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Abstract 

PHORESIS OF A SOLID PARTICLE IN REAL FLUID 

 

Yuan Ting Wu, PhD 

 

The University of Texas at Arlington, 2014 

 

Supervising Professor: Bo Yang 

For micro- and nano-scale particles driven by interfacial non-contact forces in 

fluid, known as phoresis, this dissertation provides a general formulation and a 

systematic investigation. It starts with an analytical continuum-mechanics formulation that 

covers various important aspects of an interfacial structure, including viscosity and mass 

density variations as well as a body force field, in real fluid. It then reduces to specific 

solutions due to characteristic mechanisms. A closed-form analytical solution to the case 

of viscosity variation (which manifests itself as Navier’s slip boundary condition) is 

derived. Furthermore, a novel mechanism for thermophoretic mobility driven by near-

surface phase transition is introduced. It is shown that when a particle adsorbs a liquid 

film around its surface, and when the liquid flows along the surface due to osmosis, 

normal vapor fluxes in and out of the liquid film are generated. It can result in a term of 

thermophoretic motility inversely scaled with particle size, in contrast to classical terms 

with a scaling law either constant or linear with particle size. It means that this new 

mechanism can be powerful, especially to propel nanoparticles, as demonstrated 

numerically with the water-steam system modeled by using a continuum equation of state. 

Last, the interfacial structure of water at a solid surface is examined by using molecular 

dynamics simulation. It reveals interesting features that are not predicted by the above 

equation-of-state approach, especially in the case of a hydrophilic surface where water 
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strongly interacts with the surface. For example, there appears to be significant 

anisotropic pressure in the interfacial zone, which relates to the interfacial tension. It is 

shown that the thermophoretic mobility due to the anisotropic pressure is as important as 

that of interfacial body forces with the same scaling law.  
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Chapter 1  

Introduction 

1.1 Challenges in Propelling Micro/Nanoscale Motors/Robots in Fluid 

Transport of colloidal particles in micro/nano fluid has been an active research area for 

the recent decades.  It can find important applications in biological systems, such as transports 

of nutrition, chromosome, and protein, which are vital to sustaining the lives.  Meanwhile, 

micro/nanoscale artificial motors/robots have been fabricated, which mimic the life forms.  The 

micro/nano fluidic transport can find applications in such devices for biomedical treatments, 

such as precise drug delivery, functionalized marker, sensing, and missionary particle/robot 

tasking.  

Powering and propelling a micro/nanoscale motor immersed in fluid are always 

challenging. The reason is that the drag from the fluid environment is linearly scaled with 

particle size meanwhile the power typically follows a higher-order scaling law. For example, the 

typical drag coefficient of a spherical particle at low Reynolds number is 6��� where � is the 

fluid viscosity and � is the particle radius that makes the drag coefficient scales with � . In 

contrast, assuming that the power propelling the particle is from a magnetic source and scales 

with its volume, which is 
�
� ���, the speed of this particle would scale with ��. It implies that a 1 

μm particle would be a million times slower than a particle of size 1 mm. Even if we consider the 

case of electrical power source from surface charges where the speed scales with the particle 

radius, it is still a thousand times slower. Thus, directly pushing or pulling a device is not viable.  

Another challenge is inherent in the scallop theorem (Purcell 1977). The Scallop 

theorem states that in order to achieve propulsion by body motion at low Reynolds number in 

Newtonian fluids a swimmer must perform in a way that is not invariant under time-reversal. As 

in its name, for example, a scallop-like structure that only opens and closes reciprocally with two 

rigid components will only move back and forth at the same place. It is because of the nature of 
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low Reynolds number hydrodynamics. The Reynolds number is a dimensionless measure of the 

relative importance of inertia and viscosity effects. It is defined as 	
 = �
�
� , where � is the fluid 

density, � is the characteristic fluid velocity, � is the characteristic geometry size, and � is the 

fluid viscosity. Usually, micro- and nano-scale particles and artificial motors that are immersed 

and move in typical viscous fluid are at low Reynolds number, in which the inertia effect is much 

smaller than the viscosity effect. Consequently, the Navier-Stokes equation reduces to the 

linear Stokes creeping flow theory. In this case, an invariant reciprocal motion would cause the 

device to cancel all the effects and to revolve around the original position.  

Therefore, as evidenced by the natural selection, as shown in Figure 1-1, 

microorganisms and nano- and micro-scale organelles in living systems have to choose either a 

flexible moving part to propel themselves around the scallop theorem, or other mechanisms that 

require no body motion. Flagella and cilia are the most common ways that cells use to propel 

themselves. Having a flagellum means that the cell rotates its whip-like tail to move. A cilium is 

shorter than a flagellum but works similarly to generate motility essential to lives.  

Since rotation is the only way that a rigid body can achieve propulsion without 

constraint by the scallop theorem, many researchers tried to develop devices mimicking the 

structure of a flagellum. The micro- and nano-structure can be built by different ways, such as 

etching (Zhang, Abbott et al. 2009), atom deposition (Gibbs and Zhao 2009), or self-assembled 

micro-/nano-particles (Dreyfus, Baudry et al. 2005). Flexible structures can also be achieved 

(Dreyfus, Baudry et al. 2005), but apparently this is more difficult. When using body motion to 

propel a micro/nanoscale motor, generally, an external powering source is required, such as a 

magnetic field. Thus, the device, as a receiver, will receive power that scale with its volume as 

�� . As mentioned above, it would generally lead to the particle speed scaling with ��  and 

slowing down rapidly when downsizing.  
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Figure 1-1 Illustration of different approaches of (a) micro/nanoscale living body moving, (b) 

associated artificial propulsion method that mimic the nature live  

 

Among the approaches not using body motion, most involve the mechanism of phoresis 

due to action of a non-contact force field rather than direct pushing or pulling. Phoresis draws 

energy from the environment through the gradient of interfacial non-contact body forces. Due to 

the difference of interfacial structure transmitting the interfacial body forces to drive phoresis, 

researchers have found various scaling laws with particle size, such as �� (Duhr and Braun 

2006), �� (Braibanti, Vigolo et al. 2008), and even ��� (Ebbens and Howse 2011). Recently, a 

special class of motors has been actively studied that can generate an asymmetrical local field 
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to move themselves with it, namely, autonomous Janus motors (Paxton, Sen et al. 2005; Wang, 

Duan et al. 2013). Since the field is generated locally, it exhibits unique characteristics. For 

example, the local concentration gradient can be much higher than conventionally achievable 

since the surface is in direct contact to the source or sink. With those various scaling laws in 

hand, phoresis can be a promising propulsion method at the micro/nanoscales. However, the 

underlying physics is largely elusive. 

1.2 Phoresis: Definition, Historical Review, and Scientific Applications 

Phoresis is a very common motion phenomenon of micro/nanoscale colloidal particles. 

It has been so far understood as a result of the particle surface interacting with surrounding fluid 

through an interfacial non-contact force field. Since the non-contact force field can be changed 

by many other bulk fields, a colloidal particle can move towards either higher or lower such field 

when it is uneven, due to the corresponding uneven force field. Depending on the driving field, 

phoresis can be sub-categorized into many “-phoresis”, e.g., electrophoresis (Ünlü, Morgan et al. 

1997; Boguth, Harder et al. 2000), thermophoresis (Goren 1977; Talbot, Cheng et al. 1980), or 

diffusiophoresis (Derjaguin 1987; Anderson and Prieve 1991), due to uneven electrical potential, 

temperature, and chemical concentration, respectively, as the source of loading. The phoretic 

motion is unique because the propulsion originates from a self-balanced interactive force field in 

a narrow interfacial layer between the particle and the fluid. If a control volume is defined 

around the particle with far enough a boundary, the net force within it is equal to zero. There are 

also other phenomena named after phoresis, for example, barophoresis, in which the driving 

gradient field is pressure. In such a case, the net force in the control volume is not necessarily 

zero. The present study is focused on those cases with self-balanced active forces confined in 

the thin interfacial layer of a solid particle and surrounding fluid. It might be worth noting that for 

the case of electrophoresis, the driving force field may be due to an external electric field. 
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However, since the net charge near the particle is balanced by counterions, the net force is still 

zero. 

The motion phenomenon is always relative, as shown in Figures 1.2(a) and (b). 

Relative to a surrounding fluid, the particle motion driven by a field gradient is termed phoresis, 

as discussed above. On the other hand, the local flow field accompanying the particle motion, 

certainly, caused by the same field gradient, is termed osmosis. Many times, since the solid 

surface can be reasonably assumed stationary, only the osmosis is discussed. In the same way 

as how the phoresis is classified, there are electro-osmosis following electric field (Pretorius, 

Hopkins et al. 1974), thermo-osmosis following temperature field (Denbigh and Raumann 1952), 

and osmosis without any prefix or capillary-osmosis though conventionally referred to flow 

following active agent concentration (Derjaguin, Dukhin et al. 1972). Even though the present 

study is focused on the phoresis, the osmosis always accompanies, which is often said to be 

the driving force for the former.  

 

 

Figure 1-2 Illustration of different viewpoints of interfacial flow phenomenon: (a) assuming the 

far field fluid is stationary, particle motion is termed as phoresis; (b) assuming the solid surface 

is stationary, the near-surface flow is termed as osmosis; (c) a self-phoresis phenomenon of a 

particle driven by a self-generated local field. 
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Recently, there has been actively explored a special class of motors, called self-

phoretic motor, that can generate an asymmetrical local field of chemical concentration, 

temperature and/or electrical field, and can move themselves with it. Its illustration is given in 

Figure 1-2c. Since the field is generated locally, it shows different characteristics from 

conventional phoretic phenomena on many different scales. For example, the local 

concentration gradient can be much higher than conventionally achievable when externally 

applied since the surface is in direct contact to the source or sink.  

 

1.2.1 Electrophoresis 

Electrophoresis is the motion of a charged colloid particle under the influence of a 

spatially uniform electric field. Because of the effect of the double layer (Helmholtz 1853), the 

entire ion-particle assembly can be considered hold zero net charge. Thus the force applied by 

the external electric field has no net force in this system. However, due to the forces are applied 

at different locations of the fluid system, it drives the surrounding fluid to flow in one direction 

and the particle to move in the opposite direction. The conceptual depiction can be found in 

Figure 1-3a. Electrophoresis has been observed as early as 1807 (Ferdinand Frederic Reuss). 

It has attracted major research attention since its capability of separating chemicals (Tiselius 

1937) , especially in biochemical area, such as DNA sequencing.  
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Figure 1-3 Schematic of (a) electrophoresis (b) dielectrophoresis  

 

A sub-type of electrophoresis is called dieletrophoresis (Pohl and Pohl 1978) in which a 

dielectric particle moves along with the gradient of electric field, as shown in Figure 1-3b. Since 

dielectricphoresis does not require the particle to be charged on its surface, any particle can be 

consider moveable with dielectrophoresis. However, the dielectrophoretic speed is proportional 

to the dielectric constant of the particle, which can be very small for some material.  

A more recent design of micro-/nano-motor is self-electrophoresis. It was designed to 

self-generate a local electric field to propel the device with electrophoresis (Jaffe, Robinson et al. 

1974). The electric field can be generated by local catalytic reaction (Golestanian, Liverpool et 

al. 2007; Gibbs and Zhao 2009; Ibele, Mallouk et al. 2009; Baraban, Tasinkevych et al. 2011), 

absorbing electromagnetic wave (Sen, Ibele et al. 2009), or any other methods that can 

transform energy into an electric field.  

1.2.2 Diffusiophoresis 

Diffusiophoresis is defined as colloidal particle motion that move toward or against the 

concentration gradient of one or more specific solute. It also has been known as “cross diffusion” 

when considering a large quantity of colloids. The specific concentration that particle follows, so 
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 Osmotic flow velocity 

 Positive charge 

 Negative charge 

 Electric field strength 

(a) (b) 



 

8 

called active agent, change the interfacial body forces, thus a concentration gradient of active 

agent will introduce an asymmetrical interfacial body force field around the particle. It cause the 

interfacial flow and as a result, diffusiophoresis. Diffusiophoresis was theoretically predicted and 

experimentally demostrated by Derjaguin and others in 1947.  

 

 

Figure 1-4 Schematic of diffusiophoresis  

 

Researchers found diffusiophoresis can be important for living body systems, such as 

chemotaxis. Chemotexis is defined as the phenomenon that an organism move in respond to 

the surrounding concentration gradient of active agent, such as bacteria moves toward nutrition 

or sperm moves toward egg through tracking calcium concentration (Roegiers, McDougall et al. 

1995). There also studies suggest that self-diffusiophoresis can be found in biological system, 

such as chromosome can depolarize its end node and releasing a local concentration gradient 

to propel its self with self-diffusiophoresis during bacterial mitosis (Banigan, Gelbart et al. 2011).  

     

 Particle phoretic velocity 

 Osmotic flow velocity 

 Molecule of Active agent 

 Interfacial body force 
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Diffusiophoresis is also used in artificial micro/nanoscale devices. Through the use of 

semipermeable membrane, one can control the active agent concentration dynamically by 

changing the fluid on the other side of the membrane, hence controlling the particle motion 

through diffusiophoresis. Diffusiophoresis also can be introduced by electric field induced 

electrolyte concentration gradient. The idea of self-diffusiophoresis is also been used with 

propelling artificial micro-/nano-motor. The motor is designed asymmetrically, i.e, a Janus 

particle, and induce an uneven concentration gradient of active agent, mostly using catalytic 

reaction.  

 

1.2.3 Thermophoresis 

Thermophoresis is defined as colloid particle motion under the effect of temperature 

gradient. Similar to diffusiophoresis, temperature difference will cause the density of the fluid 

change, which cause the interfacial body force also change, hence thermophoresis. The effect 

also called the Soret effect, however, the term Soret effect is mostly reserved for the 

combination result of diffusion and thermophoresis. An example that may be observed by the 

naked eye is when the hot surface of an electric heater is surrounded by tobacco smoke. The 

smoke stay away and leave an immediate vicinity of the hot surface. In this example, the 

equilibrium of local smoke particle concentration can be put as �∇� = −���∇�, where � is the 

diffusivity of smoke particle, � is the smoke particle concentration, and � is the temperature. 

The �� is the thermophoretic mobility defined as � = −��∇� where � is the phoretic speed. It is 

very clear that the equilibrium is built on the balance of diffusivity and thermophoresis. Thus the 

Soret coefficient is define as the quotient of diffusivity and thermophoretic mobility as �� = ��/�. 

Up to doday, most of the experiments that measuring thermophortic mobility of small particles, 

i.e., few tens nanometer size, are based on measuring the concentration of particles and find 

the thermophoretic mobility through Soret coefficient.  
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Just as self-electrophoresis and self-diffusiophoresis, self-thermophoresis is also been 

introduced. Researchers used gold or Silver as irradiant for ambient light and create local 

temperature gradient. Since many activities may involve releasing thermo energy, the self-

thermophoresis should be considered in many cases, such as Janus catalytic particle.  

