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Abstract 

A Personalized Profile Based Learning System 

for Power Management in 

Android 

 

Ashwin Arikere, PhD 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Roger Walker  

 

Mobile computing devices are becoming more ubiquitous everyday due to the 

phenomenal growth in technology powering them. With the amount of computing power 

available in these devices, users are capable of achieving a multitude of tasks that were 

only possible with a PC just a few years ago. However, these devices still face issues 

regarding power management. Battery technology has not kept pace with the 

development in other areas. With a limited supply of energy, the mobile device of today 

requires a fine balance of power management to provide adequate energy to support the 

heavy duty computing of the user while simultaneously enabling the device to stay alive 

for a long duration.  

With such limitations, the onus is more on the user to limit his usage of the 

device and its features to conserve power, thus having a crippling effect on the user’s 

operation of devices. This research effort analyzes how devices are used and explores 

the effect of demographics on power consumption. We also propose a solution which will 

adapt to the individual user and provide a customized power saving mechanism tailored 

to the user’s usage of his/her device. The adaptive system will learn what type of apps 
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are used by the user and can intelligently make decisions to conserve power based on 

prior learnings.  It is estimated that such a mechanism will have an improvement on 

battery life by 15%. 
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Chapter 1  

Introduction 

 
1.1 Introduction 

 

Smartphones are fast becoming an integral part of everyday life. It is estimated a 

total of  6.9 billion devices/phones are present worldwide with increasing mobile adoption. 

[82] The availability of computing power and access to the internet in a form factor small 

enough to be carried in one's pocket makes the ownership of a device very attractive and 

irresistible. The developer community has risen to the occasion by creating a wide variety 

of applications for use on these smart devices. As of 2014, the total number of 

applications for Android on the Google Play store alone stands at 1.43 million [84]. With 

such impetus, smartphones are the new PCs of this generation. 

As technology continues to develop at a rapid pace in the mobile arena, the load 

on energy storage mechanisms has increased. Driven by market, more powerful 

hardware such as multicore CPUs, larger displays etc. have been included on these 

mobile devices. These power hungry components, coupled with applications that are 

power hungry, exacerbate the power problem. While a variety of hardware optimizations 

have been proposed and developed [85],[86] to improve the power performance of the 

underlying silicon, an effort to approach the problem from a software perspective has also 

been undertaken. A combination of hardware and software optimizations can lead to 

optimal results from a power and a performance standpoint. Utilizing the "smartness" of 

the device to implement such innovative solutions is one such strategy. 

 



 

2 

1.2 Contributions of this dissertation 

 
This research effort addresses an area of power management in mobile devices 

by considering the effects of the variety in use of the devices. A detailed analysis of how 

different people of different demographics use their smartphones and how this affects 

power consumption is also explored. Custom profiles were designed to be indicative of 

the type of applications used by people of different demographics. These profiles were 

also tuned to be representative of not just the applications used, but also how long each 

of those applications were used. These profiles were then tested and detailed power 

measurements were carried out in an attempt to understand how variation of system 

parameters affect power consumption, and how much of this impact is due to the 

variability of use across people of different demographic groups.  

Based on the learnings above, a custom solution was designed and developed to 

maximize energy savings in mobile devices. This was achieved by having the device 

learn about the individual user, building a usage profile from the learned data and 

applying power management policies appropriate to the learnt pattern in order to 

maximize power savings. The learning system was also designed such that users see 

minimal impact from a performance standpoint. The learning system proposed utilizes a 

Naive Bayesian classifier to detect and learn the usage patterns. The system was then 

tested on the demographic representative profiles to demonstrate the feasibility of such 

an approach. 
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1.3 Outline 

 
The rest of this thesis is organized as follows. Chapter 2 gives an introduction on 

power management in Android. A description of the overall architecture and design of the 

power management policies is followed by some of the enhancements introduced into 

Android as part of Android 5.0 (Lollipop). Chapter 3 covers the related work performed by 

both academia and the industry. First, the work done to improve power management in 

mobile devices from both a device and component level is described. A survey of some 

of the popular applications available on the Google Play Store designed for power 

management is then presented. This is followed by some of the innovative device specific 

solutions developed by the industry for power management. Chapter 4 discusses the 

impact of demographic groups on power usage in mobile devices and how variation in 

power consumption can be observed. Chapter 5 presents an overview of supervised 

learning algorithms and their applicability to this research effort. Chapter 6 describes the 

design and implementation details of a learning power management system. Chapter 7 

discusses the results of the system described in Chapter 6. Finally, Chapter 8 concludes 

the dissertation. The appendix presents a comparison of the two runtimes developed for 

Android from a power standpoint. 
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Chapter 2  

Introduction to Power Management in mobile space and Android 

 

Power management is a crucial mechanism for controlling power use in 

computers. This feature allows for the system to be set to a low power state when 

inactive, as well as provides control on how to wake a device when needed. An early API 

specification for providing power management in IBM compatible personal computers 

called Advanced Power Management (APM), was developed by Intel and Microsoft in the 

year 1992. This allowed the operating system to work in cohesion with the BIOS to 

achieve power management. It provided CPU and device power management when 

system was in an idle state. The core control however rested with the BIOS and thus the 

OS had no knowledge of what APM was doing.  

The APM standard was superseded in 1996 by the Advanced Configuration and 

Power Interface (ACPI). This open standard developed jointly by Intel, Microsoft, Toshiba 

and others brought power management under the control of the operating system as 

opposed to the BIOS centric APM specification. 

This specification allowed the operating system to manage all aspects of power 

management and device configuration in a PC. Proper power management allowed for 

lower power consumption and reduced heat dissipation which helped increase system 

stability. Other benefits included lower operational costs and increased battery life in 

portable systems. 

 

With the increase of laptops as primary computing devices, focus on saving 

power increased and this led to improved power control from the OS. For example, Linux 

machines started to support newer kernel settings to account for such devices. These 
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settings allowed the OS to check the source of the power supply i.e. main line or battery 

and accordingly set parameters such as CPU, video, display etc. Windows allows users 

to configure these parameters through the power management options in the Control 

Panel. Battery management was equally important. 

These options however are not sufficient when dealing with the energy demands 

of newer technology. Computing power of mobile devices has increased exponentially 

leading to greater functionality. Current mobile devices support multiple functions ranging 

from the basic phone call to more advanced functions such as media players, GPS 

navigation, browsers and more. The constraints of size on these devices coupled with 

slower improvements in energy storage methods resulted in the available computing 

power becoming an expensive resource, one that needs to be carefully managed. This 

resulted in improved OS designs being employed along with more efficient hardware. 

 

2.1 Power Management in Android: 

Android, open source mobile operating system developed by Google, is currently 

one of the largest mobile OSes available in the market. Although Android is based on the 

Linux kernel, Android uses its own power management system. Android systems provide 

their own infrastructure for power management via an API called PowerManager. The 

basic is: if there are no applications or services requiring power, the CPU should not 

consume any power. Android's design requires that applications and services request 

CPU resources with "wake locks" through the Android application framework and native 

Linux libraries. If there are no active wake locks, Android will shut down the CPU. The 

image below illustrates the power management architecture in Android. 



 

6 

 

Figure 2-1 Android power management architecture 

 

Wake locks are used by applications and services to request CPU 

resources.[79], [80] A locked wake lock, depending on its type, prevents the system from 

entering suspend or other low-power states. There are two settings for a wake lock: 

WAKE_LOCK_SUSPEND prevents a full system suspend while WAKE_LOCK_IDLE is a 
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low-power state, which often causes large interrupt latencies or that which disable a set 

of interrupts, will not be entered from idle until the wake locks are released. [21]   

An application wanting to use CPU resources will thus acquire a wakelock before 

it can consume CPU resources. 

All power management calls follow the same basic format: 

 Acquire handle to the PowerManager service. 

 Create a wake lock and specify the power management flags for screen, 

timeout, etc. 

 Acquire wake lock. 

 Perform operation (play MP3, open HTML page, etc.). 

 Release wake lock. 

Because Android development has been an incremental cycle, better power 

management features have been introduced with the newer versions. Android is 

designed to manage memory (RAM) such that power consumption is at a minimum, in 

comparison to desktop operating systems. When an Android application is no longer in 

use, the OS will keep the application suspended in memory; while the application is still 

technically "open", applications in a suspended state consume no resources (battery 

power or processing power) and sit idle in memory until needed again. This increases the 

general sensitivity of Android devices, since applications do not need to be shut down 

and reopened each time and also ensures that background applications do not use 

unnecessary power. Android 2.3 (Gingerbread) took a more active role in managing apps 

that were keeping the device awake for too long or that were consuming CPU while 

running in the background. [9]  
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Android 4.4 (KitKat) saw the introduction of hardware sensor batching. This 

optimization can dramatically reduce power consumed by ongoing sensor activities. 

Android works with the device hardware to collect and deliver sensor events efficiently in 

batches, rather than individually as they are detected, letting the device's application 

processor remain in a low-power idle state until batches are delivered. KitKat also saw 

the introduction of newer Bluetooth profiles which support low-power interactions with 

peripherals. [10] 

With Android 5.0 (Lollipop), Google introduced Project Volta, which is a suite of 

enhancements designed to improve battery life.  

 

2.1.1 Android RunTime (ART) 

The biggest change to Android since its inception, ART was introduced in 

Android 5.0 Lollipop. Android previously used Dalvik, a virtual machine (VM) designed to 

run on systems which are constrained in terms of memory and processor speed. Dalvik 

was designed to run programs in an interpreted manner i.e. it used a just-in-time compiler 

to run apps/programs. While great from a developmental perspective, using a JIT implies 

there needs to be some processing power spent purely to translate code to machine 

instructions. This from a power stand point is inefficient as every launch of the program 

requires a new compilation. ART is an improved VM that has many feature improvements 

over Dalvik, with the most significant being the ahead-of-time compilation of apps. This 

means that on install of an application it needs to be compiled only once, thus reducing 

the total amount of time the processor spends on compiling code. ART also includes an 

improved garbage collection mechanism which runs faster as well as lesser number of 

times. Therefore the introduction of ART has improved both power and performance in 
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mobile devices. An analysis of Dalvik v ART from a power perspective is included in the 

appendix 

 

2.1.2 Battery Historian 

Lollipop also saw the introduction of Battery Historian, a HTML visualization tool 

aimed at developers which generates statistical data about power-related events on a 

device. The tool runs on the output of a dumpsys command which gives details such as  

 History of battery related events. 

 Global statistics for the device. 

 Approximate power use per UID and system component. 

 Per-app mobile ms per packet. 

 System UID aggregated statistics. 

 App UID aggregated statistics. 
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Figure 2-2 HTML visualization of Battery historian 

 

These statistics allow developers to visualize what is consuming the device's 

battery, to what extent and at what times, thus enabling developers to pinpoint and 

diagnose power related issues.  

 

2.1.3 JobSchedulerAPI 

In Lollipop, a new API was provided to enable developers to define conditions for 

background jobs for the system to perform. This allows the OS to batch together multiple 

tasks and run them together when those conditions are met. This prevents the processor 

from being woken up in the middle of its sleep for something that can be safely delayed 

for later, thus reducing overall power consumption. The scheduler is also smart enough 
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not to allow tasks to run when the resource required isn't available, like network updates 

when there is no network. 

 

2.1.4 Battery Saver Mode 

Android 5.0 also builds in a power saving mode called Battery Saver. This 

feature is turned on automatically once the battery drops below a threshold value. The 

saver lowers the processor's speed, reduces animations, dims the screen, and reduces 

radio usage. 

