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Abstract 

A PARAMETRIC STUDY OF THE EFFECTS OF ɛ AND 𝑘̅ ON THE POISSON 

BOLTZMANN EQUATION FOR ONE AND TWO SPHERICAL PARTICLES 

USING A BOUNDARY INTEGRAL METHOD 

 

Oumama H Lingamfelter, M.S. 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Bo Yang 

Many biomolecules, such as DNA, exhibit properties that are dependent 

on their electrostatic interaction with an electrolytic solution. Both explicit 

atomistic and implicit continuum models have been developed to solve the 

electrostatic problem. The implicit models are based on the Poisson-Boltzmann 

(PB) equation, whose lower computational cost makes them favored for bio-

molecular applications, particularly as the molecule size increases. Among the 

implicit models, a boundary integral equation (BIE) method involving only 

numerical treatment on a surface in turn is more efficient than domain-based finite 

element and finite difference methods. This is especially so in the present case 

where the electric field varies exponentially requiring specially designed adaptive 

mesh in the domain-based methods. However, the BIE method is only applicable 

to linearized PB equation whose fundamental solution is available in an analytical 
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form. When coupled with the linear interfacial continuity condition, it is only 

valid for low-voltage surfaces. In the present work, a nonlinear interfacial 

continuity condition is introduced by relating the asymptotes of the nonlinear and 

the linear PB equations at a surface. Equipped with it, the BIE method can be 

applied to efficiently and accurately solve the PB problems with high voltage 

surfaces. Its validity and capability are demonstrated with benchmark examples 

with one and two spherical particles. In particular, the particle solvation energy is 

calculated. In the case of two particles, the particle interaction energy is also 

calculated. The effects of the Debye length of the electrolytic solution and the 

dielectric mismatch between a particle and the electrolytic solution are examined 

in detail. A comparison of the linear and the nonlinear PB solutions shows their 

great difference for highly charged particles, not only in magnitude but also 

sometimes in variation trend with charge magnitude. 
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Chapter 1  

Introduction 

The Poisson Boltzmann equation (PBE) is a second order partial 

difference equation that describes the electrostatic interaction of a molecule and 

the ionic solution space. Many biomolecules, such as DNA, have properties that 

are dependent on these interactions. The ionic distribution and charge interaction 

of the system is important in many domains. Examples include protein folding 

and protein binding. Protein folding, an area of intense interest in scientific 

research, describes the tertiary structure of the amino acids. It determines the 

function and efficiency of the protein. 

 

 

Figure 1: DNA Methylation, an Example of Protein Binding Involved in Gene 

Expression and Epigenetics. (1) 
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Protein-protein binding governs intercellular transport. The coagulation 

cascade, hormone synthesis, cell metabolism and intercellular transport are all 

examples of protein interaction regulated by protein binding. While the PBE is 

germane to bio-molecular systems, similar applications can be found in 

electrochemistry, biophysics, biochemistry, and many other fields. 

 

 

Figure 2: An Example of a Complicated Tertiary Protein Structure, Fibrinogen, 

Involved in Hemostasis. (2) 
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Figure 3: The Folding Process of a Protein (3) 

 

While both explicit and implicit models have been developed to study the 

above interactions, the implicit models’ lower computational cost makes them a 

more attractive solution for bio-molecular applications, particularly as the 

molecule size increases. The explicit model requires both the solvent and the 

solute to be examined at the atomic level whereas the implicit model allows for 

the approximation of the atomic details of the solvent. While some of the detail is 

lost when using the implicit model, other important properties can be reasonably 

well measured, such as the solvation energy. Although one of the most common 

approaches to solving the implicit model is by means of the PBE, its accuracy 

depends heavily on the simplicity of the geometry and the size of the system. The 

complexity of the PBE requires the use of numerical methods. Currently, the 

finite element method (FEM), finite difference method (FDM) and boundary 

element method (BEM) are the prevalent methods. Each of these approaches have 

inherent positives and limitations as discussed below. 
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1.1 Finite Difference Method 

The finite difference method discretizes the domain and approximates a 

solution to the PBE using one of the finite difference equations. In the bio-

molecular field, the PBE has been mainly solved using this approach. This is due 

to the low computational cost of generating and refining the mesh required. 

APBS, currently the most common solver, uses a finite difference approach. The 

properties that are location-dependent, such as density and potential, are 

represented on a lattice. The finite difference equations shown below are then 

used to approximate those properties in a different location (4). 

There are two means of improving the accuracy of FDM. One involves 

using a coarse mesh in the solvent region and a refined mesh near the molecular 

surface. The other utilizes a coarse mesh to obtain the ionic distribution of the 

system. Boundary conditions are then interpolated and applied to a finer mesh 

(17). 

There are some limitations to using FDM. FDM requires a boundary 

conforming mesh and uses a finite grid which requires an approximation for the 

outer boundary. Moreover, FDM solves the PBE for the entire 3-D domain 

resulting in a large number of unknowns. The use of a grid in FDM leads to a 

lower accuracy when compared to the solution of BEM as BEM solves the PBE 

for every point in the surface (9). Finally, the movement of the biomolecules 

during the transport process makes the meshing particularly burdensome. 
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Figure 4: Approximation of the Solution Using Finite Difference Method 

 

Equations 1,2,3: Finite Difference Equations: Central Difference, Backward 

Difference and Forward Difference for a two Dimensional Mesh 

 

𝑓𝑖,𝑗 =
𝑓𝑖+1,𝑗−𝑓𝑖−1,𝑗

2∆𝑥
     (1) 

𝑓𝑖+1,𝑗 =
𝑓𝑖,𝑗−𝑓𝑖−1,𝑗

∆𝑥
      (2) 

𝑓𝑖−1,𝑗 =
𝑓𝑖+1,𝑗−𝑓𝑖,𝑗

∆𝑥
     (3) 

 

1.2 Finite Element Method 

The finite element method discretizes the domain into multiple “elements” 

with connecting nodes and solves the PBE for each of these elements. FEM 
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allows for easier mesh refinement and faster convergence. It also provides more 

accurate results to non-linear equations. However, this comes at a high 

computational cost. 

 

 

Figure 5: Element Discretization of a Molecule Using Finite Element Method 

 

1.3 Boundary Element Method 

Boundary element method, also known as boundary integral method, 

involves formulating partial differential equations in boundary integral form. A 

discretized integral equation that is mathematically equivalent to the PDE is 

defined using the boundary of the domain and a correlation integral. The 

correlation integral relates the solution at the boundary to the points within the 

domain. Since only linear PDE’s can be described using this method, the 

boundary element method is not as widely used as the finite difference and finite 
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element methods. When the boundary element method can be applied, it usually 

can be done with greater ease and less computational cost. While in FEM or FDM 

the entire domain must be subdivided, only the boundary of the system requires 

the discretization of the PDE. By utilizing the BEM method, the overall 

dimension of the problem can be reduced by 1. In two dimensional domains, 

straight lines may be used. In three dimensional and axisymmetric problems, 

planar triangles and truncated conical panels can be used respectively (Figure 5). 