 

1.3 Interfacial Structures that Impact Phoresis Mobility 

Since the phoresis event is all about how to channeling the bulk energy difference into 

the fluid dynamic motion near the interface, the interfacial structure paly crucial role. While 

scientists keep digging down to small scale, the understanding of interfacial structure is much 

more improved than the time that phoresis equations has been put. Thus, one goal of this 

dissertation is to find out how those interfacial structures would impact the phoresis mobility and 

surface osmosis flow.  

1.3.1 Electric Double Layer 

Electric double layer is when an ionized or charged surface immersed in a fluid solution 

of ions, the ions in fluid will be adsorbed onto the surface and form a layer by layer structure. It 

has been proposed by Helmholtz (1853). Since then, many scientists improved the model to be 

more flexible to relate the observation of electrophoresis experiments (Chapman 1913). Usually, 

the first layer is assumed to be completely adsorbed that have no mobility. Starting from the 

next layer, ions aggregate and distribute following the Boltzmann distribution. However, in the 

general sense, highly aggregated ions should change the fluid nature, such as viscosity, density. 

In this point of view, the immobile layer can be considered a result of very high viscosity.  

1.3.2 Hydrophilic and Hydrophobic Surfaces 

Hydrophobicity is easy to observe and quantify by the experiment of contact angle; 

however, in the case of phoresis, we need more information than a simple contact angle. Till 

today, how the interfacial structure link to hydrophobicity is still under debate. While the 
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experiment of X-ray indicates the observation of the near surface depletion (Mezger, Reichert et 

al. 2006). If the depletion thickness is the main reason of hydrophobicity, it can be link to the 

length scale of the interfacial potential. For most cases, a hydrophobic surface is holding no 

charge and is not ionized, thus water molecules are more attracted by themselves, due to its 

highly polar molecule structure. In this assumption, hydrophobicity links to the attraction 

strength of the interfacial potential.  

There is a class of surface that been categorized as super hydrophobic surface. It is 

usually built with micro-/nano-structure that can hold air or other gas in between water and the 

surface. In this case the water is basically detached to the surface.   

1.3.3 Slip Boundary Condition 

Boundary slippage is another important effect that should be considered.  The very 

early model of boundary slip is proposed by Navier (1823). The definition of “slip legth”, ��, has 

been proposed. Slip length is defined as the thickness of a virtual layer that connect real fluid 

field and surface, which the thickness is specified to match no slip boundary condition with the 

same viscosity of the bulk fluid.  Therefore, ls = 0 indicates the boundary is fully sticky, and �� =
∞ means it is fully slippery. However, most of the experimental agreements with this approach 

are curve-fitting in nature without linking to the fundamental physics behind it. Also, the theory is 

yet a first-order approximation that may not work in every case. The slip length of water-solid 

interface could set between zero and a few tens nanometers for an atomically smooth surface, 

or hundreds to thousands nanometers for a micro-/nano-structured surface (Lauga, Brenner et 

al. 2007; Bocquet and Charlaix 2010). Researchers indicated many causes that could lead to a 

large slip length, e.g., in large Kudsen number fluid (Morris, Hannon et al. 1992), with water on 

highly hydrophobic surface (Tretheway and Meinhart 2002), with high-concentration dissolved 

gas in liquid, and with nano-bubbles attached to a surface (Lauga, Brenner et al. 2007). 

Researchers have analyzed the boundary slip effect on unconstrained bodies in fluid, which is 

the case of phoretic motor. The drag coefficient of a spherical particle floating in unconfined fluid 
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is analytically found by Basset (1888). More numerical calculations have been done for various 

situations, e.g., two spheres (Luo and Pozrikidis 2008),  and a Janus particle with non-slip/slip 

coating (Swan and Khair 2008).   

1.4 Summary and Objective 

Phoresis including self-phoresis can be an effective way to propel micro-/nanometer 

scale motors in fluid. In order to gain in-depth understanding of the underlying mechanism and 

to realize the technological applications, a sophisticated theory taking into account important 

characteristic features is required. For various potential applications involving more complicated 

interfacial structures than the ideal gas law, the classical theory based on Boltzmann distribution 

and on no-slip boundary condition is no longer adequate. Therefore, in the present dissertation, 

we aim to reformulate the continuum theory of osmosis/phoresis by taking into account a 

general interfacial structure comprising viscosity variation and mass density variation as well as 

a non-contact body force field. Within the formulation, we examine intriguing interfacial 

phenomena due to Navier’s boundary slip, to near-surface phase transition, and to an 

anisotropic interfacial pressure field (i.e., interfacial tension). 

1.5 Organization of this Dissertation 

In Chapter 2, we review three analytical approaches of phoresis. 1. The most classic 

theory of phoresis in an incompressible fluid and with no-slip boundary condition. 2. Maxwell-

Navier’s boundary condition that improved the first model with Navier’s slip boundary condition. 

This model considered the near surface viscosity change with the shear stress provided by the 

bulk hydrodynamic drag. 3. The improved slip boundary condition that considered the shear 

stress from interfacial force. This model improved Maxwell-Navier’s slip boundary condition with 

the consideration of interfacial force can highly change the slip velocity since it is the driving 

force of the phoresis.  
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In Chapter 3, we present a general formulation of phoretic mobility in real fluids by 

taking into account near-surface viscosity variation, mass density variation and noncontact 

forces. The problem is solved analytically by applying the reciprocal theorem. We also present 

the solution to the special case of a spherical particle with uniform slip length where the auxiliary 

solution is available. Further, the solution is expanded in multipole series. 

In Chapter 4, we present the solution with active agent (with which the particle surface 

interact to generate the noncontact body force) following the Boltzmann distribution. The cases 

of both diffusiophoresis and thermophoresis are discussed. We also investigate how the 

solution reacts to a Lenard Jones style, 3-9, surface potential.  

In Chapter 5, we employed a real equation of state of water to study how phase 

transition would impact phoresis. We solved the interfacial structure and found the temperature 

dependency of the adsorbed water film thickness. With the analytical solution given in Chapter 3, 

we analyzed how phase transition would impact the magnitude and size dependency of 

phoresis.  

In Chapter 6, a molecule dynamics simulation is used to find the interfacial structure. By 

the stress result of simulation and analytical solution form Chapter 3, we found the phoretic 

speed that from both interfacial body forces and the pre-accumulated stress from the interfacial 

structure.  
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Chapter 2  

Phoretic Mobility Approaches Used in Past Studies 

In this Chapter, we summarize existing theoretical approaches for phoresis that were 

used in past studies. It will be the starting point of our new approach. All the theories listed 

below start with a near-surface body force field. The source of the body force is not specified to 

generalize the description for all different kinds of phoresis. With different interfacial structure 

assumptions, researchers found different solutions for the body force-induced flow field, which 

is known as osmotic flow. By balancing that momentum change, the particle motion in the 

opposite direction can be solved.  

To start with, the strictest assumption is a feature-less interfacial structure with uniform 

viscosity and uniform mass density fields where the near surface flow follows the Stokes flow 

equations with a simple no-slip boundary condition. The result is a velocity discontinuity across 

the interface, given by (Derjaguin 1987).  !|#$% − & = !′(.*., where ! is fluid velocity, & is the 

solid surface velocity, and !′+.,. is the lumped velocity discontinuity from the layer containing the 

body forces. In most cases, !′(.*. is assumed to be proportional to the gradient of a field that 

carries the body forces, such as temperature gradient and concentration gradient. The phoretic 

velocity can be found by the area average velocity discontinuity as (Anderson and Prieve 1991) 

& = −〈!(.*.〉, where the arrow bracket is the operator of area average. A relaxed assumption is 

that there is an interfacial structure with varying viscosity. When the varying viscosity effect is 

also lumped, it results in a summation of classical Navier’s slip boundary condition (Navier 1823) 

!′/0 , and the velocity discontinuity form body force !′(.*. as the Maxwell-Navier boundary 

condition of (Maxwell 191X):  !|#$% − & = !1/0 + !1(.*. = 3�
� 456 − 778 ∙ 57 ∙ :8; + !′(.*., where �< 

is the slip length, and η is the (bulk) viscosity. It implies that the shear stress, 56 − 778 ∙ 57 ∙ :8, 

is assumed to be invariant across the interfacial zone of varying viscosity. In most studies, the 

shear stress is taken to be the asymptotic value from the bulk fluid (Talbot, Cheng et al. 1980). 
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In some recent studies, Ajdari and Bocquet (2006) and Morthomas and Würger (2009) 

combined it with the effect of the interfacial body force field – the same force field facilitating the 

driving force for phoresis. By realizing that �< can be huge in many systems, Ajdari and Bocquet 

termed the resulting phoresis “giant” by assuming the contribution from remote shear stress is 

trivial. However, the assumption of invariant shear stress across the interfacial zone of varying 

viscosity is generally invalid. In the following, we summarize these existing models. They 

represent the state-of-the-art status of this area of research in phoresis, and they provide the 

starting point for the present dissertational work.  

2.1 Model with No-slip Boundary Condition 

The fluid environment is assumed to be incompressible and at very low Reynolds 

number. The Reynolds number is defiend by 	
 = ���/�, where � is the mass density, and � is 

the particle radius. In a typical case of our interest, a particle of radius a = 1 µm would move at 

speed U = 1 µm/s in water of viscosity η = 10-3 Pa s. The corresponding Reynolds number is ~ 

10-6, which is much smaller than one unit. Thus, the flow would follow the equation set of Stokes 

creeping flow theory as  

: = −=6 + �5∇! + 5∇!8�8      (2.1) 

∇ ∙ : = −+ ,       (2.2) 

∇ ∙ ! = 0        (2.3) 

where  :  is the stress tensor, +  is the body force density, 6 is identity tensor, and =  is the 

pressure. The interfacial model is built under a local near-surface coordinate system as shown 

in Figure 2-1. Substituting Eq. (2.1) in Eq. (2.2), one obtains, in the local reference frame, 

@AB,B + @AA,A = −=,A + �DEA,BB + EA,AA + EB,AB + EA,AAF = −GA,    (2.4) 

@BB,B + @BA,A = −=,B + �DEB,BB + EB,AA + EB,BB + EA,BAF = 0    (2.5) 

where the subscript index indicates the component in that direction, and the subscript comma 

indicates the partial differentiation with respect to the indices that follow. By assuming the local 
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velocity has value only along tangential direction H and its partial differentiation only has value 

toward normal direction I. Thus, Eq. (2.4) and Eq. (2.5) can be reduced to  

=,A = GA,        (2.6) 

=,B = �EB,AA        (2.7) 

By integrating Eq. (2.6), the local pressure can be found as 

=5I8 = =J − K GALIJ
A .       (2.8) 

Also, integrating Eq. (2.7) would yield the osmotic flow rate as (Derjaguin, Dukhin et al. 1972) 

E′(.*. = EBJ − EB� = �
� K I MN

MB LIJ
�       

= − �
� K I K M(O

MB LIJ
A LIJ

� .       

= − �
�� K I� M(O

MB LIJ
�        (2.9) 

where E(.*. is the velocity discontinuity between the solid surface and the bulk fluid. Since the 

interfacial layer is small compared to any dimension of the bulk fluid, the upper limit in both 

integrals of Eqs. (2.8) and (2.9) is taken to be the infinity. The superscripted b.f. indicates it is 

induced by the body forces.  

By assuming that the interfacial velocity discontinuity is a material property, 

independent of remote loading condition, it allows for a solution to the phoretic speed as 

(Anderson and Prieve 1991) 

& = −〈!′(.*.〉,       (2.10) 

where the arrowed bracket denotes an area average. For a spherical particle, we have 
M(O
MB =

M(P
%MQ = sin5U8 M(P

MV , in the coordinate systems as defined in Figure 2-2. Thus, Eq. (2.10) can be 

rewritten into 
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Figure 2-1 Schematic showing how body forces induce near-surface flow 

 

� = �
�� K sin�5U8 K I� M(P

MV LILUJ
�

W
� .      (2.11) 

Assuming that 
M(P
MV  is uniform over the particle surface, Eq. (2.11) can be further reduced to 

� = �
�� K I� M(P

MV LXJ
� .      (2.12) 

It represents the solution of the phoretic speed of a spherical solid particle by the velocity 

discontinuity model. It can be seen that this solution involves no size effect of phoretic mobility. 

However, strong size effect of phoretic mobility has been experimentally observed in various 

systems (Würger 2013).  
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Figure 2-2 Coordinate systems of a spherical particle subjected to an interfacial force field  

 

2.1.1 Active Agent of Boltzmann Distribution 

Anderson developed the model of Eqs. (2.10) and (2.12) for diffusiophoresis. He 

assumed that the body force is introduced by the interaction of active agent with a surface and 

that the active agent follows the Boltzmann distribution as Z = [J
� \
]^_. In the expression, ` is 

the mean-force potential of active agent, and [J is defined as the concentration of active agent 

far enough away from the surface and not affected by the surface interaction. Typically, the 

surface potential can extend its effect up to tens of nanometers. Assuming that ` is only a 

function of radial distance r, the force induced by this potential can expressed as + = −[∇` =
−ab[ cd

c# . By assuming that only the radial component is nontrivial, it can be further expanded as 

G# = −[J
� \
]^_ cd

c# .       (2.13) 

By substituting Eq. (2.13) into Eq. (2.12), the phoretic velocity can be derived as  

� = �
��

M
MV e[J K I�
� \

]^_ cd
c# LIJ

� f,       

= �
�� gh� M

MV 5[Jij�8,         

with ij� = K e
� \
]^_ − 1f ILIJ

�        (2.14) 

θ 
        

z 

r +5a8 
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where ij� is the normalized second force moment. 

For most cases of diffusiophoresis, the potential should be considered as “mean-force” 

potential; it represent a sum all forces that from the surface to the fluid finite volume, instead of 

the active agent molecules only. The assumption implied here is that the summed force is 

proportional to the concentration of active agent. This assumption should be taken with cautious.   

