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Abstract 

 
USE OF GENERALIZED GAMMA DISTRIBUTION IN MODELING  

LIFETIME DATA 

 

HONGBO YU, MS 

 

The University of Texas at Arlington, 2017 

 

Supervising Professor: Suvra Pal  

In this study, we have considered analysis of lifetime or survival data with right 

censoring, which is the most common form of censoring encountered in practice. Assuming 

a fully parametric setup, the main objective is to consider a wider family of distributions for 

the lifetime and then find the maximum likelihood estimates of the model parameters using 

some optimization technique available in R statistical software.  

In this work, the generalized gamma distribution is considered as the distribution 

for the lifetime which is flexible in the sense that it contains some of the commonly used 

lifetime distributions, such as Weibull, gamma, and lognormal, as its special case. This 

flexibility allows us to carry out a formal test of hypothesis to determine a particular 

distribution within this family that provides an adequate fit to the data.  

Another objective is to carry out an extensive Monte Carlo simulation study to 

demonstrate the performance of the estimation method and the flexibility of the generalized 

gamma family. To demonstrate the flexibility of the generalized gamma family, we carried 

out a model discrimination using the likelihood ratio test and information-based criteria.  

Finally, we illustrate the estimation method and the flexibility of the generalized 

gamma family using a real data. 
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 Introduction 

1.1 Introduction to survival analysis  

Survival analysis is a branch of statistics that deals with the analysis of lifetime 

data, defined as the time until the occurrence of an event of interest. Let T denote the 

lifetime variable. This event may be death, occurrence of a tumor, development of some 

disease, recurrence of a disease, equipment breakdown, cessation of breast feeding, and 

so forth. [1] For the purpose of survival analysis, three functions of time are usually defined.  

1.2 Functions of time  

To analyze lifetime data, three functions of time are usually important, which are 

the survival function, the cumulative distribution function and the hazard function. We 

define them as follows: 

1.2.1 Survival function 

The primary quantity of interest is the survival function, which is a function 

describing the proportion of individuals surviving beyond a given time point. The random 

variable T is non-negative, continuous and is defined in the interval [0, ∞). Its survival 

function is defined as 

S(t) = P (T > t) = ∫ 𝑓(𝑢)𝑑𝑢
∞

𝑡
 ,                                                                                            (1.1) 

where f(·) is the density function of T. The survival function is also called the reliability 

function in engineering field.  

The graph of t against S(t) is called the survival curve. Figure 1-1 is an example of 

survival curves, showing the percentage of patients surviving with respect to days since 

they were discharged. Obviously, every survival function S(t) is monotonically decreasing  

https://en.wikipedia.org/wiki/Monotonic_function


 

2 

 

Figure 1-1 An example of survival curves: elderly US survivors of myocardial infarction 

prescribed aspirin alone, aspirin and ibuprofen, or aspirin and a different non-steroidal 

anti-inflammatory drug on discharge from hospital. [2]  

with respect to time and we have 0 ≤ S (u) ≤ S (t) ≤ 1 for all u > t. The time t = 0 represents 

some origin, typically the beginning of a study or the start of operation of a system. S(0) is 

commonly unity but can be less to represent the probability that the system fails 

immediately upon operation. Furthermore, under standard scenario, we have S(∞) to be 

zero.  

1.2.2 Cumulative distribution function 

The cumulative distribution function, conventionally denoted by F, is defined as the 

complement of the survival function, i. e., 

https://en.wikipedia.org/wiki/Time
https://en.wikipedia.org/wiki/Probability
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𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = 1 − 𝑆(𝑡).                                                                                                   (1.2) 

If F is differentiable, then the derivative of F(t) with respect to t is called the probability 

density function and is given by 

𝑓(𝑡) =  𝐹′(𝑡) =  
𝑑𝐹(𝑡)

𝑑𝑡
.                                                                                                            (1.3) 

The probability density function f is sometimes called the event density, which is the rate 

of event occurrence per unit time. 

1.2.3 Hazard function 

An alternative characterization of the distribution of T is given by the hazard 

function, which is also known as the instantaneous failure rate or hazard rate, and is 

defined as  

 𝐻(𝑡) = lim
∆𝑡→0

𝑃(𝑡≤𝑇<𝑡+∆𝑡 ⎸𝑇≥𝑡)

∆𝑡
 .                                                                             (1.4) 

The numerator of this expression is the conditional probability that the event will occur in 

the interval [t, t+∆𝑡) given that it has not occurred before. Thus, the limit of the ratio (hazard 

function) indicates the instantaneous rate of event occurrence at time t given that it did not 

occur before. [3] It can also be expressed as the ratio of the probability density function f(t) 

to the survival function S(t), i. e., 

𝐻(𝑡) = 
𝑓(𝑡)

𝑆(𝑡)
  = −[

𝑑

𝑑𝑡
{𝑆(𝑡)}]/𝑆(𝑡) = −

𝑑

𝑑𝑡
log𝑆(𝑡).                                                (1.5) 

Like the survival function, the hazard function must also be non-negative. While it is 

different to the survival function with respect to the decreasing property, the hazard function 

can be increasing, decreasing or constant.  

https://en.wikipedia.org/wiki/Differentiable
http://mathworld.wolfram.com/ProbabilityDensityFunction.html
http://mathworld.wolfram.com/SurvivalFunction.html
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1.3 Censoring 

Observations are called censored when information about them is incomplete. A 

sample contains censored observations if the only information available about some of the 

observations is that they are below or above a specified value. Censoring is an important 

issue in survival analysis, representing a particular type of missing data. 

Usually, there are three main types of censoring in survival analysis: left censoring, 

right censoring and interval censoring. Left censoring occurs when the event of interest 

had already occurred even before we started to make observation on a unit, which is very 

rarely encountered.  Right censoring occurs when the actual event time is not observed 

but is known to exceed a certain value. It is the most common form of censoring 

encountered in practice. It often arises because the data collection had to be stopped at a 

certain time for practical considerations. Interval censoring occurs if the observation is not 

made continuously over time but at specific time point only. In this case, when a failed unit 

is observed, its exact failure time is not known, but is known to have failed between the 

present and previous inspection times.  

1.4 Modeling survival time  

Unlike ordinary regression models, survival methods correctly incorporate 

information from both censored and uncensored observations in estimating important 

model parameters. In this section, we review some commonly used models in survival 

analysis. A number of models are available to analyze the relationship of a set of predictor 

variables with the survival time. Methods include parametric, nonparametric and semi-

parametric approaches. Each model has its own advantages and disadvantages. 
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The range of survival analysis models vary from the fully non-parametric, like the 

Kaplan-Meier method, to semi-parametric models and to fully parametric models where we 

specify the distribution of the underlying hazard. 

1.4.1 Nonparametric modeling  

Nonparametric methods do not require the knowledge of the underlying distribution 

of the failure time T. Hence, it provides a flexible way to deal with the data in many practical 

situations. A nonparametric estimator of the survival function, the Kaplan Meier method, is 

widely used to estimate and graph survival probabilities as a function of time. It can be 

used to obtain univariate descriptive statistics for survival data, including the median 

survival time, and compare the survival experience for two or more groups of subjects.  

1.4.2 Semi-parametric modeling  

In statistics, a semi-parametric model is a statistical model that has parametric and 

nonparametric components. The Cox proportional hazards regression model is an example 

of semiparametric model, which is popular for the analysis of survival data. It has more 

assumptions than those nonparametric methods described above, while in contrast to the 

parametric models, it makes no assumptions about the shape of the so-called baseline 

hazard function. 

Parametric regression models for analyzing lifetime data assume that a particular 

parametric distribution, for instance, the Weibull distribution, is suitable to model the 

lifetime. Although one can check for the distributional assumption and there might be 

extensive past experience that suggest the suitability of a particular parametric distribution, 

in biomedical science, the situation may be different. With humans as the experimental 

units, every population has its own characteristics and may be different from other. Hence, 

previous experience may not be suitable to guide what might happen in the particular 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Parametric_statistics
https://en.wikipedia.org/wiki/Nonparametric
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population under study. Thus, it is important to analyze lifetime data without making any 

particular distributional assumption for the lifetime. 

1.4.3 Parametric modeling  

 Parametric methods assume that the underlying distribution of the survival times 

follow certain known probability distributions. Popular ones include the exponential, 

Weibull, lognormal, and gamma distributions. The description of the distribution of the 

survival times and the change in their distribution as a function of predictors is of interest. 

Model parameters in these settings are usually estimated using an appropriate modification 

of maximum likelihood. 

In this study, we have considered a full parametric setup and assumed right 

censoring as the form of censoring. The main objective is to consider the wider class of 

generalized gamma distribution for the lifetime and then find the maximum likelihood 

estimates of the model parameters using some optimization technique available in R 

statistical software.  

The other objective is to carry out an extensive Monte Carlo simulation study to 

demonstrate the performance of the estimation method and also to demonstrate the 

flexibility of the generalized gamma family. To demonstrate the flexibility of the generalized 

gamma family, we carried out a model discrimination using both the likelihood ratio test 

and information-based criteria.  

The remaining part of this thesis is organized as follows: 

In chapter 2, we introduce the generalized gamma distribution and discuss some 

of its special cases, such as Weibull, lognormal, and gamma distributions. The form of the 

survival data is also introduced in this chapter. For the purpose of simulation study, an 

algorithm to generate data is discussed.  
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In chapter 3, we discuss the parameter estimation by maximum likelihood method 

for the generalized gamma family. An extensive Monte Carlo simulation study is carried 

out to determine the performance of the estimation method and results obtained are 

discussed in detail.  

In chapter 4, the flexibility of generalized gamma family is utilized to carry out 

model discrimination and model selection within this family by using the likelihood-based 

method and information based criteria, namely the Akaike information criterion (AIC) and 

the Bayesian information criterion (BIC).  