 

 

Figure 6: Boundary Panel Approximations in Boundary Element Method. 

 

An example of the benefit of BEM in biomolecules is shown in figure 6. 

Using only straight lines, the two dimensional domain can be described by a 

series of similar panels, providing a way of approximating the boundary with a 

series of numbered 1-D data structures. Although the resulting stiffness matrix is 

quite dense, it can be reduced using a fast multipole method. While this leads to a 
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loss of accuracy, it is still more advantageous than the domain based approaches 

(5).  One drawback to using the boundary integral method however, is its 

dependence on linear equations. In order to satisfy this requirement, the Poisson 

Boltzmann Equation is linearized in chapter 2. This linearization limits the use of 

the boundary element method to problems of low zeta potential, where the 

solutions of the Poisson Boltzmann equation and the linearized Poisson 

Boltzmann equation only differ slightly. 

 

 

Figure 7: Two Dimensional Domain as Described by a Series of Straight Line 

Panels, an Example of Applied BEM. 

 

In addition to its use of a lower dimensionality, BEM offers several 

additional advantages. Surface and far field boundary conditions are inherently 

implemented in the BEM. Moreover, BEM solves the equation for a 2-D surface 
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resulting in a fewer number of unknowns when compared to FDM. Their lack of 

grid structure allows BEM to solve the PDE at every point in the surface, 

resulting in a superior solution to multimolecular dynamic simulations. 

 

1.4 Recent advances in electrostatic modeling 

Geng and Krasny (10) developed a treecode-accelerated boundary integral 

solver for the linear PBE that lowers the computational cost from 𝑁2 to Nlog(N). 

Pang and Zhou (4) discussed the use of the Van Der Walls surface and the 

molecular surface for the dielectric boundary. Chen et Al. (15) created a matched 

interface and boundary based PBE software package that delivers second order 

convergence. It allows accurate results for a mesh as coarse as 1A. Recently, 

studies have focused on protein folding for mini-proteins and more complex 

proteins (12). 

 

1.5 Objective of Study 

As discussed above, the linear Poisson Boltzmann equation is used in 

conjunction with the boundary integral method to solve for the interaction energy 

between molecules and their ionic environment. The use of the LPB equation 

limits the solution to low zeta potential problems. With increasing zeta potential, 

the non-linear Poisson Boltzmann equation increases exponentially faster than the 
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linearized Poisson Boltzmann equation, rendering the results of the LPBE less 

accurate in the curtain around the biomolecule. 

In order to account for the loss of accuracy when using the LPBE, an 

interfacial discontinuity condition, described by equations 37, 38 and 39, is 

introduced. It is then applied to two cases, a sphere in an infinite domain with a 

central charge and to the interaction of two spherical particles each with a charge. 

 

1.6 Future Work 

Multiple avenues still need to be investigated. The present work is limited 

to idealized geometries. However, many particles involve complex geometries. 

Additionally, only identical spherical particles were considered. An investigation 

of the solvation energy for dissimilar particles should be completed.  

The methods used in this study can be applied to a wide range of 

biomolecules, and thus, lead the path to a better understanding of drug delivery 

systems.  

Furthermore, the current analysis is symmetrical with the charge being 

applied at the center of each sphere. One can examine the energy when the charge 

is displaced away from the center as happens in electro-fluorescence.  
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Chapter 2  

Governing Equations 

 

2.1 The Non-Linear Poisson Boltzmann Equation 

The Poisson Boltzmann equation describes the electrostatic interaction and 

ionic distribution of a molecule in a solvent at a finite temperature. As an implicit 

approach, the PBE allows the solute to be modeled as a continuous medium while 

the solvent is analyzed at an atomic level. The distribution of an electric charge to 

the resulting electric field is governed by Gauss’ law. 

∇ ∙ 𝐸 =
𝜌

𝜀
     (4) 

where E represents the electric field, 𝜌 the charge distribution of the molecule and 

𝜀 the dielectric constant. The dielectric constant accounts for the polarization 

effect of solvent molecules. Due to the implicit approach pursued,  𝜀 is averaged 

to a constant. 

The electric field E is given by 

𝐸 = −∇∅      (5) 

Where ∅ is the electric potential. Substituting 2 into 1yields the Poisson equation: 

∇ ∙ 𝜖∇∅ + 𝜌 = 0     (6) 

The anions and cations undergo motion due to their electrostatic 

interaction and the entropic force acting on them. The former encourages the 

mobile ions to separate orderly, i.e. the anions to migrate to higher potential and 
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the cations to lower potential, while the latter encourages entropy. This leads to an 

orderly potential landscape far from the surface of the particle and a double layer 

near the molecule. This distribution of ions follows the Boltzmann distribution 

law. Hence, a term 𝜌𝑏 is added to the equation. 

𝜌𝑏 = ∑ 𝑒𝑣𝑖𝑐𝑖𝑖       (7) 

where e is the unit charge of a single proton, v the valence, and c the 

concentration of ions/unit volume. The concentration c is given by the bulk 

concentration 𝑐𝑜, the Boltzmann constant K and the temperature T. By its 

definition, 𝜌𝑏 is absent from the biomolecule and in a layer in the van der walls 

surface. 

𝑐𝑖 = 𝑐𝑜𝑒
−𝑣𝑒∅

𝐾𝑇       (8) 

For a 1:1 electrolyte solution, 𝑣1 = −𝑣2 = 1 and 𝜌𝑏 becomes 

𝜌𝑏 = 𝑒𝑣1𝑐1 + 𝑒𝑣2𝑐2    (9) 

= 𝑐𝑜𝑒 (𝑒
−𝑒∅

𝐾𝑇 − 𝑒
𝑒∅

𝐾𝑇)       (10) 

 

2.2 Normalizing the Poisson Boltzmann Equation. 

Let 𝑎 be a characteristic length used to normalize the radius of the sphere, such 

that: 

 

𝑟 = 𝑎𝑟̅     (14) 

 

And k to be calculated such that: 
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𝑘2 =
2𝑐𝑜𝑒2

𝜀𝐾𝑇
      (15) 

 

Furthermore, let there be a 𝑘̅ such that: 

𝑘̅ = 𝑎𝑘      (16) 

Note that 
1

𝑘
 measures the electrostatic effect of a charge and the length at 

which it persists, also known as the Debye length. Equation 11 is the non-linear 

Poisson Boltzmann equation (NLPB). It neglects the effects of non-Columbic 

interactions and the correlation between an ion and its own ionic atmosphere. 

