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Abstract 

BLOCKER-BASED SCATTER CORRECTION FOR  

CONE-BEAM COMPUTED  

TOMOGRAPHY 

 

Cong Zhao, Master 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Mingwu Jin 

Cone-beam computed tomography (CBCT) imaging is widely used in radiation 

therapy for treatment planning and image-guided therapy. More x-ray scatter signals are 

detected by the two-dimensional detector arrays in CBCT than by the one-dimensional 

detector arrays in fan-beam CT (FBCT). Therefore, scatter contamination significantly 

degrades the image quality in CBCT and must be corrected for satisfying image quality. 

Among numerous scatter correction (SC) methods of cone-beam computed 

tomography (CBCT), the use of lead-strip blockers is low-cost and easy to implement and 

holds potential to significantly lower patient radiation dose. In such a method, the signal 

in the blocked regions is assumed to be the scatter signal and can be used to estimate 

the scatter signal in the unblocked region. However, this assumption is often violated 

because of the penumbra effect and detector response effect. In this study, we first 

investigated a moving-blocker based method to simultaneously estimate the scatter 

signal and reconstruct the complete volume within the field of view (FOV) from a single 

CBCT scan. Then we proposed to use deconvolution algorithms to improve scatter 

estimation of the moving-blocker method. A slanted edge method was used to estimate 

the point spread function (PSF) of the flat panel detector. The parametric PSF was used 
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in simulation studies to deconvolve the blurred projection image to remove the finite x-ray 

source and the detector response effect and to get cleaner scatter signal in the blocked 

regions. 

Our results showed that with laborious parameter tuning, the scatter-induced 

shading artifacts are substantially reduced in CBCT, and the CT number errors in the 

selected regions of interest are greatly reduced using the moving-blocker method. The 

detector response function can be reliably measured and calculated using the slanted 

edge method. The deconvolved projection image shows better quality, more accurate 

intensity profiles, and much reduced overall root mean square errors compared to the 

blurred image in the simulation study. Our experiment results further demonstrate that 

Wiener and Richardson-Lucy deconvolution methods can significantly improve the scatter 

estimation compared to the direct inverse filtering method.  

Finally, The PSF derived from the slanted edge experiment does not take the 

penumbra effect into account, and the air-scan data from the CBCT projection images of 

moving blockers fail to derive a reliable PSF. An experiment to determine the combined 

penumbra and detector response effect and the ultimate effectiveness of deconvolution 

methods on scatter correction of CBCT reconstruction will be investigated in future work. 
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Chapter 1  

Introduction 

 
CBCT technology has been a very important modality in the field of medical 

imaging over the last few years. CBCT provides additional information that traditional x-

rays will not provide. These kinds of information are helpful in radiotherapy treatment 

processes. CBCT has many advantages compared to FBCT: (1) The 3D image can 

provide more accurate information especially the location of certain tissues (2) radiation 

exposure to the patient is up 10 times less (3) much bigger field of view and much faster 

scan time (4) smaller size and low device price. However, the scatter contamination in 

CBCT decreases the reconstruction image quality by introducing artifacts and causing 

errors for CT numbers. The scatter signal has a 2D distribution and only a small portion 

can be received by FBCT because of the use of 1D detector arrays. In contrast, CBCT 

receives most of the scatter signal because of the use of 2D detector arrays.  

Scatter contamination is one of the major sources of degradation of CBCT 

images. It degrades image quality by decreasing the contrast, introducing shading 

artifacts and causing inaccuracies in the reconstructed CT number. The degraded image 

makes it difficult to delineate the low-contrast soft tissues, and inaccurate CT number 

makes the dose calculation of adaptive therapy inaccurate [1,2,3]. Therefore, scatter 

correction is very important in CBCT imaging.  

There are many methods that have been investigated to correct scatter 

contamination in CBCT, including suppression of scatter signal during the acquisition of 

projection data using anti-scatter grids and increasing the air gap[4,5-10], and correction 

of scatter signal in projections using computational methods or special scanning 

protocols [11-26]. The low frequency distribution feature of the scatter signal[27 28] 
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makes it possible to use blockers to estimate the scatter. Among scatter correction (SC) 

techniques, blocker-based methods derive the scatter signal from the blocked regions 

within the projection data [20-26] and do not suffer the computational intense of Monte 

Carlo simulation [11-14] or the inability of analytical methods for complex or 

heterogeneous structures [15-19]. However, the static blocker-based methods have 

some limitations, such as the requirement of additional measurements for each projection 

view [20,25], the reduced imaging volume corresponding to the blocked region [21,26], or 

the inaccuracy caused by the interpolation of primary signal in the blocked regions 

[24,29]. The recent development by keeping the blocker moving during gantry rotation 

[30,31] overcomes these limitations and is able to simultaneously estimate the scatter 

signal and reconstruct the entire volume within the field of view (FOV) from a single 

CBCT scan. Compared to the primary modulation method [22,32,33], not only the lead 

strip blockers are low-cost and easy to make, but also the radiation dose can be 

significantly reduced since about half of the incident x-ray intensity is blocked by moving 

blockers and statistical compressed sensing reconstruction can compensate for sparse 

view projections and elevated noise due to scatter subtraction.  