 

Figure 2-3 Battery Saver feature on the Nexus 5 
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Chapter 3  

Related Work 

 

The previous chapter introduced some of the power saving features of Android. 

While majority of the features introduced in Android 5.0 bode well from a power 

perspective, only 3 % of the devices have been updated with this latest version. A large 

number of devices (about 83%) still run either Jellybean (4.0-4.3) or KitKat (4.4) versions 

of Android [15]. The features introduced in Lollipop target only some of the issues 

plaguing power management. While mitigating a number of problems from an OS 

standpoint, the problem of mismanaged power will exist as long as developers prioritize 

performance in their apps. Ageing battery technology coupled with the advent of faster 

cellular networks such as 4G, data and location interfaces that are power heavy, larger 

and brighter displays only exacerbates the power management problem.  

Consumers consistently rate battery life as one of the most important features 

looked at in a phone while making a purchase [16], [17], [18]. With such a premium 

placed on battery life, proper energy management in phones is vital. Researchers and 

developers alike have tried to tackle this issue with varying success. The works can be 

categorized as follows: 1. Work on profiling usage patterns and device components, 2. 

Work on improving energy efficiency of onboard components, 3. Developer solutions 

 

3.1 Work on profiling usage patterns and device components 

One of the ways researchers have approached the area of energy management 

is to understand how user-phone interaction in the real world. Knowing how various 

components behave helps developers build applications that are smarter in their resource 
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usage. Studying usage patterns can also highlight unintended ways an app or device 

component is being used. 

The authors of [19] show how usage information collected from all smartphone 

users exhibit unique device usage patterns. They also describe a technique to utilize 

usage patterns to predict battery life and show that their results can be used to detect 

abnormal battery states as well as influence network selections. MyExperience [22] 

captures traces from users' smartphones by combining passive logging of device usage 

as well as context-triggered user experience sampling. It presents several case studies 

demonstrating how people use and experience mobile technology ranging from battery 

life and charging behavior to studies on SMS usage and mobility.  In [20] the authors 

present a fine-grained energy profiler eprof for smartphones. The profiler reveals several 

wakelock bugs caused due to improper handling of wakelocks by developers. The profiler 

also confirms that majority of the energy spent by apps are by I/O interfaces such as 3G, 

WiFi and GPS.  The authors of [23] evaluate how battery life is affected by network 

applications running in the background and can reduce energy efficiency of an iPhone by 

up to 72%. They show that using a lower energy data link such as the WiFi can increase 

efficiency by up to 59%. Wang et al. [31] develop a statistical method using coarse 

grained battery traces to estimate power consumption for each mobile application. This 

however requires a large data set to reduce error of direct estimation. 

 

3.2 Work on improving energy efficiency of onboard components 

Profiling device components and usage patterns allows us to understand how 

apps utilize power. Using this information, we can target specific components and 

improve their efficiency. The most commonly targeted components include data and 

location interfaces, CPU, and display. 
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Lee et al. [28] propose a new location logging mechanism to maximize battery 

life without compromising quality of logs. Their method involves use of a Variable Rate 

Logging (VRL) to reduce constant location logging by detecting if the user is indoors or at 

a standstill. The authors of [27] propose an intelligent duty cycling system for the GPS 

along with other sensors to aid location detection. Their approach utilizes a combination 

of geo-fencing and well-curated estimation to turn on sensors, thus reducing power. Ra et 

al. [29] suggest a method to decide which wireless interface to use for data transfer and 

tries to delay data transfer when possible until a lower energy connection is available. In 

[24] the authors develop a power estimation model to estimate system power 

consumption. They conclude that the CPU and screen tend to dominate active power 

components and propose a mechanism to modify these parameters over time. They also 

propose to reduce the screen brightness gradually using the concept of change 

blindness, thus reducing the power draw by the display without affecting user satisfaction. 

However, their approach is not application sensitive and can work detrimentally to lower 

QoS. Another approach proposes some form of user aware CPU frequency scaling which 

measures rate of change of pixel densities in the display.[26]  However, this targets 

desktop and laptops and does not accounts for mobile devices.  

Datta et al. discuss various research paths in smartphone power management. 

They propose a few methods to prolong battery life by incorporating some form of 

analysis of battery records and improve capacity by adding photovoltaic cells that can be 

integrated on top of displays that can charge the device [21]. In [30], the authors develop 

a user-guided tool called BatteryExtender, to enable device reconfiguration based on the 

workload. They claim to decrease energy consumption by about 10-20%. Other methods 

proposed include selective offloading of energy consumption hotspots to the cloud [32] as 
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determined by a runtime mechanism which can estimate energy savings and also decide 

on the offloading strategy. 

 

3.3 Developer solutions 

The previous two sections gave an overview of the research undertaken by the 

academic community. However, as the issue of power management in smartphones is of 

vital importance to the average consumer, multiple developers have tried to solve the 

problem in their own ways. A quick search of Google Play Store, the Android app market, 

for the key words "battery saver" brings up more than 100 apps. Each of these apps 

claim to extend battery life without any user interaction. Following is a brief look into 

some of the top apps and their features.  

 

3.3.1 JuiceDefender 

JuiceDefender, [33] a product developed by latedroid in early 2010, was one of 

the first apps developed for power management. Designed initially for Android 2.1 and 

updated till Android 4.0.3, the app has minimal need for user interaction. It has multiple 

automated profiles which give the user a fair amount of options in controlling a phone's 

features. JuiceDefender allows users to configure the toggling of the different data and 

location interfaces on a device based on certain criteria such as location. It also allows for 

CPU throttling if the phone is rooted and the specific kernel used on the device supports 

it. The various profiles can also target specific apps and set schedules for syncing. The 

app is available for free in the market, however limits the more advanced features such 

as app based settings, CPU control, location and time triggers to the paid version of the 

app. The custom mode in the app allows the user to have fine grained control over power 

management.   
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Figure 3-1 Status page on the JuiceDefender app 

 

3.3.2 DU Battery Saver 

Another app similar to JuiceDefender, DU Battery Saver [35] offers simple 

options to the user to toggle between a few set modes. These modes generally work by 
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limiting the data interfaces as well as setting the screen brightness to pre-determined 

levels. The app also allows the user to build a custom mode and configure certain 

settings such as data interfaces. The app has a single optimize button which basically 

kills apps running in the background which it considers to be causing a battery drain. It 

differs from other apps as it claims to also promote battery health by only requiring the 

user to charge the battery after a set level. The app also has a reminder feature to 

indicate when power draining apps are left running in the background. Protection lists are 

also included to allow the user to override certain apps from being shut down by DU 

Battery Saver. Overall, once the app is installed, the amount of interaction needed by the 

user is kept to a minimum. While the DU Battery Saver tries to save power by killing 

power hungry apps, the inherent structure of Android actually makes this more of a drain 

on the system as it (the system) tries to recreate the killed apps, thus consuming more 

power. 
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Figure 3-2 DU Battery Saver app 

 

3.3.3 Battery Doctor 

The top ranked battery app in the Play Store, Battery Doctor [34] has a similar 

interface as DU Battery Saver. It differs from DU Battery Saver by including an app list it 

considers to be power hogs. Clicking on any of the apps in the list allows it to be pushed 

to an ignore list. The mechanism of optimizing remaining charge on the phone is also 

similar as it works by killing the apps. Battery Doctor also fails at understanding the native 

structure of Android by using an app killing mechanism. It also includes a history graph 

and a summary section indicating where the majority of power has been spent since the 

last full charge. Another feature is a charge history section which notes the various 

charging states for the device i.e. fast charge and trickle charge states. The app also 
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includes a scheduling mechanism to automatically switch between modes based on time 

of day.   

 

 

Figure 3-3 Settings on the Battery Doctor app 

 

 

3.3.4 Tasker 

While the previous apps had an explicit focus on power management, Tasker 

[36] is actually a task automation application based on contextual information such as 

date, time, location etc. The onus on task creation is on the user. The task is then 

executed based on the context using an "if this then that" model. The level of 

customization allows for an infinite number of tasks to be done based on user defined 
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contexts. The drawback is that the amount of time the user needs to spend to achieve a 

specific task is large. The highly customizable nature of Tasker's interface enables 

complex tasks to control various onboard sensors, data interfaces etc. based on 

contextual information to be developed. Once a task has been set, power hungry sensors 

and interfaces can be toggled without active user input as required.  

 

 

Figure 3-4 Steps to create a task in Tasker 
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3.3.5 Device Specific Solutions 

Before Android 5.0, there existed no native power saving application or setting. 

The system would behave exactly the same way as it did, whether the battery level was 

at 100 or 10. Device manufacturers have now included some native settings in software 

which work in conjunction with the hardware to achieve better power savings than 

possible with pure software.  These settings can be activated at preset battery levels and 

minimize power draw further. 

 

 3.3.5.1 Samsung S5 

 Samsung included an ultra-power saving mode on their Galaxy S5 [37] phones. 

The mode when turned on manually by the user, switches the phone into a black and 

white mode. The device uses an AMOLED display, therefore switching to a black and 

white mode saves some power as all pixels displaying the color black are completely 

turned off. The phone limits the total number of applications which can be used in this 

mode to six. The device also changes the mobile data connection to 3G only which is 

active only if the screen is turned on. Other data interfaces are turned off as well. The 

mode also disables 2 cores of the quad core CPU and down clocks the remaining 2 

cores. The display refresh frequency is also reduced. The smartphone thus is economical 

in its power consumption at the cost of restricting the user to a limited feature set. 
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Figure 3-5 Ultra Power Saving Mode on the Samsung S5 

 

 3.3.5.2 HTC One M8 

 HTC also incorporated a dual level power saving mode on their One (M8) 

phones [40]. While the first level conserves battery by reducing brightness and conserves 

CPU usage, the extreme mode goes a couple of steps further. It restricts the device to 

five stock apps only. The feature can be automatically turned on once the battery drops 

below a set level. The mode turns off all data interfaces when the screen is on. 

Additionally it throttles the CPU and turns off haptic feedback.  
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Figure 3-6 Extreme power saving mode on the HTC One (M8) 

 

While both devices incorporate a drastic power saving mode, neither phone uses 

any form of contextual information to switch to the power saving mode. The modes 

function as an additional tool for the user in the goal to conserve battery. The interfaces 

presented to the user in these modes are similar and minimalistic, including just the basic 

phone and messaging apps. The extreme saver modes on these devices are successful 
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in minimizing battery use and essentially reduce the functionality of the smartphone to 

basic communication functions only, thus affecting the quality of service 
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Chapter 4  

Effects of mobile usage on power in mobile devices 

 

 
This chapter presents the work done on determining how mobile usage varies 

across users and effects of the varied usage on power. Kang et al. tackle this issue by 

logging data from 20 or so users and draw statistical conclusions about those individual 

users based on the various states the device was in. Their observations lend weight to 

the argument that smartphone users do have unique usage patterns. However their work 

makes no effort to understand the behavior of the average user and how that type of 

usage affects power consumption. 

 

Multiple surveys have been conducted asking users how they utilize their mobile 

devices. Google commissioned many global studies to gain insight about how 

smartphones are being adopted and used. The data from these studies has been 

analyzed to understand the impact of demographics on usage. Using this knowledge, 

multiple workload profiles characteristic of the average user of a particular age group was 

constructed. These profiles were then used to study their effects on smartphone power. 