These effects are best represented by quantum mechanics. 

Let the potential and the density be normalized respectively by 

∅̅ =
𝑒∅

𝐾𝑇
      (17) 

And 

𝜌̅ =
𝑒𝜌

𝜀𝐾𝑇
      (18) 

The Boltzmann density becomes 

𝜌𝑏 = 𝑐𝑜𝑒(𝑒−∅̅ − 𝑒∅̅)    (19) 

      = −2𝑐𝑜𝑒 sinh ∅̅    (20) 

Equation 10 becomes 

∇2∅̅ +
𝜌

𝜀
−

2𝑐𝑜𝑒

𝜀
sinh ∅̅ = 0     (21) 

    ∇2∅̅ + 𝜌̅ − 𝑘2 sinh ∅̅ = 0       (22) 

The displacement and electric field are also normalized using: 



14 

𝐸 =
𝐾𝐵𝑇

𝑒𝑎
𝐸̅      (23) 

And 

𝐷 =
𝜖𝐾𝐵𝑇

𝑒𝑎
𝐷̅      (24) 

For a 1:1 electrolyte solvent, the solution to the PBE for a one dimensional 

problem with boundary conditions as listed in equation 26 is given by: 

∅̅ = 4 tanh−1 [tanh (
∅̅𝑜

4
) 𝑒−𝑘̅𝑧̅]    (25) 

And the displacement D is given by: 

𝐷̅ =
4𝑘̅ tanh(

∅̅𝑜
4

)𝑒−𝑘̅𝑧̅

1−tanh2(
∅̅𝑜
4

)𝑒−2𝑘̅𝑧̅
     (26) 

Where ∅̅𝑜 is the normalized electric potential on the surface and 𝑧̅ is the 

normalized distance S.T: 

𝑧 = 𝑎𝑧̅      (27) 

2.2 The Linear Poisson Boltzmann Equation 

In the case of weak electrostatic potential, sinh ∅̅ ≈ ∅̅ and the NLPB is 

linearized to 

    ∇2∅̅𝑙 + 𝜌̅ − 𝑘2∅̅𝑙 = 0     (25) 

where the subscript l represents the linearized approximation. 

The linearized Poisson Boltzmann equation (LPBE) above can easily be 

solved analytically for a sphere with a central point charge. Let the potential at the 
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surface be a value ∅̅𝑙0, and the potential in the far field be 0, the boundary 

conditions are: 

{
𝐴𝑡 𝑧 = 0, ∅̅ = ∅𝑙𝑜

̅̅ ̅̅

𝐴𝑡 𝑧 = ∞, ∅̅ = 0 
     (26) 

The Solution to the LPBE is then given by 

 ∅̅𝑙 = ∅̅𝑙0𝑒−𝑘𝑧      (27) 

The electric displacement D is related to the electric field E by 

𝐷 = 𝜖𝐸       (28) 

Thus, 

𝐷̅𝑙 = 𝜖𝑘∅̅𝑙0𝑒−𝑘𝑧      (29) 

 

2.4 The potential Energy Density 

The potential energy W of the system described by the Poisson Boltzmann 

equation is obtained from adding the electrostatic energy due to the linear 

polarization, the effect of charge induction in an electrolyte and the work of free 

charges. It can be written as follows: 

𝑤 = − ∫ 𝐷 ∙ 𝑑𝐸 + ∫ 𝜌𝑏𝑑∅ + 𝜌𝑓∅
∅

0

𝐸

0
     (30) 

Substituting equations 20 and 28, normalizing and integrating yields a solution for 

the non-linear Poisson Boltzmann of: 

𝑤̅ = −
1

2
𝐷̅ ∙ 𝐸̅ − 𝑘̅2[𝑐𝑜𝑠ℎ(∅̅) − 1] + 𝜌̅𝑓∅̅    (31) 
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Likewise, integrating equation 23 for the linear Poisson Boltzmann Equation 

yields a linear energy density W of: 

𝑤̅𝑙 = −
1

2
𝐷̅𝑙 ∙ 𝐸̅𝑙 −

1

2
𝑘̅2∅̅𝑙

2 + 𝜌̅𝑓∅̅𝑙    (32) 

Where  

𝑤 =
𝜀𝑘𝐵

2𝑇2

𝑒2𝑎2
𝑤̅      (33) 

The electrostatic potential energy density per unit surface area, 𝛾̅, is obtained from 

integrating 𝑤̅ along 𝑧̅ and setting 𝜌̅𝑓 equal to zero as shown in the following 

equations 

γ̅ = ∫ 𝑤̅𝑑𝑧̅
∞

0
      (34) 

   =
−8𝑘̅ tanh2(

∅̅𝑜
4

)

1−tanh2(
∅̅𝑜
4

)
     (35) 

Similarly, the linear electrostatic potential energy density per unit area, 𝛾̅𝑙 is 

𝛾̅𝑙 = −
1

2
𝑘̅∅̅𝑙𝑜

2       (36) 

The boundary condition used at 𝑧 = ∞, states that the potential is negligible far 

away from the sphere for both the LPBE and NLPBE. Setting the potential equal 

at large 𝑧̅ yields a relationship between ∅̅𝑙𝑜 and ∅̅𝑜, 𝐷̅𝑙𝑜 and 𝐷̅𝑜 and γ̅𝑙𝑜 and γ̅𝑜 

S.T: 

∅̅𝑙𝑜 = 4 tanh
∅̅𝑜

4
     (37) 

𝐷̅𝑙𝑜 = [1 − tanh2 (
∅̅𝑜

4
)] 𝐷̅𝑜     (38)  
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𝛾̅𝑙𝑜 = 𝛾̅𝑜 +
8𝑘̅ tanh4(

∅̅𝑜
4

)

1−tanh2(
∅̅𝑜
4

)
    (39) 
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Chapter 3  

Results 

 

3.1 Validation of the code used to obtain the results: Kirkwood Case 

The solvation energy of a single sphere with a central charge has been 

solved analytically by Kirkwood (6). In this first part of the results, we validate 

the code and methods used by comparing the analytical solvation energy to the 

one obtained numerically. A table of the properties used is shown below. 