In chapter 5, we illustrate the method of estimation and the flexibility of the 

generalized gamma family using a real data on lung cancer.   

Finally, in chapter 6, we make some concluding remarks.  
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 Model setup with generalized 

gamma distribution 

2.1 Generalized gamma distribution 

The early generalization of gamma distribution can be traced back to Amoroso who 

discussed the generalized gamma distribution and applied it to fit income rates. [4] Johnson 

et al. [5] proposed a four parameter generalized gamma distribution which reduces to the 

generalized gamma distribution with three parameters defined by Stacy [6] when the 

location parameter is set to zero. Agarwal and Al-Saleh used generalized gamma 

distribution to study hazard rates. [7] Balakrishnan and Peng used this distribution in the 

context of frailty model. [8] Cordeiro et al. [9] derived another generalization of Stacy’s 

generalized gamma distribution using exponentiated method, and applied it to lifetime and 

survival analysis. 

The generalized gamma distribution, which was introduced by Stacy, [10] presents 

a flexible family with varying shapes and hazard functions often suitable for modeling 

survival data. It is a three-parameter distribution with its probability density function given 

by 

𝑓(𝑡;  𝜽) =

{
 
 

 
 𝑞(𝑞−2)

𝑞−2
(𝜆𝑡)

𝑞−2(
𝑞
𝜎) exp[−𝑞−2(𝜆𝑡)

(
𝑞
𝜎)]

[𝛤(𝑞−2)𝜎𝑡]
,      𝑞 > 0,

 

(√2𝜋 𝜎𝑡)−1 exp {−
[log(𝜆𝑡)]2

2𝜎2
} ,               𝑞 = 0,

                                               (2.1) 

where t > 0 is the lifetime, θ = (q, σ, λ)’ with q ≥ 0, σ > 0, and λ > 0. Here, σ and q are the 

shape parameters and λ is a scale parameter. Γ(·) represents the complete gamma 

function.  
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The family of generalized gamma distribution include several commonly used 

lifetime distributions as its particular case. For instance, (2.1) reduces to  

1) the Weibull distribution when q = 1,  

2) the lognormal distribution when q = 0, and  

3) the gamma distribution when q/σ = 1.  

Thus, it has considerable flexibility to capture the properties of a distribution that 

may not be possible when using its special case. This motivates us to use the generalized 

gamma distribution as the distribution of the lifetime as it would enable us to carry out a 

model discrimination within this family to select a particular parametric lifetime distribution 

that provides the best fit to the data. The corresponding survival function for the expression 

(2.1) is given by 

𝑆(𝑡; 𝜆, 𝜎, 𝑞) = 

{
 
 

 
 𝛤(𝑞−2,𝑞−2(𝜆𝑡)

𝑞
𝜎)

𝛤(𝑞−2)
, 𝑞 > 0,

 

1 −  𝛷 (
log(𝜆𝑡)

𝜎
) , 𝑞 = 0,

                                                                    (2.2) 

where  

𝛤(𝑎, 𝑏) = ∫ 𝑒−𝑥𝑥𝑎−1𝑑𝑥
∞

𝑏
                                       

is the upper incomplete gamma function and Φ(·) is the cumulative distribution function of 

the standard normal distribution. [10] 

We next discuss the form of the density function and survival function for the 

special cases of generalized gamma distribution.  

1. Weibull distribution: 

If q = 1 in (2.1), the density and survival functions are reduced to  

𝑓𝑤(𝑡) = (𝜆𝑡)
1/𝜎exp [−(λt)1/σ]/𝜎𝑡], and                                                                                    (2.3) 
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𝑆𝑤(𝑡) = exp [−(𝜆𝑡)
1/α].                                                                                                (2.4) 

2. Lognormal distribution: 

If q = 0 in (2.1), the density and survival functions are reduced to 

𝑓𝑙(𝑡)  = (√2𝜋𝜎𝑡)
−1exp {−

[𝑙𝑜𝑔(𝜆𝑡)]2

2𝜎2
}, and                                                                         (2.5) 

𝑆𝑙(𝑡) = 1 −  𝛷 [
log(𝜆𝑡)

𝜎
].                                                                                                           (2.6) 

3. Gamma distribution:  

If q/σ = 1 in (2.1), the density and survival functions are reduced to  

𝑓𝑔(𝑡) = 𝜎(
𝜆𝑡

𝜎2
)𝜎
−2
exp [−(𝜆𝑡)/𝜎2]/𝛤(𝑡/𝜎), and                                                      (2.7) 

𝑆𝑔(𝑡) = 𝛤[1/𝜎2, (𝜆𝑡)/𝜎2]/𝛤(1/𝜎2).                                                                                     (2.8) 

Maximum-likelihood estimation of the parameters and quasi maximum likelihood 

estimators for its subfamily (two-parameter gamma distribution) can be found in. [11-14] 

Hwang, T. et al. [15] introduced a new moment estimation of parameters of the generalized 

gamma distribution using its characterization.  

2.2 Simulation study: Model setup and data generation 

2.2.1 Model setup for simulation study 

In this study, we consider a situation where the lifetime T is not completely 

observed and is subject to right censoring, which is the most common situation 

encountered in practice. For the i-th subject, let Yi denote the actual failure time and Ci 

denote the censoring time. In a sample of size n, the observed time is then given by Ti = 

min {Yi, Ci} for i = 1, 2, …, n. Let δi = I(Yi ≤ Ci) denote the right censoring indicator. It is 

obvious that if Yi ≤ Ci, then Ti = min {Yi, Ci} = Yi, and δi = 1. While if Yi > Ci, then Ti = min 
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{Yi, Ci} = Ci, and δi = 0. Thus, the observed data based on n subjects can be represented 

by (t1, δ1), (t2, δ2), … , (tn, δn).  

In designing an experiment, subjects are usually divided into two groups: treatment 

and control. Subjects assigned to the treatment group receive the therapy, whereas those 

in the control group receive the standard therapy. In our study, we introduce a covariate to 

indicate which group a subject belongs. Thus, X is a binary covariate and can be defined 

as follows:   

𝑋 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑔𝑟𝑜𝑢𝑝
0,              𝑖𝑓 𝑡ℎ𝑒 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑔𝑟𝑜𝑢𝑝.

 

Table 2-1 summaries an example of a data set and variables of interest in this 

study. Next, we describe the model setup using Weibull as the distribution of the lifetime 

T. For other distributions, the technique remains the same. 

Table 2-1 A sample of data set 

Subject No. ti δi Xi Observed (Y/N) Group (T/C) 

1 3.25 0 0 N C 

2 2.58 0 1 N T 

3 4.32 1 0 Y C 

4 7.16 1 1 Y T 

5 1.57 0 1 N T 

…. … … … … … 

n 3.42 1 1 Y T 

We let the observed lifetime to follow the Weibull distribution with parameters λ 

and σ, as given in (2.3). To introduce random censoring, we assume the censoring variable 

C to follow an exponential distribution with a rate α. The probability of censoring is given 

by 

𝑃[𝑌 > 𝐶] = ∫ 𝑃[𝑌 > 𝑐]𝑓𝑐(𝑐)𝑑𝑐
∞

𝑐=0
= ∫ 𝑆(𝑐)𝛼 𝑒−𝛼𝑐𝑑𝑐

∞

𝑐=0
, 



 

12 

𝑙𝑒𝑡 𝑡=𝛼𝑐
⇔      ∫ 𝑆(𝑡/𝛼) 𝑒−𝑡𝑑𝑡

∞

𝑡=0
.                                                                                       (2.9) 

Where fc(·) is the density function of the censoring variable C and S(·) is the survival 

function of the Weibull distribution.  

Note that the above probability can be expressed as  

𝑝 = 𝐸 [𝑆 (
𝑇

𝛼
) |𝑇~ exp(1)],                                                                                 (2.10)               

and it has to be approximated using some Monte Carlo technique. Note also that for other 

lifetime distributions, such as lognormal, gamma, and generalized gamma, only the 

functional form of S(·) will differ.  

2.2.2 Data generation for simulation 

To approximate (2.10), we generate N random samples from exponential 

distribution with unity rate. Then, the censoring probability p can be approximated as  

 𝑝 =
1

𝑁
 ∑ exp [− (

𝜆𝑡𝑖

𝛼
)

1

𝜎
]𝑁

𝑖=1 .            

Note that for a desired value of p and for fixed values of λ and σ, the censoring rate α can 

be easily determined. For fixed values of p, λ, σ, and the calculated value of α, we follow 

the following steps to generate data: 

Step 1: for the i-th subject, generate Yi from the Weibull distribution with density function 

given by (2.3) and Ci from an exponential distribution with rate α; 

Step 2: set Ti = min {Yi, Ci}; 

Step 3: if Ti = Yi, set δi = 1, else set δi = 0; 

Step 4: for the i-th subject, generate the group indicator Xi from a Bernoulli distribution with 

probability of success 0.5.  
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Using the R software, the computational codes for data generation for all lifetime 

distributions under consideration in this study have been developed and are presented in 

Appendix A I.  

In case of lognormal, gamma, and generalized gamma distribution, the censoring 

proportions can be expressed as 𝑝 =
1

𝑁
∑ {1 − 𝜙 [

log(
𝜆𝑡𝑖
𝛼
)

𝜎
]}𝑁

𝑖=1  , 

𝑝 =
1

𝑁
∑ {

𝛤(𝜎−2, 𝜎−2(
𝜆𝑡𝑖
𝛼
))

𝛤 (𝜎−2)
}𝑁

𝑖=1  , and 𝑝 = 1

𝑁
∑ {

𝛤(𝑞−2, 𝑞−2(
𝜆𝑡𝑖
𝛼
)
𝑞/𝜎

)

𝛤 (𝑞
−2
)

}𝑁
𝑖=1 , respectively. 