2.2 Model with the Maxwell-Navier Slip Boundary Condition 

Back in late 1800s and early 1900s, researchers found that flow may exhibit velocity 

discontinuity at a solid surface and that the velocity discontinuity is responsive to the local shear 

stress. It was suggested to be due to the reduced viscosity near the surface. Integrating the 

viscosity variation effect results in Navier’s boundary condition. With the assumption of that 

change range is small comparing with all the bulk length scale, the difference between real 

velocity and expected velocity as if the viscosity is uniform can be expessed as  

!′/0 = K l�
� − �

�mn LIJ
� 56 − 778 ∙ 57 ∙ :8 = 3o

�m 56 − 778 ∙ 57 ∙ :8.    (2.15) 

where �< l≡ K l�m
� − 1n LIJ

� n is the slip length, 56 − 778 ∙ 57 ∙ :8 is the shear stress assumed to 

be constant across the space of viscosity variation, and superscript “Nv” indicates that the 

velocity discontinuity is caused by Navier’s slip. This is only a first order approximation to the 

nonlinear near-surface behavior. Researchers found it is applicable in many situations (Lauga, 

Brenner et al. 2007). In gas, the slip length is mostly corresponding to the mean free path. In 

liquid, the slip length can hold a value from zero to few tens of nanometer if the solid surface is 

smooth. It can even go up to several tens of micrometers if the surface is designed with super-

hydrophobic nano-structures.  

Combing the velocity discontinuities in Eq. (2.9) and Eq. (2.15), the total velocity 

discontinuity can be written as 

 !|#$% − & = !′/0 + !′(.*..      (2.16) 
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The above equation is called the Maxwell-Navier slip boundary condition (Maxwell 1879). It 

reflects the interfacial structure of body forces and viscosity variation, as shown in Figure 2-3. It 

is assumed that the body force dose not contribute any shear stress to the slip boundary 

condition. The only shear stress acting on the slip boundary condition is the hydrodynamic drag 

from the bulk fluid.  

If the slip length is uniform over the particle surface, the particle phoretic speed can be 

derived as (Talbot, Cheng et al. 1980) 

& = ��
5�Y�qor8

〈!′(.*.〉 .      (2.17) 

The model was originally developed for thermophoresis and took into account some other 

parameters such as the thermal conductivity. However, Eq. (2.17) was its main merit.  

 

Figure 2-3 Schematic showing the interfacial structure implied in Eq. (2.16). 

 

By comparing Eq. (2.17) with Eq. (2.10), it is easy to see that with increasing ratio of 

slip length to particle radius, ��/�, the phoretic speed would decrease/diminsh in this model, if 

the slip length is positive. This model introduced the size effect into the phoretic speed, and 

!⬚*3tuc − !⬚�v3uc 

!(.*. 

 

!/%0 Length scale 

of body force  
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indicated that the smaller the particle, the slower the speed, which is not always true in 

experiments.  

2.3 Model with Navier’s Slip Boundary Condition and Body-force induced Interfacial Stress 

In the classical Maxwell-Navier slip boundary condition, the shear stress is taken to be 

the asymptote from the bulk fluid, and is assumed to be constant across the interfacial layer of 

viscosity variation. This assumption may not be always correct, since the shear stress does 

change due to the interfacial body forces that generate the osmotic flow. Ajdari and Bocquet 

(2006) pointed out the possible enhancement of phoresis due to the interfacial slip with 

molecule dynamics simulation. They proclaimed that the osmotic flow and phoretic speed can 

be significantly enhanced. Assuming that the local viscosity � is only different from its bulk value 

in a small range from the surface and holds a much smaller value than the bulk value, the 

inverse of local viscosity � can be approximated as a Dirac delta function that at the location 

that I = 0, which will take all the shear stress change, Δx, that provided by the interfacial body 

force. Since the interfacial slip adds a term ��Δx/�J , proportional to the slip length, to the 

velocity discontinuity, and since �� can be large in many micro- and nano-systems. Following 

them, researchers (Morthomas and Würger 2009) derived analytical solution of phoretic speed 

based on modified Maxwell-Navier’s boundary condition. It can be written as  

& = ��
5�Y�qor8

〈!′(.*. + 3oyz
�m 〉. .      (2.18) 

One can see that when the slip length approach infinity, the particle speed no longer dimishes 

as in Eq. (17). Instead, it approaches to an asymptotic value of �Δx/6�.  
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Figure 2-4 Illustration the interfacial structure implied in Eq. (2.18) that the slip boundary 

condition considered the effect of body force  
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Chapter 3  

Continuum Mechanics Formulation of Phoresis 

We consider the problem of a (spherical) solid particle in fluid, as shown in Figure 3-1. 

At the nanometer scale, the solid surface may exert long-range, noncontact forces on the fluid 

molecules, leading to a nonlocal body force field acting in the fluid near the interface. The sum 

of forces, including all forces acting on the solid and the fluid, is equal to zero. However, due to 

the force nonlocality and to the nature of the fluid, interfacial osmotic flow may be induced, if the 

force field is nonuniform around the particle surface. By the law of momentum conservation, the 

particle would move too, which is termed “phoresis”. The nonuniform interfacial force field may 

be due to a nonuniform temperature field if the forces are a function of temperature or due to a 

nonuniform solute concentration field if the forces are responsive to the solute. As shown in 

Figure 3-1, the most general case of a continuum description of the surrounding fluid would 

include varying mass density �5a8 and varying viscosity �5a8. The asymptotic bulk values are 

indicated by �J and �J. Both of the viscosity variation and density variation, as well as the 

interfacial force field, can affect the phoretic mobility, as shown next. In Section 3.1, the problem 

is formulated. In Section 3.2, the general analytical solution is found for a particle with generally 

varying mass density, viscosity and body force fields by applying the reciprocal theorem. In 

Section 3.3, the special case with uniform Navier’s hydrodynamic slip is considered. The 

multipole approach is also introduced.  
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Figure 3-1 Schematic showing a general interfacial structure with a body force field and varying 

mass density and viscosity. 

 

3.1 Problem Statement 

Due to the small size and the relatively slow motion of a particle under consideration, 

the Stokes creeping flow theory neglecting the inertia effect is employed to describe the flow 

around the particle. The equilibrium condition requires 

� ∙ : + + = 0,       (3.1) 

where : is the stress tensor,	+ is the body force density, � is the del operator, and the dot 

denotes the dot product. � ∙ : means the divergence of stress. The fluid is assumed to be 

Newtonian and isotropic, satisfying the constitutive law: 

: = −=6 + �5�! + 5�!8�8 + :�,      (3.2) 

where ! is the velocity, = is the hydrostatic pressure, � is the viscosity, 6 is the identity tensor, 

the superscript � denotes the matrix transpose, and :�  is the pre-stress. :�  may be present 

prior to the viscous flow. The flow, represented in the second term on the right-hand side of Eq. 

Asymmetrical body-force 

distribution to drive particle 
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(3.2), may occur to relax :�  and other loads. The last governing equation is the mass 

conservation law, which is given by 

M�
M{ = −� ∙ 5�!8,      (3.3) 

where � is the mass density, and t is the time. 

At the fluid-solid interface, Navier’s slip condition is imposed: 

!|#$% − & = | ∙ 57 ∙ :8    (3.4) 

where | is the tensorial frictional coefficient, u is the flow velocity on the fluid side, and U is the 

particle velocity. At the interface, the traction is assumed to be continuous. 

It should be remarked that in a typical Stokes flow formulation, as used in Chapter 2, 

the mass density �  is assumed to be constant, both spatially and in time. It leads to the 

incompressibility condition, � ∙ ! = 0. It is taken to replace the mass conservation law, Eq. (3.3) 

to complete the formulation. Furthermore, uniform viscosity is often assumed, leading to the 

commonly adopted governing equation, −�= + ���! + + = 0. In the present study, both of the 

mass density and the viscosity can vary significantly near the fluid-solid interface. Meanwhile, 

those aforementioned assumptions can still be made over the bulk fluid. The following 

investigation is tasked to derive efficient solutions of particle speed by accounting for these 

properties. 

3.2 Reciprocal Theorem 

The reciprocal theorem can be a powerful tool to solve certain linear or weakly 

nonlinear problems as long as the corresponding auxiliary solution is available. This is 

applicable to our case of a spherical particle propelled by a confined force field near the particle 

surface. The auxiliary solution of a spherical particle subjected to a concentrated force in Stokes 

flow is available. The alternations to material properties, which are the viscosity and the mass 

density in the present case, are also confined in a thin interfacial layer. 
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Figure 3-2 Schematic showing the auxiliary problem used in the reciprocal theorem 

 

In the auxiliary problem, the fluid around a spherical particle is assumed to be uniform. 

It satisfies the following equilibrium equation, the constitutive law of Newtonian flow, and the 

incompressibility condition: 

� ∙ :} = 0,       (3.5) 

:} = −=̂6 + �J5�!} + 5�!}8�8,     (3.6) 

� ∙ !} = 0,       (3.7) 

where the over-cap indicates the association of a quantity to the auxiliary problem, and �J is 

the uniform viscosity. The same Navier slip condition at the fluid-solid interface as in the target 

problem is applied, which is written as 

!}|#$% − &� = | ∙ 57 ∙ :}8    (3.8) 

Also, the traction is assumed to be continuous across the interface. 

Applying double dot product of �J5�!} + 5�!}8�8 to both sides of Eq. (3.2), applying 

double dot product of �5�! + 5�!8�8 to both sides of Eq. (3.6), and realizing 5�!} + 5�!}8�8 ∶
5�! + 5�!8�8 = 5�! + 5�!8�8 ∶ 5�!} + 5�!}8�8, one may obtain 

:}: �5�! + 5�!8�8 + =̂6: �5�! + 5�!8�8     	
= 5: − :�8 ∶ �J5�!} + 5�!}8�8 + =6 ∶ �J5�!} + 5�!}8�8.   (3.9) 

��  
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Due to the property of the identity matrix I, the following equations hold: 

6 ∶ 5�! + 5�!8�8 = 2� ∙ !     

6: 5�!} + 5�!}8�8 = 2� ∙ !}      (3.10) 

Effecting these identities and the symmetry condition of stress, and applying Eq. (3.7), one may 

reduce Eq. (3.9) to: 

:} ∶ �! + =̂� ∙ ! = �m
� 5: − :�8 ∶ �!}.      (3.11) 

Splitting the right-hand-side term yields 

:} ∶ �! + =̂6 ∶ �! = : ∶ �!} − :� ∶ �!} + �m��
� 5: − :�8 ∶ �!}.    (3.12) 

Applying the chain rule, Eq. (3.1), and Eq. (3.5), one may recast Eq. (3.12) as 

� ∙ 5:} ∙ !8 + =̂� ∙ ! = � ∙ 5: ∙ !}8 + + ∙ !} − :� ∶ �!} + �m��
� 5: − :�8 ∶ �!}.   (3.13) 

Applying volume integral over the fluid domain on both sides of Eq. (3.13), and applying the 

divergence theorem, one may obtain 

∬ 7 ∙ :} ∙ !L�� +∭ =̂� ∙ !L��         

= ∬ 7 ∙ : ∙ !}L�� +∭ + ∙ !}L�� −∭ :� ∶ �!}L�� +∭ �m��
� 5: − :�8 ∶ �!}� L�.  (3.14) 

Applying the interfacial traction continuity condition and velocity discontinuity condition in Eqs. 

(3.4) and (3.8), one may further derive 

∬ 7 ∙ :} ∙ !L�� = & ∙ ∬ 7 ∙ :}L�� +∬ 7 ∙ :} ∙ 5| ∙ 57 ∙ :88L�� ,    

∬ 7 ∙ : ∙ !}L�� = &� ∙ ∬ 7 ∙ : ∙ L�� +∬ 7 ∙ : ∙ 5| ∙ 57 ∙ :}88L�� .    (3.15) 

Assuming that | = |� , and substituting ∬ 7 ∙ :}L�� = ��  and ∬ 7 ∙ : ∙ L�� = −∭ +L��  

(assuming that no force is applied at remote boundary), one may finally arrive at 

�� ∙ & =∭ D!} − &�F ∙ +L�� +∭ �m��
� 5: − :�8 ∶ �!}L�� −∭ :� ∶ �!}L�� −∭ =̂� ∙ !L�� . 

  (3.16) 
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On the right hand side, the first term represents the effect of the interfacial body force field. The 

second term represents the effect of varying viscosity. The third term represents the effect of 

preloaded stress field. The last term represents the effect of fluid “compressibility”. These terms 

are all volumetric integrals. Fortunately, in the present case of phoresis, all of these forces and 

viscosity and mass density variations are confined within a thin layer at the interface. Also, note 

that in the second and the last terms, : and ! are both unknown. However, since these near-

interface fields should be largely induced by the nearby body force +, they can be approximated 

by the classical local solutions as outlined in Chapter 2. Given the auxiliary solution, Eq. (3.16) 

can be applied to derive the phoretic speed in various specific conditions within the continuum 

mechanics framework. 

3.3 Multipole Approach in Special Case 

Following Eq (3.16), which is the most general form of phoresis speed, here we present 

a special case of a spherical particle phoresis in the fluid that the density is assume to be 

uniform, and the variation of viscosity is lumped to surface as slip length, which are the similar 

assumptions that made in Eq. (2.18). The different between Eq. (2.18) and the solution we 

derived later is that the shear stress variation has been solved under the global coordinate. This 

allowed us not to make unnecessary assumptions about how to solve the shear stress locally. 

Furthermore, we derived the solution into multipole expansion by the Taylor series. The 

multipole solution show simple and clear of how the particle relied on the slip length, particle 

size, and the body force profile that represented by multipole  

In the case of a spherical particle with uniform, scalar slip constant (i.e., uniform |	 =
	�6) over the interface, the auxiliary solution is available in an analytical form, which is presented 

below. With this auxiliary solution, the first term on the right-hand side of Eq. (3.16) can be 

ambiguously expanded in a multipole form to elucidate how the force field works, alongside the 

Navier slip condition, to propel the particle in a viscous fluid environment.  
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The auxiliary solutions are given by (Happel and Brenner 1983)  

Eb# = �� cos5U8 ��� �
qorY�
�qorY�

%
# − �

�
�

�qorY�
%�
#��,     (3.17) 

EbQ = −��sin	5U8 ��� �
qorY�
�qorY�

%
# + �

�
�

�qorY�
%�
#��,    (3.18) 

�� = 6��J��� ��qorY��qorY�
�,       (3.19) 

=̂ − =̂J = �
�
�qorY�
�qorY�

�J���cos	5U8 �#�.      (3.20) 

where slip length �� ≡ �/�J. In the auxiliary problem, the remote hydrostatic pressure =̂J plays 

no role. It can also be found that the remote hydrostatic pressure can be removed from Eq. 

(3.16) if the surface does not have normal direction velocity discontinuity.  

