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ABSTRACT

SPARSE SAMPLING AND ARRAY IN SIGNAL PROCESSING

Na Wu, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Qilian Liang

Sparse sampling and sparse arrays have attracted lots of interests in recent

years. In this dissertation, we firstly apply nested sampling and co-prime sampling

to ultra-wideband radar, which require us to extend the algorithms from stationary

signals to non-stationary signals. After that, the synthetic aperture radar data is

compressed through singular-value QR-decomposition algorithm.

The dissertation also proposes an approach to turn low resolution images into

high resolution (HR) images. We extend co-prime sampling structure to interpolation

in order to improve the resolution of reconstructed images through compressive sens-

ing (CS). Compared to the direct CS method and conventional interpolation method,

the new co-prime interpolated compressive sensing (CopCS) approach could tremen-

dously reduce the RMSE and improve the PSNR. Besides, in high compression ratio

scenario, CS exhibits a poor resolution due to the included black dots, while CopCS

can recover the image without introducing dots. Moreover, we also test CopCS ap-

proach on the Greenland bed elevation raw data set (very sparse sampled).

In addition, the augmented matrix approach from the minimum redundancy

array (MRA) is extended to the sparse arrays – nested array and co-prime array for
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direction-of-arrival estimation. Especially when the background of the system model

is in underwater environment and the sensors are considered as moving passive sonars.

Numerical examples of how to construct these new structures of the non-uniform array

are elaborated.

Moreover, as sparse arrays cost fewer elements, two sparse cylindrical arrays

are proposed in this dissertation. According to the characteristic of cylindrical ar-

ray, it can be seen as a linear array whose elements are the identical circular arrays.

Therefore the co-prime linear array and nested linear array could be combined with

circular arrays. Based on the beam pattern of uniform cylindrical array, 1D and

2D beam pattern of co-prime cylindrical array and nested cylindrical array are de-

rived respectively. Besides, when more than one sources are coming from arriving

directions, the performance of sparse arrays are analyzed and compared. The new

proposed sparse cylindrical arrays not only reduce the number of elements, but also

improves the resolution in comparison with an equal length uniform cylindrical array.

Since in massive MIMO, antennas at the base station usually scale up greater than

100, the performance of the sparse cylindrical arrays in massive MIMO scenario is

analyzed. Three modified structures of sparse cylindrical antenna array are proposed.

As it shows in the examples, when channel capacity is unchanged, sparse cylindrical

array could save about 30% of real antennas by calculating the virtual antennas via

difference co-array.
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CHAPTER 1

Introduction

Radar target detection often needs to process a great amount of data. In prin-

ciple, if the signal can be recovered after down sampling, the sampling rate should be

larger than the Nyquist sampling rate. However, Nyquist sampling is less efficient in

the background of big data. As a consequence, sub-Nyquist sampling has been stud-

ied for many years, because it can reduce the complexity and cost of computation

significantly. Here we consider two types of radars, one is ultra-wideband (UWB)

radar and the other one is synthetic aperture radar (SAR). UWB radar has been em-

ployed in foliage environment because of the exception range resolution coupled with

penetrating capability and low power [1][2]. Target detection in forest environment

attracted a lot of interest since it not only benefits military area, but also helps the

detection in other scenarios, such as sense-through-wall. In existing works of UWB

radar detection of targets in foliage, [3] and [4] applied two methods, in the aspect

of frequency domain and time domain respectively. Synthetic aperture radar (SAR)

is an on-board radar system that can provide high-resolution images for remote ob-

jectives even in a bad weather situation. The research of SAR is mainly focused

on image and target recognition algorithm. There are several different strategies to

reduce the capacity of the data. The author in [5] compared different algorithms for

on-board SAR raw data reduction. In [6], Gabor transform is proposed for SAR im-

age compression and in [7][8], compressive sensing (CS) algorithms are applied. Xia

[9] and Li et al [10], used co-prime sampling for estimating multiple frequencies and

imaging of moving targets with SAR.
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High resolution (HR) image is highly desirable in many areas, such as graphic

applications and image processing. The advantage of HR image is that it can provide

more details with a high pixel density. This is very critical and helpful in medical

diagnosis or pattern recognition. Nevertheless, the resolution is often limited in prac-

tical by various reasons, like bad weather condition and outdated hardware. Although

a lot of research has been studied on CS [11]-[13], none of it is on bed map resolution

improvement. The bed elevation and basal conditions of the Greenland and Antarctic

ice sheets are important to numerical modeling of these ice sheets, but its difficult

to collect data over these large ice sheets with airborne radars to generate a high

resolution bed map. Furthermore, processing with a large number of data sets would

be a major problem. Co-prime sampling is usually applied in under-sampling process

and calculating correlation, while there is another property of co-prime sampling –

orthogonality, which could be used to complementary combine two co-prime images

[14].

Underwater source localization has received lots of research interests since it

plays an important role in military intelligence, navigation and ocean exploitation.

The design purpose is to detect more targets through fewer sensors. [15] introduces

the minimum redundancy array (MRA), which can reduce the number of redundant

sensors present in the array. Besides, the author in [16][17] proposes two new struc-

tures of non-uniform arrays – nested array and co-prime array. Direction of arrival

(DoA) estimation has been studied over 1D, 2D and multiple dimensional arrays [18]-

[20]. Design of the array involves trade-offs among the geometry and the number of

sensors. High resolution of the array needs large aperture while keeping the spacing

of the sensors less than half-wavelength. How to successfully detect all the sources in

underwater scenario with less sensors is still an open question. Furthermore, the array

sometimes is placed on a moving platform, such as autonomous underwater vehicle
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(AUV). In order to minimize the number of physical sensors on the moving platform,

an algorithm based on space-domain sensor synthesis (SDS) is proposed. Consider-

ing the phase shift in the signal, a gradient descent algorithm is applied before SDS

algorithm.

Conformal arrays are valuable in many applications, such as underwater sonar

arrays and antenna arrays in wireless communication systems. Conforming the array

to the surface not only saves the space, but also makes the elements less visually intru-

sive by integrating it into existing objects. Cylindrical array is one type of conformal

arrays. A cylindrical array contains of elements in three directions and this provides

wide cover in both the azimuth plane and the elevation plane, so it’s widely used in

wireless communication. One big difference between conformal array and traditional

array is that the beam pattern can not be obtained by the product of array factor and

element pattern. However, since the cylindrical array consists of a series of identical

circular arrays, the whole array can be seen as a linear array whose elements are these

identical circular arrays. How to design antenna arrays plays an important role in

wireless communications, especially when there’re hundreds of antennas at the trans-

mitter. In massive MIMO, if the number of antennas and RF chains are increasing,

the channel capacity and transmission efficiency could be obviously improved as well.

Since in massive MIMO, antennas at the base station (BS) usually scale up greater

than 100, the complexity and hardware requirement of the system are also increased.

Many studies in massive MIMO are focused on the analysis of channel capacity, pre-

coding and etc, few are about the sparse antenna array deployment. Based on the

sparse linear array structures as indicated by previous literatures, three new arrays

namely co-prime cylindrical array (CCA), nested cylindrical array (NCA) and sparse

nested cylindrical array (SNCA) are proposed. Compared to the traditional uniform
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cylindrical array (UCA), the proposed arrays vastly reduce the number of antennas

used at the BS.

1.1 Preliminaries to sparse sampling

1.1.1 Nested sampling

Nested sampling has been applied in beam-forming and DoA [16], which is

obtained by down sampling a set of data using two or more uniform linear arrays.

This structure can generateN2 degrees of freedom withN physical sensors. For a two-

level nested sampling of xc(t), the level 1 samples and level 2 samples are separately

located at N1 and N2, and satisfy

1 ≤ l ≤ N1 (1.1)

(N1 + 1)m, 1 ≤ m ≤ N2 (1.2)

In Figure 1.1, we give an example of two-level nested sampling.

N1

N2

one period

...

N1

N2

0 1 34 8 12 16 20 24 28 32 36 40 44

(N1+1)N2 2(N1+1)N2

Figure 1.1. two-level nested sampling with N1 = 3, N2 = 5.

For simplicity of describing nested sampling, several properties of nested sam-

pling are concluded as follows:
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Property 1. Given the cross-difference kn = (N1+1)m−l, 1 ≤ m ≤ N2, 1 ≤ l ≤ N1,

the range of cross-differences lies in −[(N1 + 1)N2 − 1] ≤ kn ≤ [(N1 + 1)N2 − 1].

Property 2. There are some ’holes’ in the range of cross-difference, such as (N1 +

1), 2(N1 + 1), ..., (N2 − 1)(N1 + 1), which can be calculated by self differences (N1 +

1)(m1 −m2), 1 ≤ m1,m2 ≤ N2.

Property 3. For spatially wide sense stationary signal, the correlation at all lags

before nested sampling will be equal to that after nested sampling. If the signal is

non-stationary, for a small period, this equality still holds.

The proofs of property 1 and 2 can be referred in [17], and property 3 is derived

from the theory of Short-time Fourier transform (STFT).

The period of nested sampling is represented as (N1+1)N2, for example, N1 = 3

and N2 = 5. It means that in each period, there are 20 values which are indicated by

8 numbers. The average sampling rate is

fs =
N1 +N2

(N1 + 1)N2

≈ 1

N1

+
1

N2

(1.3)

With the increasing of N1 and N2, the sampling rate will be smaller than the

Nyquist sampling, thus causing nested sampling a Sub-Nyquist sampling.

1.1.2 Co-prime sampling

Different from nested sampling, co-prime sampling deals with a set of data into

two sets of uniformly spaced samplers MT and NT , where M and N must be mutual

co-prime numbers. Co-array can also generate MN freedoms with M + N sensors.

The instance is shown in Figure 1.2. After co-prime sampling, the WSS signal xc(t)

is divided into:

xc(t) = x(Mn)

xc(t) = x(Nn)

(1.4)
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MT

NT

Undersampled by M

Undersampled by N

xc(t)
x(Mn)

x(Nn)

Figure 1.2. Co-prime sampling in the time domain using M,N .

and the difference between two sets is

kc = Mn1 −Nn2 (1.5)

which is defined as difference co-array.

From [17], we know that the range of kc should be between

−MN + 1 ≤ kc ≤ MN − 1 (1.6)

There are also several properties of co-prime sampling:

Property 4. If 0 ≤ n1 ≤ N − 1 and 0 ≤ n2 ≤ M − 1, then x(n1, n2) = Mn1 −Nn2

can achieve MN distinct values in the previous range of kc.

Property 5. There are ’holes’ in the difference co-array. In order to generate full

range of [−MN +1,MN −1], the ranges of n1 and n2 are defined as 0 ≤ n1 ≤ N −1,

−M +1 ≤ n2 ≤ M − 1, and the self-difference Mi1−Mi2, Ni′1−Ni′2 are considered.

The average sampling rate of co-prime sampling is

fs =
M +N

MN
≈ 1

M
+

1

N
(1.7)

when T = 1.
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1.2 Preliminaries to sparse arrays

1.2.1 One-dimensional nested array and co-prime array

Nested linear array is constructed by a nested pair (N1, N2), where the sensors

are placed with two-level density, and level 1 has N1 sensors, level 2 has N2 sensors

[16],

1 ≤ l1 ≤ N1

(N1 + 1)l2, 1 ≤ l2 ≤ N2

(1.8)

The difference co-array of the 1D nested array is defined as

dn = (N1 + 1)l2 − l1, 1 ≤ l1 ≤ N1, 1 ≤ l2 ≤ N2 (1.9)

(a)

(b)

d

sensor

0 4 5 8 10 12 15 16 

1 2 3 4 5 6 12 18 24

Figure 1.3. Example of co-prime linear array and nested linear array, (a) co-prime
pair (4, 5), (b) nested pair (5, 4). .

Co-prime linear array interleaves two uniform subarrays which are sampled by

two prime integers P , Q, and the locations of the elements are in set K = {K1,K2},

where
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K1 = {0, Q, 2Q, 3Q, . . . , (P − 1)×Q}

K2 = {0, P, 2P, 3P, . . . , (Q− 1)× P}
(1.10)

While in a co-prime array, if the two prime numbers are (P,Q), the difference

co-array is

dc = Pn1 −Qn2, 0 ≤ n1 ≤ Q− 1, 0 ≤ n2 ≤ P − 1 (1.11)

In Figure 1.3(a), it plots an example of co-prime linear array with co-prime

integers (4, 5), and in Figure 1.4(b), it shows the example of nested linear array with

pair (5, 4).

1.2.2 Two-dimensional Nested Array

0 1 2 3 4

x

0

1

2

3

4

y

virtual

real

Figure 1.4. Example of two-dimensional nested array .

In this work, the multiple dimensional sparse cylindrical array is built similarly

to the rectangular nested array. As a consequence, the definition of the 2D nested

array is provided here.

8



Definition 1. 2D nested array [18]: A two-dimensional nested array consists of a

dense array and a sparse array, which are described by a random generated 2 × 2

nonsingular matrix N (d), an integer matrix P , the number of elements in sparse

array is N (s) and in dense array is N (d) = det(P ).

(1) The sensor locations in dense array is generated by {N (d)n(d),n(d) ∈ FPD(P )}.

FPD is the fundamental parallelepiped.

(2) The sensor locations in sparse array is N (s)[m1 m2]
T , with m1,m2 in the

range [0, N
(s)
1 ], [0, N

(s)
2 ] respectively and N

(s)
1 N

(s)
2 = N (s).

For example, let N (d) =

 1 0

0 1

, P =

 2 0

0 2

, N
(s)
1 = 3, N

(s)
2 = 3. We

illustrates this 2D nested array in Figure 1.4. There’re 12 real sensors which are

plotted in red dots and 13 virtual sensors in blue dots.

1.3 Organization

The rest of this dissertation is organized as follows:

Chapter 2 implements sparse sampling and singular-value-QR decomposition to

compress the UWB radar data and SAR data. Chapter 3 extends co-prime sampling

structure to interpolation in order to improve the resolution of Greenland bed map. In

Chapter 4, 1D and 2D sparse arrays are applied in underwater DoA detection. Then

in Chapter 5, the moving 1D co-prime sensor array based on the proposed space-

domain sensor synthesis is studied. In Chapter 6, we evaluate spatial resolution and

channel capacity of sparse cylindrical arrays for massive MIMO. Finally, some future

work is provided in Chapter 7.
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CHAPTER 2

Data Compression for UWB Radar and SAR

2.1 Introduction

Big data is a hot topic recently, and due to its large size, data compression

becomes very important. However, data compression will cause a loss of information

and affect the resolution of the radar image. Sub-Nyquist sampling has been stud-

ied for many years, because it can reduce the complexity and cost of computation

significantly. Recently, a new sub-Nyquist sampling algorithm mentioned in [16] is

systematically nesting two or more uniform linear arrays and [17] proposed co-prime

sampling afterward. One advantage of nested sampling and co-prime sampling is that

wide-sense stationary (WSS) signals sampled by these two sub-Nyquist sampling al-

gorithms can keep the same second-order statistics and achieve enhanced degrees of

freedom. Because of its property in second-order statistics, we want to prove these

under-sampling methods would be helpful for detecting target in foliage environ-

ment. Another data reduction method, singular-value decomposition-QR (SVD-QR)

algorithm is proposed in [21]. SVD-QR algorithm has been used in reducing the

redundancy of wireless sensor network [22][23] for its advantage of low complexity.

SVD-QR selects several independent data sets which minimize the residual error in a

least-square sense. In wireless sensor networks, since the sensors are densely deployed

and the information collected among adjacent sensor nodes is possible alike with each

other, this approach can be very efficient. The SAR images formed from the phase

histories are also spatially overlapped, taking advantage of this property, we apply

SVD-QR method in synthetic aperture radar in a similar way.
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This chapter is organized as follows. Section 2.2 and section 2.3 gives a brief

overview of the implementation of ultra-wideband rada (UWB) and the basic concepts

of SVD-QR algorithm respectively. In section 2.4, we apply the data compression

algorithm in two types of radars, in which section 2.4.1 shows the nested sampling and

co-prime sampling in sense-through-foliage target detection and Section 2.4.2 provides

raw data reduction for SAR based on SVD-QR method. Section 2.5 summarizes the

results.