The data generation steps for the lognormal, gamma, and generalized gamma 

distributions remain the same as in the Weibull case except that in Step 1, Yi is generated 

from the lifetime distribution under consideration. To generate data from generalized 

gamma distribution, we made use of the fact that if W follows a generalized gamma 

distribution, then V = 𝑊𝑞/𝜎 follows a gamma distribution with shape parameter 1/q2 and 

scale parameter 
𝑞2

𝜆𝑞/𝜎
. Hence, 𝑊 = 𝑉𝜎/𝑞 is a generalized gamma variable with probability 

density function given in (2.1).  
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 Parameter estimation for generalized 

gamma family 

3.1 Estimation of parameters 

In this chapter, we shall examine techniques for drawing inference about the 

distribution of time to some event of interest, based on a sample of right censored survival 

data. The data consists of a time variable under study and an indicator of whether this time 

is an actual observed time or a censored time for each of the n subjects, as discussed in 

chapter 2.  

Throughout this chapter, it is assumed that the potential censoring is unrelated to 

the potential event time (independent and identically distributed).   

3.1.1 Maximum likelihood estimation  

In statistics, maximum likelihood estimation (MLE) is a method of estimating the 

parameters of a statistical model given observations, by finding the parameter values that 

maximize the likelihood function. When performing maximum likelihood analysis on data 

with censored individuals, the likelihood function needs to be expanded to take into account 

the censored items. If the lifetime Ti is actually observed, the i-th subject contributes f(ti) to 

the likelihood, whereas if Ti is right censored, the i-th subject contributes p(T > ti) = S(ti) to 

the likelihood. 

Thus, the observed data likelihood function for a sample of size n is given by 

L (θ; t, δ) = ∏ 𝑓(𝜽; 𝑡𝑖)
𝛿𝑖𝑆(𝜽; 𝑡𝑖)

1−𝛿𝑖𝑛
𝑖=1  = ∏ 𝑓(𝜽; 𝑡𝑖)𝑖: 𝛿𝑖=1

 × ∏ 𝑆(𝜽; 𝑡𝑖)𝑖: 𝛿𝑖=0
.  

In practice, it is often more convenient when working with the natural logarithm of 

the likelihood function, called the log-likelihood function. The corresponding log-likelihood 

function, without the constant term, is given by 

https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Statistical_parameter
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Likelihood
https://en.wikipedia.org/wiki/Natural_logarithm
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l(θ; t, δ) =  ∑ log[𝑓(𝜽; 𝑡𝑖)]𝑖: 𝛿𝑖=1 + ∑ log[𝑆(𝜽; 𝑡𝑖)]𝑖: 𝛿𝑖=0 .  

             The method of maximum likelihood estimation find a value 𝜽̂ of θ that maximizes 

the log-likelihood function, i. e., 

𝜽̂  = 𝑎𝑟𝑔𝜃
𝑚𝑎𝑥{𝑙(𝜽; 𝒕, 𝜹)}. 

To introduce the covariate effect in our model, we link the covariate X to the 

parameter λ using a log-linear link function, i. e., 𝜆 =  𝑒𝛽0+𝛽1𝑋. Thus, our parameter 

vector θ is now defined as θ = (q, σ, β0, β1)’. Next, simplified explicit expressions for the 

observed data log-likelihood function are presented for the generalized gamma distribution 

and its special cases. 

1. Weibull distribution: 

𝑙(𝜽; 𝒕, 𝜹, 𝑿) = (
1

𝜎
)∑ [( 𝛽0 + 𝛽1𝑋𝑖) + 𝑖: 𝛿𝑖=1

∑ log(𝑡𝑖)𝑖: 𝛿𝑖=1
]  

                       – ∑ [exp(𝛽0 + 𝛽1𝑋𝑖) 𝑡𝑖]
1/𝜎

𝑖: 𝛿𝑖=1
– ∑ log(𝜎𝑡𝑖)𝑖: 𝛿𝑖=1

  

                       – ∑ [exp(𝛽0 + 𝛽1𝑋𝑖) 𝑡𝑖]
1/𝜎

𝑖: 𝛿𝑖=0
. 

2. Lognormal distribution:  

𝑙(𝜽; 𝒕, 𝜹, 𝑿) = (−1)∑ log (√2𝜋𝑖: 𝛿𝑖=1
𝜎𝑡𝑖)  

                       – ∑ {[𝛽0 + 𝛽1𝑋𝑖 + log(𝑡𝑖)]
2/(2𝑖: 𝛿𝑖=1 

𝜎2)} 

                       + ∑ log {1 − 𝜙[
𝛽0+𝛽1𝑋𝑖+log(𝑡𝑖)

𝜎
]}𝑖: 𝛿𝑖=0

. 

3. Gamma distribution: 

𝑙(𝜽; 𝒕, 𝜹, 𝑿) =  ∑
[𝛽0+𝛽1𝑋𝑖−log(𝜎

2)]

𝜎2𝑖: 𝛿𝑖=1 
  –  ∑ [𝛤(

1

𝜎2
)]𝑖: 𝛿𝑖=1 

  

                       –  ∑ [exp(𝛽0 + 𝛽1𝑋𝑖)
𝑡𝑖

𝜎2
]𝑖: 𝛿𝑖=1 
 + ∑ [(

1

𝜎2
− 1) log(𝑡𝑖)]𝑖: 𝛿𝑖=1 
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                      + ∑ 𝑙𝑜𝑔 [𝛤 (
1

𝜎2
) , exp(𝛽0 + 𝛽1𝑋𝑖)

𝑡𝑖

𝜎2
]𝑖: 𝛿𝑖=0 
  –  ∑ 𝑙𝑜𝑔 [𝛤 (

1

𝜎2
)]𝑖: 𝛿𝑖=0

. 

4. Generalized gamma distribution:  

𝑙(𝜽; 𝒕, 𝜹, 𝑿) = (−1)∑ [log (
𝑞

𝜎
) − 2 (𝑞−2 log(𝑞))] − ∑ log[𝛤(𝑞−2)] 𝑖: 𝛿𝑖=1

 𝑖: 𝛿𝑖=1
 

                      +(
1

𝑞𝜎
)∑ [log(𝑡𝑖) + 𝛽0 + 𝛽1𝑋𝑖] 𝑖: 𝛿𝑖=1

  

                      − (𝑞)−2∑ (𝑒𝛽0+𝛽1𝑋𝑖𝑡𝑖)
𝑞

𝜎 𝑖: 𝛿𝑖=1
− ∑ log(𝑡𝑖) 𝑖: 𝛿𝑖=1

 

          + ∑ log{𝛤[𝑞−2,  (𝑒𝛽0+𝛽1𝑋𝑖𝑡𝑖)
𝑞

𝜎/𝑞2]}𝑖: 𝛿𝑖=0
− ∑ log[𝛤(𝑞−2)]. 𝑖: 𝛿𝑖=0

 

We used the “maxLik” function available in R software to carry out the maximum 

likelihood estimation of the parameter θ.  

3.2 Simulation study: model fitting 

We carried out an extensive Monte Carlo simulation study to evaluate the 

performance of the proposed estimation method. In this simulation study, we considered 

different sample sizes and censoring proportions, so that we can observe the behavior of 

the model under varying sample sizes and censoring rates. The total sample size was then 

divided into two groups with one group representing the treatment and the other group 

representing the control.  

Two sample sizes were selected: n = 200 and n = 300 to investigate the 

performance of the model under small and large sample sizes. Two sets of censoring 

proportions were considered for the treatment (pT) and control (pC) groups: (pT = 0.3, pC = 

0.2) and (pT = 0.5, pC = 0.4) to study the accuracy of the model under low and high 

censoring rates. Note that if subjects belong to the treatment group, the covariate X takes 

the value 1 and as such we have λT = 𝑒𝛽0+𝛽1. Similarly, for subjects belonging to the control 

group, λC = 𝑒𝛽0 . Thus, on selecting values for λT and λC, the regression parameters β0 and 
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β1 can be easily determined. We chose the true values of λT and λC as 1.5 and 2, which 

give us the true value of 𝛽0 = log(𝜆𝑐) = 0.405 and the true value of 𝛽1 = log(𝜆𝑇) −

 log(𝜆𝐶) = 0.287. We also chose the true value of σ as 0.5. In case of the generalized 

gamma distribution, we chose the true value of q as 1.2. Tables 3-1 to 3-4 present the 

model fitting results for the Weibull, lognormal, gamma and generalized gamma 

distributions, respectively.  

To examine the performance of the estimates, we calculated the empirical bias 

and root mean square error (RMSE) of the estimates. We also calculated the coverage 

probabilities of the confidence interval based on the asymptotic normality of the estimates 

for different nominal confidence levels. All the simulations were performed using the R 

statistical software and the results are based on 500 Monte Carlo runs. 

It is clear that the estimates coverage to the true parameter values quite accurately 

for all the four lifetime distributions.  

Table 3-1 Estimates, bias, RMSE, standard error (s. e.) and coverage probability (c. p.) 

for Weibull lifetime 

n (pT, pC) Parameter Estimate Bias RMSE s. e. 
c. p. 

