sensor networks, a number of sensors measure signals which are corre-

lated both spatially and temporally. Traditionally, researchers usually independently

project each sensor’s signal to some basis and then transmits just a few of the re-

sulting coefficients to a collection point, like in paper[74], the authors use all the J

sensors’ signals as a large vector x = [x1 x2 . . . xJ ]T and compress it using conven-

tional compressive sensing method. In that case, the authors did not consider the

correlation property between the signals of sensor networks. Some research begin to

dig this property in sensor networks, but as we will discuss in this section, their algo-

rithm is not that efficient, that is, their algorithms are correspondingly complex with

correlation property introduced, which is not acceptable in real-world application.

However, in this section, we propose a new efficient algorithm which considers the

correlation between sensors without introducing any complexity, which even reduces

the whole complexity of algorithm.
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Figure 2.15. One Radar Sensor Signal.

[73] gives a detailed analysis of both inter-node and intra-node correlation

for Temperature, Humidity, Solar, Luminosity, Wind, and Voltage sensors. Here,

we borrow their definition to see the correlation property of Radar Sensors. The

inter-node (spatial) and inter-node (temporal) correlation for Radar Sensor Network

signals are shown in Figures 2.16 and 2.17. In Figure 2.16, the x-axis is the number

of sensors separated, and the y-axis is the spatial correlation. While in Figure 2.17,

the x-axis m is the time shifted for one sensor signal. It obvious that all radar sensor

signals are highly correlated both spatially and temporally.

2.4.2.2 Proposed Compression Algorithm

Similarly as discussed in [75], where the authors introduced Distributed Com-

pressive Sensing (DCS) for multi-signal ensembles which exploit both intra- and

inter-signal correlation structures in sensor networks, we also use the Joint Sparsity
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Figure 2.16. Inter-node correlation for radar sensor signals.
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Figure 2.17. Intra-node correlation for radar sensor signals.
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Figure 2.18. Common Component of sensor signals.

Model (JSM) in this section, where all signals share a common component while each

individual signal contains a sparse innovation component, as shown below,

xj = xc + xi (2.130)

in which,

xc = mean(x1, x2, · · · , xJ) (2.131)

where j ∈ {1, 2, . . . , J}, J is the total number of sensors, xc is the common compo-

nent, and xi is the innovation component for xj . Here, we totally have 100 sensors,

and the common component is shown as in Figure 2.18.

For each individual sensor’s signal, subtract the common part, we could get

the corresponding innovation component as illustrated in Figures 2.19 and 2.20. The

interesting thing we could observe is that almost all elements of these innovation

are around zero, therefore, these innovation components could be treated as sparse

with a proper threshold set. Compressive sensing algorithm could be directly used

to compress these innovation components, as they are sparse as we see.
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Figure 2.19. Innovation Component-1.
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Figure 2.20. Innovation Component-2.
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However, we could also observe the dimension of these innovation components

are still too large, which could not reduce the compression complexity significantly if

we directly use compressive sensing to compress them. A new and efficient algorithm

is required to propose to compress these huge amount of data in sensor networks.

We will discuss our proposed algorithm in next Section and then compare the per-

formance of our algorithm with some existing methods, such as joint PCA and CS

algorithm.

Based on what we observed that the innovation parts are sparse, and our dis-

cussion above, we propose a new compression algorithm for Radar Sensor Networks.

The proposed compressive data gathering is able to reduce global scale communi-

cation cost without introducing intensive computation or complicated transmission

control. The algorithm is shown as,

1). Find the common component xc for J sensors’ signals;

xj = xc + xi, j ∈ 1, 2, · · · , J (2.132)

in which,

xc = mean(x1, x2, · · · , xJ) (2.133)

2). For each sensor’s data, subtract the common component, get each individual

sensor’s innovation component, i.e., xi;

3). Observe that each sensor’s innovation component xi is sparse. One method is

directly compress each innovation component using CS, however, as we will give in

numerical results section, a large dimensional vector is still required to represent

each innovation component. Therefore, we try to compress the whole RSNs signals

further;

4). Record all the non-zero values vi and their positions for each sensor’s innovation

part, get a new vector vi. This is for the reason that each innovation component is
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sparse, only a few non-zero values exists, recording the few positions for non-zero

values does not introduce more computing complexity;

5). Find a basis to map the new vector vi to a sparse vector vs,i, here we use Discrete

Wavelet Transform (DWT) or Discrete Cosine Transform (DCT);

6). Compress vs,i using compressive sensing to get a much smaller amount of data

for communication or storage;

7). To recover the RSNs signal, based on all stored innovation components’ position

and the compressed values, recover and get each innovation component x̂i;

8). To get each radar sensor’s signal, add the corresponding innovation component

x̂i and the common component x̂c get x̂j = x̂c + x̂i ;

We will show in the numerical results section that our algorithm is efficient

and effective. Although it requires a vector to store the positions of each innovation

component’s non-zero values, it just is stored there, not involved in any calculation,

therefore, it does not introduce any computation complexity. What’s more, we ob-

serve that the signal dimension for each sensor node is 7489, but the non-zero ones

for each innovation component is less than 1000, the vector for position storage is

acceptable. Our algorithm fully utilize this property of each innovation component

to further compress it.

2.4.2.3 Simulation Results

This section presents some numerical results for our proposed efficient com-

pression algorithm. Due to the correlation property of sensor signals, we could use

joint sparsity model to get the common component xc and each sensor’s innovation

component xi,j , j ∈ {1, 2, . . . , J} for the RSNs. The common component has already

shown in early part of this section. The compression of the common component xc
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Figure 2.21. Innovation component-Original & Recovered.

is as Figure 2.18, here, we use wavelet transform to convert the common component

xc to be sparse, and use random Gaussian matrix as measurement matrix.

For each sensor’s innovation component, as we discussed in the sparsity analysis

section, it is sparse. Absolutely, we could directly use CS to compress the sensor

signal, as shown in Figure 2.21. However, although these innovation components are

sparse, their dimension are still the same as each sensor’s signal. The compression

of these innovation could not reduce significantly, as shown in Figure 2.22, where for

a good recovery, we still get M = 2000 compressed signals after CS.

How to reduce further? As these innovation components are sparse, we could

consider record all non-zero values and their positions. In this case, as we will

discuss, these non-zero values, composing a new vector, vi, could be found sparse

in some basis, and be compressed further using CS. With their positions stored and

each value recovered, each innovation component will be easily reconstructed back.

This process significantly reduce the computation complexity introduced by CS, as
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Figure 2.22. Directly compression of innovation component.
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Figure 2.23. Compression of non-zero Innovation Component.
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Figure 2.24. Original Non-zero Innovation Component vi.

the compression of each innovation component only requires quite small number of

measurement “M”. For example, Figure 2.24 shows all the 941 non-zero values of

the innovation component in Figure 2.20, which form a new vector, vi. We use

an independent matrix (with dimension 941 × 1) to record all the positions for

the non-zero values. We notice the new vector vi is sparse in some basis, such

as Discrete Cosine Transform (DCT) or Wavelet Transform, therefore, it could be

further compressed and well recovered using compressive sensing. As shown in Figure

2.23, for the same innovation component above, this algorithm only requires M = 300

for a good recovery. Although it still need a vector to store all the 941 non-zero values

of the innovation component, this vector doesn’t involve in any calculation, without

introducing any computation cost. The recovered non-zero vector v̂i is shown in

Figure 2.25.

Although there is a threshold set to treat most elements in innovation compo-

nents as zero, as the threshold is much small compared with the common component
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Figure 2.25. Recovered Non-zero Innovation Component v̂i.

of the sensors’ signals, the final error for each sensor is still at an acceptable level. The

Figure 2.26 below give one sensor’s original signal and its corresponding recovered

signal using our algorithm, i.e., common component and the innovation component.

Figure 2.27 shows the performance with different number of sensors. The x-

axis is the required M-dimension per sensor after compression using our proposed

algorithm, and y-axis is the Mean Squared Error (MSE). It is obvious that with

more sensors involved, this algorithm contributes less communication cost for each

sensor’s signal without introducing any computation complexity, which is much more

efficient compared with traditional CS or some existing work. We give the detailed

comparison of this proposed algorithm with some existing work in next section.

2.4.2.4 Comparison with Existing Work

In [74], the authors let J sensor readings form a new vector x = [x1 x2 . . . xJ ]T ,

x is a K-sparse signal in a particular domain Ψ, and then compress it using conven-
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Figure 2.26. Original & Recovered Signal using our algorithm.

tional compressive sensing method. This algorithm did not fully use the correlation

property of sensor signals. No matter how many sensors in the sensor networks, the

dimension ‘M’ required for compression of each sensor’s signal is almost the same,

as this algorithm treats all sensors’ signals independent. The performance of this

algorithm is indicated as ‘CS’ in Figure 2.29. We notice no matter how many sensors

involved, the dimension ‘M’ required is almost 2000 per sensor using this method.

Joint CS & PCA [73] is an algorithm that maps each sensor signal xj into

a sparse vector sj using Principal Component Analysis (PCA), which compresses

each sensor’s signal into a smaller number of vector. This algorithm could reduce

the communication cost, while on the other hand, introduces intensive computation

for the pre-processing. We show the comparison of Joint CS & PCA algorithm and

traditional CS in Figure 2.29. Here, the joint CS & PCA algorithm first use the

following PCA principal to convert the j−th sensor’s signal xj , j ∈ {1, 2, . . . , J} into

a sparse vector sj,

xj − x̄j = Ujsj (2.134)

67



0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M

M
SE

compressive sensing for radar sensor networks

 

 
1 sensor
2 sensors
5 sensors
10 sensors
100 sensors

Figure 2.27. Efficient Sampling using CS for RSNs.

where x̄j is the sample mean vector and Uj is the orthonormal matrix whose columns

are the unitary eigenvectors of the sample covariance matrix of xj according to the

decreasing order of the corresponding eigenvalues.

Here the joint CS & PCA algorithm directly use the obtained sparse vector sj

to do the compressive sensing. We could observe that their performance are similar

from Figure 2.29 for one sensor signal. With the number of sensors increases, the

joint CS & PCA algorithm uses almost the same number of data to represent each

sensor’s signal, without significantly reduce the communication cost. Furthermore,

from Table 2.5, we could see that the pre-processing of joint CS & PCA algorithm

is time-consuming, that is, it requires much more time to get the sparse vector sj

using PCA before CS, as there are a lot of matrix computation in PCA. Although its

performance is acceptable, but the time inefficient is not tolerant in real application.

Comparison of the method in [74] and joint CS & PCA algorithm is shown in Figure

2.29. The x-axis M is the number of measurement per sensor required. As these two
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Figure 2.28. Sparse vector obtained from joint PCA & CS.

algorithms process each sensor signal independently, with more sensors involved, the

number of measurement per sensor almost remains the same. Here, the elapsed

CPU time (Windows 7, 64-bit Operating System with Intel(R) Core(TM) i7-2600s

CPU @ 2.80GHz and 8.00 GB RAM) is obtained using tic and toc in MATLAB2010.

xj is the j−th radar sensor signal, as described before, xj = xc+xi, xc is the common

component for all sensors, and xi is each radar sensor’s innovation component. vi is

a new vector formed by all non-zero values for each sensor’s innovation component,

xi. sj is the sparse vector related to each radar sensor signal xj , obtained from

equation (2.134). DWT represents discrete wavelet transform, in this section, we

use 6-level “Daubechies” wavelet decomposition of the real radar signal. DCT is

discrete cosine transform. It means that the signal is sparse, if we mention “directly

CS”, as it’s not necessary to find a sparse basis, directly mapping the sparse signal

to the measurement matrix is enough. We always use random Gaussian matrix as

measurement matrix in this section. For our comparison, in this table, except vi,
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Figure 2.29. Comparison of traditional CS and joint PCA & CS.

all the others use M = 2000 measurements for good recovery as shown in Figures

2.22, 2.27, and 2.29, with the signal dimension N = 7489. For vi, its dimension is

941, and we use 300 measurements as shown in Figure 2.23 to compress and recover

it. The last row in Table 2.5 shows the time consumption of representing each xj to

a sparse vector sj using equation (2.134). With matrix Uj introduced, joint CS &

PCA algorithm requires too much time for pre-processing before compression. For

our algorithm, after we get vi, the compression is easier and quickly. It is obvious that

our algorithm consumes the least time compared with the compression in [74] or joint

CS&PCA algorithm. Comparing Figures 2.29 and 2.27, we could conclude that our

proposed algorithm is more efficient for RSNs, especially with the number of radar

sensors increases. Combined with our performance result, we could conclude that

our proposed algorithm is not only time efficient but also performance guaranteed.

Joint recovery [75] for distributed compressive sensing is a good and mature

method for sensor networks. However, recover each signal based on both common
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Table 2.5. Elapsed CPU time of different compression algorithms for different data
in RSNs.

Signal Compression CPU time (seconds)
xj DWT+CS 92.021605
xc DWT+CS 91.913748
xi directly CS 62.927351
xi DWT+CS 37.560715
vi DCT+CS 13.188225
sj Directly CS 77.983813
sj N/A 1150.283037

component and the corresponding innovation component using the optimization, as

shown in equations (2.135) and (2.136), which introduces more computation com-

plexity in the recovery process. They recover each signal based on both

x̂ = arg min∥x∥l1, s.t. y = ΦΨx (2.135)

∥x∥l1 = ∥xc∥l1 + ∥xi∥l1 (2.136)

While our algorithm reconstructs common component and innovation compo-

nent separately. That means that using our algorithm, no new recovery algorithm

has to be found, regular recovery of CS is enough. This is a big advantage of our

algorithm, especially for the hardware design.

2.4.3 Underwater Acoustic Sensor Networks (UWASNs)

2.4.3.1 Introduction

Underwater Acoustic Sensor Network (UWASN) [84] [85] [86] [87] [88] [89] [90]

[91] is a distributed underwater system with networked wireless sensors with sensing,

processing, and communication capabilities that are deployed underwater to support

a broad range of applications. There has been a growing interest in monitoring
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underwater mediums for scientific, environmental, commercial, safety, homeland se-

curity and military applications nowadays. UWASN consists of a variable number of

sensors or vehicles, which self-organize in an autonomous network which can adapt

to the characteristics of the ocean environment, that are deployed underwater to

perform collaborative monitoring tasks. Because of the characteristic (large delay,

long distance of communication) of network, UWASN mainly differs in the commu-

nication media employed for information transmission. And acoustic signal is used

in underwater due to less attenuation and further distances in water compared to

radio signals. However it has several challenges [84] [88] [89] [92] [93] [94] [95][96] [97]

[98] [99] [100] [101] [102] [103] [104], such as limited bandwidth and high propagation

delays. Underwater acoustic communications [101][102] are constrained by limited

and distance-dependent bandwidth, time-varying multi-path propagation and low

speed of sound. Todays off-the-shelf acoustic modems typically have the bandwidth

between 5−20Kb/s. Bandwidth limitations make reducing data counts in UWASNs

even more important than for radio networks [89]. This stimulates us to find a

solution to reduce information stored or transmitted by UWASNs.

Besides, underwater acoustic sensor nodes have limited storage capacity. From

[87][88], we know that if data collecting rate exceeds the storage capacity of the

sensor node during the expected battery lifetime, then the data must be transmitted

to another location or the node must be retrieved prior to full battery expenditure,

which indicates that the amount of data that can be collected over a period of

time is dependent on the maximum data storage capacity of a sensor node and the

battery lifetime. In [85], the authors assumed that sensor nodes could buffer data

with temporary data storage, which did not solve the data storage problem from

the root. With applications like seismic imaging, UWASN nodes will collect and

send large amount of data that can easily overwhelm the network capacity. Due
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to limited bandwidth, poor-quality communication channels, and limited storage

capacity for underwater acoustic sensor nodes in UWASNs, appropriate techniques to

compress the UWASNs data to enable storage and transmission requirements should

be developed. The emerging method compressive sensing (CS) [16] [17] [19] has high

compression ratio, which could compress the real UWASNs data significantly with

less computational complexity. And CS theory can be very promising, since sparsity

is an attribute present in natural as well as man-made systems [19]. Therefore,

in this section, noisy compressive sensing with application to UWASNs is studied

theoretically and in real-world data.

Some pioneering works have discussed the application of CS in wireless sensor

networks (WSNs). Luo et al, presented the first complete design to apply CS theory

to sensor data gathering for large-scale WSNs in [105]. Some applications of com-

pressive sensing over networks was demonstrated in [106]. An efficient and effective

signal compression algorithm based on CS principles for applications in real-world

radar sensor networks was given in [136]. Distributed CS which exploits both intra-

and inter- signal correlation structures for jointly sparse signals was introduced in

[107]. And a novel CS based approach for sparse target counting and positioning

in WSNs was proposed in [108]. Although compressive sensing (CS) has been pro-

posed and studied by many researchers, almost no one has applied it to real-world

UWASNs. Besides that, most previous works focused on the gathering, compression

and reconstruction of sensor data, while our work focuses more on the theoretical rate

distortion analysis of the application of CS in UWASNs, i.e., how much distortion

between the original sensor data and its representation using CS.