 

Table 1: Properties of Case 1 

Property Description Value 

Q Charge 50e 

e Electric charge 1.602e-19 (V/m)^2 

ɛ1 Dieletric constant of the particle 80 F/m 

ɛ2 Dielectric constant of the electrolyte 2 F/m 

𝐾𝐵 Boltzmann Constant 1.381e-23 (J/atom*K) 

T Temperature 300K 

𝑘̅ 1/Debye length 6.285 (1/𝐴̇) 

 

The table below shows the results obtained using a 24*24 mesh size. This 

particular mesh size is used due to its low error and its lower computational cost. 

The error is calculated using the formula below: 

 

𝑒𝑠𝑜𝑙 =
𝑒𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙−𝑒𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙

𝑒𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙
     (33) 
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Table 2: Validation of Method Used 

Analytical Solution 48130 J/mol 

Numerical Solution 48901 J/mol 

Error 1.6% 

 

Let’s consider the effect of the mesh size on the accuracy of the results 

obtained. Four different mesh sizes were used and the results of the solvation 

energy were plotted as shown below. 

 

 

Figure 8: Solvation Energy vs. the mesh size 

 

As is expected, the numerical solution is improved with the use of a higher 

mesh size. In order to choose the best one in terms of computational cost, the 
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solvation energy error for each mesh was calculated and plotted. As is evident 

from the plot below, the 24*24 mesh size was within a 2% error. This led to its 

use for the remainder of the results. 

 

 

Figure 9: Error in Solvation Energy as a function of mesh size 

 

A surface plot and a contour plot of the potential were created and can be 

seen below. The maximum potential is found at the center of the sphere, where 

the charge is located and has a value of 5011.6 V. 
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Figure 10: Surface (left) and Contour (right) plots of the Potential Field for the Kirkwood Case. 
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3.2 One spherical particle with a central charge 

3.2.1 The effect of 𝑘̅ and ɛ on the solvation energy 

As mentioned earlier, 
1

𝑘̅
 is an important parameter known as the Debye 

length. It measures the effect of the ratio of the competing electrostatic interaction 

force and the thermal force. In the following section, the influence of 𝑘̅ and the 

dielectric constant on the solvation energy will be discussed. Since the solvation 

energy is the sum of the energy of fixed charges, represented by the dielectric 

constant, and the energy of the mobile ions, represented by 𝑘̅, the first results will 

have 𝑘̅ kept constant as the charge magnitude increases. In the second section, the 

dielectric constant will be kept constant and 𝑘̅  and the charge magnitude will 

vary. Both the linear and the non-linear PBE will be plotted. 

Let us consider sixteen cases with the following parameters. Table 3 

shows the 𝑘̅ and ɛ parameters used. For each dielectric ratio, four Debye lengths 

are applied and the results plotted. 

 

Table 3:  𝑘̅ and ɛ Parameters 

Case # 𝑘̅ (1/𝐴̇) ɛ Object 

1 0.1,1,10,1000 0.025 Biomolecule 

2 0.1,1,10,1000 0.32 Potassium nitrate 

3 0.1,1,10,1000 1 Electrolyte 

4 0.1,1,10,1000 3 A material three times more polar than 

water 
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3.2.1.1 Constant Debye length and varying dielectric constant and charge magnitude 

 

Figure 11: The Solvation Energy for the LPBE and NLPBE for Case 1 
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Figure 12: The Solvation Energy for the LPBE and NLPBE for Case 2 
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Figure 13: The Solvation Energy for the LPBE and NLPBE for Case 3 
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Figure 14: The Solvation Energy for the LPBE and NLPBE for Case 4 
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As can be seen from the above plots, in general, as 𝑘̅ stays constant and ɛ 

increases, there is a divergence between the solution for the linear Poisson 

Boltzmann Equation denoted by the blue lines and the nonlinear PBE denoted by 

the green lines. Specifically, the solvation energy of the NLPBE increases. Please 

note that the convention used for the solvation energy allows for higher solubility 

as the solvation energy increases. 

When the Debye length is very small and thus 𝑘̅ is very large, the increase 

of the dielectric constant from 0.025 to 3 does not impact the results. In this case, 

the effect of the dielectric constant on the solvation energy is very small relative 

to the effect of the Debye length. This is in contrast to when the Debye length is 

very large and an increase in the dielectric constant significantly alters the results 

of the nonlinear PBE. 

It can be noticed that there is an irregularity when the Debye length is 

large or 𝑘̅ is small and the dielectric constant is large. It will be discussed in the 

section below. 

 

3.2.1.2 Constant Dielectric Constant and varying Debye length and charge 

magnitude 

In this section, the plots of the solvation energy are grouped by constant 

dielectric constant and varying Debye lengths. The irregularity in the case of high 

dielectric constant and low 𝑘̅ is discussed.
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Figure 15: Solvation Energy Calculated by the LPBE and NLPBE for ɛ=0.025 
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Figure 16: Solvation Energy Calculated by the LPBE and NLPBE for ɛ=0.31 



 

 

 

3
0
 

 

 

 

Figure 17: Solvation Energy Calculated by the LPBE and NLPBE for ɛ=1 
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Figure 18: Solvation Energy Calculated by the LPBE and NLPBE for ɛ=3
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As can be seen from the plots above, when ɛ stays constant, an increase in 

𝑘̅ decreases the gap between the solution for the solvation energy for the LPBE 

and the approximation for the NLPBE. As 𝑘̅ increases, the portion of the solvation 

energy that is dependent on the Debye length becomes smaller and the portion of 

the solvation energy that is dependent on the dielectric constant becomes more 

pronounced. 

Let’s take a closer look at the solution for high Debye length and a high 

dielectric constant. A magnified look at the solvation energy for charges below 

100 C, a high dielectric constant of 3, and a 𝑘̅ of one can be seen below. A 

logarithmic scale of the results is also plotted. Please note that for easier viewing, 

the convention sign for the solvation energy was reversed in the enlarged and the 

logarithmic plots. 

 

Figure 19: A Magnified View of the Solvation Energy for Low Debye Length and 

High Dielectric Ratio 
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Figure 20: Logarithmic Scale of the Solvation Energy for Low Debye Length and 

High Dielectric Ratio 

 

As can be seen from the two plots above, the NLPB solution initially 

increases as the charge increases, similarly to the LPBE, then decreases with a 

further increase in the charge magnitude. When the dielectric ratio is higher than 

one, the particle is more polar than the electrolyte solution. This condition 

coupled with a low charge means that the particle does not dissolve 

instantaneously in the solution. As the particle becomes highly charged, it is more 

adept at attracting or repelling ions. This leads to sharp decrease in the solvation 

energy of the nonlinear PBE and faster dissolution of the particle. 
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3.2.1.3 A look at the potential field. 

