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ABSTRACT

Sparse Array for Wireless Sensor Networks and Wireless Communications

HAO LIANG, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Qilian Liang

Underwater target detection and recognition has been widely used nowadays. In

this dissertation, we show that the 3-D nested-array system can provide O(N2) degree

of freedom by using only N physical sensors when the second order statistics of the re-

ceived data is used, which means we can use less sensors to get a better performance.

We propose a maximum likelihood (ML) estimation algorithm for underwater target

size detection. Theoretical analysis illustrates that our underwater sensor network

can tremendously reduce the variance of target estimation. We show that our ML

estimator is unbiased and the variance of parameter estimation matches the Cramer-

Rao lower bound.We also propose a maximum likelihood automatic target recognition

(ML-ATR) algorithm for nonfluctuating as well as fluctuating targets. Theoretical

analysis illustrates that our underwater ML-ATR method can tremendously reduce

the number of physical sensors while maintain in a good performance

Moreover, a novel deployment for multi-cell cooperative cellular network based

on the two-dimensional (2D) coprime array, and analysis on its sum rate capac- ity are

proposed. Taking advantage of that the 2D coprime-array system can provide O(N2)
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degree of freedom by using only N physical sensors when the second order statistics of

the received data is used, we show that the derivation procedure of average sum-rate

capacity for the cooperative cellular network is still valid for the coprimed distributed

base stations (BSs) in the non-fading and Rayleigh fading channels.

We also study sense-through-foliage target detection using ultra-wideband (UWB)

radars. We propose a Discrete-Cosine-Transform (DCT)-based approach for sense-

through- foliage target detection when the echo signal quality is good, and a Radar

Sensor Network (RSN) and DCT-based approach when the echo signal quality is poor.

A RAKE structure which can combine the echos from different cluster-members is

proposed for clusterhead in the RSN. We compared our approach with the ideal case

when both echos are available, i.e., echos with target and without target. We also

compared our approach against the scheme in which 2- D image was created via

adding voltages with the appropriate time offset as well as the matched filter-based

approach. We observed that the matched filter-based couldnot work well because the

UWB channel has memory.

In the last Chapter, we propose a transfer entropy based approach for sense-

through-foliage target detection. It is the first time to apply Transfer Entropy(TE)

to real world target detection. Two different types of data are provided by Air Force

Office of Scientific Research in terms of radar echo signal quality. We compare our

approach with the case of linear regression approach for target detection. Simulation

results show that our scheme works better than the existing approaches.
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CHAPTER 1

INTRODUCTION

Underwater target detection plays an important role in military, ocean exploita-

tion and disaster rescue and prediction. The authors in [51][52] proposed two new

sparse array deploy method, namely co-prime array and nested array. This method

can dramatically increase the degree of freedom compared to the actual number of

physical sensors. 2-D nested array and its application were presented in [53][54].

Smith form decomposition of the integer matrix is used in the design of the 2-D

nested array. They demonstrated that the number of source can be much larger than

the number of physical sensors. In Chapter 1, singular value decomposition is use so

that the matrix value is not restricted to have integer anymore. The minimum redun-

dancy array was introduced in [55], which can have a smaller number of redundancy

sensors in the array. As underwater environment is broad and deep, the 2-D case is

not applicable for this situation. We extend it into 3D case.

With the forthcoming 500 million connections and explosion of mobile broad-

band data, heterogeneous networks with a combined approach including improving,

densifying and finding better deployment of the cells are becoming the future way to

enhance network capacity and performance [42].

Several studies have addressed the cell planning and interference issues in the

past. In [43], different symmetric cell deployment strategies have been studied based

on inter-site distance and it is concluded that the network capacity can be enhanced
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through denser deployment of cells. In [44] the authors propose to deploy a massive

amount of small cells in order to increase the total capacity and reduce the energy

consumption.

However, when the cells are deployed in a super dense way, the inter-cell inter-

ference problem would become dominant. In a high interference scenario with many

line-of-sight (LOS) interferers around, keep adding cells regardless of the surrounding

environment will not always help to improve the network performance.[45]

Hence, finding better deployment of BSs and increasing the level of collab-

oration would be a better way to achieve higher capacity. In Chapter 3, a novel

coprime distributed network is proposed which can increasing the degree of freedom

of the co-arrays to reduce the number of physical sensor while maintaining the same

performance. In [46], another sparse deployment method named nested-array was

introduced.

UWB radars are used nowadays for different applications such as subsurface

sensing, classification of aircrafts, collision avoidance, etc. In all of these applica-

tions the ultra-high resolution of UWB radars is essentially used [62]. UWB radar

emissions are at a relatively low frequency-typically between 100 MHz and 3 GHz.

Additionally, the fractional bandwidth of the signal is very large (greater than 0.25).

In this definition, bandwidth means the difference between the highest and lowest

frequencies of interest and contains about 95% of the signal power [39][40]. Such

radar sensor has exceptional range resolution that also has an ability to penetrate

many common materials (e.g., walls). Law enforcement personnel have used UWB

ground penetrating radars (GPRs) for at least a decade.In chapter 4, we will study

2



sense-through-foliage target detection using UWB radars.

Chapter 2 implements the 3D nested-array theory into underwater target de-

tection and recognition. In Chapter 3, a novel deployment for multi-cell cooperative

cellular network based on the two-dimensional (2D) coprime array, and analysis on

its sum rate capac- ity are proposed. Sense-through-foliage target detection using

ultra-wideband (UWB) radars is studied in Chapter 4. An information theory based

Sense-through-foliage target detection using Transfer Entropy is proposed in Chapter

5.

3



CHAPTER 2

Target Detection and Recognition Based on 3-D Sparse Underwater Sonar Array

Network

2.1 Introduction

In the case of our proposed nested array , we shall demonstrate that using only

the second order statistics of the source, it is possible to get the effect of a 3D ar-

ray of O(MN) “virtual ”sensors using only M + N physical sensors. We want these

virtual sensors to completely filling up a parallelepiped (FPD) with no missing sensor.

The relationship between distance and size in underwater situation was studied

in [56]. In [94], algorithm to extract the target size information from a sequence of

2D acoustic images acquired by a forward looking sonar has been proposed. In [57],

ML algorithm for underwater target detection is proposed. The Cramer-Rao bound

of the MUSIC estimation is provided in [58].

Underwater target size recognition is very similar to radar cross section [95]

since it is proportional to received signal power. In Chapter 2, we assume that the

distance between the target and sensor is know, since it can be easily calculate base

on the time duration between the sent signal and its received echo.

The rest of this chapter is organized as follows. In Section 2, we give a brief

introduction of sparse arrays system. In Section 3, we develop a maximum-likelihood

estimation algorithm for target size parameter estimation using underwater sensor ar-
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ray network. In Section 4, Monte Carlo simulation result is provided. The conclusion

is drew in Section 5.

2.2 3-D NESTED ARRAY SENSOR NETWORK MODEL

1. Definition of Multidimensional lattices and matrix We shall first review several

concept about multidimensional lattices [59]. Given a D × D singular matrix

V, the D dimensional lattice generated by this matrix is defined as

LAT (V ) = {t : t = Vn} (2.1)

Where n ∈ ND×1 is an integer vector. The matrix V is called the generator of

that lattice. An important concept related to LAT(V) is that of the fundamental

parallelepiped (FPD). The FPD of V ∈ CD×D in D dimensions is defined as the

set of all vectors of the form

{Vx, x ∈ [0 1)D} (2.2)

Fig. 1 demonstrates the FPD in three dimension case.

Suppose M is a m × n matrix whose entries come from the field K, which is

either the field of real numbers or the field of complex numbers. Then there

exists a factorization of the form

M = UΣV ∗ (2.3)

where U is a m × m unitary matrix over K(orthogonal matrix if K = R),Σ

is a m × m diagonal matrix with non-negative real numbers on the diagonal,

and the n× n unitary matrix, V ∗ denotes the conjugate transpose of the n× n

unitary matrix V.

Such a factorization is called a singular value decomposition of M. The diagonal

5



	
Figure 2.1. FPD of the lattice generated by the generator matrix V = [v1v2v3]..

entries σi of Σ are known as the singular values of M. A common convention

is to list the singular values in descending order. In this case, the diagonal matrix

Σ is uniquely determined by M.

Definition: Contiguous Sensors on a Lattice): In three dimensions , a collection

of sensors on LAT(V) is said to be contiguous (also referred to as “array without

holes,” or “array with no missing sensors”) if the sensor location are given by

{V [v1 v2 v3]
T , N11 ≤ v1 ≤ N13, N21 ≤ v2 ≤ N23, N31 ≤ v3 ≤ N33}. Where

Nxy are some real numbers.

2. Nested Array on Lattices Consider two lattices with 3 × 3 generator matrices

N (S) and N (D) satisfying,

N (S) = N (D)P (2.4)

Where P is a 3× 3 matrix.

N
(S)
1 +N

(S)
2 +N

(S)
3 = N (S) (2.5)

Det|P | = |N (D)| (2.6)

6



Lemma 1: The cross difference co-array between LAT (N (S)) and LAT (N (D))

has all sensors located on the dense lattice generated by N (D).

Proof: The cross difference co-array between LAT (N (S)) and LAT (N (D)) has

sensors located at N (S)n(S)−N (d)n(d). Since N (S) = N (D)P , the differences can

be written as N (D)(Pn(S) − n(d)) = N (D)n. Hence, the cross difference co-array

has its sensors on the dense lattice N (D).