Since Gaussian assumption is a classical modeling assumption heavily used in

areas such as signal processing and communication system [41], in this section, we

analyze the performance of noisy compressive sensing with application to UWASNs.
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Due to limited bandwidth, poor-quality communication channels, and limited storage

capacity for underwater acoustic sensor nodes in UWASNs, appropriate techniques to

compress the UWASNs data to enable storage and transmission requirements should

be developed, which motivates us to apply CS to UWASNs, and study the theo-

retical and real-world performance of noisy CS with application to UWASNs. We

have to mention that although the theoretical performance results are derived with

the assumption that the source and noise follow Gaussian distribution, these results

still could be used as theoretical reference of real application of noisy compressive

sensing to UWASNs. The reason is that the Gaussian distribution maximizes the

entropy over all distributions with the same variance[36]. The entropy is a measure

of the average uncertainty in the random variable, which indicates that our results

provide the worst-case information-theoretic performance. The performance of noisy

compressive sensing is studied theoretically in the presence of random noise. Since

the reconstruction distortion is dependent on the distortion in the measurement,

we first study the measurement rate distortion performance of compressive sensing

with random noise. We discuss the measurement rate distortion performance with

uniform quantization and non-uniform quantization of the measurement observation

respectively. Then the reconstruction rate distortion function of noisy compressive

sensing is detailed. The corresponding reconstruction rate distortion performance

with uniform and non-uniform quantization are given as well. The rate distortion

performance in underwater acoustic sensor networks is studied, with or without cor-

relation among sensor readings. These results provide some theoretical reference of

the real application of compressive sensing in the presence of noise. The compres-

sion of real-world underwater acoustic sensor network data is applied to verify the

theoretical results derived in this section.
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2.4.3.2 Rate-Distortion Performance of Noisy Compressive Sensing in Underwater

Acoustic Sensor Networks

For sensor networks with S sensors, X1, X2, · · · , XS, the rate distortion func-

tion can be represented as[115][116],

RX1,X2,··· ,XS(D1, D2, · · · , DS)

= min
E(D(X1,X̂1))≤D1,··· ,E(D(XS ,X̂S))≤DS

I(X1, X2, · · · , XS; X̂1, X̂2, · · · , X̂S) (2.137)

The mutual information between the sensed information before and after CS[115][116]

is

I(X1, X2, · · · , XS; X̂1, X̂2, · · · , X̂S)

= H(X1, X2, · · · , XS)−H(X1, X2, · · · , XS|X̂2, · · · , X̂S)

= I(X1; X̂1) + I(X2; X̂2) + · · ·+ I(XS; X̂S)

− I(X1;X2)− I(X1;X3)− · · ·− I(X1;XS)

− I(X2;X3)− I(X2;X4)− · · ·− I(X2;XS)− · · ·− I(XS−1;XS)

=
S∑

i=1

I(Xi; X̂i)−
S∑

i=1

S∑

j=2,j<i

I(Xi;Xj) (2.138)

Underwater sensor networks have attracted many research efforts from academy

and industry. The differences between underwater sensor networks and terrestrial

networks were addressed in [88][96], from which we know that in terrestrial sensor

networks, nodes are densely deployed, and thus there is spatial correlation between

sensor nodes because nodes are spatially close to each other. Usually, underwater

sensor nodes are deployed sparsely[88], because they may be more expensive and

complex. Therefore, correlation among sensor readings from different sensors may
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not be significant in UWASNs. In this case, without correlation among sensors, all

sensor readings X1, X2, · · · , XS are independent, therefore

I(Xi;Xj) = 0, i, j = 1, · · · , S, i ̸= j (2.139)

So that the rate distortion function can be represented as follows, if all sensors

are independent[115][116],

RX1,X2,··· ,XS(D1, D2, · · · , DS) =
S∑

i=1

RXi(Di) (2.140)

where the rate distortion function for each sensor signal could be calculated based

on what we described in Section 4.

However, in our study, the UWASNs signals are obtained as shown in [117],

where 32 sensors were evenly distributed within the exploration cable, and each node

is responsible for a signal acquisition of 16 hydrophones, with hydrophone space 2

m. Sensors are spatially close to each other, from which we could conclude that

UWASN signals are correlated in our case. Real experimental acquisition of the

UWASN waveform signals are shown in Fig. 2.30. A point-like sound source is

placed in the not far distance from the array as the sound excitation source in the

experiment.

It would need less number of bits to represent the sensed information if sensors

are correlated than that if they are independent[115][116], in which case

I(Xi;Xj) > 0, i, j = 1, · · · , S, i ̸= j (2.141)

Therefore, the corresponding rate distortion function is represented as

RX1,X2,··· ,XS(D1, D2, · · · , DS)

≥
S∑

i=1

RXi(Di)−
S∑

i=1

S∑

j=2,j<i

I(Xi;Xj) (2.142)
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Figure 2.30. Underwater Acoustic Sensors data.

2.4.3.3 Simulation and Experimental Results

The measurement rate distortion performance is shown in Figures 2.31 and

2.32 with different length N of signal and different dimension of measurement matrix

M . For compressive sensing, if we increase the dimension N of the original signal,

with M fixed, the dimension of the measurement matrix ΦM×N also increases. This

makes the whole compressive sensing more complex and time-consuming, i.e., more

bit rate R(D) is needed to process the signal. Therefore, we will only use the bit per

dimension rate R(D)/N in the latter part. On the other hand, if we fix the length of

N , but increase the sampling rate M/N , as shown in Fig. 2.32, the bit rate required

to transmit and process in compressive sensing will also increases.

The reconstruction rate distortion performance of noisy compressive sensing is

shown in Fig. 2.34 with different length of original signal x, the sampling rateM/N =

1/4, and K = 100, and Fig. 2.33 with different dimension of measurement matrix

M . The original signal x follows Gaussian distribution with σ2
x = 1. As random
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Figure 2.31. Measurement Rate Distortion Performance.
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Figure 2.32. Measurement Rate Distortion Performance.
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Figure 2.33. Reconstruction Rate Distortion Performance.

waveforms with independent identically distributed (i.i.d.) entries, e.g., Gaussian

or ±1 binary entries, exhibit a very low coherence with any fixed representation Ψ.

Therefore, we choose Gaussian Random Matrix as the measurement matrix Φ. From

[34], we know that |ϵ|2 ≤ 8K/N2. We assume the noise bound ϵ = 0.01.

Similarly as in measurement rate distortion performance, if we increase the

dimension N of the original signal, with M fixed, the dimension of the measure-

ment matrix ΦM×N also increases. This makes the whole compressive sensing more

complex and time-consuming, i.e., more bit rate R(D) is needed to process the sig-

nal. The rate R(D) in Figures 2.33 and 2.34 use bits per dimension, i.e., R(D)

we obtained from the expression divide by N, R(D)/N . In this simulation, we set

M = N/4 and have N = 1000, N = 2000 until N = 5000 several different values. It

is obvious that with the increase of distortion, the bit rate decreases and with the

increase of N , the rate increases. We can also notice that, although N increases from

1000 to 5000, the bit per dimension R(D)/N does not increase severely. From this
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Figure 2.34. Reconstruction Rate Distortion Performance.

observation, we get the conclusion of the advantage of compressive sensing that it

uses less number of bits to represent the information.

The reconstruction rate distortion performance of compressive sensing with

quantization is shown in Fig. 2.35. For example, with quantization error ϵ =

0.293
√
M for eight-level uniform quantization, and ϵ = 0.202

√
M for eight-level

non-uniform quantization. It is obvious that for non-uniform quantization, the lower

bound of rate R(D) is much lower than that of uniform quantization, which indicates

that non-uniform quantization is much more efficient.

In our analysis, we assume the source signal follows Gaussian distribution,

and provide the corresponding results. However, in real world, not all the source

information follows Gaussian distribution. For example, for underwater acoustic

sensor networks[117], the data gathered looks like in Fig. 2.30, with the probability

density function (PDF) for each sensor signal shown in Fig. 2.36.
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Figure 2.36. Underwater Acoustic Sensors data-PDF.
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Figure 2.37. Underwater Acoustic data- Probability of Error.

From information theory, we know that the Gaussian distribution maximizes

the entropy over all distributions with the same variance[36]. As we know, The

entropy is a measure of the average uncertainty in the random variable. This indi-

cates that our results provide the bound of the worst case. For real application of

compressive sensing, even though the source does not follow Gaussian distribution,

our results could be used as an reference to judge the performance of compressive

sensing.

Figure 2.37 shows the compression performance of real-world underwater acous-

tic data with different SNR using compressive sensing. We observe that with the

increase of sampling rate M/N , the probability of error decreases. This property

indicates that in order to get better reconstruction performance with lower prob-

ability of error, the sampling rate should be chosen as high as possible. However,

higher sampling rate means higher computation complexity. To balance this, in the
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Figure 2.38. Underwater Acoustic data-Sampling Rate v.s. Distortion.

real application of compressive sensing, Fig. 2.37 could be referred for the chosen of

certain sampling rate at an acceptable probability of error.

Fig. 2.38 is the relationship between sampling rate M/N and distortion D.

From which, we could see that with the increase of sampling rateM/N , the distortion

D decreases, and with the increase of signal-to-noise ratio (SNR), the distortion also

decreases significantly.

In Fig. 2.39, the rate distortion performance of real-world underwater acoustic

data is given with different quantization levels. We have to mention here that the

performance in Fig. 2.39 is under the real-world UWASNs data, with quantization of

the compressed observation. The curves look not smooth, which is because the quan-

tization process of real-world UWASN data makes some useful information lost. As

discussed in the theoretical part, the quantization process is done to the compressed

observations y. First, Lloyd algorithm is used to optimize the scalar quantization

parameters, and then non-uniform quantization is performed. From Fig. 2.39, it

83



0 0.5 1 1.5 2 2.5 3 3.5 4
x 10−5

10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

Distortion

Ra
te

 R
(D

) −
 b

its

 

 
8−level quantization
16−level quantization
64−level quantization

Figure 2.39. UWASNs Rate Distortion with Quantization.

is obvious that with the increase of quantization level from 8 to 64, the minimum

distortion could achieve very small, and the minimum bit rate R(D) also becomes a

little smaller, which verifies the theoretical results proved in Section IV.

To see the real rate distortion performance in real-world underwater acoustic

sensor networks, we select 6 sensors’ signal in the same time period, with three of

them plotted in Fig. 2.30. As all these sensors monitor the same shallow water

environment at different locations, the signals they collected have high correlations,

which stimulates us to take advantage of this property in the rate distortion analysis.

There is a common part Xco, which is the average of all sensor signals, and there is

also a innovation part Xin for each sensor, which is the signal without the common

part. In the compression process, we only need to compress the common part once

for all sensors. Since each innovation part is sparse, which is easier to be compressed.

The corresponding rate distortion performance could be obtained in this process of

compressive sensing.
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As we described above, all sensors monitor the same shallow water environ-

ment at different locations, the signals they collected have high correlations, which

stimulates us to take advantage of this property in the rate distortion analysis. We

noticed that there are inter-node (spatial) and inter-node (temporal) correlation for

each reading of UWASNs. Therefore, in UWASNs, more sensor readings involved

does not mean more data rate R(D) required. Fig. 2.40 gives the change of data

rate (bits) with the increase of sampling rate in UWASNs. We can conclude that with

the increase of sampling rate M/N (with N fixed, N is the dimension of underwater

acoustic signal), data rate R(D) also increases. Take the correlation of UWASNs

into account, with more number of sensors, data rate R(D) does not increase sig-

nificantly, as shown in Fig. 2.40, the data rate per sensor becomes lower than one

sensor. There are only 6 sensors calculated in Fig. 2.40. If the number of sensors

of UWASNs increases to thousands or above, the advantage will be much more clear

that the required data rate does not increase as the whole sensor data increases,

which is detailed in [136][135]. This also indicates that the computation complexity

does not get higher with more sensor nodes involved, which is also because of the

correlation between sensors in UWASNs. Here the real data rate for each sensor

RXi(Di) is calculated based on the original UWASNs signal’s probability mass func-

tion (PMF), and the difference between the original and recovered signal’s PMF, i.e.,

RXi(Di) = min
∑

(H(Xi)−H(Xi− X̂i)). The mutual information between different

sensors is I(Xi;Xj) = H(Xi)−H(Xi|Xj) = H(Xi)−H(Xi −Xj |Xj).

Fig. 2.41 gives the relationship between rate R(D) and distortion. It is clear

that with the increase of distortion, the minimum information rate processed de-

creases. With the number of sensors increasing, for the same distortion, less data

rate will be required, which significantly improves the efficiency of processing.
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These results based on real-world UWASNs data prove the validity of our

theoretical results derived. Although the performance results are derived with the

assumption that the source and noise follow Gaussian distribution, these results still

could be used as theoretical reference of real application of compressive sensing, as we

explained in earlier part that the Gaussian distribution, as the worst case, maximizes

the entropy over all distributions with the same variance. The results provided in

this section could be used as theoretical references when apply compressive sensing

to real data compression and reconstruction.

2.5 Conclusions

In this chapter, error performance bounds of noisy compressive sensing are

derived based on information theory and estimation theory first. Information rate

distortion function is a measure as the number of bits per symbol to be stored or

transmitted under the constraint of a distortion. Rate distortion performance for

scalar quantization of measurement observation is derived. Based on this, recon-

struction rate distortion is also studied for CS.

In addition, we study the real-world applications of CS in Big Data, to Syn-

thetic Aperture Radar (SAR), radar sensor networks (RSNs), and underwater acous-

tic sensor networks (UWASNs). All these prove that compressive sensing is an effi-

cient algorithm for Big Data both in theory and applications.
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Chapter 3

Coprime Sampling and Nested Sampling

3.1 Introduction

Traditional sampling methods are based on Nyquist rate sampling, which will

have poor efficiency in terms of both sampling rate and computational complexity.

Nowadays, more and more techniques are proposed to overcome the Nyquist sam-

pling. Compressive sensing [17] provides us a new point of view, which could only

use much less samples to perfectly recover the original signal at a high compression

ratio. The authors give a new idea of co-prime sampling and nested sampling in

[124], which use sparse sampling to estimate the autocorrelation for all lags.

Nested sampling is an non-uniform sampling, using two different samplers in

each period. Although the signal is sampled sparsely and non-uniformly at 1 ≤ l ≤

N1T and (N1 + 1)mT ,1 ≤ m ≤ N2 for one period, the autocorrelation Rc(τ) of

the signal xc(t) could be estimated at all lags. Hence, nested sampling can be used

to estimate power spectrum even though the samples in the time domain can be

arbitrarily sparse [124]. While coprime sampling uses two uniform samplers, with

sample spacings PT and QT respectively, where P and Q are coprime integers.

Similar as nested sampling case, the authors in [124] proved that the estimates of all

lags of autocorrelation Rc(kT ) could be obtained from these two sets of samples of

the signal xc(t).

In this chapter, properties of these two sparse sampling schemes are investi-

gated. This chapter is organized as follows. The principle of nested sampling and

coprime sampling are given in Section 3.2. Rate distortion function of both nested
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sampling and coprime sampling is given in Section 3.3, since sparse sampling can

cause possible distortion because less number of samples are used. Theoretical anal-

ysis of how these two sparse sampling methods affect the power spectral density is

given in section 3.4. A secure transmission scheme for Big Data based on coprime

sampling and nested sampling is provided in Section 3.5, as Big Data presents critical

requirements for security in data collection and transmission of selected data through

a communication network. Section 3.6 summarizes the results.

3.2 Coprime Sampling and Nested Sampling

3.2.1 Nested Sampling

The nested array was introduced in [123] as an effective approach to array

processing with enhanced degrees of freedom [126]. The time domain autocorrela-

tion could also be obtained from sparse sampling with nested sampling structure

[125]. And the samples of the autocorrelation can be computed at any specified

rate, although the samples from this nested sampling are sparsely and nonuniformly

located.

In the simplest form, the nested array [125] has two levels of sampling density,

with the level 1 samples at the N1 locations and the level 2 samples at the N2

locations.

1 ≤ l ≤ N1, for level 1

(N1 + 1)m, 1 ≤ m ≤ N2, for level 2

Fig. 3.1 shows an example of periodic sparse sampling using nested sampling

structure with N1 = 3 and N2 = 5. The cross-differences are given by

k = (N1 + 1)m− l, 1 ≤ m ≤ N2, 1 ≤ l ≤ N1 (3.1)
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Figure 3.1. Nested sampling with N1 = 3, N2 = 5..

The cross-differences [125] are in the following range with the maximum value (N1+

1)N2−1, except the integers and the corresponding negated versions shown in (3.3).

−[(N1 + 1)N2 − 1] ≤ k ≤ [(N1 + 1)N2 − 1] (3.2)

(N1 + 1), 2(N1 + 1), · · · , (N2− 1)(N1 + 1) (3.3)

For example, consider the example in fig. 3.1, where 1 ≤ m ≤ 5 and 1 ≤ l ≤ 3,

the cross differences k = (N1 + 1)m− l will achieve these values

1, 2, 3, (), 5, 6, 7, (), 9, 10, 11, (), 13, 14, 15, (), 17, 18, 19

with 4, 8, 12, 16 missing.

Besides these integers, the difference 0 is also missing, for the reason that m

and l are nonzero. While, we notice that the self differences among the second array

could cover all of the missing differences, as shown

(N1 + 1)(m1 −m2), 1 ≤ m1, m2 ≤ N2 (3.4)

The difference-co-array could be obtained from the cross-differences and the

self-differences, which is a filled difference co-array as shown in (3.2). This means

90



that using nested array structure, with sparse samples, we could obtain the degrees

of freedom as

2[(N1 + 1)N2 − 1] + 1 = 2(N1 + 1)N2 − 1 (3.5)

Using the above principle, we could get a sparse sampling using nested sampling

structure as shown in fig. 3.1. We have two levels of nesting, with N1 level-1 samples

and N2 level-2 samples in each period, with period (N1 + 1)N2. This shows that

nested sampling is non-uniform and the samples obtained are very sparse.

Therefore, in (N1 + 1)N2T seconds, there are totally N1 + N2 samples. The

average sampling rate is

fs,nested =
N1 +N2

(N1 + 1)N2T
≈ 1

N1T
+

1

N2T
<

1

T
(3.6)

Here, T = 1/fn, fn ≥ 2fmax is the Nyquist sampling frequency, which is greater than

twice of the maximum frequency. As the Nyquist sampling rate is 1/T , the average

sampling rate of nested sampling is smaller than the conventional Nyquist sampling

rate.

If we set N1 and N2 larger, the average sampling rate fs would be arbitrarily

smaller. In the theoretical and numerical results sections, we will show that with N1

and N2 becoming larger, the bandwidth of the power spectrum density goes narrower,

i.e., the spectrum gets more efficiently used.

3.2.2 Co-Prime Sampling

Different with nested sampling, co-prime sampling involves two sets of uni-

formly spaced samplers as shown in Figure 3.2.

The coprime sampling uniformly sample the Wide-Sense Stationary (WSS)

process xc(t) using two sub-Nyquist samplers, with sample spacing PT and QT

respectively, where P and Q are coprime integers with P < Q. 1/T Hz is the
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Figure 3.2. Co-Prime sampling in the time domain..

Nyquist rate for a bandlimited process, i.e., 1/T = 2fmax, fmax being the highest

frequency.

x(n) = xc(nT ) (3.7)

Consider the product

x(Pn1)x
∗(Qn2) (3.8)

where x(Pn1) and x(Qn2) comes from the first and the second sampler. Set the

difference as

k = Pn1 −Qn2 (3.9)

The authors in [125] have shown that k can achieve any integer value in the range

0 ≤ k ≤ PQ− 1, if n1 and n2 in the ranges 0 ≤ n1 ≤ 2Q− 1 and 0 ≤ n2 ≤ P − 1.