A few cases were chosen to demonstrate the effect of the Debye length 

and the dielectric ratio on the potential field.  Each case contains a varying 

parameter while the other two remain constant. For example, for case 1, the 

nonlinear PBE was solved for a dielectric ratio of 0.3, a 𝑘̅ of 1000 
1

𝐴̇
 and a charge 

of 1500 C. Then for the same 𝑘̅ and Q, the dielectric ratio was changed to 1 and 

the results of the surface potential and the potential contour were compared. Note 

that only the nonlinear PBE was considered. The table below shows the 

parameters used for each case. 

 

Table 4: Parameters Used for the Solution to the Potential Field 

Case number ɛ 𝑘̅ (1/𝐴̇) Q (C) 

1 0.3 1000 1500 

1 1000 1500 

2 0.025 10 200 

0.025 10 2000 

3 0.31 0.1 500 

0.31 10 500 

4 3 1 40 

3 1 200 
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Case 1: 

 

 
Figure 21: Potential Field for Case 1. On the Left, ɛ=0.31, and The Image on the Right Contains ɛ=1 
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Figure 22: Contour Plot of the Potential Field for Case 1. The Left Image has a Dielectric Ratio of 0.31, While for the 

Right Image ɛ=1 
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In the case of high dielectric mismatch and the dielectric ratio is less than 

one, the potential reaches a maximum of approximately 3000 V at the center of 

the sphere where the charge is located. It decreases as the distance from the center 

increases. It reaches a minimum of 310 V a distance 0.6 from the charge. For the 

same Debye length, removing the dielectric mismatch lowers the maximum 

potential by two thirds. However, the potential is induced a farther distance. One 

can also see a crater like distribution at the boundary of the particle. 
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Case 2 

 

 

Figure 23: Surface Plot of the Potential Field for Case 2. A Relatively Small Charge (200 C) Was Applied to the Left 

Image, While the Right Image Experienced a High Charge of 2000 C. 
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Figure 24: Contour Plot of the Potential Field. The Left Image Corresponds To a Charge of 200 C While the Right 

Image Experienced a Charge Of 2000 C 
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Case 2 is rather straight forward. It can be seen that the potential is 

proportional to the charge applied. An increase in the charge by a factor of 10 

leads to an increase in the potential by a factor of 10. In both plots above, it can be 

seen that the potential is maximum at the center of the particle where the charge is 

applied and decreases as the distance from the center increases.  
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Case 3 

 

 
Figure 25: Surface Plot of the Potential Field for Case 3. The Right Image Has a Debye Length of 10 𝐴̇, Whereas the 

Left One Has a Debye Length of 0.1𝐴̇ 
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Figure 26: Contour Plot of the Potential Field for Case 3. The Left Image Has a Debye Length of 10 𝐴̇, While the Right 

Image Has a Debye Length Of 0.1𝐴̇ 
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It is evident from both the surface and the contour plot of the potential 

field that an increase of 𝑘̅ in the case of high dielectric mismatch has little effect 

on the value of the potential. In both 𝑘̅=0.1 and 𝑘̅=10, the maximum potential is 

located at the center of the sphere with a magnitude of approximately 14000 V. It 

decays outwards from the center to a min of 1298 V in the case of 𝑘̅=0.1 and 1294 

V in the case of 𝑘̅=10, a decrease of approximately 0.3%. 
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Case 4 

 

 

Figure 27: Surface Plot of the Potential Field for Case 4. The Left Image Represents a Charge of 40 C Whereas the 

Right Image Contains a Charge of 200 C. 
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Figure 28: Contour Plot of the Potential Field for a High Debye Length and a High Dielectric Ratio. The Image on the 

Left was Assigned a Charge of 40 C While the Right Image Experienced a Charge of 200 C 

When the dielectric ratio is three and the charge is low, there is a crater effect near the boundary of the particle. 

The contour is no longer circular at the boundary. The potential increases as it approaches the center of the sphere 

where it reaches a maximum of approximately 11V. When the charge is increased to 200C, the potential increases to 

about 50V. The contour image shows two circular potentials near the boundary although that could be simply a 

fragment.
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3.3 Two Spherical Particles 

 

Let there be two identical, spherical, charged particles a distance 𝑎 from 

each other, as shown in figure 29. Both particles have similar dielectric constants 

and are present in an electrolyte solution. The parameters used are shown in the 

table below. 

 

Table 5: Parameters Used for the Two Spherical Particles 

ɛ=0.025 ɛ=1 

𝑘̅ (1/𝐴̇) 𝑎 (𝐴̇) 𝑘̅ (1/𝐴̇) 𝑎 (𝐴)̇ 

0.1 

0.1 

0.1 

0.1 

0.5 0.5 

1 1 

2 2 

1 

0.1 

1 

0.1 

0.5 0.5 

1 1 

2 2 

10 

0.1 

10 

0.1 

0.5 0.5 

1 1 

2 2 

1000 

0.1 

1000 

0.1 

0.5 0.5 

1 1 

2 2 
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Figure 29: Schematics of the Two Particle Model 

 

Using the above parameters, a comparison of the solvation energy for the 

linear and nonlinear PBE is made. The interaction energy between the particles is 

then extrapolated. For each dielectric ratio, the Debye length and the distance 

between the two particles vary. 
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3.3.1 Solvation Energy 

 

Figure 30: Solvation Energy for Two Particles with Parameters 𝑘̅=0.1 and ɛ=0.025. 𝑎 Varies Clockwise: 0.1, 0.5, 1 to 2 
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Figure 31: Solvation Energy for Two Particles with Parameters 𝑘̅=10 and ɛ=0.025. 𝑎 Varies Clockwise: 0.1, 0.5, 1 to 2
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As can be seen from the eight figures above, the location of the spheres 

makes little difference in the solvation energy when the dielectric ratio is very 

small and the Debye length is large. This is because the dielectric ratio is the 

principal driver of the solvation energy in this case. While in each case, the 

solvation energy looks the same, it is important to note that there is a difference 

albeit very small. The difference is much more noticeable when there is no 

dielectric mismatch as will be discussed later.  

 Let’s look at what happens when 𝑘̅ increases but the distance between 

particles and the dielectric ratio stay constant. As can be seen from the following 

slides, an increase in 𝑘̅ decreases the gap between the solution to the linear and 

nonlinear PBE. This is due to the relative contribution of 𝑘̅. As discussed in the 

one particle case, an increase in 𝑘̅ increases its contribution to the solvation 

energy.  
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Figure 32: Solvation Energy for Two Particles with Parameters 𝑎=1 and ɛ=0.025. 𝑘̅ Varies Clockwise from 0.1 to 1 to 

10 to 1000
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The previous results were characterized by a dielectric mismatch between 

the particle and the solution space. In the following results, the dielectric 

mismatch will be removed and ɛ will be equal to one.  