The following sections will first present the information regarding the data collected in the 

survey, draw out some of the conclusions used to build the profiles and finally show the 

impact of these profiles on power in a mobile device. 
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4.1. The survey data 

 
"The smartphone revolution has touched every corner of the world, and that in 

turn is changing how any digital marketer does business." [41] Google realized that 

understanding how smartphones are used and adopted is crucial in understanding the 

mobile user. This information can be used to determine what strategies are appropriate to 

expand their core business. To this end they commissioned a research effort called Our 

Mobile Planet. This was achieved by surveying private smartphone users in multiple 

countries. The survey was administered in three waves, thus accumulating data from 3 

different years i.e. 2011, 2012 and 2013, with at least 1000 respondents in each wave. 

The collected sample data was also weighted using variables of smartphone population. 

The data collected was then made public by hosting it online, allowing users to download 

the raw data or use the chart creation tool to pull data relevant to them. 

 

This data was used to understand how mobile behavior is categorized by 

demography. It was then used to construct profiles representative of the mobile behavior 

exhibited by the different categories. The data set comprises information collected from 

multiple countries. For this effort, only data from US users was considered For example, 

Figure 4-1 shows the video viewing trends for different age groups for the 3 surveyed 

years. The increased availability of streaming videos has led to a continually increasing 

trend of viewing videos on the smartphone, a behavior which is CPU intensive and 

battery heavy. 
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Figure 4-1 Video viewing trends year to year 

 

Thus, an understanding of battery heavy behaviors will help identify power 

hungry components and power consumption can then be reduced by optimizing those 

components. Along with the results of this survey, Google also made the results of the 

"Consumer Barometer" [42] available to the public. The data from this was used to 

validate some of the conclusions made to derive profiles. 
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4.2. Workload profiles using demographic data 

 
To build a workload profile, the most common smartphone use cases were 

considered. The most common uses other than making phone calls were considered in 

building these profiles. 

As seen from Figure 4-2, each of the activities show an increasing trend from 

year to year. This implies that as the devices become more powerful and access to high 

speed internet increases, users tend to rely more on their mobile devices to perform 

various tasks. The quick and convenient nature of access to information and 

entertainment has led to increased adoption of more powerful mobile devices. With the 

increase in processing power and power draw, management of power becomes even 

more important. 

The figure also shows that users have a wide range of activities for which they use 

their devices. Any form of power management will need to take in to account the varied 

nature of the activity set and try to understand the nuances of how different components of 

the device are stressed by the activities. Based on the activities shown, workloads 

representative of those activities were chosen to build a workload profile tailored to the 

different demographic groups. The overall data set was broken down based on age and 

gender into 6 different groups. Some of the activities were combined into a single 

workload to better represent the activity. For example, the activities for "browsed the 

internet" and "accessed a social network" were combined and incorporated in a single 

workload. The following sections detail how the various demographic groups are affected 
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by the type of activity and also describes the representative workload chosen.

 

Figure 4-2 Key activities of Smartphone users 

 
4.2.1 Video Playback 

One of the most common activities on a mobile device is to watch videos. The 

availability of sufficiently large displays on mobile devices coupled with access to the 

internet allows users to view videos easily. Figure 4-3 shows the video viewership broken 
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down by age and gender. The graph shows that people between the ages of 18-34 have 

similar viewing habits. The numbers between men and women are also similar, differing 

by just a couple of percentage points with women watching more than men. In the next 

age group of 35-55 however, there is a marked difference in viewing habits from the 

previous age group. The trend of more women watching videos on their devices than 

men continues. The trend however is reversed in the 45-54 category with more men than 

women using their devices to watch videos. The 55+ age category also has men viewing 

videos on the mobile devices more than women, but when compared to the other age 

groups, both sexes use their devices less frequently to view videos.   

 

From a power standpoint, any workload mix will need to account for these 

differences. The solution presented here is to play videos of length in proportion to the 

viewing habits as shown above. Another factor to be considered is the wide variation in 

the types of videos viewed. This is accounted for by using an open source video called 

Elephant's Dream made with open source tools. [43] The video adequately stresses all 

components of the video render process and is commonly used in the industry for video 

testing. While there exist multiple video playback apps, this effort utilizes the YouTube 

app, available on all Android devices. By using a streaming video app, both network and 

video decoding blocks can be stressed and measured for power. 
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Figure 4-3 Video viewing statistics by age and gender 

 
 

4.2.2 Audio/Music Playback 

Another extremely common use case of a smartphone is listening to audio or 

music. The portability and ease of being able to carry large collection of music and listen 

to it on a device which can also perform other tasks is invaluable. Figure 4-4 shows the 

popularity of the activity of listening to music on a mobile device. The graph shows that 

younger people in the 18-34 age group quite frequently use their devices to listen to 

music. The older the person, the less likely they are to use their smartphones to listen to 

music. The drop off is greater in women aged 55 and over. Based on this trend, the 
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workload mix appropriately weights this activity for shorter durations than other age 

groups. 

 

Figure 4-4 Music habits by age and gender 

 
Audio playback is one of the most optimized components on a mobile device. 

Nonetheless, an analysis into the activity can provide potential opportunities for 

identifying any issues into power from an overall system view. The workload chosen to 

represent audio playback is a MP3 soundtrack and is stored on the device's memory, i.e. 
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the audio file is played back locally thus isolating the playback from any impact of 

streaming it over the network. The player used is the default Android music player.  

 

4.2.3 Email 

While the previous two use cases dealt with entertainment, email deals with 

communication, a vital feature in a smartphone. This feature has been included in all 

mobile devices, even in legacy devices which were designed primarily for voice calls. 

Figure 4-5 shows the breakdown of email usage across various demographic groups. 

The numbers stay roughly the same regardless of age or gender, indicating that this is a 

very important activity for all users. Another trend to note is that women tend to use email 

more than men. This has also been accounted for and is reflected in the final workload 

mix. 
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Figure 4-5 Demographic breakdown of email usage 

 

A standard email app i.e. GMail was used as the workload of choice for this 

activity. The workload focused on scrolling through existing emails, composing an email 

and swiping through the app to simulate a standard use case. 
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4.2.4 Camera 

Cameras are one of the more widely used features in a smartphone. The ease 

and flexibility in taking digital photographs using a mobile device implies this is a use 

case that needs to be considered for power studies as well. The graph in Figure 4-6 

shows that men tend to use less of the camera than women. A wider variation in usage 

amongst men of different ages can also be observed. Conversely, women of all ages 

tend to use the camera approximately the same.  

 

Figure 4-6 Camera use statistics by demographics 
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The default camera app is used to simulate the use case. The camera app was 

used to take a few photographs and then is switched into video recording mode. A short 

clip is then recorded before ending the use case.  

 

4.2.5 Browsing the internet 

The accessibility of internet on a mobile device has led to a new revolution. More 

people access the internet today on a mobile device than with a computer. [44] Probably 

the most popular activity on mobile devices, this is an activity that must be analyzed from 

a power perspective. Figure 4-7 shows that older men tend to browse more than women 

of the same age. Women of the younger age group also browse the internet for a longer 

time than men.  
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Figure 4-7 Browsing habits by demographics 

 

Figure 4-8 shows the impact of social networks. Women tend to access social 

networks far more often than men across all age groups. The graph also shows that 

social networking is more popular among the younger crowd and by a significant margin. 
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Figure 4-8 Breakdown of social networking habits by demography 

 
Since the workload incorporates both browsing and social networking, it has 

been internally weighted to account for the differences. The browser used is the Chrome 

browser. The websites chosen for this effort include the more commonly used websites 

such as Amazon and the BBC. Accessing Facebook was used to simulate the social 

networking aspect of the workload. 

 

4.2.6 Games 

Games are another commonly used form of entertainment on mobile devices. 

The mobile gaming industry is rapidly gaining ground on other forms of games such as 
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PCs and consoles.[45] The wide variety of games available coupled with the fact that 

majority of games available on mobile devices are free all contribute to its popularity. 

Figure 4-8 shows how popular games are across the different demographic groups. The 

graph shows that games tend to be evenly popular among men regardless of age 

whereas a drop off in popularity is seen in older women. Another point to note is that 

women tend to play more games than men of the same age. 

 

Figure 4-9 Games by age and gender 
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For the workloads, the workload included both casual and main stream games. 

Angry Birds [46] was chosen as a commonly used casual 2D game while AngryBots [47], 

a 3D game incorporating the Unity engine is used as the representative workload for a 

main stream game. 

 
4.3. Power impacts of profiles 

 

To study the effect of demographics, workload profiles representative of their age 

and gender were built. A workload profile is a combination of the different workloads, 

along with the duration each workload is run for. The profiles were constructed to reflect 

the use of the workloads by the respective demographic group. The profiles were 

constructed such that the time taken to run all workloads is 600s i.e. 10 minutes. 60s of 

the 10 minutes was used to transition between the various activities. 

The profiles were created using the survey information presented in the previous 

section. The runtimes for each workload thus varies based on the demographic group. 

For example, it was observed that games were more popular among people of the age 

group 18-34, with women playing games more often than men. The workload profile for 

the average 18-34 man thus reflects this by spending more time on games than any other 

workload. Overall, younger people tend to use their phones more for gaming and video 

than older people who tend to spend more time browsing the internet or using email. 

Table 4-1 shows the breakdown of the time spent on a particular workload for each 

workload profile. 
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Table 4-1 Workload Profile breakdown (in seconds) 

 Video Email Browser Music Camera Game 

18-34 Male 84 94 98 87 88 86 

18-34 Female 75 99 94 84 100 85 

35-54 Male 72 104 103 81 96 82 

35-54 Female 62 109 101 74 106 85 

55+ Male 55 124 113 60 111 73 

55+ Female 47 125 101 57 125 83 
 

 

4.3.1  Experiment Setup 

The 6 workload profiles constructed above were then run while simultaneously 

measuring the power consumed by the mobile device. For this experiment, an Intel x86 

based Android device running Android 4.0.4 was used. The device was instrumented by 

connecting the battery terminals to a Monsoon Solutions power monitor [71] and 

measuring the current. By measuring the current consumed, the amount of energy 

consumed by the device and therefore the system level power can be measured.  

 

To capture the default behavior of the device, the system's frequency governor 

was set to "ondemand". The default behavior of the ondemand frequency governor is to 

change the CPU frequency as and when a demand for higher frequency exists. It rapidly 

lowers the frequency when there is no load on the CPU. The workload profile was then 

run at different system frequencies to understand the effects of frequency scaling on 

power consumption as well the effects on user experience. The device used for this 

experiment supported CPU frequencies of 600MHz, 1200MHz and a max frequency of 
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1600MHz. To force the device to run under the above mentioned frequencies, the 

governor was set to "performance" mode.   

 

4.3.2  Results 

4.3.2.1 Frequency Scaling - Energy 

 
The effect of frequency scaling on the different workload profiles was observed 

by measuring the energy consumed by each workload profile. Figures 4-10 through 4-15 

show the actual energy consumed by the device for the different workload profiles when 

run at 600MHz, 1200MHz, 1600MHz and the default "ondemand" frequency. Figure 4-16 

compares the energy consumed values for all profiles at all run frequencies. 

 

 

Figure 4-10 Energy consumed for 18-34 male profile 
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Figure 4-11 Energy consumed for 18-34 female profile 

 

 

Figure 4-12 Energy consumed for 35-54 male profile 
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Figure 4-13 Energy consumed for 35-54 female profile 

 

 

Figure 4-14 Energy consumed for 55+ male profile 
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Figure 4-15 Energy consumed for 55+  female profile 

 

 

Figure 4-16 Comparison of energy consumed for all profiles and frequencies 
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It is seen all profiles when run at 600MHz consume lesser energy than other 

frequency runs except for the 55+ female category. The profiles run at 1200MHz also 

show that the energy consumed is lesser than the default ondemand frequencies. When 

run at 1600MHz, the energy consumed is similar to the ondemand energy values. 18-

34M and 55+M run at 1600MHz have lesser energy consumed than the OnDemand 

governor suggesting that, running at a higher frequency is more suitable than the 

OnDemand for these 2 workload profiles.   