90% 95% 

200 (0.3, 0.2) 

β0 
β1 
σ 

0.4076 
0.2883 
0.4954 

0.0022 
0.0006 
-0.0046 

0.0538 
0.0708 
0.0141 

0.0562 
0.0815 
0.0308 

0.9020 
0.9450 
0.8900 

0.9530 
0.9730 
0.9390 

300 (0.3, 0.2) 

β0 
β1 
σ 

0.4077 
0.2881 
0.4975 

0.0022 
0.0004 
-0.0025 

0.0412 
0.0573 
0.0200 

0.0460 
0.0667   
0.0252 

0.8950 
0.9450 
0.8900 

0.9470 
0.9770 
0.9430 

200 (0.5, 0.4) 

β0 
β1 
σ 

0.4107 
0.2849 
0.4948 

0.0052 
-0.0028 
-0.0052 

0.0332 
0.0592 
0.0224 

0.0702 
0.1061 
0.0380 

0.9010 
0.9530 
0.8800 

0.9430 
0.9720 
0.9290 

300 (0.5, 0.4) 

β0 
β1 
σ 

0.4071 
0.2891 
0.4943 

0.0016 
0.0014 
-0.0057 

0.0469 
0.0687 
0.0241 

0.0573 
0.0863 
0.0309 

0.8920 
0.9390 
0.8890 

0.9380 
0.9710 
0.9340 
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Table 3-2 Estimates, bias, RMSE, standard error (s. e.) and coverage probability (c. p.) 

for lognormal lifetime 

n (pT, pC) Parameter Estimate Bias RMSE s. e. 
c. p. 

90% 95% 

200 (0.3, 0.2) 

β0 
β1 
σ 

0.4046 
0.2889 
0.4956 

-0.0009   
0.0012  
-0.0044 

0.0480 
0.0469 
0.0224 

0.0535 
0.0773 
0.0283 

0.8970 
0.9520 
0.8820 

0.9560  
0.9750  
0.9290 

300 (0.3, 0.2) 

β0 
β1 
σ 

0.4049 
0.2863 
0.4969 

-0.0006  
-0.0014  
-0.0031 

0.0100 
0.0245 
0.0283 

0.0437 
0.0632 
0.0232 

0.8990   
0.9550  
0.8880 

0.9420  
0.9770   
0.9350  

200 (0.5, 0.4) 

β0 
β1 
σ 

0.4054 
0.2905 
0.4957 

-0.0008 
0.0028  
-0.0043 

0.0374 
0.0539 
0.0316 

0.0636  
0.0921  
0.0359 

0.9070  
0.9610  
0.8950 

0.9580 
0.9800   
0.9420 

300 (0.5, 0.4) 

β0 
β1 
σ 

0.4034 
0.2869 
0.4973 

-0.0021  
-0.0008  
-0.0027 

0.0265 
0.0480 
0.0100 

0.0520   
0.0754   
0.0295 

0.8890 
0.9450 
0.8910 

0.9470  
0.9710   
0.9520 

 

Table 3-3 Estimates, bias, RMSE, standard error (s. e.) and coverage probability (c. p.) 

for gamma lifetime 

n (pT, pC) Parameter Estimate Bias RMSE s. e. 
c. p. 

90% 95% 

200 (0.3, 0.2) 

β0 
β1 
σ 

0.4098 
0.2865 
0.4949 

0.0043 
-0.0012 
0.0050 

0.0300 
0.0810 
0.0255 

0.0562 
0.0815 
0.0308 

0.9200 
0.9500  
0.8720 

0.9560 
0.9720 
0.9360 

300 (0.3, 0.2) 

β0 
β1 
σ 

0.4051 
0.2899 
0.4977 

-0.0004 
0.0022 
-0.0023 

0.0436 
0.0550 
0.0261 

0.0460 
0.0667   
0.0252 

0.8840 
0.9520 
0.8780 

0.9420 
0.9740 
0.9220 

200 (0.5, 0.4) 

β0 
β1 
σ 

0.4079 
0.2851 
0.4963 

0.0024 
-0.0025  
-0.0036 

0.0524 
0.0848 
0.0200 

0.0702 
0.1061 
0.0380 

0.9000 
0.9480 
0.8860 

0.9520 
0.9700 
0.9360 

300 (0.5, 0.4) 

β0 
β1 
σ 

0.4068 
0.2853 
0.4980 

0.0013  
-0.0023 
-0.0019 

0.0373 
0.0485 
0.0245 

0.0573 
0.0863 
0.0309 

0.9080 
0.9620 
0.8920 

0.9500 
0.9780 
0.9540 
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Table 3-4 Estimates, bias, RMSE, standard error (s. e.) and coverage probability (c. p.) 

for generalized gamma lifetime 

n (pT, pC) Parameter Estimate Bias RMSE s. e. 
c. p. 

90% 95% 

200 (0.3, 0.2) 

β0 
β1 
σ 
q 

0.3957 
0.2893 
0.4862  
1.2424 

-0.0098 
0.0016 
-0.0138 
0.0424 

0.0868 
0.0818 
0.0531 
0.2986 

0.0835 
0.0820 
0.0478 
0.2584 

0.8980 
0.9520 
0.8780 
0.8960 

0.9360 
0.9760 
0.9300 
0.9540 

300 (0.3, 0.2) 

β0 
β1 
σ 
q 

0.4027 
0.2909 
0.4919 
1.2298 

-0.0028  
0.0033  
-0.0081  
0.0298 

0.0650 
0.0724 
0.0398 
0.2011 

0.0677 
0.0673 
0.0384 
0.1987 

0.9040 
0.9400 
0.8740 
0.9040 

0.9540 
0.9620 
0.9420 
0.9660 

200 (0.5, 0.4) 

β0 
β1 
σ 
q 

0.3997 
0.2866 
0.4808 
1.2765 

-0.0057  
-0.0011  
-0.0191 
0.0765 

0.0983 
0.1048 
0.0673 
0.3668 

0.0985 
0.0974 
0.0638 
0.3311 

0.9160 
0.9220 
0.9020 
0.9220 

0.9720 
0.9640 
0.9480 
0.9740 

300 (0.5, 0.4) 

β0 
β1 
σ 
q 

0.4009 
0.2925 
0.4902 
1.2428 

-0.0045 
0.0048  
-0.0098  
0.0428 

0.0843 
0.0845 
0.0534 
0.2788 

0.0793 
0.0801 
0.0509 
0.2505 

0.8760 
0.9160 
0.8900 
0.8960 

0.9360 
0.9520 
0.9500 
0.9560 

 

Note that the bias and standard errors decrease with an increase in sample size. 

Furthermore, the coverage probabilities are close to the nominal levels. Thus, we can 

conclude that the estimation method performs very well.  
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 Model discrimination within the generalized 

gamma family 

Model selection/discrimination plays an important role in selecting a particular 

model within a family of models or a set of candidate models that provide the best fit to a 

given data. We have seen that the generalized gamma family is quite flexible and includes 

several commonly used distributions as special cases, which enables us to select a simple 

distribution within this family that provide an adequate fit to the survival data. This selection 

can be carried out using a likelihood ratio test or information-based criteria, namely the AIC 

and BIC. 

4.1 Likelihood ratio test 

In this method, for a given distribution of the lifetime, we investigate the 

performance of the likelihood ratio test in testing the null hypothesis that the lifetime 

distribution can be described by one of the Weibull (H0: q = 1), lognormal (H0: q = 0), and 

gamma (H0: q = σ) distributions versus an alternative hypothesis that the lifetime 

distribution can be described by a member of generalized gamma family other than the 

one described in the null hypothesis. The likelihood ratio test statistic is defined as:  

Λ = −2(𝑙0̂ − 𝑙) , where 𝑙0̂ and 𝑙 denote the maximized log-likelihood values under H0 and 

(H0 U H1), respectively. 

Note that under the standard likelihood theory, the asymptotic distribution of Λ 

under H0 is a central chi-square distribution with one degree of freedom. However, if the 

parameter q lie on the boundary of the parameter space, the asymptotic null distribution of 

Λ is a 50-50 mixture of a point mass at zero and a chi-square distribution with one degree 

of freedom (mixture chi-square distribution). In case of testing for H0: q = 0 (lognormal), we 
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note that the parameter (q) lie on the boundary of the parameter space (q ≥ 0) and the 

asymptotic null distribution of Λ in this case is given by 

𝑃[𝛬 ≤  𝜂] = 
1

2
 + 
1

2
 𝑃[𝜒1

2  ≤  𝜂],  

where 𝜒1
2 denotes a chi-square random variable with one degree of freedom. [16, 17]  

For each computer generated dataset, we calculated the likelihood ratio test 

statistic of the fitted Weibull, lognormal and gamma models.  Based on 1000 datasets for 

each simulation and nominal significance level of 5%, we computed the observed 

significance levels and power values of the likelihood ratio test, which were determined by 

the rejection rates of the null hypothesis. The results and discussion are presented in 

subsection 4.3.  

4.2 Information-based criteria 

In choosing a criterion for model selection, we should accept the fact that models 

only approximate the reality. Given a set of data, the objective is to determine which of the 

candidate models best approximates the data, which involves trying to minimize the loss 

of information. Because the field of information theory is used to quantify or measure the 

expected value of information, the information-theoretic approach is used to derive the two 

most commonly used criteria in model selection: the AIC and the BIC. [18, 19]  

The AIC is defined as 

𝐴𝐼𝐶 = −2𝑙(𝜽̂) + 2𝑘, 

where 𝑙(𝜽̂) is the value of maximized log-likelihood function, and k is the number of 

estimated parameters in the candidate model. The quantity 2k represents the penalty term 

and a model with minimum value of AIC is considered to be the best among a set of 

candidate models.  
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The BIC, proposed by Schwarz, [20] is another model selection criterion based on 

information theory but defined within a Bayesian context. The BIC is defined as 

𝐵𝐼𝐶 = −2𝑙(𝜽̂) + 𝑘𝑙𝑜𝑔(𝑛), 

where n is the sample size. Compared to AIC, the BIC has a greater penalty for adding 

parameters to the model. As in the case of AIC, a lower value of BIC implies better fit. 

It is to be noted that the AIC and BIC do not involve a formal test of hypothesis, as 

in the case of likelihood ratio test, so it can tell nothing about the quality of the model in an 

absolute sense.  

For each computer generated dataset, we calculated the AIC and BIC values of 

the fitted models within the generalized gamma family for a given true model. Based on 

1000 datasets in each situation, we calculated the observed selection rates for each of the 

two criteria used. The results and discussions are presented in the following subsection.  