For coprime sampling, the two samplers collect P+Q samples in PQT seconds,

the average sampling rate is

fs,coprime =
P +Q

PQT
=

1

PT
+

1

QT
<

1

T
(3.10)

Same as in nested sampling, T = 1/fn, fn ≥ 2fmax is the Nyquist sampling frequency.

We could notice the average sampling rate of coprime sampling is much smaller than

the conventional Nyquist sampling rate of 1/T .

92



Similar as stated in nested sampling, if we set P and Q larger, the average

sampling rate would be arbitrarily smaller. We will show that with P andQ becoming

larger, the bandwidth of the power spectrum density goes narrower.

3.2.3 PSD Estimation

In this part, we will detail the estimation of PSD using nested and co-prime

sampling structure. In signal and systems analysis, the autocorrelation plays a very

important role. The autocorrelation function of a random signal describes the general

dependence of the values of the samples at one time on the values of the samples at

another time.

The autocorrelation [128] of a real and stationary signal xc(t) is defined by this

averaging

Rc(τ) = E[xc(t)x
∗
c(t− τ)] (3.11)

Rc(τ) is always real-valued and an even function with a maximum value at

τ = 0.

For sampled signal, define x(n) = xc(nT ), for some fixed spacing T . For the

autocorrelation samples, R(k) = Rc(kT ), where Rc(·) as shown in (3.11). Therefore,

R(k) = E[xc(nT )x
∗
c((n− k)T )] = E[x(n)x∗(n− k)] (3.12)

R(k) can be computed from samples of xc(t) taken at an arbitrarily lower rate

using nested or coprime sparse sampling.

And here we only list some important autocorrelation properties which will be

used in this chapter:
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(1) Maximum Value The magnitude of the autocorrelation function of a wide

sense stationary random process at lag m is not greater than its value at lag m = 0,

i.e.,

R(0) ≥| R(k) |, k ̸= 0 (3.13)

(2) The autocorrelation function of a periodic signal is also periodic.

(3) The autocorrelation function of WSS process is a conjugate symmetric

function of k:

R(k) = R∗(−k) (3.14)

The power spectral density (PSD) describes how the power of a signal or time series is

distributed with frequency. The PSD is the Fourier transform of the autocorrelation

function of the signal if the signal is treated as a wide-sense stationary random

process [129]. Therefore, the Fourier transform of Rc(τ) is the PSD S(f),

S(f) =

∫ ∞

−∞
Rc(τ)e

−2πifτdτ (3.15)

S(f) is a real-valued, nonnegative function. Definition (3.15) shows that

S(−f) = S(f), i.e., the PSD is an even function of frequency f .

Taking Discrete Fourier Transform (DFT) of these lags of autocorrelation val-

ues, we could obtain the power spectral density as

S(n) =
N−1∑

k=0

R̂(k)e−i 2πN kn, k = 0, 1, . . . , N − 1 (3.16)

Next, we will separately describe how nested sampling and co-prime sampling

estimate the autocorrelation function.
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3.2.3.1 For Nested Sampling

For the samples obtained from nested sampling, consider the product x(n1)x∗(n2),

with n1 and n2 belong to the first period in fig. 3.1. We will get the samples at the

following locations

1, 2, . . . , N1, (N1 + 1), 2(N1 + 1), · · · , N2(N1 + 1) (3.17)

The set of differences n1 − n2 are exactly the difference-co-array described in (3.2),

that is, n1 − n2 will achieve all integer values in (3.2).

we can see that although the signal is sampled sparsely and nonuniformly at

1 ≤ l ≤ N1 and (N1 + 1)m,1 ≤ m ≤ N2 for one period, the autocorrelation Rc(τ) of

the signal xc(t) could be estimated at all lags τ = k.

An estimate of the autocorrelation samples for all k could be obtained [125] by

averaging the products x(n1)x∗(n2) over L periods,

R̂(k) =
1

L

L−1∑

l=0

x(n)x∗(n− k) (3.18)

3.2.3.2 For Coprime Sampling

As P and Q are co-prime, there exist integers 0 ≤ n1 ≤ 2Q − 1 and 0 ≤

n2 ≤ P − 1, such that the difference in equation (3.9) can achieve any integer value

k = Pn1 −Qn2 in the range of 0 ≤ k ≤ PQ− 1. Since k = P (n1 +Ql)−Q(n2 +P l)

for any l, we can average l to obtain an estimate of the autocorrelation R(k), that

is,

R̂(k) =
1

L

L−1∑

l=0

x(P (n1 +Ql))x∗(Q(n2 + P l)) (3.19)
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3.3 Rate Distortion Performance

Information rate distortion function is a measure of distortion between the

original source and its representation. Sparse sampling can cause possible distortion

because less number of samples are used. Our purpose is to construct a distortion

function which can measure the distortion because of these two sparse sampling

algorithms, either nested sampling (NS) or coprime sampling (CS). A wide variety

of distortion functions, such as Euclidean distance, Hamming distance, Mahalanobis

distance, Itakura-Saito distance have been used. Squared-error distortion is used

here. The original samples are denoted as xi, i = 1, · · · , L, where L is the total

number of samples. Assume that all original information from L samples is XL =

[x1, x2, · · · , xL], the selected information after sparse sampling can be represented as

[116]

X̂L
′
= S(XL) (3.20)

where S(·) denotes sparse sampling, either nested sampling or coprime sampling.

X̂L
′
= [x̂1, x̂2, · · · , x̂L′ ] and L

′
< L. The distortion associated with the sparse

sampling between all original samples and the selected samples is

D = Ed(XL, X̂L
′
) (3.21)

where d(·) is the distortion function.

The expectation in (4.7) is with respect to the probability distribution on XL.

The rate distortion function R(D) is the minimum of data rates R such that (R,D)

is in the rate distortion region for a given distortion. From [36][114], we know that

information rate distortion function is defined as

R(D) = min
Ed(XL,X̂L

′
)≤D

I(XL; X̂L
′
) (3.22)
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where I(XL; X̂L
′
) is the mutual information between XL and X̂L

′
.

I(XL; X̂L
′
) = H(XL)−H(XL|X̂L

′
)

= H(XL)−H(XL − X̂L
′
|X̂L

′
)

(h)

≥ H(XL)−H(XL − X̂L
′
) (3.23)

where inequality (h) follows from the fact that condition reduces the entropy.

From formula (3.22), we know that

Ed(XL, X̂L
′
) ≤ D (3.24)

For squared error distortion,

Ed(XL, X̂L
′
) = E(XL − X̂L

′
)2

=
∑

E(xi − x̂j)
2

(i)
=

∑

k

Dk ≤ D (3.25)

where i = 1, · · · , L and j = 1, · · · , L′
, and (i) follows from the definition that

E(xi − x̂j)2 = Dk.

Since Gaussian assumption is a classical modeling assumption heavily used in

areas such as signal processing and communication system [41], from [36], the rate

distortion function for a single Gaussian source N(0, σ2) with squared error distortion

is

R(D) =

⎧
⎪⎨

⎪⎩

1
2 log

σ2

D 0 ≤ D ≤ σ2,

0 D > σ2
(3.26)

For L independent zero-mean Gaussian sources x1, · · · , xL with variance σ2
1 , σ

2
2, · · · , σ2

L,

the rate distortion performance with squared-error distortion is given by [36] [114]

[112] [109]

R(D) =
L∑

i=1

1

2
log

σ2
i

Di
(3.27)
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where

Di =

⎧
⎪⎨

⎪⎩

λ if λ < σ2
i ,

σ2
i if λ ≥ σ2

i

(3.28)

where λ is chosen so that
∑L

i Di = D, and Di = E(xi − x̂i)2. This gives rise to a

kind of reverse waterfilling. We choose a constant λ and only describe those random

variables with variance greater than λ, and no bits are used to describe random

variables with variance less than λ.

3.3.1 For Nested Sampling

Theorem 9. (Rate distortion for nested sampling of Gaussian source) Let xi ∼

N(0, σ2
i ), i = 1, 2, · · · , L, be independent Gaussian random variables, and under

squared error distortion. The rate distortion between the original Gaussian source

and after nested sampling of these Gaussian random variables is given by

RNS(D) =
L∑

i=1

1

2
log 2πeσ2

i −
KNS∑

k=1

1

2
log 2πeDk (3.29)

where KNS is given in (3.33) and

Dk =

⎧
⎪⎨

⎪⎩

λ if λ < σ2
k,

KNS
L σ2

k if λ ≥ σ2
k.

(3.30)

where λ is chosen so that
∑KNS

k=1 Dk = D.

Proof. For nested sampling (NS), all L original information is XL = [x1, x2, · · · , xL].

And less number of samples L
′
will be selected based on nested sampling as

described,

X̂L
′

NS = [x̂1, x̂2, · · · , x̂L′ ]

= [x1, · · · , xN1, x(N1+1), · · · , xN2(N1+1), · · · ] (3.31)
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Therefore, (3.25) becomes

Ed(XL, X̂L
′

NS) =
KNS∑

k=1

Dk (3.32)

where the length of KNS could be determined based on the following formula, here

we assume Y = L (mod (N1 + 1)N2)

KNS =

⎧
⎪⎨

⎪⎩

⌊ L
(N1+1)N2

⌋N1(N2 − 1), if Y ≤ (N1 + 1)

⌊ L
(N1+1)N2

⌋N1(N2 − 1) + Z, if Y > (N1 + 1)
(3.33)

where

Z = ⌊( Y

N1 + 1
− 1)⌋ ∗N1 + U (3.34)

in which U = (Y − (N1 + 1)) (mod (N1 + 1)).

If all samples are assumed to be independent Gaussian N(0, σ2
i ), hence, the

corresponding rate distortion function for nested sampling will be

RNS(D) = min
Ed(XL,X̂L

′
NS)≤D

I(XL; X̂L
′

NS)

≥ min
Ed(XL,X̂L

′
NS)≤D

H(XL)−H(XL − X̂L
′

NS)

(j)

≥ min∑KNS
k=1 Dk=D

H(XL)−H(N(0, E(XL − X̂L
′

NS)
2)

= min∑KNS
k=1 Dk=D

L∑

i=1

1

2
log 2πeσ2

i −
KNS∑

k=1

1

2
log 2πeDk (3.35)

where inequality (j) follows from the fact that the normal distribution maximizes

the entropy for a given second moment, and
∑KNS

k=1 Dk = D.

To find the minimum value, we could using Lagrange multipliers

J(D) =
L∑

i=1

1

2
log 2πeσ2

i −
KNS∑

k=1

1

2
log 2πeDk +

KNS∑

k=1

Dk (3.36)

and differentiating with respect to Dk and setting equal to 0, we have

∂J

∂Dk
= − 1

Dk2 ln 2
+ λ = 0 (3.37)
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or

Dk =
1

λ2 ln 2
= λ

′
(3.38)

which results in an equal distortion for each random variable, if the constant λ
′
is

less than σ2
i for all i. As the increase of the total allowable distortion D, the constant

λ
′
increases until it exceeds σ2

i for some i. Kuhn-Tucker conditions could be used to

find the minimum in (3.35) if we increase the total distortion D. In this case, the

Kuhn-Tucker conditions yield

∂J

∂Dk
= − 1

Dk2 ln 2
+ λ (3.39)

Therefore,

Dk =

⎧
⎪⎨

⎪⎩

λ if λ < σ2
k,

KNS
L σ2

k if λ ≥ σ2
k.

(3.40)

where λ is chosen so that
∑KNS

k=1 Dk = D.

3.3.2 For Coprime Sampling

Theorem 10. (Rate distortion for coprime sampling of Gaussian source) Let xi ∼

N(0, σ2
i ), i = 1, 2, · · · , L, be independent Gaussian random variables, and under

squared error distortion. The rate distortion between the original Gaussian source

and after coprime sampling of these Gaussian random variables is given by

RCS(D) =
L∑

i=1

1

2
log 2πeσ2

i −
KCS∑

k=1

1

2
log 2πeDk (3.41)

where KCS is given in (3.45) and

Dk =

⎧
⎪⎨

⎪⎩

λ if λ < σ2
k,

KCS
L σ2

k if λ ≥ σ2
k.

(3.42)

where λ is chosen so that
∑KCS

k=1 Dk = D.
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Proof. For coprime sampling (CS), we still assume the original information with

length L, i.e., XL = [x1, x2, · · · , xL].

And based on coprime sampling, less number of samples L
′′
will be selected,

X̂L
′′

CS = [x̂1, x̂2, · · · , x̂L′′ ]

= [xP , xQ, x2P , x2Q, · · · ] (3.43)

Similarly, (3.25) becomes

Ed(XL, X̂L
′′

CS) =
KCS∑

k=1

Dk (3.44)

where the length of KCS could be determined based on the following formula

KCS = L− ⌊L
P
⌋ − ⌊L

Q
⌋+ ⌊ L

PQ
⌋ (3.45)

Therefore, the corresponding rate distortion function for coprime sampling of

independent Gaussian source N(0, σ2
i ) is

RCS(D) = min
Ed(XL,X̂L

′′
CS )≤D

I(XL; X̂L
′′

CS)

≥ min
Ed(XL,X̂L

′′
CS )≤D

H(XL)−H(N(0, E(XL − X̂L
′′

CS)
2)

= min∑
Dk=D

L∑

i=1

1

2
log 2πeσ2

i −
KCS∑

k=1

1

2
log 2πeDk (3.46)

The minimum value could be obtained using the similar procedure as described

in nested sampling.
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3.3.3 Theoretical Analysis

Without sparse sampling, the rate distortion function would be

RWSS(D) = min
Ed(XL,XL)≤D

I(XL;XL)

≥ H(XL)−H(N(0, E(XL −XL)2)

=
L∑

i=1

1

2
log 2πeσ2

i − 0

=
L∑

i=1

1

2
log 2πeσ2

i (3.47)

which is much greater than that with sparse sampling.

From the above derivation of rate distortion function of nested sampling and

coprime sampling, we could notice that if the sampling spacings are assumed to be

the same, i.e., N1 = P and N2 = Q for these two sparse sampling methods, then the

minimum value of KNSmin could be achieved when Y = L (mod (N1 + 1)N2) = 0,

therefore

KNSmin =
N1(N2 − 1)L

(N1 + 1)N2
=

P (Q− 1)L

(P + 1)Q
=

(P 2Q− P 2)L

PQ(P + 1)
(3.48)

While for coprime sampling, the minimum value of KCSmin could be achieved

when L (mod P ) = 0, L (mod Q) = 0, and L (mod PQ) = 0, therefore

KCSmin =
(P − 1)(Q− 1)L

PQ
=

(P 2Q− P 2 −Q+ 1)L

PQ(P + 1)
(3.49)

As we know that for these two sparse sampling algorithms, the sampling inter-

val is for sure greater than Nyquist sampling spacing, which indicates that Q > 1,

therefore,

KNSmin > KCSmin (3.50)

which indicates that in most cases, KNS > KCS. Table 3.1 shows some example

of KNS and KCS with respect to sampling intervals when N1 = P , N2 = Q, and
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L = 1000. It is clear that with the increase of sampling spacings, samples are

selected more sparsely by both nested sampling and coprime sampling, which results

in a increase of KNS and KCS. In addition, we could notice that KNS > KCS as

proved.

Table 3.1. KNS and KCS, when N1 = P , N2 = Q, and L = 1000.

N1 = P N2 = Q KNS KCS

3 4 561 500
3 5 600 533
3 7 642 572
3 11 681 607
3 13 690 616
3 17 705 628
3 23 717 638
5 23 794 765
7 23 833 821
11 23 873 870

With our assumption that all samples are independent Gaussian N(0, σ2
i ), we

could conclude that

RNS(D) < RCS(D) < RWS(D) (3.51)

which indicates that both nested sampling and coprime sampling use less number of

bits to describe the information compared that without sparse sampling (WS).

As we know from the introduction part, in (N1 + 1)N2T seconds, there are

totally N1 +N2 samples for nested sampling, while coprime sampling totally collect

P +Q samples in PQT seconds. If the sampling intervals are the same, i.e., N1 = P

and N2 = Q, it is obvious that nested sampling is a little sparser than coprime

sampling method. RNS(D) < RCS(D) is because nested sampling collects a little

less number of samples than coprime sampling with the same length L of data. The
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rate R(D) at a given distortion for both sparse sampling algorithms are less than

that without sparse sampling. The reason is that with sparse sampling, less number

of bits is used to describe the original information.

3.3.4 Numerical Results

The total length of the information is set to be L = 1000. Each sample is

assumed to follow a Gaussian distribution N(0, 1) with zero mean and unit variance.

We also assume Dk = λ < σ2 = 1, which is equal distortion for each random variable.

Fig. 3.3 shows the rate distortion performance of nested sampling with differ-

ent sampling spacings. It is clear that with the increasing of distortion, the rate de-

creases. When the sampling intervals N1 and N2 becomes larger, i.e., less samples are

acquired, the rate becomes smaller. For example, when D = 0.3, N1 = 3, N2 = 5, the

data rate R(D) ≈ 1350, while with the increase of sampling pairs to N1 = 3, N2 = 11,

then R(D) ≈ 1220, which is much smaller. This is because with more sparse sam-

pling, less number of bits is required to represent the information.

The rate distortion performance of coprime sampling with different sampling

spacings is shown in Fig. 3.4. Similarly as nested sampling, with the increasing of

distortion, the rate R(D) decreases. When the sampling intervals P and Q becomes

larger, the rate becomes smaller.

Fig. 3.5 compares the rate distortion performance between nested sampling

and coprime sampling, where D is the distortion between the original source and its

sparse-sampled representation, and R(D) is the corresponding rate at a particular

distortion D. With the same sampling spacings chosen, N1 = P , and N2 = Q, at the

same distortion, the rate of nested sampling is less than that of coprime sampling.

For example, when N1 = P = 3, and N2 = Q = 17, when D = 0.3, the rate for nested

sampling is RNS(D) ≈ 1200, while the rate for coprime sampling is RCS(D) ≈ 1300.
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Figure 3.3. Rate Distortion Performance-Nested Sampling.