 

4.3.2.2 Frequency Scaling - Perceived Performance 

Another method of determining the effect of frequency scaling is to measure the 

actual runtimes of the workloads and also observe the reactions of the user. The default 

design of the workload mix is to complete the execution in 600 seconds. This also 

requires the device to be run under default settings. By running the workloads at set 

frequencies, it was observed that runtimes varied from the designed 600s. Figure 4-17 

shows the runtimes of the workload mix at the different frequencies. Running the 

workload at 600MHz uniformly affects all workloads negatively by atleast 12%. More 

importantly, all workloads exhibited increased app loading times, sluggish 

responsiveness and increased page load times, all of which are noticeable to the user.  
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Figure 4-17 Comparison of runtimes for all workload profiles 

 

All workloads run at 1200MHz also exceed the 600s runtime. However the 

impact is muted compared to the 600MHz scenario. All workload profiles take longer than 

the designed 600s, but even the slowest workload profile takes only 7% longer to run. 

The responsiveness of the workload profiles when run at 1200MHz are better than the 

600MHz, but are not as smooth as the default frequency setting. 

The 1600MHz scenario provides the best possible performance and matches the 

run time design of the workload profile, with no impact on any perceived performance. 

Four of the profiles running at 1200MHz have their runtimes within 5% of the 

designed total 600s. If this is acceptable in terms of user experience, it would be 

advantageous to run the workloads at a 1200MHz than use the default ondemand 

frequency setting. Setting an appropriate performance bound can allow for improved 

power saving on the mobile device. 
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4.3.2.3 Hyper Threading (HT) 

An experiment was carried out was to observe the effect of hyper threading on 

the workload profiles. For this experiment, the different workload profiles were executed 

with the hyper threading mechanism of the CPU disabled and the results were compared 

to the default behavior. Figure 4-18 compares the energy consumed by the device for the 

different profiles with HT enabled and disabled.  

 

 

Figure 4-18 Comparison of workload profiles with HT enabled and disabled 
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difference is seen with the 50+ male group where disabling HT consumes approximately 
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with HT enabled. 
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4.3.3 Power analysis of workloads 

The previous sections focused on exploring how different sections of the 

population used their mobile device and how the varied usage affects power consumption 

on the device. It was shown that workload profiles did have a varied effect on power, 

therefore accounting for how the device is utilized by the user is equally important as 

optimizing components on the device. The previous scenario however explored only the 

custom workload profiles created. The following section explores the effects of some of 

the workloads used to create the workload profiles.  

In order to optimize power consumption on a mobile device, we must understand 

how commonly used applications affect the system from a power point of view. To this 

end, choosing workloads that pressure the system the most allows us to get information 

about the system under those conditions. The workloads chosen must also be 

representative of commonly used applications. Based on the knowledge of what users do 

on their devices, the following apps/workloads were chosen: 

1. Audio  

2. GLBenchmark 2.7 

3. YouTube app 

4. Browsing 

The chosen workloads were executed and accurate system power 

measurements for different CPU frequencies were collected. The workloads were also 

run on multiple Android devices to observe how power consumption varies across 

different Android devices. 

The experiments for frequency scaling were run on an Intel x86 device running 

Android 4.2, and the power measurements were made using a NI DAQ system. To 

understand if the hardware configuration of the system contributes significantly to power 
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consumption, the workloads were also run on a Samsung S4 and a LG Nexus 4. 

Measurements on these 2 devices were carried out by instrumenting the battery 

terminals using a Monsoon Solutions Power Monitor. 

 

4.3.3.1 Audio  

Smartphones are frequently used to listen to music. The workload chosen to 

represent this use case was the same as the one used in the workload profile 

experiment, i.e. a local MP3 file being played using the default onboard media player. 

The variation in power consumed by the device as frequency is varied is shown in Figure 

4-19. The overall power drawn stays relatively the same regardless of the set CPU 

frequency because audio processing is primarily done by specialized onboard DSP 

processors.  

 

 

Figure 4-19 Power consumption for audio workload 
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 Figure 4-20 shows the power consumed by the workload across the different 

test devices. A wider variation in power consumption is observed here, but this can be 

attributed to the different size of the displays as the primary power consuming component 

in this workload is the display. 

 

 

Figure 4-20 Audio workload power comparison across devices 
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heavy workload, frequency scaling has a significant effect on the workload. From a 

performance perspective, lowering the frequency led to degradation in performance. 

 

 

Figure 4-21 Power consumption for GLBenchmark 
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Figure 4-22 GLBenchmark power comparison across devices 
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as a workload targeting the video playback use case.  
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Figure 4-23 Power consumption for YouTube streaming  

 

Figure 4-23 shows that while the highest power consumption was observed at 

the highest frequency, all other frequencies had power values similar to the default 

frequency governor. This indicates that the workload is less affected by variations in CPU 

frequency.  
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Figure 4-24 YouTube streaming power comparison across devices 

 

Figure 4-24 shows the comparison of the workload run on different devices. The 

power consumed across the devices for the YouTube app is similar, with a slightly 

smaller power draw in the x86 device due to a smaller screen.  

 

4.3.3.4 Browsing 

The most popular activity on a mobile device is to browse the internet. This is an 

extremely common use case and therefore was chosen as a workload for this 

experiment. The scenario involves simulation of browsing the internet by visiting websites 

of a diverse nature.  

Figure 4-25 shows the power consumption numbers for different frequencies. It 

was observed that ramping the frequency resulted in increasing power consumption, with 

increase in performance as well.  
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Figure 4-25 Power comparison for browsing 

 

 

Figure 4-26 Browsing power across devices 
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The power consumption numbers of executing this workload on different devices 

is shown in Figure 4-26. The Samsung S4 device draws more power than the other 2 

devices. This can again can be attributed to the larger screen size compared to the other 

2 devices.  
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Chapter 5  

Machine Learning Algorithms 

 
The study and development of algorithms that can enable computers to learn and 

act based on data is termed machine learning. Identification of complex patterns in data 

can help understand why these occur and suitable actions can then be taken to build 

models from the data based on these understandings. Machine learning can be classified 

into three broad categories based on the nature of the feedback available to the learning 

mechanism [81]. They are: 

1. Supervised Learning - a situation in which both inputs and outputs of 

component can be perceived [49] 

2. Unsupervised learning - learning when there is no hint about correct outputs 

[49] 

3. Reinforcement learning - learning with feedback about the process but none 

about the correctness of the process. [49] 

For this project, the applications are being classified on the basis of usage, 

supervised learning algorithms are best suited for this problem. The following sections 

discuss the aspects of some machine learning algorithms that can be applicable to this 

effort.  Finally a discussion of WEKA, a tool used for machine learning is presented. 

 

5.1 Naive Bayes 

 
Naive Bayesian methods are a set of supervised learning algorithms which work by 

applying Bayes' theorem. It makes a "naive" assumption that the input features under 

consideration are independent of each other. The basic principle is to determine the 

probability that a given input feature set maps to a specific output class. This is computed 
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based on knowledge of the prior probability of the mapping and how well it matches with 

the observed evidence. The data with which this classifier is trained, also known as the 

training set, is the evidence previously seen. The classifier learns by finding a reliable 

method to map the set of input features to the output measure in the training data set. 

 

Mathematically, given a class variable y and a dependent feature vector 𝑥1 

through 𝑥𝑛, Bayes' theorem states the following relationship: 

    (5.1) 

 

Assuming the independence between features, we have: 

 

  (5.2) 

 

This is used to reduce equation (5.1) to  

 

   (5.3) 

 

Now since the denominator is the marginal probability that an observation 𝑥 is 

seen for all possible scenarios, it is not relevant for the decision process as it is same for 

all class assignments [51]. Using that, the posterior probability of the class can be 

computed as:  
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    (5.4) 

 

Naive Bayes learners and classifiers are extremely fast when compared to other 

classification algorithms. They work well when the independence assumption is 

appropriate and are highly scalable. Based on the probability distribution of the features 

under consideration, different types of Naive Bayes Classifier can be designed. 

 

5.2 Decision trees 

 
Decision tree learning utilizes a decision tree as a predictive model, mapping 

observations about an item to conclusions about the item's target value [54]. It is a non-

parametric supervised learning method, whose goal is to create a model that can predict 

the value of a target variable by learning decision rules from training data sets. Target 

values taking finite discrete values are called classification trees while target values 

which are continuous are called regression trees.  

The trees built are relatively simple to understand and interpret, but can create 

over-complex trees by over fitting the data. For classification, an assumption that all 

features have finite discrete domains and that there is only one target class. The cost of 

using the tree is logarithmic in the number of data points used to train the tree. However, 

the problem of learning an optimal decision tree is an NP complete problem. 

There are multiple decision tree algorithms such as the ID3, C4.5 and C5.0 
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The ID3 algorithm creates a multiway tree, determining the minimum entropy for 

each node. The training data set is used to build a decision tree which is stored in 

memory. At runtime, this is used to classify new test data, by working down the decision 

tree using the values of the new test data. 

The C4.5 tree is an extension of the ID3 algorithm. The decision tree is built from 

the training data in the same manner as the ID3 algorithm. It then converts the trained 

trees into sets of if-then rules. The accuracy of the rules are then evaluated to determine 

the order in which the rules must be applied to new data. [56] 

The C5.0 algorithm is an improved version of the C4.5 algorithm. It runs more 

efficiently by utilizing lesser memory and running faster. The decision trees built can be 

modified by winnowing attributes or by weighting them as necessary. 

  

 

5.3 Support Vector Machines 

 
Support Vector Machines are supervised learning methods used for 

classification. The SVM takes a set of training examples marked as one of two categories 

and builds a model that assigns new data into one category or the other. It is a form of a 

linear classifier. The training set is used to construct a hyper-plane (aka decision surface) 

such that the separation between the plane and the nearest training points of any class is 

maximal.  

The speed of classification is high. The model built while linear is also 

discriminative as an attempt is made to maximize the quality of the output from a given 

training data set. 
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Mathematically, given some training data 𝒟, a set of 𝓃 points of the form  

 

  (5.5) 

  

the hyper plane can be written as the set of points 𝓍 satisfying  

 

       (5.6) 

 

where ∙ denotes dot product and 𝓌 the normal vector to the hyperplane. Minimizing the 

||𝑤|| such that there are no data points between the margin hyper planes described by 

equations 5.7 and 5.8 allows for maximal separation between the two classes 

 

       (5.7) 

 

       (5.8) 

 

.  
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Figure 5-1 Hyperplane dividing a set of points 
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Support vectors are the data points closest to the decision surface, which are 

hardest to classify and have a direct bearing on the optimal location of the hyper plane. 

Thus the support vectors of the linear classifier is the set of training points that would 

change the position of the hyper plane if removed from the data set. [57] 

SVMs are directly applicable to 2 class tasks. Extensions to SVM to tackle multi-

class classification is generally performed by reducing the problem to several binary 

problems. The parameters of the maximum margin hyper plane are derived by solving 

the optimization problem. This is implemented commonly by using the Platt's sequential 

minimal optimization algorithm [58]. Situations where a nonlinear region can better 

separate the classes are handled by using kernel functions. 

 

5.4 k-Nearest Neighbor 

 
k-NN or k Nearest Neighbors algorithm is a non-parametric method used in 

classification. The algorithm effectively classifies an object based on the class of the 

nearest neighbor(s) i.e. it stores all training data and their respective classes and 

classifies new objects based on a similarity measure. The similarity measure commonly 

used is the Euclidean distance between the variables. The distance between two points 

is calculated as shown in equation 5.9 

 

 𝑑(𝑎, 𝑏) =  √∑ (𝑏𝑖 − 𝑎𝑖)2𝑛
𝑖=1       (5.9) 

 

Other distances such as Hamming distances are used when the variables are discrete. 