4.3 Simulation results and discussions 

The results for the likelihood ratio test and information-based criteria are shown in 

Tables 4-1 and 4-2, respectively.  

From Table 4-1, it can be seen that the chi-square and mixture chi-square 

distributions provide good approximations to the null distribution of the likelihood ratio test 

statistic as the observed levels are very close to the nominal level. The observed powers, 

may vary in different situations. When Weibull distribution is the true lifetime distribution, 

the test has remarkably high power to reject the lognormal distribution compared to gamma 

distribution, for any simulation setting. When lognormal distribution is the true lifetime 

distribution, the test has almost 100% power to reject the Weibull distribution and a 

moderate power to reject the gamma. When the true lifetime distribution is gamma, the  
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Table 4-1 Observed levels (in bold) and powers of likelihood ratio test 

Fitted model 
True generalized gamma model 

Weibull Lognormal Gamma 

n = 200, (pT, pC) = (0.3, 0.2) 

Weibull 0.047 0.999 0.672 

Lognormal 0.999 0.051 0.756 

Gamma 0.724 0.762 0.056 

n = 200, (pT, pC) = (0.5, 0.4) 

Weibull 0.056 0.984 0.514 

Lognormal 0.987 0.050 0.666 

Gamma 0.575 0.624 0.052 

n = 300, (pT, pC) = (0.3, 0.2) 

Weibull 0.048 1.000 0.846 

Lognormal 1.000 0.050 0.896 

Gamma 0.847 0.911 0.064 

n = 300, (pT, pC) = (0.5, 0.4) 

Weibull 0.052 0.999 0.723 

Lognormal 0.997 0.044 0.800 

Gamma 0.747 0.814 0.053 

 

power to reject the Weibull and lognormal distributions are moderate. As expected, the 

power to reject the wrong model increases with an increasing in sample size and decrease 

in censoring proportion. Based on these observations, we can conclude that the likelihood 

ratio test can distinctly discriminate between the lognormal and Weibull models with very 

high power.  
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Table 4-2 Observed selection rates based on AIC* 

Fitted model 
True generalized gamma model 

Weibull Lognormal Gamma 

  n = 200, (pT, pC) = (0.3, 0.2) 

Weibull 0.909 0.000 0.111 

Lognormal 0.000 0.877 0.105 

Gamma 0.091 0.123 0.784 

 n = 200, (pT, pC) = (0.5, 0.4) 

Weibull 0.849 0.001 0.165 

Lognormal 0.003 0.845 0.145 

Gamma 0.148 0.154 0.690 

 n = 300, (pT, pC) = (0.3, 0.2) 

Weibull 0.933 0.000 0.080 

Lognormal 0.000 0.912 0.070 

Gamma 0.067 0.088 0.850 

 n = 300, (pT, pC) = (0.5, 0.4) 

Weibull 0.908 0.001 0.122 

Lognormal 0.000 0.871 0.109 

Gamma 0.092 0.128 0.769 

*The observed selection rates based on BIC turn out to be exactly the same as AIC  

From Table 4-2, we first note that when the true lifetime distributions are either 

Weibull or lognormal, the selection criteria performs well in selecting the correct model. In 

both these cases, although there is a small chance of selecting gamma, the rates of Weibull 

selecting lognormal and lognormal selecting Weibull are nearly zero. In addition, the correct 

selection rates increase with an increase in sample size and with a decrease in censoring 
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proportion. When the true lifetime distribution is gamma, the selection criteria performs 

moderately in selecting the correct model.  
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 Illustrative example 

In this chapter, we demonstrate an application of proposed methodology to a data 

on lung cancer. The data is taken from Loprinzi, C. L., et al. [21] and represents survival in 

patients with advanced lung cancer from the North Central Cancer Treatment Group. Table 

5-1 lists the data variables and the corresponding descriptions. The total number of 

subjects in this data is 228, and the percentage of censored observations is 28%. In 

addition, the observed time has mean = 305.2 days and standard deviation= 210.6. The 

data can be easily accessed in the package “survival” of R statistical software.   

Table 5-1 Variables and descriptions for lung cancer data  

Variable Description 

time survival time in days 

status censoring status: 1=censored, 2=observed 

sex male=1, female=2 

Using sex as the only covariate, we fit different lifetime distributions to the data and 

the maximum likelihood estimate of the model parameters are presented in Table 5-2.   

Table 5-2 Estimates of model parameters for different lifetime distributions 

Model 
Parameter estimates Maximized 

likelihood function β0 β1 σ q 

Weibull (q = 1) -6.2797 0.3956 0.7551 - -1148.652 

Lognormal (q = 0) -6.018 0.5714 1.0711 - -1162.616 

Gamma (q = σ) -6.2332 0.4279 0.8054 - -1149.202 

Generalized 
gamma 

-6.2834 0.3931 0.7513 1.0156 -1148.649 
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Based on the results of Table 5-2, it is clear that the Weibull distribution provides 

a similar fit to that of the generalized gamma distribution. Next, in Table 5-3, we present 

the AIC and BIC values for different lifetime distributions.  

Table 5-3 AIC and BIC values for different lifetime distributions 

Model AIC BIC 

Weibull 2303.304 2313.592 

Lognormal 2331.232 2341.52 

Gamma 2304.404 2314.692 

Generalized 
gamma 

2305.298 2319.015 

It is clear from Table 5-3 that both the AIC and BIC values for the Weibull 

distribution are the minimum. Thus, based on the information criteria, Weibull should be 

considered as our working model.  

We also carried out the likelihood ratio test to test for the suitability of Weibull, 

lognormal and gamma models and the results are presented in Table 5-4. 

Table 5-4 The p-value of likelihood-ratio test for different models 

Fit model Λ p-value 

Weibull 0.006 0.94 

Lognormal 27.934 < 0.001 

Gamma 1.106 0.29 

It is clear that the assumption of lognormal model is rejected by the likelihood ratio 

test and at 5% level of significance, both the Weibull and gamma models turn out to provide 

adequate fit to the data. Note that the AIC and BIC values for the Weibull and gamma 

models are quite close to each other.  
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Figure 5-1 Kaplan-Meier curves stratified by sex: male and female, respectively. And the 

fitted curves of survival function for Weibull, lognormal, and gamma distributions.  

In Figure 5-1, we present the Kaplan-Meier estimates of the survival function and 

superimpose the estimated survival functions from different lifetime distributions. The plots 

are stratified by patient’s gender. It is clear that the Weibull distribution provides a closer 

concordance to the Kaplan-Meier curves which illustrates that the Weibull provides the best 

fit. 
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 Conclusion 

In this thesis, we have considered analysis of right censored survival data 

assuming a flexible distribution to model the lifetime. The flexibility of the generalized 

gamma distribution enable us to carry out a formal test of hypothesis to check for the 

suitability of a particular distribution within its family. We also studied the effect of 

covariates on the lifetime. Our simulation study results show that the maximum likelihood 

estimation procedure works very well. Our study also show that the likelihood ratio test can 

distinctly discriminate between Weibull and lognormal lifetimes, whereas the information-

based criteria can select the correct model with high accuracy.  
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Appendix A 

R codes developed in this study 

 



 

31 

Appendix A I. R codes for data generation 

1. For Weibull distribution 

cen_rate=function(alpha,lambda,sigma,prop){ 
t=rexp(1000, rate=1) 
(sum(exp(-((lambda*t/alpha)^(1/sigma))))/length(t))-prop 
}# generalize the rate for exponial data distribution 
data_Wei=function(n, lam_c, lam_t, sig, pt, pc){ 
x=rbinom(n, size=1, prob=0.5) 
Y=rep(NA,n) 
T=rep(NA,n) 
d=rep(NA,n) 
C=rep(NA,n) 
for(k in 1:n){ 
if(x[k]==1){ 
Y[k]=rweibull(1,shape=1/sig, scale=1/lam_t) 
C[k]=rexp(1,rate=uniroot(cen_rate,c(0,10), 
lambda=lam_t, sigma=sig, prop=pt)$root) 
T[k]=min(Y[k],C[k]) 
}else{ 
Y[k]=rweibull(1,shape=1/sig,scale=1/lam_c) 
C[k]=rexp(1,rate=uniroot(cen_rate,c(0,10), 
lambda=lam_c, sigma=sig, prop=pc)$root) 
T[k]=min(Y[k],C[k]) } }#end of for 
for(j in 1:n){ 
if(T[j]==Y[j]){ 
d[j]=1 
}else{ 
d[j]=0 } } 
return(data.frame(T,x,d)) }#generalize the data for Weibull distribution 