This verifies the result that RNS(D) < RCS(D), because nested sampling collects a

little less number of samples than coprime sampling with the same length L of data,

which is a little sparser than coprime sampling.

3.4 Spectrum Efficiency

3.4.1 Theoretical Analysis

As nested sampling and coprime sampling are similar, in this part, nested

sampling will be used to state the theoretical analysis.

From the property of DFT, we know that, if R̂(k) are real, then S(N − n) and

S(n) are related by

S(N − n) = S̄(n) (3.52)

for n = 0, 1, . . . , N − 1, where S̄(n) denotes the complex conjugate. This also means

that the component S(0) is always real for real data.
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Figure 3.4. Rate Distortion Performance-Coprime Sampling.

In our simulation, we always consider the amplitude of the PSD, which indi-

cates that

|S(N − n)| = |S̄(n)| (3.53)

This gives the reason of why the PSD figure is always symmetric.

From the simulation, we observe the absolute values of the autocorrelation

R̂(k) are the same for the QPSK signal, which obtain positive or negative of a fixed

value as shown in Figure 3.6 for different N1 and N2 of nested sampling, and Figure

3.7 for different P and Q of coprime sampling. This could make the calculation of

the PSD easier. In our analysis, for simplicity, we assume all the R̂(k) have the same

absolute value R, i.e., R = |R̂(k)| = R̂(0) = −R̂(1) = R̂(2) = . . . . Therefore, we set

R̂(k) = (−1)kR. The estimated autocorrelation satisfies those properties we stated

before, i.e., R̂(0) ≥ |R̂(k)|, k ̸= 0, and as the QPSK signal we used is periodic, the

estimated autocorrelation function R̂(k) is also periodic.
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Figure 3.5. Comparison of Nested Sampling and Coprime Sampling.

Let’s see how the PSD changes with the increase of N1 and N2. As stated in

the principle of nested sampling, k falls in the range of (3.2). Here we only use those

positive, i.e., k = 0, 1, . . . , (N1 + 1)N2 − 1, that is, N = (N1 + 1)N2. We could get

the PSD by taking the Fourier transform of the estimated autocorrelation,

S(n) =
N−1∑

k=0

R̂(k)e−i 2πN kn

=
N−1∑

k=0

(−1)kRe−i 2πN kn

= R
N−1∑

k=0

(−e−i 2πn
N )k (3.54)

As stated in the principle of nested sampling, k falls in the range of (3.2),

N = (N1 +1)N2. For coprime sampling, we show that k = P (n1 +Ql)−Q(n2 +P l)

can achieve any integer value in the range of 0 ≤ k ≤ PQ − 1, i.e., in this case

N = PQ. N could either be even or odd. For example, for nested sampling, if

N1 = 2 and N2 = 5, then N = (N1 + 1)N2 = 15 is odd, while if N1 = 3 and N2 = 5,

then N = (N1 + 1)N2 = 20 is even. For coprime sampling, if P = 2, Q = 5, then
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Figure 3.6. Nested Sampling Estimated autocorrelation.
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Figure 3.7. Coprime Sampling Estimated autocorrelation.
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N = PQ = 10 is even, while if P = 3, Q = 5, then N = PQ = 13 is odd. First, we

assume N = (N1 + 1)N2 is odd,

S(n) = R
N−1∑

k=0

(−e−i 2πn
N )k

= R
1 + e−i 2πn

N N

1 + e−i 2πn
N

= R
e−iπn(eiπn + e−iπn)

e−iπn
N (ei

πn
N + e−iπn

N )

= R · e−iπnN−1
N

cos(πn)

cos(πnN )
(3.55)

And if N = (N1 + 1)N2 is even,

S(n) = R
N−1∑

k=0

(−e−i 2πn
N )k

= R
1− e−i 2πn

N N

1 + e−i 2πn
N

= R
e−iπn(eiπn − e−iπn)

e−iπn
N (ei

πn
N + e−iπn

N )

= R · e−iπnN−1
N

isin(πn)

cos(πnN )
(3.56)

The corresponding amplitude of the PSD is

|S(n)| = R|cos(πn)
cos(πnN )

|(Nodd), or, R|sin(πn)
cos(πnN )

|(Neven) (3.57)

We could draw these two expressions in (3.57) as shown in Figures 3.8, 3.9,

3.10, and 3.11. It’s obvious that no matter N is odd or even, with the increase of

N , the mainlobe becomes narrower and the number of sidelobes increases. In next

paragraph, we will prove the central of the mainlobe represents the central frequency.

In the simulation, if we take N -point Fast Fourier Transform (FFT), we will

get N PSD values. Let fn represent the Nyquist sampling frequency, fn = 2fc (fc is

the carrier frequency), using f = fn · (0 : N − 1)/N , we could map these PSD values
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Figure 3.8. PSD, N=15.
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Figure 3.9. PSD, N=25.
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Figure 3.10. PSD, N=18.
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Figure 3.11. PSD, N=28.

to the frequency. It is obvious that when n = N/2, the PSD gets its central value of

S(N2 ) at f = 1
2fn = fc. This could be represent as

S(
N

2
) =

N−1∑

k=0

R̂(k)e−i 2πN kN
2

= R
N−1∑

k=0

(−e−iπ)k

= R
N−1∑

k=0

1 = NR (3.58)

From this derivation, we also notice that with the increase of N , besides the

mainlobe becomes narrower, the central value of the PSD gets higher, which results

in a higher spectrum efficiency.
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In the numerical results part, we will show that with the same sampling spac-

ings chosen for both nested and coprime sampling, i.e., N1 = P , N2 = Q, we could

achieve N = (N1 + 1)N2 for nested sampling will be larger than that of N = PQ

for coprime sampling, which will result in a better spectrum efficiency for nested

sampling.

3.4.2 Simulation Results

This section presents some numerical results for the autocorrelation and power

spectrum density estimation using nested sampling structure. We use QPSK modu-

lated signal with carrier frequency fc = 400Hz, which could be expressed as [118]

sQPSK(t) =

√
2Es

Ts
cos[2πfct+ (i− 1)

π

2
] (3.59)

where Ts is the symbol duration. In our simulation, we set Es = 1 and Ts = 1/50.

The power spectrum density [118] of a QPSK signal using rectangular pulses

can be expressed as

PQPSK(f) =
Es

2
[(
sinπ(f − fc)Ts

π(f − fc)Ts
)2 + (

sinπ(−f − fc)Ts

π(−f − fc)Ts
)2] (3.60)

Fig. 3.12 shows the PSD of a QPSK signal for rectangular and raised cosine

filtered pulses. The x-axis refers to the frequency in Hz, and the y-axis are the

normalized power spectral density in dB. It can be observed the PSD centers at

fc = 400Hz with symmetric sidelobes on both sides.

If we zoom in fig. 3.12, as shown in fig. 3.13, we could notice bandwidth for

the original QPSK signal is about 416− 384 ≈ 32Hz.

The estimated autocorrelation using nested sampling and co-prime sampling

structures are plotted in fig. 3.14 and 3.15. In the simulation, for nested sampling,

we use N1 = 7, N2 = 11, and L = 10. Therefore, R̂(k) can be estimated for
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Figure 3.12. PSD of the QPSK signal.
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Figure 3.13. Zoom in the main lobe of PSD for QPSK signal.
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Figure 3.14. Nested Sampling Estimated Autocorrelation of QPSK Signal (N1 = 7,
N2 = 11).

| k |≤ (N1+1)N2−1. For each period, we totally get (N1+1)N2 = (7+1)×11 = 88

samples. While for coprime sampling, we set P = 7 and Q = 11, for each period, we

get PQ = 7× 11 = 77 lags of R̂(k).

Using the relationship of autocorrelation and the PSD described in section 3, we

could obtain the estimated PSD using nested sampling structure for this QPSK signal

as shown in fig. 3.16. In the simulation, we use 1024 point fast Fourier transform

and normalize the PSD. We can see that the estimated PSD is also centered at

fc = 400Hz with symmetric sidelobes on both sides. As stated in section 3, we can

see the PSD is an even function.

Similarly, if we zoom in this PSD around the central frequency fc, in fig.

3.17, we could find the main lobe, i.e., the bandwidth occupied is approximately

409 − 391 ≈ 18Hz, which is much narrower than that 32Hz of the PSD of the
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Figure 3.15. Coprime Sampling Estimated Autocorrelation of QPSK Signal (P = 7,
Q = 11).

original QPSK signal. Hence, the spectrum efficiency is improved in the estimation

using nested sampling structure.

We could also get the estimated PSD using co-prime sampling structure for

this QPSK signal as shown in fig. 3.18. In the simulation, we use 1024 point fast

Fourier transform and normalize the PSD. We can see that the estimated PSD is also

an even function centered at fc = 400Hz with symmetric sidelobes on both sides.

If we zoom in this PSD around the central frequency fc, in fig. 3.19, we could

find the main lobe, i.e., the bandwidth occupied is approximately 411−389 ≈ 22Hz,

which is near to that estimated using nested sampling and is much narrower than

that 32Hz of the PSD of the original QPSK signal. Hence, the spectrum efficiency

is improved in the estimation using co-prime sampling structure as well.

Another interesting observation is that the bandwidth of the PSD estimated

using coprime sampling is a little larger than that estimated by nested sampling, as
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Figure 3.16. PSD of Nested Sampling QPSK signal (N1=7,N2=11).

shown in our example, the bandwidth for coprime estimated PSD is 411 − 389 ≈

22Hz, while it is 409 − 391 ≈ 18Hz for nested sampling. This is because for the

same number of P and Q (or N1 and N2), the nested sampling could achieve N =

(N1 + 1)N2, while coprime sampling could only get N = PQ. If N1 = P and

N2 = Q, it is obvious that the nested sampling estimate a larger number of N than

coprime sampling. Refer to the theoretical analysis, we could conclude that larger

N results in narrower bandwidth, which indicates that if N1 = P and N2 = Q for

nested and coprime sampling, nested sampling would have a more efficient spectrum

performance.

By changing different N1 and N2 pairs, as shown in fig. 3.20, it is obvious that

for N1 fixed to N1 = 3, with the increase of the value of N2 from 5, 7 to 13, the

main lobe of the estimated PSD using nested sampling structure becomes narrower

significantly, i.e., the bandwidth occupied gets smaller. Here, in the simulation, we

normalize the PSD values.
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Figure 3.17. Zoom-in the mainlobe of PSD-Nested Sampling QPSK sig-
nal(N1=7,N2=11).
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Figure 3.18. PSD of Co-Prime Sampling QPSK signal (P=7,Q=11).
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Figure 3.19. Zoom-in the mainlobe of PSD-Coprime Sampling QPSK sig-
nal(P=7,Q=11).
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Figure 3.20. PSD of Nested Sampling QPSK signal with different N2.
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Figure 3.21. PSD of Nested Sampling QPSK signal with different N1.

Similarly, Fig. 3.21 shows that with the increase of N1 from N1 = 3, 5 to

N1 = 11, while N2 fixed to N2 = 13, the main lobe also gets narrower, which also

results in the increase of spectrum efficiency. From the results got from Figures

3.20 and 3.21, we conclude that in the nested sampling process, besides its advantage

of less samplers, with N1 and N2 chosen larger, the bandwidth of the PSD occupied

will becomes narrower, which increases the spectrum efficiency.

Similar as nested sampling, as P and Q increase for co-prime sampling, the

mainlobe of the estimated PSD narrows down as well, which also indicates smaller

bandwidth and higher spectrum efficiency as shown in Fig. 3.22, where we increase

the second sampler’s sampling interval of Q from 5, 7, to 13, and in Fig. 3.23, where

we increase the first sampler’s sampling interval of P from 3, 5, to 11.

From Figures 3.20 to 3.23, we could observe nested sampling and co-prime

sampling could obtain similar estimated PSD and both are spectrum efficient as the
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Figure 3.22. PSD of Co-Prime Sampling QPSK signal with different Q.

0 100 200 300 400 500 600 700 800
−40

−35

−30

−25

−20

−15

−10

−5

0
QPSK Coprime Sampling Estimated Power Sepctrum Density

Frequency, Hz

No
rm

al
ize

d 
PS

D,
[d

B]

 

 
P=3,Q=13
P=5,Q=13
P=11,Q=13

Figure 3.23. PSD of Co-Prime Sampling QPSK signal with different P .
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sampling intervals increase, i.e., N1 and N2 for nested sampling, and P and Q for

co-prime sampling.

3.5 Secure Transmission for Big Data

The security is a significant issue in modern data processing. Critics worry

about Big Data may be misused and abused, especially for large corporations. Data

experts and critics worry that potential abuses of inferential data may imperil per-

sonal privacy, and consumer freedoms[4]. Big Data presents critical requirements for

security in data collection and transmission of selected data through a communica-

tion network. This section addresses a new secure transmission of Big Data based

on nested sampling and coprime sampling.

As both nested sampling and coprime sampling could keep the statistical prop-

erty of the original signal, these two sampling algorithms could be applied to Big

Data to highly reduce the transmission cost of Big Data. In this section, we will

prove that these two sampling methods could provide a secure transmission for Big

Data based on their properties.

In this section, we give the principle of nested sampling and coprime sampling

first. Both the theoretical analysis and the numerical results show that with the sam-

pling spacings larger for both nested sampling and coprime sampling, the mainlobe

of PSD (Power Spectral Density) obtained from these two sampling will be much

narrower than the original BFSK signal. That is, besides the much less time con-

sumption, the occupied bandwidth B is smaller. With the sampling spacings large

enough, the mainlobe of the PSD will becomes as narrow as possible, performs like

frequency hopping (FH). Furthermore, we will prove that for such kind of FH/BFSK

signal generated by higher sampling spacing pairs, the error probability will be much

smaller compared with the original signal with independent multitone interference.
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It offers an improvement in performance when the communication system is attacked

by jamming. This provide a secure transmission method for Big Data based on nested

sampling and coprime sampling.

We also prove that [138] with the increase of N , (N = (N1 + 1)N2 for nested

sampling, and N = PQ for coprime sampling), besides the mainlobe becomes nar-

rower, the central value of the PSD gets higher, which results in a higher spectrum

efficiency. It could also be observed that with the same sampling spacings chosen

for both nested and coprime sampling, i.e., N1 = P , N2 = Q, N = (N1 + 1)N2 for

nested sampling will be larger than that of N = PQ for coprime sampling, which

will result in a higher PSD for nested sampling.

3.5.1 FH/BFSK with Independent Multitone Interference

The BFSK signal is

v(t) =
√
2Pcos(ωo + d(t)Ω)t (3.61)

vH(t) =
√
2Pcos(ωo + Ω)t (binary1) (3.62)

vL(t) =
√
2Pcos(ωo − Ω)t (binary0) (3.63)

The higher frequency ωH = ωo + Ω, and the lower frequency ωL = ωo − Ω.

Therefore, the BFSK signal is

v(t) =
√
2PH(t)cos(ωHt) +

√
2PL(t)cos(ωLt) (3.64)

The carrier signals are

x(h) =
√
2Pcos(ωHt) (3.65)
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x(l) =
√
2Pcos(ωLt) (3.66)

PSD of the carrier signals are

GH(f) =
P

2
[δ(f − fH) + δ(f + fH)] (3.67)

GL(f) =
P

2
[δ(f − fL) + δ(f + fL)] (3.68)

where δ() is Dirac function. H(t) and L(t) are Unipolar signals.

PSD of Unipolar signal is

Gs(f) =
V 2Tb

4
sinc2(fTb) +

V 2

4
δ(f) (3.69)

Therefore, PSD of H(t) and L(t) are,

GH(f) = Gl(f) =
Tb

4
sinc2(fTb) +

1

4
δ(f) (3.70)

Hence, PSD of the BFSK signal will be

Gv(f) = GH(f) ∗Gx(h)(f) +GL(f) ∗Gx(L)(f)

=
P

8
[sinc2[(f − fH)Tb] + sinc2[(f + fH)Tb]]

+
P

8
[sinc2[(f − fL)Tb] + sinc2[(f + fL)Tb]]

+
P

8
[δ(f − fH) + δ(f + fH)] +

P

8
[δ(f − fL) + δ(f + fL)] (3.71)

The signal we use here are BFSK signal with ωo = 200Hz, and frequency offset

Ω = 10Hz.
√
2P = 1, so that P = 1/2. The PSD of this BFSK signal is obtained as

shown in Fig. 3.24.

We assume there are NS nonoverlapping FH bands in the FH/BFSK commu-

nication system [131] [133]. Each FH band occupies Bh bandwidth, that is, Bh is

the required bandwidth to transmit an BFSK signal in the absence of FH. Each

FH band contains 2 orthogonal signaling tones. We also assume that each 2 signal
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Figure 3.24. Original PSD for BFSK signal..

tones in each FH band are orthogonal to the signaling tones in all other FH bands.

Therefore, thare are totally 2×NS possible transmitted signaling tones.

The Power Spectral Density (PSD) of Additive White Gaussian Noise (AWGN)

that corrupt the channel is defined as N0/2. We assume that the independent mul-

titone interference tones have a total power of PJT , which is transmitted in the total

of q equal power interfering tones and is spread uniformly over the spread spectrum

bandwidth of the FH/BFSK communication system. Each interfering tone has a

power of PJ = PJT/q. We also assume that the multiple interfering tones are trans-

mitted at the frequencies exactly corresponding to the possible 2×N signaling tones,

and none of them are transmitted at the same frequency.

As we know from the theoretical analysis section, with the increase of N ,

besides the mainlobe becomes narrower, the central value of the PSD gets higher for

both nested sampling and coprime sampling. It could also be observed that with the

same sampling spacings chosen for both nested and coprime sampling, i.e., N1 = P ,
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N1=5,N2=7

Figure 3.25. N1 = 5, N2 = 7.
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N1=7,N2=9

Figure 3.26. N1 = 7, N2 = 9.
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N1=9,N2=11

Figure 3.27. N1 = 9, N2 = 11.
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N1=13,N2=19

Figure 3.28. N1 = 13, N2 = 19.

