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Abstract 

 
INFLUENCE OF RELATIVE DENSITY AND MICROSTRUCTURAL ANISOTROPY 

ON THE GLOBAL ELASTIC PROPERTIES OF CELLULAR STRUCTURES 

 

Justin Compton, M.S. 

 

The University of Texas at Arlington, 2017 

 

Supervising Professor: Ashfaq Adnan 

The favorable strength-to-weight ratio of cellular solids makes them ideal for 

structural applications. With the advent of additive manufacturing, the fabrication of 

complex cellular structures is becoming a reality. It is therefore necessary to understand 

the mechanical properties of cellular structures. The global mechanical properties of 

cellular structures are governed by geometry and therefore, differ from the mechanical 

properties of the base material from which they are constructed. In this study, finite 

element models are developed to explore the effective elastic properties of honeycomb 

structures for isotropic and anisotropic microstructural material properties. Finite element 

models are generated for regular, hexagonal honeycombs and irregular, Voronoi 

honeycombs to study the relationship between cell regularity and microstructural 

anisotropy. Lastly, the finite element models vary in relative density from purely solid to 

purely cellular to better understand the ranges of relative densities where a structure 

behaves as a cellular structure versus a porous solid. The results of the finite element 

analysis are compared to the theoretical solutions for regular, hexagonal honeycombs as 

well as the theoretical solutions for porous media. A recommendation is made to the 

theoretical analysis of honeycombs to improve correlation with the finite element results.   



v 

Table of Contents 

Acknowledgements .............................................................................................................iii 

Abstract .............................................................................................................................. iv 

List of Illustrations ..............................................................................................................vii 

List of Tables ....................................................................................................................... x 

Chapter 1 Introduction......................................................................................................... 1 

Chapter 2 Modeling Voronoi Honeycombs ......................................................................... 4 

2.1 Geometric Methods .................................................................................................. 5 

2.1.1 Simple Sequential Inhibition Process ................................................................ 5 

2.1.2 Voronoi Diagram................................................................................................ 7 

2.2 Geometric Development ......................................................................................... 10 

2.3 Finite Element Modeling ......................................................................................... 20 

2.3.1 Isotropic Microstructural Properties ................................................................. 20 

2.3.2 Anisotropic Microstructural Properties ............................................................ 25 

Chapter 3 Isotropic Analysis ............................................................................................. 28 

3.1 Theoretical Analysis of Hexagonal Honeycombs ................................................... 28 

3.2 Theoretical Analysis of Porous Media .................................................................... 30 

3.3 Finite Element Analysis Results ............................................................................. 32 

Chapter 4 Anisotropic Analysis ......................................................................................... 46 

4.1 Finite Element Analysis Results ............................................................................. 46 

Chapter 5 Conclusion ........................................................................................................ 56 

Appendix A MATLAB
® 

 and NX SNAP™ Software Codes ................................................ 58 

Appendix B Results ........................................................................................................... 63 

Appendix C Nomenclature ................................................................................................ 67 

References ........................................................................................................................ 70 



vi 

Biographical Information ................................................................................................... 76 

  



vii 

List of Illustrations 

Figure 2-1  (a) Core of an aluminum foam sandwich [32]; (b) polygonal representation of 

cell walls .............................................................................................................................. 4 

Figure 2-2  Planar point patterns for n = 100 in a unit square with inhibition distance 

(a) d = 0, (b) d = 0.04, (c) d = 0.08 (recreated from Gálvez [16]) ....................................... 6 

Figure 2-3  Maximum packing density of (a) pipes [41], (b) wire bundles [15] ................... 6 

Figure 2-4  Voronoi diagram (solid black lines), Delaunay tessellation (dashed blue lines), 

and circular restraint (solid red circle) ................................................................................. 9 

Figure 2-5  Natural variations observed in the core of an aluminum foam sandwich [32] 10 

Figure 2-6  Nuclei pattern with a regularity of (a) δ = 1.0 and (b) δ = 0.75 ....................... 12 

Figure 2-7  Voronoi honeycomb with a regularity of (a) δ = 1.0 and (b) δ = 0.75 ............. 12 

Figure 2-8  Probability p(S) of finding cells with side S ..................................................... 13 

Figure 2-9  Unbounded Voronoi cells ............................................................................... 14 

Figure 2-10  Varying relative density of honeycomb with regularity δ = 1.0. (a) ρ̅ = 0.991 

(b) ρ̅ = 0.963 (c) ρ̅ = 0.916 (d) ρ̅ = 0.850 (e) ρ̅ = 0.766 (f) ρ̅ = 0.662 (g) ρ̅ =0.538 

(h) ρ̅ = 0.395 (i) ρ̅ = 0.231 (j) ρ̅ = 0.048 ............................................................................. 18 

Figure 2-11  Varying relative density of a honeycomb with regularity δ = 0.75. 