2. For lognormal distribution 

 cen_rate=function(alpha,lambda,sigma,prop){ 
t<-rexp(1000, rate=1) 
(sum(1-pnorm((1/sigma)*log(lambda*t/alpha), mean=0, sd=1, lower.tail=TRUE,log.p=FALSE))/length(t))-prop} 
data_Lognormal=function(n, lam_c, lam_t, sig, pt, pc){ 
x=rbinom(n,size=1,prob=0.5) 
Y=rep(NA,n) 
T=rep(NA,n) 
d=rep(NA,n) 
C=rep(NA,n) 
for(k in 1:n){ 
if(x[k]==1){ 
Y[k]=rlnorm(1,meanlog=log(1/lam_t),sdlog=sig) 
C[k]=rexp(1,rate=uniroot(cen_rate,c(0,10), 
lambda=lam_t,sigma=sig,prop=pt)$root) 
T[k]=min(Y[k],C[k]) 
}else{ 
Y[k]= rlnorm(1,meanlog=log(1/lam_c),sdlog=sig) 
C[k]=rexp(1,rate=uniroot(cen_rate,c(0,10), 
lambda=lam_c,sigma=sig,prop=pc)$root) 
T[k]=min(Y[k],C[k]) } }#end of for 
for(j in 1:n){ 
if(T[j]==Y[j]){ 
d[j]=1 
}else{ 
d[j]=0 } } 
return(data.frame(T,x,d)) } 
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3. For gamma distribution 

cen_rate=function(alpha,lambda,sigma,prop){ 
t=rexp(1000,rate=1) 
((sum(Rgamma(sigma^(-2), (lambda*t*sigma^(-2))/alpha, lower=FALSE, log=FALSE)))/length(t))-prop} 
data_Gamma=function(n, lam_c, lam_t, sig, pt, pc){ 
x=rbinom(n,size=1,prob=0.5) 
Y=rep(NA,n) 
T=rep(NA,n) 
d=rep(NA,n) 
C=rep(NA,n) 
for(k in 1:n){ 
if(x[k]==1){ 
Y[k]=rgamma(1,shape=sig^(-2),scale=(sig^(2)/lam_t)) 
C[k]=rexp(1,rate=uniroot(cen_rate,c(0, 2), 
lambda=lam_t,sigma=sig,prop=pt)$root) 
T[k]=min(Y[k],C[k])} else{ 
Y[k]=rgamma(1,shape=sig^(-2),scale=(sig^(2)/lam_c)) 
C[k]=rexp(1,rate=uniroot(cen_rate,c(0, 2), 
lambda=lam_c,sigma=sig,prop=pc)$root) 
T[k]=min(Y[k],C[k]) } }#end of for 
for(j in 1:n){ 
if(T[j]==Y[j]){ 
d[j]=1} else{ 
d[j]=0 } } 
return(data.frame(T,x,d)) 
}###end of data generation Gamma 

4. For generalized gamma distribution 

cen_rate=function(alpha, lambda, sigma, Q, prop){ 
t=rexp(1000, rate=1) 
((sum(Rgamma(Q^(-2), (Q^(-2))*((lambda*(t/alpha))^(Q/sigma)), lower=FALSE)))/length(t))-prop} 
rGen=function(n, lambda, sigma, Q)  { 
G=rgamma(n,shape=Q^(-2), scale=(Q^(2))/(lambda^(Q/sigma))) 
V=rep(NA, n) 
for (i in 1:n) { 
V[i]=G[i]^(sigma/Q) } 
return(V) } 
data_GenGamma=function(n, lam_c, lam_t, sig, q, pt, pc){ 
x=rbinom(n,size=1,prob=0.5) 
Y=rep(NA,n) 
T=rep(NA,n) 
d=rep(NA,n) 
C=rep(NA,n) 
for(k in 1:n){ 
if(x[k]==1){ 
Y[k]=rGen(1, lambda=lam_t, sigma=sig, Q=q) 
C[k]=rexp(1,rate=uniroot(cen_rate,c(0,10), 
lambda=lam_t,sigma=sig,Q=q, prop=pt)$root) 
T[k]=min(Y[k],C[k])} else{ 
Y[k]=rGen(1, lambda=lam_c, sigma=sig, Q=q) 
C[k]=rexp(1,rate=uniroot(cen_rate,c(0,10), 
lambda=lam_c,sigma=sig, Q=q, prop=pc)$root) 
T[k]=min(Y[k],C[k]) } }#end of for 
for(j in 1:n){ 
if(T[j]==Y[j]){ 
d[j]=1} else{ 
d[j]=0 } } 
return(data.frame(T,x,d)) } 
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Appendix A II. R codes for parameter estimation 

1. For Weibull distribution 

Complex_Wei=function (n, lam_c, lam_t, sig, pt, pc, m){ 
b0_est=rep(NA, m) 
b1_est=rep(NA, m) 
sig_est=rep(NA, m) 
sd_b0=rep(NA, m) 
sd_b1=rep(NA, m) 
sd_sig=rep(NA, m) 
temp_b0=rep(NA, m) 
temp_b1=rep(NA, m) 
temp_sig=rep(NA, m) 
L_b0_95=rep(NA, m) 
U_b0_95=rep(NA, m) 
L_b1_95=rep(NA, m) 
U_b1_95=rep(NA, m) 
L_sig_95=rep(NA, m) 
U_sig_95=rep(NA, m) 
L_b0_90=rep(NA, m) 
U_b0_90=rep(NA, m) 
L_b1_90=rep(NA, m) 
U_b1_90=rep(NA, m) 
L_sig_90=rep(NA, m) 
U_sig_90=rep(NA, m) 
count_b0_95=0 
count_b1_95=0 
count_sig_95=0 
count_b0_90=0 
count_b1_90=0 
count_sig_90=0 
for (r in 1:m) { 
data=data_Wei(n, lam_c, lam_t, sig, pt, pc) 
data_obs=data[data$d==1,] 
data_cens=data[data$d==0,] 
obs_t=data_obs$T 
obs_x=data_obs$x 
cens_t=data_cens$T 
cens_x=data_cens$x 
NR_Wei=function(param=c(beta0,beta1,sigma)){ 
((1/param[3])*((sum(param[1]+(param[2]*obs_x)))+(sum(log(obs_t)))))-
sum((obs_t*exp(param[1]+(param[2]*obs_x)))^(1/param[3]))-sum(log(obs_t*param[3]))- 
sum((cens_t*exp(param[1]+(param[2]*cens_x)))^(1/param[3])) 
}#estimation function for test  
est=maxLik(NR_Wei,start=c(0.35,0.25,0.4),method="NR") 
b0_est[r]=coef(est)[1] 
b1_est[r]=coef(est)[2] 
sig_est[r]=coef(est)[3] 
sd_b0[r]=stdEr(est)[1] 
sd_b1[r]=stdEr(est)[2] 
sd_sig[r]=stdEr(est)[3] 
temp_b0[r]=b0_est[r]-log(lam_c) 
temp_b1[r]=b1_est[r]-(log(lam_t)-log(lam_c)) 
temp_sig[r]=sig_est[r]-sig 
L_b0_95[r]=b0_est[r]-1.96*sd_b0[r] 
U_b0_95[r]=b0_est[r]+1.96*sd_b0[r] 
L_b1_95[r]=b1_est[r]-1.96*sd_b1[r] 
U_b1_95[r]=b1_est[r]+1.96*sd_b1[r] 
L_sig_95[r]=sig_est[r]-1.96*sd_sig[r] 
U_sig_95[r]=sig_est[r]+1.96*sd_sig[r] 
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L_b0_90[r]=b0_est[r]-1.645*sd_b0[r] 
U_b0_90[r]=b0_est[r]+1.645*sd_b0[r] 
L_b1_90[r]=b1_est[r]-1.645*sd_b1[r] 
U_b1_90[r]=b1_est[r]+1.645*sd_b1[r] 
L_sig_90[r]=sig_est[r]-1.645*sd_sig[r] 
U_sig_90[r]=sig_est[r]+1.645*sd_sig[r] 
if ( (L_b0_95[r]<log(lam_c)) & (log(lam_c)<U_b0_95[r]) ){ 
count_b0_95=count_b0_95+1 } 
if ( (L_b1_95[r]<(log(lam_t)-log(lam_c))) & ((log(lam_t)-log(lam_c))<U_b0_95[r]) ){ 
count_b1_95=count_b1_95+1 } 
if ( (L_sig_95[r]<sig) & (sig<U_sig_95[r]) ){ 
count_sig_95=count_sig_95+1 } 
if ( (L_b0_90[r]<log(lam_c)) & (log(lam_c)<U_b0_90[r]) ){ 
count_b0_90=count_b0_90+1 } 
if ( (L_b1_90[r]<(log(lam_t)-log(lam_c))) & ((log(lam_t)-log(lam_c))<U_b0_90[r]) ){ 
count_b1_90=count_b1_90+1 } 
if ( (L_sig_90[r]<sig) & (sig<U_sig_90[r]) ){ 
count_sig_90=count_sig_90+1 } }####end of for 
ave_b0=sum(b0_est)/m 
ave_b1=sum(b1_est)/m 
ave_sig=sum(sig_est)/m 
Rmse_b0=sqrt((1/(m-1))*sum((temp_b0[r])^2)) 
Rmse_b1=sqrt((1/(m-1))*sum((temp_b1[r])^2)) 
Rmse_sig=sqrt((1/(m-1))*sum((temp_sig[r])^2)) 
bias_b0=sum(temp_b0)/m 
bias_b1=sum(temp_b1)/m 
bias_sig=sum(temp_sig)/m 
cp_b0_95=count_b0_95/m 
cp_b1_95=count_b1_95/m 
cp_sig_95=count_sig_95/m 
cp_b0_90=count_b0_90/m 
cp_b1_90=count_b1_90/m 
cp_sig_90=count_sig_90/m 
ave_sd_b0=(1/m)*(sum(sd_b0)) 
ave_sd_b1=(1/m)*(sum(sd_b1)) 
ave_sd_sig=(1/m)*(sum(sd_sig)) 
return(c(ave_b0, ave_b1, ave_sig, bias_b0, bias_b1, bias_sig, Rmse_b0, Rmse_b1, Rmse_sig, cp_b0_95, 
cp_b1_95, cp_sig_95, cp_b0_90, cp_b1_90, cp_sig_90, ave_sd_b0, ave_sd_b1, ave_sd_sig)) }# end of 
function complex_Wei 
 

The codes for lognormal and gamma distributions are the same as Weibull distribution, 

except the log-likelihood function. 