2.2 Implementation in Ultra-wideband Radar (UWB)

Forests environment is a strong clutter background. As a result, target-detection

in foliage situation is more challenging and requires extensive data to process. Be-

sides, the channel in this environment is time-varying and non-stationary. Because

nested sampling and co-prime sampling are based on the premise of wide-sense sta-

tionary signal, they can’t directly applied on the radar echoes. Short-time Fourier

transform (STFT) has been widely applied on non-stationary signals. In this pa-

per, we propose two improved STFT methods namely nested sampling based STFT

(NS-STFT) algorithm and coprime sampling based STFT (CS-STFT) algorithm.

2.2.1 Sense-through-foliage Experimental Settings

Our data is from the experiment based on the radar-based sense-through-foliage

in late summer and fall. The measurements were conducted by Virtual Machines

Company in Holliston, Massachusetts [26]. Because of the limited rainfall, late sum-

mer foliage involved decreased water content. Late fall and winter measurements

involved largely defoliated but dense forest. There are two sets of data used, good

quality and poor quality. In Figure 2.1, we plot the good quality signal with target

and without target.
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Figure 2.1. Measurement with very good quality signal and 100 pulses average, (a) no
target on range, (b) with target on range (target appears at around sample 14,000).

The experiment is constructed on a seven-ton man lift which had a total lifting

capacity of 450 kg [27]. The principle pieces of equipment secured on the lift are:

Barth pulser, Tektronix model 7704B oscilloscope, dual antenna mounting stand, two

antennas, rack system, IBM laptop, HP signal Generator, Custom RF switch and

power supply and Weather shield (small hut).

In this experiment, a Barth pulse source (Barth Electronics, Inc. model 732

GL) was used. The pulse generator uses a coaxial reed switch to discharge a charge

line for a very fast rise time pulse outputs. The model 732 pulse generator provides

pulses of less than 50 picoseconds (ps) rise time, with amplitude from 150 V to greater

than 2 KV into any load impedance through a 50 ohm coaxial line. The generator

is capable of producing pulses with a minimum width of 750 ps and a maximum
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of 1 microsecond. This output pulse width is determined by charge line length for

rectangular pulses, or by capacitors for 1/e decay pulses. The interval of each sample is

50 picoseconds, and each set of data contains 16,000 samples for a total time duration

of 0.8 microseconds at the rate about 20 Hz. The Barth pulse source was operated at

low amplitude and 35 pulses reflected signal were averaged for each collection. Some

existing works about sense-through-foliage target detection based on these data were

reported in [28][29].

In Figure 2.1, good quality signal with target and without target are plotted

but it’s difficult to tell the difference. If we expand views from sample 13001 to 15000,

it’s shown in Figure 2.2. When there is target in the range, the difference of Figure

2.2(a) and 2.2(b) will be the response of target, which is Figure 2.2(c). Based on the

knowledge of appearance of target, we can tell that the target is around at sample

14,000. But in practice, we obtain clutter echoes without acquiring the knowledge

about target, so the problem is how can we detect the target only rely on Figure

2.2(b)? Moreover, if the signal quality is poor, it would be more difficult to find the

position of the target.
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Figure 2.2. Measurement with very good quality signal and 100 pulses average. (a)
Expanded view of no target on range, (b) expanded view of target on range, (c)
difference between (a) and (b).
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2.2.2 Theoretical Analysis

FromWiener-Khinchin Theorem, the relationship between auto-correlation func-

tion and power spectral density (PSD) for wide-sense stationary signal is defined

below.

For discrete signal x[n],

S(f) =
+∞∑

k=−∞

Rx(k)e
−i2πfk (2.1)

where

Rx(k) = E[x(n)x∗(n− k)]

=


1
N

∑N−k−1
n=0 x(n)x∗(n− k), 0 ≤ k

Rx(−k), k < 0

(2.2)

and N is the length of echo x.

Another way to calculate PSD of x(n) is through the N-point discrete Fourier

transform (DFT),

X(f) =
N−1∑
n=0

x(n)e−i2π/Nkn (2.3)

S(f) = |X(f)|2 (2.4)

From property 1, the cross difference is given in the range −[(N1 +1)N2 − 1] ≤

k ≤ [(N1+1)N2− 1] and thus the estimate of auto-correlation of nested sampling for

all lags k can be obtained by

R̂n(kn) = E[x(n)x∗(n− k)] =
1

P

P−1∑
p=0

x(n)x∗(n− k) (2.5)

and for co-prime sampling, the estimate autocorrelation is [17]

R̂c(kc) =
1

P

P−1∑
p=0

x(M(n1 +Np))x∗(N(n2 +Mp)) (2.6)
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When target appears, the sample strength changes more abruptly, which implies

that the echo contains more AC values than that without targets. In [30], the author

introduced short time Fourier-transform to deal with the non-stationary signal. For

a continuous-time signal, the definition of STFT is

Y (m,w) =

∫ +∞

−∞
x(t)w(t−m)e−jwtdt (2.7)

Here, x(t) is the echo signal and w(t) is the window function. Y (m,w) represents

sinusoidal values in every window at time position m. When moving the window,

x(t) is supposed to be stationary in corresponding window duration. The window’s

interval defines the frequency resolution of the STFT analysis, as a result, we should

choose the window’s length short so that it can approximate the signal’s spectrum

well.

If the signal is discrete, (2.7) is expressed as

Y (m,w) =
N−1∑
n=0

x(n)w(n−m)e−iwn (2.8)

There are different kinds of windows to choose, such as Gaussian window and

rectangular window. No matter what kind of window is chosen, the result only

represents that the PSD of the signal is changing with time. In this work, we apply

a rectangular window, with the length L and step size M ,

w(n) =

 1 if 0 ≤ n ≤ L− 1

0 otherwise
(2.9)

After each step of STFT, we cumulate the power of AC values as following:

P (m) =
L−1∑
w=4

|Y (m,w)|2 (2.10)

Combining (2.4) and (2.8), P (m) of NS-STFT and CS-STFT can be expressed

as

Pn(m) =
L−1∑
m=4

Sn(m,w), w = 2πf (2.11)
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Table 2.1. Variables used in this section

Notations Meaning

(M,N) co-prime pair used in the sam-
pling

P number of period of nested sam-
pling or co-prime sampling

x(n) discrete echo signal
R(k) Autocorrelation of the discrete

signal

R̂n(k) Autocorrelation of the nested
sampling signal

R̂c(k) Autocorrelation of the co-prime
sampling signal

Sn(m,w), Sc(m,w) Power spectral density
Pn(m), Pc(m) power of AC values

Pc(m) =
L−1∑
m=4

Sc(m,w), w = 2πf (2.12)

where

Sn(m,w) =
N−1∑
n=0

R̂n(kn)w(n−m)e−iwk

=
N−1∑
n=0

{ 1
P

P−1∑
p=0

x(n)x∗(n− k)w(n−m)e−iwk}
(2.13)

and

Sc(m,w) =
N−1∑
n=0

R̂c(kc)w(n−m)e−iwk =
N−1∑
n=0

{ 1
P

P−1∑
p=0

x(M(n1 +Np))x∗(N(n2 +Mp))w(n−m)e−iwk}
(2.14)

We detect the target through the power of AC values Pn(m) and Pc(m) respec-

tively in NS-STFT method and CS-STFT method.

Several important variables in the new algorithms are listed in Table 2.1.
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2.2.3 Simulation Results

2.2.3.1 NS-STFT approach

Firstly, we show the results of existing STFT method in Figure 2.3. Along with

the moving of slicing window, we can acquire the power values of the echo P (m) from

sample 10,000 to 15,000. In [31], it has pointed out that generally the clutter has

Gaussian distribution in the frequency domain. Therefore, when there is a target in

the range, the power of AC values will behave like random noise. In Figure 2.3(a)

and 2.3(b), we plot the good quality signal. It’s clearly to see that in Figure 2.3(b),

when there is target on range, the curve around 14,000 sample index is smooth. But

in Figure 2.3(a), the curve is like chaotic impulses.

When the Barth pulse source was operated at low amplitude and the sample

values are not obtained based on sufficient pulse response averaging (averaged over 35

pulses for each collection), significant pulse-to-pulse variability is noted and the return

signal quality is poor. In this situation, a single radar cannot tell where the target

is, since pulse-to-pulse variability exists in the echos at different time or different

site, this motivates us to explore the spatial and time diversity using Radar Sensor

Networks (RSN). In this paper, the RAKE structure is proposed in [30]. There are 30

radars combined in the simulation and the echo of each cluster-member radar sensor

is combined by the clusterhead using a weighted average, which is determined by the

power of each echo xi(m) (m is the sample index),

wi =
Ei∑n
i=1Ei

(2.15)

and

Ei = var(xi(m)) + [mean(xi(m))]2 (2.16)
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Figure 2.3. The power of AC values versus sample index of good quality data with
window length L = 30, step size M = 16 and poor quality data with window length
L = 25, step size M = 15, (a)(b) no target on range, (c)(d) with target on range.

The power of AC values are plotted in Figure 2.3(c) and 2.3(d), where the target

is circled in the figure.

According to (2.13), we can plot the power spectral density of NS-STFT ap-

proach and the results are shown in Figure 2.4 and Figure 2.5. As property 3 states,

the auto-correlation R̂n will approximately equal to Rx, so we can detect the target

based on (2.13). From the simulations we find that the window length L will affect

the performance of target detection. When NS-STFT approach is employed on good
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Figure 2.4. The power of AC values versus sample index of good quality data after
nested sampling, with sampling pairs N1 = 2, N2 = 5, (a) no target on range, (b)
with target on range (target appears at around sample 14,000).

quality data, L = 24 is a little smaller than 30. This is because the existing variations

of estimated auto-correlation.
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Figure 2.5. The power of AC values versus sample index of poor quality data after
nested sampling, with sampling pairs N1 = 2, N2 = 3, (a) no target on range, (b)
with target on range (target appears at around sample 14,000).
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Figure 2.6. The power of AC values versus sample index of good quality data after
co-prime sampling, with sampling pairs M = 3, N = 4, (a) no target on range, (b)
with target on range (target appears at around sample 14,000).

Based on the sampling rate (1.3), we can calculate the compression ratio of

nested sampling. For example, in Figure 2.5(a), the pair of nested sampling is N1 =

2, N2 = 5. Therefore, the compression ratio is decreased to about 46.67%, this saves

almost half of the space, which is quite desirable for large amount of data.

2.2.3.2 CS-STFT approach

The results of CS-STFT on good quality data and poor quality data are pre-

sented in Figure 2.6 and Figure 2.7. For good data, co-prime pairs M = 3, N = 4

are chosen and for poor quality signal, we use the sampling pair (2,3). When target

appears, the curve around 14,000 behaves like a Gaussian pdf as circled in Figure

2.6(b) and 2.7(b). The window length L in CS-STFT method is almost the same as

in NS-STFT method, which is 23 for good quality data. The compression ratio of

co-prime sampling in Figure 2.6 could be calculated by (1.7) and it is 58.3%. If the

sampling rate fs keeps increasing, the window length L must decrease. However, in
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Figure 2.7. The power of AC values versus sample index of poor quality data after
co-prime sampling, with sampling pairs M = 2, N = 3, (a) no target on range, (b)
with target on range (target appears at around sample 14,000).

the case of poor quality signal, compression becomes more difficult since there will be

more noise included in the data, so we only choose the sampling pair (2,3).

2.3 Singular-Value Decomposition-QR (SVD-QR) Algorithm

SVD-QR algorithm is proposed in [24] [25], which is a preferable method in rank

deficient problems. In a least-square sense, it chooses a subset from the independent

data which have the minimum residual error. Here the main mathematical notations

are:

1) Given the phase history data set matrix P ∈ RN×M , r = rank (P) ≤ M and

r′ is the numerical estimation of rank r through

P = U

 Σ 0

0 0

VT (2.17)

where U is a size N × N matrix of orthonormalized eigenvectors of PPT , V is an

M×M matrix of orthonormalized eigenvectors of PTP, and Σ is the diagonal matrix

which is
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Σ = diag(σ1, σ2, ..., σr), σi =
√
λi. (2.18)

here λi is the ith eigenvalue of HHT and select r̂ ≤ r′.

2) Compute a permutation matrix E such that the columns of the matrix Γ1 ∈

RN×r̂ in

PE = [Γ1,Γ2] (2.19)

are independent. The permutation matrix E is obtained from the QR decomposition

of the sub-matrix comprised of the right singular vectors, which correspond to the r̂

ordered most significant singular values.

The specific procedures of this algorithm could be presented as following:

Step 1: Create a matrix P which is selected from the phase history data.

Step 2: Execute SVD-QR as describing above to the slow-time history phase

data and decide the most important collections to be used in the image formation.

Step 3: Partition

V =

 V11 V12

V21 V22

 (2.20)

where V11 ∈ Rr̂×r̂, V12 ∈ Rr̂×(M−r̂), V21 ∈ R(M−r̂)×r̂ and V22 ∈ R(M−r̂)×(M−r̂). For r̂, it

could be selected smaller than r′ in many practical cases.

Step 4: Pivoting the column by using QR decomposition, determine E such

that

Q×R = [V T
11, V

T
21]E (2.21)

here Q represents a unitary matrix, R forms an upper triangular matrix with de-

creasing elements and E is the permutation matrix.
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After decomposition and pivoting, the most significant r̂ can be decided, which

in short is the set used to construct the image.

2.4 Implementation in Synthetic Aperture Radar (SAR)

2.4.1 Background of Gotcha Data Set

Gotcha SAR Dataset is an open source for radar algorithm research, which

collects signal at a 640MHz bandwidth and the on-board radar covers eight different

elevation angles of phase history data with full polarization. The trace of the aircraft

is a circle over an area of parking lot and the on-board, side-looking radar transmits

and receives electromagnetic waves at a constant pulse repetition interval (PRI). We

choose the Pass 1 data with HH polarization and there are total 360 data sets.

2.4.2 Theoretical Analysis

In Figure 2.8, we illustrate the circular SAR geometry as an example. The

civilian vehicles and calibration target locate in the monitored area.

x

y

flight path
Monitored area

Figure 2.8. Imaging system geometry in circular SAR .
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The real path in the figure can be written as

ra(τ) = (xa(τ), ya(τ), za(τ)) (2.22)

where τ denotes the slow-time domain.

If we define the distance with respect to the origin (0,0,0), it is

da(τ) =
√

(xa(τ))2 + (ya(τ))2 + (za(τ))2 (2.23)

A target in the range is located at

r(τ) = (x(τ), y(τ), z(τ)) (2.24)

We assume this target is stationary, as a result, the distance between the an-

tenna phase center and the target can be calculated by

da0(τ) =
√

(xa(τ)− x)2 + (ya(τ)− y)2 + (za(τ)− z)2 (2.25)

Along the flight path, the radar transmits and receives pulses. In a given

synthetic aperture, Np pulsed used to construct the image and the transmission time

of each pulse is {τn, n = 1, 2, ..., Np}. There are K frequency samples per pulse, which

are {fk, k = 1, 2, ..., K}.

Furthermore, we assume the output of the receiver at a given time τ , which is

the time delayed by the round-trip to the target, sampled on band-limited frequency

domain of a pulse and the scene center has zero phase. Therefore the receiving signal

is written as

S(fk, τn) = e−2πf(2(da0(τn)−d(τn))/c) (2.26)

Assuming at a discrete range bin m, (2.26) is rewritten as

s(m, τn) =
K∑
k=1

S(fk, τn)e
(2πf(2(da0(m,τn)−d(m,τn))/c) (2.27)
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The imaging formation result is decided by the reflectivity of the target scene,

for instance, some areas with small reflectivity values can be considered as no target,

which are shown in dark color in the figure. This motivates us to separate a space

into principle and sub-principle subspaces.

2.4.3 Simulation Results

Firstly, we show an example of data reduction in phase history. SVD a matrix P

and get diag(Σ) = (0.059510004, 0.042771991, · · · , 0.0043679429, 0.0041228784). It’s

necessary to decide the value of r̂, here in Figure 2.9, we plot the singular values Σ.
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Figure 2.9. Applying SVD-QR algorithm, the results of singular values. .

It’s clearly to see that the slope of the curve changes from steeply to slightly,

and around after 40, the singular values are much smaller than before. As a result, in

the simulation we define r̂ = 40. In order to get V11 and V21, V needs to be partitioned

before QR decomposition. V11 is a size of R40×40 matrix and V21 is R(M−40)×40.
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With column pivoting and QR decomposition, the economy matrix E is deter-

mined. In this instance, r̂ = 40, we only care about forty columns of E. For example,

if

E =



0 0

0 0

0 1

1 0

0 0

0 0

0 0

0 0



the values of 1 appears in the forth and third columns of the

input matrix P, which means that the data collected only from these two angular are

the most significant, and they can effectively represent all the others.