(a) ρ̅ = 0.996 (b) ρ̅ = 0.981 (c) ρ̅ = 0.942 (d) ρ̅ = 0.879 (e) ρ̅ = 0.791 (f) ρ̅ = 0.686 

(g) ρ̅ =0.554 (h) ρ̅ = 0.405 (i) ρ̅ = 0.239 (j) ρ̅ = 0.049 ........................................................ 20 

Figure 2-12  Cell walls discretized with 2D plane strain elements .................................... 21 

Figure 2-13  Model setup for calculation of elastic modulus and Poisson’s ratio for 

x-direction loading ............................................................................................................. 22 



viii 

Figure 2-14  Model setup for calculation of elastic modulus and Poisson’s ratio for 

y-direction loading ............................................................................................................. 23 

Figure 2-15  Model setup for calculation of shear modulus for x-direction loading .......... 24 

Figure 2-16  Model setup for calculation of shear modulus for y-direction loading .......... 24 

Figure 2-17  Local coordinate system definition ............................................................... 25 

Figure 3-1  Hexagonal unit cell ......................................................................................... 29 

Figure 3-2  Relative moduli and Poisson’s ratio vs relative density .................................. 33 

Figure 3-3  Relative Young’s modulus vs relative density with regularity (a) δ = 1 and 

(b) δ = 0.75 ........................................................................................................................ 35 

Figure 3-4  Analysis dimensions (a) FEM, (b) Gibson’s formulation ................................ 37 

Figure 3-5  Updated Relative Young’s modulus vs relative density with regularity (a) δ = 1 

and (b) δ = 0.75 ................................................................................................................. 38 

Figure 3-6  Relative shear modulus vs relative density with regularity (a) δ = 1 and 

(b) δ = 0.75 ........................................................................................................................ 39 

Figure 3-7  Poisson’s ratio vs relative density with regularity (a) δ = 1 and (b) δ = 0.75 .. 40 

Figure 3-8  Comparison of quadrilateral plane strain elements and beam elements on the 

effective mechanical properties of regular, hexagonal honeycombs: (a) relative elastic 

modulus full scale and (b) magnified scale, (c) relative shear modulus full scale and 

(d) magnified scale, and (e) Poisson’s ratio full scale and (f) magnified scale. ................ 43 

Figure 4-1  Relative Young’s modulus vs relative density for a regularity of δ = 1: (a) 𝐸̅𝑥 

full scale and (b) 𝐸̅𝑥 magnified scale, and (c) 𝐸̅𝑦 full scale and (d) 𝐸̅𝑦 magnified scale .... 47 

Figure 4-2  Relative shear modulus vs relative density for a regularity of δ = 1: (a) 𝐺̅𝑥𝑦 full 

scale and (b) 𝐺̅𝑥𝑦 magnified scale, and (c) 𝐺̅𝑦𝑥 full scale and (d) 𝐺̅𝑦𝑥 magnified scale ..... 48 

Figure 4-3  Poisson’s ratio vs relative density for a regularity of δ = 1: (a) 𝜈𝑥𝑦
∗  full scale 

and (b) 𝜈𝑥𝑦
∗  magnified scale, and (c) 𝜈𝑦𝑥

∗  full scale and (d) 𝜈𝑦𝑥
∗  magnified scale ................ 49 



ix 

Figure 4-4  Relative Young’s modulus vs relative density for a regularity of δ = 0.75: 

(a) 𝐸̅𝑥 full scale and (b) 𝐸̅𝑥 magnified scale, and (c) 𝐸̅𝑦 full scale and (d) 𝐸̅𝑦 magnified 

scale .................................................................................................................................. 50 

Figure 4-5  Relative shear modulus vs relative density for a regularity of δ = 0.75: 

(a) 𝐺̅𝑥𝑦 full scale and (b) 𝐺̅𝑥𝑦 magnified scale, and (c) 𝐺̅𝑦𝑥 full scale and (d) 𝐺̅𝑦𝑥 magnified 

scale .................................................................................................................................. 51 