3. Properties of Nested Array We first define

SFPD(N (S)), k1, k2, k3) = {N (S)([k1, k2, k3]
T − x), x ∈ [0, 1)2} (2.7)

hence k1, k2, k3 can be arbitrary real numbers and SFPD stands for “shifted

FPD”, where FPD(N (S)) is shift by the vector [k1, k2, k3]
T . Theorem 1: Con-

sider N (S) and N (D) related by matrix P as N (S) = N (D)P .

Then

1) Any point N (d)n on LAT(N (d)) can be expressed as N (D)n = N (S)n(S)) -

N (D)n(D) where n(S) is a real vector and n(D) FPD(P).

2) All points on LAT(N (d)) contained within SFPD(N (S), k1, k2, k3) can be gen-

erated by the differences {N (S)([k1, k2, k3]
T −N (D)n(D), n(D) ∈ FPD(P )}.

Proof:

Any point N (D)n on LAT (N (D)) is also in SFPD(N (S), k1, k2, k3) if and only if

SFPD(N (S), k1, k2, k3) = {N (S)([k1, k2, k3]
T − x), x ∈ [0, 1)2}

This is the same as n = P [k1, k2, k3]
T −n(d). This holds when N (D)n belongs to

SFPD(N (S), k1, k2, k3). Hence all elements on LAT (N (D)) inside SFPD(N (S), k1, k2, k3)

can be generated by the set of differences {N (S)([k1, k2, k3]
T −N (D)n(D), n(D) ∈

FPD(P )}. Hence we get a higher DOF. An Example: Fig .2 shows a 2 level

7



	
Figure 2.2. 3D nested array.

nested array with randomly generated N (D) and P=


2 0 0

1 2 0

1 1 2

 hence the

dense array has Det|P | = N (D) = 8 sensors. We assume N (S) = 48, therefore

the sparse array has 48 sensors located on LAT (N (S) = N (D)P ). The different

co-array elements are shown in Fig.3. There are 8 × 48 = 384 virtual sensors

filling up the 48 shifted FPDs of the sparse lattice.

2.3 Maximum Likelihood Algorithm For Target Size Estimation

For underwater sensor array network, the signal from different sensor will inter-

ference each other . We choose the waveform for sensor i as

xi(t) =

√
1

T
exp[j2π(β + δi)t] (2.8)

Which means there is a frequency shift δ − i for sensor i. To minimize the

interference from one sensor to another, the value forδ − i should be chosen as

8



	
Figure 2.3. Corresponding difference co-array.

δ − i = i
T

, so that the waveform will be orthogonal to each other.

In this chapter, we assume the target is nonfluctuating target with size S, and

the target reflected signal strength is γ, so γ2 is proportional to size S, and we

assume the S will be known if γ2 can be estimated. According to the channel

model in [57], the I and Q subchannels of akl(u) follows zero-mean Gaussian

distribution. Let

Akl(u) = aIkl(u) + jaQkl(u) (2.9)

Then the reflected signal from sensor m is

Zm(u) ≈ γ
∑
l

∑
k

akl(u) + n(u) (2.10)

n(u) = nI(u) + jnQ(u) follows zero-mean complex Gaussian distribution with

variance σ2 for I and Q subchannels, and

E{
∑
l

∑
k

|akl(u)|2} = 1 (2.11)

Since akl(u) and n(u) are zero-mean complex Gaussian random variables, so

γ
∑

l

∑
k akl(u) + n(u) is a zero-mean Gaussian variable with variance

9



γ2E{
∑

l

∑
k|akl(u)|2/2}+σ2=γ2/2+σ2, which means that ym = |Zm(u)| follows

Rayleigh distribution with parameter
√
γ2/2 + σ2

f(ym) =
ym

γ2/2 + σ2
exp[− ym

2(γ2/2 + σ2
)] (2.12)

The mean value of ym is
√

π(γ2/2+σ2)
2

) and the variance is (4−π)(γ2/2+σ2)
2

. The

variance of signal is (4−π)γ2
4

and the variance of the noise is (4−π)σ2

2
.

The PDF of y is

f(y) =
M∏
m=1

f(ym) (2.13)

So the ML algorithm is to estimate the target size value γ2/2,

Let

θ = γ2/2 (2.14)

Then

θ̂ML(y) = arg sup
θ∈R+

f(y) (2.15)

The value of target size S will be got when is estimated. Taking both side by

natural logarithm,

logf(y) =
M∑
m=1

[log(
ym

θ + σ2
)− y2m

2(θ + σ2)
] (2.16)

Since it is a continuous function for ym > 0 and θ > 0, so a necessary condition

for ML estimation is

∂

∂θ
logf(y)|θ=θ̂ML(y)

=

∑M
m=1 y

2
m − 2M(θ + σ2)

2(θ + σ2)2
= 0 (2.17)

Which has the unique solution

θ̂ML(y) =

∑M
m=1 y

2
M

2M
− σ2 (2.18)

Considering θ ≥ 0,

θ̂ML(y) = max[

∑M
m=1 y

2
M

2M
− σ2, 0] (2.19)
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Since

∂2

∂θ2
logf(y)|θ=θ̂ML(y)

= − 4M3

(
∑M

m=1 y
2
m)2

< 0 (2.20)

The expectation of θ̂ML(y) is

Eθ[θ̂ML(y)] =

∫ ∞
0

∑M
m=1 y

2
m

2M
f(ym)dym − σ2 (2.21)

=

∫ ∞
0

∑M
m=1 y

2
m

2M

ym
θ + σ2

exp[− y2m
2(θ + σ2)

]dym − σ2 = θ (2.22)

So it is an unbiased estimator. Fisher’s information would be

Iθ = −Eθ[
∂2

∂θ2
logf(y)] = −Eθ[

M(θ + σ2)−
∑M

m=1 y
2
m

(θ + σ2)3
] (2.23)

As ym with the mean value of
√

π(θ+σ2)
2

and variance (4−π)(θ+σ2)
2

, so the CRLB

is

V arθ[θ̂(y)] ≥ 1

Iθ
=

(θ + σ2)2

M
(2.24)

We can get to the conclusion that θ̂ML(y) can achieve the CRLB theoretically

and the CRLB is inverse proportionally to the number of sensors M in underwa-

ter sensor array network. That means the performance of our estimation gets

better with larger M value.

2.3.1 Simulation

We ran 106 realization simulation using Monte Carlo method at each SNR value,

and we applied the ML estimation algorithm to estimate the θ̂. In Fig. 4 and

Fig. 5, we plotted the variance of the target size ML estimator with 56 physical

sensor versus 384 virtual sensors.

From the figure, we find that 1) The curve of actual variance of the estimator

is almost overlapping the CRLB curve. Our estimator is an unbiased estimator

and the variance of parameter estimator matches CRLB. 2) The variance reduce
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Figure 2.4. Variance of the Estimator with different number of sonars, θ = 1.

when we increase the number of sensors, and they have a reverse proportional

relationship.

2.3.2 Conclusion

In this chapter, we extend the the nested-array algorithm into 3-D underwater

case which is a combination of O(M+N) sensors distributed over nonseparable

lattices, whose difference co-array can give rise to a much larger 3D array with

O(MN) sensors on the dense lattice.

Based on the nested-array model, we proposed a ML estimation algorithm for

the underwater nested array senor network, with M+N physical sensors we can

achieve the performance of M × N virtual sensors. This method can tremen-

dously reduce the variance of parameter estimation. Simulations further vali-

date these results.
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Figure 2.5. Variance of the Estimator with different number of sonars , θ = 5.

2.4 MAXIMUM-LIKELIHOOD AUTOMATIC TARGET RECOGNITION

We use the same waveform we designed in section 2.3.

2.4.1 SSN with two sonar sensors

Assume there are two sonar sensors i and n, the ambiguity function(AF) of

sonar i will be

Ai(ti, tn, FDi, FDn) = |
∫ ∞
−∞

[xi(t)exp(j2πFDit) +xn(t− tn)× exp(j2πFDnt)x∗i (t− ti)dt|

(2.25)

6 |
∫ T/2+min(ti,tn)

−T/2+max(ti,tn)
xn(t−tn)exp(j2πFDnt)x

∗
i (t−ti)|+|

∫ T/2

−T/2+ti
xi(t)exp(j2πFDit)x

∗
i (t−ti)dt|

(2.26)

= |
∫ T/2+min(ti,tn)

−T/2+max(ti,tn)
xn(t− tn)exp(j2πFDnt)x

∗
i (t− ti)|+ |

Esin[πFDi(T − |ti|)]
TπFDi

| (2.27)

In this chapter, we assume that the sonar sensors are synchronized that ti =

tn = τ to make the problem easier. Hence,

Ai(τ, FDi, FDn) ≈ |Esinc[π(n− i+ FDnT )]|+ |Esin[πFDi(T − |τ |)]
TπFDi

| (2.28)
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And we will have 3 special cases:

• If FDi = FDn = 0,

Ai(τ, 0, 0) ≈ |E(T − |τ |)
T

| (2.29)

• If τ = 0,

Ai(0, FDi, FDn) ≈ |Esinc[π(n− i+ FDnT )]|+ |Esin[πFDiT ]

TπFDi
| (2.30)

• If FDi = FDn = 0, τ = 0

Ai(0, 0, 0) ≈ E (2.31)

2.4.2 SSN with multiple sonar sensors

The problem can be extended into multiple sensor case. Make the time delay

τ for each sonar to be the same. The AF for sonar 1 will be,

A1(τ, FD1 , ..., FDM ) ≈
M∑
i=2

|Esinc[π(i− 1 + FD1T )]|+ |Esin[πFD1(T − |τ |)]
TπFD1

| (2.32)

Similarly, we have the following 3 special cases:

• If FD1 = FD2 = ...... = FDM = 0,

A1(τ, 0, 0, ..., 0) ≈ |E(T − |τ |)
T

| (2.33)

• If τ = 0,

A1(0, FD1 , FD2 , ..., FDM ) ≈ |Esinc[π(n− i+ FD1T )]|+ |Esin[πFD1T ]

TπFD1

| (2.34)

• If FD1 = FD2 = ...... = FDM = 0, τ = 0

A1(0, 0, ..., 0) ≈ E (2.35)
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2.4.3 MAXIMUM-LIKELIHOOD AUTOMATIC TARGET RECOGNITION

In SSN, each sonar can provide its waveform parameter to its clusterhead sonar,

and the clusterhead sonar can combine the waveform from its cluster members. Re-

ceived signal for clusterhead sonar 1 is,

r1(u, t) =
M∑
i=1

α(u)xi(t− ti)exp(j2πFDit) + n(u, t) (2.36)

which can be regards as a constants for nonfluctuating targets and Swerling

target model for fluctuating targets. A RAKE structure is used to combine the

received signal.