 

65 

     (5.10) 

 

The ideal or optimal value for K is determined based on the data. Larger values 

of K reduce the effect of noise on the classification but at the cost of less distinct 

boundaries between the classes. Figure 5-2 shows a classification example using kNN.  
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Figure 5-2 Example of k-Nearest Neighbor classification 

 

Depending on the value of k, the sample to be classified (green circle) can be 

classified as a triangle or a square. The general algorithm is a type of instance based 

learning as no general model is constructed, rather classification is computed by a vote of 

the nearest neighbors of the data point. The problem is further complicated by the size of 

the data set.  Appropriate choice of nearest neighbor search algorithms can make kNN 

computationally viable even for large data sets. 
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5.5 Neural Networks 

 
Artificial neural networks are a family of statistical learning algorithms inspired by 

the way the brain is believed to function[60]. They are presented as a crude 

approximation of the network of cells in the brains called neurons, which can compute 

values from multiple inputs and are capable of machine learning due to their adaptable 

nature. The word neuron in the term 'neural network' refers to a function that sums a set 

of input values and associated weights. The word network in the term 'neural networks' 

refers to the interconnections between the different neurons of the system and are also 

referred to as synapses. Figure 5-3 shows an example neural network. 

 

 

Figure 5-3 Neural Network with 1 hidden layer 
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Neurons are arranged into multiple layers: input, hidden and output. The input 

layer comprises of the inputs to the next layer. The next layer is the hidden layer. There 

can be multiple levels of hidden layers, all interconnected. Finally, the output layer 

consists of nodes indicating the various output classes. 

In a supervised setting using multilayer perceptrons, a set of example pairs (x,y) 

are fed to the network with the goal of finding a mapping from x to y as shown in 

equations 5.11 and 5.12. 

       (5.11) 

 

        (5.12) 

 

Each neuron in the multilayer perceptron has a nonlinear activation function, 

usually a sigmoid function (hyperbolic tangent or a logistic function). (ref68) 

In the training phase, since the correct output class for each set of inputs is 

known, the output of the neural network is checked for correctness. Using this 

comparison, an error term is calculated for each output class which is then propagated 

back all the way to the input node, appropriately updating the weights used for each of 

the synapses. This is known as the back propagation algorithm. As more training data is 

presented, the weights are continually adjusted and refined to better represent the 

classification function. To adjust the weights, the effects of which input contributed the 

most to an incorrect output must also be accounted for. A commonly used cost, i.e. error 

term calculation used in neural networks is the mean-squared error, which tries to 

minimize the average squared error between the output of the network and the expected 

output.  
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5.6 Weka 

 
Weka is a collection of machine learning algorithms for data mining tasks. 

Developed as a library, the algorithms can both be applied directly to data as well as 

called from Java applications. It also contains various tools for data pre-processing, 

classification, regression, clustering, association rules and visualization. [62] 

The dataset on which the various algorithms are run on, is implemented in Weka 

by the Instances class. The external representation of this data is the Attribute-Relation 

File Format (ARFF). An example ARFF file is shown in figure 5-4 

 

Figure 5-4 Example ARFF file 

 
An ARFF file is a text file that describes a list of instances sharing a set of 

attributes. The file is divided into 2 sections. The first section is the Header, which 
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contains a list of the attributes and their data types. Attribute declarations take the form of 

an ordered sequence of @attribute statements. The order in which the attributes are 

declared indicates the column position of that attribute in the data section. The format for 

the @attribute statement is: 

@attribute <attribute-name> <datatype> 

 

Each attribute can be any of the following four data types:  

 Numeric,  

 Nominal,  

 String  

 Date  

The second section of the file is the data section containing the actual instance 

lines. Each instance is represented on a single line, with attribute values delimited by 

commas. Attribute values must appear in the order they were declared in the header 

section. Missing values can be represented by a single question mark. The values of 

string and nominal data types are case sensitive and any value containing a space must 

be quoted. 

The Instances class also allows for basic validation of ARFF files. Other routines 

included allow data present in comma/tab separated files to be imported into ARFF files. 

Weka also includes a weka.filters package that can transform datasets. It 

contains useful methods for resampling the dataset, removing examples, data 

preprocessing etc. 

Weka includes algorithms for many different classification algorithms. By 

supplying the appropriate training and test files, the algorithms can be used to develop 

and use various classification algorithms. Table 5-1 shows some of the supported 
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classification algorithms. The output of any classification algorithm can also provide 

statistics regarding the classification process such as time taken to classify given 

samples. It also develops the confusion matrix which can be used to evaluate the 

performance of the classification algorithm. 

 

Table 5-1 Classifiers in Weka tool 

Classifier Description 

trees.J48 open source java implementation 

of C4.5 decision tree learner 

bayes.NaiveBayes A Naïve Bayesian learner 

functions.Logistic Logistic Regression based 

classifier 

functions.SMO Support Vector Machine with 

Sequential Minimal optimization algorithm 

lazy.Kstar Instance based learner using an 

entropy-based distance function 

lazy.Ibk Another instance based learner 

with fixed neighborhood (kNN) 

Functions.MultilayerPerceptron Multilayer Perceptron based 

learning algorithm 
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Chapter 6  

Design of a learning power management system 

 
The previous chapters have shown that different users have varied usages and 

power consumption varies for each of those users. Different components in the system 

may also be active when they are not being utilized. The varied nature of mobile device 

usage also shows that no single power management scheme is suitable to target all 

users. The following chapter details a system that can learn information about the users 

and intelligently manage power onboard the device. By using patterns identified in the 

usage of a mobile device, ideal settings for sensors can be determined and tweaked as 

necessary to save power. Any system that tries to identify patterns in usage and 

adaptively manage power must include some form of system to log data about the user. It 

must have a mechanism to learn from the logged data and must also have a controlling 

mechanism to actively control system parameters. A user specific approach allows for a 

customized and individualized solution to power management in mobile devices.  

 

Section 6.1 gives a brief overview of the whole system. Section 6.2 describes the 

basis of the log collection system. Section 6.3 and 6.4 give a description on how the 

learning module functions. Section 6.5 elaborates on the power manager system. 
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6.1 Learning system overview 

 

A high level overview of the learning system is described below. Figure 6.1 

shows the block diagram of the system. It comprises of a logging system which also 

monitors for change in applications. When an application switch is detected, the relevant 

information regarding the system is passed on to the application classifier. The result of 

the classifier allows the power management and control system to invoke an application 

specific power management strategy and changes the system parameters as necessary.  

 

 

Figure 6-1 Block diagram of system 

 

Any changes made by the user in the system parameters is also logged for the 

system to learn from. If the application has never been classified before, a default power 

management strategy is followed.  
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The system learns and builds a new classification model based on the logged 

historical data. The learning process occurs only when the device is plugged in so that 

the impact of the learning process is nonexistent on battery. 

 

 

6.2 Data Collection system (Logger) 

 

To manage power on a device in a manner adapted to the individual user, data 

about how that user utilizes their device must be captured. This is accomplished by using 

a custom logging application that runs as a background Android service. A combination 

of polling and event based logging is used to gather data about the system. A list of the 

various data points logged are listed in Table 6-1.  
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Table 6-1 List of sensors and data sources being logged 

Sensor 
Sensor 
Type 

Polling 
frequency Information 

Audio poll low Capture audio stream info 

Battery Capacity poll low 
Battery information and 
status 

Bluetooth Radio poll low 
Bluetooth radio information 
and status 

Cellular Info  poll low 
Cellular network 
information 

Data Traffic poll low 
aggregated information on 
network traffic 

Telephony poll low 
information regarding the 
phone 

Wi-Fi Radio poll low 
Wi-Fi radio information and 
status 

CPU Intensive 
Processes poll med 

top 5 CPU intensive 
processes 

Screen poll med Screen status On/Off 

Background Apps poll high 
List of apps running in the 
background 

Foreground App poll high foreground application 

Battery Charging event n/a 
Indicates if phone is being 
charged 

Location event n/a GPS and Network location 

Network event n/a 
Information regarding the 
current network status 
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A series of threads focuses on capturing the data from specific sensors. Each 

thread is scheduled to wake at a set frequency so as to capture the data from the 

sensors and write to file. To minimize the impact of polling, different sensors and data 

sources are polled at different frequencies. For example, it is not necessary to poll 

information about the Wi-Fi Radio every second, however knowledge about which 

application is currently running in the foreground is. A separate thread manages the 

logging of various event based activities such as identifying when the phone has been 

connected to a power source. Therefore only when a change of state, i.e. an event, 

occurs is the thread invoked. Both polling and events are logged by using standard 

Android APIs available to access various sensors and data sources. When a new 

application gains focus, i.e. it is the application in the foreground, data about the 

application along with current system settings are then saved to file. There are three 

different threads being called every 10, 20, 120 seconds to poll the various sensors. 

Figure 6-2 shows the structure of the logging system. 
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Figure 6-2 Block diagram of logging system 

 

6.3 Learning module (Profile Creator) 

 
The learning module comprises of 2 parts, the Profile creator and the Classifier 

module. The following section explains the working of the Profile creator. The profile 

creator takes in data being logged by the Logger and formats it into a form consumable 

by the classification module. In this effort, the classification module utilizes the collection 

of machine learning algorithms called WEKA described in Section 5.6. Thus for any 

classification effort, the data must be formatted into a form consumable by WEKA 

algorithms. The external representation of the data set to be fed into the classifier is an 

ARFF file. It consists of a header describing the attribute types and the data presented as 

a comma separated list.  
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Figure 6-3 Sample ARFF file created by profile creator system 

 

Figure 6-3 shows a sample ARFF file used in our system. The list of attributes 

are retrieved from the logging system and then written to an ARFF file. The classifier 

utilizes this ARFF file to build a new and updated classification model when necessary. 

The files are updated as and when new information is retrieved by the logging module.  
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6.4 Learning Module (Classifier) 

 
The classification module is the second part of the learning mechanism. The 

classification algorithm used in this system is a form of the Naive Bayesian classifier. For 

this module, the classification system uses the following parameters as input: 

1. Application name (foreground application) 

2. Time of day - this is categorized into 4 sections as morning (6AM-12PM, 

afternoon (12-6PM),   evening (6PM-12AM) and night (12-6AM). 

3. Current Wi-Fi Module Status - On/off 

4. Screen status - On/Off 

5. Bluetooth status – On/Off 

6. Current screen brightness - low, medium and high 

 

The various inputs are then categorized into one of 12 output classes based on 

the input parameters. This classification allows the Decision module i.e. power manager, 

to adjust system parameters as necessary to maximize power savings. The current 

classifier module output is based exclusively on the different data interfaces and the 

screen brightness of the device. 

Initially a default ARFF file loaded with information about some commonly used 

applications is used to build the classifier model. This acts as our training data set. All 

classifications then made are based on this constructed model. As new information is 

captured about the various applications and the system settings, the Profile Creator 

updates the ARFF file. The default classifier model is then updated using the newly 

captured information stored in the ARFF file. The classifier model is updated at least 
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every 3 days when the device is plugged in to a power source and has been in an idle 

state for at least 10 minutes.  

Real time classification of applications is made every time an application change 

is detected. A simplified classification example based on the sample training ARFF file 

shown in fig 6-4 is given below. 