Assuming that both the viscosity and mass density are uniform and that there is no pre-

stress field, Eq. (3.16) is reduced to 

& ∙ �� =∭ + ∙ D!} − &�FL�� .      (3.21) 

By substituting the auxiliary solutions, Eqs. (3.17)-(3.19) into Eq. (3.21), the following 

expression of particle speed can be found 

� = �
�W�%∭ �cos5U8 ��� %# − �

�
�

�qorY�
%�
#� − �qorY�

�qorY�
�G# − sin	5U8 ��� %# + �

�
�

�qorY�
%�
#� − �qorY�

�qorY�
�GQ� L��  (3.22) 

Given the body force +, slip length �� and particle size �, the above equation can be used to 

compute the particle phoretic speed. In most cases under consideration in the literature, there is 

only the radial component of body force, G#.  
Since all kinds of phoresis hold different profiles of a body force field, in this sub-section 

we discuss the special case that commonly holds by diffusiophoresis and thermophoresis, 

which is case that the body forces only act on radio direction. In this case, Eq. (3.30) can be 

reduced into 

� = �
�W�%∬ cos5U8 K ��� %# − �

�
�

�qorY�
%�
#� − �qorY�

�qorY�
�J

% G# #�%� LXL�� .    (3.31) 
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The expression of Eq. (3.31) reduced the volumetric integral into a surface integral by sorting 

the outward direction integration as surface properties.  

2.3.1 Muiti-pole Expansion of the Navier’s Slip Model 

To further analyze this, we followed its nature of phoresis that the body force in this 

analysis is only active within couple nanometers, thus we expand the integral that alone radius 

with Taylor expansion at the position of X = �. To be more concise, the local coordinate I has 

been employed, which is related to local normal outward as Figure 3-3.  

 

 

Figure 3-3 Illustration of the definition of global coordinate and local coordinate 

 

Then, the integral term of radius direction can be defined as a function � and written as 

K ��� %# − �
�

�
�qorY�

%�
#� − �qorY�

�qorY�
�G# #�%�J

% LX = K �5X8G#J
% LX = K �5I8G#5I8J

� LI.   

where � = ��� #% − �
�

�
�qorY�

%
# − �qorY�

�qorY�
#�
%��, and I = X − �     (3.32) 

Taylor expansion of � at the position of I = 0 can be written as 
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� = �508 + �1508 A% + �
��"508 A

�
%� +⋯+ �5A

�
%�8   	

= −3 qor
�qorY�

A
% − �

�
A�
%� + ∑ 5−18�Y� �� �

�qorY�
A�
%�J�$� ,   (3.33) 

where �5A�%�8 represent this expansion has an error that is on the scale of 
A�
%�. Put this expansion 

into Eq (3.31), and we have 

� = �
��W�%∬ cos5U8 �−6 qor

�qorY�
�
%i� − 3 �%�i� + ∑ 5−18�Y� �

�qorY�
�
%�J�$� i�� L�� ,   

where i� = K I�G#LIJ
�       (3.34) 

is the n-th normal force moment acted at the surface. Since the body force is only holding value 

near the range of I = L, where L is the characteristic length of the body force, Eq. (2.34) can 

approach the real solution at the error of �5c�%�8 if the series have been cut at the (n-1) term.  

In comparison to past study, we applied the assumption of a constant 
M(P
MV  to the solution 

in Eq. (3.34), that made G# ≅ G#v + � cos5U8 M(PMV , where G#v is the G# function at ¡ = 0, and �� = 0 
thus Eq. (3.34) can be rewrite as 

� = �
�� K cos�5U8 sin5U8 LUW

� ¢−3 M£�MV + ∑ 5−18�Y� �
%�¤�J�$� M£�

MV ¥   

= ��
¦� ¢3 M£�MV + ∑ 5−18� �

%�¤�J�$� M£�
MV ¥,     

where 
M£�
MV = K I� M(PMV LIJ

� .      Eq. (3.35) 

The similarity of Eq (2.12) and Eq. (3.35) can be found at the non-size effective term, which is 

M£�
MV  in Eq. (3.35). Equation (3.35) showed when 5c%8 is small, the phoretic speed can less relate 

to particle size, which is similar with Eq. (2.12). Since the solution of Eq. (3.35) is rigorous, and 

all the expansions are orthogonal, this study recommend researchers use the first expansion of 

Eq. (3.35) to replace Eq. (2.12) for simple stokes flow phoresis in future study. 
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Chapter 4  

Phoresis with Hydrodynamic Slip: An Analytical Solution 

Since the time that phoresis has been observed, the near surface fluid flow of phoresis 

is always under debate. Due to the size and its moving nature, direct observation into the near 

surface region is not available. Thus even many researcher can find various intriguing behaviors 

of phoresis, such as phoresis with size dependency, temperature dependency, and surface 

dependency to greatly enhance or even change direction (Platten 2006). However, there is still 

missing a fundamental theory for predicting those behaviors with a thorough understanding of 

the near surface flow.  

With the intensive study of micro-/nanometer fluid of the last decade, many new 

viewpoints have been made. Ajdari and Bocquet (2006) state there is a giant enhancement of 

apparent slip boundary condition to surface osmotic flow. Following them, Morthomas and 

Würger (2009) applied their theory on thermophoresis. However, the theory provide by 

Morthamos did not provide the link between body force and local shear stress, thus the solution 

has a remaining term of shear stress discontinuity. Also, since the solution is solved by local-

global two step approach, there are assumptions that involved neglecting the stress translation 

across the surface. Finally, please note that the enhancement of the slip boundary required the 

mechanism that induced the slip to be shorter range to the surface than the body force field. 

The most possible interfacial structure that satisfies this assumption is the surface depletion 

layer as shown in Figure 4-1, which can be observed in many molecule level simulation 

(Sendner, Horinek et al. 2009). Some researchers relate the thickness of depletion with 

hydrophobicity and also the slip boundary condition (Poynor, Hong et al. 2006), but it is still 

under debate. Since there are many ways to induce the experimental slip condition (Lauga, 

Brenner et al. 2007) within finite thickness and there is no flow visualization technique that is 

able to ensure where the slip happened, the enhancement given by Ajdari and Bocquet has to 

be applied with caution.  
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Figure 4-1 Near surface depletion induced slip boundary condition 

 

In the case of the short range slip assumption is valid, there is still a missing piece 

before the theory can be applied to physical observation, which is how the nominal bulk 

properties, where the distance between the location from the particle surface is far enough that 

would not be affected by surface potential, affect the near surface structure and hydrodynamics. 

This link between bulk properties and local properties for the current state of art is not complete 

enough to explain the variety of abnormal behavior that we mentioned above. That is the reason 

we are here to solve the phoretic velocity by a complete analytical solution that solved in global 

coordinate, which avoid non-necessary assumptions that could potentially lead to 

misunderstanding of the nature of phoresis. In this chapter, two types of phoresis have been 

discussed. The two types of phoresis are thermophoresis and diffusiophoresis. The slip surface 

boundary condition will be considered. This chapter demonstrate how temperature, and slip 

boundary condition can affect the phoresis mobility.  
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4.1 Interfacial Structure of Boltzmann Distribution 

Boltzmann distribution is an assumption taht molecules hold only repulsive interaction, 

which allows that all the molecules collision can be consider as elastic. With the Boltzmann 

Distribution assumption the local density can be written as  

Z = [J
� \
]^_.      (4.1) 

Where Z  is the local concentration and [J  is the concentration at where the potential `  is 

defined as zero. For the case of surface, [J can be referred to the “bulk” concentration that far 

enough to not be affected by the surface potential. Typically, the surface potential shows no 

effect at few tens of nanometers. Also, gh is Boltzmann constant and � is the local absolute 

temperature. Eq. (4.1) can be relate to ideal gas model easily by the link of body force, G =
−Z�`, and pressure, �= = G.  

The appropriate situation that can be assumed as Boltzmann distribution should be 

dilute enough for its thermodynamic condition to be far from phase change, which means low 

temperature or highly aggregated active agent will not be applicable, such as liquid phase fluid.  

Before applying the Boltzmann distribution, here are some understandings that have to 

be clear. First, assuming there is no pressure gradient along any direction within the fluid, the 

changing of one concentration of the solution must affect others; for example, in ideal gas, the 

sum of the partial pressure is the total pressure, thus a gradient of one concentration must lead 

the partial pressure of the other mixed solute having a gradient toward the opposite direction. 

With this idea, it can be found that diffusiophoresis must be a phenomenon of everything within 

the fluid. However, usually researchers can find the effect of single active agent that dominates 

the event, which the effect of other solute is already integrated by to their concentration 

dependency. Another picture should be introduced before starting to solve this problem, which 

the concentration gradient indicates the existence of diffusion flux within the fluid. This means if 

the environment has a steady concentration gradient, there should be a source and sink 

somewhere to keep the concentration profile steady, thus the concentration profile can be 
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solved by the diffusion equations. For the simplest case that there is a bulk concentration 

gradient 
M§m
MV  around the infinity outer boundary, the profile on a sphere particle has a profile of 

�
�
M§m
MV   on the particle surface. Since there is no flux across the surface, the concentration near 

the surface does not change much along the radio direction. Thus starting here, the term of 

“bulk concentration” refers to near surface concentration unless further noticed.  

Assuming the particle has uniform surface material that makes the surface potential a 

function of distance between the active agent and surface only, which can be written as `5X8, 
the force induced by this potential can expressed as + = −[�` = −ab[ cdc# , which can be further 

expand with Eq. (4.1) as 

G# = −[J
�
\
]^_ cdc# .      (4.2) 

For the case of most solutions, the potential should be changed into the “mean-force” 

potential; it is a sum of the two forces, the force from surface to the solute and the water void 

that had been occupied by the solute. And after the assumption that the solute is dilute enough 

that it is not able to change the water structure, and dilute enough that can be approached by 

the Boltzmann distribution, then we can use the same technique to estimate speed.  

To further understand how the surface potential link to Eq. (4.1) and Eq. (4.2), we 

employed an artificial surface potential, 3-9 surface potential (Israelachvili 2011). The 3-9 

surface potential is an integrated version of Lenard- Jones potential, which assumed all the 

material is distributed uniformly and continuously within the surface. A 3-9 surface potential can 

be written as ` = ¨
� ©lªAn

¦ − 3lªAn
�«, where ¬ and ­ are defined as the depth of the potential well 

and the location of the potential well, which represent the strength and the length scale of the 3-

9 potential. 
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Figure 4-2 Near surface structure following Boltzmann distribution (a) 3-9 surface potential of 

` = ¨
� ©lªAn

¦ − 3lªAn
�«, (b) near surface concentration, and (c) near surface body force density 

 

Some typical structure is shown in Fig 4.2. Solving the differential equation of 

Boltzmann distribution with bulk concentration as boundary condition will result that the bulk 

concentration is acting as supply and feed of the local potential until the diffusion flux is 

equilibrium with the flux provide by the surface potential. We used a numerical integral 

approach to illustrate the profile, which is backward difference in mesh size of 0.001 nm. As a 

result, in Figure 4-2(a), the potential profile of ` = ¨
� ©lªAn

¦ − 3lªAn
�« is shown, which represent 

the repelling-attracting nature of the surface potential. Since the surface potential is defined as 
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per molecule, which means a higher bulk concentration will result in the entire profile arising 

proportionally, Figure 4-2(b) is normalized by the bulk concentration. The body force density 

profile can be found in Figure 4-2(c) that showed the attractive nature at far surface and 

repelling nature at near surface.  

4.2 Analytical Solution for Phoresis with Surface Structure of Boltzmann Distribution 

In this section, the approaches followed the global hydrodynamic approach from 

Chapter 3. For convenient, here we rewrite the most generalized form Eq. (3.16) as  

�� ∙ & =∭ D!} − &�F ∙ +L�� +∭ �m��
� �!} ∶ :L�� − ∭ =̂∇ ∙ !L�� .    (4.3) 

After the assumption of uniform viscosity (all the viscosity changing has been lumped onto 

Navier’s slip boundary condition) and uniform density (again, all the density change assumed 

only happen at the surface depletion and being neglected), one can reduce Eq. (4.3) into  

�� ∙ & = ∭ D!} − &�F ∙ +L�� .      (4.3) 

Please notice that even there is no slip boundary condition terms in Eq. (4.3), the equation 

already include the slip boundary effect. To apply different slip boundary condition, one need to 

use different auxiliary solution, which can be provided by  

Eb# = �� cos5U8 ��
�

�qor Y�
�qor Y�

%
# − �

�
�

�qor Y�
%�
#��,      (4.4) 

EbQ = −��sin 5U8 ��
�

�qor Y�
�qor Y�

%
# + �

�
�

�qor Y�
%�
#��,     (4.5) 

�� = 6��J��� ��qor Y�
�qor Y��,        (4.6) 

By putting Eq. (4.4), (4.5), and (4.6) into Eq. (4.3), also, with the Boltzmann distribution in Eq. 

(4.1) and (4.2), Eq. (4.3) can be rewrite as  

� = �
��W�% K cos5U8 �−6 qor

�qor Y�
�
% i� − 3 �

%� i� + ∑ 5−18¯Y� �
�qorY�

�
%�J̄$� i¯� L�,  (4.7) 
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i¯ = −K I¯[J
� \
]^_ cdc# LIJ

�        

= gh�[J K I¯L e
� \
]^_ − 1fJ

A$�        

= gh�[J �I¯Y� e
�
\
]^_ − 1f°A$�

J −±K e
� \
]^_ − 1fI���LIJ

� �   

= −±gh�[J K e
� \
]^_ − 1fI¯��LIJ

�  if `|A$J = 0.       (4.8) 

For the detail of deduction of Eq. (4.7), please check Chapter 3. Here, a normalized force 

moment can be defined  

ij¯ = K I¯��5
¤\]_ − 18LIJ
A$� .      (4.9) 

By observing the Eq. (3.9), one can find that the normalized force moment ij¯ have unit of 

length unit to the m-th power, and it has the magnitude of the potential length scale, such as 

�5L¯8. With Eq. (4.9), Eq. (4.7) can be re write as  

� = �
��W�% K cos5U8 gh�[J �6

qor
�qorY�

�
%ij� + 6 �%�ij� + ∑ 5−18¯± �

�qorY�
�
%�J̄$� ij¯� L�.  (4.10) 

where slip length �< is defined as  !|#$% = & + 3�
� 456 − 778 ∙ 57 ∙ :8;. 

4.2.1 Analytical Solution for Diffusiophoresis with Active Agent of Boltzmann Distribution 

Assume the near surface far field concentration is have a uniform gradient �[J; Eq 

(3.10) can be surface integrated by putting [J = � cos U �[, and have 

& = �²^�%�
�� � qor

�qorY�
�
%ij� + �

%�ij� + �
�∑ 5−18¯± �

�qorY�
�
%�J̄$� ij¯��[.    (4.11) 

By observing Eq. (4.11), the terms starting from ij� can be neglect since under the assumption 

of 0 ≤ �� < ∞, there is no way that the ij� term can overcome the ration between ij�, which is 

L/�. However, the first two term can be comparable if there is the slip length is around the scale 

of the potential length scale, such as ��~L, which means for a larger or smaller scale of slip 

length, the first two term can larger or smaller to each other, thus making both term should be 

take into account . After neglect the terms after ij�, the following can be find 
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& = �²^�%�
�� � qor

�qor Y�
�
% ij� + �

%� ij�� ∇[.     (4.12) 

And the Figure 4-2 is a demonstration of when ij� or ij� will dominate the equation. The upper 

left half of Figure 3-2 represent the part that this equation will reduce to classical approach 

where there is nearly no slip on the surface, and the lower right half is represent the slippage 

term dominate the equation. However, in most physical system of phoresis, ¶ £j�
%£j·¶ is around the 

scale of L/�, which is can be around ten to the minus three or smaller. Thus in most cases, we 

recommend that the classical approach is at least missing one term.  