In this study, we first investigated the moving blocker method [ 30 31]. The 

detected signal in the blocked regions is assumed to be the scatter signal. The scatter 

signal in the unblocked regions was obtained by interpolating the detected signal from the 

blocked regions. Then the primary signal was obtained by subtracting the interpolated 

scatter signal from the signal in the unblocked regions. To avoid the inaccuracy caused 

by the interpolation of primary signal, only the primary signal in the unblocked regions 

was used to reconstruct the 3D image. Some improvements of CBCT reconstruction 

images have been obtained in our experiment using a simple phantom.  
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The excellent performance of this moving blocker method is based on the 

assumption that the signal in the blocked region is purely scatter signals, at least in the 

central part. However, this assumption is rarely satisfied for narrow lead strips in reality 

due to the penumbra effect and the detector response effect. These effects make the 

signal spread from unblocked regions to the blocked regions. Therefore, the signal 

detected in the unblocked regions needed to be corrected before it was used to do the 

interpolation. Then we proposed to model the detector response function (DRF) in the 

blcoked regions and several image deconvolution methods will be developed for 

recovering the true scatter signal in the blocked regions.  We designed a slanted-edge 

simulation and an slanted-edge experiment to study these effects. This study will provide 

a theoretically sound and practically viable solution for the problems faced by the current 

moving blocker methods. By avoiding labrious parameter tuning, the final reconstruction 

with scatter correction can be more reliable and robust, which is an important component 

for its application in clinical practice.  
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Chapter 2  

Scatter correction using the moving blcoker method 

 
2.1 Moving blocker setup  

 
The moving blocker system for CBCT imaging is shown in Fig. 2-1 [30]. To 

simplify the process in this study, the blocker strips were shifted manually among 6 

positions. The blcoker system consists of equally spaced lead strips aligned along the v-

direction of the detector. A beam attenuation blocker is inserted between the x-ray source 

and the phantom, and it moves back and forth along the u-direction of the detector as the 

gantry rotates around the z-axis. The signal measured in the blocked regions is assumed 

to be the scatter signal only, and the signal measured in the unblocked regions is the 

sum of the scatter signal and the primary signal. The scatter signal in the unblocked 

regions can be estimated from the blocked regions by using the cubic-spline interpolation. 

To avoid the penumbra effects of the strips, the region (about 10 pixels wide) adjacent to 

the edges of the strip are excluded from the scatter estimation in the experimental study. 

The primary signal is obtained by subtracting the interpolated scatter signal from the 

signal measured in the unblocked regions. A constrained-optimization-based (CO-TV) 

algorithm is developed to reconstruct the entire volume within the FOV from the 

unblocked projection data. 
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Figure 2-1 moving blocker system 

2.2 Data acquisition  

 
The blocker consists of 8 lead strips and the width of each lead strip is 3.2 mm. 

The lead strips are placed with a 3.2 mm pitch. The blocker is mounted on the F0 bow-tie 

filter of a CBCT machine. The lead strips of the blocker are aligned perpendicular to the 

rotation axis and cover the entire FOV all the time at a source-to-blocker distance of 310 

mm. The source-to-axis distance is 1000 mm and the source-to-detector distance is 1500 

mm. The number of projections for a full 360° rotation is approximately 678 and the total 

time for acquisition of one full circle of projection data is approximately 2 min. Each 

projection data contains 1024×768 pixels with a size of 0.388×0.388 mm2. To save 

computation time during iterative reconstruction, projections were downsampled by a 
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factor of 2 to yield a size 512×384 with pixel size 0.776 ×0.776 mm2. The tube voltage 

was 100 kVp and the tube current-time was 0.5 mA s per projection.  

A commercial calibration phantom CatPhan® 600 (The Phantom Laboratory, Inc., 

Salem, NY) was used to evaluate the performance of the proposed method. Six CBCT 

scans were performed while the phantom was kept stationary. During each scan, the 

blocker was shifted 1 mm along the u-direction. To simulate continuous motion of the 

blocker during gantry rotation, the projection data of a single CBCT scan were selected 

from one of the six scans according to the following rule. For the nth projection data, let a 

denote the remainder after n is divided by 12. If a is smaller than 6, the nth projection 

data are chosen from ath of those six data sets; if a is larger than or equal to 6, the nth 

projection data are chosen from (12−a)th of those six data sets. By such a choice, the 

complete projection data set corresponds to a blocker moving at 1 cm/s.  

 

2.3 Constraint optimization reconstruction algorithm 

 
When the blocker strips are used in projection data acquisition, the projection 

data are partially blocked at every projection and the total amount of projection data is 

smaller than in a normal CBCT scan. Iterative image reconstruction algorithms have the 

potential to substantially improve CBCT image quality from limited projection data. [34–36] 

Recent development of the compressed sensing theorem[37] has demonstrated that a 

signal can be exactly reconstructed from highly undersampled measurements. Several 

algorithms based[34–36] on the compressed sensing theorem have been proposed for 

CT image reconstruction from undersampled projections. In this work, image 

reconstruction from partially blocked projection data is formulated as a constraint optimi- 

zation (CO) model under the framework of compressed sensing. Constraint optimization 
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incorporates data fidelity and image constraints such as positivity, extreme values, and 

regularity measure. The constraint optimization generates a discrete image 𝜇 by 

minimizing certain functions of the image 

 

𝜇∗ = 𝑎𝑟𝑔  𝑚𝑖𝑛(𝑓(𝜇))           (2.1)  

 

subject to the inequality constraints data fidelity and positivity: 

 

𝐴𝜇 − 𝑝 ≤ 𝜀          (2.2) 

𝜇 ≥ 0                   (2.3) 

 

where 𝑝 is the vector of log-transformed projection measurements after scatter 

correction and 𝜇 is the vector of attenuation coefficients to be reconstructed. 𝜀 is the 

tolerance to enforce the data fidelity constraint which accounts for the inconsistency of 

the measured data such as noise and geometric deviation of the system matrix 𝐴. The 

element 𝑎!" of the matrix 𝐴 is the length of the intersection of projection ray  𝑗 with pixel 𝑖 

and 𝑎!" is calculated by Siddon’s ray-tracing technique[38]. 𝑓(𝜇) is the prior knowledge 

imposed on the image and usually measures certain properties of the 𝜇 to be 

reconstructed. In this work, the total variation (TV) of the image is chosen as the 

regularity measure of 𝜇 

 

𝑓(𝜇) = (𝜇!,!,! − 𝜇!!!,!,!)! + (𝜇!,!,! − 𝜇!,!!!,!)! + (𝜇!,!,! − 𝜇!,!,!!!)!!,!,𝑧    (2.4) 

 



 

8 

In the following, we refer to the method described above as CO-TV. The 

constraint in Eq. (2.2) is enforced by the standard algebraic reconstruction technique 

(ART)  

𝜇!
(!!!) = 𝜇!