 

 

Figure 6-4 Simplified training file 
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As seen in the above file, we have 4 input attributes under consideration and a 

single binary output class - whether the Wi-Fi module should be flipped on/off (𝑊𝑓). 

Equation 5.4 can then be used to classify any new instance. 

 

    (5.4) 

 

Consider a new input instance to be classified as the following tuple:  

{other, night, on, netflix}  

From the training data, we can calculate the following probabilities: 

𝑃(𝑊𝑓 =  𝑦𝑒𝑠) =
4

13
         (6.1) 

𝑃(𝑊𝑓 =  𝑛𝑜)  =
9

13
        (6.2) 

𝑃(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 =  𝑜𝑡ℎ𝑒𝑟|𝑊𝑓 = 𝑦𝑒𝑠) =
2

4
      (6.3) 

𝑃(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 =  𝑜𝑡ℎ𝑒𝑟|𝑊𝑓 = 𝑛𝑜) =
2

9
      (6.4) 

𝑃(𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =  𝑛𝑒𝑡𝑓𝑙𝑖𝑥| 𝑊𝑓 = 𝑦𝑒𝑠)  =  
3

4
      (6.5) 

𝑃(𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =  𝑛𝑒𝑡𝑓𝑙𝑖𝑥| 𝑊𝑓 = 𝑛𝑜) =
2

9
      (6.6) 

𝑃(𝑊𝑖𝑓𝑖 =  𝑜𝑛 | 𝑊𝑓 = 𝑦𝑒𝑠)  =  
1

4
        (6.7) 

𝑃(𝑊𝑖𝑓𝑖 =  𝑜𝑛 | 𝑊𝑓 = 𝑛𝑜)  =
7

9
        (6.8) 

𝑃(𝑇𝑂𝐷 =  𝑛𝑖𝑔ℎ𝑡|𝑊𝑓 = 𝑦𝑒𝑠)  =  
1

4
       (6.9) 

𝑃(𝑇𝑂𝐷 =  𝑛𝑖𝑔ℎ𝑡|𝑊𝑓 = 𝑛𝑜)  =  
3

9
       (6.10) 
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Therefore, for the hypothesis that the output class 𝑊𝑓 = yes, the posterior 

probability is calculated as: 

𝑃(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑜𝑡ℎ𝑒𝑟, 𝑇𝑂𝐷 = 𝑛𝑖𝑔ℎ𝑡, 𝑊𝑖𝑓𝑖 = 𝑜𝑛, 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑛𝑒𝑡𝑓𝑙𝑖𝑥|𝑊𝑓 =  𝑦𝑒𝑠) 

 
4

13
∗

2

4
∗

3

4
∗

1

4
∗

1

4
 =  

6

832
 =  0.00721     (6.11) 

𝑃(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 =  𝑜𝑡ℎ𝑒𝑟, 𝑇𝑂𝐷 =  𝑛𝑖𝑔ℎ𝑡, 𝑊𝑖𝑓𝑖 =  𝑜𝑛, 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =  𝑛𝑒𝑡𝑓𝑙𝑖𝑥|𝑊𝑓 =  𝑛𝑜)  =  

9

13
∗

2

9
∗

2

9
∗

7

9
∗

3

9
=  28/3159 =  0.00886      (6.12) 

 

Therefore, the output class of the new instance will be 𝑊𝑓 = No. 

 

6.5 Power Manager (Decision Controller) 

 
The output of the classifier stage is a single value categorizing the input variables 

into one of 12 classes. Each of these classes is a combination of settings for Wi-Fi, 

Bluetooth, Screen brightness and Mobile data. The power manager utilizes standard 

Android APIs to control each of the above parameters. Table 6.2 shows all the possible 

output combinations possible. By having application specific settings, a customized 

power saving setting can be applied for each application, to maximize the power savings. 

As shown earlier, each user has a unique usage pattern. The different patterns affect 

power consumption on the device in ways unique to each user. By targeting the specific 

application mix, a unique power profile can be determined and savings can be achieved.  
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Table 6-2 Power Manager output classes 

Class Wifi Screen Brightness Bluetooth 

1 On High On 

2 On High Off 

3 On Medium On 

4 On Medium Off 

5 On Low On 

6 On Low Off 

7 Off High On 

8 Off High Off 

9 Off Medium On 

10 Off Medium Off 

11 Off Low On 

12 Off Low Off 
 

Additionally, as the service is running in the background, the service is capable of 

determining how and when various data interfaces can be turned off based on the type of 

application being used. Further power savings can be achieved by turning off the haptic 

feedback for the applications as this prevents power being used by the vibration motor.  

 

6.6 Analysis of various classification algorithms 

Table 6-3 shows a brief comparison of the different classification algorithms and 

the applicability of each of them to this project. 
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Table 6-3 Comparison of various classification algorithms 

Classifier 
Data 
Size 

Learning 
Speed Accuracy Comments 

Naïve 
Bayesian Small Fast Medium 

cannot understand 
correlation between 
features; assumption of 
independence between 
features 

kNN Medium Slow High memory intensive 

Decision 
Tree Medium Medium Medium 

easier to handle than 
SVMs 

SVM Large Slow High 
High accuracy and fast 
classification 

Neural 
networks Large Slow Very High 

High computation 
complexity.  

 

Given that the primary goal of this effort is to increase power savings on mobile 

devices, any algorithm being run to identify patterns in usage must not be a burden on 

the system. With limited computing and energy resources at hand, the algorithm needs to 

be computationally efficient and fairly accurate. 

 

As shown in Table 6-3, the Naive Bayes classifier has a fast learning speed, as 

the essential algorithm boils down to the calculation of probabilities from observed data 

and application of these to new unknown input vectors. The main assumption made for 

this algorithm is the independence between features. Therefore, the algorithm cannot 
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learn and adapt to any dependencies that may exist between features. From both 

learning and classification points of view, the Naive Bayes is a fast classifier. The other 

advantage is that to build the classifier, it needs a relatively small training data set. 

 

Decision Trees are fairly accurate class of nonparametric classifiers, i.e. they do 

not make assumptions about the distributions of the attributes or the class. The speed of 

classification is extremely fast as the worst case complexity is 𝑂(𝑤) where the depth of 

the tree is 𝑤. The algorithm however can suffer from creation of trees that do not 

generalize well from training data, i.e. overfits the data.  

 

k-NN learning algorithms are a class of instance based learning algorithms. They 

are also non parametric, hence no assumptions are made on the distribution of 

underlying data. However, k-NN algorithms are highly memory intensive as they store all 

training data in memory. Thus larger training data sets can stress the memory adversely. 

The computational costs are also high as classification of any new instance requires 

comparison of the instance to the complete data set stored in memory. This is highly 

unsuitable for use in mobile devices which are constrained in terms of processing power 

and memory, even though they can be fairly accurate. 

 

Support Vector Machine classification algorithms suffer from large training times.  

This is because of the time taken to solve the optimization problem while determining the 

hyper plane to divide the data into classes. This is a computationally intensive step and 

therefore generally unsuited for use in mobile devices. This can however be overcome by 

training the classifier either offline or only when the device has sufficient resources. 

Proper training also requires a large training data set. Once trained however, the 
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classification speed of a new instance is fast. The accuracy of classification is also very 

high. 

 

Neural networks are not particularly suited for this particular task because of the 

resource constraint. The training of neural networks is highly complex and 

computationally intensive. The time taken to train is also very high and usually training 

requires a large training data set. Thus the high training time and complexity make the 

implementation of the algorithm on a mobile device infeasible. 
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Chapter 7  

Results 

 
The following chapter describes the results of the learning classifier. Results 

regarding impacts of the classifier on power as well as the classification step in mobile 

devices are presented. 

 

7.1 Methodology 

 
To determine the effect of the power management scheme implemented by the 

classifier, two separate experiments were done. First, a profile representative of the 

average smartphone user was built based on research data. Using this profile, a baseline 

power measurement was made utilizing a combination of the on board battery statistics 

and PowerTutor [68], [69]. The baseline power numbers were then compared to the 

learning power management system. Section 7.2.1 shows the design of the profile as 

well as power consumption values for this profile. 

Additionally, the system was also tested against each of the 6 demographic 

profiles built in Chapter 4. Power measurements were made using the same setup used 

for the average smartphone user profile. Section 7.2.2 shows the detailed power 

breakdown for these 6 profiles. 

The classifier performance was also recorded by using data from a real user to 

train and test the implemented Naïve Bayesian Classifier. This was done by using 

previously stored ARFF files which are fed into the Naive Bayesian Classifier 

implemented as part of the Weka package. The ARFF file consists of 3000 records. The 

attributes present in the ARFF files are identical to the input attributes expected by the 



 

88 

classifier on the mobile device. Section 7.3 compares the performance of various 

classifiers using the stored ARFF file. 

 

7.2 Power Measurements 

 
7.2.1 Measurements for the average smartphone user 

To measure the impact of the learning power management system, a profile was 

developed mirroring the use of a smartphone by the average user. Research has shown 

that the average smartphone user utilizes their device for approximately an hour each 

day.[70] Figure 7-1 shows the breakdown of time of use for each of these applications.  

 

Figure 7-1 Smartphone time of use breakdown 
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Figure 7-2 shows the frequency of use of each of the applications and the time 

spent in each app. Using this data, a profile consisting of multiple applications was 

developed, with different varied number of invocations and different runtimes.  

 

 

Figure 7-2 Frequency of use of various applications 

 

Table 7-1 shows the time splits for the runtime of each application. The profile 

was then run multiple times on an x86 based Android device, to obtain both the baseline 

system power consumption values and the power consumption values with an idealized 

learning power management system in place. Only the various data interfaces and 

screen brightness settings were varied as part of the idealized system. Table 7-2 shows 

the average difference in energy used across multiple runs. 
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Table 7-1 Time splits of various applications 

Activity 
Time of Use in 

minutes 

Talking on Phone 14.5 

Texting 12 

Social Networking 10 

Browsing the Web 8.5 

using Email 5 

Gaming 5 

Camera 1 

Maps 1 

Other miscellaneous apps 3 
 

 

Table 7-2 Power consumption comparision for average smartphone user profile 

Average Power 
Draw(mW) 

Default 
settings  

Idealized 
learned 
settings Delta % 

Run 1 1658 1403 18.18% 

Run 2 1702 1487 14.46% 

Run 3 1675 1408 18.96% 

Run 4  1423 1263 12.67% 

Run 5 1598 1421 12.46% 

Average 1611.2 1396.4 15.38% 
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Figure 7-3 Power Consumption for average smartphone user profile 

 

7.2.2 Measurements for various demographic profiles. 

In addition to measuring the impact of the learning power management system 

on an average smartphone user, the results of the system on various demographic 

profiles developed in chapter 4 were also tested. Power measurements were made by 

the use  of PowerTutor, an online power estimation tool developed at University of 

Michigan.  