Figure 4-6  Poisson’s ratio vs relative density for a regularity of δ = 0.75: (a) 𝜈𝑥𝑦
∗  full scale 

and (b) 𝜈𝑥𝑦
∗  magnified scale, and (c) 𝜈𝑦𝑥

∗  full scale and (d) 𝜈𝑦𝑥
∗  magnified scale ................ 52 

  



x 

List of Tables 

Table 2-1  Relative densities for honeycomb with regularity δ = 1.0 ................................ 16 

Table 2-2  Relative densities for honeycomb with regularity δ = 0.75 .............................. 18 

Table 2-3  Material properties of 7075-T6 Bare Aluminum [1] .......................................... 21 

Table 2-4  Anisotropic material properties ........................................................................ 27 

Table B-1  Isotropic results for honeycomb with regularity δ = 1.0 ................................... 64 

Table B-2  Anisotropic Case 1 results for honeycomb with regularity δ = 1.0 .................. 64 

Table B-3  Anisotropic Case 2 results for honeycomb with regularity δ = 1.0 .................. 64 

Table B-4  Isotropic results for honeycomb with regularity δ = 0.75 ................................. 65 

Table B-5  Anisotropic Case 1 results for honeycomb with regularity δ = 0.75 ................ 65 

Table B-6  Anisotropic Case 2 results for honeycomb with regularity δ = 0.75 ................ 65 

Table B-7  Isotropic results for honeycomb with regularity δ = 1.0 using Timoshenko 

beam elements .................................................................................................................. 66 

 



1 

Chapter 1  

Introduction 

 

The favorable strength-to-weight ratio of cellular solids has captured the attention 

of engineers and manufacturers. In the aircraft industry, weight is directly proportional to 

fuel consumption, which is one of the largest operating expenses for aircraft [14]. The 

weight savings potential of cellular solids is already being utilized. Sandwich honeycomb 

panels are widely used in floor panels, sidewall panels, and equipment support structure. 

As advancements in manufacturing technology continue to unfold, industry leaders are 

expanding beyond honeycomb panels and are developing more complex cellular 

structures. For instance, The Boeing Company recently debuted a microlattice structure 

that they claim is the lightest metal ever made [30]. Not long ago, the fabrication of 

complex cellular solids was infeasible. Today, the advent of additive manufacturing 

allows designers to construct such geometries. With the implementation of cellular 

structures gaining momentum, it is necessary to understand their behavior and 

mechanical properties.  

The global mechanical properties of cellular structures are governed by geometry 

and therefore, differ from the mechanical properties of the base material from which they 

are constructed. Their unique properties have been heavily researched and the literature 

is vast. With geometry playing a key role in the global mechanical properties, the 

influence of cellular geometry has been heavily studied. Previous research focuses on 

periodic unit cells of various geometries and the influence of cell size (i.e. relative density 

of the specimen). Dai et al. [9] studied the effective Young’s modulus for periodic unit 

cells with rectangular, triangular, hexagonal, and trihexagonal geometries, each with 

varying cell sizes. Much more complex geometries have been studied including 
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hierarchical honeycomb structures by Gandhi [18] and auxetic chiral structures by 

Joshi [28]. Irregular Voronoi honeycombs are a widely accepted means of generalizing 

the random and complex geometry of cellular solids found in nature, such as plant cells 

and trabecular bone. Gibson et al. [19], Silva et al. [38], and Zhu et al. [47] have 

extensively studied the role of regularity and relative density on the effective mechanical 

properties of Voronoi honeycombs. 

A sector of the literature focuses on the macroscopic anisotropy of regular, 

hexagonal honeycombs and irregular, Voronoi honeycombs. It is interesting to note that 

the random cellular network of irregular honeycombs does not imply anisotropy. 

According to Gibson and Ashby [19], “Macroscopic anisotropy can arise from anything 

that, when averaged over a large number of cells, destroys hexagonal symmetry.” They 

list several contributors to macroscopic anisotropy such as: missing or broken cell walls, 

cell walls of unequal thickness, the orientation of cell walls aligning toward a preferred 

directions, and cell elongation. Each of the aforementioned sources of anisotropy has 

received some attention. Chen et al. [6] studied the effects of cell wall waviness, non-

uniform wall thickness, fractured cell walls, missing cell walls, and cell wall misalignments 

for biaxial loading scenarios. Silva and Gibson [37] investigated the effects of missing cell 

walls on the compressive strength for both regular and irregular honeycombs. Silva 

et al. [38] studied the effects of cell elongation. 