Z1(u; t1..., tM , FD1 , ..., FDM ) =

∫ T/2

−T/2
r1(u, t)x

∗
1(t− t1)dt (2.37)

=

∫ T/2

−T/2
[
M∑
i=1

α(u)xi(t− ti)exp(j2πFDit) + n(u, t)]x∗1(t− t1)dt (2.38)

Assuming t1 = t2 = ... = tM = τ, then,

Z1(u; τ, FD1 , ..., FDM ) ≈
M∑
i=2

α(u)Esinc[π(i−1+FDiT )]+
α(u)Esin[πFD1(T − |τ |)]

TπFD1

+n(u, t)

(2.39)

Therefore Zm(u; τ, FD1 , ..., FDM ) consists of three parts, namely signal, interfer-

ence, noise. There is also three special cases for Zm(u; τ, FD1 , ..., FDM ),

• When FD1 = FD2 = ... = FDM = 0,

Zm(u; τ, 0, 0, ..., 0) ≈ Eα(u)(T − |τ |)
T

+ n(u, t) (2.40)

• If τ = 0,

Zm(u; τ, FD1 , ..., FDM ) ≈
M∑

i=1,i 6=M

α(u)Esinc[π(i−m+FDiT )]+
α(u)Esin[πFDmT ]

TπFD1

+n(u)

(2.41)

• If FD1 = FD2 = ... = FDM = 0andτ = 0,

Zm(u; 0, 0, 0, ..., 0) ≈ Eα(u) + n(u) (2.42)
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2.4.4 ML-CATR For Non-fluctuating Targets

For nonfluctuating targets, the SCS αm(u) is just a constant α for a given target.

In Equation 2.38, n(u, τ) is a zero-mean Gaussian random variable for a given τ , so

|Zm(u, 0, 0, 0, ..., 0)| follows a Rician distribution, Let ym , |Zm(u, 0, 0, 0, ..., 0)|; then

the pdf of ym is

f(ym) =
2ym
σ2

exp[−y
2 + λ2

σ2
]I0(

2λym
σ2

) (2.43)

Where

λ = Eα (2.44)

σ2 is the noise power (with I and Q subchannel power σ2/2), and I0 is the zero-order

modified Bessel function of the first kind. Let y , [y1, y2, ..., ym], then the pdf of y is,

f(y) =
M∏
m=1

f(ym) (2.45)

Therefore the ML-CATR algorithm to decide a target category C can be expressed

as,

C = arg
N

max
n=1

f(y|λ = Eαn)

= arg
N

max
n=1

M∏
m=1

2ym
σ2

exp[−y
2
m + E2α2

n

σ2
]I0(

2Eαnym
σ2

)
(2.46)

2.4.5 ML-CATR For fluctuating Targets

It is more practical to use Fluctuating target modeling when it comes to the

underwater case and the target SCS is drawn from either Rayleigh or chi-square pdf.

In this work we are using the“Swerling 2” model, which is a Rayleigh distribution with

pulse-to-pulse decorrelation and its I and Q subchannels follow zero-mean Gaussian

distributions with a variance γ2. Assume,

α(u) = αI(u) + jαQ(u) (2.47)
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And n(u) follows a zero-mean complex Gaussian distribution with a variance σ2

for the I and Q subchannels. Therefore ym , |Zm(u; 0, 0, 0, ..., 0)| follows a Rayleigh

distribution with a parameter,
√
E2γ2 + σ2

f(ym) =
ym

E2γ2 + σ2
exp(− y2m

E2γ2 + σ2
) (2.48)

Let y , [y1, y2, ..., ym], then the pdf of y is,

f(y) =
M∏
m=1

f(ym) (2.49)

Assume there are a total of N categories the ML-ATR algorithm to decide a target

category C can be expressed as,

C = arg
N

max
n=1

f(y|γ = γn)

= arg
N

max
n=1

M∏
m=1

ym
E2γ2 + σ2

exp(− y2m
E2γ2 + σ2

)
(2.50)

2.4.6 simulation

For both fluctuating and non-fluctuating targets, we run 105 times Monte-Carlo

simulation for each kind of target at different levels of SNRs as well as different

deployment of sonars. We set 4 kind of targets with different SCS value, as shown in

table 2.1 respectively fish 0.02, marine mammals 0.5, Fishing boat 5, Passenger liner

and warships 20. Figure 2.6 (a)(b)(c) show the ATR error rate at different SNR of

fish, marine mammal and the average error probability of 4 targets for non-fluctuating

case while figure 2.7(a)(b)(c) show the ATR error rate at different SNR of fish, marine

mammal and the average error probability of 4 targets for non-fluctuating case. From

the figure we can find that when there is only one sonar deployed, the error rate is

always greater than 10the uniform 16-sonar SSN and 16-nested SSN the ATR error

rate is always lower than 10to Skolnik, the radar performance with a probability of
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recognition error less than 10with waveform-diversity can achieve a probability of

ATR error much less than 10average ATR for all targets. For our nested deployment

case, the ATR rate remains at a relative low level even experiencing a low SNR.

Index n Target SCS
1 fish 0.02
2 Marine mammal 0.5
3 Fishing Boat 5
4 Passenger liner and warships 20

Table 2.1. SCS Value at Sonar Frequency for 4 Targets

2.4.7 conculsion

In this section, we proposed a ML-CATR estimation algorithm for the under-

water nested array senor network, with M+N physical sensors we can achieve the

performance of M N virtual sensors. From the simulation result, we found that

the nested array sensors performs much better than the muliple and single deployed

senors, which means we can use less senors to achieve a better performance.
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Figure 2.6. Probability of ATR for non-fluctuating target at different SNR(dB) values.
(a) fish. (b) marine mammals (c) Average probability of ATR for 4 targets.
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Figure 2.7. Probability of ATR for fluctuating target at different SNR(dB) values.
(a) fish. (b) marine mammals (c) Average probability of ATR for 4 targets.
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CHAPTER 3

Increasing Capacity of Multi-Cell Cooperative Cellular Networks with Coprime

Deployment

3.1 Introduction

With the forthcoming 500 million connections and explosion of mobile broad-

band data, heterogeneous networks with a combined approach including improving,

densifying and finding better deployment of the cells are becoming the future way to

enhance network capacity and performance [42].

Several studies have addressed the cell planning and interference issues in the past.

In [43], different symmetric cell deployment strategies have been studied based on

inter-site distance and it is concluded that the network capacity can be enhanced

through denser deployment of cells. In [44] the authors propose to deploy a massive

amount of small cells in order to increase the total capacity and reduce the energy

consumption.

However, when the cells are deployed in a super dense way, the inter-cell interfer-

ence problem would become dominant. In a high interference scenario with many

line-of-sight (LOS) interferers around, keep adding cells regardless of the surrounding

environment will not always help to improve the network performance.[45]

Hence, finding better deployment of BSs and increasing the level of collaboration

would be a better way to achieve higher capacity. In this paper, a novel coprime

distributed network is proposed which can increasing the degree of freedom of the

co-arrays to reduce the number of physical sensor while maintaining the same perfor-

mance. The work [47] introduced this theorem into multi-dimensions. In [46], another
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sparse deployment method named nested-array was introduced.

The rest of the paper is organized as follows. In Section 2, we give a brief intro-

duction of coprime arrays system and the system model. In Section 3, we study the

sum-rate capacity of the designed system. In Section 4, Monte Carlo simulation result

is provided. The conclusion is drawn in Section 5.

3.2 Preliminary and Model Description

1. 2D Coprime Co-Array We will firstly introduce several concepts about multidi-

mensional lattice, which is the basic knowledge to coprime co-array mentioned

in [47].