N2 = Q, N = (N1 + 1)N2 for nested sampling will be larger than that of N = PQ

for coprime sampling, which will result in a higher PSD for nested sampling. If we

choose the sampling spacings higher, N will becomes higher, and the mainlobe will

becomes much narrower, and the bandwidth will becomes much smaller. When N

is high enough, the bandwidth will be as narrow as possible, which performs like

frequency hopping. The following numerical results will show this performance using

BFSK using both nested sampling as shown in Figures 3.25, 3.26, 3.27, and 3.28

and coprime sampling as shown in Figures 3.29, 3.30, 3.31, and 3.32. Besides the

narrower bandwidth, as proved in the theoretical analysis, the PSD is higher with

the increase of N , which is obvious from our numerical results.
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Figure 3.29. M = 5, N = 7.
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Figure 3.30. M = 7, N = 9.
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Figure 3.31. M = 9, N = 11.
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Figure 3.32. M = 13, N = 19.

3.5.2 Error Probability Analysis

The error probability for Rician fading multichannel reception of BFSK signal

was discussed by William in [130]. For noncoherent receiver, we obtain the error

probability of BFSK as the formula (54) in [130].

Pe(M) = [
1

2 + β
]Mexp[

−Lβ

2 + β
] ·

M−1∑

m=0

m∑

n=0

(
m+M − 1

m− n

)
(
1 + β

2 + β
)m

xm

m!
(3.72)

where

x =
Lβ

(1 + β)(2 + β)
(3.73)

where M is the number of multichannels. αm (m = 1, 2, . . . ,M) is the instantaneous

voltage gain of the m− th channel, P =
∑M

m=1 α
2
m, 2σ

2 is the mean squared value

of the random or scatter component in each channel. Ri = Ei/N0 (i = 1, 2, . . . ,M)
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where, Ei is the energy of each signal transmitted by the i−th transmitter. N0 is the

noise energy. For simplified, we assume Ei = E, therefore, R = E/N0. β = 2σ2R,

ρm = α2
mR, and Lβ =

∑M
m=1 ρm.

As we discussed in earlier parts of this section, we prove that with the increase

of the sampling space pairs for both nested sampling and coprime sampling, the PSD

becomes higher, that is, the signal-to-noise ratio (SNR) gets higher for the same

bandwidth BFSK signal. We could also observe from Numerical Results Section

that with the sampling pairs increasing, the PSD becomes higher for both nested

sampling and coprime sampling. The R increases compared to the original BFSK

signal after nested sampling and coprime sampling, calculated using formula (3.72),

the BER decreases as shown in Figures 3.33 and 3.36. With the increase of number of

multichannels M , the error rates for the noncoherent BFSK receiver based on nested

sampling and coprime sampling are shown. It’s obvious that with nested sampling

and coprime sampling, the signal could achieve higher PSD, which indicates higher

SNR for the same bandwidth BFSK signal. Therefore, BFSK signals sampled by

nested sampling or coprime sampling achieves lower error probability compared with

the original BFSK signal. We could also observe that with the sampling spacing pairs

increasing, i.e., N1 and N2 for nested sampling, and P and Q for coprime sampling,

the error probability becomes lower and lower.

The performance for FH/BFSK with independent multitone interference was

discussed in [131]. From formula (34) in [131], we could obtain the probability of

error for FH/BFSK with independent multitone interference as

Pb =
q

2NS
(1− q − 1

2NS − 1
)Pb(hop jammed | 1 jamming tone)

+
q

2NS
(

q − 1

2NS − 1
)Pb(hop jammed | 2 jamming tones)

+(1− q

2NS
)(1− q

2NS − 1
)Pb(hop not jammed) (3.74)
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Figure 3.33. Nested Sampling 1 Channel BER.
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Figure 3.34. Nested Sampling 3 Channels BER.
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Figure 3.35. Nested Sampling 5 Channels BER.
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Figure 3.36. Coprime Sampling 1 Channel BER.
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Figure 3.37. Coprime Sampling 3 Channels BER.
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Figure 3.38. Coprime Sampling 5 Channels BER.
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where q is the total number of interference tones, here, we set q = 100. NS = 1000

is the total number of nonoverlapping FH bands.

From formula (8) in [132], we could obtain

Pb(hop jammed | n jamming tones)

= (
2− n

2
)Pb(hop jammed | signal is not jammed)

+(
n

2
)Pb(hop jammed | signal is jammed) (3.75)

We assume the Rician Fading Factor K equals to 10dB for information signal

i.e., KS = 10dB. Following the same procedure described in [133] and [134], we could

obtain the error probability v.s. SJR (Signal-to-Jamming-Ratio), SJR = PS/PJT ,

where PS is the average information signal power, and PJT is the total average

interference power.

As we discussed, both nested sampling and coprime sampling could enhance

PSD of the signal, furthermore, increase SNR on the same signal bandwidth and the

same noise power. With the results we get, we could obtain the corresponding error

probability of FH/BFSK signal with nocoherent detection in Rician fading channel

with multitone jamming with total q = 100 jammings in NS = 1000 frequency hops,

for KS = 10dB.

The results are shown in Figures 3.39 and 3.40 for nested sampling and coprime

sampling. We can observe that with the sampling spacing pairs increasing, i.e., N1

and N2 for nested sampling, and P and Q for coprime sampling, the error proba-

bility gets lower. It is also obvious that nested sampling could achieve lower error

probability compared with coprime sampling with the same sampling spacing pairs

chosen, i.e., P = N1 and Q = N2, which is also proved in [138], as N = (N1+1)N2 for

nested sampling will be larger than that of N = PQ for coprime sampling, with the
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same sampling spacings chosen for both nested and coprime sampling, i.e., N1 = P ,

N2 = Q, which will result in a higher PSD for nested sampling.

From Fig. 3.39, for the same error probability, for example, Pb = 4 × 10−3,

for nested sampling, when N1 = 5, N2 = 7, it has almost 7dB gain compared with

the original FH/BFSK signal. With the sampling spacing pairs N1 and N2 increase,

when N1 = 7, N2 = 9, it has about 2.5dB gain compared with the case when N1 =

5, N2 = 7. Similarly, we can see that, the case when N1 = 9, N2 = 11 has about 2dB

gain compared with that when N1 = 7, N2 = 9, and when N1 = 13, N2 = 19, it has

about 3dB gain compared with that when N1 = 9, N2 = 11.

Same as stated above, we could see the advantage of coprime sampling with

independent multitone interference. However, as we explained, coprime sampling the

SNR gain is not that high as nested sampling, for example, when P = 5, Q = 7, it

only has 5dB gain compared with the original FH/BFSK signal, as shown in Fig.

3.40.

3.6 Conclusions

In this chapter, properties of two new sparse sampling schemes, i.e., coprime

sampling and nested sampling are investigated, such as rate distortion function,

since sparse sampling can cause possible distortion because less number of samples

are used. It is showed that with these two sparse sampling algorithms, the data rate

is proved to be much less than that without sparse sampling at a given distortion.

This is because with sparser sampling, less number of bits is required to represent

the information. We also show that with the same sampling pairs, the rate of nested

sampling is less than that of coprime sampling at the same distortion.

The procedures of using nested sampling and coprime sampling these two

sparse sampling structures to estimate the QPSK signal’s autocorrelation and power
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spectral density (PSD) is given. The theoretical analysis of how these two sparse

sampling methods effect the power spectral density is provided as well. Our simula-

tion results show that with if we choose the sampling spacings larger, the main lobe

of PSD obtained from these two sampling will be much narrower than the original

QPSK signal. Besides the smaller average rate, the increased spectrum efficiency is

a new advantage of these two sparse sampling algorithms.

A secure transmission scheme for Big Data based on coprime sampling and

nested sampling is also provided. With nested sampling and coprime sampling, Big

Data could also achieve higher PSD for BFSK signal. When the sampling spacing

pairs bigger enough, the spectrum of BFSK signal performs like frequency hopping.

This property has great advantage in the security of Big Data collection and trans-

mission using FH/BFSK, as it could achieve low error probability in Rician fading

channels. This proves that both nested sampling and coprime sampling could be used

in Big Data transmission to resist interference, while guaranteeing the transmission

performance.
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Chapter 4

A Hybrid Approach of Sparse Sampling

4.1 Introduction

Nested sampling and compressive sensing sense information from two differ-

ent aspects. Nested sampling [123] is an non-uniform sampling, using two different

samplers in each period. Although the signal is sampled sparsely and nonuniformly,

the autocorrelation of signal could be estimated at all lags. Therefore, although the

samples can be arbitrarily sparse, it keeps the signal’s statistical information [124].

While in compressive sensing, the signal, which are sparse in some basis, is sampled

using much less number of measurements. The signal could be reconstructed based

on the compressed measurements using optimization.

Based on their unique advantages, in this chapter, a hybrid approach of nested

sampling and compressive sensing is proposed, which is efficient to represent huge

amount of data, especially in Big Data, while keeps the signal’s statistical informa-

tion. For some application, which depends on the difference co-array, or autocor-

relation, like Direction-of-arrival (DOA) estimation and beamforming, for the large

amount of data acquired, it is not necessary to keep all data. As long as some use-

ful information is kept, such as the signal’s statistical information, the requirement

is satisfied. In this case, nested sampling could first be applied, with less number

of samples selected, to reduce the amount of data significantly while keeping the

required information. After that, compressive sensing could be used to further re-

duce the amount of data in storage or transmission. This hybrid approach has great

advantage in the application of Big Data nowadays.

134



Information rate distortion function is a measure as the number of bits per

data sample to be stored or transmitted under the constraint of a distortion. In this

chapter, a hybrid approach for Big Data analysis and compression based on nested

sampling and compressive sensing is proposed. And theoretical rate distortion per-

formance of the proposed hybrid approach is analyzed. We will show that with this

hybrid approach, less number of bits is required to represent the sensed information.

And larger sampling intervals for nested sampling will result in less samples kept

after nested sampling, and at the same rate, there is more distortion. This indicates

us that in real application of this hybrid approach, there is a tradeoff of the sensed

information and the performance.

The rest of this chapter is organized as follows. The efficient hybrid sparse

sampling approach for Big Data is described in Section 4.2. Theoretical derivation

of rate distortion performance of the hybrid approach based on nested sampling and

compressive sensing is detailed as well. In Section 4.3, experimental and simula-

tion results are provided to show the theoretical rate distortion performance of our

proposed hybrid approach. Conclusions are given in Section 4.4.

4.2 Hybrid Sparse Sampling

For some application, for example, some applications depending on the dif-

ference co-array, or autocorrelation, like Direction-of-arrival (DOA) estimation and

beamforming, for the large amount of data acquired, it is not necessary to keep all

data. As long as some useful information is kept, such as the signal’s statistical

information, the requirement is satisfied. In this case, nested sampling could first

be applied, with less number of samples selected, to reduce the amount of data sig-

nificantly while keeping the required information. After that, compressive sensing
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could be used to further reduce the amount of data in storage or transmission. This

hybrid approach is shown in Fig. 4.1.

The original samples are denoted as xi, i = 1, · · · , L, where L is the to-

tal number of samples. Assume that all original information from L samples is

XL = [x1, x2, · · · , xL], the selected information after nested sampling (NS) can be

represented as

XL
′
= NS(XL) (4.1)

where NS(·) denotes nested sampling.

And less number of samples L
′
< L will be selected based on nested sampling,

XL
′
= [x1, x2, · · · , xL′ ] = [x1, · · · , xN1 , x(N1+1), · · · , xN2(N1+1), · · · ] (4.2)

The length L
′
could be calculated as,

L
′
=

⎧
⎪⎨

⎪⎩

⌊ (N1+N2)L
(N1+1)N2

⌋+ Y, if Y ≤ (N1 + 1)

⌊ (N1+N2)L
(N1+1)N2

⌋+ ⌊ Y
N1+1⌋ +N1, if Y > (N1 + 1)

(4.3)

where Y = L (mod (N1 + 1)N2), with (mod ) the modulo operation to find the

remainder of division, and ⌊·⌋ is the floor function, i.e., the greatest integer function

or integer value.

For example, if the original length of source signal is L = 10008, with N1 = 3,

and N2 = 5, after nested sampling, only L
′
samples will be selected. Here, Y = 8,

which is (N1 + 1) = 4. So that ⌊ Y
N1+1⌋ = 2, and L

′
= 4000 + 2 + 3 = 4005. It

is obvious that with the increase of sampling intervals N1 and N2, samples will be

selected more sparsely, and less number of samples will be selected.

For the hybrid approach, the nested sampling selected samples will be further

compressed by compressive sensing as shown

Y = ΦXL
′

(4.4)
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Figure 4.1. Hybrid Approach of Nested Sampling and Compressive Sensing.

where Φ is a M ×KNS measurement matrix, with M < KNS, so that the dimension

of the observation Y is much less than that of XL
′
.

Based on lots of developed reconstruction algorithms in compressive sensing,

although much less observation is obtained, the signal X̂L
′
could be reconstructed,

where

X̂L
′
= [x̂1, · · · , x̂N1 , x̂(N1+1), · · · , x̂N2(N1+1), · · · ] (4.5)

Information rate distortion function is a measure as the number of bits per

symbol to be stored or transmitted under the constraint of a distortion. Our purpose

is to construct a distortion function which can determine the bits per symbol because

of these two sparse sampling algorithms, nested sampling (NS) and compressive

sensing (CS). Sparse sampling can cause possible distortion because less number of

samples are used. The original samples are denoted as xi, i = 1, · · · , L, where L is

the total number of samples. Assume that all original information from L samples

is XL = [x1, x2, · · · , xL], the selected information after hybrid sparse sampling can

be represented as [116]

X̂L
′
= S(XL) (4.6)
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where S(·) denotes our proposed hybrid approach of sparse sampling as shown in

Fig. 4.1 (nested sampling and compressive sampling). X̂L
′
= [x̂1, x̂2, · · · , x̂L′ ] and

L
′
< L. The distortion associated with the sparse sampling between all original

samples and the selected samples is

D = Ed(XL, X̂L
′
) (4.7)

where d(·) is the distortion function.

The expectation in (4.7) is with respect to the probability distribution on XL.

The rate distortion function R(D) is the minimum of data rates R such that (R,D)

is in the rate distortion region for a given distortion. From [36], we know that

information rate distortion function is defined as

R(D) = min
Ed(XL,X̂L

′
)≤D

I(XL; X̂L
′
) (4.8)

where I(XL; X̂L
′
) is the mutual information between XL and X̂L

′
.

Since Gaussian assumption is a classical modeling assumption heavily used in

areas such as signal processing and communication system [41], from [36], the rate

distortion function for a single Gaussian source N(0, σ2) with squared error distortion

is

R(D) =

⎧
⎪⎨

⎪⎩

1
2 log

σ2

D 0 ≤ D ≤ σ2,

0 D > σ2
(4.9)

For L independent zero-mean Gaussian sources x1, · · · , xL with variance σ2
1 , σ

2
2, · · · , σ2

L,

the rate distortion performance with squared-error distortion is given by [36] [114][112][137]

R(D) =
L∑

i=1

1

2
log

σ2
i

Di
(4.10)

where

Di =

⎧
⎪⎨

⎪⎩

λ if λ < σ2
i ,

σ2
i if λ ≥ σ2

i

(4.11)
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where λ is chosen so that
∑L

i Di = D, and Di = E(xi − x̂i)2. This gives rise to a

kind of reverse waterfilling. We choose a constant λ and only describe those random

variables with variance greater than λ, and no bits are used to describe random

variables with variance less than λ.

The rate distortion performance associated with the nested sampling between

all original information and sensed information is detailed in [137].

And the information rate distortion function after the hybrid sparse sensing

process shown in Fig. 4.1 could be calculated as [36]

R(D) = min
Ed(XL,X̂L

′
)≤D

I(XL; X̂L
′
) (4.12)

where I(XL; X̂L
′
) is the mutual information between XL and X̂L

′
.

I(XL; X̂L
′
) = H(XL)−H(XL|X̂L

′
)

= H(XL) +H(X̂L
′
)−H(XL, X̂L

′
)

= H(XL) +H(X̂L
′
)−H(XL|XL

′
) +H(XL|XL

′
)

−H(X̂L
′
|XL

′
) +H(X̂L

′
|XL

′
)−H(XL, X̂L

′
)

(k)
= I(XL;XL

′
) + I(XL

′
; X̂L

′
) +H(XL|XL

′
) +H(X̂L

′
|XL

′
)−H(XL, X̂L

′
)

= I(XL;XL
′
) + I(XL

′
; X̂L

′
) +H(XL|XL

′
)

+H(X̂L
′
|XL

′
)−H(XL, X̂L

′
|XL

′
)

+H(XL, X̂L
′
|XL

′
)−H(XL, X̂L

′
)

(l)
= I(XL;XL

′
) + I(XL

′
; X̂L

′
)− (I(XL, X̂L

′
;XL

′
)− I(XL; X̂L

′
|XL

′
)) (4.13)

where equality (k) follows from the fact I(XL;XL
′
) = H(XL) − H(XL|XL

′
), and

I(XL
′
; X̂L

′
) = H(X̂L

′
)−H(X̂L

′
|XL

′
).

Equality (l) follows from the fact that
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I(XL; X̂L
′
|XL

′
) = H(XL|XL

′
) +H(X̂L

′
|XL

′
)−H(XL, X̂L

′
|XL

′
) (4.14)

and

I(XL, X̂L
′
;XL

′
) = H(XL, X̂L

′
)−H(XL, X̂L

′
|XL

′
) (4.15)

Therefore, the rate distortion function could be represented as

R(D) = min
Ed(XL,X̂L

′
)≤D

I(XL; X̂L
′
)

= min
Ed(XL,X̂L

′
)≤D

I(XL;XL
′
) + I(XL

′
; X̂L

′
)− (I(XL, X̂L

′
;XL

′
)− I(XL; X̂L

′
|XL

′
))

= min
DNS

I(XL;XL
′
) + min

DCS

I(XL
′
; X̂L

′
)− (I(XL, X̂L

′
;XL

′
)− I(XL; X̂L

′
|XL

′
))

= R(DNS) +R(DCS)− (I(XL, X̂L
′
;XL

′
)− I(XL; X̂L

′
|XL

′
)) (4.16)

where R(DNS) is the rate distortion function for nested sampling, which has been an-

alyzed by authors in [137], and R(DCS) is the reconstruction rate distortion function

for compressive sensing, analyzed by a lot of authors, such as in [114][112][109][145][146][147][24].