The macroscopic anisotropy of honeycombs has been limited to the study of 

geometry and has not focused on the anisotropic material properties of the solid material. 

Cellular structures are typically formed via a foaming process where gas bubbles 

nucleate and grow to form a random network of voids. The disadvantage to this method 

is that it can only create random Voronoi structures. Conversely, additive manufacturing 

allows the manufacturer to design and fabricate specific geometric networks. Objects 
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fabricated using additive manufacturing processes are inherently anisotropic. Complex 

thermal cycles of the layer-by-layer stack up, porosity, and lack of fusion are just a few of 

the variables that produce anisotropic microstructures. Analyses of the mechanical 

properties of materials fabricated by direct energy deposition processes, both powder 

and wire fed, have shown that the tensile strengths along the travel direction can be up to 

20 percent higher than the tensile strength along the build direction [35, 43, 44]. 

Therefore, it is expected that microstructural anisotropy impacts the effective mechanical 

properties of cellular structures.  

In this study, Finite Element Models (FEMs) are developed to explore the 

effective mechanical properties of honeycomb structures for isotropic and anisotropic 

microstructural material properties. FEMs are generated for regular, hexagonal 

honeycombs and irregular, Voronoi honeycombs to study the relationship between cell 

regularity and microstructural anisotropy. Lastly, the FEMs vary in relative density from 

purely solid to purely cellular to better understand the ranges of relative densities where a 

structure behaves as a cellular structure versus a porous solid.  
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Chapter 2  

Modeling Voronoi Honeycombs 

 

In addition to additive manufacturing processes, cellular solids can be created by 

the nucleation and growth of cells. If the cells nucleate randomly and simultaneously in 

two dimensions, and grow radially at the same linear rate, then the resulting structure is a 

random Voronoi honeycomb (random Voronoi foam for three dimensions) [38]. According 

to Gibson and Ashby [19], several types of metal foams are manufactured via a foaming 

process where a supersaturated gas separates from a liquid. The gas initially takes the 

form of spherical bubbles. As the spheres grow, they interact with neighboring spheres to 

form polyhedral cells. An example of such structure is depicted in Figure 2-1(a) for the 

cross-sectional view of the core of an aluminum foam sandwich. The figure is modified in 

Figure 2-1(b) to illustrate the polygonal representation of cells.  

        
(a)                                                              (b) 

Figure 2-1  (a) Core of an aluminum foam sandwich [32]; (b) polygonal representation of 
cell walls 

The initial bubbles can be considered as randomly generated points in space. In 

probability theory, there exist numerous methods for the generation of spatial point 

arrangements. For the present thesis, points are randomly produced via the Simple 

Sequential Inhibition (SSI) process.  
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2.1 Geometric Methods 

 
2.1.1 Simple Sequential Inhibition Process 

The Simple Sequential Inhibition (SSI) process belongs to a family of models 

used in packing or space filling problems [5]. The SSI process states that for a finite area 

A, disks of unit diameter d are sequentially generated at random within the prescribed 

boundary [12]. Each new disk is uniformly generated independent of all preceding disks. 

The SSI process requires that no two disks overlap; thus, if two disks overlap, then the 

newly created disk is rejected and another random disk is generated. The procedure 

terminates when the desired number n of disks has been generated or when no further 

disks can be added. The final distribution of points is defined by the disk centers.  

The SSI process employed in this thesis slightly differs from the method 

previously described in that the entire disk need not fit within the prescribed boundary. It 

is only necessary that the disk center is within the prescribed boundary. As a result, the 

disk center may be located along a boundary.  

The disk diameter d is commonly referred to as the inhibition distance since it 

restricts the location of subsequent disks (i.e. points). When the inhibition distance is 

relatively small, a highly irregular arrangement of points ensues. As the inhibition 

distance increases, the arrangement of points becomes more regular. This trend was 

demonstrated by Gálvez [16] who generated 100 points within a one unit square area 

with inhibition distances of d = 0, d = 0.05, and d = 0.1. Gálvez’s demonstration is 

recreated in Figure 2-2 with inhibition distances of (a) d = 0, (b) d = 0.04, and 

(c) d = 0.08.  
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(a)                                           (b)                                         (c) 

Figure 2-2  Planar point patterns for n = 100 in a unit square with inhibition distance 
(a) d = 0, (b) d = 0.04, (c) d = 0.08 (recreated from Gálvez [16]) 

The red circles represent the disk perimeters and the black points the disk centers. 