Given a D × D singular matrix V, consider the set of all D × 1vectors of the

form

t = V n (3.1)

where n are integer vectors (vectors with integer entries ni). This set of all is

called the lattice generated by V and is denoted as LAT(V). The set of all D ×

1 vectors of the form Vx, where x ∈ [0, 1)D (i.e., where the elements of x satisfy

0 ≤ xi ≤ 1), is said to be the fundamental parallelepiped of V, and is denoted

as FPD(V). Similarly the symmetric parallelepiped SPD(V) is the set of vectors

Vx with x ∈ (−1, 1)D. To visualize these definitions, consider the 2-D example

where V is 2 × 2 and can be written as

V = [v1 v2]. (3.2)

Some important points to recall are as follows:
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1) the volume of FPD(V) (area in 2-D) is equal to | detV | ;

2) thus, the number of lattice points generated by V per unit volume (lattice

density) is equal to 1/| detV |; larger the determnant, smaller is the density of

lattice points;

3) LAT(V) is the same as LAT(VE) for any integer matrix E with det E =±1

Theorem 1. Coprime Co-arrays in 2D: Assume the 2 × nonsigular integer

matrixes M and N are commuting and coprime. Then:

1) given any integer vector k, there exist integer vectors n1andn2 such that

k = Mn1 −Nn2 holds; the co-array contains all integer vectors, if n1andn2 are

allowed to vary over all integer vectors;

2) let the integer vectors n1 and n
′
1 be restricted to FPD(N) and n2 and n

′
2

restricted to FPD(M); then

Mn1 −Nn2 6= Mn
′

1 −N
′
n2 (3.3)

as long as (n1, n2) 6= (n
′
1 −Nn

′
2);

3) the integer vector Mn1 and Nn2 are distinct when the integers n1 and n2 are

such that n1 ∈ FPD(N) and n2 ∈ FPD(M), unless n1 = n2 = 0.

Theorem 2. Generating All Integer Vectors in FPD(MN): Assume M and

N are commuting, coprime, and nonsigular D× D integer matrixes, and con-

sider the difference k = Mn1 − Nn2. With n1 ∈ FPD(2N)andn2 ∈ FPD(M),

all integers k ∈ FPD(MN) can be generated. Similarly, with n1 ∈ FPD(N) and

n2 ∈ SPD(M), all integers k ∈ FPD(MN) can be generated.
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2. Sum-rate Capacity for Multi-Cell Processing

The ergodic per-cell sum-rate capacity is given by [48]

C(P ) =
1

L
E[log2(IL + PHLH

∗
L)] (3.4)

Where P is the transmit power of a single user, and the expection is taken with

respect to fading coefficients HL.

The matrix HLH
∗
L is an L× L matrix given by

[HLH
∗
L]m,n =



ama
∗
m + bmb

∗
m m = n

bma
∗
n n = (m− 1) modL

amb
∗
n n = (m+ 1) modL

0 otherwise

(3.5)

3. System Model

Figure 1 and Figure 2 demonstrate the distribution of BSs in a 2D coprime

array method described in Section 2.1. Where:

M =

 1 1

−1 4

 and N =

 2 1

−1 5

 (3.6)

As, M - N = I, M and N are coprime.

Every dot in Figure 1 stands for a physically deployed macrocell and Figure 2

is the virtual BSs generated by the physical BSs. Every cell has K users. The

vector baseband representation of signals received at the BSs is given as

y = Hx+ n, (3.7)
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Figure 3.1. The array generated by Mn1, n1 ∈ FPD(N), and Nn2, n2 ∈ FPD(M).

where H is the channel transfer matrix

H =



a0 0 0 · · · 0 b0

b1 a1 0 · · · 0 0

0 b2 a2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · aL−2 0

0 0 0 · · · bL−1 aL−1


(3.8)

where am, bm are channel coefficients experienced by the K users from the cor-

responding M and N BSs.

3.3 Sum-rate Capacity of Coprime Distributed Cooperative Networks

4. Invariance of the Difference Co-array The difference coarray generated from

the coprime array can be expressed as:

k = Mn1 −Nn2 (3.9)
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Figure 3.2. TheunionofelementsinMn1 −Nn2andNn2 −Mn1.

The correlation between the any two array elements is

R(k) = E[x(Mn1)x
∗(Nn2)] = E[x(n)x∗(n− k)] (3.10)

The received signal vector

ym,n =
k∑
k=1

a(θk)sk + nk (3.11)

where skdenotes the signal waveform vector, nk denoted a i.i.d. Gaussian noise.

a(θk) = [1, e−j
2π
λ
u2sin(θk), · · · , e−j 2πλ u2M+N−1sin(θk)]T , The covariance matrix of re-

ceived signal vector can be expressed as

R = Ey(l)y∗(l) =
k∑
k=1

σ2
ka(θk)a

H(θk) + σ2
nI (3.12)

The covariance matrix will be

R̂ =
1

L

L∑
l=1

y(l)y∗(l) (3.13)

Taking the average of R,

R̂2 =
1

MN

M∑
m=0

n∑
n=0

R (3.14)
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Figure 3.3. Per-cell Sum Rate Capacity for K = 100, ε = 0.1.

The covariance matrix of signal has the same form as R̂2 Therefore, the coprime

distributed BSs have a degree of freedom of O(MN), with O(M+N) physical BSs.

5. AWGN Channel Assume all fading coefficients in non-fading channels to be 1, all

transmission schemes with equal intra-cell power achieve the same throughput.

From (5) we can derive that the uplink average per-cell sum rate without fading

is

C(P ) =
1

L

L∑
l=0

log10(1 + 2KP (1 + cos(2π
l

L
))) (3.15)

The average per-cell sum-rate capacity with Rayleigh fading is

C(P ) =
1

L

L−1∑
l=0

long10(1 + 2KP (m2 + |m1|2cos(2π
l

L
))) (3.16)

3.4 Simulation Result

Figure 3.3 and Figure 3.4 show the channel capacity under the different intra-

cell transmission power. Lower bounds and upper bounds are also analyzed
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Figure 3.4. Per-cell Sum Rate Capacity for K = 100, ε = 0.5.

with K=100 per cell. Figure 8 shows lower bound for ε=0.1 and figure 9 shows

it for ε=0.5.

In fig. 10, we compared the sum-rate capacity between coprime deployment

and uniform deployment under Rayleigh fading and non-fading cases with the

same number of physical BSs. We observe that the coprime deployment has

a 7 times performance improvement comparing to the uniform deployment for

both the Rayleigh fading and non-fading cases.

3.5 Conclusion and Future Works

In this paper, we apply the coprime-array algorithm into BSs depolyment case

which is a combination of O(M+N) BSs distributed over nonseparable lattices,

whose difference co-array can give rise to a much larger 2D array with O(MN)

BSs on the dense lattice. Which means that with M+N physical BSs we can

achieve the performance of MN BSs. From the simulation result, we find that

the coprime array deployed BSs performs much better than the uniform de-
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Figure 3.5. Sum-Rate Capacity Comparison between Coprime and Uniform Deploy-
ment.

ployed BSs. Which means we can use less number of BSs to achieve a better

performance. Meanwhile, there are still some open question beyond this work,

including resource allocation, beamforming, interference, the optimal choice of

the generate matrix.
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CHAPTER 4

Sense-through-Foliage Target Detection Using DCT and UWB Radar Sensor

Networks

4.1 Introduction

UWB radars are used nowadays for different applications such as subsurface

sensing, classification of aircrafts, collision avoidance, etc. In all of these applica-

tions the ultra-high resolution of UWB radars is essentially used [62]. UWB radar

emissions are at a relatively low frequency-typically between 100 MHz and 3 GHz.

Additionally, the fractional bandwidth of the signal is very large (greater than 0.25).

In this definition, bandwidth means the difference between the highest and lowest

frequencies of interest and contains about 95% of the signal power [39][40]. Such

radar sensor has exceptional range resolution that also has an ability to penetrate

many common materials (e.g., walls). Law enforcement personnel have used UWB

ground penetrating radars (GPRs) for at least a decade. In this chapter, we will

study sense-through-foliage target detection using UWB radars.

Like the GPR, sense-through-foliage radar takes advantage of UWB’s very fine

resolution (time gating) and low frequency of operation. In [21], Kapoor et al stud-

ied the detection of targets obscured by a forest canopy using a UWB radar. They

observed that the forest clutter observed in the radar imagery is a highly impulsive

random process that is more accurately modeled with the alpha-stable processes as

compared with Gaussian, Weibull, and K-distribution models. With this more accu-

rate model, segmentation was performed on the imagery into forest and clear regions.

Further, a region-adaptive symmetric alpha stable (SαS) constant false-alarm rate
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(CFAR) detector was introduced and its performance is compared with the Weibull

and Gaussian CFAR detectors. The approach in [21] is a statistical model based ap-

proach. In this chapter, we are interested in a non-statistical model-based approach

for UWB sense-through-foliage target detection, and we will apply our expertise in

signal processing, data fusion, sensor networks, etc to achieve effective sense-through-

foliage technology. In [25], sense-through-wall human detection was studied based

on UWB radar sensors using standard deviation approach. In [27], multi-step infor-

mation fusion was applied to sense-through foliage target detection, and information

theoretical approach [24] was applied to opportunistic sensing in sense-through fo-

liage target detection. In [23], some preliminary work on sense-through-foliage based

on discrete cosine transform was proposed. In this chapter, we are interested in in-

vestigating more features from sense through foliage signals and extracting as much

information as possible for data fusion in radar sensor networks.

The data fusion in radar sensor networks needs waveform diversity combining.