For the last part,

I(XL, X̂L
′
;XL

′
)− I(XL; X̂L

′
|XL

′
)

= H(XL, X̂L
′
)−H(XL, X̂L

′
|XL

′
)− (H(X̂L

′
|XL

′
)−H(X̂L

′
|XL, XL

′
))

(m)
= H(X̂L

′
) +H(XL|X̂L

′
)− (H(XL|XL

′
) +H(X̂L

′
|XL, XL

′
))

− (H(X̂L
′
|XL

′
)−H(X̂L

′
|XL, XL

′
))

= H(X̂L
′
)−H(X̂L

′
|XL

′
) +H(XL|X̂L

′
)−H(XL|XL

′
)

(n)

≥ 0 (4.17)

where equality (m) follows from the fact H(XL, X̂L
′
) = H(X̂L

′
) +H(XL|X̂L

′
), and

H(XL, X̂L
′
|XL

′
) = H(XL|XL

′
) +H(X̂L

′
|XL, XL

′
).

Inequality (n) follows from the fact that condition reduces entropy, i.e., H(X̂L
′
) ≥

H(X̂L
′
|XL

′
), and since the whole process forms a Markov chain with XL −→
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XL
′
−→ X̂L

′
, by the data-processing inequality, I(XL;XL

′
) ≥ I(XL; X̂L

′
). As

we know that I(XL;XL
′
) = H(XL) − H(XL|XL

′
), and I(XL; X̂L

′
) = H(XL) −

H(XL|X̂L
′
), so that H(XL|X̂L

′
) ≥ H(XL|XL

′
).

From the above analysis, we could conclude that for the hybrid approach bases

on nested sampling and compressive sensing, the rate distortion

R(D) ≤ R(DNS) +R(DCS) (4.18)

which indicates that it would need less bits to represent the sensed information with

the hybrid sparse sensing.

Therefore, we can draw the following conclusion as a theorem:

Theorem 11. (Rate distortion for the hybrid approach based on Nested Sampling

(NS) and Compressive Sensing (CS)) Let xi ∼ N(0, σ2
i ), i = 1, 2, · · · , L, be indepen-

dent Gaussian random variables, and under squared error distortion, it would need

less number of bits to represent the sensed information for the hybrid approach based

on nested sampling (NS) and compressive sensing (CS). The rate distortion function

for the hybrid approach is given by

R(D) ≥ R(DNS) +R(DCS)−M(XL, XL
′
, X̂L

′
) (4.19)

with

M(XL, XL
′
, X̂L

′
) = I(XL, X̂L

′
;XL

′
)− I(XL; X̂L

′
|XL

′
) ≥ 0 (4.20)

where R(DNS) is the rate distortion function for nested sampling, and R(DCS) is the

reconstruction rate distortion function for compressive sensing.

4.3 Simulation and Experimental Results

According to a new study by GSMA (GSM Association) Intelligence [142],

the number of 4G-LTE (Long Term Evolution) connections worldwide is forecast to
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pass one billion by 2017. Mobile data software company Mobidia found that LTE

users used far more data than those using 3G. For example, in South Korea, LTE

smartphone users consumed on average almost 2.2GB of data per month [142]. With

more and more LTE users, covering more than 90% of the population in the United

States, LTE has been a Big Data consumer with ample data. With 5G wireless

networks [143] supporting a 10 Gb/s individual user experience capable of extremely

low latency and response times, which will be deployed between 2020 and 2030, the

data consumption will be extremely high at that time. How to deal with these Big

Data in telecommunications? A number of use cases were provided by the whitepaper

[144].

As we know, QPSK (Quadrature Phase Shift Keying) is the most popular

modulation in 4G, firstly, QPSK signal in Big Data will be studied. QPSK modulated

signal could be expressed as [118]

sQPSK(t) =

√
2Es

Ts
cos[2πfct+ (i− 1)

π

2
] (4.21)

where Ts is the symbol duration, Es is the energy-per-symbol, and fc is the carrier

frequency.

Fig.4.2 gives the rate distortion performance curve after the hybrid approach of

nested sampling and compressive sensing for QPSK signal with Es = 1, fc = 400Hz,

and Ts = 1/fc as the source. The total length of the original QPSK signal is L =

1800. The x− axis is the distortion represented with MSE (Mean Squared Error).

And y− axis is the corresponding rate, the bits required to represent each QPSK

symbol for each sample in this whole hybrid sampling process. Two different sampling

intervals for nested sampling are shown, with N1 = 2, N2 = 3, and N1 = 3, N2 = 5.

With N1 = 2, N2 = 3, in each period of (N1 + 1)N2 = 9, only N1 +N2 = 5 samples

are kept, therefore, for the original data length L = 1800, after nested sampling, the
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Figure 4.2. Hybrid Sparse Sensing-QPSK signal.

data length L
′
1 = 1000. And a more sparse sampling intervals with N1 = 3, N2 = 5,

N1 + N2 = 8 samples are selected for each period of (N1 + 1)N2 = 20, therefore,

nested sampling keeps L
′
2 = 720 samples for the whole original signal. It is obvious

that with more sparse sampling, i.e., N1 = 3, N2 = 5, less samples will be kept after

nested sampling. Then, with compressive sensing, at the same data rate, there will

be more distortion. This is because larger sampling intervals for nested sampling will

lose more information, which cause higher distortion.

Now, let’s look at how the real rate distortion of hybrid sparse sensing approach

performs for real-world data. The experimental settings for real-world sense-through-

foliage are described in [116][141]. The foliage measured include late summer, fall and

winter foliage. Late summer foliage involved foliage with decreased water content,

because of the limited rainfall. While late fall and winter measurements involved

largely defoliated but dense forest, which provided a rich scattering environment.

Its also a time-varying environment, because of wind or different temperatures in
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dense forest. The target is a trihedral reflector located 300 feet away. The foliage

experiment was constructed on a seven-ton man lift, with a total lifting capacity of

450 kg. The principle pieces of equipment secured on the lift are: Barth pulse gen-

erator (Barth Electronics, Inc. model 732 GL), Tektronix model 7704B oscilloscope,

HP signal generator, two antennas, dual-antenna mounting stand, rack system, IBM

laptop, custom RF switch, power supply and weather shield. A Barth pulse source

generator was used to provide pulses of less than 50 picoseconds (ps) rise time, with

amplitude from 150 V to greater than 2 KV into any load impedance through a 50

ohm coaxial line. The generator is capable of producing pulses with a minimum

width of 750 ps and a maximum of 1 microsecond. This output pulse width is de-

termined by charge line length for rectangular pulses, or by capacitors for 1/e decay

pulses. Each sample is spaced at 50 picosecond interval, and 16,000 samples were

collected for each collection for a total time duration of 0.8 microseconds at a rate

of approximately 20 Hz. The pulse source was operated at low amplitude and 35

pulses reflected signal were averaged for each collection [116][141]. For illustration

purposes, in Fig. 4.3, we plot part of the UWB radar received echo based on one

experiment with length L = 1800.

Following the procedures described in Fig. 4.1, nested sampling is performed

to the original UWB data XL. Fig. 4.4 provides the data XL
′
after nested sampling

with N1 = 2, N2 = 3. For the original data length L = 1800, after nested sampling

with N1 = 2, N2 = 3, the data length L
′
1 = 1000. And a more sparse sampling

intervals with N1 = 3, N2 = 5 is shown in Fig. 4.5. For this case, nested sampling

keeps L
′
2 = 720 samples for the whole original signal.

From Fig. 4.1, after nested sampling, the selected signals XL
′
is compressed

using compressive sensing, and reconstructed as X̂L
′
in our hybrid approach of sparse

sensing system. As we described, a basis matrix Ψ could be found to represent
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Figure 4.3. Original Sense-through-foliage signal.
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Figure 4.4. Data acquired after nested sampling with N1 = 2, N2 = 3.
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Figure 4.5. Data acquired after nested sampling with N1 = 3, N2 = 5.

θ = (Ψ)−1x, where θ has only a few nonzero entries as shown in Fig. 4.6. It is clear

that compressive sensing could be used in this case. And random gaussian matrix is

used as measurement matrix.

The reconstructed signal based on basis pursuit (BP) of the CS compressed

signal is shown in Fig. 4.7.

Rate distortion performance for the hybrid sparse sensing approach of real-

world sense-through-foliage data is given in Fig. 4.8. Here x− axis is the distortion

represented with MSE (Mean Squared Error), and y− axis gives the corresponding

rate, bits per sample, to represent how many bits is required for each sample in

this whole hybrid sampling process. Similarly to ideal QPSK signal performance

in Fig. 4.2, two different sampling intervals for nested sampling are shown as well,

with N1 = 2, N2 = 3, and N1 = 3, N2 = 5. With N1 = 3, N2 = 5, less samples will

be kept after nested sampling than that of N1 = 2, N2 = 3, and at the same rate,

there is more distortion. Larger sampling intervals for nested sampling loses more
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Figure 4.7. CS reconstructed signal.
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Figure 4.8. Hybrid Sparse Sensing-Sense-through-foliage signal.

information, which cause higher distortion. From Fig. 4.8, we could also notice that

for N1 = 3, N2 = 5, the real-world data sensing could not achieve as low distortion as

N1 = 2, N2 = 3, and the same for rate. This is because a lot of useful information are

lost because of ambiguous nested sampling. This indicates us that in real application

of nested sampling, there is a tradeoff of sampling intervals (the number of sensed

data, which effects data rates) and the performance (which effects distortion).

4.4 Conclusions

In an era of Big Data, resources are intertwined in complex ways with data

resources. It is critical to determine how many bits/symbols should be kept in

Big Data collection and measurement. For some application, which depends on the

difference co-array, or autocorrelation, like Direction-of-arrival (DOA) estimation

and beamforming, it is not necessary to keep all data. In this chapter, a hybrid

approach was proposed, which combines nested sampling and compressive sensing
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to reduce the number of symbols, and rate distortion function is used as a criteria

to determine how many bits should be used to represent the symbols during this

process. We showed that with this hybrid approach, less number of bits is required

to represent the sensed information. This hybrid approach has great advantage in the

application of Big Data nowadays. And larger sampling intervals for nested sampling

will result in less samples kept after nested sampling, and at the same rate, there will

be more distortion. This indicates us that in real application of this hybrid approach,

there is a tradeoff of the number of sensed information and the performance.

In future research, we may not only analyze how the rate distortion perfor-

mance will change with different nested sampling spacing pairs N1, N2 (one special

case is that N1 + N2 keeps the same, with different N1, N2 combination), but also

analyze the real application performance of the proposed hybrid approach, for ex-

ample, in some real estimation of DOA, to see how the estimation error rate of DOA

changes with different nested sampling intervals.
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Chapter 5

Bandwidth Allocation

5.1 Introduction

Smartphones are everywhere these days, and they have become an indispens-

able part of our daily lives. As of July 18, 2013, 90% of global handset sales are at-

tributed to the purchase of Android and iPhone smartphones[148]. The smartphone

has many more advanced computing capability and connectivity than the traditional

cellphone. Modern smartphones include portable media players, low-end compact

digital cameras, pocket video cameras, GPS navigation units, high-resolution touch-

screens and web browsers, which allow its owners to e-mail, surf the web, play music

and games, and perform a variety of other functions. Wi-Fi and mobile broadband

provide high-speed data access for smartphone.

According to a new study by GSMA (GSM Association) Intelligence [142],

the number of 4G-LTE (Long Term Evolution) connections worldwide is forecast to

pass one billion by 2017. Mobile data software company Mobidia found that LTE

users used far more data than those using 3G. For example, in South Korea, LTE

smartphone users consumed on average almost 2.2GB of data per month [142]. With

more and more LTE users, covering more than 90% of the population in the United

States, LTE has been a Big Data consumer with ample data. With 5G wireless

networks [143] supporting a 10 Gb/s individual user experience capable of extremely

low latency and response times, which will be deployed between 2020 and 2030, the

data consumption will be extremely high at that time. How to deal with these Big

Data in telecommunications? A bandwidth allocation method based on smartphone
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users’ personality traits and channel condition is studied in a unified mathematical

framework in this chapter.

Smartphone data might be a function of personality, as the smartphone sup-

ports interpersonal interaction. Studying the psychological and social implications

of smartphone usage has gained an increased importance. Some researchers have

investigated the demographic characteristics of smartphone users. Different from

traditional self-reported personality testing, which may be not accurate in the mea-

surement of traits if people represent themselves falsely in terms of their personality,

since smartphones are programmable, the development of data collection tools to

record various behavioral aspects of the users is practical nowadays, which is more

accurate and objective.

A new industry–the mobile phone app has been created since the tremendous

increase in smartphone ownership, and some demographic data have been collected

regarding these types of applications. The relationship between mobile phone us-

age and user personality has attracted a lot of researchers. Personality traits can

predict the patterns of mobile phone use was concluded in [149] by self reported

data. For smartphones, this relationship could be investigated based on more ac-

curate data collected by programmable tools. The relationship between five main

factors of personality and addiction to SMS in high school students was studied in

[150], and neuroticism and addiction to text messaging were found positively related.

Concerning changes in consumer privacy in relation to smartphones, the authors in

[151] discussed research that found correlations between styles of phone usage and

personality traits of users. Papers [152] and [153] studied the impact of the “Big

Five” personality traits on smartphone ownership and use. Extraverted individuals

were found more likely to own a smartphone in [152]. Extraverted individuals were

noticed to report greater importance on gaming applications in [153]. In [154], the
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authors proposed to leverage mobile phone usage-derived variables to effectively and

automatically infer the users’ personality traits as defined by the big five model.

These researches provide a new opportunity of understanding the impact of

context on user behavior and studying individual differences such as user personality.

These studies also facilitate further research on the usage of personality traits for

personalizing services on smartphone users. The Bayesian Network (BN) could be

drawn based on the relationship concluded in [151][152][153]. Personality traits of

users could be estimated, using inference from Bayesian Network (BN). Personalizing

bandwidth allocation could be done based on smartphone users’ personality traits,

resulting in a smart and efficient usage of the limited bandwidth.

A bandwidth allocation method based on smartphone users’ personality traits

and channel condition is studied in a unified mathematical framework in this chapter.

Based on the relationship between user behavioral characteristics extracted from rich

smartphone data and self-reported Big-Five personality traits, the Bayesian Network

could be drawn. Further, the service provider could estimate each users probability

of having each personality trait using diagnostic inference, and then based on predic-

tive inference to calculate each user’s usage of bandwidth. Personalizing bandwidth

allocation could be done based on smartphone users’ personality traits, resulting

in a smart and efficient usage of the limited bandwidth. For our proposed smart

bandwidth allocation scheme, both the outage capacity and the outage probability

are studied in fading channel. The service provider could adjust the bandwidth al-

located further on account of the real channel condition, which makes our proposed

algorithm more robust.

The remainder of this chapter is organized as follows. In Section 5.2, we give

a brief introduction of Bayesian Network. In Section 5.3, personality traits are an-

alyzed based on smartphone usage and personality psychology. Bayesian network

152



modeling based on smartphone users’ personality traits is given in Section 5.4. The

bandwidth allocation scheme based on Bayesian network inference of smartphone

usage is detailed in Section 5.5, with diagnostic inference, predictive inference, and

approximate inference. The outage throughput capacity in fading channel is ana-

lyzed as well in Section 5.6, which helps the service provider to adjust the allocated

bandwidth based on real channel condition. Numerical results are shown in Section

5.7, and conclusions are given in Section 5.8.

5.2 Bayesian Network

Bayesian Network (BN) [155] [156] [157] [158], is a directed acyclic graph

(DAG) which represents a set of random variables and their conditional dependen-

cies. BNs are both mathematically rigorous and intuitively understandable. An

effective representation and computation of the joint probability distribution (JPD)

over a set of random variables could be enabled by BNs. Using local conditional

probability tables (CPTs), the joint distribution of a collection of variables can be

determined uniquely.

Each node in directed acyclic graphs represents a random variable in the

Bayesian sense, which may be discrete or continuous. Pairs of nodes are connected

by a set of directed links or arrows. These edges represent direct dependence among

the variables. And nodes not connected represent variables which are conditionally

independent of each other. Each node has a probability function that takes as input

a particular set of values for the node’s parent variables and gives the probability of

the variable represented by the node.

In a BN, an edge from node Ni to node Nj represents a statistical dependence

between the corresponding random variables Xi and Xj. Thus, the arrow indicates

that a value taken by random variable Xj depends on the value taken by variable
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Xi, or variable Xi “direct influences” Xj, which means that causes should be parents

of effects. Therefore, node Ni is referred to as a parent of Nj and, similarly, Nj is

referred to as the child of Ni. An extension of these genealogical terms is often used

to define the sets of “descendants” nodes − the set of nodes from which the node

can be reached on a direct path, or “ancestor” nodes − the set of nodes that can be

reached on a direct path from the node[158].

A Bayesian network B is an annotated directed acyclic graph that represents

a JPD over a set of random variables V . The BN is defined by a pair G and Θ, i.e.,

B = ⟨G,Θ⟩, where G is the DAG whose nodes X1, X2, · · · , Xn represents random

variables, and whose edges represent the direct dependencies between these variables.

The graph G encodes independence assumptions, by which each random variable Xi

is independent of its nondescendents given its parents in G. The second component

Θ represents the set of parameters of the network. This set contains the parameter

θxi|πi = PB(xi|πi) for each realization xi of Xi conditioned on πi, which is the set of

parents of Xi in G. Therefore, B defines a unique JPD over V , as

PB(X1, X2, · · · , Xn) =
n∏

i=1

PB(Xi|πi) =
n∏

i=1

θXi|πi (5.1)

Given a BN specified the JPD, all possible inference queries could be evaluated

by marginalization, that is, summing out over “irrelevant” variables. Two types of

inference support are often considered: predictive support for node Xi, based on

evidence nodes connected to Xi through its parent nodes, and diagnostic support for

node Xi, based on evidence nodes connected to Xi through its children nodes. In this

chapter, both kinds of inferences will be estimated based on the bayesian network of

smartphone usage and personality traits.
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5.3 Personality Traits in Smartphone Usage

The relationship between user behavioral characteristics extracted from rich

smartphone data and Big-Five personality traits (Extraversion, Agreeableness, Con-

scientiousness, Neuroticism and Openness to Experience) was investigated in [151][152][153].

From personality psychology[170], we know that there are two possible expla-

nations for a person’s behavior:

(1). Behavior is a function of personality traits, B = f(P ).