(!) + 𝜆𝑎!"
!!! !!"!!

(!)
!

!!"
!

!
        (2.5) 

 

where 𝑘 is the iterative step and 𝜆 is the relaxation factor which was chosen as 0.1 in this 

study. The objective function of Eq. (2.1) is minimized by the standard steepest gradient 

descent method 

𝜇(!!!!) = 𝜇(!!) − 𝛾∇𝑓(𝜇)          (2.6) 

 

where ∇𝑓(𝜇) is the gradient of function 𝑓(𝜇)  and 𝑘′ is the iteration step. 𝛾 is the step size 

and it is updated by steepest decent direction (line 15–19 in the pseudocode of [36]). To 

avoid a singularity in calculating ∇𝑓(𝜇), a small constant was added to the term inside the 

square root in Eq.(2.4). After each ART operation of Eq. (2.5), the resulting image is 

updated according to Eq. (2.6). The number of iterations for the steepest gradient 

descent step is set to 10 and the number of iterations for the ART step is set to 20 in this 

study [34,36,39]. 
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2.4 Scatter correction scheme 

 

This section shows some pre-processing steps and how the scatter correction 

method works. During the moving blocker CBCT acquisition, detected signal in the 

blocked regions is assumed to be attributed to scatter photons only, while the measured 

signal in the unblocked regions is contributed by both primary and scattered photons. 

Previous studies [27,28] have showed that the scatter signal of CBCT projection is 

smooth and low-frequency signal. Here, the scatter signal detected in the blocked region 

was used to estimate the scatter fluence of the unblocked region using cubic-spline 

interpolation. To avoid the penumbra effect of the strips, data from regions adjacent to 

the edges of the strips were excluded, and only the central one-third of each blocked 

region was used in the scatter estimation in the experimental study. Before interpolation, 

a 3 × 3 median filter was applied to exclude extremity values of the measured scatters. A 

1D 9-pixel moving average filter perpendicular to the lead strips was also used to further 

smooth the interpolated scatter maps [25,52]. Primary signal in unblocked region was 

obtained by subtracting the estimated scatter signal. A line integral of each ray in 

unblocked region was then calculated by the logarithmic transform. To obtain accurate 

line integrals, a normalization scan (air scan) was acquired without the blcoker. Image 

reconstruction was then performed on the corrected unblocked partial projection data.  
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Fig. 2-2 and Fig. 2-3 show an example projection image of air scan and Catphan 

scan respectively. The intensity of the projection image with blocker is decreased 

compared to the projection image without blocker, which can reduce the dose of radiation. 

 
 

 
 

(a) air scan without blcoker                         (b) selected profile 

 
(c) air scan with blocker                           (d) selected profile 

Figure 2-2 air scan 
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(a) Catphan without blocker                     (b) corresponding profile 

 

 
(c) Catphan with blocker                                 (d) corresponding profile 

 

Figure 2-3 Catphan scan 
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Fig. 2-4 shows how to estimate scatter signal from blocked regions. The blue line 

in (a) is the interest of region of measured signal, which is the sum of primary and scatter 

signal. The red line in (b) is the scatter signal we estimated in the blocked regions, and 

the estimated scatter signal in unblocked regions is interpolated in (c). Then the black line 

in (d) is the scatter corrected signal, which obtained by subtracting the red line from the 

blue line. 

 

(a) profile of measured signal                          (b) estimated scatter signal 

 

(c) interpolated scatter signal                              (d) scatter corrected signal 

 
Figure 2-4 scatter correction 
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2.5 Reconstruction results 

This section provides reconstruction results that illustrate the performance of the 

moving blocker method for scatter correction. We compare the axial images of the 

sensitometry module of moving blocker method to three competing methods in Figure 2-4. 

To evaluate the accuracy of the reconstructed CT number in the CBCT images, we 

calculated the mean CT number of seven ROIs within the sensitometry module. We also 

acquired fan-beam multidetector CT ︎ MDCT ︎  images of the CatPhan® 600 phantom 

using a GE Discovery CT scanner (GE Medical Systems, Milwaukee, WI). The CT 

numbers from MDCT were used as the standard for comparison. The inaccuracy of CT 

number in CBCT was quantified by the root mean square error (RMSE) in the selected 

seven ROIs 
𝑅𝑀𝑆𝐸 =    (𝐶𝑇!"#$! − 𝐶𝑇!"#! )!!

!!!     (2.7) 

where 𝐶𝑇!"#$!  and 𝐶𝑇!"#!  denote the mean CT number of the kth ROI for CBCT and fan-

beam CT, respectively. Table 2-1 lists the CT numbers of different ROIs in Fig. 2-5. The 

CT numbers of different ROIs for eleven successive slices are shown in Fig. 2-6 to Fig. 2-

12. Table 2-2 lists the RMSE of CT numbers of different ROIs for seven successive slices. 

The RMSE of the CT number in the CBCT images without scatter correction is 130. 