In [32], a challenging problem of two dimensional image formation of stationary

targets is released, which aims to construct an area of numerous civilian vehicles and

calibration targets. In the simulations, we randomly choose 21 files of the history data

with total number of 2462 sets data and no windowing is applied to the data before

imaging. After the SVD-QR algorithm, the scenario is recovered through about half

of the original data. In Figure 2.10, the original image formation result by using

backprojection algorithm is presented.

If we employ the SVD-QR method before backprojection algorithm, the phase

history data could be compressed by a ratio about 2:5. The output of the image is

plotted in Figure 2.11(a).

We can see that even if some information is lost, the main properties of the

scenario are preserved well. It proves the validity of SVD-QR algorithm in 2D SAR

environment. In order to show the importance of correctly selecting echoes, in Figure
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Figure 2.10. Original image formation via backprojection algorithm using volumetric
challenge problem data set. .

2.11(b), we compare it with the uniform down sampling of the data, which achieves

the compression ratio as 1:2. It seems that if we uniformly sample the data, we will

miss more significant information than SVD-QR algorithm.

2.5 Conclusions

In this chapter, two target detection algorithms in foliage environment are de-

veloped, which are NS-STFT approach and CS-STFT approach. Since nested sam-

pling and coprime sampling are sub-Nyquist sampling, the NS-STFT methods and

CS-STFT method can save about half the quantity of the data comparing with the

original approach. The results show that as long as we choose suitable window length

and step size, the new methods can achieve the same performance. The window

length falls when the sampling frequency increases. The poorer the quality of the

signal is, the more difficult to compress. Besides, if the signal quality is poor, with

the help of RSN and RAKE structure, it’s easy to detect target on range intuitively.
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Figure 2.11. Compression image formation via Volumetric Challenge Problem data
set, (a) SVD-QR algorithm, (b) uniform down sampling .

In addition, the high redundant SAR raw data of the signal echoes is compressed

by exploiting SVD-QR algorithm in slow-time domain of the data set before using

backprojection image reconstruction method. This is less complicated than many

compressive sensing algorithms and can achieve better performance than uniform

down sampling method. We test our algorithm and compare it with uniform down

sampling on Volumetric Challenge Problem data set, which is collected in a real

scenario. The results show that this algorithm can successfully recover the image

without losing important information such as the vehicles and calibration targets

and the compression ratio could achieved by 2:5 overall. This is the first time that

SVD-QR algorithm is applied to the real 2D SAR data.
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CHAPTER 3

Sensing with Application to Greenland Bed Elevation Assessment

3.1 Introduction

The Greenland Ice Sheet is about 1,710,000 square kilometers (656,000 square

miles), covering 80% of the island of Greenland, which is almost three times the size

of Texas [33]. Since the ice sheets could rise the sea level, influence the weather

and climate, finding a possible method to improve the resolution of Greenland bed

elevation map is very essential.

Broadly speaking, there are three ways to increase resolution level. One direct

approach is to decrease the pixel size by sensor manufacturing techniques. If the

pixel size is reduced, the number of pixels in one unit area of an image will increase

and thus more detailed information is offered. However, this will generate shot noise

that degrades the image quality severely [34]. Another approach is mentioned in

[35], where the author enlarged the chip size to achieve high resolution performance.

However, the expensive high precision hardware sometimes is not affordable. Sub-

sequently, people find the third direction – signal processing techniques – to obtain

HR image from low-resolution images. In [36] and [37], the authors applied discrete

cosine transform and wavelet transform for HR images. For many imaging systems

such as visual charge coupled device (CCD) cameras, since some extent aliasing from

under-sampling is allowed, in [38], a maximum a posterior (MAP) framework for

jointly estimating image registration parameters and the high-resolution image was

proposed. In addition, [39] presented a way of multiple-frame image restoration and

registration. Interpolation was also involved with HR images [40]-[42], and some
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popular interpolation algorithms such as the nearest neighbor interpolation, bilinear

interpolation and bicubic interpolation were provided in [43], [44] and [45] respec-

tively.

Among signal processing studies, compressive sensing has been investigated

for several years and currently has a wide range of application such as imaging,

radar signal processing and channel coding [11]-[13]. In [46], CS was successfully

applied in MRI scanning to generate HR images. The theory is to reconstruct certain

signals or images based on samples from sub-Nyquist sampling. The advantage of

CS is that it only requires a small number of samples and has a relative robust

performance in reconstruction. However, when the compression ratio is too high, the

reconstruction errors of CS could be very large. As a consequence, we want to combine

CS with other techniques to overcome the large errors in high compression ratio

scenario. The difficulties of compressive sensing lies in the efficiency and accuracy

of the construction algorithms. In many existing works [47]-[50], ℓ1-minimization

methods such as basis pursuit (BP) and greedy algorithm like matching pursuit (MP)

and orthogonal matching pursuit (OMP) have been explored. The author in [51]

proposed a new gradient projection (GP) approach to reduce the complexity of the

previous algorithms such as OMP and it is easy to be implemented. In this paper, we

introduce co-prime sampling to the gradient projection method in order to improve

the resolution of Greenland elevation map.

In [9] and [10], co-prime sampling had been applied to estimation of multiple fre-

quencies and synthetic aperture radar of moving targets. Besides, co-prime sampling

combined with DFT filter banks was applied to obtain a high resolution beamformer.

All these works focused on stationary signals. For non-stationary signal, [52] also

studied co-prime sampling in radar signal processing. Co-prime sampling is usually

applied in under-sampling process and calculating correlation, while there is another
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property of co-prime sampling – orthogonality, which could be used to complemen-

tary combine two co-prime images [14]. Since co-prime structure is easy to built and

has the closed form expressions, introducing co-prime sampling into CS to improve

the performance is desirable. Unlike other previous papers on compressive sensing,

we first propose an interpolation structure based on co-prime sampling. Then we

estimate the missing pixels by GP algorithm and finally the high resolution picture

is presented.

The main contribution of this work is that we extend the co-prime structure to

interpolation and compressive sensing. To the best of our knowledge, this is the first

time that co-prime sampling is exploited in interpolation process. One advantage

of this approach is to achieve smaller RMSE and higher PSNR in the reconstructed

images. Furthermore, the blurry parts in the recovered images could also be removed

via orthogonal and complementary property of co-prime interpolation.

3.2 Preliminaries

In this section, we provide some preliminaries of co-prime sampling and com-

pressive sensing. In addition, we also demonstrate the advantage of co-prime struc-

ture.

3.2.1 Co-prime Sampling for An Image

Assume f(pi) is the input signal where i ∈ I = {0, 1, 2, . . . , N}, if we use the

co-prime pair (M1,M2) where M1 and M2 are prime numbers to do the sampling

respectively, the interpolated locations are in sets K1 and K2
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K1 =

{
0,M1, 2M1, 3M1, . . . ,

⌊
N

M1

⌋
×M1

}
K2 =

{
0,M2, 2M2, 3M2, . . . ,

⌊
N

M2

⌋
×M2

} (3.1)

For co-prime down-sampling, the values of locations in (3.1) are discarded, but

in this work, we’ll insert values in the sampling locations in (3.1). Because M1 and

M2 have no other common divisors excluding one, the overlapping sampling locations

only occur when

d1
d2

=
M1

M2

(3.2)

where d1 ∈ K1 and d2 ∈ K2, so that the number of overlapping sampling locations is

q =

⌊
N − 1

M1M2

⌋
+ 1 (3.3)

If (M1,M2) are large prime numbers, then q is small. As a result, the co-

prime sampling process could be treated as orthogonal interpolation. In Figure 3.1,

we illustrated the sampling process for a m × n image with co-prime pair (3, 5) in

one period. The sampling positions are stored in the form of two vectors in (3.1).

Since image data usually stores in a matrix, in order to apply the co-prime sampling,

we reshape the matrix into a vector. Except for the index 0, there’s no overlapped

samples between sequence s1 and s2.

Property 6. Given co-prime pair (M1,M2) and any integer h, then h can be obtained

by

h = a1M1 + a2M2 (3.4)

where a1 and a2 are any integers as well.
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Figure 3.1. Image f and co-prime sampling with pair (3, 5).

Proof. If 1 = a1M1+ a2M2 exists for any co-prime pair, and we compute the value of

a1, a2 as

gcd(M1,M2) = hn = hn−2 − hn−1qn

= hn−1(qnqn−1 + 1)− hn−3qn

= hn−3 × ∗+ hn−4 × ∗
...

= M1 × ∗+M2 × ∗

(3.5)

So we can find a1 and a2 satisfying 1 = a1M1 + a2M2, then any h can be

obtained.

In property 6, we prove that the sum of two prime numbers can be any integer.

This complementarity brings the advantage of reducing the replicas in two under-

sampling images. It is because that at the same location, the image value is different

in two co-prime sequences and only one should be the correct image value. The

replicas could be removed by choosing the largest image value. Besides, co-prime
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sampling structure can be expressed in closed forms, which makes it convenient to do

the numerical analysis.

3.2.2 Compressive Sensing

CS provides a nonlinear reconstruction approach that combines sensing and

compression of compressible signals. Let f still denotes the signal of interest, which

is a K-sparse vector with respect to the sparsing basis Ψ, so

f = Ψθ, θ ∈ RN , ∥θ∥0 = K (3.6)

Then the object y is obtained by correlating x with a measurement matrix Φ

yk = ⟨f, ϕk⟩ , k = 1, . . . ,M (3.7)

The main result solved by compressive sensing is that if ΦΨ satisfies the re-

stricted isometry property [12][53], then the K-sparse vector θ could be represented

in a linear program

min
θ

∥θ∥ℓ1 subject to y = ΦΨθ (3.8)

This is the classic BP algorithm. In our following derivation, (3.6) is modified

by the new proposed GP algorithm [51] as

min
u,v

1

2
∥y − ΦΨ(u− v)∥22 + τu+ τv

subject to u ≥ 0

v ≥ 0

(3.9)

where θ = u− v.
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3.3 Co-prime Interpolated Compressive Sensing

In this section, with the purpose of improving the performance of compressive

sensing, we propose the co-prime interpolated compressive sensing (CopCS) approach.

Assume g is the corresponding interpolation function, then g(pi) = y(pi) where

pi is the location of interpolation and y is the image data. After interpolation, y

becomes

ỹ = Φf + g (3.10)

The interpolation function is defined by the nearest neighbor algorithm. Nearest

neighbor interpolation is a simple interpolation method in one or multiple dimensions.

In the following, a simplified nearest neighbor algorithm is proposed to build the

interpolation function.

For the image, we utilize two dimensional interpolation where the row is the x-

direction and column is the y-direction. Let K1 be the set of indices as shown in (3.1)

and (Pk)k∈K1 is the point needs to be interpolated, Rk is the subset in I associated

with Pk in which all the points’ distance is less or equal to r0. r0 is the radius of the

region. This relationship can be expressed as

Rk = {i ∈ I|D(i,Pk) ≤ r0 except for k} (3.11)

where function D is the distance between two pixel, and it could be measured by

Euclidean distance. If assume their coordinates are p1 = (x1, y1) and p2 = (x2, y2),

then

D(p1, p2) =
√
(x1 − x2)2 + (y1 − y2)2 (3.12)

The interpolation function is defined as the average of all values in Rk,
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g(pi) =
∑
pi∈Rk

f(pi), f(pi) ̸= 0 (3.13)

Suppose every pixel size is 1× 1 and the image size is m× n, if we let r0 = 1.5

and select co-prime pair (M1,M2) to do the interpolation, for M1 and k = 1, the

index subset R1 is

R1 ={pi −m− 1, pi −m, pi −m+ 1, pi − 1,

pi + 1, pi +m− 1, pi +m, pi +m+ 1}
(3.14)

and thus the interpolation equation could be rewritten to

g(pi) =
∑
pi∈R1

f(pi), f(pi) ̸= 0 (3.15)

For M2, the result is similar. Now the compressive sensing equation (3.9) is

modified with the new generated object ỹ as

min
u,v

1

2
∥ỹ − ΦΨ(u− v)∥22 + τu+ τv

subject to u ≥ 0

v ≥ 0

(3.16)

As a consequence, the input signal after interpolating by M1 and M2 is referred

to as f1 and f2.

f1 = Ψθ̂

f2 = Ψθ̂′
(3.17)

Therefore, if we choose the largest pixel value in f1 and f2, the final recovered

data f̂ could be obtained, which is expressed as

f̂(p) =

 f1(p) if |f1(p)| ≥ |f2(p)|

f2(p) otherwise
(3.18)
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Figure 3.2. Process of CopCS algorithm.

The complete process of CopCS algorithm is shown in Figure 3.2 and the cor-

responding steps are explained as follows.

Step 1 : Calculate the locations in the vector that need to be interpolated with

co-prime pair (M1,M2).
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Step 2 : Use the interpolation function to estimate the value for every position in

Step 1.

Step 3 : Synthesize the estimated values into the vector, get the new object ỹ1, ỹ2.

Step 4 : Recover the sparse vector θ̂, θ̂′ for M1, M2 respectively and compute the

corresponding f1, f2.

Step 5 : Choose the largest amplitude of each pixel in f1 and f2, build the final

recovered sequence f̂ .

3.4 Numerical Analysis of CopCS Algorithm with Different Co-prime Pairs

The operation principle of CopCS has been illustrated in the previous section,

but there is no numerical analysis of the proposed algorithm. In this section, we first

provide two well-known image quality metrics – root mean square error (RMSE) and

peak signal-to-noise ratio (PSNR), to measure the difference between original image

and reconstructed image. After that, the relationship between compression ratio and

co-prime pair is discussed.

3.4.1 RMSE and PSNR

Root mean square error and peak signal-to-noise ratio are widely used as the

image and video quality metrics because of the low complexity. PSNR is computed

through the result of mean square error (MSE) and usually a higher PSNR indicates

higher quality of the reconstructed picture. Assume an image F is the reference image

and the comparing image is F̃ , both size are m× n. The MSE is defined as

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[F (i, j)− F̃ (i, j)]2 (3.19)
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and the RMSE is the direct square root of MSE

RMSE =
√
MSE (3.20)

If RMSE is small, it means that the difference between image F and F̃ is small.

In addition, the PSNR is defined as

PSNR = 10 log10

(
MAX2

F

MSE

)
= 20 log10 (MAXF )− 10 log10 (MSE)

(3.21)

where MAXF is the maximum pixel value of image F .

3.4.2 Analysis of Compression Ratio

It is worth noting that since interpolation process is involved, the compression

ratio will be changed by different choice of co-prime pair (M1,M2). The compression

ratio is specified as

CR =
uncompressed size of image

compressed size of image
(3.22)

For a traditional image, it may be made of millions of pixels but in compressive

sensing, only a very small fraction, like 20% is selected. If we keep a% of the pixels and

the size of the image is still m× n, without co-prime interpolation, the compression

ratio should be mn
a%mn

= 100
a
. As a result, the more pixels we discard, the higher

compression ratio is. When co-prime pair (M1,M2) is applied and M1 < M2, the CR

in (3.22) could be rewritten as

CR =
M1

a%M1 + 1
(3.23)
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Table 3.1. Theoretical and Practical Compression Ratio with a% = 10%

co-prime pair theoretical CR practical CR

(2,3) 1.6667 3.8039

(3,4) 2.3077 4.5755

(4,5) 2.8571 6.0870

(5,6) 3.3333 7.5916

(6,7) 3.7500 9.1168

(7,8) 4.1176 10.6075

(8,9) 4.4444 12.1402

Property 7. For a pairwise co-prime sequence M1,M2, . . . ,Mr, M1 < M2 < . . . <

Mr, compression ratio is mainly decided by M1 when a% is determinate. Furthermore,

if M1 increases, CR will increase.

Property 7 explains the relationship between co-prime sampling and compres-

sion ratio. In Table 3.1, we show the theoretical and practical compression ratio for

different co-prime pairs when a% = 10%.

However, the theoretical CR listed in Table 3.1 is relied on two very important

preconditions, which are (1) the interpolated value g(pi) computed by (3.13) is non-

zero, (2) there’s no sampled pixel at the location of multiple of M1. If g(pi) is zero,

we should not insert a value. Considering that the pixels are randomly selected, the

practical CR should be larger than the theoretical ones. Another thing should be

pointed out is that the interpolated values are estimated values, which may not be

equal to the true pixels. As a result, if we compare conventional interpolation with

co-prime interpolation, since no complementarity exists in traditional interpolation

process, its performance should be worse.