In the case where 𝑘̅=0.1 
1

𝐴̇
 and 𝑎 varies, notice that the linear PBE 

computes a negative solvation energy. The convention used implies that the two 

particles increase the relative energy of the system. For 𝑎=0.1𝐴̇, one can see that 

the solvation energy is -1e5 J at a charge of 2000C.   For 𝑎=0.5𝐴̇, the solvation 

energy increase to approximately -7e4J and for 𝑎=1𝐴̇, the solvation energy 

approaches -5e4J and finally when 𝑎=2𝐴̇, the energy is computed to be -2.5 e4J.  

Thus, the solvation energy increases as the distance between particles increases 

and the particles would experience a slower dissolving process. Note that the 

nonlinear PBE is given by 3.2e5J. Also, note that for small charges, the linear and 

nonlinear PBE approximate similar solutions and the results diverge as the charge 

increases. 

The same trend can be seen for 𝑘̅=1
1

𝐴̇
. However, both the linear and 

nonlinear PBE compute positive solvation energy. For 𝑎=0.1𝐴̇, the solvation 

energy is calculated to be 1.2e5J. For 𝑎=0.5𝐴̇, the solvation energy is 

approximately 1.4e5J. It increases to 1.5e5J for 𝑎=1𝐴̇ and reaches nearly 1.55e5J 

for 𝑎=2𝐴̇. As discussed above, when the Debye length is large and the dielectric 
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mismatch is small, a relatively large portion of the solvation energy comes from 

𝑘̅.  

The gap between the results of the linear and nonlinear PBE continues to 

decrease as 𝑘̅ increases. for 𝑘̅=10
1

𝐴̇
 and a=0.1𝐴̇, the solvation energy is 

approximately 2.9e5J. This value stays nearly constant as 𝑎 increases unlike the 

previous two cases when 𝑘̅ was very small. Ultimately, when 𝑘̅ is very large, i.e. 

1000
1

𝐴̇
, there is no foreseeable difference between the LPBE and NLPBE results. 

The solvation energy is measured at 3.2e5J even as 𝑎 increases.  

In the case of k=1000
1

𝐴̇
, the Debye length is 0.001𝐴̇. This is smaller than 

the smallest 𝑎 used, which is 0.1𝐴̇.  This explains why 𝑎 no longer makes a 

difference in the solution of the solvation energy, as it is already too large 

compared to the Debye length. 
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Figure 33: Solvation Energy for Two Particles with Parameters: 𝑘̅=0.1, ɛ=1 and 𝑎 Varies Clockwise: 0.1, 0.5, 1, 2 
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Figure 34: Solvation Energy for Two Particles with Parameters: 𝑘̅=1, ɛ=1 and 𝑎 Varies Clockwise: 0.1, 0.5, 1, 2 



 

 

 

5
6
 

      

 

Figure 35: Solvation Energy for Two Particles with Parameters 𝑘̅=10 and ɛ=1. 𝑎 Varies Clockwise: 0.1, 0.5, 1 ,2 
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Figure 36: Solvation Energy for Two Particles with Parameters 𝑘̅=1000 and ɛ=1. 𝑎 Varies Clockwise: 0.005, 0.1, 0.5, 1
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The effect of ɛ on the solvation energy can be seen in figure 37. When a 

high dielectric mismatch is present with a dielectric ratio of 0.025, the linear and 

nonlinear PBE describe a similar behavior of the solvation energy with a 

maximum value of 12e6 J. When the dielectric mismatch is removed and the 

dielectric constant of the particle is equal to that of the solvent, the LPBE and 

NLPBE achieve slightly different maximum magnitudes for the solvation energy. 

As expected the NLPBE predicts a higher value of 3.1e5, while the LPBE predicts 

a value of approximately 2.9e5 J. Thus, the dielectric ratio is inversely 

proportional the solvation energy.   

 

 

 

  

Figure 37: Effect of e on the Solvation Energy For 𝑘̅=10 and 𝑎=0.1. The left plot 

has ɛ=0.025 while the image on the right experiences no dielectric mismatch 
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3.3.2 Interaction Energy 

The interaction energy between the two particles is defined as the 

solvation energy from the two particles minus twice the solvation energy from 

one particle. The interaction energy from all the cases above was calculated and 

plotted below. Table 5 shows the parameters used.  

Let’s first examine the set of results for a high dielectric mismatch and 

ɛ=0.025. The dielectric ratio will stay constant throughout. The first four plots 

will show the results of the interaction energy between two particles for a Debye 

length of one as the distance and the charge between them increase. One can see 

that there is no interaction energy using the nonlinear model. The linear model 

shows an exponential decrease in interaction energy until it reaches a maximum 

of -4.5e4J at Q=2000C. As 𝑘̅ and ɛ stay constant by 𝑎 increases to 2𝐴̇, the linear 

and the nonlinear model begin to agree. The interaction energy increases 

exponentially from zero to a maximum of 12.2e5J.  

When 𝑘̅ increases to 10
1

𝐴̇
 and even 1000

1

𝐴̇
, the models for ɛ=0.025 and 𝑎 

varying from 0.5𝐴̇ to 2𝐴̇ do not change. Only when 𝑎=0.1𝐴̇ can one see a 

disparity between the linear and nonlinear models. When the Debye length equals 

the distance between the two particles, the nonlinear model calculates a maximum 

interaction energy of 10J, while the linear model decreases exponentially to about 

-510J at Q=2000C.  
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Consider the case when 𝑘̅=1000
1

𝐴̇
 and 𝑎=0.1𝐴̇, one can see a continuous 

increase of the interaction energy. The nonlinear PBE model predicts a maximum 

interaction energy of 1300J, while the linear PBE model shows no interaction 

energy between the particles. This is the complete opposite of the case where the 

Debye length was equal to 1𝐴̇. In the latter, the NLPBE model initially showed no 

interaction energy between the particles, while the linear model predicted a large 

negative interaction energy.  
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Figure 38: Interaction Energy of Two Particles with Parameters 𝑘̅=1 and ɛ=0.025. 𝑎 varies respectively: 0.1, 0.5 ,1, 2 
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Figure 39: Interaction Energy of Two Particles with Parameters 𝑘̅=10 and ɛ=0.025. 𝑎 varies respectively: 0.1, 0.5, 1, 2 
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Figure 40: Interaction Energy of Two Particles for 𝑘̅=1000 and ɛ=0.025. 𝑎 varies from 0.005, 0.1, 0.5 to 1 respectively
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Consider a setting with no dielectric mismatch. The Debye length will 

have considerably more influence on the interaction energy as can be seen from 

the following plots. 