Using the proposed scatter correction strategy, the RMSE of the CT number is reduced 

to around 20 in all of the images reconstructed by different methods. 
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(a) MDCT                                               (b) CBCT 

 

(c) No scatter correction                           (d) Scatter correction 

Figure 2-5 One axial slice of the Catphan 600 phantom sensitometry module 

The selected slice image shown above: (a) benchmark fan-beam MDCT image; 

(b) reconstruction imge from CBCT machine; (c) CO-TV from unblocked projection data; 

and (d)CO-TV from partially blocked projection data. ROIs labeled in (a) were used for 

evaluating CT number accuracy. Display widow [−800, 600] HU. 
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Figure 2-6 CT numbers of ROI-1 

 

Figure 2-7 CT numbers of ROI-2 
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Figure 2-8 CT numbers of ROI-3 

 

 

Figure 2-9 CT numbers of ROI-4 
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Figure 2-10 CT numbers of ROI-5 

 

Figure 2-11 CT numbers of ROI-6 
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Figure 2-12 CT numbers of ROI-7 

 
Table 2-1 Comparison of the CT number of seven ROIs of the Catphan 600 

 ROI-1 ROI-2 ROI-3 ROI-4 ROI-5 ROI-6 ROI-7 RMSE 
MDCT 344 948 -999 -187 -97 -39 -999  
CBCT 273 847 -904 -195 -116 -70 -913 70 
No SC 270 820 -800 -124 -15 10 -780 130 

SC 332 970 -991 -202 -111 -37 -993 20 
 

 

Table 2-2 RMSE of CT numbers of different ROIs for seven successive slices 

Slice 
number 

1 2 3 4 5 6 7 

CBCT 63 63 65 66 67 68 69 
No SC 132 130 128 128 126 130 128 

SC 17 20 19 17 19 16 12 
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2.6 Conclusion 

The results of RMSE show that the moving blocker scatter correction method is 

effective. However, the scatter signal in this experiment had to be carefully extracted by 

avoiding the edge pixels and a scaling was needed most time to compensate the spread 

of signal from unblocked regions for a good scatter correction performance. Therefore, 

we proposed a slanted-edge method to avoid these drawbacks in next chapter. 
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Chapter 3  

A simulation study 

This chapter shows a simulation study of several deconvolution methods for 

deblurring image.  

3.1 Blocker-based scatter correction for CBCT and mathematical models  

The fundamental assumption in blocker-based scatter estimation lies on: 

 
𝑆!"#$%(𝑢, 𝑣)

𝑆! !,! + 𝑆! !,!   ,         𝑢, 𝑣 ∈ 𝑏𝑙𝑜𝑐𝑘𝑒𝑑  𝑟𝑒𝑔𝑖𝑜𝑛
𝑆! !,! ,                                 𝑢, 𝑣 ∈ 𝑢𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑  𝑟𝑒𝑔𝑖𝑜𝑛                  (3.1) 

 

where 𝑆!"#$% 𝑢, 𝑣  is the “ideally” measured signal,   𝑆! !,!  is the primary signal and 𝑆! !,!   

is the scatter signal. Since in the blocked regions the signal is deemed purely scatter and 

the scatter is a low-frequency signal at least in longitudinal direction [25], the scatter in 

blocked region can be estimated through interpolation of signals in blocked region. Then, 

the primary signal in unblocked region can be recovered by subtracting estimated scatter 

signal from measured total signal and used for reconstruction. However, the assumption 

of pure scatter in blocked regions is usually violated in reality. As demonstrated by the air 

scan of the blocker (without the object in Fig 1) in Fig 2-2, the edges between blocked 

and unblocked regions do not show a vertically straight transition from high intensity to 

low intensity. In addition, significantly amount of signal still exists in the blocked region, 

which should be (close to) zero by the assumption. Therefore, the scatter signal in the 

previous experiment had to be carefully extracted by avoiding the edge pixels and a 

scaling was needed most time to compensate the spread of signal from unblocked 

regions for a good scatter correction performance [30,31].  

 In this study, we will investigate the sources for the contamination of scatter in 

blocked regions and propose several methods to extract more faithful scatter signals 
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without empirical parameter tuning. If we assume an ideal point x-ray source and no 

detector veiling/scatter glare, the detect signal can be described as 

 

𝑆!"#$%(𝑢, 𝑣) = 𝑆! !,! Π(!!!!
!

!
!!! ) + 𝑆!(𝑢, 𝑣)        (3.2) 

 

where the primary signal is 𝑆!(!,!) = 𝐼!𝑒!∫!! !,!,! !" with the uniform source intensity 𝐼! 

and the ray path L from the source to the point (u,v) on the detector, 𝑆!(!,!) is the object 

scatter signal that can be modeled as a convolution of incident fluence and the scatter 

kernel [17]. Π(•)is the standard rectangular function (1 inside the window and 0 outside) 

and Π(!!!!
!

!
!!! ) represents the ideal projection image of K blockers (with the center 

𝜇!and the width w) on the detector. Note that blocked regions are outside the rectangular 

windows. This equation is equivalent to Eq. (3.1). 

However, the real measured signal does not exactly follow Eq. (3.2) as can be 

seen in Fig. 2-1. At least two major blurring factors have to be taken into account: 1) the 

response function of the flat panel detector (FPD); and 2) the penumbra effect due to the 

finite x-ray source distribution. (Note that the diffraction effects can be neglected because 

the x-ray wavelengths are very small (~10!!! m) and the width of the blocker is several 

millimeters. Thus, under the usual CBCT imaging setup, Fresnel number is much greater 

than one, which does not satisfy the condition to generate a bright spot behind the 

blocker.) Therefore, if assuming linear shift invariant (LSI) for both effects, the measured 

data can be expressed as: 

𝑆 !,! = 𝑆!"#$% 𝑢, 𝑣 ⨂𝑃𝐸𝐹 𝑢, 𝑣 + 𝑛 𝑢, 𝑣                            (3.3) 

                                                            = 𝑆!(𝑢, 𝑣) Π
!

!!!