Taking above consideration into account, the practical compression ratio is re-

computed in Table 3.1. Comparing these two columns, we find that practical CR
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Table 3.2. Compression Ratio with and without co-prime interpolation when different
a applies

a% CR without interpolation CR with co-prime pair (2, 3)

6% 16.6667 5.6343

8% 12.5000 4.6103

10% 10.0000 3.8039

12% 8.3333 3.6324

14% 7.1429 3.3879

16% 6.2500 3.2213

18% 5.5556 3.1118

20% 5.0000 3.0389

values are greater than the theoretical ones, just as we explained previously. Al-

though the theoretical values are different from the practical ones, the growth trend

is the same. Therefore the theoretical values could still provide a guide for us to

choose suitable co-prime pairs.

In Table 3.2, when a% is changed from 6% to 20%, the value of CR is calculated.

From Table 3.2 we can see that the compression ratio is decreasing with the increase of

a%. If no interpolation method is applied, the CR is listed in the second column and

when co-prime interpolation applied, it is given in the third column. We can find that

the values in the second column are larger than those in the third column. What’s

more, the CR gap between the second column and the third column is reducing with

the growth of a%. Table 3.2 indicates that if a is very small, the proposed approach

CopCS will have a better performance because the compression ratio will be improved

more comparing with large a.
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(a) (b)

Figure 3.3. Test images. (a) Lena image (RGB), (b) boat image (black & white).

3.4.3 Simulation Results of Test Images

In order to validate our analysis, we apply the proposed algorithm on two test

images. The test images are plotted in Figure 3.3(a) and 3.3(b) respectively. One is

an RGB Lena image and the other is a black and white boat image. Both size are

512× 512. In Figure 3.4, we show the performance of direct CS method and CopCS

method for a% = 15% and a% = 10% respectively. When a% = 15%, Figure 3.4(a)

and Figure 3.4(b) are the recovered images via direct CS approach and CopCS with

co-prime pair equals to (6, 7). If a% reduces to 10%, the images recovered by the

two methods are drawn in Figure 3.4(c) and 3.4(d) individually. It’s straightforward

to see that Figure 3.4(c) includes a lot of black dots and has a low resolution, while

Figure 3.4(d) recovered by CopCS approach has a high resolution and has no black

dots. Because a% = 10% is very small, the co-prime pair used in Figure 3.4(d) is

chosen as (2, 3).

If we use RMSE and PSNR as the comparison standard between Figure 3.3(a)

and the recovered images, let a = 10 and M1 from 0, 1, . . . , 15, the root mean square
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error calculated via regular interpolation and co-prime interpolation is shown in Fig-

ure 3.5. M1 = 0 means the direct CS method, which has the highest RMSE. The

blue line is regular interpolation method, which only uses f1 (in Figure 3.2) to recover

the image. The red line is co-prime interpolation method, where the co-prime pair is

chosen from Table 3.1 ((8, 9) is followed by (9, 10), (10, 11), . . . , (15, 16)) and both f1,

f2 are used to recovery. From Figure 3.5 we can see that RMSE of co-prime interpo-

lation is smaller than conventional interpolation when compression ratio is the same.

Besides, they’re both better than direct CS method since the RMSE is reduced by a

half.

Figure 3.6 visualizes the PSNR result of direct CS method and CopCS method

by choosing a from 6% to 20%. If a is very small, the PSNR difference between direct

CS and CopCS is much obvious. For example, when a% = 6%, CopCS improves the

performance about 4 dB. With the increasing of a, the improvement is decreasing. In

the scenario with small a, the proposed CopCS algorithm outperforms its counterpart.

In addition, Figure 3.6 also proves the analysis of Table 3.2 from the perspective of

PSNR.

The proposed CopCS algorithm not only works on RGB images, but also ap-

plicable to black and white pictures as shown in Figure 3.7. When a% = 10%, Figure

3.7(a) is the recovered images via direct CS and the recovered picture through CopCS

with co-prime pair (3, 4) is shown as Figure 3.7(b). As we can see from Figure 3.7(a)

and Figure 3.7(b), the resolution of CopCS method is much better than the results

of direct CS method.

3.5 Application to Greenland Bed Elevation Assessment

In this section, we apply the proposed algorithm to Greenland bed elevation

data. Since 1993, the University of Kansas has worked on collecting Greenland bed
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elevation and ice thickness data [54][55]. However, even with some interpolation

methods, the generated bed elevation and ice thickness maps are still very rough.

Figure 3.8 shows the Greenland bed elevation map without interpolation where the

area size is about 1.7 million square kilometers and the total number of samples is

357593. The color bar represents the elevation in meters. If we zoom into the red

rectangular areas in Figure 3.8 (shown in Figure 3.9(a) and Figure 3.10(a)), we can

see that they are sparsely sampled with a very poor resolution. The compression ratio

in Figure 3.9(a) and Figure 3.10(a) is about 100 : 11. In the following simulations,

we will apply the proposed method on Greenland bed elevation data so as to improve

resolution.

Figure 3.9(b) and Figure 3.10(b) show the two rectangular parts after using

interpolation method. It’s easy to notice that although after interpolation, the images

still look very blurry. We need to apply other approaches to obtain a higher resolution

picture from the existing database. Since Figure 3.9(a) and Figure 3.10(a) are treated

as under sampled images, compressive sensing can be applied to reconstruct it. So in

Figure 3.9(c) and Figure 3.10(c), we firstly show the results of directly applying CS

algorithm. As the compression ratio of Figure 3.9(a) and Figure 3.10(a) are too low,

direct CS method can’t improve the resolution and even has a worse performance

than interpolation method shown in Figure 3.9(b) and Figure 3.10(b).

Eventually the proposed CopCS algorithm is utilized and the final images are

drawn in Figure 3.9(d) and Figure 3.10(d). The co-prime pair we used in Figure 3.9(d)

and Figure 3.10(d) are (3, 4) and (2, 3) respectively. From Figure 9(d) and Figure

3.10(d) we can see that more detailed information are recovered through CopCS, no

black dots appeared in the picture and the resolution has been significantly improved.
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3.6 Conclusions

Motivated by the recent studies about co-prime down sampling and compres-

sive sensing, a new co-prime interpolation based compressive sensing algorithm is

proposed in this paper. Firstly, we demonstrate that co-prime structure has the

orthogonal and complementary properties, which are meaningful in reconstructing

images. Afterwards, the numerical analysis assisted by RMSE and PSNR of the pro-

posed CopCS algorithm is also provided. When compression ratio is very high, the

proposed method will have the best performance comparing with direct CS method

and traditional interpolation method.

This algorithm is then validated on two standard test images downloaded from

SIPI image database. The recovered images show that CopCS method could further

increase the resolution comparing with direct CS method. In addition, the root mean

square error and the peak signal-to-noise ratio are also plotted. When the proposed

algorithm is used, RMSE of the recovered image becomes lower and PSNR also gets

improved. It could be concluded that the proposed CopCS approach can improve the

resolution relative to direct CS.

Furthermore, the CopCS has also been tested on real data – Greenland eleva-

tion map. For the reason that the collected Greenland bed map are very sparse, if

interpolation method or compressive sensing are directly employed on the raw data

set, it would generate a very blurry image with a low resolution. However, for CopCS

method, we observe that the reconstructed images are much clear than both interpo-

lated images and direct CS recovered images.
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(a) (b)

(c) (d)

Figure 3.4. Comparison between direct CS and CopCS. (a) recovered image via
direct CS, a% = 15%, (b) recovered image via CopCS with (6, 7), a% = 15%, and
(c) recovered image via direct CS, a% = 10%, (d) recovered image via CopCS with
(2, 3), a% = 10%.

47



0 5 10 15
25

30

35

40

45

50

55

M
1

R
M

S
E

 

 

traditional interpolation

coprime interpolation

Figure 3.5. Root mean square error when a% = 10%.
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Figure 3.6. Peak signal-to-noise ratio when a% varies.
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(a) (b)

Figure 3.7. Comparison between direct CS and CopCS, a% = 10%. (a) recovered
image via direct CS, (b) recovered image via CopCS with (3, 4).

Figure 3.8. Greenland bed elevation map plotted without any interpolation method
where the color bar means bed elevation.
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(a) (b)

(c) (d)

Figure 3.9. Recovered images via traditional interpolation method, direct CS method
and CopCS method. (a) zoom into the left side in Figure 8, (b) traditional interpo-
lation, (c) direct CS, and (d) CopCS method.
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(a) (b)

(c) (d)

Figure 3.10. Recovered images via traditional interpolation method, direct CS method
and CopCS method. (a) zoom into the right side in Figure 3.8, (b) traditional inter-
polation, (c) direct CS, and (d) CopCS method.
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CHAPTER 4

DoA Estimation in Underwater Sensor Networks Based on Sparse Array

4.1 Introduction

In underwater sensor array networks (UWSANs), deployment of large scale

wireless sensors are constrained by the practicability and power on each sensor. De-

sign of the array involves trade-offs among the geometry and the number of sensors.

High resolution of the array needs large aperture while keeping the spacing of the

sensors less than half-wavelength. Many researches have proved that the location

identification of uncorrelated sources is depending on the size of the array or the rank

of the correlation matrix. Some kinds of non-uniform arrays satisfy this requirement,

such as minimum redundancy array (MRA), nested array and co-prime array, which

can keep the same spatial correlation lags and achieve larger apertures compared to

the uniform linear arrays (ULAs). Since there is no closed form expression for MRA,

if nested array and co-prime array can be proved efficient in DoA, they are better

solutions.

Spectral estimations algorithms such as MUSIC method [56] have been widely

applied in high-resolution DoA estimations. It is based on the eigendecomposition

of the spatial auto-correlation matrix of the sampled signal. A lot of papers [57]-[59]

have presented the wideband MUSIC and narrowband MUSIC performance analysis.

In [60], a new approach of array geometry has been reported to improve the efficiency

of spectrum estimation based on the augmented matrix. Different from the spatial

smoothing MUSIC algorithm of non-uniform arrays [61], augmented matrix approach
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has less complexity. Besides, it can find more sources than ULA with the same

number of sensors and identify close sources.

In this work, the architecture of UWSAN is built by [62], and each sensor

is active, which is able to compute the local direction of arrival and range of the

targets. In addition, half of the wavelength λ is assumed to 1 in all the simulations.

The statistical analysis of the Bartlett spatial spectrum estimator when utilize an

augmented covariance matirx is firstly mentioned in [63]. The Cramér-Rao bound of

the classic MUSIC estimation is proposed in [64]. We present the Cramér-Rao bound

of the nested and co-prime arrays, which is lower than both ULA and the CRB of the

classic MUSIC over non-uniform arrays. Furthermore, other advantages of the new

algorithm are also studied, such as the improvement of resolvability of the closely

spaced sources and larger range of the signal peaks to the background level.

4.2 2D co-prime array and acoustic model

4.2.1 2D co-prime array

2D co-prime array is based on the 1D co-prime linear array, which is described

in definition 2 as follow:

Definition 2. A 2D co-prime array is the extension of 1D co-prime array, which

means that both in x-axis and y-axis, the locations of the sensors are followed by

the rule of 1D co-prime array. If the array is under-sampled by the pair (P,Q), the

spacing of x-axis and y-axis is dc respectively.

For example, we plot the 2D nested array with N (d) =

 1 0

0 1

, P =

 3 0

0 3

, N
(s)
1 = 2, N

(s)
2 = 3 in Figure 4.1(a) and an instance of 2D co-prime

array in Figure 4.1(c) with the co-prime pair is (2,3).
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Figure 4.1. Examples of 2D non-uniform arrays. (a) Nested array, (b) difference
co-array of (a), (c) Co-prime array, L = 3, (d) difference co-array of (c) .

4.2.2 Acoustic model

Assume an underwater wireless sensor array network consists of F sensor arrays

and the acoustic signal is narrowband. Each array is 1D or 2D nested array or

co-prime array with M sensors as we presented in the former context. The mth

(m = 1, 2, · · · ,M) sensor on the pth (p = 1, 2, · · · , F ) array is designated as the

(m, p)th sensor.

If the kth target (k = 1, 2, ..., K) emits a signal with a carrier frequency f0-Hz

and the amplitude ak(t), since w0 = 2πf0, we can express the signal as

xk(t) = ak(t)e
jw0t (4.1)
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At time instant t, the (m, p)th sensor will receive a time delayed and attenuated

signal from the target. We assume the noise nmp(t) is zero mean white Gaussian noise

and the signal is uncorrelated with noise. The output of (m, p)th sensor will be:

ymp(t) =
K∑
k=1

xk(t)e
jw0τm(θk) + nmp(t) (4.2)

K is the number of targets within the sensor field.

The signal delay of the (m, p)th sensor is represented by τmp, so the range

between the sensor and the kth target can be expressed as:

rk =
τmp × c

2
(4.3)

where c=1500 m/s is the acoustic wave propagation speed in water.

(4.2) can be written in vector form

Y (t) = A(θ)X(t) +N (t) (4.4)

here A is the M × K array manifold matrix and each column of A is the steering

vector aimed at the K sources direction

a(θi) =

[
ejw0τ1(θi) ejw0τ2(θi) · · · ejw0τM (θi)

]T
(4.5)

We also take 2D non-uniform array into consideration and the manifold matrix

is related with the azimuthal angle θ and elevation angle ϕ, which is given by

A =

[
a(θ1, ϕ1) a(θ2, ϕ2) · · · a(θK, ϕK)

]
∈ C2×K (4.6)

The objective of DoA is to estimate θi and ϕi. Combined with the range infor-

mation rk, the position of the targets can be located.
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4.3 Augmented Matrix Approach on Non-uniform Arrays

The classic MUSIC algorithm is based on the eigendecomposition of the corre-

lation matrix Ry, which is

Ry = E[Y (t)Y ∗(t)]

= A(θ)RxA
∗(θ) +N0IM

(4.7)

N0 is the noise variance, which is equal to σ2. In practice, for zero mean

Gaussian data y(ti), i = 1, 2, ..., N , this is estimated by

R̂ =
1

N

N∑
i=1

y(ti)y
∗(ti) (4.8)

For linear array, if the noise subspace is denoted by UN , we can calculate the

peaks in the estimator function

PMUSIC(θ)1D =
1

aH(θ)UNUH
N a(θ)

(4.9)

a(θ) is defined in (4.5) and aH means the conjugate transpose of a.

However, the spatial spectrum estimation in 2D array is a little different from

(4.9), because the Kronecker product is introduced in the description of the array

manifold matrix:

A =



ay(θ1, ϕ1)⊗ ax(θ1, ϕ1)

ay(θ2, ϕ2)⊗ ax(θ2, ϕ2)

...

ay(θK, ϕK)⊗ ax(θK, ϕK)



T

(4.10)

ax(θK, ϕK) and ay(θK, ϕK) are the kth vector in matrix Ax and Ay. The

detail of ay and ax is given in (3.12.a) and (3.12.b)1.

Assume the noise subspace for 2D array is EN , then (3.11) can be expressed as:

1(3.12.a) and (3.12.b) are in the next page
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Ax =


e−j2πd0sin(ϕ1)sin(θ1)/λ e−j2πd0sin(ϕ2)sin(θ2)/λ · · · e−j2πd0sin(ϕK)sin(θK)/λ

e−j2πd1sin(ϕ1)sin(θ1)/λ e−j2πd1sin(ϕ2)sin(θ2)/λ · · · e−j2πd1sin(ϕK)sin(θK)/λ

...
...

. . .
...

e−j2πdMx−1sin(ϕ1)sin(θ1)/λ e−j2πdMx−1sin(ϕ2)sin(θ2)/λ · · · e−j2πdMx−1sin(ϕK)sin(θK)/λ


(3.12.a)

Ay =


e−j2πd0cos(ϕ1)sin(θ1)/λ e−j2πd0cos(ϕ2)sin(θ2)/λ · · · e−j2πd0cos(ϕK)sin(θK)/λ

e−j2πd1cos(ϕ1)sin(θ1)/λ e−j2πd1cos(ϕ2)sin(θ2)/λ · · · e−j2πd1cos(ϕK)sin(θK)/λ

...
...