 

 

Figure 4-3 Asymptotic value of diffusiophoetic mobility as a function of first or second force 

moment in Eq. (4.12). 

 

4.2.2 Analytical Solution for Thermophoresis of Active Agent of Boltzmann Distribution 

Similar to Eq. (4.11), Eq. (4.10) can be surface integrated for thermophoresis by 
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� qor
�qorY�

�
%ij� + �

%�ij�� = � cos U M
M� �

qor
�qorY�

�
%ij� + �

%�ij����  around the particle surface. Eq. (4.10) 

can be rewrite as 

& = �%�
�� =J M

M� �
qor

�qorY�
�
%ij� + �

%�ij���� = �%�
�� =J �

qor
�qorY�

�
%ij�,� + �

%� ij�,�� ∇�.  (4.13) 

Eq. (4.13) also neglect all the higher order term from ij�,� as the same reason in Section 4.2.1. 

Similar to Figure 4-3, Figure 4-4 shown the region map for where the normalized first force 

moment term, ij�,�, or the normalized second force moment term, ij�,�, will dominate Eq. (4.13) 

for thermophoresis.  

 

 

Figure 4-4 Asymptotic value of thermophoretic mobility as a function of first or second force 

moment in Eq. (4.13). 
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4.3 Analytical Solution for Phoresis of Solid Particle in Active Agent of Boltzmann Distribution:  

3-9 Surface Potential 

4.3.1: Non-Dimensional Muiltipole 

By putting 3-9 potential, ` = ¨
� ©lª

An¦ − 3 lª
An�«, into ij� and ij�, the length scale can be 

extract from it as 

£j·
ª = K 5
�dj − 18LIJ

A$� ,        

£j�
ª� = K I5
�dj − 18LIJ

A$� ,          (4.14) 

Therefore, the force moment now can present as non-dimensional parameter ij�/­  and 

ij�/­�. In Figure 3-5, the profile of those non dimensional force moment ij�/­ and ij�/­� as 

function of normalized surface potential strength ®/gh�. The profile is illustrated by numerical 

integral with built-in function in Matlab (Ref. XXXX). Please note that the force moment can 

range from positive to negative, and it does not required both to be on the same sign, which 

means, at the surface potential that hold different sign of first and second moment, there is a 

possibility that those modification in front of the first and second force moment can altering the 

solid particle to go to the opposite direction. In Eq. (4.12), those parameters that may hold the 

power to change particle moving direction are particle size and slip length.  
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Figure 4-5 Profile of Non-dimensional force moment ij�/­  and ij�/­� as a function of 

normalized surface potential strength ®/gh� 

 

Similar non-dimensionalzation can be done to ij�,� and ij�,�, and the result can be find 

in Figure 4-6. Since thermophoresis is relied on temperature change, Figure 4-6 use gh�/® 

instead of ®/gh� as axis to insure better understanding. 
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Figure 4-6 Profile of partial differentiation of the non-dimensional first and second force moment 

to temperature  

 

4.3.2: Diffusiophoretic mobility 

To exclude the effect of viscosity to the diffusiophoretic mobility, we here defined a 

poretic constant ¹ from Eq. (4.12)  

& = �²^�ª�
�� ¹∇[         

¹ = ¹� + ¹� = −2 qoº
r
º

�qoº Yr
º

£j·
ª − 2 £j�

ª� .      (4.15) 

Now, the phoretic constant ¹ is only function of three non-dimensional parameter, ®/gh�, ��/­, 

and �/­ . By observing Eq (4.15), the concept of diffusiophoresis can be found that 

diffusiophoresis respond to the environment thermodynamic properties by the gradient of the 

osmotic pressure of the active agent, gh�∇[, which can be consider as its driving source, but it 
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still have to multiply by the mechanism kernel ­�¹/3�, which include the material properties, 

hydrodynamic drag, and the size effect.  

All the following result is computed by the body force given in Figure 4-5. Figure 4-7 

illustrated how the phoretic constant ¹ change with various range of ��/­. It is very clear that 

slip length impact the magnitude of the phoretic constant directly. The bundle indicate various 

particle size �/­ = 10�~10� , it shows less impact comparing to slip length of the potential 

strength in this figure, however, please note that the size effect ramp up when the slip length is 

up. Due to the presentation reason that we want to keep the no-slip curve visible, Figure 4-7 

only show ��/­ up to 10.  

 

 

Figure 4-7 Phoretic constant ¹ changing with various range of ��/­, the bundle represent 

different �/­, which solid lines are for �/­ = 10�, longer dash lines are for �/­ = 10�, and 

shorter dash lines are for �/­ = 10�.  
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Figure 4-8 showed how the phoretic constant vary with the slip length. For all the 

surface potential strength, the size effect is clearer when slip length is larger according to the 

increases of the bundle width. The enlarged figure on the left of Figure 4-8 showed there is 

nearly no size effect when the slip length is low. It also show some special case that the 

phoretic constant is near zero by the balance of the slip and non-slip portion of it. 

 

 

Figure 4-8 Phoretic constant with varying slip length and surface potential strength. The colored 

bundle show how it varied with difference size ratio of 
%
ª = 10�~10� 

.  
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Figure 4-9 is a closer look of how the phoretic constant ¹� and ¹� compare or balance 

with each other at the very special region of ®/gh�~0.7. At that region, since ij� go crossed 

zero, the magnitude of ¹� is brought down, thus the profile is highly depend or altered by ¹�.   

 

Figure 4-9 Phoretic constant at �/­ = 10�, with varying ��/­ and ®/gh� 

 

4.3.2: Thermophoretic mobility 

Similar to diffusiophoresis, thermophoresis under 3-9 surface potential can be estimate 

by putting Eq. (4.14) into Eq. (4.13), Eq. (4.13) can also be rewrite phoretic constant ¹ as define 

in the previous section, but required slightly altered as 

& = �Nmª�
�� ¹,�∇�,       (4.16) 

One can find the information of ¹,� in Figure 4-7, 4.8, and 4.9 from the partial differerntiation of 

temperature.  
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4.4 An Review of Modern Experiment of Thermophoresis with the Perspective of Master Curve 

There is some understanding that has been made in the previous sections, which the 

phoretic velocity or direction rely on one or both of first and second force moment. Thus if we 

hold this idea and look back to Eq. (2.35), where the generalized thermophoresis with slip 

boundary condition (without the assumption of Boltzmann distribution and the surface potential 

can be arbitrary) can be expressed as 

& = −��∇� = �
�� l �3o%

�3oY% i�,� + 2i�,�n ∇�,     (4.17) 

where �� is the thermophoretic mobility and i�,� and i�,� are presenting the contribution of first 

and second force moment. Another expression of measuring thermophoresis is by Soret 

coefficient, which described the overall distribution if there are a large number of colloid particle 

that thermo effect is pushing the particles back to diffusion equilibrium. By the definition Soret 

coefficient, �� ≡ �� �⁄ , with diffusion constant � = gh� �⁄ , which is Einstein (1905) relation 

between drag coefficient and diffusion constant where � is drag coefficient of � = 6��� �3oY%
�3oY%. 

Thus the Soret coefficient can be written as  

�� = ½_
½ = �W%

�²^� l �3o%
�3oY% i�,� + �3oY�%

�3oY�% i�,�n,     (4.18) 

With Eq. (3.17), Eq. (3.18), and the understanding above in hand, a new perspective to the 

experiments result of thermophoresis can be reached.  

As the starting of this chapter stated, a great deal of work has been devoted to 

examining the dependence of ��  on various parameters such as temperature, particle size, 

particle surface property and solute composition. Some issues remain under active debate. For 

instance, some studies concluded that �� is independent of particle size (Braibanti, Vigolo et al. 

2008), whilst others reported clear size dependence (Duhr and Braun 2006). Various theoretical 

works were developed to interpret and support each of those controversial observations. While 

most studies showed that particles approach to the cold side (i.e., with a positive value of ��), a 

few others indicated that they can also move towards the hot side (i.e., with a negative value of 
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�� ) at lower temperature. This thermophoretic directional reversal has also been observed 

when varying particle size (Braibanti, Vigolo et al. 2008). For the temperature dependency, 

Würger (2007) attributed the anomaly of water thermal expansion to this phenomenon, but there 

has been no theoretical explanation for the size-mediated directional switch.  

 

Table 4-1 Published experiments of thermophresis in different surface conditions with fitted slip 

length and fitted force moments by Eq. (4.17) 

Author Duhr and Braun 
(2006) 

Braibanti, Vigolo et al. (2008) Eslahian and 
Maskos (2012) 

Vigolo, Brambilla 
et al. (2007) 

Particle material polystyrene /w 
carboxyl coating 

polystyrene /w 
carboxyl coating 

polystyrene /w 
Triton 

Polystyrene Water /w 
Aerosol OT 

Surrounding fluid water water water CsCl/ NaCl water 
solution 

isooctane 

Hydrophobic 
Surface 

o o x o x 

Fitted slip length ~500nm ~1nm ~0 0.5~1nm ~0 

2lsM1,T+M2,T 56.5fN/K Figure 3-9 Figure 3-9 Figure 3-11 10.5fN/K 

M2,T -1.16fN/K Figure 3-9 Figure 3-9 Figure 3-11 - 

note   Triton as 
surfactant 

  

 

As discussed above, for a typical colloidal particle, the first two terms in the series 

solution, the first and second force moment, would be sufficient to accurately represent the 

physical process. In the following, we use these two terms to fit some experimental data of 

Soret coefficient as a function of particle size a available from the literature. The curve fitting 

would result in estimates of slip length, ls, and temperature derivatives of moments, i�,� and 

i�,�. In order to conclude all those works at the same time, we define a dimensionless master 

curve as D3��� − i�,�F/2��i�,�. In Figure 3-10, that the nonlinear size effect from Duhr and 

Braun, Braibanti et al., and Eslahian and Maskos are fitted well to the master curve. Data from 

Duhr and Braun, aligned with the part of master curve that representing ls>>d, thus leading the 

thermophoretic mobility almost proportional to the size. The experiment sets from Braibanti et al. 

has fitted the part of master curve that representing ls≥d;And as the theory predicted, after the 
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surfactant is into play, the particle will lose size dependency and go to the most right asymptotic 

since the slip length has been destroyed. Data from Eslahian and Maskos have only three data 

for each scenario of same surface condition, it can only fit a smaller portion on the master curve, 

however the trend is clear. Other researches that found no size dependence, including data 

from Vigolo et al and Braibanti et al. (with surfactant), are showed in the most right hand side 

asymptotic. Both of them are involving surfactant to strengthen the surface bounding, thus can 

be considered as no slip surface. Finally there are two set of data that involved size effect, data 

from Jiang et al. and data from Putnam et al., that we are not able to fit to the master curve. For 

the data from Jiang et al, there are only four data point and size dependency is not clear. For 

the work from Putnam et al., surface charge is a size dependent factor and will change the 

surface condition, thus not able to fit the master curve.  

 

 

Figure 4-10 Thermophoretic mobility, ��, of theoretical value from Eq. (3.17) and the fitted data 

of (a) Duhr and Braun (b) Braibanti et al. (no surfactant)  (c) Eslahian and Maskos  (d) Braibanti 

et al. (with surfactant)  (e) Vigolo et al.  
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All the fitted slip length and surface condition can be found in Table 4.1. As we can see, 

all the hydrophobic surfaces are related to a finite slip length, as the hydrophilic/surfactant 

surfaces related to no slip length. Furthermore, according to the completed set of data provided 

by Braibanti et al., we can show the relationship of how the first and second moment related to 

temperature in Figure 4-11; they both ramp up when temperature rise. This can be related to 

the size mediated turn over once the upper and lower limit were in different sign.   

 

 

Figure 4-11 Fitted first moment and second forcemoment from Braibanti et al.at different 

temperature of both the case with or without surfactant 

 

In summary of this section, we have derived a full, analytical solution of thermophoresis 

of a spherical colloidal particle with Navier’s hydrodynamic slip by applying the reciprocal 

5N/
K8 

� 5K8 2��i�,� + i�,� w/o surfactant 

i�,� w/o surfactant 

2��i�,� + i�,� w/ surfactant 
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theorem. The solution is further expanded in a full multipole-series form. It makes no 

assumption more than the Stokes creeping flow theory in contrast to the classical approximate 

boundary layer approach anchoring at the concept of slip velocity. We point out that in the 

classical approach of phoresis, the equilibrium condition is not generally satisfied within the 

whole boundary layer. A master curve of thermophoretic mobility is introduced as a function of 

particle size and slip length. Experimental data available from the literature are fitted to this 

curve. It demonstrates a profound role of Navier’s slip underpinning the size effect of 

thermophoresis 

4.5 Summary 

This chapter provided an analytical solution that involved much lesser unnecessary 

assumption comparing to the solution given by previous studies. In comparison, this approach 

provides a continuum solution that cross the entire fluid domain at once. Thus for dealing with 

the highly skewed local stress profile, we provide a safer approach to avoid integrated mismatch 

from using local stress profile. This analytical solution also provide a direct link between radio 

direction body force with the phoresis speed including the impact of body force induced shear 

stress to slip boundary condition, which is also not provided by other studies.  