𝑢 − 𝑢!
𝑤

⨂𝐷𝑅𝐹(𝑢, 𝑣)⨂𝑃𝐸𝐹 𝑢, 𝑣 + 𝑛 𝑢, 𝑣  
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where ⊗ denotes convolution, DRF(u,v) is the point spread function of the FPD, PEF(u,v) 

models the blurring due to the penumbra effect, S
S

*(u,v) is the object scatter signal in Eq. 

(3.2) convolved by DRF(u,v) and PEF(u,v), and 𝑛 𝑢, 𝑣  is the detector electronic noise. It 

is straightforward to see that the signal reaching the FPD will be blurred by DRF. The 

blurring effect from PEF comes from the source distribution that can be modeled as 

convolution of an ideal point source (see Eq. (3.6)). Comparing Eq. (3.3) with Eq. (3.2), 

we can see that the primary signal can spread outside the rectangular windows and 

cause the contamination of the scatter signal in unblocked regions. Although the blocker 

width may be increased to mitigate this contamination, practically this is not desired 

because it will compromise the primary signal coverage and deteriorate the 

reconstruction.  

The primary goal of this work is to use deconvolution methods to recover the 

ideal signal 𝑆!"#$% 𝑢, 𝑣   in Eq. (3.2) from the measured signal 𝑆 !,!  in Eq. (3.3). 

Consequently, the signal in the blocked regions (i.e. outside the window function) can 

better represent true scatter (at least in the central part of the region), which will lead to 

more accurate estimate of the primary signal for reconstruction.  

 

3.2 Models of the detector response and the penumbra effect for blocker-based imaging  

3.2.1 Modeling detector response function (DRF) 

An ideal point x-ray beam will generate a spread in the FPD due to the effects of 

radiation scatter, light diffusion, and charge sharing etc. Since the ideal point beam is 

hard to achieve, the slanted-edge method [41,42] will be used to estimate the detector 

response function (DRF), i.e. point spread function [43,44]. A lead sheet with sharp and 

straight edge will be placed directly on the top of the FPD to avoid off-focal radiation and 
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environmental scatter. A uniform incident fluence on the measured area will be assured 

by calibration. The angle of the edge is not parallel to the u or v axis, but slanted slightly 

(<5°). This allows the gradient of the edge to be measured at various phases relative to 

the detector element and generates an oversampled edge profile as shown in Fig. 3-1, 

which will provide extra high frequency response information.  

 

Figure 3-1 Edge response function estimation using the slanted edge method 

 

The empirical line spread function (LSF) can be obtained by taking the derivative 

of the edge profile. The empirical LSF will be further fitted to the following parametric 

function: 

 

𝐿𝑆𝐹!"#(𝑢) = !!

!!!!
!
𝑒!!!/!!!! + !!

!!!!
|𝑢|𝐾!(

|!|
!!
) + !!!!!!!

!!!

!
!!!!/!!!

          (3.4) 

 

where K1(•) is a first-order modified Bessel function. This function is proposed to model 

the long tail of LSF and the weighted least squares can be used to find the parameters 
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[43]. The LSF will be measured and calculated at multiple positions on the detector with 

both u and v directions to make sure that the DRF of FPD is spatial invariant and 

rotationally symmetric. Given rotational symmetry, the DRF can be expressed as:  

 

𝐷𝑅𝐹!"#(𝑟) = !!

!!!!
!
𝑒!!!/!!!! + !!

!!!!!
𝑒!!/!! + !!!!!!!

!!!!

!
(!!!!/!!!)!/!

                  (3.5)  

  

where r is equal to 𝑢!+𝑣!. In Eq. (3.5), it is tempting to attribute the three terms as 

modeling the distributions of the incident intensity in the scintillator, the diffusion of 

scattered optical photons, and the scatter of x-ray photons in the detector panel and 

housing, respectively [43]. However, we treat them as a general description of a point 

spread function with variable tail effects, i.e. the short range for the first Gaussian term, 

the medium range of the exponential term, and the long range of the polynomial 

(Lorentzian) term.  

 

3.2.2 Modeling penumbra effect function (PEF) 

The finite size of x-ray focal spot (inside the full width half maximum (FWHM) of 

the source, <1 mm) and the off-focal-spot radiation (outside the FWHM of the source with 

non-negligible radiation, ~several mm) produce the penumbra effect of the blockers. This 

effect results in different 𝐼! values as shown in Fig. 3-2, where the black region on the 

detector is totally blocked by the blocker (when ignoring the detector response in Chapter 

3.1), the green ones are unblocked, so called umbras, and the red ones are partly shun 

by x-ray, so called penumbras.  



 

25 

 

Figure 3-2 Edge response function estimation using the slanted edge method 

 

Given the focal spot length 𝐿!  , the source to the blocker distance 𝑎, and the 

blocker to the detector distance 𝑏, the penumbra size can be computed as 𝐿! = (𝑏𝐿!)/𝑎 . 

If the blockers have the equal width and spacing, denoted as 𝑑, an ideal point source (i.e. 

an infinitesimally small source) would result in a uniform alternating pattern of the blocked 

and unblocked regions on the detector with the equal size of 𝐿! = 𝑑(𝑎 + 𝑏)/𝑎  , which is 

the sum of one black (or green) region and one red region. Given a typical values of 

𝐿!=0.4 mm, 𝑎 =300 mm, 𝑏 = 1200 mm, and 𝑑 =3 mm [31, 45], 𝐿! is 1.6 mm and 𝐿! is 15 

mm. Therefore, the penumbra could take more than 10% of the ideally blocked region 

even by considering only the finite size of the focal spot. If taking the off-focal-spot 

radiation into account, which is in the same order of the size of the blocker, the penumbra 

effect region could be ten-fold greater and spread to the whole blocked region [45]. 