2. For lognormal distribution, the log-likelihood function is: 

NR_Lognormal=function(param=c(beta0,beta1,sigma))   { 
(-1)*(sum(log(sqrt(2*pi)*param[3]*obs_t)))-(1/(2*(param[3]^2)))*(sum((param[1]+param[2]*obs_x+log(obs_t))^2)) 
+(sum(log(1-pnorm((param[1]+param[2]*cens_x+log(cens_t))/param[3])))) } 
est=maxLik(NR_Lognormal,start=c(0.35,0.25,0.4), method="NR") 

3. For gamma distribution, the log-likelihood function is: 

NR_GenGamma=function(param=c(beta0,beta1,sigma), QQ) { 
lamt=exp(param[1]+(param[2]*obs_x)) 
lamc=exp(param[1]+(param[2]*cens_x)) 
l = (length(obs_t)*(log(QQ)-log(param[3])-2*(QQ^(-2))*log(QQ)))-(length(obs_t)*log(gamma(QQ^(-2))))+ 
((1/(QQ*param[3]))*sum(log(lamt*obs_t)))-((QQ^(-2))*sum((lamt*obs_t)^(QQ/param[3])))-sum(log(obs_t))+ 
sum(log(Igamma(1/(QQ^2),((lamc*cens_t)^(QQ/param[3]))/(QQ^2), lower=F)))-
(length(cens_t)*log(gamma(1/(QQ^2)))) 
return(l) }  
est=maxLik(NR_GenGamma, start=c(0.4, 0.3, 0.6), QQ=q, method="NR") 
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4. For generalized gamma distribution 

Complex_GenGamma=function (n, lam_c, lam_t, sig, q, pt, pc, m){ 
b0_est=rep(NA, m) 
b1_est=rep(NA, m) 
sig_est=rep(NA, m) 
Q_est=rep(NA, m) 
sd_b0=rep(NA, m) 
sd_b1=rep(NA, m) 
sd_sig=rep(NA, m) 
sd_Q=rep(NA, m) 
temp_b0=rep(NA, m) 
temp_b1=rep(NA, m) 
temp_sig=rep(NA, m) 
temp_Q=rep(NA, m) 
L_b0_95=rep(NA, m) 
U_b0_95=rep(NA, m) 
L_b1_95=rep(NA, m) 
U_b1_95=rep(NA, m) 
L_sig_95=rep(NA, m) 
U_sig_95=rep(NA, m) 
L_Q_95=rep(NA, m) 
U_Q_95=rep(NA, m) 
L_b0_90=rep(NA, m) 
U_b0_90=rep(NA, m) 
L_b1_90=rep(NA, m) 
U_b1_90=rep(NA, m) 
L_sig_90=rep(NA, m) 
U_sig_90=rep(NA, m) 
L_Q_90=rep(NA, m) 
U_Q_90=rep(NA, m) 
count_b0_95=0 
count_b1_95=0 
count_sig_95=0 
count_Q_95=0 
count_b0_90=0 
count_b1_90=0 
count_sig_90=0 
count_Q_90=0 
for (r in 1:m) { 
data=data_GenGamma(n, lam_c, lam_t, sig, q, pt, pc) 
data_obs=data[data$d==1,] 
data_cens=data[data$d==0,] 
obs_t=data_obs$T 
obs_x=data_obs$x 
cens_t=data_cens$T 
cens_x=data_cens$x 
NR_GenGamma=function(param=c(beta0,beta1,sigma, Q)) { 
lamt=exp(param[1]+(param[2]*obs_x)) 
lamc=exp(param[1]+(param[2]*cens_x)) 
l = (length(obs_t)*(log(param[4])-log(param[3])-2*(param[4]^(-2))*log(param[4])))-
(length(obs_t)*log(gamma(param[4]^(-2))))+ 
((1/(param[4]*param[3]))*sum(log(lamt*obs_t)))-((param[4]^(-2))*sum((lamt*obs_t)^(param[4]/param[3])))-
sum(log(obs_t))+ 
sum(log(Igamma(1/(param[4]^2),((lamc*cens_t)^(param[4]/param[3]))/(param[4]^2), lower=F)))-
(length(cens_t)*log(gamma(1/(param[4]^2)))) 
return(l) }  
est=maxLik(NR_GenGamma, start=c(0.4, 0.3, 0.6, 0.6), method="NR") 
b0_est[r]=coef(est)[1] 
b1_est[r]=coef(est)[2] 
sig_est[r]=coef(est)[3] 
Q_est[r]=coef(est)[4] 
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sd_b0[r]=stdEr(est)[1] 
sd_b1[r]=stdEr(est)[2] 
sd_sig[r]=stdEr(est)[3] 
sd_Q[r]=stdEr(est)[4] 
temp_b0[r]=b0_est[r]-log(lam_c) 
temp_b1[r]=b1_est[r]-(log(lam_t)-log(lam_c)) 
temp_sig[r]=sig_est[r]-sig 
temp_Q[r]=Q_est[r]-q 
L_b0_95[r]=b0_est[r]-1.96*sd_b0[r] 
U_b0_95[r]=b0_est[r]+1.96*sd_b0[r] 
L_b1_95[r]=b1_est[r]-1.96*sd_b1[r] 
U_b1_95[r]=b1_est[r]+1.96*sd_b1[r] 
L_sig_95[r]=sig_est[r]-1.96*sd_sig[r] 
U_sig_95[r]=sig_est[r]+1.96*sd_sig[r] 
L_Q_95[r]=Q_est[r]-1.96*sd_Q[r] 
U_Q_95[r]=Q_est[r]+1.96*sd_Q[r] 
L_b0_90[r]=b0_est[r]-1.645*sd_b0[r] 
U_b0_90[r]=b0_est[r]+1.645*sd_b0[r] 
L_b1_90[r]=b1_est[r]-1.645*sd_b1[r] 
U_b1_90[r]=b1_est[r]+1.645*sd_b1[r] 
L_sig_90[r]=sig_est[r]-1.645*sd_sig[r] 
U_sig_90[r]=sig_est[r]+1.645*sd_sig[r] 
L_Q_90[r]=Q_est[r]-1.645*sd_Q[r] 
U_Q_90[r]=Q_est[r]+1.645*sd_Q[r] 
if ( (L_b0_95[r]<log(lam_c)) & (log(lam_c)<U_b0_95[r]) ){ 
count_b0_95=count_b0_95+1 } 
if ( (L_b1_95[r]<(log(lam_t)-log(lam_c))) & ((log(lam_t)-log(lam_c))<U_b0_95[r]) ){ 
count_b1_95=count_b1_95+1 } 
if ( (L_sig_95[r]<sig) & (sig<U_sig_95[r]) ){  
count_sig_95=count_sig_95+1 } 
if ( (L_Q_95[r]<q) & (q<U_Q_95[r]) ){ 
count_Q_95=count_Q_95+1 } 
if ( (L_b0_90[r]<log(lam_c)) & (log(lam_c)<U_b0_90[r]) ){ 
count_b0_90=count_b0_90+1 } 
if ( (L_b1_90[r]<(log(lam_t)-log(lam_c))) & ((log(lam_t)-log(lam_c))<U_b0_90[r]) ){ 
count_b1_90=count_b1_90+1 } 
if ( (L_sig_90[r]<sig) & (sig<U_sig_90[r]) ){ 
count_sig_90=count_sig_90+1 } 
if ( (L_Q_90[r]<q) & (q<U_Q_90[r]) ){ 
count_Q_90=count_Q_90+1 } }####end of for 
ave_b0=sum(b0_est)/m 
ave_b1=sum(b1_est)/m 
ave_sig=sum(sig_est)/m 
ave_Q=sum(Q_est)/m 
Rmse_b0=sqrt((1/(m-1))*sum((temp_b0)^2)) 
Rmse_b1=sqrt((1/(m-1))*sum((temp_b1)^2)) 
Rmse_sig=sqrt((1/(m-1))*sum((temp_sig)^2)) 
Rmse_Q=sqrt((1/(m-1))*sum((temp_Q)^2)) 
bias_b0=sum(temp_b0)/m 
bias_b1=sum(temp_b1)/m 
bias_sig=sum(temp_sig)/m 
bias_Q=sum(temp_Q)/m 
cp_b0_95=count_b0_95/m 
cp_b1_95=count_b1_95/m 
cp_sig_95=count_sig_95/m 
cp_Q_95=count_Q_95/m 
cp_b0_90=count_b0_90/m 
cp_b1_90=count_b1_90/m 
cp_sig_90=count_sig_90/m 
cp_Q_90=count_Q_90/m 
ave_sd_b0=(1/m)*(sum(sd_b0)) 
ave_sd_b1=(1/m)*(sum(sd_b1)) 
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ave_sd_sig=(1/m)*(sum(sd_sig)) 
ave_sd_Q=(1/m)*(sum(sd_Q)) 
return(c(ave_b0, ave_b1, ave_sig, ave_Q, bias_b0, bias_b1, bias_sig, bias_Q, Rmse_b0, Rmse_b1, Rmse_sig, 
Rmse_Q, cp_b0_95, cp_b1_95, cp_sig_95, cp_Q_95, cp_b0_90, cp_b1_90, cp_sig_90, cp_Q_90, ave_sd_b0, 
ave_sd_b1, ave_sd_sig, ave_sd_Q)) }# end of function complex_GenGamma 
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Appendix A III. R codes for model discrimination 