Figure 2-2 reveals that packing density η is the essential parameter of the SSI process,  

 𝜂 =
nπd2

4A
 (1) 

which is the fraction of finite area A covered by quantity n non-overlapping disks of 

diameter d [11, 12]. As the disk diameter increases, the placement of disks becomes 

increasingly restrictive. As a result, the packing of disks is more orderly. It is apparent 

that there is some packing arrangement that produces a maximum packing density. Such 

an arrangement occurs when each disk center is located at a distance equal to its 

diameter d from its neighbors. Illustrated in Figure 2-3, common examples of this stacking 

sequence include staggered stacking of pipe for efficient storage and transport and 

staggered bundling of wires for wire routing applications. 

                
(a)                                                        (b) 

Figure 2-3  Maximum packing density of (a) pipes [41], (b) wire bundles [15]  
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Figure 2-3 clearly shows that the maximum packing density occurs when each 

disk is surround by six other disks, i.e., when the disk centers are arranged in a 

hexagonal lattice. The hexagonal lattice arrangement has a packing density of 

 𝜂 =
π

2(3)1 2⁄  (2) 

With the finite area A and the number of disks n known, the maximum distance between 

two adjacent points dmax is derived by substituting equation (2) into equation (1). 

  𝑑𝑚𝑎𝑥 = (
2𝐴

𝑛(3)1 2⁄ )
1 2⁄

  (3) 

Zhu [47] affirms that dmax is the maximum disk diameter and that the specified inhibition 

distance d must be less than or equal to dmax. If d is greater than dmax, then it will not be 

possible to place all n disks within the finite area A. Zhu then defines the following 

regularity parameter:  

  𝛿 =
𝑑

𝑑𝑚𝑎𝑥
  (4) 

where δ = 1 (i.e. d = dmax) represents a regular arrangement of points and δ = 0 (i.e. 

d = 0) represents an entirely random arrangement of points.  

 

2.1.2 Voronoi Diagram 

Once the spatial arrangement of points has been defined, a classical Voronoi 

diagram may be constructed. Aurenhammer and Klein [2] have thoroughly defined the 

mathematical properties governing Voronoi diagrams. For convenience, their 

mathematical definition is reiterated here. Let a set S of n points p, q,… be defined in the 

plane. For points p and q belonging to S, the perpendicular bisector of the line segment 

𝑝𝑞 is defined as  

 𝐵(𝑝, 𝑞) = {𝑥 | 𝑑(𝑝, 𝑥) = 𝑑(𝑞, 𝑥)} (5) 
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The perpendicular bisector B(p,q) separates the halfplane containing p 

 𝐷(𝑝, 𝑞) = {𝑥 |𝑑(𝑝, 𝑥) < 𝑑(𝑞, 𝑥)} (6) 

from the halfplane containing q  

 𝐷(𝑞, 𝑝) = {𝑥 |𝑑(𝑞, 𝑥) < 𝑑(𝑝, 𝑥)} (7) 

The Voronoi cell of p with respect to S is then defined as  

𝑉𝑅(𝑝, 𝑆) = ⋂ 𝐷(𝑝, 𝑞)

𝑞∈𝑆,𝑞≠𝑝

                                                  (8) 

Lastly, the Voronoi diagram of S is defined as 

𝑉(𝑆) = ⋃ 𝑉𝑅(𝑝, 𝑆) ∩ 𝑉𝑅(𝑞, 𝑆)

𝑝,𝑞∈𝑆,𝑝≠𝑞

                                        (9) 

 Simply stated, the Voronoi diagram is obtained by constructing the perpendicular 

bisectors of the lines connecting each pair of adjacent points and trimming the bisectors 

where they intersect. Each Voronoi cell is the smallest cell containing the nucleation point 

while bounded by the bisectors (i.e. cell walls) [38, 47].  