For a Debye length of one, as 𝑘̅ stays constant and 𝑎 increases, the 

nonlinear PBE model predicts that the interaction energy between the two 

particles will remain zero even as Q increases to 2000C. In contrast, the linear 

PBE model predicts a positive correlation between 𝑎 and the interaction energy. 

When 𝑎 is equal to 0.1𝐴̇, the interaction energy is calculated to be -3.5e4J. As 𝑎 

increases to 0.5𝐴̇, the solvation energy becomes -19000J. When the distance 

between the two spheres is equal to the Debye length, the solvation energy 

continues its exponential increase to almost half the value of 𝑎=0.5𝐴̇. Finally, 

when 𝑎=2𝐴̇, the interaction energy is approximately 2.7e3J, a factor of more than 

ten of the solution for 𝑎=0.1𝐴̇.  

 Let’s consider the environment where 𝑘̅=10
1

𝐴̇
. The nonlinear PBE 

demonstrates that no interaction energy exists between the two particles for 

𝑎=0.1𝐴̇ to 𝑎=2𝐴̇. This may be due to the screening effect of the NLPBE. The 

solution to the LPBE decreases exponentially from zero to a minimum value at 

Q=2000C. For 𝑎=0.1𝐴̇, the value of the solvation energy is -480J and by the 

time 𝑎 becomes 2𝐴̇, the maximum value of the solvation energy agrees with the 

NLPBE model. Finally for 𝑘̅=1000
1

𝐴̇
, for 𝑎 =0.005𝐴̇, the LPBE predicts the 
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presence of a high interaction energy between the particles, whereas the NLPBE 

predicts that no interaction energy exists. As 𝑎 increases to 0.1𝐴̇ and reaches 1𝐴̇, 

both the LPBE and the NLPBE predict that there is no interaction energy between 

the two particles.
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Figure 41: The Interaction Energy of Two Particles with Parameters 𝑘̅=1 and ɛ=1. 𝑎 varies clockwise from 0.1 to 2 
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Figure 42: The Interaction Energy of Two Particles with Parameters 𝑘̅=10 and ɛ=1. 𝑎 varies clockwise from 0.1 to 2 
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Figure 43: The Interaction Energy of Two Particles with Parameters 𝑘̅=1000 and ɛ=1. 𝑎 varies clockwise from 0.1 to 1
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For 𝑎=0.1𝐴̇ and ɛ=1, three 𝑘̅ values, ranging from 1
1

𝐴̇
 to 1000

1

𝐴̇
 were 

chosen to demonstrate the effect of the Debye length on the interaction energy. In 

all cases, the non-linear PBE predicts no interaction energy between the two 

particles. The LPBE, however, determines that there is an interaction energy 

present between the two particles with Debye lengths of 1𝐴̇ and 0.1𝐴̇, of -20000J 

and -7J respectively. When 𝑘̅=1000
1

𝐴̇
, the LPBE finds no interaction energy.  

 

 
Figure 44: The Effect of 𝑘̅ on the Interaction Energy for 𝑎=0.1 and ɛ=1. 𝑘̅ varies 

from 0.1 to 1 to 1000 
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Next, let’s examine the effect of ɛ on the interaction energy for a Debye 

length of 0.1𝐴̇. For 𝑎 =0.1𝐴̇, the NLPBE predicts no interaction energy between 

the particles, while the LPBE calculates an interaction energy of -510J for 

ɛ=0.025 and -480J for ɛ=1. When 𝑎 is increased to 0.5𝐴̇, the high dielectric 

mismatch creates a large interaction energy between the two particles of 

approximately 12e6J. Removing the dielectric mismatch leads to a very small 

interaction energy of -7J as calculated by the LPBE and none as predicted by the 

NLPBE. 
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Figure 45: The Interaction Energy of Two Particles With Parameters 𝑘̅=10 and 𝑎=0.1. The Left Image Has a Dielectric 

Ratio of 0.025, While the Right Image Does Not Experience a Dielectric Mismatch 
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Figure 46: The Interaction Energy of Two Particles With Parameters 𝑘̅ =10 and 𝑎=0.5. The Left Image Has a Dielectric 

Ratio of 0.025, While the Right Image Does Not Experience a Dielectric Mismatch



 

73 

 

3.3.3 Potential field surface and contour plots 

In this section, six cases will be used to ascertain the effects of ɛ, 𝑎, 𝑘̅ and 

Q on the potential field. The surface and contours of the potential will be plotted 

and described for each case. The table below contains the parameters used.  

 

Table 6: Parameters Used to Study the Surface Potential 

Case Number  𝑘̅   (
1

𝐴̇
) 𝑎 (𝐴̇) ɛ Q 

1 1 2 Varies 1 

2 Varies 0.1 1 300 

3 1 Varies 1 2000 

4 1 2 1 1500 

5 10 0.1 0.025 Varies 

6 10 0.1 0.025 200 

 

In the first model, a comparison is made between two identical particles 

each with parameters 𝑘̅=1
1

𝐴̇
, 𝑎=2𝐴̇ and Q=1C and a varying parameter ɛ. The left 

image reflects the use of a dielectric ratio of one while the right image contains 

ɛ=0.025. One can see that introducing a dielectric mismatch increases the 

potential significantly. For ɛ=0.025, the maximum potential is located at the 

center of the spheres with a magnitude of approximately 28V, while ɛ=1 only 

allows a maximum potential of 0.75V. Furthermore, a trough is created a distance 

of approximately 0.4𝐴̇ from the center of the sphere. Also note that some potential 

is present at the boundary of the sphere when the dielectric ratio is one but is 

nonexistent for ɛ=0.025.   
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Case 1: 

 

Figure 47: The Potential Field of Two Particles with Parameters: 𝑘̅=1, 𝑎=2, Q=1. In the right image, ɛ=1 and ɛ=0.025 

for the left image. 
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Figure 48: The Potential Contour Plot of Two Particles with Parameters: 𝑘̅=1, 𝑎=2, Q=1. In the right image, ɛ=0.025 

and ɛ=1 for the left image. 
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Case 2: 

 

Figure 49: The Potential Field of Two Particles with Parameters: ɛ=1, 𝑎=0.1, Q=300. In the left image, 𝑘̅=0.1 and 

𝑘̅=1000 for the right image. 
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Figure 50: The Potential Contour Plot of Two Particles with Parameters: ɛ=1, 𝑎=0.1, Q=300. In the right image, 𝑘̅=0.1 

and 𝑘̅=1000 for the left image. 