Following the recent study of penumbra effect of the collimator blades, we can model the 

actual incident intensity 𝐿! as 
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𝐼! 𝑢, 𝑣 = 𝐼!  ⨂  𝑓(𝑢•a/b, v•a/b)=  𝐼!⨂𝑃𝐸𝐹(𝑢, 𝑣)            (3.6) 

 

𝐼! has the uniform value inside the illuminated area and 0 outside, and 𝑓 is the x-ray 

source distribution. The penumbra effect function (PEF) is then defined as the source 

distribution magnified on the detector by a factor of 𝑏/𝑎. Note that the penumbra effect of 

the collimator blades is around the borders of FOV and can be ignored compared to that 

of the blockers in the regions of interest. Although the off-focal-spot radiation is generally 

small, it significantly contributes to the spread due the convolution on a large off-focal-

spot area in Eq. (3.6).  

The pinhole method will be used for the measurement of source distribution 

because it is easy to implement and able to provide 2D distribution [45,46]. Briefly, A 

standard pinhole assembly is attached to the surface of the field collimator. After 

calibration, the focal spot, pinhole, and the center of detector are aligned, and a 

magnified image of the focal spot is projected onto the detector. The background signals 

measured by blocking the pinhole are subtracted from the pinhole measurement to get 

the clean distribution of the source on the detector by assuming a negligible DRF 

influence on PEF. The deconvolution methods described in next section will be used to 

test the negligible DRF influence hypothesis. If the pinhole method cannot provide 

satisfying measure of PEF, advanced coded aperture methods can be used [47]. 

Assuming a rotational symmetry, a similar parametric function Eq. (3.5) can be used to 

break down PEF into different spread range factors.  
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3.3 Recovery of true scatter in blocked regions 

Once we accurately estimate DRF and PEF based on Eq. (3.5), the 

deconvolution techniques can be used to recover true scatter in blocked regions, i.e. to 

reverse the effect of DRF and PEF in Eq. (3.3) so that Eq. (3.2) can be satisfied to a 

maximum extent and the estimation of scatter in unblocked region can follow the routine. 

In the following context, we denote 𝐹(•) as Fourier transform of the function from the 

spatial domain to the spatial frequency domain, and 𝐹!!(•) as inverse Fourier transform. 

The multiplication, division and comparison involving an array (e.g. 𝑆, 𝑆!"#$% and their 

Fourier transform) are element wise, unless otherwise stated. 

 

3.3.1 Inverse and Wiener filtering 

The most straightforward method is the inverse filtering. In this method, the 

derived DRF and PEF are transformed into the spatial frequency domain, denoted as 

ℱ(DRF) and ℱ(PEF), so is the measured signal S, ℱ(S). Then, the recovered signal can 

be expressed as 𝑆!"#$% = ℱ!!( ℱ(!)
ℱ(!"#)ℱ(!"#)

). It is well known that the direct inverse filtering 

will produce the high frequency ringing artifacts. Since the contamination in the central 

part of the blocked region can be only introduced by the long tails of DRF and PEF, which 

can be represented by the last two terms (exponential + Lorentzian) or the last one term 

(Lorentzian), denoted as DRF
LT 

and PEF
LT

, the inverse filtering can be achieved by 

𝑆!"#$% = ℱ!!( ℱ(!)
ℱ(!"#)ℱ(!"#)

) instead. As shown in [43], this process can effectively remove 

the long tail effect of the detector scatter without introducing new artifacts. We expect the 

similar performance for the long tail effect of the penumbra. 
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The electronic noise term n(u,v) in Eq. (3.3) can be modeled as a Gaussian white 

noise and its power spectral function (PSF) can be estimated from either the flood field or 

the dark image. The Wiener deconvolution can be expressed as 

 

𝑆!"#$! = ℱ!!( !∗•!"#(!)
|!|!!"#(!)!!"#(!)

)                  (3.7) 

 

where 𝐻 = ℱ(𝐷𝑅𝐹)ℱ(𝑃𝐸𝐹) or ℱ (DRF
LT )  ℱ ( PEF

LT

), * denotes the complex conjugate, 

and PSF(S) and PSF(n) are power spectral functions of the signal S and n, respectively. 

 

3.3.2 Maximum likelihood estimate using the Richardson-Lucy algorithm 

From Eq. (3.3), the ideal signal 𝑆!"#$% consists of both the primary and scatter 

signals, which follow Poisson distribution and is blurred by a known point spread function, 

h = DRF ⊗ ERF . The maximum likelihood estimate of 𝑆!"#$%  given the measurements S 

and h can be obtained using the iterative Richardson-Lucy algorithm [48,49] as follows  

 

𝑆!"#$%(!!!) = 𝑆!"#$%(!)( !
!!"#$%(!)⨂!

⨂ℎ)           (3.8) 

 

where S
ideal(t) and S

ideal(t+1) are estimate of S
ideal at t

th and (t+1)
th iteration, respectively, and 

ℎ = ℎ(−𝑢,−𝑣) . In case of high noise, e.g. the blocked region with low statistical counts, a 

regularization term, denoted R(S), can be added to the Richardson-Lucy algorithm 

[50,51]. The iteration can be modified by adding a scaling factor, (1−λdiv(R(Sideal(t))))−1, 

to the right side of Eq. (3.8), where div is the divergence of the regularization function 

R(S). Different regularization functions, such as L2 norm, total variation (TV) norm, and 
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Huber-norm, will be tested if the regularization is necessary although the use of heuristic 

parameter is generally avoided. 

 

3.4 Model validation and evaluation of scatter recovery methods 

To investigate whether deconvolution methods can improve the scatter 

estimation under different blurring and noise conditions for blocker-based methods for 

CBCT. An “ideal” projection image with scatter was first simulated for blocker-based 

CBCT data acquisition by assuming no blurring effect and no noise. The ideal image was 

then convolved with long-tail PSF with different width to mimic the blurring effect from the 

finite focal spot and detector response. Different levels of noise were also added. Three 

deconvolution methods: 1) inverse filtering; 2) Wiener; and 3) Richardson-Lucy, were 

used to recover the scatter signal in the blocked regions. The root mean square error 

(RMSE) of estimated scatter serves as a quantitative measure for the performance of 

different methods under different blurring and noise conditions.  