. . .
...

e−j2πdNy−1cos(ϕ1)sin(θ1)/λ e−j2πdNy−1cos(ϕ2)sin(θ2)/λ · · · e−j2πdNy−1cos(ϕK)sin(θK)/λ


(3.12.b)

PMUSIC(θ, ϕ)2D

=
1

[ay(θ,ϕ)⊗ ax(θ,ϕ)]HENEH
N [ay(θ,ϕ)⊗ ax(θ,ϕ)]

(4.11)

From [66] we know that the delay of the signal is related with the location of each

sensor (di) and the direction θk, k = 1, 2, ..., K. When we calculate the correlation of

ith and jth sensor, since the sources are independent, it will be

E[y(t, di)y
∗(t, dj)] , Ry(di − dj)

=
K∑
k=1

Pke
−j2π(di−dj)sin(θk)/λ +N0δ(i− j)

(4.12)

Here Pk represents the power of the kth source. It’s clear to see that even

though the sensors are sparse, the covariance matrix can still be dense. Furthermore,

if the difference co-array is a filled set as a ULA, the estimation performance should

be the same while using less number of sensors. Inspired by the augmented matrix

approach in [60], which is only applied on the MRA, we extend this algorithm to 1D

and 2D nested and co-prime array. First of all, the theorem of the best choice for the

nested array and co-prime array is provided.
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Theorem 1. In a linear nested array, the difference co-array is not a filled ULA if

there are more than 2 stages of nesting. Besides, if the pair of a linear co-prime array

is (M1,M2, · · · ,Mn), the efficiency will decrease with the increase of n.

Proof. For K-level nested array in [16], the optimum nested array has sensors located

at Sop = {d, 2d, 4d, 8d, · · · , 2Kd}. It’s straightforward to see that the co-array is not

a filled ULA. For the co-prime array, the efficient rate is defined f =
∑n

i=1
1
Mi

, if

n → ∞, the efficient rate is 1, which means the number of sensors in the co-prime

array is equal to a ULA.

As a result, we’d better construct 2-level nested array and co-prime array.

Before deriving the expressions of auto-correlation for nested and co-prime ar-

ray, there are two properties about the difference co-array:

Property 8. In 1D situation, a 2-level nested array with N1 and N2 sensors respec-

tively can achieve full coverage in [0, N1N2]. While for a co-prime array with prime

pair (P,Q), there are some ’holes’ between 0 and PQ. When one sub-array double

the number of the sensors, the difference co-array will be a filled set in [0, PQ].

Property 9. In 2D situation, for the nested array, any point among the sparse array

is N (s)[k1 k2]
T −N (d)n(d) and there are up to N (d)×N (s) elements. For the co-prime

array which is sampled by (P,Q), there are (P +Q)× (P +Q) points filling the array,

located within FPD(V ), where V =

 0 0

PQ PQ

.

The detailed proof of property 8 is presented in [16][17] and the parameters

in property 9 are from section II. It’s straightforward to see from Figure 4.1(a) and

4.1(c) that there are more than 1 sensors are located in the same position.
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Based on property 8, we can derive the auto-correlation function of 1D sparse

array, which is Toeplitz matrix generated by the difference co-arrays. If there are M

different values in the co-array, use r(m) to represent the auto-correlation lags, the

function is:

r(n) =
K∑
k=1

Pke
−j2πdmsin(θk)/λ +N0δ(m)

n ∈ {0, 1, 2, · · · ,M}

(4.13)

We assume that there is a size ofM s
x×N s

y non-uniform 2D array, from the second

property, it can be equal to a size of Mx × Ny filled 2D array and the covariance of

ith column of A and jth row of AH is

r(n′) =
K∑
k=1

Pke
j(di−d′i)w1k+j(dj−d′j)w2k +N0δ(n)

i′ ∈ {0, 1, 2, · · · , N s
y}

j′ ∈ {0, 1, 2, · · · ,M s
x}

n′ ∈ {0, 1, 2, · · · ,MxNy}

(4.14)

Here

w1k =
2π

λ
sin(ϕk)sin(θk) (4.15)

w2k =
2π

λ
cos(ϕk)sin(θk) (4.16)

As a result, we form the Toeplitz matrix of size (MxNy + 1)× (MxNy + 1) as:
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R2D =

r(0) r(1) · · · r(MxNy)

r∗(1) r(0) · · · r(MxNy − 1)

...
...

...

r∗(MxNy) r∗(MxNy − 1) · · · r(0)


(4.17)

4.4 Statistic Analysis of Non-uniform Arrays

The ability to place a lower bound on the DoA mean square error of any unbi-

ased estimators is extremely necessary in practice. On the other hand, it helps us to

determine which estimator is most efficient and accurate. In this section, we analyze

the improvement of CRB over non-uniform arrays.

In [64], the authors derived the conditional CRB for the covariance error of a

uniform linear array as shown below

CRB ≈ 6

m3SNR
(4.18)

and m is calculated by

m = AHA (4.19)

If the ULA is replaced by the nested array or co-prime array, it means that

fewer real sensors but more virtual sensors are used. As a result, for the 1D sparse

array, the expression of CRB becomes:

CRB =
1

2SNR
[DH(I −A(AHA)−1AH)D]−1 (4.20)

here D is the first-order derivative of A.
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Figure 4.2. CRB comparison between 1D non-uniform arrays and uniform linear
array.

In Figure 4.2, we show the CRBs of non-uniform arrays and the ULA. Assume

there are two sources w1, w2 with SNR=0 dB, and the number of the sensors is 20.

It’s straightforward to see that the CRBs in the non-uniform arrays are much lower

than the ULA. This is because the aperture in non-uniform arrays are larger than

uniform spaced array.

Moreover, the asymptotic CRB for 2D DoA estimation can be found in [67],

which illustrates that if the sensor locations are optimized with respect to both x-axis

and y-axis, the CRB will be minimized.

4.5 Simulation Results

In this section, we perform several simulations to prove the advantages of this

new algorithm. First of all, in both 1D and 2D non-uniform arrays, it can detect
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more sources with fewer sensors. Moreover, since the aperture in the non-uniform

array is larger than the uniform array, it can identify close sources.

In the first simulation, we generate three linear arrays as:

ULA = [0 1 2 · · · 12]

nested array = [1 2 3 6 9 10 11 12]

coprime array = [0 2 3 4 6 8 9 12]

Notice that in every non-uniform array, it contains 8 sensors, but ULA has 13

sensors. This is because the non-uniform arrays can achieve the same performance

of the ULA based on the difference co-arrays. In the non-uniform arrays, (N1, N2) =

(2, 3) and (P,Q) = (2, 3). The detected sources are at [0.4 0.5 0.6 0.7 0.8 0.9 1.2] ×π,

so K = 7. We know that a linear array can’t find targets more than the number of the

sensors, for instance, the ULA in the first simulation can at most detect 12 sources,

the ratio between sources and sensors is 12
13
. However, this ratio in non-uniform arrays

is 11
8
, which is greater than 1 and it indicates that nested array and co-prime array

are more efficient in the detection. The result is plotted in Figure 4.3.
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Figure 4.3. DoA estimation by the uniform linear array and non-uniform linear arrays
and the SNR is 0 dB (Pk/σ

2 = 1).
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Figure 4.4. DoA estimation of close sources, co-prime array= [0 2 4 6 8 5 10 15 20].
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The ULA is applied with the classic MUSIC method, however, it just detect six

sources. The nested array and co-prime array successfully find all the sources in the

range. In addition, the dynamic range of the signal peaks to the background level is

larger in the augmented matrix approach.

In Figure 4.4 and Figure 4.5, we draw the DoA estimation of closely spaced

sources, both classic MUSIC method and augmented matrix approach are used. There

are four sources at [0.4 0.42 0.7 0.73] ×π, which contains two pairs of near spaced

angles. The locations of the arrays are given in Figure 4.4 and Figure 4.5. The result

shows that ULA can not resolve the sources but co-prime array with classic MUSIC

and augmented matrix approach can successfully distinguish four sources, which is

because that it has about 2.5 times larger aperture than the ULA.
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Figure 4.5. DoA estimation of close sources, ULA=[0 1 2 3 4 5 6 7 8].
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(a)

(b)

Figure 4.6. DoA estimation of 2D non-uniform nested arrays and the SNR is 0 dB,
(a) detect 20 sources with 14 sensors, (b) detect 38 sources with 26 sensors.

The DoA evaluation over the 2D non-uniform array is a little complicated, as

there are two parameters need to be estimated. In Figure 4.6(a), we show an example

of 2D nested array, which is as illustrated in Figure 4.1(a). There are det(P ) = 9
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sensors in the dense array and N (s) = 6 sensors in the non-uniform array. Because

both the non-uniform array and the dense array has the sensor locating at (0, 0), there

are total 14 sensors in the nested array. From property 9, this nested array is equal

to a filled rectangular array with 4× 7 = 28 sensors. Randomly distributed 20 (>14)

sources in the range, the augmented matrix MUSIC approach of DoA estimation

result is plotted.

If we increase the number of sensors in the range, more sources can be detected.

For instance, N (d) =

 1 0

0 1

, P =

 3 0

0 3

, N
(s)
1 = 3, N

(s)
1 = 6. There are 26

sensors in the nested array and can replace the performance of 16× 7 = 105 sensors

of the uniform distributed array. Assume there are 38 random sources, the result is

shown in Figure 4.6(b).

4.6 Conclusion

In this work, we extend the augmented matrix approach from minimum redun-

dancy array to 1D and 2D nested array and co-prime array in order to estimate the

location of the targets. We also provide the structure definitions of these non-uniform

arrays, which have not been given in the MRAs. It’s clear to see that the nested and

co-prime arrays are able to save the number of sensors. Moreover, accuracy is im-

proved for the reason of large apertures and CRB in the non-uniform array is also

decreased significantly.

The results indicate that this method can successfully detect the sources, even

the number of sources is larger than the number of the sensors in the array. This

algorithm is less complicated than the spatial smoothing DoA estimation, maintaining

the same properties. Besides, the dynamic range of the signal peaks to the background

level is larger in augmented matrix approach, which helps search the sources locations.
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In 2D non-uniform arrays, the random distributed sources will affect the amplitudes

of the estimation function.
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CHAPTER 5

Underwater Mobile Co-prime Sensor Array for Angle of Arrival Estimation Based

on Space-Domain Sensor Synthesis

5.1 Introduction

Underwater acoustic is a part of human activities and plays an important role

both in science, industry and military. Acoustic signal is transmitted and finally

reflected by the target, experiencing attenuated, deformed and overlaid with noise.

It can be received by an array made of several active sonars or passive sonars. In

Figure 5.1, the example of active sonar array and passive sonar array is plotted [72].

The classic problem in array signal processing is to estimate the angle of arrivals from

the targets. Many existing papers are working on fixed position of sensors, named

time-invariant array while in underwater environment, the array sometimes is placed

on a moving platform (like AUV). In this paper, we focus on this kind of time varying

array. The synthetic aperture radar is widely used in radar image formation and this

concept of synthetic aperture processing also extends to sonar system [73] - [75].

Considering about the high expense of sonars and other limitations, sparse array

is preferred to do the target localization. In [15] and [60], minimum redundancy array

(MRA) is proposed and applied on direction of arrival estimation, which achieved a

better performance than uniform linear array (ULA). The authors in [16] and [17]

built two kinds of sparse arrays, namely nested array and co-prime array. Different

from MRA, the closed form of sensor allocation in nested array and co-prime array

is provided. In this work, the angle of arrival is studied based on the structure of

co-prime array which can be extended to nested array as well. We assume the sensors
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A

B

Figure 5.1. Example of sonar: A. active sonar; B. passive sonar .

are deployed as a two-level co-prime array with pair (M,N), where M,N are co-prime

and the absolute values of difference co-array are calculated by

|Mk1 −Nk2|, 0 ≤ k1 ≤ N − 1, 0 ≤ k2 ≤ M − 1 (5.1)

The example of a two-level co-prime array is shown in Figure 5.2.

M=3

N=5

|Mk1 - Nk2|
d

co-prime sensor

virtual sensor

Figure 5.2. Example of 2-level co-prime array. .

In the tutorial paper [76], the author overviewed different high-resolution array

processing algorithms for uncorrelated signal problem, such as maximum-likelihood
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method, linear-prediction method and eigenvector method. The authors in [77] also

applied augmented matrix approach on 1D and 2D sparse arrays. When the signal is

coherent, several approaches have been developed in [78] and [79]. In [80], the author

considered two situations when the directions of arrival are invariant or change during

the observation period. The motivation of this paper is to localization underwater

targets based on a co-prime array and meanwhile take advantage of the platform

mobility to form a larger synthetic aperture.

Chapter 5 is organized as follows. In Section 5.2, we formulate the model of

co-prime sonar array in motion. Then in Section 5.3, a new algorithm named space-

domain sensor synthesis (SDS) algorithm and the gradient descent algorithm are

introduced. After that in Section 5.4, multiple signal classification (MUSIC) method

is applied on the spectral estimation based via augmented matrix. Some simulation

results are presented in Section 5.5 and the conclusions are drawn in Section 5.6.

5.2 Sonar Array Motion Model Formulation

We assume the sensors are deployed as a two-level co-prime array with pair

(M,N), where M and N are co-prime and the length of the array is M + N . At

time instant t, each sensor position is di, i = 0, 1, . . . ,M + N − 1. If the kth target

(k = 1, 2, ..., K) emits a signal with angle θk and speed of the array is v, the signal

received by the ith sensor is

yi(t) =
K∑
k=1

xk[t+
(di + vt)× cosθk

c
]e−j(di+vt)·2πsinθk/λ (5.2)

Here λ stands for the carrier wavelength and c is acoustic speed in underwater.

When it’s narrowband signal, the second item in xk could be ignored. Supposing that
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the sensor array moves at a constant velocity v in the direction of the array placed

as shown in Figure 5.3 and the additive noise is Nm(t), (5.2) is reduced to

yi(t) =
K∑
k=1

xk(t)e
−j(di+vt)·2πsinθk/λ +Nm(t) (5.3)

In underwater environment, the noise can be grouped in four categories: am-

bient noise, self-noise, reverberation and acoustic interference. For majority of cases,

we shall consider the noise degrading the nominal sonar performance as a random

process. As a consequence, Nm(t) is statistically independent of the signal. First if

we let v = 0 in (5.3), for uncorrelated source, the correlation of the received signal is

obtained as

(Ryy)ij = E
[
yi(t)y

∗
j (t)
]

=
∑
k

∑
l

E [xk(t)x
∗
l (t)] e

−j(disinθk−djsinθl)2π/λ + σ2
nI

=
∑
k

σ2
ke

−j(di−dj)2πsinθk/λ + σ2
nδ(i− j)

(5.4)

where σ2
k is the variance of the kth process and σ2

n is the variance of the noise.

Observe (5.3), the sensor locations di + vt is updating with time t because of

array movement. Since the array moves in a straight line, the other variables in (5.3)

would keep the same. Depending on this rule, we proposed a space-domain synthesis

algorithm which is introduced in next section.

5.3 Space-Domain sensor Synthesis

From Figure 5.2, it’s straightforward to see that if we only choose M +N − 1

sensors (because location 0 is overlapped), there would be some holes in the virtual

array in the range [0,MN − 1]. Some authors suggest to double one of the array size
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overlapping sensor

equal 

to

time t time t+ t 

filled array

v

Figure 5.3. Mobility of co-prime array (M,N) = (3, 4) and 1-step space-domain
synthesis (SDS). .

in order to achieve a hole-free linear array, however, this would not be necessary when

the array is in motion. For a moving array, the new information can be added to the

former data with the estimation of time delay and it’s possible to build a filled virtual

array of MN + 1 sensors based only on M +N physical sensors. Furthermore, if we

continue adding the new received signals to the existing data, a much longer virtual

array can be obtained. This process is similar to the synthetic aperture processing

and in this paper, we call it as space-domain synthesis (SDS).

Assume at time instant t, the sensors are placed at di, i = 0, 1, . . . ,M +N − 1

and after an interval ∆τ , the array moves to a new position which is v ×∆τ = 2Nd

(d is the inter-element spacing which equals to λ
2
) away from the former location. As

shown in Figure 5.3, if M = 3, N = 4, at time t, the sensors are located at d×[0 3 4

6 8 9 12]. After the array moves, the new positions for the sensors are d×[8 11 12 14

16 17 20]. The goal is to formulate an array with sensors at d×[0 3 4 6 8 9 12 16 20],

as a result, at time t+∆τ , we need to extract the signal of sensors at d×[16 20] and

synthesizes it with the signal received at time t.
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Lemma 1. Let prime integer N > M and the sparse array with spacing N has M+1

sensors, after the array moves distance of (M − 1)N × d or MN × d, the difference

co-array would be a hole-free one in the range [0,MN ].