Most existing works on waveform design and selection are focused on single radar or

sonar system. In 1974, Fitzgerald [6] demonstrated the inappropriateness of selec-

tion of waveforms based on measurement quality alone: the interaction between the

measurement and the track can be indirect, but must be accounted for. Since then,

extensive works on waveform design have been reported. Bell [4] used information

theory to design radar waveforms for the measurement of extended radar targets ex-

hibiting resonance phenomena. In [3], the singularity expansion method was used

to design discriminant waveforms such as K-pulse, E-pulse, and S-pulse. Sowelam

and Tewfik [36] developed a signal selection strategy for radar target classification,

and a sequential classification procedure was proposed to minimize the average num-

ber of necessary signal transmissions. Intelligent waveform selection was studied in

[2][8], but the effect of Doppler shift was not considered. In [12], time-frequency-
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based generalized chirps were used as waveform for detection and estimation. In [11],

the performance of constant frequency (CF) and linear frequency modulated (LFM)

waveform fusion from the standpoint of the whole system was studied, but the effect

of clutter was not considered. In [37], a new time-frequency signal decomposition

algorithm based on the S-method was proposed and evaluated on the high-frequency

surface-wave radar (HFSWR) data, and demonstrated that it provided an effective

way for analyzing and detecting maneuvering air targets with significant velocity

changes, including target signal separation from the heavy clutter. In [38], CF and

LFM waveforms were studied for a sonar system, but it was assumed that the sensor

is non-intelligent (i.e., waveform can’t be selected adaptively). All the above studies

and design methods focused on the waveform design or selection for a single active

radar or sonar system. In [33], cross-correlation properties of two radars were briefly

mentioned and the binary coded pulses using simulated annealing [5] are highlighted.

However, the cross-correlation of two binary sequences such as binary coded pulses

(e.g. Barker sequence) is much easier to study than that of two analog radar wave-

forms. In [10], waveform design and diversity was studied with clear performance

gain. In this chapter, we focus on the waveform diversity and design for radar sensor

networks, as well as information fusion for target detection.

The rest of this chapter is organized as follows. In Section 2, we summarize the

measurement and collection of data we used in this chapter. In Section 3, we propose

a discrete-cosine-transform (DCT) based approach for sense-through-foliage target

detection with good signal quality. In Section 4, we propose the theory on waveform

design and diversity for radar sensor networks. In Section 5, we propose a radar sensor

network (RSN) and DCT-based approach for sense-through-foliage target detection

when the signal quality is poor. We conclude this chapter and discuss some future

research topics in Section 6.
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4.2 Sense-through-Foliage Data Measurement and Collection

The experiments were performed by Virtual Machines Company supported by

Air Force Research Lab via FOPEN Phase 2 Field Test project, and the measure-

ments were taken on the grounds of Virtual Machines Company in Holliston, Mas-

sachusetts [15]. The foliage experiment was constructed on a seven-ton man lift, which

had a total lifting capacity of 450 kg. The limit of the lifting capacity was reached

during the experiment as essentially the entire measuring apparatus was placed on

the lift. The principle pieces of equipment secured on the lift are listed below:

• Dual Antenna mounting stand

• Two antennas

• Rack system (2)

• Barth pulser

• Tektronix model 7704 B oscilloscope

• IBM laptop

• HP signal Generator

• Custom RF switch and power supply

• Weather shield (small hut)

Figure 4.1 shows the experiment under a weather shield that was constructed on the

lift. The weather shield was needed to protect the equipment hoisted up with the

lift. A negative side effect of this weather shield was to provide a significant sail area

at the maximum lever arm relative to the lift stabilizing jacks on the ground. Lift

stabilization was achieved using cables and anchor points. A system of 4 tethers was

used under gusty conditions. The transmit and receive rotating platform systems

were built using heavy gauge Unistruts, thrust bearings, and roller bearings for the

multiple axes of freedom. The importance of the rigidity of the antenna mounts
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Figure 4.1. This figure shows the lift with the experiment. The antennas are at the far
end of the lift from the viewer under the roof that was built to shield the equipment
from the elements. This picture was taken in September with the foliage largely still
present. The cables coming from the lift are a ground cable to an earth ground and
one of 4 tethers used in windy conditions. .

the and axis of rotation was in the establishment and maintenance of the antenna

alignment during the measurement.

The experimental target was a trihedral reflector with a slant length of 1.5

meters (as shown in Fig. 4.2). Throughout this work, a Barth pulse source (Barth

Electronics, Inc. model 732 GL) was used. The pulse generator uses a coaxial reed

switch to discharge a charge line for a very fast rise time pulse outputs. The model

732 pulse generator provides pulses of less than 50 picoseconds (ps) rise time, with

amplitude from 150 V to greater than 2 KV into any load impedance through a 50

ohm coaxial line. The generator is capable of producing pulses with a minimum width

of 750 ps and a maximum of 1 microsecond. This output pulse width is determined by

charge line length for rectangular pulses, or by capacitors for 1/e decay pulses. The

data collections were extensive. 20 different positions were used, and 35 independent

collections were performed at each position.
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Figure 4.2. The target (a trihedral reflector) is shown on the stand at 300 feet from
the lift..

For the data we used in this chapter, each sample is spaced at 50 picosecond

interval, and 16,000 samples were collected for each collection for a total time duration

of 0.8 microseconds at a rate of approximately 20 Hz. We considered two sets of data

from this experiment. Initially, the Barth pulse source was operated at only 1 KW

peak power and the system was not sufficiently loaded for repeatable charge control

pulse-to-pulse. Significant pulse-to-pulse variability was noted for these collections.

In this set of experiments, 35 pulses reflected signal were averaged for each collection.

The scheme for the sense-through-foliage target detection with “poor” signal quality

will be presented in Section 3.

This problem was remedied by running the pulser at higher power while pro-

tecting the radiating antenna using a non-distorting attenuator Barth 3dB attenuator

model number 142-NMFP-3. Pulse production stability was very important to this

measurement effort. Pulse-to-pulse differences, if any were observed, should be due

to changes in the foliage or changes in the transmitter-receiver positions relative to

the foliage and target. When operated at the higher amplitudes it was noted that the
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pulse source was very stable. In this set of experiments, 100 pulses reflected signals

were averaged for each collection to average the variation because of the movement of

foliage. The scheme for target detection with “good” signal quality will be presented

in Section 4.

4.3 Sense-through-Foliage Target Detection with Good Signal Quality: A DCT-

based Approach

In Fig. 4.3, we plot two collections with good signal quality, one without target

on range (Fig. 4.3a) and the other one with target on range (Fig. 4.3b and target

appears at around sample 13,900). To make it more clear to the readers, we provide

expanded views of traces (with target) from sample 13,001 to 15,000 for the above

two collections in Figs. 4.4a and 4.4b. Since there is no target in Fig. 4.4a, it can

be treated as the response of foliage clutter. It’s quite straightfoward that the target

response will be the echo difference between Fig. 4.4b and Fig. 4.4a, which is plotted

in Fig. 4.4c. However, it’s impossible to obtain Fig. 4.4a (clutter echo) in practical

situation if there is target on range. The challenge is how to make target detection

based on Fig. 4.4b (with target) or Fig. 4.4a (no target) only?

Observe Fig. 4.4b, for samples where target appears (around sample 13,900),

the sample strength changes much abruptly than that in Fig. 4.4a, which means

echo from target contains more AC values than that without target. Motivated by

this, we applied Discrete Cosine Transform (DCT) to the echos x(iM + n) (n =

0, 1, 2, · · · , N − 1) where N is the DCT window length, M is the step size of each

DCT window, and i is the window index. Let x(n, i) ≤ x(iM + n)

X(K, i) =
N−1∑
n=0

x(n, i) cos(
2π

N
nK) (4.1)
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then we cumulate the power of AC values (for K > 2)

P (i) =
N−1∑
K=3

X(K, i)2 (4.2)

For N = 100 and M = 10, we plot the power of AC values P (i) versus iM (time

domain sample index) in Figs. 4.5a and 4.5b for the above data sets in Figs. 4.4a

and 4.4b respectively. Observe that in Fig. 4.5b, the power of AC values (around

sample 13,900) where the target is located is non-fluctuating (monotonically increase

then decrease). Although some other samples also have very high AC power values,

it is very clear that they are quite fluctuating and the power of AC values behave like

random noise because generally the clutter has Gaussian distribution in the frequency

domain [63]. Based on our simulations, the window length N in DCT affects the

performance of the target detection. The appropriate N should be the length of

target impulse response with strong signal strength (see Fig. 4.4c). This depends on

target size, UWB signal resolution, and propagation environment.

We compared our DCT-based approach to the scheme proposed in [97]. In [97],

2-D image was created via adding voltages with the appropriate time offset. In Figs.

4.6a and 4.6b, we plot the 2-D image created based on the above two data sets (from

samples 13,800 to 14,200). However, it’s not clear which image shows there is target

on range.

We also compared our approach to the matched filter approach. The matched

filter is by definition a filter in the radar receiver designed to maximize the SNR at

its output. The impulse response of the filter having this property turns out to be

a replica of the transmitted waveform’s modulation function that has been reversed

in time and conjugated [30]. Assume the transmitted waveform is s(t), then the

matched filter impulse response h(t) = s∗(TM − t) The time TM at which the SNR

is maximized is arbitrary, however, TM ≥ t is required for h(t) to be causal. Given
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the received echo x(t) consisting of clutter, target, and noise components, the output

y(t) of the matched filter is given by the convolution between x(t) and h(t)

y(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ (4.3)

=

∫ ∞
−∞

x(τ)s∗(τ + TM − t)dτ (4.4)

In this chapter, we choose TM = 16001, and the matched filter outputs for received

signal in Fig. 4.3a (without target) and signal in Fig. 4.3b (with target) are plotted

in Figs. 4.7a and 4.7b respectively. Since the received echoes plotted in Fig. 4.3a

and b are averaged over 100 pulses, the transmitted pulse s(t) in (4.4) is obtained via

averaging corresponding 100 transmission pulses and is plotted in Fig. 4.8. Observe

Figs. 4.7ab, it’s impossible to perform target detection based on the matched filter

output.