Since each of the demographic profiles were developed to run for a time period 

of 600s, the same profile/ application mix was executed to determine the total power 

consumed by the device with the learning system active. All baseline measurements 

were made with the Wi-Fi and Bluetooth modules turned on and screen brightness set to 

Auto.  
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Table 7-3 Power Consumption values for the 6 profiles (mW) 

  

Power 
Consumed 

(mW) Default 

With 
learning 
system 
active Default 

With 
learning 
system 
active Default 

With 
learning 
system 
active Default 

With 
learning 
system 
active Default 

With 
learning 
system 
active Default 

With 
learning 
system 
active 

 18-34 M 18-34F 35-54M 35-54F 55+M 55+F 

Run 1 1180 1081 1234 1099 1232 1043 1228 1031 1279 1045 1260 1025 

Run 2 1235 1125 1189 1100 1304 1091 1285 1108 1408 1101 1184 1003 

Run 3 1164 1093 1277 1158 1277 1168 1203 1127 1164 1026 1247 1054 

Run 4  1182 1065 1300 1206 1310 1121 1111 1095 1252 1069 1293 1039 

Run 5 1276 1067 1198 1081 1249 1084 1375 1127 1243 1051 1162 1011 



 

93 

 

 

Figure 7-4 Comparison of power consumption for 18-34 M profile 

 

 

 

Figure 7-5 Comparison of power consumption for 18-34 F profile 
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Figure 7-6 Comparison of power consumption for 35-54 M profile 

 

 

 

Figure 7-7 Comparison of power consumption for 35-54 F profile 
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Figure 7-8 Comparison of power consumption for 55+ M profile 

 
 

 

Figure 7-9 Comparison of power consumption for 55+ F profile 
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7.3 Performance of the classifier 

 
To compare the performance of the classifiers, a trained dataset matching the 

usage collected from a real user was taken and an 80/20 split was used to train and test 

the classifier on a personal computer. Table 7-4 shows the various computed statistics 

for the different classifiers. 

 

Table 7-4 Classifer Performance Statistics 

 

Correctly 
Classified 

% 

Incorrectly 
Classified 

% 
Kappa 

Statistic 
RMS 
Error 

Weighted 
Average 

ROC 

Time 
Taken to 
learn (s) 

Naïve 
Bayesian 60.33 39.667 0.4847 0.2002 0.897 0 

kNN 63.5 36.5 0.5304 0.2135 0.858 0 

MultiLayer 
Perceptron 72 28 0.6485 0.1998 0.922 39.85 

SVM using 
SMO 70 30 0.6208 0.2578 0.89 2.32 

J48 Decision 
tree 70 30 0.6235 0.176 0.907 0.03 
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Chapter 8  

Conclusion and Future Work 

 

In today’s fast paced world,  mobile devices of all types have developed into full 

blown personal computing devices, compressed into a small form factor. The 

combination of computing power along with connectivity of these devices to the internet 

allows people to perform a wide range of activities that was not possible just a few years 

ago. These devices allow people to communicate, entertain, connect with others both 

professionally and socially. As more people use such devices which increase in 

computing power year to year, developers have come up with unique methods to utilize 

the smartphone to solve various problems. This however comes at a cost as the small 

form factor of these devices limits the total battery capacity. With high performance 

expected by users at all times, applications grow more power hungry. While the rate of 

change in computing technology has been high, battery technology has not kept pace. 

Therefore managing power on these mobile computing and communication devices is a 

critical task. These methods must be able to minimize power consumption without any 

impact on QoS to the user.  

 

However, due to the varied nature of the mobile user, no single power 

management strategy can successfully tackle this challenge. This research effort shows 

that even a simple demographic breakdown of users have varied power use profiles. The 

mix of applications used by each user varies and each profile or mix of applications has a 

unique power consumption profile.  
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This unique power consumption pattern can be used to develop an individualized 

power management scheme, one that can adapt to the individual user. Based on the 

application mix, it was shown that a power saving scheme customized to the user can 

provide greater power savings.  

This effort provides a solution by implementing an on device scheme that learns 

about the mix of applications used by the user, the various sensors and interfaces 

required and manages them, improving the overall power consumed by the device by 

minimizing unnecessary power losses. It uses a Naive Bayesian learning and 

classification algorithm to analyze, understand user profiles and manage power 

accordingly. The developed strategy is tested on the different demographic profiles, 

obtaining a maximum of 19% and an average of 12-15% in energy savings over the 

default power management scheme present in Android smartphones. 

 

8.1 Future Work 

 
The effort presented in this effort tackled the solution by implementing a Naive 

Bayesian learning algorithm to manage power. While the solution does show promising 

results, much work can be done to improve the scheme.  

 

One such solution is to utilize a better learning algorithm to learn and classify the 

application mix. Potential solutions include implementing a Support Vector Machine 

based learning system. While such algorithms are expensive from a computation and 

power perspective, potential solutions include running the algorithms only when the 

device is being charged. Another such solution is to offload the computation to a server, 

thus minimizing the impact of using computationally heavy algorithms. 



 

99 

 

Another solution is to control more system parameters than presented as part of 

this effort. It was shown that better CPU frequency scaling can improve overall power 

consumption statistics of the device. Targeting CPU scaling in conjunction with other 

sensors and interfaces can help improve the overall system. 

 

Other future work would include designing power management strategies to be a  

part of the operating system, thus gaining more fine-grained control over the multitude of 

components present in a mobile device. 
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Appendix A 

Comparison of Android Runtime (ART) and Dalvik VM from a power perspective 
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Google introduced a new runtime called Android runtime (ART) with the 4.4.4 

KitKat release of Android. It was included as a separate option, along with the default 

option, i.e. Dalvik. Since then, ART has undergone further development and with the 

release of Android 5.0, it has completely replaced Dalvik as the runtime. 

The big change in ART compared to Dalvik is the introduction of AOT, i.e. 

Ahead-of-Time compilation. Here all application code is compiled to native code at app 

install time. Dalvik employed the JIT (Just-in-Time) compiler to perform bytecode to 

native code compilations. With the AOT principle, all compilation is done only once. As 

there exists no need for the interpreter or the JIT compiler to perform any tasks in the 

ART environment, a direct result is a major reduction in CPU cycles consumed when 

running any application, which translates to savings in power consumption. 

The following section compares the Dalvik and ART from a power perspective. 

As Android 4.4.4 KitKat supports both Dalvik and ART, it was chosen as the operating 

system version to perform experiments on power consumption. The device used for this 

experiment is the Google Nexus 5.  

To test the power consumption across the two runtimes, a fully charged device 

was made to run the (IcyRocks workload, a workload developed by Intel Corp,) workload 

while measuring the battery capacity and battery current. A script was developed to 

capture the above values along with all other battery related statistics every 5 minutes 

until the device was completely discharged. Figure A-1 shows the logged battery capacity 

over time.  

 

 

 

 



 

102 

 

Figure A-1 Battery discharge curve Dalvik v ART 

 

As seen, the Dalvik VM executes the workload for a total of 13495 seconds 

before the phone is completely discharged. For the same workload, with only the runtime 

being changed to ART, the phone executes the workload for 14699 seconds before a 

complete discharge. Therefore, the net runtime has increased by approximately 9%.  

 

Table A-1 Performance Statistics, Dalvik v ART 

 Animation/s FPS 

Dalvik 4681.206255 23.9036873 

ART 7889.440923 29.2820734 

% diff 68.5% 22.5% 
 

Table A-2 shows some of the performance related statistics reported by the 

workload. It is seen that the Frames drawn per second statistic has increased by 22.5%, 

while the total number of animations drawn per second has increased by 68.5%. Thus, 
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the power consumption of ART is shown to be better than Dalvik, with a simultaneous 

increase in performance.



 

104 

References 

[1] http://en.wikipedia.org/wiki/Power_management  

[2] http://en.wikipedia.org/wiki/Advanced_Power_Management 

[3] http://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface 

[4] http://www.acpi.info/presentations/ACPI_Overview.pdf 

[5] www.ieee802.org/3/eee_study/public/mar07/chalupsky_01_0307.pdf 

[6] http://www.gartner.com/newsroom/id/2944819 

[7] http://www.idc.com/prodserv/smartphone-os-market-share.jsp 

[8] http://www.kandroid.org/online-pdk/guide/power_management.html 

[9] http://grail.cba.csuohio.edu/~matos/notes/cis-493/lecture-notes/Android-

Chapter03-Life-Cycle.pdf 

[10] https://developer.android.com/about/versions/kitkat.html 

[11] https://developer.android.com/about/versions/android-5.0.html 

[12] http://www.greenbot.com/article/2449812/android-l-features-revealed-project-

volta-boosts-battery-life.html 

[13] http://source.android.com/devices/tech/dalvik/ 

[14] http://wear.techbrood.com/preview/images/battery_historian.png 

[15] https://developer.android.com/about/dashboards/index.html 

[16] http://www.forbes.com/sites/chrisversace/2013/08/21/what-do-consumers-want-

in-a-new-smartphone/ --- April 2013 

[17] http://www.theguardian.com/technology/2014/may/21/your-smartphones-best-

app-battery-life-say-89-of-Britons --- May 21, 2014 

[18] https://www.surveymonkey.com/blog/en/blog/2014/04/02/really-want-

smartphone/ --- April 2014 

http://en.wikipedia.org/wiki/Power_management
http://en.wikipedia.org/wiki/Advanced_Power_Management
http://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
http://www.acpi.info/presentations/ACPI_Overview.pdf
http://www.ieee802.org/3/eee_study/public/mar07/chalupsky_01_0307.pdf
http://www.gartner.com/newsroom/id/2944819
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.kandroid.org/online-pdk/guide/power_management.html
http://grail.cba.csuohio.edu/~matos/notes/cis-493/lecture-notes/Android-Chapter03-Life-Cycle.pdf
http://grail.cba.csuohio.edu/~matos/notes/cis-493/lecture-notes/Android-Chapter03-Life-Cycle.pdf
https://developer.android.com/about/versions/kitkat.html
https://developer.android.com/about/versions/android-5.0.html
http://www.greenbot.com/article/2449812/android-l-features-revealed-project-volta-boosts-battery-life.html
http://www.greenbot.com/article/2449812/android-l-features-revealed-project-volta-boosts-battery-life.html
http://source.android.com/devices/tech/dalvik/
http://wear.techbrood.com/preview/images/battery_historian.png
https://developer.android.com/about/dashboards/index.html
http://www.forbes.com/sites/chrisversace/2013/08/21/what-do-consumers-want-in-a-new-smartphone/
http://www.forbes.com/sites/chrisversace/2013/08/21/what-do-consumers-want-in-a-new-smartphone/
http://www.theguardian.com/technology/2014/may/21/your-smartphones-best-app-battery-life-say-89-of-Britons
http://www.theguardian.com/technology/2014/may/21/your-smartphones-best-app-battery-life-say-89-of-Britons
https://www.surveymonkey.com/blog/en/blog/2014/04/02/really-want-smartphone/
https://www.surveymonkey.com/blog/en/blog/2014/04/02/really-want-smartphone/


 

105 

[19]  J.M. Kang, S. Seo and J. Hong. "Usage pattern analysis of smartphones." In 

13th Asia-Pacific Network Operations and Management Symposium, 2011, pp. 

1-8.s 

[20]  A. Pathak, Y. C. Hu and M. Zhang. "Where is the energy spent inside my app? 

Fine grained energy accounting on smartphones with eprof." In Proc. of ACM 

EruoSys'12, Bern, Switzerland, 2012 

[21]  Datta, S.K.; Bonnet, C.; Nikaein, N.; , "Android power management: Current and 

future trends," Enabling Technologies for Smartphone and Internet of Things 

(ETSIoT), 2012 First IEEE Workshop on , vol., no., pp.48-53, 18-18 June 2012 

[22]  J. Froehlich, M. Y. Chen, S. Consolvo, B. Harrison, J. A. Landay, 

"MyExperience: A System for In Situ Tracing and Capturing of User Feedback on 

Mobile Phones," in MOBISYS, pp. 57-70, 2007 

[23]  Metri, G., Agrawal, A., Peri, R., & Shi, W. (2012, December). What is eating up 

battery life on my smartphone: A case study. In Energy Aware Computing, 2012 

International Conference on (pp. 1-6). IEEE. 