Proof. Suppose at time t in the array of spacing N , the last sensor locates at MN .

After time interval ∆τ , the new position of the last sensor becomesMN+(M−1)N =

2MN−N orMN+MN = 2MN . If we divide it by N , the number of the sparse array

is 2M or 2M + 1, both are at least twice of the number M which is the requirement

to form a filled virtual array.

Moreover, we can extend the 1-step SDS to multiple steps SDS.

Lemma 2. If in 1-step SDS, the co-prime array moves distance of (M − 1)N × d.

Then in the P steps SDS process, the array moves distance of (M−1)N×d×P and the

difference co-array would be a hole-free one in the range [0,MN+(M−1)N×(P−1)].

Proof. It’s easy to prove Lemma 2 because in 1-step SDS, the filled virtual array

ranges from [0,MN ] and in each another (P − 1) SDS steps, this virtual array is still

hole-free but moves (M−1)N×d away in each period. As a result, after P steps SDS,

The whole difference co-array is filled in the range [0,MN +(M−1)N× (P −1)].

When the array moves during period ∆τ , from (3) we know that at time t+∆τ ,

the received signal is

yi(t+∆τ) =

K∑
k=1

sk(t+∆τ)e−j(di+vt)·2πsinθk/λ +Nm(t+∆τ)
(5.5)

where

sk(t+∆τ) = xk(t+∆τ)e−jv∆τ ·2πsinθk/λ (5.6)
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Observe (5.3) and (5.5), the only inequality part is the phase shift sk(t+∆τ).

If we can estimate the phase delay between yi(t) and yi(t + ∆τ), it’s easy to inter-

leave signal at different moment into one set. In [81], the author proposed a way to

evaluate the phase correction when the signal frequency ω0 is known and in a noise

free environment, which equals to ω0∆τ . However, in real world, since the received

signal is involved with noise and for the passive sonar, the signal frequency may be

unknown, it’s impossible to evaluate the phase shift directly.

In order to solve the problem, we propose an estimation method based on the

gradient descent. In Figure 5.4, it shows the basic idea of this algorithm. For any

signal, the maximal value of the auto-correlation is R(0) and the first-order of R is

one-direction. As a consequence, if we move the signal with various time delay, the

auto-correlation result of the signal and its delay will increase to the maximal value

then decrease. When the trend becomes reduce, the algorithm can stop and the time

delay is found.

But from (5.4), even though the time delay ∆τ is obtained, the arriving angle θk

is still unknown. So as to make the problem easy to solve, there are some overlapping

sensors during the interval when array is moving. For example, in Figure 5.3, at time

t+∆τ , the sensors moves from d×[0 3 4 6 8 9 12] to d×[8 11 12 14 16 17 20]. There

are two overlapping locations d×[8 12] and the signal received by the sensor at d×[8]

can be expressed as

y4(t) =
K∑
k=1

xk(t)e
−j(8·λ/2)·2πsinθk/λ +Nm(t)

=
K∑
k=1

xk(t)e
−j8πsinθk +Nm(t)

(5.7)

and
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y0(t+∆τ)

=
K∑
k=1

xk(t+∆τ)e−j(0+8·λ/2)·2πsinθk/λ +Nm(t+∆τ)

=
K∑
k=1

xk(t+∆τ)e−j8πsinθk +Nm(t+∆τ)

(5.8)

As a result, the cross-correlation of (5.7) and (5.8) can be used to estimate the

phase shift and the maximum value represents the time delay.
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Figure 5.4. Gradient descent algorithm of auto-correlation function. .

The specific procedures of SDS algorithm could be presented as following:

Step 1: Collect the signal at time t and then move the co-prime array (M −

1)N × d or MN × d away.

Step 2: Use the signal received by overlapping sensors to estimate the time

delay. The delay is calculated through the cross-correlation of the signal.

Step 3: Remove the delay in the new signal and only choose the information

from sensors with spacing N to interleave with the former information.
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After the three steps above, a long synthetic aperture is formed and on the

space-domain synthetic array, the difference co-array can be calculated, which would

be applied on the spectral estimation. For a P -step SDS co-prime array, if the phase

shift in each step is represented as Ψp(p = 1, 2, . . . , P ), the synthetic signal can be

expressed as

y′i(t) = yi(t) +
P∑

p=1

e−jΨpyi(t+ p∆τ) +N ′
m(t) (5.9)

5.4 Spectral estimation on augmented matrix

If v = 0, the array manifold matrix as provided in Section 5.2 is

A(θk) =
[
1, e−jd12πsinθk/λ, · · · , e−jdM+N2πsinθk/λ

]T
(5.10)

In a moving environment, for 1-step SDS, the expression in (5.10) can be mod-

ified to

Ã(θk) = e−jv∆t2πsinθk/λA(θk)

=
[
e−jv∆t2πsinθk/λ, e−j(d1+v∆t)2πsinθk/λ,

· · · , e−j(dM+N+v∆t)2πsinθk/λ
]T (5.11)

Then the auto-correlation function of the synthetic received signal is
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(R̃y′y′)ij = E
[
y′i(t)y

′∗
j (t)

]
= ÃRxxÃ

∗ + σ2
nI

′

= Ã



σ2
1

σ2
2

. . .

σ2
MN+1


Ã∗ + σ2

nI
′

(5.12)

where Rxx is the source correlation matrix and I ′ is the augmented identity matrix.

In [17], the difference co-array is calculated as in (5.1) and thus, we can form a

Toeplitz matrix based on the difference co-array as

R̃y′y′ =

r(0) r(1) · · · r(MN)

r∗(1) r(0) · · · r(MN − 1)

...
...

...

r∗(MN) r∗(MN − 1) · · · r(0)


(5.13)

where r(m) is

r(m) =
∑
k

σ2
ke

−jm2πsinθk/λ + σ2
n,m = 0, 1, 2, . . . ,MN (5.14)

If we apply multiple signal classification algorithm (MuSIC) on the augmented

matrix R̃y′y′ , when the separation of eigenvectors is accurate into signal subspace and

noise subspace, it can successfully detect all the sources.

5.5 Simulation results

In order to figure out the performance of the proposed time delay estimation

algorithm, we apply it on two co-prime arrays: [0 3 4 6 8 9 12] and [0 3 5 6 9 10

77



12 15]. In Figure 5.5, the time-delay estimation error is calculated by 1000 Monte-

Carlo simulations for each array when the SNR ranges from -10 to 15.In addition,

the time delay assumed is 100 samples. It indicates that with the increase of SNR,

better estimation result can be achieved and in fact, when the SNR is greater than

0, the error is mostly around 1 sample. This is because that if there’s no noise in

the received signal, it should be periodic. After cross-correlation, the peak should

appear at the right estimation time-delay moment. Since the signal is periodic, there

would be several peaks in the result. Even if considering the noise environment, for

some peaks, it should still have the largest value among the set because the noise is

random.
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Figure 5.5. Estimation error of co-prime arrays. .

In a second experiment, we compare the moving co-prime array with static

co-prime array. First, an 8 physical sensor co-prime array with M = 3, N = 5 is

formed which is the same as the array 2 in the Figure 5.5. The virtual sensor number
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are 16 and 8 respectively when the array is in motion or not. The signal-to-noise

ratio is set to 0 and three sources are in the filed, they are θ1 = −45◦, θ2 = −10◦,

θ3 = 30◦. During the period of 5λ when platform is moving, two sets of data are

collected at different locations. Assume the source signal is independent and a total

of 500 snapshots are used in the estimation. As shown in Figure 5.6, when the co-

prime array is in motion, the dynamic range from the signal peaks to the background

level is larger than the array without motion. Besides, because the source number is

much less than the virtual sensor number, in both situations, it can accurately find

the direction of arrivals.
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Figure 5.6. Estimation of arriving angles for static co-prime array and moving co-
prime array. .

Furthermore, we also show the simulation with the same number of sensors (8

physical sensors) in uniform linear array in Figure 5.7. Seven sources are located at

π/180× [-40 -30 -20 -10 10 20 30] with SNR = 0 as well. It’s clearly to see that
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if the number of sources is close to the number of sensors, ULA fails to detect all

the sources while the moving co-prime array can still work successfully. Although we

never double the size of one co-prime array, based on the phase correction proposed,

the moving array shows a good performance.
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Figure 5.7. Estimation of arriving angles for static ULA and moving co-prime array.
.

To fully understand the properties of multiple steps space-domain sensor syn-

thesis, we still choose the co-prime array with M = 3, N = 5 and the SNR is 0,

the snapshots are 500 as well. In this experiment, 2-step SDS is applied to detect 14

sources in the field which are π/180× [-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50

60] and the result is plotted in Figure 5.8. A 2-step SDS co-prime array equals to

a 3 × 5 + 1 + 10 = 26 virtual sensors linear array. Observe Figure 5.8, although we

estimate the phase shift twice, the synthetic data can successfully find all the arriving

angles comparing with the 1-step SDS. Another advantage of multiple steps SDS is
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that it can be used to find a much larger number of sources even with few physical

sensors. In addition, the complexity of estimation process will not increase much in

multiple steps SDS.
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Figure 5.8. 1-step SDS algorithm and 2-step SDS algorithm. .

5.6 Conclusion

We have studied the co-prime array in motion and proposed an algorithm –

SDS method. In order to accurately estimate the phase shift, a gradient descent

algorithm is also applied in this work. In the lemmas, it proves that both 1-step

SDS and multiple step SDS can formed a longer virtual array without holes. We

also demonstrate that even the SNR is not high, this structure can still successfully

find all the sources. If the number of sources is greater than the number of sensors,

the array in motion performs better than the static array. This is due to the virtual

sensors from the difference co-array. The simulation results indicate that an array in
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motion has a larger dynamic range than the static array and performs better than the

uniform linear array. There would be still some more aspects for further exploiting,

such as the mobile array in multiple dimensions, the underwater target recognition

based on sparse array and implementation on correlated signals.
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CHAPTER 6

Evaluating Spatial Resolution and Channel Capacity of Sparse Cylindrical Arrays

for Massive MIMO

6.1 Introduction

In recent studies, massive MIMO has become a hot topic in communication

area. The reason is that this new technology would be possibly widely applied in

the fifth generation (5G) wireless systems. Massive MIMO has a lot of advantages

comparing with the 4G LTE [82]-[85], such as it could increase the capacity about

10 times or more and meanwhile improve the radiated energy-efficiency in the order

of 100 times [86][87]. Another feature of massive MIMO is that latency reduced

significantly compared to LTE. However, the challenges and price paid for massive

MIMO are also inevitable, for example, the high complexity of the system and energy

efficiency [88]-[90].

Massive MIMO is considered as a major 5G technology, and some experiments

of massive MIMO have been measured in [91]-[95]. In addition, the study of antenna

deployment in massive MIMO also attracts lots of interest. An overview of massive

MIMO and the challenge of making a great number of antennas working together

is introduced in [85]. The authors in [96] analyzed whether all antennas contribute

equally in real-time massive MIMO environments. In [97], sparse massive MIMO

channels are studied. Among those studies, few are about the sparse antenna array

deployments. In [17][16], the authors proposed two sparse linear arrays, co-prime

linear array (CLA) and nested linear array (NLA), which achieved large degrees of

freedom. Moreover, in [98][99], the authors implemented irregular antenna arrays and
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sparse cylindrical antenna array respectively. In massive MIMO scenario, because the

base station (BS) usually contains hundreds of antennas, if the use of real antennas

could be decreased while the capacity remains the same, it would save the space and

cost to build the massive MIMO base stations.

Some possible antenna configurations of massive MIMO are the uniform linear

array (ULA), uniform rectangular array (URA), uniform circular array and uniform

cylindrical array (UCA). In this paper, we focus on the cylindrical array, which is

one type of conformal arrays. The advantages of conformal array is that conforming

the array to the surface not only saves the space, but also makes the elements less

visually intrusive by integrating it into existing objects. A cylindrical array contains

of elements in three directions and this provides wide cover in both the azimuth

plane ϕ and the elevation plane θ. In massive MIMO scenario, the analysis of spatial

resolution of 2D antenna arrays is presented in [100]. Besides, beamforming and DoA

estimation in massive MIMO has also attracted lots of interest [101]-[104]. In [105],

the authors derived the beam pattern of UCA, which is the product of ULA and

uniform circular array. The beam pattern can also be applied to measure the spatial

resolution of the cylindrical array.

Firstly, we provide a brief overview of the two sparse linear arrays CCA and

NCA respectively. Usually for a ULA, in order to avoid spatial aliasing, the distance of

the array elements must not be greater than half a wavelength. But in sparse arrays,

since some elements have been removed, the space between some elements does not

satisfy the requirement. This element reduction does not necessarily compromise

the resolution of sparse array. On the contrast, some good designed sparse arrays

could achieve better performance than ULAs, like the minimum redundancy array

(MRA) proposed by Moffet in [15], nested linear array (NLA) and co-prime linear

array (CLA) proposed by P.P. and Piya in [17][16]. After that, we come up with the

84



structure of sparse circular array, co-prime cylindrical array (CCA), nested cylindrical

array (NCA) and sparse nested cylindrical array (SNCA).

One big difference between conformal arrays and traditional arrays is that the

beam pattern can not be obtained by the product of array factor and element pattern.

However, since the cylindrical array consists of a series of identical circular arrays, the

whole array can be seen as a linear array whose elements are these identical circular

arrays. As a result, CCA could be constructed by CLAs and uniform circular arrays.

In a similar way, NCA could be constructed by NLAs and uniform circular arrays.

Adhikari et al in [106] has analyzed beamforming with co-prime linear arrays and in

this work, it’s extended to CCA and NCA. Based on the beamforming analysis, we

could evaluate the spatial resolution among CCA, NCA and SNCA, and also compare

it with the corresponding UCA.

The main contribution of this paper is to extend co-prime linear array and

nested linear array to cylindrical arrays. As to prove the advantages of the proposed

sparse cylindrical arrays, the new beam patterns of the CCA and NCA are presented.

Furthermore, when applied these sparse cylindrical antenna arrays at the BS, the

uplink channel capacity could be improved obviously.

The rest of Chapter 6 is outlined as follows. In Section 6.2, we discuss about the

co-prime linear array, nested linear array, proposed circular array and three different

sparse cylindrical arrays. Then the massive MIMO system model of multiple users

is introduced in Section 6.3. After that, in Section 6.4, beamforming analysis of

CCA and NCA are provided and in Section 6.5, the spatial resolution performance

of UCA, CCA and NCA is compared and the uplink channel spectral efficiency of

different cylindrical arrays is provided as well. Finally, concluding remarks are given

in Section 6.6.
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6.2 Sparse Structure of Linear Array, Circular Array and Cylindrical Array

In this section, firstly two kinds of sparse linear arrays are provided, then we

propose the structures of sparse circular array and three different sparse cylindrical

arrays. For convenience, the elements used to calculate the difference co-array are

referred as physical (or real) antennas and the elements in the difference co-array are

called virtual antennas. In fact, the virtual antennas are not existed in the antenna

arrays, however, after calculating the difference co-array, the positions of those virtual

elements can be obtained.

6.2.1 Sparse Linear Arrays

Co-prime linear array and nested linear array are two kinds of sparse linear

arrays, which are proposed in [17][16]. Co-prime linear array interleaves two uniform

subarrays which are sampled by two prime integers C1, C2, and the locations of the

elements are in set K = {K1,K2}, where

K1 = {0, C2λ/2, 2C2λ/2, . . . , (C1 − 1)C2λ/2}

K2 = {0, C1λ/2, 2C1λ/2, . . . , (C2 − 1)C1λ/2}
(6.1)

and λ is the wavelength.