Why the matched filter approach doesn’t work for UWB radar-based target

detection? We further studied the UWB channel using CLEAN algorithm [17][14][34].

Based on the transmit pulse in Fig. 4.8 and received echo in Fig. 4.4a, we applied

CLEAN algorithm and obtained the UWB channel (plotted in Fig. 4.9). Observe Fig.

4.9, the UWB channel has memory because it’s a linear filter. However, the matched

filter is derived based on the assumption that the radar channel has no memory. The

memory in UWB radar channel causes intersymbol interference of transmit pulse and

makes the matched filter approach perform poor.

4.4 Waveform Design and Diversity in Radar Sensor Networks

1. Co-existence of Radar Waveforms

In radar sensor networks (RSN), radar sensors interfere with each other and the

signal-to-interference-ratio may be very low if the waveforms are not properly

designed. In this chapter, we introduce orthogonality as one criterion for wave-
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form design in RSN to make radars coexistence. In addition, since the radar

channel is narrow-band, we will also consider the bandwidth constraint.

In our radar sensor networks, we choose the CF pulse waveform, which can be

defined as

x(t) =

√
E

T
exp(j2πβt) − T/2 ≤ t ≤ T/2 (4.5)

where β is the RF carrier frequency in radians per second. In radar, ambiguity

function (AF) is an analytical tool for waveform design and analysis, which suc-

cinctly characterizes the behavior of a waveform paired with its matched filter.

The ambiguity function is useful for examining resolution, side lobe behavior,

and ambiguities in both range and Doppler for a given waveform [30]. For a

single radar, the matched filter for waveform x(t) is x∗(−t), and the ambiguity

function of CF pulse waveform is

A(τ, FD) =

∣∣∣∣∣
∫ T/2

−T/2+τ
x(t) exp (j2πFDs)x

∗(t− τ)dt

∣∣∣∣∣
=

∣∣∣∣E sin[πFD(T − |τ |)]
TπFD

∣∣∣∣ − T ≤ τ ≤ T (4.6)

We can simplify this AF in the following three special cases:

• When τ = 0,

A(0, FD) =

∣∣∣∣E sin(πFDT )

Tπ(FD)

∣∣∣∣ ; (4.7)

• when FD = 0,

A(τ, 0) =

∣∣∣∣E(T − |τ |)
T

∣∣∣∣ ; (4.8)

• and when τ = FD = 0,

A(0, 0) = E (4.9)

Note that the above ambiguity is for one radar only (no coexisting radar).
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For radar sensor networks, the waveforms from different radars interfere with

each other. We choose the waveform for radar i as

xi(t) =

√
E

T
exp[j2π(β + δi)t] − T/2 ≤ t ≤ T/2 (4.10)

which means that there is a frequency shift δi for radar i. To minimize the

interference from one waveform to another, optimal values for δi should be

determined to make the waveforms orthogonal to each other, i.e., let the cross-

correlation between xi(t) and xn(t) be 0,∫ T/2

−T/2
xi(t)x

∗
n(t)dt =

E

T

∫ T/2

−T/2
exp[j2π(β + δi)t] exp[−j2π(β + δn)t]dt(4.11)

= Esinc[π(δi − δn)T ] (4.12)

If we choose

δi =
i

T
(4.13)

where i is a dummy index, (4.12) can be written as

∫ T/2

−T/2
xi(t)x

∗
n(t)dt =


E i = n

0 i 6= n

(4.14)

Therefore choosing δi = i
T

in (4.10) yields orthogonal waveforms, i.e., the wave-

forms can coexist if the carrier spacing is a multiple of 1/T between two radar

waveforms. In other words, orthogonality amongst carriers can be achieved by

separating the carriers by a multiple of the inverse of waveform pulse dura-

tion. With this design, all the orthogonal waveforms can work simultaneously.

However, there may exist time delay and Doppler shift ambiguity which may

interfere with other waveforms in RSN.

2. Interferences of Waveforms In Radar Sensor Networks
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(a) RSN with Two Radar Sensors We are interested in analyzing the inter-

ference from one radar to another if there exist time delay and Doppler

shift. For a simple case where there are two radar sensors (i and n), the

ambiguity function of radar i (considering the interference from radar n)

is

Ai(ti, tn, FDi , FDn) =

∣∣∣∣∫ ∞
−∞

[xi(t) exp(j2πFDit) + xn(t− tn) exp(j2πFDnt)]x
∗
i (t− ti)dt

∣∣∣∣(4.15)

≤

∣∣∣∣∣
∫ T/2+min(ti,tn)

−T/2+max(ti,tn)

xn(t− tn) exp(j2πFDnt)x
∗
i (t− ti)dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T/2

−T/2+ti
xi(t) exp (j2πFDit)x

∗
i (t− ti)dt

∣∣∣∣∣ (4.16)

=

∣∣∣∣∣
∫ T/2+min(ti,tn)

−T/2+max(ti,tn)

xn(t− tn) exp(j2πFDnt)x
∗
i (t− ti)dt

∣∣∣∣∣
+

∣∣∣∣E sin[πFDi(T − |ti|)]
TπFDi

∣∣∣∣ (4.17)

To make the analysis easier, it is generally assumed that the radar sensor

platform has access to the Global Positioning Service (GPS) and the In-

ertial Navigation Unit (INU) timing and navigation data. In this chapter,

we assume that the radar sensors are synchronized and that ti = tn = τ .

Then (4.17) can be simplified as

Ai(τ, FDi , FDn) ≈ |Esinc[π(n− i+ FDnT )]|+
∣∣∣∣E sin[πFDi(T − |τ |)]

TπFDi

∣∣∣∣
(4.18)

We have the following three special cases:

• If FDi = FDn = 0, and δi and δn follow (4.13), (4.18) becomes

Ai(τ, 0, 0) ≈
∣∣∣∣E(T − |τ |)]

T

∣∣∣∣ (4.19)

• If τ = 0, (4.18) becomes

Ai(0, FDi , FDn) ≈ |Esinc[π(n− i+ FDnT )]|+
∣∣∣∣E sin(πFDiT )

TπFDi

∣∣∣∣ (4.20)
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• If FDi = FDn = 0, τ = 0, and δi and δn follow (4.13), (4.18) becomes

Ai(0, 0, 0) ≈ E (4.21)

(b) RSN with M Radar Sensors

Our analysis on an RSN with two radar sensors can be extended to the case

of M radars. Assuming that the time delay τ for each radar is the same,

then the ambiguity function of radar 1 (considering interferences from all

the other M − 1 radars with CF pulse waveforms) can be expressed as

A1(τ, FD1 , · · · , FDM ) ≈
M∑
i=2

|Esinc[π(i− 1 + FDiT )]|+
∣∣∣∣E sin[πFD1(T − |τ |)]

TπFD1

∣∣∣∣
(4.22)

Similarly, we have the following three special cases:

• FD1 = FD2 = · · · = FDM = 0, and the frequency shift δi in (4.10) for

each radar follows (4.13), then (4.22) becomes

A1(τ, 0, 0, · · · , 0) ≈
∣∣∣∣E(T − |τ |)]

T

∣∣∣∣ (4.23)

Comparing it against (4.8), we notice that a radar may exist that can

get the same signal strength as that of the single radar in a single

radar system (no coexisting radar) when the Doppler shift is 0.

• If τ = 0, then (4.22) becomes

A1(0, FD1 , FD2 , · · · , FDM ) ≈
M∑
i=2

|Esinc[π(i− 1 + FDiT )]|+
∣∣∣∣E sin(πFD1T )

TπFD1

∣∣∣∣
(4.24)

Comparing to (4.7), a radar in RSN has higher interferences when

unknown Doppler shifts exist.

• FD1 = FD2 = · · · = FDM = 0, τ = 0, and δi in (4.10) follows (4.13),

then (4.22) becomes

A1(0, 0, 0, · · · , 0) ≈ E (4.25)
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3. Radar Sensor Network for Collaborative Automatic Target Recognition

In RSN with M radars, the received signal for clusterhead (assume it’s radar

1) is

r1(u, t) =
M∑
i=1

α(u)xi(t− ti) exp(j2πFDit) + n(u, t) (4.26)

where α(u) stands for radar cross section (RCS), which can be modeled using

non-zero constants for non-fluctuating targets and four Swerling target models

for fluctuating targets [30]; FDi is the Doppler shift of the target relative to

waveform i; ti is the delay of waveform i, and n(u, t) is the additive white

Gaussian noise (AWGN). In this chapter, we propose a RAKE structure for

waveform diversity combining, as illustrated by Fig. 4.10. The RAKE structure

is so named because it reminds the function of a garden rake, each branch

collecting echo energy similarly to how tines on a rake collect leaves. This figure

summarizes how the clusterhead works. The received signal r1(u, t) consists of

echoes triggered by the waveforms from each radar sensor, and x∗i (t− ti) is used

to retrieve the amplified waveform from radar i (amplified by the target RCS)

based on the orthogonal property presented in Sections 1 and 2, and then this

information is time-averaged for diversity combining.