1. Likelihood ratio test 

Likelihood_Wei=function(n, lam_c, lam_t, sig, q, pt, pc, m) { 
L_Wei=rep(NA, m) 
L_LN=rep(NA, m)  
L_Gamma=rep(NA, m) 
L_GenGamma=rep(NA, m) 
Teststat_Wei=rep(NA, m) 
Teststat_LN=rep(NA, m) 
Teststat_Gamma=rep(NA, m) 
P_Wei=rep(NA, m) 
P_LN=rep(NA, m) 
P_Gamma=rep(NA, m) 
count_Wei=0 
count_LN=0 
count_Gamma=0 
for (r in 1:m) { 
data=data_Wei(n, lam_c, lam_t, sig, pt, pc) 
data_obs=data[data$d==1,] 
data_cens=data[data$d==0,] 
obs_t=data_obs$T 
obs_x=data_obs$x 
cens_t=data_cens$T 
cens_x=data_cens$x 
print(r) 
NR_Wei=function(param=c(beta0,beta1,sigma)){ 
(-1)*(((1/param[3])*((sum(param[1]+(param[2]*obs_x)))+(sum(log(obs_t)))))-
sum((obs_t*exp(param[1]+(param[2]*obs_x)))^(1/param[3]))-sum(log(obs_t*param[3]))- 
sum((cens_t*exp(param[1]+(param[2]*cens_x)))^(1/param[3]))) }#estimation function for test 
est_Wei=optim(par=c(0.35, 0.25, 0.4), fn=NR_Wei, method="Nelder-Mead") 
L_Wei[r]=(-1)*est_Wei$value 
NR_LN=function(param=c(beta0,beta1,sigma)){ 
(-1)*((-1)*(sum(log(sqrt(2*pi)*param[3]*obs_t)))-
(1/(2*(param[3]^2)))*(sum((param[1]+param[2]*obs_x+log(obs_t))^2))+ 
(sum(log(1-pnorm((param[1]+param[2]*cens_x+log(cens_t))/param[3]))))) }#estimation function for test 
est_LN=optim(par=c(0.35,0.25,0.4), fn=NR_LN, method="Nelder-Mead") 
L_LN[r]=(-1)*est_LN$value 
NR_Gamma=function(param=c(beta0,beta1,sigma), QQ) { 
lamt=exp(param[1]+(param[2]*obs_x)) 
lamc=exp(param[1]+(param[2]*cens_x)) 
l = (-1)*((length(obs_t)*(log(QQ)-log(param[3])-2*(QQ^(-2))*log(QQ)))-(length(obs_t)*log(gamma(QQ^(-2))))+ 
((1/(QQ*param[3]))*sum(log(lamt*obs_t)))-((QQ^(-2))*sum((lamt*obs_t)^(QQ/param[3])))-sum(log(obs_t))+ 
sum(log(Igamma(1/(QQ^2),((lamc*cens_t)^(QQ/param[3]))/(QQ^2), lower=F)))-
(length(cens_t)*log(gamma(1/(QQ^2))))) 
return(l) }  
est_Gamma=optim(par=c(0.35, 0.25, 0.4), QQ=sig, fn=NR_Gamma, method="Nelder-Mead") 
L_Gamma[r]=(-1)*est_Gamma$value 
NR_GenGamma=function(param=c(beta0,beta1,sigma, Q)) { 
lamt=exp(param[1]+(param[2]*obs_x)) 
lamc=exp(param[1]+(param[2]*cens_x)) 
l = (-1)*((length(obs_t)*(log(param[4])-log(param[3])-2*(param[4]^(-2))*log(param[4])))-
(length(obs_t)*log(gamma(param[4]^(-2))))+ 
((1/(param[4]*param[3]))*sum(log(lamt*obs_t)))-((param[4]^(-2))*sum((lamt*obs_t)^(param[4]/param[3])))-
sum(log(obs_t))+ 
sum(log(Igamma(1/(param[4]^2),((lamc*cens_t)^(param[4]/param[3]))/(param[4]^2), lower=F)))-
(length(cens_t)*log(gamma(1/(param[4]^2))))) 
return(l) }  
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est_GenGamma=optim(par=c(0.35, 0.25, 0.4, 0.1), fn=NR_GenGamma, method="Nelder-Mead") 
L_GenGamma[r]=(-1)*est_GenGamma$value 
Teststat_Wei[r]=(-2)*(L_Wei[r]-L_GenGamma[r]) 
Teststat_LN[r]=(-2)*(L_LN[r]-L_GenGamma[r]) 
Teststat_Gamma[r]=(-2)*(L_Gamma[r]-L_GenGamma[r]) 
P_Wei[r]=pchisq(Teststat_Wei[r], lower.tail=FALSE, df=1) 
P_LN[r]=1/2-(1/2)*pchisq(Teststat_LN[r], lower.tail=TRUE, df=1) 
P_Gamma[r]=pchisq(Teststat_Gamma[r], lower.tail=FALSE, df=1) 
if (P_Wei[r]<0.05) { 
count_Wei=count_Wei+1 }#end of if 
if (P_LN[r]<0.05) { 
count_LN=count_LN+1 }#end of if 
if (P_Gamma[r]<0.05) { 
count_Gamma=count_Gamma+1 }#end of if 
prop_Wei=count_Wei/m 
prop_LN=count_LN/m 
prop_Gamma=count_Gamma/m }##end of for 
return(c(prop_Wei, prop_LN, prop_Gamma)) }#end of the function 
f=Likelihood_Wei(200, 1.5, 2, 0.5, 0.7, 0.3, 0.2, 100) 
 

2. Information-based criteria 

Choose_Wei=function (n, lam_c, lam_t, sig, pt, pc, m){ 
L_Wei=rep(NA, m) 
AIC_Wei=rep(NA, m) 
BIC_Wei=rep(NA, m) 
count_Wei_AIC=0 
count_Wei_BIC=0 
L_Lognormal=rep(NA, m) 
AIC_Lognormal=rep(NA, m) 
BIC_Lognormal=rep(NA, m) 
count_Lognormal_AIC=0 
count_Lognormal_BIC=0 
L_Gamma=rep(NA, m) 
AIC_Gamma=rep(NA, m) 
BIC_Gamma=rep(NA, m) 
count_Gamma_AIC=0 
count_Gamma_BIC=0 
for (r in 1:m) { 
data=data_Wei(n, lam_c, lam_t, sig, pt, pc) 
data_obs=data[data$d==1,] 
data_cens=data[data$d==0,] 
obs_t=data_obs$T 
obs_x=data_obs$x 
cens_t=data_cens$T 
cens_x=data_cens$x 
NR_Wei=function(param=c(beta0,beta1,sigma)){ 
((1/param[3])*((sum(param[1]+(param[2]*obs_x)))+(sum(log(obs_t)))))-
sum((obs_t*exp(param[1]+(param[2]*obs_x)))^(1/param[3]))-sum(log(obs_t*param[3]))- 
sum((cens_t*exp(param[1]+(param[2]*cens_x)))^(1/param[3])) }#estimation function for test  
est_Wei=maxLik(NR_Wei,start=c(0.35,0.25,0.4), method="NR") 
L_Wei[r]=est_Wei$maximum 
AIC_Wei[r]=(-2)*L_Wei[r]+2*3 
BIC_Wei[r]=(-2)*L_Wei[r]+3*log(n) 
NR_Lognormal=function(param=c(beta0,beta1,sigma))   { 
(-1)*(sum(log(sqrt(2*pi)*param[3]*obs_t)))-(1/(2*(param[3]^2)))*(sum((param[1]+param[2]*obs_x+log(obs_t))^2)) 
+(sum(log(1-pnorm((param[1]+param[2]*cens_x+log(cens_t))/param[3])))) } 
est_Lognormal=maxLik(NR_Lognormal,start=c(0.35,0.25,0.4), method="NR") 
L_Lognormal[r]=est_Lognormal$maximum 
AIC_Lognormal[r]=(-2)*L_Lognormal[r]+2*3 
BIC_Lognormal[r]=(-2)*L_Lognormal[r]+3*log(n) 
NR_GenGamma=function(param=c(beta0,beta1,sigma), QQ) { 
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lamt=exp(param[1]+(param[2]*obs_x)) 
lamc=exp(param[1]+(param[2]*cens_x)) 
l = (length(obs_t)*(log(QQ)-log(param[3])-2*(QQ^(-2))*log(QQ)))-(length(obs_t)*log(gamma(QQ^(-2))))+ 
((1/(QQ*param[3]))*sum(log(lamt*obs_t)))-((QQ^(-2))*sum((lamt*obs_t)^(QQ/param[3])))-sum(log(obs_t))+ 
sum(log(Igamma(1/(QQ^2),((lamc*cens_t)^(QQ/param[3]))/(QQ^2), lower=F)))-
(length(cens_t)*log(gamma(1/(QQ^2)))) 
return(l) }  
est_Gamma=maxLik(NR_GenGamma, start=c(0.35, 0.25, 0.4), QQ=sig, method="NR") 
L_Gamma[r]=est_Gamma$maximum 
AIC_Gamma[r]=(-2)*L_Gamma[r]+2*3 
BIC_Gamma[r]=(-2)*L_Gamma[r]+3*log(n) 
if ((AIC_Wei[r]<AIC_Lognormal[r]) & (AIC_Wei[r]<AIC_Gamma[r])) { 
 count_Wei_AIC=count_Wei_AIC+1 } 
if ((AIC_Lognormal[r]<AIC_Wei[r]) & (AIC_Lognormal[r]<AIC_Gamma[r])) { 
 count_Lognormal_AIC=count_Lognormal_AIC+1 } 
if ((AIC_Gamma[r]<AIC_Wei[r]) & (AIC_Gamma[r]<AIC_Lognormal[r])) { 
 count_Gamma_AIC=count_Gamma_AIC+1 } 
if ((BIC_Wei[r]<BIC_Lognormal[r]) & (BIC_Wei[r]<BIC_Gamma[r])) { 
 count_Wei_BIC=count_Wei_BIC+1} 
if ((BIC_Lognormal[r]<BIC_Wei[r]) & (BIC_Lognormal[r]<BIC_Gamma[r])) { 
 count_Lognormal_BIC=count_Lognormal_BIC+1} 
if ((BIC_Gamma[r]<BIC_Wei[r]) & (BIC_Gamma[r]<BIC_Lognormal[r])) { 
 count_Gamma_BIC=count_Gamma_BIC+1} }#end of for 
return(c(count_Wei_AIC, count_Lognormal_AIC, count_Gamma_AIC, count_Wei_BIC, count_Lognormal_BIC, 
count_Gamma_BIC)) }#end of the code 
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