The difference co-array of this pair of ULA has positions

zC2p1−C1p2 = C2p1 − C1p2, 0 ≤ p1 ≤ C1 − 1, 0 ≤ p2 ≤ C2 − 1 (6.2)

Nested linear array is a little different from co-prime linear array, where the

elements are placed with two-level density, and level 1 has N1 elements, level 2 has

N2 elements,

1 ≤ l ≤ N1

(N1 + 1)m, 1 ≤ m ≤ N2

(6.3)
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The difference co-array of the nested linear array is calculated by

z(N1+1)m−l = (N1 + 1)m− l, 1 ≤ m ≤ N2, 1 ≤ l ≤ N1 (6.4)

In Figure 6.1(a), it plots an example of co-prime linear array with co-prime inte-

gers (4, 5), where the physical antennas are located at [0, 4, 5, 8, 10, 12, 15, 16] and the

virtual antenna array calculated by (6.2) equals to [0, 1, 2, 3, 4, 5, 6, 7, 8,×, 10, 11, 12,×,×, 15, 16].

× denotes the holes in the difference co-array and a direct method to solve this prob-

lem is to double the length of one uniform subarray.

In Figure 6.1(b), it shows an example of nested linear array with pair (5, 4) and

similarly, the physical antennas are located at [1, 2, 3, 4, 5, 6, 12, 18, 24] and the virtual

antenna array calculated by (6.4) equals to [1, . . . , 5,×, 7, . . . , 11,×, 13, . . . , 17,×, 19, . . . , 23].

The holes× can be filled by the self-difference of the physical antennas at [6, 12, 18, 24].

(a)

(b)

physical antenna

0 4 5 8 10 12 15 16 

1 2 3 4 5 6 12 18 24

d=�/2

Figure 6.1. Example of co-prime linear array and nested linear array, (a) co-prime
pair (4, 5) and the two subarrays are [0, 4, 8, 12, 16], [0, 5, 10, 15], (b) nested pair (5, 4)
and the two subarrays are [1, 2, 3, 4, 5], [6, 12, 18, 24] .
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6.2.2 Sparse Circular Array

To begin with, let’s look at a uniform circular array with Mu antennas (Mu =

2i, i ≥ 2). The perimeter of the uniform cylindrical array is known as Mu and thus

the radius of the circular array R = Mu/2π. Then the position of the jth antenna rj

on the circular array equals to

(xj, yj) = (R−Rcos(
2π

Mu

j), Rsin(
2π

Mu

j)), 1 ≤ j ≤ Mu/2 (6.5)

Besides, the locations of the Mu

2
+ 1th antenna rMu

2
+1 and Mu

2
+ jth antenna

rMu
2

+j are

(xMu
2

+1, yMu
2

+1) = (2R, 0) (6.6)

and

(xMu
2

+j, yMu
2

+j) =

(R +Rcos(
2π

Mu

j),−Rsin(
2π

Mu

j)),
(6.7)

It’s straightforward to see that

(xMu
2

+j, yMu
2

+j) = (xMu
2

+1, yMu
2

+1)− (xj, yj) (6.8)

Consequently, we can define the difference co-array of sparse circular array as

(xMu
2

+j, yMu
2

+j) = (xMu
2

+1, yMu
2

+1)− (xj, yj),

1 ≤ j ≤ Mu/2

(6.9)

In Figure 6.2, it shows an example of the sparse circular array where Mu = 8,

which indicates that we could build an 8-element uniform circular array only with 5

real antennas.
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Sparse circular array
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1

 z

physical antenna

virtual antenna

Figure 6.2. Example of sparse circular array with Mu = 8. The virtual antennas are
shown in red dots and the physical antennas are in blue dots. All the virtual antennas
can be calculated by the difference co-array of the physical antennas via (9) .

6.2.3 Different Structures of Sparse Cylindrical Arrays

Based on the sparse linear array and sparse circular array, we propose three

different structures of sparse cylindrical arrays. Firstly, the geometries of co-prime

cylindrical array (CCA) and nested cylindrical array (NCA) are illustrated in Figure

6.3 and Figure 6.4 respectively. In the z-axis direction, the elements are placed as

co-prime linear array or nested linear array and for each circle, it is still a uniform

circular array.

Since co-prime linear array starts from position 0 while nested linear array

starts from position 1, so we modify nested linear array by adding one more element

at position 0. As a result, the difference co-array of CCA could be written as

(xq, yq, zC2p1−C1p2) =

(xMu
2

+1, yMu
2

+1, zC2p1)− (xj, yj, zC1p2),

(6.10)
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Figure 6.3. Example of co-prime cylindrical array with Mu = 16 antennas on each
circular array and the vertical antennas are located at [0, 2, 3, 4, 6]. In this example,
the vertical antennas are placed as co-prime linear array with pair (2, 3) .

where 0 ≤ p1 ≤ C1 − 1, 0 ≤ p2 ≤ C2 − 1, if 1 ≤ j ≤ Mu/2, q = Mu

2
+ j and if

Mu/2 < j ≤ Mu, q = j − Mu

2
.

The difference co-array of NCA is

(xq, yq, z(N1+1)m−l) =

(xMu
2

+1, yMu
2

+1, z(N1+1)m)− (xj, yj, zl),

(6.11)

where 0 ≤ m ≤ N2, 1 ≤ l ≤ N1, if 1 ≤ j ≤ Mu/2, q =
Mu

2
+ j and if Mu/2 < j ≤ Mu,

q = j − Mu

2
.

Furthermore, if each circle is deployed as a sparse circular array, the vertical

linear arrays at x = 0, y = 0 and x = 2R, y = 0 are placed as nested linear array,

this kind of cylindrical array is named sparse nested cylindrical array (SNCA). In a

similar way, we could build sparse co-prime cylindrical array, but in this paper we

only discuss about SNCA. The difference co-array of SNCA is expressed as
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Figure 6.4. Example of nested cylindrical array with Mu = 16 antennas on each
circular array and the vertical antennas are located at [0, 1, 2, 3, 6]. In this example,
the vertical antennas are placed as nested linear array with pair (2, 3), but with one
more circular array at position 0 .



(xMu
2

+j, yMu
2

+j, 0)

= (xMu
2

+1, yMu
2

+1, 0)− (xj, yj, 0), 1 ≤ j ≤ Mu/2,

(xMu
2

+j, yMu
2

+j, z(N1+1)m−l)

= (xMu
2

+1, yMu
2

+1, z(N1+1)m)− (xj, yj, zl),

1 ≤ m ≤ N2, 0 ≤ l ≤ N1, 1 ≤ j ≤ Mu/2 + 1

(6.12)

and in Figure 6.5, it illustrates an example of SNCA.

For CCA, NCA, SNCA, when the virtual antennas are obtained by the difference

co-array (6.10), (6.11) and (6.12) separately, we could add those virtual elements to

the physical antennas and then plot the corresponding cylindrical array in Figure 6.6.

It’s straightforward to see that Figure 6.3 to Figure 6.5 have the same corresponding

cylindrical array, which is a uniform cylindrical array with 16× 7 antennas.
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Figure 6.5. Example of sparse nested cylindrical array with Mu = 16 antennas on
the corresponding uniform circular array. The vertical arrays when x = 0, y = 0 and
x = 2R, y = 0 are located at [0, 1, 2, 3, 6], with nested pair (2, 3). In this example, the
virtual antennas on each circular array can be calculated via (12) .

6.3 Massive MIMO System Model

6.3.1 MU-MIMO System Model

In Figure 6.7, a typical scenario of uplink transmission in massive MIMO is

shown. A cylindrical array with Nr(Nr = Mu×Nu) physically small and non-directive

antennas is located at the BS, which receives the signals from K single-antenna users.

For massive MIMO, Nr is usually very large and greater than K. Let’s consider the

uplink transmission, then the Nr × 1 vector received at the BS is

y =
√
ρuGx+ n (6.13)

where
√
ρu is the average transmit power, x ∈ CK×1 is the transmit vector by the

K users, G ∈ CNr×K is the channel matrix between the BS and the K users, i.e.,
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Figure 6.6. Example of the corresponding uniform cylindrical array of Figure 6.3 to
Figure 6.5. In this example, the UCA has 8 circular arrays and each circular array
has 16 antennas, so the total number of the UCA is Nr = 16× 8 .

gnk , [G]nk represents the channel coefficient between the nth antenna from the BS

and the kth user and n ∈ CNr×1 is the additive white Gaussian noise.

In wireless communication, channel often experiences fading caused by multi-

path or shadowing. If we assume the channel matrix G models log-normal shadow

fading, then we have

gnk = hnk

√
βk, n = 1, 2, · · · , Nr (6.14)

where hnk is the fast fading coefficient from the kth user to the nth antenna of the BS

and
√
βk represents the geometric attenuation due to shadow fading which is assumed

independent over n and known a priori. So

G = HD1/2 (6.15)
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MuxNu antennas (base station)

User 1

User 2

User K

K users (mobile station)

Figure 6.7. Uplink operation of a massive MIMO system. There’re K users in a single
cell and Mu ×Nu antennas on the BS .

where H ∈ CNr×K denotes the fast fading matrix, i.e., [H]nk = hnk and D1/2 ∈ CK×K

is a diagonal matrix with [D]kk = βk.

Supposing (θk, ϕk) is the AoD from the kth user to the BS, then

hnk = αnke
j2π(xnsinθkcosϕk+ynsinθksinϕk+zncosθk)/λ,

n = 1, 2, · · · , Nr

(6.16)

where αnk is the path gain.

At the BS, the manifold matrix of the cylindrical array is denoted by A ∈

CNr×K , where

A = [er,1, er,2, . . . , er,K ] (6.17)

and
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er,k =



ej
2π
λ
(x1sinθkcosϕk+y1sinθksinϕk+z1cosθk)

ej
2π
λ
(x2sinθkcosϕk+y2sinθksinϕk+z2cosθk)

...

ej
2π
λ
(xNr sinθkcosϕk+yNr sinθksinϕk+zNr cosθk)


(6.18)

If αnk is set to be 1, then

H = A (6.19)

As a consequence, by substituting (6.15) and (6.19) into (6.13), we have

y =
√
ρuAD1/2x+ n (6.20)

and G is rewritten as

G = AD1/2 (6.21)

When maximum-ratio combining (MRC) is applied at the BS, from [88], we

could obtain the ergodic achievable uplink rate of the kth user as

Rmrc
k = E

[
log2

(
1 +

ρu ∥gk∥
4

ρu
∑K

i=1,i ̸=k |gH
k gi|

2 + ∥gk∥
2

)]
(6.22)

6.3.2 System Model Based on Difference Co-array

From Section A, we know that the received signal is

y =
√
ρuAD1/2x+ n (6.23)

and both the signal source and the noise are assumed to be temporally uncorrelated,

so the source autocorrelation matrix Rxx is a diagonal matrix. The autocorrelation

of the received signal is
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Ryy = E[yyH ]

= ρuARxxDAH + σ2
nI

= ρuA



β1σ
2
1

β2σ
2
2

. . .

βKσ
2
K


AH + σ2

nI

(6.24)

Following [16], the vector mapping operation could be applied on Ryy as

s = vec(Ryy)

= vec

[
K∑
i=1

ρuβiσ
2
i (e(θi, ϕi)e

H(θi, ϕi))

]
+ σ2

n

→
1n

= (A∗ ⊙A)p+ σ2
n

→
1n

(6.25)

where ⊙ is the Khatri-Rao product, p = [ρuβ1σ
2
1, ρuβ2σ

2
2, . . . , ρuβKσ

2
K ]

T and
→
1n is the

identity matrix. Comparing (6.23) and (6.25), the manifold matrix in (6.25) could

be treated as (A∗ ⊙A), the source signal x now becomes p and the noise becomes

σ2
n

→
1n. Because (A

∗ ⊙A) calculates the difference co-array of the original array, thus

s behaves like the received signal with a longer array where the positions of antennas

are given by the distinct values whose sensor locations are given by the distinct values

in the set {rj − rq, 1 ≤ j, q ≤ Nr} where rj denotes the position of the jth sensor of

the original array and rq denotes the position of the qth sensor of the original array.

6.4 Beamforming Analysis of Co-prime Cylindrical Array and Nested Cylindrical

Array

For a uniform cylindrical array as shown in Figure 6.6, assuming all the elements

are isotropic and are placed on the surface of a staggered grid. If there are Nu circular
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arrays andMu elements in each circular array, the far-field beam pattern in the generic

direction (θ, ϕ) of the cylindrical array could be represented as [66]

B(θ, ϕ) =
Nu−1∑
n=0

Mu∑
m=1

w∗
nme

−jkT rnm (6.26)

where wnm is the weight value of the mth element on the nth circular array, k is the

wavenumber defined in (6.27) and rnm is the location of the mth element on the nth

circular array.

k = −2π

λ


sinθ cosϕ

sinθ sinϕ

cosθ

 (6.27)

where λ is the wavelength.

Substituting k into (6.26), it could be rewritten as

B(θ, ϕ) =
Nu−1∑
n=0

Mu∑
m=1

w∗
nme

jk0[Rsinθcos(ϕ−ϕm)+zncosθ] (6.28)

here k0 = |k| = 2π/λ, R is the radius of the circular array and ϕm = 2πm/Mu.

If we further expand (6.28), it’s easy to see that the second term in the braces

is the beam pattern of the nth circular array as following

B(θ, ϕ) =
Nu−1∑
n=0

ejk0zncosθ

{
Mu∑
m=1

w∗
nme

jk0Rsinθcos(ϕ−ϕm)

}
(6.29)

Replace the second term with Bcir,n(θ, ϕ), then (6.29) is simplified as

B(θ, ϕ) =
Nu−1∑
n=0

ejk0zncosθBcir,n(θ, ϕ) (6.30)
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Assuming the array in the z-direction to be elements of a linear array and each

column has uniform weighting, which means that w∗
nm can be separated as the product

of the two array factors as

w∗
nm = w∗

nw
∗
m (6.31)

(6.30) could reduce to

B(θ, ϕ) =
Nu−1∑
n=0

w∗
ne

jk0zncosθBcir(θ, ϕ)

= Blin(θ, ϕ)Bcir(θ, ϕ)

(6.32)

For the Blin part, if it’s a uniform linear array with length Nu, then the beam

pattern is

Blin =
1

Nu

Nu−1∑
n=0

ejnπu

=
1

Nu

· 1− ejNuπu

1− ejπu

(6.33)

where u = cos(θ).

When the elements in z-direction are placed as co-prime linear array with pair

(C1, C2), the beam patterns of the two sub-arrays are

Blin,C1 =
1

C1

C1−1∑
c=0

ejcC2πu

=
1

C1

(
1− ejC1C2πu

1− ejC2πu

) (6.34)

Blin,C2 =
1

C2

C2−1∑
c=0

ejcC1πu

=
1

C2

(
1− ejC1C2πu

1− ejC1πu

) (6.35)

Through the beam patterns of the two subarrays, we can calculate the beam

pattern of the (C1, C2) co-prime array as
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Blin,C1,C2 = Blin,C1 ×Blin,C2

=
1

C1C2

· (1− ejC1C2πu)2

(1− ejC1πu)(1− ejC2πu)

(6.36)

Blin,C1,C2 has been derived in [107], but the authors did not provide the beam

pattern of nested array. For the nested array with pair (N1, N2), we also apply uniform

weighting and the beam pattern of two sub-arrays are

Blin,N1 =
1

N1 + 1

N1∑
n=0

ejnπu

=
1

N1 + 1
· 1− ej(N1+1)πu

1− ejπu

(6.37)

Blin,N2 =
1

N2

N2∑
n=1

ejn(N1+1)πu

=
ej(N1+1)πu

N2

· 1− ej(N1+1)N2πu

1− ej(N1+1)πu

(6.38)

To be noticed is that, for the nested linear array, we add an element at position 0,

i.e., the nested linear array withN1 = 5, N2 = 4 is located at [0, 1, 2, 3, 4, 5, 6, 12, 18, 24]

and the two subarrays are located at [0, 1, 2, 3, 4, 5], [6, 12, 18, 24] respectively.

Similarly, we can calculate the beam pattern of the (N1, N2) nested array as

Blin,N1,N2 = Blin,N1 ×Blin,N2

=
ej(N1+1)πu

(N1 + 1)N2

· 1− ej(N1+1)N2πu

1− ejπu

(6.39)

The absolute value of (6.39) is

|Blin,N1,N2 | =
∣∣∣∣ 1

(N1 + 1)N2

· 1− ej(N1+1)N2πu

1− ejπu

∣∣∣∣ (6.40)

Comparing to (6.33), it’s straightforward to see that (6.33) equals to the abso-

lute value (6.40) if N = (N1 + 1)N2 sensors. As a matter of fact, nested linear array

could achieve exactly the same beam pattern of a ULA. This property helps us to
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further analyze the performance improvement of the beam pattern when comparing

NCA, CCA and UCA.