According to this structure, the received r1(u, t) is processed by a bank of

matched filters, then the output of branch 1 (after integration) is

Z1(u; t1, · · · , tM , FD1 , · · · , FDM )

=

∫ T/2

−T/2
r1(u, t)x

∗
1(t− t1)ds (4.27)

=

∫ T/2

−T/2
[
M∑
i=1

αi(u)xi(t− ti) exp(j2πFDit) + n(u, t)]x∗1(t− t1)dt (4.28)
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Assuming t1 = t2 = · · · = tM = τ , then based on (4.22),

Z1(u; τ, FD1 , · · · , FDM ) ≈
M∑
i=2

α(u)Esinc[π(i− 1 + FDiT )]

+
α(u)E sin[πFD1(T − |τ |)]

TπFD1

+ n(u, τ) (4.29)

Similarly, we can get the output for any branch m (m = 1, 2, · · · ,M),

Zm(u; τ, FD1 , · · · , FDM ) ≈
M∑

i=1,i 6=m

α(u)Esinc[π(i−m+ FDiT )]

+
α(u)E sin[πFDm(T − |τ |)]

TπFDm
+ n(u, τ) (4.30)

Therefore Zm(u; τ, FD1 , · · · , FDM ) consists of three parts, namely signal (re-

flected signal from radar m waveform):
α(u)E sin[πFDm (T−|τ |)]

TπFDm
, interferences from

other waveforms:
∑M

i=1,i 6=m α(u)Esinc[π(i−m+ FDiT )], and noise: n(u, τ).

We can also have the following three special cases for |Zm(u; τ, FD1 , · · · , FDM )|:

• When FD1 = · · · = FDM = 0,

Zm(u; τ, 0, 0, · · · , 0) ≈ Eα(u)(T − |τ |)]
T

+ n(u, τ) (4.31)

which means that if there is no Doppler mismatch, there is no interference

from other waveforms.

• If τ = 0, (4.30) becomes

Zm(u; 0, FD1 , · · · , FDM )

≈
M∑

i=1,i 6=m

α(u)Esinc[π(i−m+ FDiT )] +
α(u)E sin[πFDmT ]

TπFDm
+ n(u)(4.32)

• If τ = 0, and FD1 = · · · = FDM = 0, (4.30) becomes

Zm(u; 0, 0, 0, · · · , 0) ≈ Eα(u) + n(u) (4.33)
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Doppler mismatch happens quite often in target search where target ve-

locity is not yet known. However, in target recognition, generally high-

resolution measurements of targets in range (τ = 0) and Doppler are avail-

able, therefore (4.33) will be used for CATR.

How to combine all the Zm’s (m = 1, 2, · · · ,M) is very similar to the diver-

sity combining in wireless communications to combat channel fading, and the

combination schemes may be different for different applications. In this chap-

ter, we are interested in applying the RSN waveform diversity to CATR, e.g.,

recognition that the echo on a radar display is that of an aircraft, ship, motor

vehicle, bird, person, rain, chaff, clear-air turbulence, land clutter, sea clutter,

bare mountains, forested areas, meteors, aurora, ionized media, or other nat-

ural phenomena via collaborations among different radars. Early radars were

“blob” detectors in that they detected the presence of a target and gave its lo-

cation in range and angle, and radar began to be more than a blob detector and

could provide recognition of one type of target from another [33]. It is known

that small changes in the aspect angle of complex (multiple scatter) targets can

cause major changes in the radar cross section (RCS). This has been considered

in the past as a means of target recognition, and is called fluctuation of radar

cross section with aspect angle, but it has not had much success [33]. In [32], a

parametric filtering approach was proposed for target detection using airborne

radar. In [9], knowledge-based sensor networks were applied to threat assess-

ment. In this chapter, we propose maximum likelihood collaborative automatic

target recognition (ML-CATR) algorithms for non-fluctuating targets as well as

fluctuating targets.
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4.5 Sense-through-Foliage Target Detection with Poor Signal Quality: A Sensor

Network and DCT-based Approach

As mentioned in Section 4.2, when the Barth pulse source was operated at low

amplitude and the sample values are not obtained based on sufficient pulse response

averaging (averaged over 35 pulses for each collection), significant pulse-to-pulse vari-

ability was noted and the return signal quality is poor. In Figs. 4.11a and 4.11b, we

plot two collections with poor signal quality. Fig. 4.11a has no target on range, and

Fig. 4.11b has target at samples around 13,900. We plot the echo differences between

Figs. 4.11a and 4.11b in Fig. 4.11c. However, it is impossible to identify whether

there is any target and where there is target based on Fig. 4.11c. We observed the

DCT-based approach failed to detect target based on one collection. Since significant

pulse-to-pulse variability exists in the echos, this motivate us to explore the spatial

and time diversity using Radar Sensor Networks (RSN).

In RSN, the radar sensors are networked together in an ad hoc fashion. They

do not rely on a preexisting fixed infrastructure, such as a wireline backbone network

or a base station. They are self-organizing entities that are deployed on demand in

support of various events surveillance, battlefield, disaster relief, search and rescue,

etc. Scalability concern suggests a hierarchical organization of radar sensor networks

with the lowest level in the hierarchy being a cluster. As argued in [73] [70] [69] [96],

in addition to helping with scalability and robustness, aggregating sensor nodes into

clusters has additional benefits:

• conserving radio resources such as bandwidth;

• promoting spatial code reuse and frequency reuse;

• simplifying the topology, e.g., when a mobile radar changes its location, it is

sufficient for only the nodes in attended clusters to update their topology infor-

mation;
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• reducing the generation and propagation of routing information; and,

• concealing the details of global network topology from individual nodes.

In RSN, each radar can provide their pulse parameters such as timing to their

clusterhead radar, and the clusterhead radar can combine the echos (RF returns) from

the target and clutter. In this chapter, we propose a RAKE structure for combining

echos, as illustrated by Fig. 4.10. The RAKE structure is so named because it reminds

the function of a garden rake, each finger collecting echo signals similarly to how tines

on a rake collect leaves. The integration means time-average for a sample duration

T and it’s for general case when the echos are not in discrete values. It is quite

often assumed that the radar sensor platform will have access to Global Positioning

Service (GPS) and Inertial Navigation Unit (INU) timing and navigation data. In

this chapter, we assume the radar sensors are synchronized in RSN. In Fig. 4.10, the

echo, i.e., RF response by the pulse of each cluster-member sensor, will be combined

by the clusterhead using a weighted average, and the weight wi is determined by the

power of each echo xi(n) (n is the sample index),

wi =
Ei∑M
i=1Ei

(4.34)

and

Ei = var(xi(n)) + [mean(xi(n))]2 (4.35)

We ran simulations for M = 30, and plot the power of AC values in Figs. 4.12a

and 4.12b for the two cases (with target and without target) respectively. Observe

that in Fig. 4.5b, the power of AC values (around sample 13,900) where the target

is located is non-fluctuating (monotonically increase then decrease). Although some

other samples also have very high AC power values, it is very clear that they are quite

fluctuating and the power of AC values behaves like random noise because generally

the clutter has Gaussian distribution in the frequency domain.
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4.6 Conclusions and Future Works

In this chapter, we proposed a DCT-based approach for sense-through-foliage

target detection when the echo signal quality is good, and a sensor network and

DCT-based approach when the echo signal quality is poor. A RAKE structure which

can combine the echos from different cluster-members is proposed for clusterhead in

the RSN. We compared our approach with ideal case when both echos are available,

i.e., echos with target and without target. We also compared our approach against

the scheme in which 2-D image was created via adding voltages with the appropri-

ate time offset as well as the matched filter-based approach. We observed that the

matched filter-based couldn’t work well because the UWB channel has memory. Sim-

ulation results show that our DCT-based scheme works much better than the existing

approach, and our RSN and DCT-based approach can be used for target detection

successfully while the ideal case fails to do it. For future works, we will collect more

data with different targets and perform automatic target recognition besides target

detection.

48



0 2000 4000 6000 8000 10000 12000 14000 16000
−4

−3

−2

−1

0

1

2

3

4
x 10

4

Sample Index

E
c
h

o
s

(a)

0 2000 4000 6000 8000 10000 12000 14000 16000
−4

−3

−2

−1

0

1

2

3

4
x 10

4

Sample Index

E
c
h

o
s

(b)

Figure 4.3. Measurement with very good signal quality and 100 pulses average. (a) No
target on range, (b) with target on range (target appears at around sample 13,900).
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Figure 4.4. Measurement with very good signal quality and 100 pulses average. (a)
Expanded view of traces (with target) from samples 13,001 to 15,000. (b) Expanded
view of traces (without target) from samples 13,001 to 15,000. (c) Echo differences
between (a) and (b)..
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Figure 4.5. The power of AC values versus sample index. (a) No target (b) With
target in the field..
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Figure 4.6. 2-D image created via adding voltages with the appropriate time offset.
(a) No target (b) With target in the field..
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Figure 4.10. Echo combining by clusterhead in RSN.
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Figure 4.11. Measurement with poor signal quality and 35 pulses average. (a) Ex-
panded view of traces (no target) from sample 13,001 to 15,000. (b) Expanded view
of traces (with target) from sample 13,001 to 15,000. (c) The differences between (a)
and (b).
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Figure 4.12. Power of AC values based on UWB radar sensor networks and DCT
based approach. (a) No target (b) With target in the field.
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CHAPTER 5

Sence-through-Foliage Target Detection based on Transfer Entropy Approach using

UWB Radar

5.1 Introduction

Target detection in a strong clutter background is a significant topic of civilian

and military research and applications. The echo of the signal contains information

for the target, the environment as well as the interference and the noise. However,

the non-stationary nature of foliage environment, for instance, doppler shift caused

by leaves and branched makes the target detection more difficult.