 

3.5 Simulation results 

The phantom we simulated is from one of the projection image of CBCT, and six 

black strips is applied as blocker strips in Figure 3-3 (b). The size of the phantom is 

1024*768 with the 0.388 mm pixel size. Then we generated a 2D scatter signal (d), which 

is generated from a Gaussian function (sigma=600). By adding the scatter signal to the 

projection image, we obtained the profile with scatter contamination(e). 
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      (a) projection image                                (b) applied blocker 

 

  

   (c) profile without scatter                  (d) generated scatter signal 

 

   (e)  profile with scatter  

Figure 3-3 Simulated phantom and scatter signal 
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There are 5 different width of PSF that are simulated using Eq. (3.5). The size of 

the PSF is 81*81 pixels (0.388 mm pixel size). We choose the full width tenth maximum 

(FWTM) as the width of the PSF. The corresponding  FWTM is  0.155mm, 6.2 mm, 12.4 

mm, 18.6 mm and 24.8 mm respectively and first two of them are shown in Fig. 3-4.  

 

                                (a) PSF-1                                             (b) LSF 

 

                                 (c) PSF-2                                              (d) LSF 

Figure 3-4  two different PSF and the corresponding LSF 

There are five different level of noise are added to the image after they convolved 

the five PSF. They are defined as signal-to-noise ratio (SNR) at 160dB, 80dB, 40dB, 

20dB and 10dB (i.e. 0.0001%, 0.01%, 1%,10% and 20% noise).Two convovled image 

and selected profile are shown in Fig. 3-5. The sharp edge became smooth because of 

the blur effect of the convolution. 
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              (a) convolved with PSF-1                            (b) selected profile 

 

              (c) convolved with PSF-2                               (d) selected profile 

Figure 3-5  convolved image 

 

The final step is to deconvolve the blurred and noisy image using the 

corresponding PSF. The image can be restored to the original image when there is no 

noise added. However, the noise can not be removed from the blurred image because 

we don’t have a model of it. Using the Wiener and Richardson-Lucy deconvolution, the 

noise can be suppressed to some extent. Two typical line profiles are shown in Fig. 3-6, 

low noise and medium noise. The root mean square error (RMSE) for different methods 

is shown in the Table 3. 
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                  (a) Low Noise (SNR=80dB)                 (b) Medium Noise (SNR=40dB) 

Figure 3-6 The deconvolved line profiles 

 
The line profiles (perpendicular to the orientation of blockers) of the ground truth 

and for different scatter estimation methods are shown in above. The Ideal means ground 

truth without blur and noise, the Blurred and noisy means measured for direct scatter 

estimation, the Wiener means after Wiener deconvolution of the measured data and the 

Richardson-Lucy means after Richardson-Lucy deconvolution of the measured data.  

 
 

Table 3-1 RMSE of the profile of blurred image 

SNR (dB) 160 80 40 20 10 
PSF-1 0 30 151 303 605 
PSF-2 45 53 130 240 466 
PSF-3 82 82 115 200 393 
PSF-4 110 114 201 355 686 
PSF-5 130 136 187 282 498 
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Table 3-2  RMSE of the profile of deblurred image (Wiener) 

SNR (dB) 160 80 40 20 10 
PSF-1 0 28 77 89 93 
PSF-2 1 8 18 26 37 
PSF-3 4 9 27 31 31 
PSF-4 18 25 34 34 33 
PSF-5 48 36 36 36 37 

 
 

 

Table 3-3  RMSE of the profile of deblurred image (Richardson-Lucy) 

SNR (dB) 160 80 40 20 10 
PSF-1 0 30 113 216 431 
PSF-2 0 30 114 214 422 
PSF-3 0 30 96 130 343 
PSF-4 0 30 90 128 275 
PSF-5 0 30 91 177 308 

 

 
The RMSE values of estimated scatter using different methods are summarized 

In Fig. 3-7. The direct method suffers from the increased width of PSF and increased 

noise (Blue bars). After either Wiener or Richardson-Lucy deconvolution, the scatter 

estimation performance is significantly improved. In general, Wiener is robust to the 

change of noise levels and Richardson-Lucy seems to work well with the wide PSF. The 

deconvolution methods can achieve from as high as 20-fold improvement (Narrow PSF 

and Low noise) to a typical 4-fold improvement (Medium PSF and Medium noise). 
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(a) Narrow PSF (FWTM = 6.2mm)         (b) Medium PSF  (FWTM = 12.4mm) 

 

          (c) Wide PSF (FWTM = 24.8mm) 

Table 3-4  The root mean square error (RMSE) 

 
The RMSE of estimated scatter using different methods are shown in above 

(Direct: using signal in the blocked region to estimate scatter directly; Wiener: Wiener 

deconvolution followed by direct scatter estimation; Richardson-Lucy: Richardson-Lucy 

deconvolution followed by direct scatter estimation; under different blurring and noise 

conditions. (Note the inverse filtering is very sensitive to noise and omitted here.) 
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3.6 Conclusion 

We investigated several deconvolution methods to recover the scatter signal in 

the blocked region for blocker-based scatter correction for CBCT. Our simulation results 

demonstrate that Wiener and Richardson-Lucy deconvolution can significantly improve 

the scatter estimation compared to the direct method. Due to the blurring effect, the 

scatter signal in the blocked region is contaminated by the primary signal in the 

unblocked region. The direct use of the signal in the blocked region to estimate scatter 

(“direct method”) leads to large RMSE, whose values increase with the increased width of 

PSF and increased noise. The inverse filtering is very sensitive to noise and practically 

useless. The Wiener and Richardson-Lucy deconvolution methods significantly improve 

scatter estimation compared to the direct method. For a typical medium PSF and medium 

noise condition, both methods (~20) can achieve 4-fold improvement over the direct 

method (~80). The Wiener method deals better with large noise and Richardson-Lucy 

works better on large PSF. 
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Chapter 4  

A slanted-edge experiment 

We performed an slanted-edge experiment to model the detector response 

function (DRF) for a flat panel detector (FPD). The slanted-edge method [41,42] can be 

used to estimate the detector response function (DRF), i.e. point spread function [43,44]. 