(2). Behavior is a function of situational forces, B = f(S).

where B is behavior, P represents personality traits, S stands for situational forces,

and f(·) represents a function.

From these two points of view, it is obvious that both personality and situations

interact to produce behavior, or [158]

B = f(P × S) (5.2)

This formula suggests that behavior is a function of the interaction between per-

sonality traits and situation forces. For the smartphone usage behavior, for sure, it

depends on the user’s personality trait and situation force.

Trait theories of personality [151] [152] [153] [158] offer a collection of view-

points about human nature. Trait theories have three important assumptions about

personality traits, which form the basic foundation for trait psychology. These three

important assumptions are:

(1). meaningful individual differences: Every personality, no matter how complex or

unusual, is the product of a particular combination of a few basic and primary traits.

(2). stability or consistency over time: There is a degree of consistency or stability

in personality over time. If someone is highly extraverted during one period of ob-

servation, he or she will be highly extraverted in the future. The point that many
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broad-based personality traits show considerable stability over time has been sup-

ported by a large number of research studies.

(3). consistency across situations: Traits will also exhibit some consistency across

situations. Trait psychologists believe that people’s personalities show consistency

from situation to situation.

In the past two decades, the Big-Five personality traits has received the most

attention and support from personality researchers. This five-factor model is a hier-

archical model of personality traits that represent personality at the broadest level of

abstraction [159]. It consists of five board traits, namely extraversion, agreeableness,

conscientiousness, neuroticism, and openness to experience [160]. These factors sum-

marize several more specific traits and are believed to capture most of the individual

differences in human personality [159].

Extraverts are sociable, gregarious and ambitious, who are optimistic and seek

out new opportunities and excitement[161]. People score high in extraversion are

social, active, outgoing, and place a high value on close and warm interpersonal

relationships[162]. Agreeable people are sympathetic, good natured, cooperative

and forgiving[161]. The authors [167] [166] discovered that more agreeable individu-

als spend more time on calls and that disagreeable individuals with lower self-esteem

spent more time using instant messaging and games. Conscientious people are strong-

willed, deliberate, and reliable, who actively plan, organize and carry out tasks[161].

The hallmark of their personality is self-control, reflected in a need for achievement,

order, and persistence[163]. Conscientious people look for ways in which the use of

technology would allow them to be more efficient and perform at a higher level at

work[165]. Neurotic people are anxious, self-conscious and paranoid[168]. People

score high in neuroticism tend to be fearful, sad, embarrassed, distrustful, and have

difficulty managing stress[161]. Neurotic individuals are found to spend more time
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text messaging and reported stronger mobile phone additive tendencies[167]. People

high in openness have flexibility of thought and tolerance of new ideas, and they

actively seek out new and varied experiences and value change[164]. They are as-

sociated with training proficiency and engaging in learning experiences[165], which

make them more likely to hold positive attitudes and cognitions toward accepting

job-related technology[168].

Based on the relationship concluded in [151][152][153], “Youtube” was found to

be more likely to be used by extraverts and non-conscientious users. The “Video/Audio/Music”

apps was found to be more likely to be used by users who score higher on openness

and low on conscientiousness. The “SMS” apps was found to be more likely to

be used by disagreeable users who are conscientious and less open. Further, users

scoring high on extraversion and emotional stability and low on agreeableness and

openness were more likely to receive SMS. The “Mail” app was found to be more

likely to be used by users scoring low on agreeableness and high on conscientiousness.

The “Internet” app was found to be more likely to be used by users scoring low on

agreeableness and high on conscientiousness. Extroverts had heavy usage of calen-

dars and office apps and their smartphone habits were with less games and Internet

functions. Extroverts spent more time on calls, which were greater in number than

those received by introverts. They also had more unique contacts in those calls. Less

agreeable people were heavier users of office, Internet, Video/Audio/Music, mail,

calendar and SMS apps. Agreeable people were seen to have more number of voice

calls. Less conscientious people were less likely to use multimedia and YouTube ap-

plications. The more conscientious users sent shorter SMS messages, and longer SMS

messages were generally made by more emotionally stable users. Emotional stable

people were found to use less of office and calendar apps. The length of SMS were

higher for emotional stable users. It was seen that the duration of incoming calls
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were much small for emotional stable users. Curious people had less usage of office,

calendar and SMS apps.

Based on the analysis above, it is thus clear that the personality traits based

on smartphone usage is meaningful and consistent over time and situation, which

could help us to predict the future smartphone usage.

Psychologists also notice that individual differences in personality emerge very

early in life. These individual differences in personality tend to be moderately stable

over time, so that people who are high on a particular trait tend to remain high on

that dimension. Trait psychologists conclude that people will be relatively consistent

over time in their behavior because of the various traits they possess. And personality

trait scores refer primarily to average tendencies in behavior. A score on a trait

measure refers to how a person is likely to behave, on average, over a number of

occasions and situations. For example, based on our analysis, from a person’s high

score on a measure of trait openness and extraversion, the service provider could

confidently predict that a person is more likely to use more bandwidth in the next

few billing cycle than a person with a lower score on openness and extraversion.

Trait psychologists are also interested in the accuracy of measurement. Trait

psychologists make efforts to improve the measurement of traits, particularly through

self-report questionnaire measures. Psychologists who devise questionnaires work

hard at making them less susceptible to lying, faking, and careless responding. While

with the advent of smartphones, a new view to investigate smartphone users’ person-

ality traits could be done based on more accurate data collected by programmable

tools.

These measurements and prediction have stimulated the researchers to apply

them to a lot of situations in which personality might make a difference. In this

chapter, as we will discuss, the service provider could use personality traits measure-
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Figure 5.1. Bandwidth Allocation Scheme based on Personality Traits and Channel
Condition.

ments and prediction to personalize bandwidth allocation to help smartphone users

for a better data service.

Therefore, in this chapter, based on the measures of personality, the usage of

smartphone in one billing cycle could be predict in their future usage. We adopt

the concluded Big-Five personality traits as inputs to Bayesian network to study the

bandwidth allocation problem in a unified mathematical framework.

5.4 Bayesian Network Modeling in Smartphone Usage

The Bayesian Network (BN) could be drawn based on the relationship con-

cluded in [151][152][153] as shown in Fig. 5.1.

Based on the results above [151][152][153], the CPT of node “Calls” is listed

in Tables 5.5, and 5.6. For short, we only use the first letter to represent each node,

for example, “C” is the abbreviation of “Calls”. Similarly, the tables of CPT of

“Youtube”, “Video/Audio/Music”, “SMS”, “Mail” and “Internet” could be calcu-

lated based on the results in [151] [152] [153]. As the principals are the same, we
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only show the CPT of node ‘Calls”, and we will not give the details of the CPT for

all the other application usage for the lack of space in this chapter.

In this chapter, we only use the first three letters to represent each personality

trait, for example, “Ext” is the abbreviation of “Extraversion”. Ext = y is used

to represent “Outgoing”, and Ext = n is used to represent “Solitary”, as shown in

Fig. 5.2. And the other four personality traits are represented in the same way.

Similarly, only the first letter is used to represent each application, that is, “C”,

“Y”, “V”, “S”, “M” and “I” for “Calls”, “Youtube”, “Video/Audio/Music”, “SMS”,

“Mail” and “Internet” respectively. “LBW” stands for “Less BW”. The CPT of

“Less BW” is listed in Tables 5.7, 5.8, 5.9, and 5.10. The CPT of “More BW” could

be listed in a similar method. Based on the smartphone usage, users’ personality

could be estimated based on diagnostic inference of Bayesian Network in Fig. 5.1.

With users’ personality traits estimated, using predictive inference from this BN, the

service provider could predict the future smartphone usage of each user in the next

billing cycle, so that flexible bandwidth allocation could be predicted. This study

facilitates further research on the automated classification and usage of personality

traits for personalizing services on smartphones. Personalizing bandwidth allocation

could be done based on smartphone users’ personality traits, resulting in a smart

and efficient usage of the limited bandwidth.

 

Figure 5.2. Big-Five Personality Traits.
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5.5 Bandwidth Allocation: Bayesian Network Inference

In this chapter, both diagnostic inference and predictive inference are calcu-

lated based on personality traits and their usage of smartphone apps in Fig. 5.1.

Diagnostic inference[156] provides the probability of each personality trait with the

data of each user’s bandwidth usage, for example, what is the probability of one

user’s personality traits if this smartphone user occupies above 10GB data per bill

cycle? Differently, Predictive inference calculate the probability of the usage of band-

width based on each node’s parent nodes, i.e., for example, if a user score high on

extraversion, what is the probability of this user occupies more bandwidth? Based

on one user’s data usage in one billing cycle, the service provider could calculate this

user’s probability of having each personality trait using diagnostic inference, and

then based on predictive inference to calculate this user’s usage of bandwidth in the

next billing cycle. We can see that both diagnostic inference and predictive inference

could help the service provider to better allocate the smartphone bandwidth based

on each user’s personality.

Since the structure of a BN implies that the value of a particular node is

conditional only on the values of its parent nodes, as shown in equation (5.1), we

can simplify its joint probability expressions in our case that the joint probability

P (Ext, Agr,Neu, Con,Ope, C, Y, V, S,M, I, LessBW )

P (Ext, Agr,Neu, Con,Ope, C, Y, V, S,M, I, LessBW )

= P (Ext)P (Agr)P (Neu)P (Con)P (Ope) · P (C|Ext, Agr,Neu, Con,Ope)

· P (Y |Ext, Agr,Neu, Con,Ope) · P (V |Ext, Agr,Neu, Con,Ope)

· P (S|Ext, Agr,Neu, Con,Ope) · P (M |Ext, Agr,Neu, Con,Ope)

· P (I|Ext, Agr,Neu, Con,Ope) · P (LessBW |C, Y, V, S,M, I) (5.3)
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5.5.1 Diagnostic Inference

First, let’s look at diagnostic inference. The probability could be calculated

based on BN. Here, we only show one example of given “Less BW”, the probability

of Extraversion. For other probability with other personality traits, the principal is

the same.

P (Ext = y|LessBW = y) =
P (Ext = y, LessBW = y)

P (LessBW = y)
(5.4)

where

P (Ext = y, LessBW = y)

=
∑

P (Ext = y)P (Agr)P (Neu)P (Con)P (Ope)

· P (Cal|Ext = y,Agr,Neu,Con,Ope) · P (Y ou|Ext = y,Agr,Neu,Con,Ope)

· P (V id|Ext = y,Agr,Neu,Con,Ope) · P (SMS|Ext = y,Agr,Neu,Con,Ope)

· P (Mai|Ext = y,Agr,Neu,Con,Ope) · P (Int|Ext = y,Agr,Neu,Con,Ope)

· P (LessBW = y|Cal, Y ou, V id, SMS,Mai, Int) (5.5)

and

P (LessBW = y)

=
∑

P (Ext)P (Agr)P (Neu)P (Con)P (Ope)

· P (Cal|Ext,Agr,Neu,Con,Ope) · P (Y ou|Ext,Agr,Neu,Con,Ope)

· P (V id|Ext,Agr,Neu,Con,Ope) · P (SMS|Ext,Agr,Neu,Con,Ope)

· P (Mai|Ext,Agr,Neu,Con,Ope) · P (Int|Ext,Agr,Neu,Con,Ope)

· P (LessBW = y|Cal, Y ou, V id, SMS,Mai, Int) (5.6)
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5.5.2 Predictive Inference

Similarly, the predictive inference could be calculated for each personality trait.

We also only show one example of knowing a user’s personality of extraversion, the

probability of less BW assignment as

P (LessBW = y|Ext = y) =
P (Ext = y, LessBW = y)

P (Ext = y)
(5.7)

where P (Ext = y, LessBW = y) could be calculated the same as in formula (5.5).

We assume the original probability for all personality traits is unknown, that

is P (Ext = y) = 0.5, P (Agr = y) = 0.5, P (Neu = y) = 0.5, P (Con = y) = 0.5,

and P (Ope = y) = 0.5. Therefore, all the probability in Tables 5.1 and 5.2 could be

calculated.

5.5.3 Approximate Inference

We are also interested in sampling applied to the computation of posterior

probabilities. Here we consider direct sampling method as described in[158], re-

ferred as PRIOR-SAMPLE. Its operation on the network in Fig. 5.1 is illustrated

with an ordering [Ext, Agr,Neu, Con,Ope, C, Y, V, S,M, I, LessBW ]. In this case,

PRIOR-SAMPLE returns the event [y, y, y, y, y, y, y, n, y, y, n, n], with values shown

in formula (5.8), where sample from P (Ext) =< 0.5, 0.5 >, value is y, sample from

P (C|Ext = y, Agr = y,Neu = y, Con = y, Ope = y) =< 0.69, 0.31 >, value is y,

and so on.

[0.5, 0.5, 0.5, 0.5, 0.5, 0.69, 0.55, 0.65, 0.72, 0.52, 0.99, 0.8] (5.8)

From [158], SPS(X1, · · · , Xn) is the probability that a specific event is gener-

ated by the PRIOR-SAMPLE algorithm, and each sampling step depends only on

the parent values,

SPS(X1, · · · , Xn) =
n∏

i=1

P (Xi|π(Xi)) (5.9)
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SupposeN total samples, and the number of times the specific eventX1, · · · , Xn

occurs in the set of samples are NPS(X1, · · · , Xn)[158].

lim
N→∞

NPS(X1, · · · , Xn)

N
= SPS(X1, · · · , Xn) = PB(X1, X2, · · · , Xn) (5.10)

Therefore, the sampling probability for this event is

SPS(y, y, y, y, y, y, y, n, y, y, n, y, n) = 0.5× · · ·× 0.8 = 0.00228578922 (5.11)

that is, in the limit of large N , we only expect 0.228578922% of the samples to be

of this event.

5.6 Bandwidth Allocation in Fading Channel

As we know that the capacity of wireless channels is also based on channel

conditions[169]. We can build a smart bandwidth allocation scheme that adaptively

allocates channel bandwidth to each smartphone user depending on what the cur-

rent channel condition is. Taking advantage of the better channel conditions, less

bandwidth could be assigned with performance guarantee.

For a bandwidth-limited system, the capacity is an increasing, concave function

of the bandwidth W [169]. And for slow fading channel, the capacity is

C = Wlog(1 + |h|2 P

N0W
) (5.12)

where h is the fading channel gain, and |h| is the amplitude of h. W is the channel

bandwidth. P is a given received power, and additive white Gaussian noise power

spectral density is N0/2.

Suppose the transmitter encodes data at a rate R bits/s. If the channel gain h

is small that C < R, then the system is in outage, and the decoding error probability

can not be made arbitrarily small. The outage probability is

Pout(R) = Pr{Wlog(1 + |h|2 P

N0W
) < R} (5.13)
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For fading channels, we consider ϵ-outage capacity Cϵ, which is the largest

transmission rate R such that Pout(R) is less than ϵ. And solving Pout(R) = ϵ, we

can get

Cϵ = Wlog(1 + F−1(1− ϵ)
P

N0W
) bit/s (5.14)

where F (x) = Pr{|h|2 > x} is the complementary cumulative distribution function

(CDF) of |h|2.

When h is complex Gaussian CN (0, 1), the outage probability Pout(R) for

Rayleigh fading can be derived as

Pout(R) = Pr{Wlog(1 + |h|2 P

N0W
) < R}

= Pr{|h| <

√
(2

R
W − 1)N0W

P
}

(a)
≈ (2

R
W − 1)N0W

P
(5.15)

where (a) follows from the fact that |h| follows Rayleigh distribution, with the

probability density function (PDF) of |h|,

f(|h|) = 2|h|
σ2

exp{− |h|2

σ2
}, |h| > 0 (5.16)

so that

Pr{|h| <

√
(2

R
W − 1)N0W

P
}

=

∫
√

(2
R
W −1)N0W

P

0

f(|h|)d|h|

= 1− exp(−(2
R
W − 1)N0W

P
)

≈ (2
R
W − 1)N0W

P
(5.17)

where the last step follows from the fact of the Taylor series for the exponential

function e−x that e−x ≈ 1− x.
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Observe that both the ϵ-outage capacity Cϵ and the outage probability is re-

lated to the bandwidth W . With the increase of bandwidth W , the outage proba-

bility Pout(R) decreases and the ϵ-outage capacity Cϵ increases. Therefore, for the

smart bandwidth allocation, when less bandwidth is assigned, in the fading chan-

nel, the outage probability increases, which means that the bandwidth could not be

arbitrarily small with service performance guarantee. While with more bandwidth

allocated, the ϵ-outage capacity Cϵ increases, and Pout(R) decreases, so that the

service performance could be guaranteed for higher data transmission requirement.

Above is the relationship of the outage probability with bandwidth W in our

smart bandwidth allocation scheme. Next, let’s think about the effect of channel

fading.

(1). For deep fading, |h| → 0, with high probability that the channel capacity

will be arbitrarily small that C < R, and the system will be in outage, therefore,

more bandwidth W could be allocated to reduce the outage probability, as shown in

Fig. 5.1.

Pout1(R) = Pr{Wlog(1 + |h|2 P

N0W
) < R} (5.18)

(2). For shallow fading, the channel quality is good, so with high probability

that C > R, reliable communication with small error probability could be achieved,

and with very low probability that the system is in outage. Therefore, taking advan-

tage of the better channel conditions, less bandwidth W could be assigned, as shown

in Fig. 5.1.

Pout2(R) = Pr{Wlog(1 + |h|2 P

N0W
) < R} (5.19)

with

0 < Pout2(R) < Pout1(R) < 1 (5.20)
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5.7 Numerical Results

A bandwidth allocation scheme is proposed in this chapter. Based on one

smartphone user’s data usage in one billing cycle, the service provider could calculate

this user’s probability of having each personality trait using diagnostic inference, and

then based on predictive inference to calculate this user’s usage of bandwidth in the

next billing cycle. We can see that both diagnostic inference and predictive inference

could help the service provider to better allocate the smartphone bandwidth based

on each user’s personality.
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Figure 5.3. Diagnostic Inference for Personality Probability-LessBW.

Table 5.1 and Fig. 5.3 show the diagnostic inference for the probability of

personality traits with less bandwidth allocated. We can observe that P (Con =

y|LessBW = y) = 0.7123 with the highest probability, which means that when less

bandwidth is occupied, with the probability of 0.7123 that the user scoring high on
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Figure 5.4. Diagnostic Inference for Personality Probability-MoreBW.

conscientiousness. We can notice that with less bandwidth allocated, users are most

likely to score high on conscientiousness, least likely to be open-minded.