 

78 
 

In this model, the effect of the Debye length on the potential field is 

addressed. The two spheres are a distance 0.1𝐴̇ apart and experience no dielectric 

mismatch. A relatively small charge of 300C is applied at the center of each 

sphere. When 𝑘̅ is 0.1
1

𝐴̇
, the maximum potential, located at the center of the 

spheres, is evaluated at 461V. Increasing 𝑘̅ to 1000
1

𝐴̇
 yields a maximum potential 

of 453V. Thus, a large increase of 𝑘̅ when the charge applied is small, leads to a 

rather insignificant decrease in the potential. However, a small potential is 

generated between the two spheres when 𝑘̅ is large that is not present when 𝑘̅ is 

small.   
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Case 3: 

 

Figure 51: The Potential Field of Two Particles with Parameters: 𝑘̅=1, ɛ=1, Q=2000. In the left image, 𝑎=0.1 and 𝑎=2 

for the right image. 
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Figure 52: The Potential Contour Plot of Two Particles with Parameters: 𝑘̅=1, ɛ=1, Q=2000. In the right image, 𝑎=0.1 

and 𝑎=2 for the left image. 
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This example demonstrates the effect of the distance between the two 

particles on the potential field. Let the two particles be a distance 0.1𝐴̇ from each 

other, it can be shown that the maximum potential, located at the center of the 

spheres reaches a magnitude of 3000V. It decreases as the distance from the 

center of the spheres increases. When the two particles are separated by 2𝐴̇, the 

maximum potential decreases to 1400V. 
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Case 4: 

 

Figure 53: The Potential Field of Two Particles with Parameters: 𝑘̅=1, 𝑎=2, ɛ=1 and Q=1500. The Left Image Displays 

the Potential Field Calculated by the LPBE, While the Right Image Shows the Potential Field of the NLPBE. 
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Figure 54: The Potential Contour Plot of Two Particles with Parameters: 𝑘̅=1, 𝑎=2, ɛ=1 and Q=1500. The Left Image 

Displays the Potential Field Calculated by the LPBE, While the Right Image Shows the Potential Field of the NLPBE. 



 

84 
 

Case four allows for a comparison between the LPBE and NLPBE. Two 

spheres with parameters 𝑘̅=1, 𝑎=2 and ɛ=1 experience a charge of 1500C each. 

The potential surface and contours for the LPBE and NLPBE are plotted. It is 

evident from the plots above that the LPBE predicts a higher maximum potential 

by approximately 8%. The LPBE also shows some potential along the boundary 

of the spheres and a crater like dip a distance 0.3 𝐴̇ from the center of the spheres 

unlike the NLPBE which shows a smooth contour.  

Figures 51 and 52 display the difference in the potential when the charge 

is increased and all other parameters remain unchanged. The two identical spheres 

have parameters 𝑘̅=10
1

𝐴̇
, 𝑎 =0.1𝐴̇ and ɛ=0.025. When a charge of 200C is applied, 

the maximum potential reached 12000V. It increases to 18000V when the charge 

is increased to 300C. 

Case six is used to compare the potential obtained from one and two 

spheres. All spheres are identical with parameters 𝑘̅=10
1

𝐴̇
, 𝑎=0.1𝐴̇, ɛ=0.025 and a 

charge of 200C is applied at the center of each sphere. The maximum potential 

attained by one sphere is 5727V. When a sphere is added a distance 0.1 𝐴̇ away, 

the maximum potential increases to 12093V. As such, the addition of particles 

and their interaction energies significantly alter the potential field  
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Case 5: 

 

Figure 55: The Potential Field of Two Particles with Parameters: 𝑘̅=10, 𝑎=0.1, ɛ=0.025. Q=200 for the Image on the 

Right and 300 for the Image on the Left. 
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Figure 56: The Potential Contour Plot of Two Particles with Parameters: 𝑘̅=10, 𝑎=0.1, ɛ=0.025. Q=200 for the Image 

on the Right and 300 for the Image on the Left. 
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Case 6:  

 

Figure 57: A Comparison of the Potential Field for One and Two Particles with Parameters 𝑘̅=10, 𝑎=0.1, ɛ=0.025 and 

Q=200 
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Figure 58: A Comparison of the Potential Contour Plot for One and Two Particles with Parameters 𝑘̅=10, 𝑎=0.1, 

ɛ=0.025 and Q=200 
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Chapter 4  

Conclusion 

 A linear and a nonlinear approximation to the Poisson Boltzmann equation 

were applied to one and two particles in a solution using a boundary integral 

method. The analytical solution from Kirkwood was compared to the results of 

the one spherical particle, and was used to validate the code. A mesh analysis was 

done and a 24×24 mesh was found to be the most appropriate, meaning that it 

contained less than a 2% error and was relatively inexpensive computationally. 

The effects of 𝑘̅ and ɛ on the solvation energy were examined. A high dielectric 

mismatch, where the dielectric ratio is less than one as in the case of 

biomolecules, was found to comprise a large portion of the solvation energy. As 

the dielectric ratio increased, the solvation energy decreased. In the case of no 

dielectric mismatch, the solvation energy increased as 𝑘̅  increased. When the 

dielectric ratio is greater than one and 𝑘̅ is low, the linear and nonlinear Poisson 

Boltzmann equations predict opposite results for the solvation energy. The 

maximum potential was found to be inversely proportional to ɛ and proportional 

to the applied charge. 

  In the case of two spheres, the effects of 𝑎, 𝑘̅ and ɛ on the solvation and 

interaction energy were discussed. When ɛ and 𝑘̅ are constant and 𝑎 is less than 

twice the Debye length, there is significant interaction energy between the two 

particles. As 𝑎 increases, the interaction energy decreases until it reaches 0. When 
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no dielectric mismatch exists and 𝑎 and ɛ stay constant, an increase in 𝑘̅ leads to 

an increase in the interaction energy approximated by the NLPBE between the 

two particles until it reaches 0. An increase in the dielectric ratio while keeping 𝑎 

and 𝑘̅ constant leads to a decrease in the interaction energy of the two particles. 

With a high dielectric mismatch and ɛ is less than one, little difference is seen in 

the interaction energy as 𝑘̅ increases and 𝑎 in invariant.  

The effects of the parameters on the potential can be summed up as follows: 

introducing a dielectric mismatch increases the potential significantly, a large 

increase in 𝑘̅, for a small Q, leads to a small decrease in the potential, the potential 

is inversely proportional to 𝑎, the LPBE predicts a higher maximum potential than 

the NLPBE and the potential is proportional to the charge applied.  
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