In this paper, our goal is to detect the target from the foliage clutter background

based on our knowledge on transfer entropy. The notion of TE is firstly introduced

by T.Schreiber, and then mainly applied into biological system. TE needs relatively

long time series, therefore, it could only applied in systems like neural signal, ECG,

EEG etc[83][82]. Transfer entropy is a method to find the causal relationship of time

series based on probability distribution and Shannon entropy, it is believed that TE

will draw more and more attention along with the era of Big Data arriving.

Comparing to Milimeter-Wave Radar based on the characteristic of foliage tar-

get detection, Ultra-wideband(UWB) radar operate between 300 MHz to 3 GHz with

a large fractional bandwidth greater than 20 percent. UWB is more suitable for this

case. Moreover, the good penetration ability as well as the the high resolution also

give UWB more advantage in term of Sense-through-Foliaged target detection[81].

Some previous works related to target detection or identification based on en-

tropy approach have been conducted. In [84], it introduced and described Shannon
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entropy and its decomposition from polarimetric SAR datasets, and then gave the

procedure of polarimetric SAR data processing. Shannon entropy, other polarization

parameters, and polarization decomposition results in the study area were analyzed.

[86] proposed an entropy-based H-α decomposition method was applied to analyze

fully polarimetric GPR data which were collected from the field. Preliminary analyses

showed that this method can be used to classify targets with different polarization

scattering properties. It is demonstrated that the application in detecting buried un-

exploded ordnance which have linear scattering features. Information entropy is also

used in range spread target detection in[85]. Entropy is used as a tool for detecting

small target in sea clutter.[87]. However none of these studies used target obscured by

foliage. In [88] proposed a mutual information based method to detect target in forest.

In[93], sense-through-wall human detection was studied based on UWB radar sensors

using standard deviation approach. In[92], multi-step information fusion was applied

to sense-through foliage target detection, and information theoretical approach[91]

was applied to opportunistic sensing in sense-through foliage target detection.

The rest of this chapter is organized as follows. Section II summarizes the

measurement of data used in this work. In section III we describe transfer entropy

based target detection. Section IV we analyze the simulation result. In section V we

conclude our work and discuss future research.

5.2 Sense-through-Foliage Data Measurement and Collection

For this chapter, we use the same Data from last Chapter.

In Fig. 4.3, we plot two collections with good signal quality, one without target

on range (Fig. 4.3a) and the other one with target on range (Fig. 4.3b and target

appears at around sample 13,900). To make it more clear to the readers, we provide

expanded views of traces (with target) from sample 13,001 to 15,000 for the above

59



two collections in Figs. 4.4a and 4.4b. Since there is no target in Fig. 4.4a, it can

be treated as the response of foliage clutter. It’s quite straightfoward that the target

response will be the echo difference between Fig. 4.4b and Fig. 4.4a, which is plotted

in Fig. 4.4c. However, it’s impossible to obtain Fig. 4.4a (clutter echo) in practical

situation if there is target on range. The challenge is how to make target detection

based on Fig. 4.4b (with target) or Fig. 4.4a (no target) only.

5.3 Transfer entropy based Target Detection

Transfer entropy measures how much information the source process provides

about state transitions in the target. TE is more adequate (than Mutual Informa-

tion(MI) or time-delayed MI) for determining the direction of inf. flow between two

coupled processes.[89]

Suppose two echoes, X and Y, We define an entropy rate which is the amount

of additional information required to represent the value of the next observation of

one of the echoes:

h1 = −
∑
xn+1

p(xn+1, xn, yn)logp(xn+1|xn, yn) (5.1)

Suppose that value of xn+1 is not dependent on the current yn :

h2 = −
∑
xn+1

p(xn+1, xn, yn)lop(xn+1|xn) (5.2)

and,

TEY→X = h2 − h1 (5.3)
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Choose	two	sets	of	received	echoes	
	

Quantize	these	two	sets	of	echoes			

Calculate	Transfer	Entropy	

Make	Decision	

Figure 5.1. The block diagram of target detection process.

TEY→X =
∑

p(yn+1, yn, xn)log
p(yn+1, yn, xn)

p(yn+1|yn)p(yn, xn)

=
∑

p(yn+1, yn, xn)log
p(yn+1, yn, xn)

p(yn+1|yn)p(yn, xn)

p(yn)

p(yn)

=
∑

p(yn+1, yn, xn)log
p(yn+1, xn, yn)p(yn)

p(yn+1, yn)p(xn, yn)

(5.4)

TEX→Y =
∑

p(xn+1, xn, yn)log
p(xn+1, yn, xn)p(xn)

p(xn+1, xn)p(yn, xn)
(5.5)

TEXY = TEY→X + TEX→Y (5.6)

The transfer entropy target detection process is described below:

• Let Q to be the quantized received signal with a particular codebook and par-

tition. Since the calculation of transfer entropy involved the processing in the

O(2m) when 2m is the quantization level, we try not to quantize too much.

• As we know the target lies at the distance of about 300ft away, therefore, the

echoes reflected by the target should be around 13900 sample index. So we

choose the sample interval from 12000 to 15000 to make analysis.
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• Let N = [N1, N2, N3......NM ] set of windows. Where M= length of signal/n and

n is the size of the window.

• Transfer Entropy TEY→X is calculated for all i=1:M. Here K=1:n, where n is

the size of the window.

• Target is detected at the location of Max(TEXY )

5.4 Simulation

In this paper, we ran 103 simulation for each quantization level at a window size

of 100 to compare their detection error rate. Fig 6. shows an example of quantized

echo with a quantization level of 16. Fig 7. shows the transfer entropy of echoes with

target, the target is correctly detected at around 13900. Fig 8. gives the transfer

entropy of echoes without target. Finally in Fig 9. we plot the comparison of our

proposed algorithm and the existing linear regression approach. We can see from the

result our approach is better than the linear regression approach and the performance

improves as the quantization level goes up and converge at the quantization level of

64. When the quantization level goes up, more information will be transmitted by

the echoes. Transfer entropy reflects the transfer of information, so the accuracy goes

up.

5.5 Conclusion and Future Works

In this paper we propose a new algorithm for target detection through foliage

based on information theory. Result shows that our approach overperforms some ex-

isting approach. In future we can acquire more data and apply transfer entropy based

detection into multi target environment or higher dimensional target detection(For

example 2D image target detection).
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Figure 5.3. Transfer Entropy of Echoes with Target.
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CHAPTER 6

Conclusion and Future Work

For Chapter 2, we extend the nested-array algorithm into 3-D underwater case

which is a combination of O(M+N) sensors distributed over nonseparable lattices,

whose difference co-array can give rise to a much larger 3D array with O(MN) sen-

sors on the dense lattice. Based on the nested-array model, we proposed a ML-CATR

estimation algorithm for the underwater nested array senor network. From the sim-

ulation result, we find that the nested array sensors performs much better than the

multiple and single deployed sensors. Which means we can use less sensors to achieve

a better performance.

For the future work which may include but not limited to the optimization

deployment of nested-array and also in the case when the numbers of targets is time

varying.

For Chapter 3, we apply the coprime-array algorithm into BSs deployment.

The feasibility and characteristics for the Co-prime distributed cellular network are

discussed in this paper based on a traditional multi-cell model. The model assumes a

modified version of soft-handoff scenario, in which each user simultaneously commu-

nicates with two BSs. Both the nonfading and Rayleigh fading channels are analyzed

in terms of the average per-cell sum-rate capacity and spectrum efficiency. It shows

that the invariant of difference co-array is valid to analyze the covariance of channel

fading coefficients, which plays an important role to derive the cell capacity. The

numeric results also support the correctness of the propositions. We observe that
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the co-prime deployment has a 7 times performance improvement comparing to the

uniform deployment for both the Rayleigh fading and non-fading cases. A key insight

of the present work is that by carefully deploying and scheduling communication be-

tween users and different BSs, the cluster of the BSs is able to achieve a much higher

capacity compared to the simple collaboration among BSs. On the other hand, there

are many open questions in this direction of research, including detailed power al-

location and beamforming for the combination of dense array and sparse array, the

interference analysis when this Co-prime distributed cellular network is put into a

system at large, and the relation between the uplink and downlink channels.

In Chapter 4, we proposed a DCT-based approach for sense-through-foliage tar-

get detection. We also applied matched filter approach to sense-through-foliage target

detection. We also compared our approach against the scheme in which 2-D image

was created via adding voltages with the appropriate time offset. Simulation results

show that our DCT-based scheme works much better than the other approaches. We

observed that the matched filter-based couldn’t work well because the UWB channel

has memory. Simulation results show that our DCT-based scheme works much better

than the existing approach, and our RSN and DCT-based approach can be used for

target detection successfully while the ideal case fails to do it.

For future works, we will collect more data with different targets and perform

automatic target recognition besides target detection.

In the last Chapter, we propose a new algorithm for target detection through

foliage based on information theory. Result shows that our approach overperforms

some existing approach. In future we can acquire more data and apply transfer
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entropy based detection into multi target environment or higher dimensional target

detection(For example 2D image target detection).
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