The advantages of the analytical solution described above have been demonstrated 

with 3-9 surface potential. With the intriguing results, many phoresis event that hold size effect 

or temperature dependency can be reconsidered. As we do in Section 4.4, a review of the 

experimental work of thermophoresis has been done. Most of the event can be mapped onto 

the master curve. 
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Chapter 5  

Phoresis with Near-surface Phase Transition 

The theory of phoresis based on the Boltzmann distribution of active agents is able to 

describe most cases where active agents are dilute. If this is not the case, a real fluid model for 

active agent distribution around a particle is required. The term, real fluid, is referred to a 

deviation from ideal gas law, by which the Boltzmann distribution is derived. The ideal gas law is 

applicable to the case where molecules are dispersed purely by their thermal energy with the 

repulsive nature. In contrast, a real fluid model includes more than the pure repulsive collision 

interaction for the active agent molecules. It may include attractive of the active agent molecules 

or between active agent molecules and other solutions. Thus a real fluid model may show a 

non-linear relation between to temperature, pressure, and mass density, which may even 

include a lower energy state with phase transition. Real fluid behavior under external forces can 

generally deviate from ideal gas law, which has been well appreciated in the case of 

electrochemical double layer near a strongly charged surface(Helmholtz 1853). The deviation 

can perhaps be no more manifested than near the critical point of phase transition. It can result 

in significant changes of mass density, viscosity, and interfacial body force field that all can 

impact the phoretic event. For instance, a solid particle can adsorb vapor to form a thin liquid 

film on its surface, with thickness generally varying with temperature and pressure, as illustrated 

in Figure 5-1(a). When subjected to a temperature gradient, osmotic flow can be induced in the 

liquid film as well as in the surrounding vapor, as shown in Figure. 5.1(b). In order to maintain 

the equilibrium film thickness, an interesting phenomenon may occur where a normal vapor flux 

is generated in or out of liquid film surface to compensate the loss of liquid or to reduce the 

excessive liquid, depending on the direction of osmotic flux gradient, as shown in Figure 5-1(c). 

In this chapter, we investigate the phoresis in a near-critical water-steam system. Since the 

water-steam system only holds a single component, H2O, we will only discuss the 

thermophoresis in this chapter; however, the concept should hold when dealing with 
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diffusiophoresis or electrophoresis with high active agent concentration. This phoretic problem 

due to interfacial forces is solved in two steps: (a) in section 5.1, we derive interfacial forces 

based on an equation of state (EOS) while holding off flow; (b) in section 5.2 and 5.3 we solve 

the interfacial flow problem for particle speed, the same as in the previous Chapter of ideal gas 

law. 

 

 

Figure 5-1 (a) Schematic showing a particle with near-surface phase transition moving in real 

fluid subjected to a temperature gradient; (b) Osmotic flow due to nonuniform interaction force 

field along particle surface; (c) Normal vapor flux due to mass flux gradient in liquid film. 
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5.1 Interfacial Structure of Water-Steam on a Solid Surface 

Instead of assuming a Boltzmann-type force field, we derive the fluid-solid interaction 

force field based on the water/steam EOS, i.e., in real fluid. A hypothetical solid surface is 

though considered, which exerts forces on water/steam molecules by a reduced potential: `5I8, 

where Z is the normal distance apart from surface. By holding off flow, the equilibrium condition 

along the surface normal direction requires  

=,A − GA = 0       (5.1) 

where p is the hydrostatic pressure, bz is the body force density, and the subscript comma 

indicates the partial differentiation with respect to indices that follow. The body force density is 

given by  

G = − �
£ ,̀V      (5.2) 

where � is the mass density and i is the molar mass of water. It is assumed that there is only 

normal force component resulting from the fluid-solid interaction. The water/steam EOS 

expressing � in terms of temperature T and p has been studied extensively; the version of 

Tanaka (2000) is adopted. An illustrative contour plot of Takana EOS, = = =5�, �8, is shown in 

Figure 5-2, where each line stands for the equilibrium state of a constant temperature. Figure 5-

2(b) shows how phase change may occur with the EOS. Assuming uniform T along the surface 

normal direction, the above formulated problem can be solved for distribution of �, bz and p 

given particle surface properties (­ and ®), T and remote =J. 
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Figure 5-2 Equation of state for real water: Tanaka (2000) model (a) isothermal contour (b) path 

of phase transition 

 

With the EOS, = = =5�, �8, the interfacial structure can be found by solving Eqs. (5.1) 

and (5.2). We present the solution with a L-J type surface potential of ` = ¨
� ©lª

An¦ − 3 lª
An�«. The 

solution was obtained by numerical integration of the equations from Z = 5 nm to 0 nm with an 

adaptive meshing size of no larger than 0.01 nm (backward difference). Figure 5-3 shows three 

types of a typical density profile with the surface potential of ­ = 0.375 nm and ® = 1.73 kJ/mol 

under ambient pressure of 1 bar. As we know, the boiling temperature of 1 bar is at 100 oC; thus, 

the profile of 100 oC and 118 oC are easy to understand, which represent the water and steam 

forms, respectively, except at the vicinity of surface. Due to the strong short-range repulsive 

interaction, the pressure drops to zero near the surface, leaving a depletion vapor zone. 

However, in the case of temperature near saturation, like 106 oC and 118 oC, the surface force 

is able to abrogate high enough pressure to transform steam into a water film. The film 

thickness is dependent on temperature and strength of the surface. This film profile only 

10
1

10
2

10
3

-2

-1

0

1

2

3

4

5

3

 

 

300K

600K
900K

10
1

10
2

10
3

-2

-1

0

1

2

3

4

5
x 10

ρ (kg/m3)

P vs ρ

 

 

300K
400K
500K
600K
700K
800K
900K

p
 (

10
 M

pa
) 

p
 (

10
 M

pa
) 

� 5kg/m�8 � 5kg/m�8 

Steam 

Phase transition 

Water 

(a) (b) 



 

56 

presents the case when the bulk pressure and temperature is slightly (depending on the 

strength of surface potential) above the condensation temperature.  

 

 

Figure 5-3 (a) Mass density, (b) body force density, (c) hydrostatic pressure, of near surface 

water-steam, with surface potential of ­ = 0.375 nm, ® = 1.73 kJ/mol and the remote pressure 

=J = 1 bar. 

Figure 5-4 shows the evolution of phase boundaries with temperature at three different 

surface potential strengths ® = 0.55, 1.73, and 5.5 kJ/mol, and with fixed ­ = 0.375 nm and 
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=J=1 bar. It can be seen that the depletion layer thickness changes slightly from 0.312 nm to 

0.342 nm, when ® and T change. In contrast, the water film thickness varies sensitively with 

temperature and surface potential strength, especially near the critical temperature. At 

condensation temperature T = 100 oC, the water thickness is infinite, as expected for a 

spontaneous phase transition around the surface. For the three surface potential strengths, the 

water film disappears at T = 104 oC, 114 oC, and 148 oC, respectively. These surface potential 

strengths could be related to the cases of highly hydrophobic, moderately hydrophobic and 

slightly hydrophilic surfaces, respectively (Trudeau, Jena et al. 2009). It might be worth noting 

that we intentionally confine our analysis in this range of surface conditions. For more 

hydrophilic surfaces, the � -p-T-based EOS adopted herein may be insufficient to capture the 

molecular structural changes, such as strong water molecule ordering near such a highly 

adsorbing surface (Argyris, Tummala et al. 2008). 
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Figure 5-4 Diagram of vapor-water phase boundaries with varying temperature for surface 

potential strength ® = 0.55, 1.73, and 5.5 kJ/mol. The remote pressure =J = 1 bar. The surface 

potential parameter ­ = 0.375 nm.  
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With the understanding of the near surface structure, we present below the derived 

loading parameters including the first and second moments of interfacial forces, i� = K IG#LIJ
�  

and i� = K I�G#LIJ
� ,  as a function of temperature and remote pressure in the case of surface 

potential with ­ = 0.375 nm and ® = 10 kJ/mol. Note that the force moments documented here 

do not fully determine the phoretic mobility in the case of a complex water film structure. While 

they are related to two terms of the phoretic mobility as shown in the previous chapter, there 

appears to be another important (possibly more important) term in the present case of a water 

film in steam.. Figs. 5.5(a-d) show the surface and contour plots of the first and second 

moments over the p-T domain with 233.15 K< T < 1100 K and 1 kPa< P < 100 MPa where 

Takana’s EOS is accurate. It is shown that both i� and i� are much larger in magnitude while 

in water phase than in steam phase since they are proportional to the mass density and that of 

water phase is over a thousand times greater than the latter. From Eq. (3.17) we understand 

that the propelling force of thermophoresis is the partial derivatives of the first and second force 

moments with respect to temperature, i�,�  and i�,� . They are extremely large at the phase 

boundary between steam and water as it shifts when temperature changes. However, Eq. (3.17) 

with terms of i�,�  and i�,�  alone is not able to predict the phretic mobility since the abrupt 

variation of mass density at the phase boundary violates the incompressibility assumption in 

deriving Eq. (3.17) (and typically made in all previous approaches). Our novel approach to this 

situation will be introduced in the next section.  
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Figure 5-5 Surface and contour plots of the first and second force moments under surface 

potential well depth of ε=10 kPa/mol: (a) i�, (b) i�, (c) i� of steam only case, and (d) i� of 

steam only case 

 

The above results are also plotted in 2D diagram in terms of temperature for various 

remote pressures, as shown in Figure 5-6. Figure 5-6 showed a close look of the merging zone 

between the steam and water region. Due to the highly incompressible of water phase, the force 

moment before phase change is stacked on each other. It is very clear that the magnitude of the 

partial difference of force moments, i�,� and i�,�, is the largest within the merging zone, after 
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that is the pure water region, the force moment magnitude of pure steam region is nearly 

nothing comparing to the other two. 

 

200 400 600

-10

-8

-6

-4

-2

0

T (K)

 p∞ = 1 kPa

 p∞ = 10 kPa

 p∞ = 100 kPa

 p∞ = 1 MPa

 p∞ = 10 MPa

(1
08  P

a)
M

1
/δ

M
2
/δ2

 

Figure 5-6 First and second moment under surface potential well depth of ε=10k Pa/mol 

 

Here we investigate another issue which is how much difference would real gas make 

different from ideal gas if there is no any phase transition near the surface. The answer is in 

Figure 5-7, which list three different strength of surface potential, ® = 2 kJ/mol, 5 kJ/mol, and 10 

kJ/mol. It is very clear that the deviation is larger when the temperature is lower, which the 

steam is closer to condensation. Also, higher remote pressure will push it closer or even cross 

the critical point, where the phase transition is not clear and ideal gas model prediction is not 

valid as we expected.  



 

61 

0.2 1 5
-10

-8

-6

-4

-2

0

2

M
2
/δ2p∞

M1/δp∞

 M
1
/δp (Ideal Gas)

 M2/δ2p (Ideal Gas)

 ε = 10 kPa/mol 
 ε = 5 kPa/mol
 ε = 2 kPa/mol

kBT/ε

 

Figure 5-7 First and second moment of pure steam case with comparing to ideal gas model, ∎ 

indicate profile of =J= 1 kPa, ⊙ is for =J = 100 k Pa, and ∆ is for =J = 10 MPa 

 

5.2 Thermophoresis with Near-surface Water Film 

As we stated in the previous section, the thermophoresis involving the water film is 

largely change in fluid density and viscosity near the particle surface, thus Eq. (3.17) is not 

approximate since the violation of incompressible and uniform viscosity assumption. The 

illustrative of interfacial structure can be find in Figure 5-1. In this section we started with Eq. 

(3.16), which is the most general case that able to handle fluid with density and viscosity 

change. Here, we rewrite Eq. (3.16) just for convenient, 

�� ∙ & =∭ D!} − &�F ∙ +L�� +∭ �m��
� �!} ∶ :L�� − ∭ =̂∇ ∙ !L�� .     (5.3) 
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In order to derive the particle phoretic speed without resorting to a full solution of the 

problem, we simplify the interfacial structure, as shown in Figure 5-8. The reduced interfacial 

structure consists of a depletion vapor layer of thickness equal to d, a water film of thickness 

equal to h, and bulk steam beyond. We assume that the mass density is uniform in both of the 

water film and the bulk steam, denoted by � w and � g, respectively.  

 

 

Figure 5-8 Simplified model of interfacial water-steam structure.  

 

Under this assumption, the steady-state mass conversion law Ç ∙ 4�5! − &8; = 0  is 

reduced to Ç ∙ ! = 0 , which is the incompressibility condition to close the Stokes flow 

formulation for both water and steam in their own domains. However, the mass conversion law 

at the phase boundary leads to  

 �È5!È − &8 ∙ 7|�É��Ê − �ËÇ� ∙ ¢K 5! − &8LIcYÌ
c ¥ = 0,     (5.4) 

assuming that h is small compared to the particle size, where ug is the velocity of steam at the 

phase boundaries, Ç� is the two-dimensional del operator along particle surface S, n is taken to 

be the outward normal unit vector on S, and Sw and Sd are the upper and lower surfaces of the 

water film. It means that if film water flux �ËÍ5! − &8 is non-uniform tangent to the film, there 

�Ë, I = L + Í 

�c , I = L 
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would appear normal steam flux 5!È − &8 ∙ 7 in or out of the film surfaces. This normal steam 

flux may become significant due to the huge ratio of � w/ � g. The value of � w/ � g = 1450 will be 

used in later calculation; it is calculated from � w = 53650 mol/m3 and � g = 37 mol/m3 at T = 100 

oC and p = 1 bar. This phenomenon is essentially a result of the extremely high compressibility 

of water/steam near their critical point of phase transition. We also assume the viscosity is 

uniform in both of the steam (inside the depletion layer and in the bulk) and the water (in the 

water film), denoted by � g and � w, respectively This simplification is well justified by the fact that 

both � g and � w are sensitively dependent on T but not on p or � (Cooper and Dooley 2008). 