A lead sheet with sharp and straight edge will be placed directly on the top of the FPD to 

avoid off-focal radiation and environmental scatter. A uniform incident fluence on the 

measured area will be assured by calibration. The angle of the edge is not parallel to the 

u or v axis, but slanted slightly (<5°). This allows the gradient of the edge to be measured 

at various phases relative to the detector element and generates an oversampled edge 

profile as shown in Fig. 3-1, which will provide extra high frequency response information. 

The novelty of this work is to investigate the effectiveness of deconvolution methods on 

improving blocker-based CBCT scatter estimation. Due to the blurring effect from the X-

ray source distribution and the detector response, the scatter signal in the blocked region 

is contaminated by the primary signal in the unblocked region, which leads to incorrect 

estimate of scatter in the whole projection image if no empirically adjustments were 

conducted. This work will provide a theoretically sound and practical solution to this 

problem and preliminary evidence that to what extent deconvolution methods can work.  

The purpose of this experiment is to measure the line spread function (LSF) and the 

modulation transfer function (MTF) of the projection image, then estimate the point 

spread function (PSF) and use them to deconvolve the original image to decrease the 

impact of the detector response effect. 
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4.1 slanted-edge method 

Figure 4-1 and Figure 4-2 show the projection image of a slanted lead plate and 

its edge profile. The ideal edge profile has a sharp corner but the real edge profile doesn’t 

(shown in Fig. 4-1(c)). Our goal of this experiment is to process the projection image to 

make the edge profile of the image sharp at the corner.  

 
(a) slanted edge                                           (b) detected edge 

 

 
(c)  estimated ESF                                       (d) estimated LSF 

Figure 4-1 modeling LSF 
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(a) estimated MTF                                              (b) estimated 2D MTF 

 

(c) estimated 3D MTF                                           (d) estimated 2D PSF 

 

 

(e) estimated 3D PSF 

Figure 4-2 clculating PSF 



 

40 

4.2 Results of differdent LSF 

We compared three kinds of methods to drive the LSF and PSF. The estimated 

LSF and PSF were obtained from the experiment as shown in Fig. 4-3. The fitted LSF 

and PSF were obtained by fitting the estimated LSF to the Eq. (3.4) and Eq. (3.5). The 

parametric LSF and PSF were obtained from the the Eq. (3.4) and Eq. (3.5) using the 

parameters in the reference [34]. The dotted lines are the corresponding LSF derived 

from the PSF. From the Fig. 4-4, we conclude that the estimated LSF is close to the 

parametric LSF. The fitted LSF has some differences from the esimtaed LSF, which is 

caused by the fitting method  we use. The results of the deconvolution for the three kinds 

of PSF are shown in the Fig. 4-4. (a) and (b) are estimated PSF. (c) and (d) are 

parametirc PSF. (e) and (f) are fitted PSF. The RMSE for the profile of blurred image is 

575. It became 1000, 55, 57 for the three PSF. 

 

 
Figure 4-3   comparison of LSF and PSF 
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(a) deconvolved image                                     (b) region of interest 

 

 
(c) deconvolved image                                     (d) region of interest 

 

 
(e) deconvolved image                                      (f) region of interest 

Figure 4-4 profile comparison after deconvlolution 
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4.3 Conclusion 

In this chapter, we investigated the deconvolution method to remove the detecor 

response effect in the slanted-edge experiment. The PSF are derived from the slanted 

image using parametric model and then deconvolve the original projection image. Our 

results show that the slanted-edge method is effective to derive LSF and PSF for the flat 

panel detector, and the deconvolution method can significantly eliminate the detector 

response effect. 

The penumbra effect is magnified by the blocker, which is also an important 

effect for blurring the image. We also tried to get the PSF of the projection image from the 

moving blocker method. However, the width of the lead strps is too small to contain the 

full information of PSF. A blind-deconvolution method have been proposed and will be 

implemented to see the performance. 
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Chapter 5  

Summary 

In summary, the results of reconstruction image and the CT number 

demonstrated that the moving blocker method can estimate the scatter signal in 

projection data, reduce the imaging dose, and simultaneously obtain complete volumetric 

information within the FOV. In the moving blocker methods, the signal detected in the 

blocked region is deemed scatter through an ideal projection assumption and used to 

estimate scatter in the unblocked region. The image reconstructed by the scatter 

corrected projection data from the unblocked regions. 

However, the accuracy of the scatter correction using the moving blocker method 

is limited by the detector response effect and the penumbra effect. Then we proposed 

several deconvolution methods to improve the accuracy of the scatter correction and 

implemented a simulation study. The results of the simulation demonstrated that the 

deconvolution method can be used to deblur the projection image. To implement the 

deconvolution method, we proposed a slanted-edge experiment to derive the LSF and 

PSF using a parametric model. The results of the experiment showed that with good PSF 

estimation, the deconvolution method can significantly eliminate the detector response 

effect. Therefore, the moving blocker system with deconvolution method can generate 

high quality CBCT image. The high quality image can improve anatomical visualization 

and dose calculation accuracy in the treatment position, which are essential for the 

adaptive radiation therapy.
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