Table 5.1. Probability of Personality Traits with Less BW

Probability of Personality Traits with Less BW
P (Ext = y|LessBW = y) = 0.4954
P (Agr = y|LessBW = y) = 0.5717
P (Neu = y|LessBW = y) = 0.5335
P (Con = y|LessBW = y) = 0.7123
P (Ope = y|LessBW = y) = 0.4000

In the simulation, we assume the original probability for all personality traits

is unknown, that is P (Ext = y) = 0.5, P (Agr = y) = 0.5, P (Neu = y) = 0.5,

P (Con = y) = 0.5, and P (Ope = y) = 0.5.

Table 5.2 and Fig. 5.4 give the diagnostic inference for the probability of per-

sonality traits with more bandwidth. It can be observed that P (Ope = y|MoreBW =
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Table 5.2. Probability of Personality Traits with More BW

Probability of Personality Traits with More BW
P (Ext = y|MoreBW = y) = 0.5019
P (Agr = y|MoreBW = y) = 0.4694
P (Neu = y|MoreBW = y) = 0.4857
P (Con = y|MoreBW = y) = 0.4095
P (Ope = y|MoreBW = y) = 0.5426

y) = 0.5426, which means that when more bandwidth is allocated, with the prob-

ability of 0.5426 that the user scoring high on openness. We can notice that with

more bandwidth allocated, users are more likely to score high on openness.
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Figure 5.5. Predictive Inference for Personality Probability-LessBW.

Tables 5.3 and 5.4 and Figures 5.5 and 5.6 provide the predictive inference

probability. Given a user’s personality trait, the probability of this user occupying

less bandwidth is shown. For an extravert person, the probability of less bandwidth

occupation is 0.2962, while the probability of more bandwidth occupation is 0.7038.
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Figure 5.6. Predictive Inference for Personality Probability-MoreBW.

For an open-minded user, the case of less bandwidth is 0.2392, and more bandwidth

is 0.7608. Open-minded user has the highest probability to occupy more bandwidth.

Table 5.3. Probability of LessBW with diff. Personality Traits

Probability of LessBW with diff. Personality Traits
P (LessBW = y|Ext = y) = 0.2962
P (LessBW = y|Agr = y) = 0.3418
P (LessBW = y|Neu = y) = 0.3190
P (LessBW = y|Con = y) = 0.4259
P (LessBW = y|Ope = y) = 0.2392

We can also observe that with the spread of smartphone usage, no matter

what kind of personality traits, all kinds of personality have high probability of

occupying larger bandwidth. That’s why bandwidth is so precious nowadays, and

smart bandwidth allocation is a good solution for smartphone users.
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Table 5.4. Probability of MoreBW with diff. Personality Traits

Probability of MoreBW with diff. Personality Traits
P (MoreBW = y|Ext = y) = 0.7038
P (MoreBW = y|Agr = y) = 0.6582
P (MoreBW = y|Neu = y) = 0.6810
P (MoreBW = y|Con = y) = 0.5741
P (MoreBW = y|Ope = y) = 0.7608

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fading Channel Condition

Pr
ob

ab
ilit

y

 

 
Probability of Less BW Allocation
Probability of More BW Allocation

Figure 5.7. Probability of BW Allocation v.s. Fading Channel Condition.

Fig. 5.7 shows the probability of bandwidth allocation with fading channel

conditions, with the assumption that the original probability for all personality traits

is unknown, that is P (Ext = y) = 0.5, P (Agr = y) = 0.5, P (Neu = y) = 0.5,

P (Con = y) = 0.5, and P (Ope = y) = 0.5. The x-axis is the probability of good

channel condition (shallow fading), and the higher the better. x = 0.1 represents very

deep channel fading, while x = 0.9 is shallow fading. It is obvious that with worse

channel quality (deep fading), the probability is higher to assign more bandwidth.

While it is highly likely to allocate less channel bandwidth when the channel condition
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is good. This helps the service provider to better allocate the limited bandwidth for

smartphone users as well as smartphone users’ personality traits.

Manufacturers and service providers in the cell phone industry could provide

more personal service to each user based on the results calculated. Personality traits

of users could be estimated, using inference from this BN. For example, for two

smartphone users A and B, in last bill cycle, user A used 2GB data, and the other

one used 20MB data, with high probability that user A is open-minded, and user

B is conscientious. Smartphone service provider could store each user’s personality

trait and provide the corresponding service to each user. Personalizing bandwidth

allocation could be done based on smartphone users’ personality traits, resulting in

a smart and efficient usage of the limited bandwidth.

5.8 Conclusions

A bandwidth allocation method based on smartphone users’ personality traits

and channel condition is studied in a unified mathematical framework. Based on

the relationship between user behavioral characteristics extracted from rich smart-

phone data and self-reported Big-Five personality traits, further research and usage

of personality traits for personalizing services on smartphones could be practical us-

ing Bayesian Network. Based on one user’s data usage, the service provider could

estimate this user’s probability of having each personality trait using diagnostic

inference, and then based on predictive inference to calculate this user’s usage of

bandwidth in the future. We can see that both diagnostic inference and predictive

inference could help the service provider to better allocate smartphone bandwidth

based on each user’s personality. Personalizing bandwidth allocation could be done

based on smartphone users’ personality traits, resulting in a smart and efficient usage

of the limited bandwidth.
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For our proposed smart bandwidth allocation scheme, both the ϵ-outage capac-

ity Cϵ and the outage probability are studied in fading channel. For a smartphone

user with high probability of more bandwidth requirement, the outage capacity Cϵ

increases, and Pout(R) decreases, so that the service performance could be guaranteed

for higher data transmission requirement. While in deep fading scenario, the outage

probability will become too high to support the service. One possible solution is to

assign more bandwidth to guarantee the service performance.
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Table 5.5. CPT of Calls

Ext Agr Neu Con Ope C P (C|Ext, · · · , Ope)
y y y y y y 0.69
y y y y y n 0.31
y y y y n y 0.6
y y y y n n 0.4
y y y n y y 0.99
y y y n y n 0.01
y y n y y y 0.7
y y n y y n 0.3
y n y y y y 0.54
y n y y y n 0.46
n y y y y y 0.24
n y y y y n 0.76
y y y n n y 0.9
y y y n n n 0.1
y y n y n y 0.61
y y n y n n 0.39
y y n n y y 0.999
y y n n y n 0.001
y y n n n y 0.91
y y n n n n 0.09
y n y y n y 0.45
y n y y n n 0.55
y n y n y y 0.84
y n y n y n 0.16
y n y n n y 0.75
y n y n n y 0.25
y n n y y y 0.55
y n n y y n 0.45
y n n y n y 0.46
y n n y n n 0.54
y n n n y y 0.85
y n n n y n 0.15
y n n n n y 0.76
y n n n n n 0.24
n y y y n y 0.15
n y y y n n 0.85
n y y n y y 0.54
n y y n y n 0.46
n y y n n y 0.45
n y y n n n 0.55
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Table 5.6. CPT of Calls

Ext Agr Neu Con Ope C P (C|Ext, · · · , Ope)
n y n y y y 0.25
n y n y y n 0.75
n y n y n y 0.16
n y n y n n 0.84
n y n n y y 0.55
n y n n y n 0.45
n y n n n y 0.46
n y n n n n 0.54
n n y y y y 0.09
n n y y y n 0.91
n n y y n y 0.001
n n y y n n 0.999
n n y n y y 0.39
n n y n y n 0.61
n n y n n y 0.3
n n y n n n 0.7
n n n y y y 0.1
n n n y y n 0.9
n n n y n y 0.01
n n n y n n 0.99
n n n n y y 0.4
n n n n y n 0.6
n n n n n y 0.31
n n n n n n 0.69
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Table 5.7. CPT of Less BW

C Y V S M I LBW P (LBW |C, · · · , I)
y y y y y y y 0.001
y y y y y y n 0.999
y y y y y n y 0.1
y y y y y n n 0.9
y y y y n y y 0.05
y y y y n y n 0.95
y y y y n n y 0.1
y y y y n n n 0.9
y y y n y y y 0.05
y y y n y y n 0.95
y y y n y n y 0.1
y y y n y n n 0.9
y y y n n y y 0.05
y y y n n y n 0.95
y y y n n n y 0.1
y y y n n n n 0.9
y y n y y y y 0.15
y y n y y y n 0.85
y y n y y n y 0.2
y y n y y n n 0.8
y y n y n y y 0.15
y y n y n y n 0.85
y y n y n n y 0.2
y y n y n n n 0.8
y y n n y y y 0.15
y y n n y y n 0.85
y y n n y n y 0.2
y y n n y n n 0.8
y y n n n y y 0.15
y y n n n y n 0.85
y y n n n n y 0.2
y y n n n n n 0.8
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Table 5.8. CPT of Less BW

C Y V S M I LBW P (LBW |C, · · · , I)
y n y y y y y 0.15
y n y y y y n 0.85
y n y y y n y 0.2
y n y y y n n 0.8
y n y y n y y 0.15
y n y y n y n 0.85
y n y y n n y 0.2
y n y y n n n 0.8
y n y n y y y 0.15
y n y n y y n 0.85
y n y n y n y 0.2
y n y n y n n 0.8
y n y n n y y 0.15
y n y n n y n 0.85
y n y n n n y 0.2
y n y n n n n 0.8
y n n y y y y 0.45
y n n y y y n 0.55
y n n y y n y 0.999
y n n y y n n 0.001
y n n y n y y 0.45
y n n y n y n 0.55
y n n y n n y 0.99
y n n y n n n 0.01
y n n n y y y 0.45
y n n n y y n 0.55
y n n n y n y 0.95
y n n n y n n 0.05
y n n n n y y 0.45
y n n n n y n 0.55
y n n n n n y 0.99
y n n n n n n 0.01
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Table 5.9. CPT of Less BW (Cont.)

C Y V S M I LBW P (LBW |C, · · · , I)
n y y y y y y 0.05
n y y y y y n 0.95
n y y y y n y 0.1
n y y y y n n 0.9
n y y y n y y 0.05
n y y y n y n 0.95
n y y y n n y 0.1
n y y y n n n 0.9
n y y n y y y 0.05
n y y n y y n 0.95
n y y n y n y 0.1
n y y n y n n 0.9
n y y n n y y 0.001
n y y n n y n 0.999
n y y n n n y 0.1
n y y n n n n 0.9
n y n y y y y 0.15
n y n y y y n 0.85
n y n y y n y 0.2
n y n y y n n 0.8
n y n y n y y 0.15
n y n y n y n 0.85
n y n y n n y 0.25
n y n y n n n 0.75
n y n n y y y 0.15
n y n n y y n 0.85
n y n n y n y 0.2
n y n n y n n 0.8
n y n n n y y 0.15
n y n n n y n 0.85
n y n n n n y 0.2
n y n n n n n 0.8
n n y y y y y 0.15
n n y y y y n 0.85
n n y y y n y 0.2
n n y y y n n 0.8
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Table 5.10. CPT of Less BW (Cont.)

C Y V S M I LBW P (LBW |C, · · · , I)
n n y y n y y 0.15
n n y y n y n 0.85
n n y y n n y 0.2
n n y y n n n 0.8
n n y n y y y 0.15
n n y n y y n 0.85
n n y n y n y 0.2
n n y n y n n 0.8
n n y n n y y 0.15
n n y n n y n 0.85
n n y n n n y 0.2
n n y n n n n 0.8
n n n y y y y 0.45
n n n y y y n 0.55
n n n y y n y 0.99
n n n y y n n 0.01
n n n y n y y 0.45
n n n y n y n 0.55
n n n y n n y 0.99
n n n y n n n 0.01
n n n n y y y 0.45
n n n n y y n 0.55
n n n n y n y 0.9
n n n n y n n 0.1
n n n n n y y 0.45
n n n n n y n 0.55
n n n n n n y 0.999
n n n n n n n 0.001
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Chapter 6

Conclusions and Future Works

This chapter concludes this dissertation. It begins with a summary of the

dissertation results and contributions, follows with a discussion of future research

directions of sparse sensing in Big Data.

6.1 Summary

In this dissertation, several approaches of sparse sensing in Big Data - com-

pressive sensing, co-prime sampling and nested sampling are studied, in theory and

applications. The contributions of this dissertation are:

• Error performance bounds of noisy compressive sensing (CS) were derived

based on information theory and estimation theory. Numerical results showed

that the probability of error is related with the sampling ratio and the signal-

to-noise ratio (SNR).

• Information rate distortion function is a measure as the number of bits per

symbol to be stored or transmitted under the constraint of a distortion. Rate

distortion performance for scalar quantization of measurement observation was

derived. Based on this, reconstruction rate distortion was studied for compres-

sive sensing as well.

• Real-world applications of CS in Big Data were studied, to Synthetic Aperture

Radar (SAR), radar sensor networks (RSNs), and underwater acoustic sensor

networks (UWASNs). By comparing different reconstruction methods, we con-

cluded that OMP algorithm could be chosen for the reconstruction of a huge
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amount of real-world Big Data. An efficient and effective sampling algorithm

was proposed to compress the large-scale data gathered in real-world Radar

Sensor Networks based on compressive sensing. Numerical results showed that

our algorithm is more efficient with correlations among the sensor data consid-

ered, without introducing more computation complexity. The rate distortion

performance in UWASNs was studied, with or without correlation among sen-

sor readings.

• Properties of two new sparse sampling algorithms - coprime sampling and

nested sampling were investigated. Rate distortion function was constructed

and analyzed which can determine the bits per symbol, since sparse sampling

can cause possible distortion because less number of samples are used.

• Theoretical analysis of how coprime sampling and nested sampling effect the

power spectral density was given. Simulation results showed that with if we

choose the sampling spacings larger, the main lobe of PSD obtained from these

two sampling will be much narrower than the original QPSK signal with in-

creased spectrum efficiency.

• A secure transmission scheme for Big Data based on coprime sampling and

nested sampling was provided. When the sampling spacing pairs bigger enough,

the spectrum of BFSK signal performs like frequency hopping. This property

has great advantage in the security of Big Data collection and transmission

using FH/BFSK, as it could achieve low error probability in Rician fading

channels.

• A hybrid approach of sparse sensing was proposed, which combines nested

sampling and compressive sensing to reduce the number of symbols, and rate

distortion function was used as a criteria to determine how many bits should

be used to represent the symbols during this process. We showed that with
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this hybrid approach, less number of bits was required to represent the sensed

information. This hybrid approach has great advantage in the application of

Big Data nowadays, especially for some application which depends on the dif-

ference co-array, or autocorrelation, like Direction-of-arrival (DOA) estimation

and beamforming.

• A bandwidth allocation method based on smartphone users personality traits

and channel condition was studied in a unified mathematical framework. Since

LTE has been a Big Data consumer with ample data, how to deal with these

Big Data in telecommunications becomes a new issue. Personality traits of

smartphone users could be estimated. Manufacturers and service providers

in the cell phone industry could provide more personal service to each user.

Therefore, personalizing bandwidth allocation could be done based on smart-

phone users personality traits and channel condition, resulting in a smart and

efficient usage of the limited bandwidth.

6.2 Future Directions

In future research, we would like to continue in the following aspects.

6.2.1 For nested sampling and coprime sampling

We would like study the effect of sampling spacings for nested sampling and

coprime sampling theoretically. For example, with N1 × N2 = 30, there are several

combinations of N1, N2, like N1 = 5, N2 = 6, N1 = 3, N2 = 10, and N1 = 2, N2 = 15.

This indicates that for the same interval, a lot of sampling schemes exist, for nested

sampling and coprime sampling. For the case of N1 = 2, N2 = 15, the chosen samples

are much sparse than that of N1 = 5, N2 = 6. How these different combinations

of sampling spacings will affect the performance of nested sampling and coprime
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sampling? One we would like to analyze is the rate distortion performance, and the

other one is spectrum efficiency performance.

(1). Rate Distortion Performance

we may not only analyze how the rate distortion performance will change with

different nested sampling spacing pairs N1, N2 (one special case is that N1+N2 keeps

the same, with different N1, N2 combination), but also analyze the real application

performance of the hybrid approach, for example, in some real estimation of DOA,

to see how the estimation error rate of DOA changes with different nested sampling

intervals.

(2). Spectrum Efficiency We noticed that with the proper choice of sampling

intervals, i.e., making them large enough, the main lobe of PSD obtained from both

nested sampling and coprime sampling is much narrower than the original QPSK

signal. If the sampling intervals are chosen larger, the bandwidth occupied will be

narrower, which improves the spectrum efficiency.

We would like to continue the research to analyze how sampling intervals will

affect spectrum efficiency with different combination. For example, Figures 6.1 and

6.2 give the corresponding PSD with nested sampling N1 = 5, N2 = 6, and N1 =

3, N2 = 10. And Figures 6.3 and 6.4 show the corresponding PSD with coprime

sampling M = 5, N = 6, and M = 3, N = 10. It is obvious that with N1 =

3, N2 = 10, and M = 3, N = 10, the chosen samples are much sparse than that of

N1 = 5, N2 = 6 and M = 3, N = 10 for both nested sampling and coprime sampling.

6.2.2 Dynamic Bandwidth Allocation

For bandwidth allocation, in our current research, based on one user’s data

usage, the service provider estimate each user’s probability of having each personality

trait using diagnostic inference, and then based on predictive inference to calculate
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Figure 6.1. Nested Sampling with M = 5, N = 6.
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Figure 6.2. Nested Sampling with N1 = 3, N2 = 10.
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Figure 6.3. Coprime Sampling with M = 5, N = 6.
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Figure 6.4. Coprime Sampling with M = 3, N = 10.
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Figure 6.5. Dynamic Bayesian Network Inference of Smartphone Usage.

this user’s usage of bandwidth in next billing cycle. Both diagnostic inference and

predictive inference are calculated based on Bayesian network in one billing cycle to

allocate smartphone bandwidth. In the future work, to get more accurate prediction,

dynamic Bayesian network (DBN) could be considered to dynamic adjust each user’s

bandwidth real-timely, as shown in Fig. 6.5. For example, one person has recognized

that he/she has already used 2G bits data in the first week of billing cycle (time

t− 1), he/she may act more organize, and more sensitive after that (time t), to try

to control his data usage.
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