The empirical formulas of viscosity used later are given by �È = 8.45 + 0.0382� and �Ë = 481 −
2�, where � is in ÑPa-s and T is in oC. They are obtained for 100 oC < T < 150 oC from Table 8 

in Sengers and Kamgar‐Parsi (1984). Under these assumptions, the last two terms on the right-

hand side of Eq. (4.3) are reduced to surface integrals as 

∭ �m��
� ∇!} ∶ :L�� = l �}

�É − �}
�Òn ∬ 7 ∙ : ∙ D!} − &�FL��É��Ê , and     (5.5) 

− ∭ =̂∇ ∙ !L�� = − ∬ =̂5!È − &8 ∙ 7L��É��Ê ,     (5.6) 

respectively. In the second term, the integral over Sw can be neglected because 7 ∙ : should be 

trivial at the upper water film surface. In the third term, =̂ at �Ë  and �c  can be reasonably 

approximated by =̂ at S so that the mass conservation condition at the phase boundary derived 

above can be substituted, which would result in 

− ∭ =̂∇ ∙ !L�� = �É
�Ò ∬ =̂Ç� ∙ ¢K 5! − &8LIcYÌ

c ¥ L�� .    (5.7) 

Thus, we obtain 

�� ∙ & = ∭ �}
� + ∙ D!} − &�FL�� + l �}

�Ò − �}
�Én ∬ 7 ∙ : ∙ D!} − &�FL��É��Ê     

+ �É
�Ò ∬ =̂Ç� ∙ ¢K 5! − &8LIcYÌ

c ¥ L�� .  (5.8) 

Similarly to the classical formulation of osmosis (Derjaguin, Dukhin et al. 1972), the 

stress and velocity fields in the interphase may be reasonably approximated by those resulting 
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from the interfacial force field b alone. The approximate expressions of @, =, and u in terms of b 

(or b,X) are given in  

= = − K GLIJ
A        (5.9) 

x = − K =,BLIJ
A         (5.10) 

EB = − K �
� xLIA

�         (5.11) 

By substituting these approximate fields and the auxiliary solution of Eq. (3.17-20), we obtain 

the first term of Eq. (5.8) as 

�o
�É ∭ + ∙ D!} − &�FL�� = −2�� �Ò

�É DK I�G,�LIJ
c F �,V.    (5.12) 

where the lower case z is define the same as in Chapter 3 is the direction of axial direction of 

spherical global coordinate, and same coordinate will apply on the following notation of U. After 

put the auxiliary solution in, the second term of Eq. (4.8) can be written as  

− ∬ �È l �
�Ò − �

�on 7 ∙ : ∙ D!} − &�FL�c
�Ê         

= l1 − �Ò
�Én ∬ ©��

� �� cos U lc
%n� 5−=Ó8 + �

� �� sin U lc
%n x« L�c

�Ê .  (5.13) 

Since the pressure on the �c is always the condensation pressure =Ó, which makes little 

effect on this equation. The effect of the =Ó  induced term can be found in Figure 5-9, the 

definition of ���  is comparable with the definition in Eq. (5.17) as ��� = − �
� l �

�Ò − �
�Én L�=Ó#u

,� 

that deduct from the first term of Eq. (5.13). One can compare the difference of the magnitude in 

the next section and find it negligible. In order to make to description more concise, it will be 

neglect in the next equation.  
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Figure 5-9 (a) Thermophorebility induced by condensation pressure on the lower end of the 

water film, and the relative (b) partial differentiation of condensation pressure to temperature 

and (c) the condensation pressure. All the profiles in =J = 1 bar.  

 

Here we assume the local profile change is small that can by approximate by linear as 

x|�Ê = − K =,�LIJ
c 5− sin U8�,V (higher order term will vanished when integrate), thus Eq. (5.13) 

can be further reduced by substitute the highest order Taylor’s expansion term of auxiliary 

solution Eb# − ��#ÔA$c = ��
� �� cos U lc

%n�
 as  
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l1 − �Ò
�Én ∬ ¢�

� �� sin U lc
%n x¥ L�c

�Ê        

= l1 − �Ò
�Én �

� �� ∬ ¢c
% sin� U K =,�LIcYÌ

c �,V¥ L�c
�Ê     

= l�Ò
�É − 1n 2���� l2L K IG,�LIcYÌ

c n |∇�|       (5.14) 

Also, Eq. (5.7) can be expressed into the local notation as  

Ç� K 5! − &8LIcYÌ
c = ��

�W% �u� Q
M

%MQ l2�� <ÕÖ U K EBLIÌ
c n �É

�Ò      

= − e Óv� Q
% �u� Q K EBLIÌ

c + lK EBLIÌ
c n

,�
5− <ÕÖ U8�,Vf �É

�Ò      

= l Óv� Q
% �u� Q lK K �

� K K G,�
J

A
J

A
A

� LILILILIÌ
c n 5<ÕÖ U8�,V + lK K �

� K K G,��
J

A
J

A
A

� LILILILIÌ
c n <ÕÖ� U �,V�n �É

�Ò   

= lÓv� Q
% lK K �

� K K G,�
J

A
J

A
A

� LILILILIÌ
c n �,V − lK K �

� K K G,��
J

A
J

A
A

� LILILILIÌ
c n <ÕÖ� U �,V�n �É

�Ò   

 (5.15) 

With the near surface approximated auxiliary solution of pressure, =̂ ≅ �
�% �È�� Z×< U, we have 

− ∭ =̂∇ ∙ !L�� = −2��È�� lK K �
� K K G,�

J
A

J
A

A
� LILILILIÌ

c n �É
�Ò  �,V   (5.16) 

Since all three terms of Eq. (5.8) are reduced into Eq. (5.12), (5.14), and (5.16), by substituting 

the last piece of auxiliary solution of �� = 6����&� , we finally have 

& = −��∇� = −5��� + ��� + ���8∇�,     (5.17a) 

��� = �c
� l �

�Ò − �
�Én K IG,�LIcYÌ

c ,     (5.17b) 

��� = �
��É K I�G,�LIcYÌ

c ,      (5.17c) 

��� = �
�%

�É
�Ò K K �

� K K G,�
J

A
J

A
A

� LILILILIcYÌ
c ,     (5.17d) 

where �� is termed the thermophoretic mobility. In deriving the above equation, it is assumed 

that the interfacial force b is only important within the water film and that it is only nontrivial 

normal to particle surface (denoted by b). Also, it is assumed that the temperature difference on 

particle surface is small so that the effects of all second derivatives of a field are trivial. It can be 

seen that ���  and ���  are due to the temperature derivatives of the first moment i� ≡
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K IGLIcYÌ
c , and the second moment i� ≡ K I�GLIcYÌ

c , respectively. ��� , which is more 

complicated, is due to the temperature derivative of a driving force equivalent to the third 

moment. The effectiveness of M1,T requires �È ≠ �Ë , which essentially is what Ajdari and 

Bocquet (XXXX) have considered. It is scaled by d3, but is proportional to l �
�Ò − �

�Én. The second 

term ��� due to M2,T is the classical solution (Anderson XXXX). It is scaled by d3. Finally, the 

last term ��� is what we introduce newly in the present work. It is scaled by d4/a, which is a rank 

lower (by d/a, typically ≪ 1) than the previous two terms. However, the multiplier, �Ë/�È, which 

is huge (> 1000), may make up the scaling shortage. It might be worth noting that xxx observed 

a 1/a scaling behavior of their catalytically driven nanoparticles, especially at small particle sizes.  

5.3 Thermophoresis with Near-surface Water Film: Example of 3-9 Potential 

In order to examine how all three terms of Eq. (5.17) interact with the surface potential, 

again we employed a 3-9 surface potential as ` = ¨
� ©lª

An¦ − 3 lª
An�«. Now, we can find i�,� and 

i�,� of the 3-9 surface potential in Figure 5-10 and Figure 5-11 for the cases of ­ = 0.375 nm,  ® 

= 0.55, 1.73, and 5.5 kJ/mol, which all required in Eq. (5.17b and 5.17c). Apparently, the force 

moment and its partial derivative of temperature ramped up when closer to 100 oC since at 100 

oC the water film extend to infinity as the entire fluid domain is in water form. Even the surface 

potential strength is much different in all three cases, the partial derivative I similar in magnitude 

once the water film is form. It is because of the larger the surface potential strength, the film 

stretch farther from 100 oC, which makes the partial derivative of temperature smaller that even 

out the effect of larger force induced by stronger surface potential.  
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Figure 5-10 First force moment i� and its partial differetiation of temperature i�,� 
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Figure 5-11 Second force moment i� and its partial differentiation of temperature i�,� 
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The local solution that used in Eq. (5.9-11) can be found in Figure 5-12 as the case of ® 

= 1.73 kJ/mol, ­ = 0.375 nm, and =J = 1 bar. It is very clear that the film thickness cut off the 

local profile that makes the difference between temperature, thus the =,� profile is similar with 

step function. Consequently, it formed the triangular shape of x,�.  
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Figure 5-12 Local solution used in Eq. (5.9-11) for ® = 1.73 kJ/mol, ­ = 0.375 nm, and =J = 1 
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The last local solution needed is the local tangential velocity EB, which can be found in 

Figure 5-13 for the case for ® = 1.73 kJ/mol, ­ = 0.375 nm, and =J = 1. The profile directly 

showed the fact that most velocity has been induced within the depletion layer since the high 

shear stress and low viscosity.  
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Figure 5-13 Local tangential velocity EB for the case for ® = 1.73 kJ/mol, ­ = 0.375 nm, and =J = 

1. 

 

With the information from Figure 5-10, Figure 5-11 and Figure 5-13 (and the local 

solution of ® = 0.55 and 5.5 kJ/mol that can be find followed the same method in Figure 5-12 

and 5.13), finally we can achieve the thermoporebility as showed in Figure 5-14. We have 

estimated the three terms of thermophoretic mobility, ���, ��� and ��� with the interfacial force 

field predicted from the EOS of water/steam for three surface potential strengths ® = 0.55, 1.73, 

and 5.5 kJ/mol (Figure 2). For ���, particle radius is set to be a = 100 nm. The results are 
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shown in Figs. 5(a)-(c). It can be seen that these terms of thermophoretic mobility are effective 

in the ranges of temperature where a water film is existent (Figure 3). The thermophoretic 

mobility all rises quickly when the water films thickens near the critical point of liquid-vapor 

transition and all drops to zero abruptly when the water film disappears. We have also 

estimated the thermophoretic mobility at higher temperatures after the water film has all 

evaporated, showing a value of DT five orders of magnitude smaller than that with the water film. 

It demonstrates that the near-surface phase transition provides tremendous amount of free 

energy for thermophoretic mobility. In comparison, ��� is about an order of magnitude greater 

than ��� in all three cases of different surface condition. It is due to the slip of the water layer on 

top of the depletion zone, i.e., l �
�Ò − �

�Én in Eq. 5b. Most importantly, it can be seen that ��� is 

greater than ��� and ��� for particles of size a = 100 nm, and the difference is more apparent at 

lower temperature when the water film is thicker. For particle sizes < 100 nm, the steam 

condensation/ evaporation effect on ���  would become even greater because it is inversely 

scaled with a. 
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Figure 5-14 ���, ��� and���  for ® = (a) 0.55, (b) 1.73, and (c) 5.5 kJ/mol.  

 

 

5.4 Summary 

In summary, we have computed the interfacial force field of water and steam near a LJ-
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near or cross the critical point of molecule phase. For the temperature that below condensation 

temperature of the bulk pressure, a vapor based depletion layer is formed by the near surface 

repulsive force. This depletion can be one reason of the surface slip boundary condition.  

We have introduced a mechanism of possibly significant thermophoresis due to near-

surface phase transition for the case of temperature between pure steam and water system. We 

argued that with a liquid film adsorbed on its surface, the typical osmotic flow in the liquid film 

would lead to a normal vapor flux in and out of liquid film surface in order to maintain the 

equilibrium film thickness. We have theoretically shown, with a particle in water/steam as an 

example, that this vapor flux may result in thermophoretic propulsion. Since it is inversely scaled 

with particle size, it would become dominant compared to other reported mechanisms as 

particle size decreases.  
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Chapter 6  

Phoresis in Fluid of Highly Ordering Molecules near Surface 

With the introduction of Chapter 4 and 5, we now have a very clear picture of how the 

interfacial body force pulls the particle toward phoretic direction through the hydrodynamics. 

However, fluid of reality under the interfacial potential length scale, L~1 nm, can be anisotropic 

and non-Newtonian for many different reasons, such as molecule ordering induced anisotropy, 

surface atomic, or the behavior due to the feature of molecule size, which is not able to be fully 

described in the simple equation of state as we did in Chapter 5.  

Fluid molecules can show a highly ordering interfacial structure. Typically, ions can 

easily form interfacial structure, which is known as double layer (Helmholtz 1853). Molecules 

that hold asymmetrically distributed charge, which are defined as polar molecules, i.e., water 

molecules, also tend to be organized when near interface. Since most fluid molecules are 

asymmetrical the properties of a highly organized interfacial structure is likely to be anisotropic. 

The surface lumped anisotropic part of stress is known as surface tension. It can be considered 

as the response of anisotropic elasticity to the interfacial body force. The impact of this 

anisotropic preload stress can be found in phoretic mobility (since the isotropic part plays no 

role to the phoretic mobility), and use it as part of the loading condition.  

In this chapter, in order to understand how much the ordering interfacial structure will 

impact the phoretic mobility, we first examine the interfacial structure of water by molecule 

dynamics (MD) simulation as an example of asymmetric fluid structure. We demonstrate 

multiple different interfacial structures that hold by different surface potential. With the profile in 

hand, we estimate the corresponding thermophoretic mobility (since it is a single component 

system) by using the anisotropic part of the stress profile from MD simulation as part of the 

loading condition.  
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6.1 Molecule Dynamic Simulation of Interfacial Structure 

Molecule dynamic (Plimpton 1995) is a type of simulation that tracks the trace of each 

molecule by Newton’s laws of motion. It estimates the forces between each pair of atoms by 

their position and their interatomic potential. The results can be translated into properties used 

in continuum thermodynamic or fluid dynamics by the relation of statistical mechanics (Irving 

and Kirkwood 1950). In this section, we studied the interfacial structure of water as an example 

of asymmetric molecule interfacial structure. We pull out the near surface properties such as 

density profile and stress profile of different temperatures and different surface potential to 

illustrate the interfacial structure and document it for the use of calculating phoretic motion.  

Atom-based MD treat each atom in the simulation system as a point that holds mass 

but no rotational inertia, and each atom followed Newton’s second law of motion. The forces 

between atoms can be from many different types of inter-atom potential, such as covalent bond, 

the Coulomb force, or the van der Walls force. Since all the inter-atomic force are considered to 

be conservative forces the inter-atomic potential can be assumed as ,ÈÌ = −∇È ∙ ÚÈÌDXÈÌF , 

where ,ÈÌ is the force of atom Û take from atom Í, ∇È is the del operator for coordinate of atom 

Û, and ÚÈÌ is the potential between atom Û and atom Í ,which is a function of atom distance 

between atom Û and atom Í, XÈÌ. Thus Newton’s second law of motion can be put as  

c!Ò
c{ = �

¯Ò
∑ ,ÈÌÌÜÈ = − �

¯Ò
∇È ∙ ∑ ÚÈÌDXÈÌFÌÜÈ     (6.1) 

where !u and ±u are the velocity and mass of the atom Õ. Based on Eq. (6.1), MD simulation 

iterates the finite difference of time to predict the future profile of atom distribution.  

We employed TIP3P water model (Jorgensen, Chandrasekhar et al. 1983) as an 

example for this chapter. TIP3P water model assumed the two hydrogen and oxygen atoms 

hold 0.417
 and −0.834
 charge where 
 is the charge of one proton. The molecule structure is 

assumed to be elastic and relax at O-H bond distant of X� 5ÝÞ8 = 0.9572 Å and the H-O-H angle 
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of U� 5ÞÝÞ8 = 104.52°. The elastic constant can be found in Table 6.1. The van der Waals force 

is approximated by the Lanard-Jones (L-J) potential that also can be found in Table 6.1.  