The 3-dB beamwidth is an important parameter in measuring the array geome-

try because it’s related with the array’s ability to distinguish different signals arriving

from different angles. A narrow 3-dB beamwidth means a high resolution of the array.

We know that for a ULA, the width of the main beam is obtained by solving

πNud

λ
u = 1.4 (6.41)

If the co-prime linear array needs to achieve the same beamwidth, (6.41) is

rewritten as

(
πC1C2u

2
)2 = 1.4 (6.42)

and for nested linear array, it becomes

π(N1 + 1)N2u

2
= 1.4 (6.43)

Let (6.42) equals to (6.43), the relationship between co-prime pair and nested

pair is obtained as

C1C2

(N1 + 1)N2

≈ 1√
1.4

(6.44)

By assuming C1 and C2 are known parameters, the goal is to find the value of

N1 and N2. When (N1+1)N2 is minimized in the nested array, the difference between

N1 and N2 should be 1. For example, if the co-prime pair is (4, 5), calculating through

(6.44), we can get (N1 + 1)N2 ≈ 24. As a consequence, the nested pair should be

(5, 4).
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In order to verify our analysis, the beam pattern of a co-prime linear array (with

pair (4, 5)) and a nested linear array (with pair (5, 4)) is plotted in Figure 6.8, where

the CLA is located at [0, 4, 5, 8, 10, 12, 15, 16] with pair (4, 5), the NLA is located at

[0, 1, 2, 3, 4, 5, 6, 12, 18, 24] with pair (5, 4) and the ULA is located at [0, 1, 2, . . . , 23].

We can see that their 3-dB beamwidth is exactly the same. Figure 6.8 also proves

that the beam pattern of a nested linear array with pair (N1, N2) equals to a uniform

linear array with (N1 + 1)N2 elements.
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Figure 6.8. Example of beam patterns of ULA in black line, CLA in blue dashed
line and NLA in red dashed line, In this example, all the three linear arrays have the
same 3-dB beamwidth. Besides, since the length of ULA is (N1 +1)N2 = (5+ 1)× 4,
the beam pattern of ULA is exactly the same with the beam pattern of CLA of pair
(N1, N2) .

6.5 Simulation Results

In this section, we firstly simulate the scenario of two sources in the range.

The spatial resolution of CCA and NCA is shown and compared with the UCA of
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the same aperture on z-axis. Then the unplink spectral efficiency of CCA, NCA and

SNCA is analyzed when those sparse cylindrical arrays are placed at the BS.

6.5.1 Spatial Resolution of CCA and NCA

Assuming the deployment of CCA and NCA is as shown in Figure 6.3 and

Figure 6.4, where there’re 16 antennas uniformly spaced on every circular array, since

the azimuth resolution is determined by the circular array, if CCA and NCA have the

same deployment of circular array, their beam pattern of azimuth angle should have

identical performance as well. Supposing there’re two sources coming from direction

ϕ1 = 80◦ and ϕ2 = 100◦, then the 1D beam pattern is illustrated in Figure 6.9.
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Figure 6.9. Example of azimuth direction resolution of CCA and NCA. In this ex-
ample, the CCA and NCA are shown as Fig. 3 and Fig. 4. Besides, there’re two
sources coming from ϕ1 = 80◦ and ϕ2 = 100◦. Since the azimuth direction resolution
is mainly decided by the circular arrays on the cylindrical array, when CCA and NCA
have the same circular arrays, the azimuth beam pattern is identical .
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Next, let’s consider the resolution of elevation direction of CCA and NCA. If

the CCA and NCA are still chosen as Figure 6.3 and Figure 6.4, we plot the 3-dB

beamwidth in Figure 6.10. From Figure 6.10 we can see that when the length of

vertical linear array is short, the 3-dB beamwidth of CCA and NCA is very wide,

which will bring a low resolution of the elevation angle.
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Figure 6.10. Example of 3-dB beamwidth of CCA and NCA. The CCA and NCA are
as plotted in Figure 6.3 and Figure 6.4 respectively .

A possible way to increase the resolution of CCA and NCA is to extend the

length of the vertical array. Assuming the number of elements on each circular array is

also 16, choosing the co-prime pair of CCA as (5, 6), then the positions of the vertical

array on the z-axis is [0, 5, 6, 10, 12, 15, 18, 20, 24, 25], and set nested pair of NCA to

be (4, 5), which means that the vertical array locates at [0, 1, 2, 3, 4, 5, 10, 15, 20, 25].

Apparently the number of physical antennas of CCA and NCA is the same (which

equals to 160 = 16 × 10). By calculating the difference co-array of CCA and NCA,

the corresponding vertical array of UCA should be placed at [0, 1, 2, . . . , 25] and the
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number of antennas is 416 = 16× 26. This indicates that CCA and NCA save about

62% antennas comparing with the corresponding UCA.

Supposing there’re two far sources coming from θ1 = 80◦ and θ2 = 100◦, the

beam pattern of CCA and NCA is shown in Figure 6.11, where the vertical antennas

of CCA are placed at [0, 5, 6, 10, 12, 15, 18, 20, 24, 25], the vertical antennas of NCA are

placed at [0, 1, 2, 3, 4, 5, 10, 15, 20, 25] and their corresponding UCA contains vertical

antennas located at [0, 1, 2, . . . , 25].

Similarly, when the two sources are from θ1 = 80◦ and θ2 = 85◦, the beam

pattern results are given in Figure 6.12 and the structures of UCA, CCA and NCA

are the same as used in Figure 6.11. We also compare the performance with their

corresponding UCA. It’s straightforward to see that the two far sources are success-

fully detected by UCA, CCA and NCA, however, CCA and UCA fail to distinguish

the two close sources while NCA successfully detects that.
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Figure 6.11. Example of elevation direction resolution of UCA, CCA and NCA,
assuming there’re two sources coming from θ1 = 80◦ and θ2 = 100◦ .
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Figure 6.12. Example of elevation direction resolution of UCA, CCA and NCA,
assuming there’re two sources coming from θ1 = 80◦ and θ2 = 85◦. In this example,
we can see that CCA and UCA fail to distinguish the two close sources while NCA
successfully detects that .

6.5.2 MU-MIMO Capacity Analysis

In Section 6.3, it provides the ergodic achievable uplink rate for the kth user,

based on Rmrc
k , we can define the spectral efficiency of the massive MIMO system as

Rmrc =
K∑
k=1

Rmrc
k (6.45)

With the condition that CCA, NCA and SNCA have the same corresponding

UCA, which is constructed by Nr antennas, via (6.25), a new matrix A1 of size

(Nr) ×K from A∗ ⊙A can be obtained. Since there would be some repeated rows

after vector mapping, we need to remove all the repeated rows. This is equivalent to

removing the corresponding rows in vector s and finally a new vector of the received

signal could be given by
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y1 = A1p+ σ2
n

→
1n (6.46)

and the expression of G is rewritten as

G̃ = A1 (6.47)

Consequently, the sum-rate capacity of the uplink is calculated as

R̃mrc =
K∑
k=1

R̃mrc
k

= E

log2
1 +

∥g̃k∥
4∑K

i=1,i̸=k

∣∣∣g̃H
k g̃i

∣∣∣2 + ∥g̃k∥
2


 (6.48)

In order to compare the channel capacity among different sparse cylindrical

arrays, their number of antennas are given in Table 6.1 and Table 6.2. The first

column of Table 6.1 and Table 6.2 means Nr on UCA. For instance, when Mu = 8

and Nr = 48, it represents a UCA with 6 circular arrays and on each circular array,

there’re 8 antennas. The columns of CCA, NCA and SNCA are the number of

physical antennas plus the number of virtual antennas, where the number of physical

antennas are the same as in the UCA, but the virtual antennas are calculated by

different difference co-arrays. For example, when Mu = 16 and Nr = 80, the NCA is

built by 5 circular arrays which located at z = [0, 1, 2, 4] and on each circular array,

there’re 16 antennas. Therefore, this NCA equals to a UCA with 5× 16 antennas.

Hence, in Figure 6.13 and Figure 6.14, we plot the spectral efficiency of the UCA,

CCA, NCA and SNCA as listed in Table 6.1 and Table 6.2 respectively. Considering

there’re K = 10 users in a cell and the users are located uniformly at random. The

radius of the cell is 1000 meters and the SNR is 2 dB. From Figure 6.13 and Figure

6.14, we can conclude that all the three structures of sparse cylindrical arrays perform
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Table 6.1. Number of antennas on UCA, CCA, NCA and SNCA when Mu = 8

UCA(Nr) CCA NCA SNCA

48 80 80 80

64 112 128 128

80 144 176 160

96 176 224 192

112 208 272 224

128 240 320 256

144 272 368 288

160 304 416 320

better than UCA. Besides, when Mu = 8 in Fig. 13, NCA has the highest spectral

efficiency among UCA, CCA and SNCA, but when Mu increases to 16, NCA only

outperforms CCA and NCA when Nr is larger than around 110. These trends are

also reflected in Table 6.1 and Table 6.2.

6.6 Conclusion

Three kinds of sparse cylindrical antenna arrays, CCA, NCA and SNCA are

proposed in this paper, which are generated from the co-prime linear array, nested

linear array and sparse circular array correspondingly. To the best of our knowledge,

this is the first time that co-prime array and nested array are combined with cylindri-

cal array. The detailed analysis of the beam pattern for CCA and NCA is provided.

Since beam pattern is related with the ability of resolution, we compared the perfor-
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Table 6.2. Number of antennas on UCA, CCA, NCA and SNCA when Mu = 16

UCA(Nr) CCA NCA SNCA

48 64 48 80

64 96 80 112

80 128 112 144

96 160 160 176

112 192 208 208

128 224 256 240

144 256 304 272

160 288 352 304

mance of beam pattern among UCA and CCA, NCA. UCA and CCA can distinguish

sources which are far away from each other, but when two close sources come from

the range, only NCA can recognize it. Moreover, we also simulate the uplink channel

capacity in massive MIMO scenario and prove that all the three sparse cylindrical

arrays could increase the channel capacity with fewer physical antennas. In the future

study, we will focus on some other properties of the sparse cylindrical arrays, such as

applying different weighting functions and the measurement of these sparse antenna

arrays as well.

108



50 60 70 80 90 100 110 120 130 140 150 160

Number of Physical Antennas

10

15

20

25

30

35

40

45

50

55

S
p
e
c
tr

a
l-
E

ff
ic

ie
n
c
y
 (

b
it
s
/s

/H
z
)

M
u
=8

UCA

CCA

NCA

SNCA

Figure 6.13. Spectral efficiency versus the number of physical BS antennas Nr when
MRC is applied at the receiver. In this example, K = 10 and the numbers of antennas
of UCA, CCA, NCA, SNCA are listed in Table 6.1. Averagely, the three structures
of sparse cylindrical array, which are CCA, NCA and SNCA can double the number
of antennas of the UCA .
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Figure 6.14. Spectral efficiency versus the number of physical BS antennas Nr when
MRC is applied at the receiver. In this example, K = 10 and the numbers of antennas
of UCA, CCA, NCA, SNCA are listed in Table 6.2. Averagely, the three structures
of sparse cylindrical array, which are CCA, NCA and SNCA can increase the number
of antennas of the UCA about 1.5 times .
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CHAPTER 7

Conclusion and Future Works

In this chapter, the conclusion of this dissertation is presented and followed by

is the future work.

7.1 Conclusion

This dissertation proposes several approaches of the sparse sampling and sparse

arrays, meanwhile it also provides some applications of the proposed methods.

• Data Compression for UWB Radar and SAR[108]-[111]: In Chapter 2, two

target detection algorithms in foliage environment are developed, which are

NS-STFT approach and CS-STFT approach. Since nested sampling and co-

prime sampling are sub-Nyquist sampling, the NS-STFT methods and CS-

STFT method can save about half the quantity of the original data. In ad-

dition, the high redundant SAR raw data of the signal echoes is compressed by

exploiting SVD-QR algorithm in slow-time domain of the data set before using

backprojection image reconstruction method.

• Sensing with Application to Greenland Bed Elevation Assessment[112]: In Chap-

ter 3, a new co-prime interpolation based compressive sensing algorithm is pro-

posed. When the proposed algorithm is used, RMSE of the recovered image

becomes lower and PSNR also gets improved. Furthermore, the CopCS has

also been tested on real data – Greenland elevation map. The reconstructed

images by CopCS approach are much clear than both interpolated images and

direct CS recovered images.

110



• DoA Estimation in Underwater Sensor Networks Based on Stationary Sparse

Array and Mobile Sparse Array[113][114]: In Chapter 4 and 5, we extend the

augmented matrix approach from minimum redundancy array to 1D and 2D

nested array and co-prime array in order to estimate the location of the targets.

It’s clear to see that the nested and co-prime arrays are able to save the number

of sensors. Moreover, accuracy is improved for the reason of large apertures and

CRB in the non-uniform array is also decreased significantly. For the co-prime

array in motion, SDS method is proposed. The simulation results indicate that

an array in motion by applying SDS method has a larger dynamic range than

the static array and performs better than the uniform linear array.

• Evaluating Spatial Resolution and Channel Capacity of Sparse Cylindrical Ar-

rays for Massive MIMO: In Chapter 6, three new sparse cylindrical arrays –

co-prime cylindrical array, nested cylindrical array and sparse nested cylindrical

array are proposed. Since beam pattern is related with the ability of resolution,

we compare the performance of beam pattern among uniform cylindrical array

and the two sparse cylindrical arrays. Simulation results prove our theoretical

analysis, which is that CCA and NCA could achieve better performance with

fewer elements comparing with uniform cylindrical array. Besides, we also ana-

lyze the the uplink channel capacity in massive MIMO scenario, when the three

sparse cylindrical arrays are deployment at the base station. The results show

that all the three sparse cylindrical arrays can improve the channel capacity

compared with the uniform cylindrical array with same number of antennas.
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7.2 Future Research

7.2.1 Sparse Cylindrical Arrays in Underwater Environment and Communication

Networks

Cylindrical arrays have been used in several applications, including sonar, radar,

and communication. Active sonars designed for detection of submarines and other

objects located underwater and at sea bottoms are usually equipped with cylindrical

arrays, allowing for simultaneous observation of targets at round angle. In fishery

applications, the cylindrical sonar array is typically mounted below the hull of the

vessel, to image the sea in a cone around the boat. In the future works, we want to

apply sparse cylindrical arrays in underwater environment, in order to improve the

performance of target detection.

In wireless communications, performance enhancements can be achieved by im-

plementing an antenna array configuration that provides the capability of generating

and electronically steering multiple high-resolution beam patterns over the entire cov-

erage region in the azimuth plane as well as the elevation plane. Although a circular

array antenna is a suitable choice to achieve such a task, it is more robust and efficient

to consider a cylindrical array antenna. This is due to the fact that a cylindrical array

antenna allows for the wide angular coverage in both the azimuth plane and the el-

evation plane. Furthermore, the cylindrical geometry of the antenna is attractive for

achieving the capacity requirement of 5G communications. If we want to realization

the sparse cylindrical antenna arrays in massive MIMO, more theoretical work has to

do, such as considering the fading and channel modeling.

7.2.2 Multimodal Data Analysis Based on Sparse Sampling

Due to the rich characteristics of natural phenomena, it is rare that a single

modality provides complete knowledge of the phenomenon of interest. In the 20th
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century, the idea of data fusion was firstly laid in [115][116]. Since then, jointly

analysis of multiple datasets have been studied for a long time. In [117], the authors

provide an overview of multimodal data fusion. Some existing pattern recognition

tools for multimodal data analysis and integration (MDAI) are as listed:

• Human-inspired pattern recognition

• Probabilistic reasoning

• Deep learning

• Bayesian approaches

• Graphical models

• High-dimensional regression

• Support vector machines

• Kernel methods

• Information theory

Motivation for data fusion are numerous, such as obtaining a global view of

the environment, improving making decisions, security inspection or exploratory re-

search. There’re several challenges in data fusion [118][119], for example, the decision

is usually depended on the data generated by different types (audio, visual and so

on), as a consequence, there would be a large number of variables and samples which

needs to be processed. In addition, with the development of the technology, the re-

quirement on MDAI is increasing as well and sometimes it’s desirable that the data

fusion system could make accurate and real-time decisions. Introducing sparse sam-

pling into multimodality may be an efficient approach to improve the performance of

multimodal data fusion.
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