[24]  A. Shye, B. Scholbrock, G. Memik, "Into the Wild: Studying Real User Activity 

Patterns to Guide Power Optimizations for Mobile Architectures," in MICRO-42 

‘09, pp. 168-178, Jan. 2009 

[25] K. Choi, R. Soma, M. Pedram, "Fine-Grained Dynamic Voltage and Frequency 

Scaling for Precise Energy and Performance Trade-Off Based on the Ratio of 

Off-Chip Access to On-Chip Computation Times," in TCAD '04, 2004 

[26] Mallik, J. Cosgrove, R. Dick, G. Memik, P. Dinda, "PICSEL: Measuring User-

Perceived Performance to Control Dynamic Frequency Scaling," in ASPLOS '08, 

Mar. 2008 



 

106 

[27] Y. Man, Y. Liu, "Towards an energy-efficient framework for location-triggered 

mobile application," Telecommunication Networks and Applications Conference 

(ATNAC), 2012 Australasian , vol., no., pp.1,6, 7-9 Nov. 2012 

[28] C. Lee, M. Lee, D. Han, "Energy efficient location logging for mobile device," in 

SAINT ‘11, pp. 84, Oct. 2010 

[29] M. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H. Krieger, M. J. Neely, "Energy-

Delay Tradeoffs in Smartphone Applications," in MOBISYS ‘10, pp. 255-270, Jun. 

2010. 

[30] Metri, G., Shi, W., Brockmeyer, M., Agrawal, A., "BatteryExtender: an adaptive 

user-guided tool for power management of mobile devices." in UBICOMP '14, pp. 

33-43, Sep. 2014. 

[31] C. Wang; F. Yan; Y. Guo; X. Chen, "Power estimation for mobile applications 

with profile-driven battery traces," in ISLPED '13 , pp.120,125, 4-6 Sept. 2013 

[32] Y.-W. Kwon and E. Tilevich. Reducing the energy consumption of mobile 

applications behind the scenes. In 29th IEEE International Conference on 

Software Maintenance, 2013 

[33] https://play.google.com/store/apps/details?id=com.latedroid.juicedefender  

[34] https://play.google.com/store/apps/details?id=com.ijinshan.kbatterydoctor_en  

[35] https://play.google.com/store/apps/details?id=com.dianxinos.dxbs  

[36] http://tasker.dinglisch.net/   

[37] http://www.samsung.com/global/microsite/galaxys5/features.html  

[38] http://www.androidcentral.com/using-ultra-power-saver-samsung-galaxy-s5  

[39] http://www.androidcentral.com/using-extreme-power-saving-mode-htc-one-m8  

[40] http://blog.htc.com/2014/05/extreme-power-saving-mode/  

[41] https://www.thinkwithgoogle.com/tools/our-mobile-planet.html  

https://play.google.com/store/apps/details?id=com.latedroid.juicedefender
https://play.google.com/store/apps/details?id=com.ijinshan.kbatterydoctor_en
https://play.google.com/store/apps/details?id=com.dianxinos.dxbs
http://tasker.dinglisch.net/
http://www.samsung.com/global/microsite/galaxys5/features.html
http://www.androidcentral.com/using-ultra-power-saver-samsung-galaxy-s5
http://www.androidcentral.com/using-extreme-power-saving-mode-htc-one-m8
http://blog.htc.com/2014/05/extreme-power-saving-mode/
https://www.thinkwithgoogle.com/tools/our-mobile-planet.html


 

107 

[42] https://www.thinkwithgoogle.com/tools/consumer-barometer.html  

[43] https://orange.blender.org/  

[44] http://searchenginewatch.com/sew/opinion/2353616/mobile-now-exceeds-pc-the-

biggest-shift-since-the-internet-began  

[45] http://techcrunch.com/2014/11/02/is-mobile-gaming-the-new-core-gaming/  

[46] https://play.google.com/store/apps/details?id=com.rovio.angrybirds  

[47] https://play.google.com/store/apps/details?id=com.iUnity.angryBots&hl=en 

[48] https://play.google.com/store/apps/details?id=com.glbenchmark.glbenchmark27&

hl=en  

[49] Russell, Stuart; Norvig, Peter (2003) [1995]. Artificial Intelligence: A Modern 

Approach (2nd ed.). Prentice Hall. ISBN 978-0137903955 

[50] http://scikit-learn.org/stable/modules/naive_bayes.html  

[51] H. Jung, M. Pedram, "Improving the Efficiency of Power Management 

Techniques by Using Bayesian Classification," in ISQED ‘08, pp. 178-183, Mar. 

2008. 

[52] Artificial Intelligence: Foundations of Computational Agents, Cambridge 

University Press, 2010 

[53] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-

2830, 2011. 

[54] http://en.wikipedia.org/wiki/Decision_tree_learning  

[55] http://en.wikipedia.org/wiki/Naive_Bayes_classifier  

[56] J.R. Quinlan. C4. 5: programs for machine learning. Morgan Kaufmann, 1993. 

[57] Berwick, Robert. "An Idiot’s guide to Support vector machines (SVMs)." 

Retrieved on October 21 (2003): 2011. 

https://www.thinkwithgoogle.com/tools/consumer-barometer.html
https://orange.blender.org/
http://searchenginewatch.com/sew/opinion/2353616/mobile-now-exceeds-pc-the-biggest-shift-since-the-internet-began
http://searchenginewatch.com/sew/opinion/2353616/mobile-now-exceeds-pc-the-biggest-shift-since-the-internet-began
http://techcrunch.com/2014/11/02/is-mobile-gaming-the-new-core-gaming/
https://play.google.com/store/apps/details?id=com.rovio.angrybirds
https://play.google.com/store/apps/details?id=com.iUnity.angryBots&hl=en
https://play.google.com/store/apps/details?id=com.glbenchmark.glbenchmark27&hl=en
https://play.google.com/store/apps/details?id=com.glbenchmark.glbenchmark27&hl=en
http://scikit-learn.org/stable/modules/naive_bayes.html
http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/Naive_Bayes_classifier


 

108 

[58] Platt, John (1998), Sequential Minimal Optimization: A Fast Algorithm for 

Training Support Vector Machines 

[59] http://www.solver.com/xlminer/help/neural-networks-classification-intro  

[60] http://en.wikipedia.org/wiki/Artificial_neural_network  

[61] http://en.wikipedia.org/wiki/Multilayer_perceptron  

[62] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, 

Ian H. Witten (2009); The WEKA Data Mining Software: An Update; SIGKDD 

Explorations, Volume 11, Issue 1. 

[63] Zheng, Fei, and Geoffrey I. Webb. "A comparative study of semi-naive Bayes 

methods in classification learning." Proceedings of the fourth Australasian data 

mining conference (AusDM05). 2005. 

[64] Martin, J. Kent, and D. S. Hirschberg. "On the complexity of learning decision 

trees." International Symposium on Artificial Intelligence and Mathematics. 1996. 

[65] courses.cs.tamu.edu/rgutier/cs790_w02/l8.pdf  

[66] http://blog.echen.me/2011/04/27/choosing-a-machine-learning-classifier/  

[67] www.cs.columbia.edu/~mcollins/em.pdf  

[68] L. Zhang, et al. “Accurate online power estimation and automatic battery 

behavior based power model generation for smartphones.” In Proc. Of ACM 

CODES+ISSS’10, Arizona, USA, 2010, pp. 105-114. 

[69] https://play.google.com/store/apps/details?id=edu.umich.PowerTutor  

[70] http://www.experian.com/blogs/marketing-forward/2013/05/28/americans-spend-

58-minutes-a-day-on-their-smartphones/  

[71] http://www.msoon.com/LabEquipment/PowerMonitor/    

[72] Barton, John J., Shumin Zhai, and Steve B. Cousins. "Mobile phones will become 

the primary personal computing devices." Mobile Computing Systems and 

http://www.solver.com/xlminer/help/neural-networks-classification-intro
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Multilayer_perceptron
http://blog.echen.me/2011/04/27/choosing-a-machine-learning-classifier/
http://www.cs.columbia.edu/~mcollins/em.pdf
https://play.google.com/store/apps/details?id=edu.umich.PowerTutor
http://www.experian.com/blogs/marketing-forward/2013/05/28/americans-spend-58-minutes-a-day-on-their-smartphones/
http://www.experian.com/blogs/marketing-forward/2013/05/28/americans-spend-58-minutes-a-day-on-their-smartphones/
http://www.msoon.com/LabEquipment/PowerMonitor/


 

109 

Applications, 2006. WMCSA'06. Proceedings. 7th IEEE Workshop on. IEEE, 

2005. 

[73] Carroll, Aaron, and Gernot Heiser. "An Analysis of Power Consumption in a 

Smartphone." USENIX annual technical conference. 2010. 

[74] Maloney, Sean, and Ivan Boci. "Survey: Techniques for Efficient energy 

consumption in Mobile Architectures." Power (mW) 16.9.56 (2012): 7-35. 

[75] http://anandtech.com/show/8231/a-closer-look-at-android-runtime-art-in-android-

l/  

[76]  Donohoo, Brad K., Chris Ohlsen, and Sudeep Pasricha. "AURA: An application 

and user interaction aware middleware framework for energy optimization in 

mobile devices." Computer Design (ICCD), 2011 IEEE 29th International 

Conference on. IEEE, 2011. 

[77]   Donohoo, B., et al. "Context-Aware Energy Enhancements for Smart Mobile 

Devices." (2013): 1-1. 

[78]  Donohoo, Brad Kyoshi. Machine learning techniques for energy optimization in 

mobile embedded systems. Diss. Colorado State University, 2012. 

[79] http://elinux.org/Android_Power_Management  

[80] http://www.kandroid.org/online-pdk/guide/power_management.html  

[81] http://en.wikipedia.org/wiki/Machine_learning  

[82] http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-

Billion-2014/1010536  

[83] http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps--

so-much-time.html  

[84] http://blog.appfigures.com/app-stores-growth-accelerates-in-2014/  

http://anandtech.com/show/8231/a-closer-look-at-android-runtime-art-in-android-l/
http://anandtech.com/show/8231/a-closer-look-at-android-runtime-art-in-android-l/
http://elinux.org/Android_Power_Management
http://www.kandroid.org/online-pdk/guide/power_management.html
http://en.wikipedia.org/wiki/Machine_learning
http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536
http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps--so-much-time.html
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps--so-much-time.html
http://blog.appfigures.com/app-stores-growth-accelerates-in-2014/


 

110 

[85]  Z. Guo, S. Balasubramanium, R. Zlatanovici, T.-J. King and B. Nikolic. FinFET-

based SRAM design. Proceedings of the 2005 International Symposium on Low 

Power Electronics and Design, August 2005, pp. 2"7 

[86] B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C.-Y. Yang, C. Tabery, C. Ho, Q. 

Xiang, T.-J. King, J. Bokor, C. Hu, M-R. Lin and D. Kyser. FinFET scaling to 10 

nm gate length. Electron Devices Meeting, 2002. IEDM '02 Digest. International, 

pp. 251"254, 2002. 

 

 



 

111 

Biographical Information 

 

Ashwin Arikere has completed his PhD in Computer Engineering under the 

guidance of Dr. Roger Walker at the University of Texas at Arlington. Prior to this, he 

received his master’s degree in Computer Engineering from the University of Texas at 

Arlington in the year 2011. His Master’s thesis dealt with the Performance Tuning of 

Embedded Template Analysis Tool which he successfully defended under the guidance 

of Dr. Roger Walker. 

While working on his PhD, Ashwin served as a Graduate Teaching Assistant for 

the Embedded Systems and Real Time Embedded Systems courses. He has also been 

interning at Intel Corp’s Software Services Group since the year 2012. 

He wishes to continue working in Android Performance Analysis at Intel 

Corporation. 

 

 