  

Table 6-1 Simulation parameters of MD used in this chapter 

Parameter Value Unit 

O mass 15.9994 g/mol 

H mass 1.008 g/mol 

®â�â, ­â�â 0.1521, 3.1507 Kcal/mol, Å 

®ã�ã, ­ã�ã 0.0460, 0.4000 Kcal/mol, Å 

®â�ã, ­â�ã  0.0836, 1.7753 Kcal/mol, Å 

¹ of O-H bond 450 Kcal/mol Å� 

¹ of H-O-H angle 55 Kcal/mol rad� 

 

The simulation box is drawn as a base of 35 Å × 35 Å with a piston controlled height as 

shown in Figure 6-1. The piston is formed by a rigid group of atoms that only moves vertically, 

and it is evenly pushed down to represent one atmosphere pressure. There are 1500 water 

molecules in this box, which give approximately 10 × 10 × 15 molecules for each dimension 

respectively. At the bottom of the simulation box, there is a L-J style 3-9 surface potential as 

` = ¨
� elªAn

¦ − 3lªAn
�f, where ® is the potential well depth, ­ is the location of potential well, and 

I is the distance apart from the surface. The potential is simplified by only acting on oxygen 

atoms, which is approximately the center of mass of a water molecule. The 3-9 surface potential 

is reduced from 6-12, the L-J potential, which represent the case of surface that is not charged. 

Horizontally the box is assumed to be periodically symmetric, thus the long range Coulomb 

force is simulated by PPPM method (Plimpton, Pollock et al. 1997). The time step used in the 

simulation is 0.5 fs. During the simulation, the atom velocity will be scaled each time step 
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according to the estimation of temperature as �gh� = �
�∑ ±ÈEÈ�È  to fit the assigned simulation 

temperature, where � is for total number of atoms in the simulation box, gh is the Boltzmann 

constant, and � is temperature. The simulation is set up and pre-run for 0.1 ns time steps for 

reaching the equilibrium and start to collect data for 1 ns time steps.  

 

 

Figure 6-1  Simulation box of MD used in this chapter 

 

The simulation results will be present as density field, interfacial body force field, and 

stress field. All three of them will be time averaged within the slab thickness of each ΔI = 0.1Å. 

The atom number density and mass density are defined as the sum of the atom count within the 

slab divided by the slab volume. The stress field is found by the sum of the per atom stress 

divided by the slab volume. The per atom stress can be found by (Sirk, Moore et al. 2013) 

@È;ué = −±ÈEÈ;uEÈ;é + ∑ DXÌ;u − XÈ;uFêÈÌ;éÌ$È      (6.2) 
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Note that per atom stress is in unit of pressure times volume, hence the dividing of slab volume 

as volumetric average. Finally the interfacial body force will be found by the differentiation of the 

stress at I direction. Since the model is symmetric on the H and ë axis, the stress components 

of @Bì, @ìA, and @AB are zero. The components left are @BB = @ìì, and @AA. The interfacial body 

force field can be found by   

GA = −@AA,A.       (6.3) 

 In Figure 6-2, we performed the simulation of how water reacts with different strength 

of interfacial potential strength. There are studies that indicate the interfacial potential strength 

can alter the hydrophobicity (Trudeau, Jena et al. 2009). Here we pick ® = 0.55, 1.73, 5.5 kJ/
mol as our study object, which have been indicated that should refer to hydrophobic, slightly 

hydrophobic, and slightly hydrophilic surfaces, respectively. The density profile is more 

aggregate to the surface when the surface potential is stronger, and the profile is pushed away 

when the temperature is higher in all the cases. The case of ® = 1.73 kJ/mol shows a very 

special pattern that is slightly adsorbed at low temperature and pushed away at high 

temperature, which provide large density change in proportion comparing to the other two cases.  

In Figure 6-3, we showed the simulation result of how water distributes with different 

potential well depth location. All the profiles in Figure 6-3 are subject to the same potential well 

depth, ® = 1.73 kJ/mol . Similar to Figure 6-2, all the profiles are pushed away when the 

temperature is higher. The feature of large density change seems not depend on the potential 

well location, thus it shows in all three different plots.  
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Figure 6-2 Atom number density of oxygen atom of water respond to different interfacial 

potential strength. All profile is subject to the same potential well location ­ = 0.375 nm.  
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Figure 6-3 Atom number density of oxygen atom of water respond to different interfacial 

potential distances. All profile is subject to the same potential well depth location ® =
1.73 kJ/mol.  
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Figure 6-4 Atom number density and stress of different surface potential strengths, all profile is 

simulated with same potential well location ­ = 0.375 nm  and same temperature 

 � = 0℃. 
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To look into the interfacial structure deeper, in Figure 6-4, we showed the atom number 

density of both oxygen atom and hydrogen atom with the profile of stress on normal and 

tangential direction. It is very clear that the peak of oxygen atom and hydrogen atom are mostly 

aligned, which means the water molecule near surface can be assume to be ordered laying 

down horizontal to the surface. The stress of normal direction is basically linear increasing with 

the increased potential strength, but the stress of tangential direction remains a similar scale.   

6.2 Thermophoretic Speed with Considered Preloaded Stress 

Considering the results from Section 6.1 as the preload condition, the thermophoretic 

speed can be solved by Eq. (3.16) as soon as we have the information of viscosity profile in 

each situation. However, at this stage, the effective time scale of viscosity of our interest is 

much larger than the simulation time scale of MD. Thus, even there are many research that 

provide viscosity by MD simulation, the skew rate is much larger than it should be. For example, 

a particle of size 1 μm moving at a speed of1 μm/s, the skew rate is 1 /s. If we applying the 

skew rate into a 10 nm  cubical simulation box, the top plate should move at the speed of 

10 nm/s, which take a million typical time step to travel through the box, thus the result will 

easily be covered by the statistical noise. To reach a valid result from MD, the skew ration must 

be at least a thousand times larger. Thus in this section, we just assume the viscosity profile is 

constant as a demonstration, which this demonstration is focusing on how much is the effect 

from the preloaded stress field comparing to the effect of interfacial body force field. We also 

assume the density profile to be uniform to even simplify the model and isolate the effect of 

preload stress field.  

Starting from Eq. (3.16), here we rewrite the equation, 

�� ∙ & = ∭ D!} − &�F ∙ +L�� + ∭ �m��
� 5: − :�8 ∶ ∇!}L�� − ∭ :� ∶ ∇!}L�� − ∭ =̂∇ ∙ !L�� . (6.4) 

Under the assumption of uniform viscosity and uniform density as we mentioned above, the 

equation can be reduced into 
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�� ∙ & = ∭ D!} − &�F ∙ +L�� − ∭ :� ∶ ∇!}L�� .    (6.5) 

The isotropic pressure part of :� will have no effect since the uniform density of the auxiliary 

solution. The uniform density is leading the term ð� ∶ ∇!} = =�∇ ∙ !} = 0, where ð� can be any 

isotropic pressure. In order to remove the direct effect of the interfacial body force, we deducted 

@AA  to all three components. The deducted part will have no effect since it is isotropic. The 

stress after the deduction is @AA∗ = 0 , @BB∗ = @BB� − @AA� , and @ìì∗ = @ìì� − @AA� . We 

substituted �!} = �D!} − &�F into the equation, which will make no difference to other terms since 

&�  is constant and will vanish during differentiation. By the chain rule of :� ∶ ∇D!} − &�F = ∇ ∙

l:� ∙ D!} − &�Fn − 5∇ ∙ :�8 ∙ D!} − &�F, Eq. (6.5) can be reformed into 

�� ∙ & = ∭ D!} − &�F ∙ +L�� − ∬ 7 ∙ :∗ ∙ D!} − &�FL�� + ∭ 5∇ ∙ :∗8 ∙ D!} − &�FL�� .  (6.6) 

One can find the second term of right hand side is zero because of the velocity on the surface 

equal to the particle speed. Here, we have the auxiliary solution of incompressible, Newtonian, 

and no-slip boundary condition as simplified version of Eqs. (3.17)-(3.19) as 

Eb# = �� cos5U8 l�%
�# − %�

�#�n,      (6.7) 

EbQ = −��sin 5U8 l�%
�# + %�

�#�n,     (6.8) 

�� = 6��J���,       (6.9) 

By substitute Eqs. (6.7)-(6.9) into Eq. (6.6), we have 

� = �
�W�% ∭ ¢cos5U8 l�%

�# − %�
�#� − 1n G# − sin 5U8 l�%

�# + %�
�#� − 1n @BB,B∗¥ L��     (6.10) 

By separate the integral of radio direction and tangential direction, we have  

� = �
�W�% ¢∬ cos5U8 L�� K l�%

�# − %�
�#� − 1n G#

#�
%� LXJ

% − ∬ sin5U8 L�� K l�%
�# + %�

�#� − 1n @BB,B∗ #�
%� LXJ

� ¥.

 (6.11) 

The first non-zero term of the Taylor expansion of 
#�
%� l�%

�# − %�
�#� − 1n and 

#�
%� l�%

�# + %�
�#� − 1n at X = � 

is 
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#�
%� l�%

�# − %�
�#� − 1n = − �

� lA
%n� + � elA

%n�f,     (6.12) 

and  
#�
%� l�%

�# + %�
�#� − 1n = − �

� lA
%n + � elA

%n�f.            (6.13) 

 we have 

� ≅ �
�W�% ©− ∬ cos5U8 L�� K �

� lA
%n� GALIJ

� + ∬ sin5U8 L�� K �
� lA

%n @BB,B∗LIJ
� «,  (6.14) 

or the multipole form of  

� ≅ �
�W�% ¢− ∬ cos5U8 L��

�
�%� i� + ∬ sin5U8 L� �

�% ��,B� ¥,   (6.15) 

where i¯ = K I¯GALIJ
�                   (6.16) 

and �¯ = K I¯@BB∗LIJ
� .              (6.17) 

Equation (6.17) is a general form of phoresis held an anisotropic pre load stress. For the case of 

thermophoresis, we assume a surface temperature profile of � = � cos U ∇�, and substitute it 

into Eq. (6.15) to get  

& = �
�� D−3 K cos�5U8 sin5U8 LUW

� i�,� − 3 K sin�5U8 LU��,�
W

� F∇�    

= �
�� D−i�,� − 2��,�F∇�.                  (6.18) 

With the definition of thermophoretic mobility, we have 

& = −��∇� = −5�� £� + �� /�8∇�      (6.19) 

where �� £� = �
�� i�,� = �

�� K I�GA,�LIJ
� .      (6.20) 

and �� /� = �
�� ��,� = �

�� K I@BB,�∗LIJ
�              (6.21) 

Here, if we put GA back to @AA� and do the integral by part, we can have 

�� £� = �
�� i�,� = �

�� K I@AA,��LIJ
� ,     (6.22) 

which will be identical with the solution if we did not neglect the isotropic part of the preloaded 

stress.  

The Eq. (6.22) showed how to convert the preloaded stress into thermophoresis 

mobility. However, due to the simulation time of MD is high. It is difficult to achieve a good data 
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of each temperature. Thus, we only probe the profile every 30℃, and will only show the result 

without the partial differentiation of temperature.  

We started with the surface potential of ® = 0.55kJ/mol  and ­ = 0.375 nm . We 

integrated the stress result from MD from 0 to 1.2 nm to find i� and ��. The result of  i� and �� 

can be found in Figure 6-5. The estimated average �� £� = −1.23 10��� m/sK, average �� /� =
2.36 10��� m/sK, and average �� = −1.12 10��� m/sK from the different of 0℃ and 90℃  with 

water density of � = 0.001 Pa ∙ s. Please note that �� £� is minus in this case, which is rare. The 

result of  i�  and ��  with the surface potential of ® = 1.37 kJ/mol and ­ = 0.375 nm . can be 

found in Figure 6-6. The estimated average �� £� = 0.652 10��� m/sK , average �� /� =
1.12 10��� m/sK, and average �� /� = 1.78 10��� m/sK with the same the same assumption of 

the case of  ® = 0.55kJ/mol.  
  



 

86 

 

Figure 6-5 Force moments of the preloaded stress, i� and �� of ® = 0.55kJ/mol  
and ­ = 0.375 nm  

 

Figure 6-6 Force moments of the preloaded stress, i� and �� of ® = 1.37 kJ/mol  
and ­ = 0.375 nm 
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6.4 Discussion 

With the MD simulation, a more realistic picture of the near interfacial structure is shown. 

The near surface anisotropic stress, or so called surface tension, can contribute to the phoresis 

as the interfacial body force do at the normal direction. The simulation result showed a high 

variety of interfacial structure behaviors, which may involve the dependence of surface potential 

strength, surface potential shape, or bulk temperature.  In most cases, stronger interfacial 

potential pull the water closer with a layer by layer structure with the water molecule lying down 

to the surface tangential direction. The weaker surface potential, on the other hand, tend to 

leave a larger surface depletion. This chapter constructed the phoretic equation with the 

anisotropic interfacial preload stress. With the analytical solution and the result of MD simulation, 

one can estimate the phoretic mobility.  

Since the simulation is computational expensive, only two sets of simulation results 

showed in thermophoretic mobility with a large temperature gap between data. However, the 

method is still a systematic bottom-up approach that can provide a good insight of predicting 

phoretic mobility in the case of molecule ordering and large anisotropic interfacial surface.  
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Chapter 7  

Conclusion 

What we expect for a micro/nanoscale motor or robot is to reach the size scale that is 

way too small for human operation. Thus we expect it to move like our hands, which are 

expected to be fast, powerful, yet functionalized, and controllable. Through phoresis or self-

phoresis, we can achieve the speed and strength that most other methods missed at small 

scale. However, to ensure the functionality and controllability, we have to deeply understand the 

underlying physics.  

The key idea of this dissertation is that the non-contact force can induce flow. And since 

that flow is near surface, we may assume it only changes in magnitude, not charisma, when it 

interacts with the environment.  As the result, most equations of phoresis can be broken down 

to a Taylor’s expansion from the surface zero. This will allow us to reduce the unknown from a 

continuous function to few variables, such as viscosity function into slip length, or body force 

function into force multipole moments. This could increase the possibility of finding those 

parameter by experiments.  

Through Chapter 4 to Chapter 6, one can find out that interfacial structure of the 

surrounding fluid acts as the link between the energy provided by the surrounding field and the 

particle mobility. For a car, this would be the piston and crank box, which translate the 

unbounded thermo energy into a one direction torque.  It decides the charisma of this particle of 

phoresis. Thus, the question next is how we find more interfacial structures that can achieve 

better performance. This may involve the nanoscale fabrication of surface coating, such as 

monolayer coating, a meta-material particle, or a composition of fluid with multiple active 

ingredients.  

Finally, the idea that interfacial body force can induce flow is not only applicable on 

phoresis. The counterpart, osmosis flow, can use the similar idea of this dissertation. Combining 
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them, there is a good picture of micor/nanoscale hydrodynamic that can be useful for the 

micro/nanoscale fluid system.   
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