The lines connecting each pair of adjacent points are obtained via a Delaunay 

tessellation. The Delaunay tessellation is the process of creating line segments between 

nucleation points with the only requirement being that there exists a circle C that passes 

through the line endpoints while not encompassing any other nucleation point in its 

interior or boundary [2]. Development of the Delaunay tesselation (dashed blue lines) and 

the Voronoi diagram (solid black lines) is illustrated in Figure 2-4. 
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Figure 2-4  Voronoi diagram (solid black lines), Delaunay tessellation (dashed blue lines), 
and circular restraint (solid red circle) 

Figure 2-4 confirms that no additional nucleation point is enclosed by a circle 

circumscribing the endpoints of a Delaunay tessellation. It is also noted that each Voronoi 

cell is the intersection of n-1 halfplanes containing the respective nucleation point [2]. As 

a result, a Voronoi diagram is the decomposition of space into convex regions. 

The Voronoi diagram discussed thus far is termed classical because it is in its 

simplest form. Classical Voronoi diagrams adhere to the assumptions that each cell 

contains its nucleation point and that each bisector contributes to one cell wall. However, 

it is important to acknowledge that these assumptions do not fully capture the true cellular 

geometry. For instance, the foam sandwich core presented in Figure 2-1(a) is revisited in 

Figure 2-5. Studying Figure 2-5 reveals several features that deviate from the classical 

Voronoi diagram such as curved cell walls, voids contained within the cell walls, cell walls 

of variable thickness, and missing cell walls. These natural variations are common results 

of the foaming process. In general, every cell wall has some degree of curvature due to 

the pressure difference between the neighboring cells [19]. Voids within the cell walls (i.e. 

small cells making up the walls of larger cells) are a consequence of growth rates unique 

to each cell. Specifically, cells containing a below average number of cell walls shrink, 

cells with an above average expand, and cells with an average number of sides remain 
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constant [19]. Competitive growth rates, surface tension, and the progressive generation 

of nucleation sites are just a few of the parameters that contribute to variability of cell wall 

thicknesses, as well as the omission of cell walls. 

 

Figure 2-5  Natural variations observed in the core of an aluminum foam sandwich [32] 

These natural variances can be captured by manually assigning wall 

thicknesses, deleting specific cell walls, and by modeling higher-order Voronoi diagrams. 

Higher-order Voronoi diagrams are useful in modeling complex arrangements because 

cells are not required to contain its nucleation point and bisectors are capable of 

producing more than one cell wall [2]. These complex arrangements have received 

attention [6, 21, 37]; however, they are beyond the scope of this thesis. The present 

thesis employs a classical Voronoi diagram with linear cell walls of uniform thickness and 

without any structural defects. 

 
2.2 Geometric Development 

 
The MATLAB

® 
software package is employed for generating random points via 

the SSI process and performing the Voronoi partition. The SSI algorithm provided by 

Martinez and Martinez [31] is leveraged and then expanded upon to include the Voronoi 

partition. The aforementioned algorithm is presented in Appendix A. The algorithm inputs 

Missing 
Cell Wall 

Curved 
Cell Wall Variable 

Cell Wall 
Thickness 

Voids In 
Cell Wall 
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include the boundary vertices rx and ry, the number of points n to be located within the 

boundary, and the inhibition distance d. It is desired that for a perfect arrangement of 

points (i.e. δ = 1, hexagonal honeycomb), that the inhibition distance is equal to 42 units 

(i.e. dmax in equation (4)). This is equivalent to a hexagonal cell height of 42 units. 

Assuming a cell wall thickness of 1, the ratio of cell height to cell wall thickness is 42. 

This ratio is representative of a common honeycomb design manufactured by HEXCEL 

Corporation [25] where the foil thickness is 0.003 inches and the cell height is 0.125 

inches. It is also preferred that the boundary contains a sufficient number of honeycomb 

cells. Onck et al. [34] studied the effects of the specimen size relative to the cell size on 

the elastic and shear moduli of regular, hexagonal honeycombs. Their tests revealed that 

the Young’s modulus for smaller specimens drops significantly and that it converges to 

the bulk modulus for larger specimens. Conversely, the shear modulus peaks for smaller 

specimens, and it converges to the bulk modulus for larger specimens. They concluded 

that a specimen having at least 17 cells along its height and width is sufficient in 

minimizing boundary effects. To satisfy their requirement, and to ensure that the 

specimen is symmetric about the vertical and horizontal centerlines, it is decided that the 

boundary contains 20 rows and 21 columns of honeycomb cells. This equates to a 

specimen roughly 777 units in width, 840 units in height, and accommodating 430 

nucleation points. As Gálvez [16] observes, the probability of generating a perfectly 

regular arrangement of points via the SSI process is extremely small since it requires that 

all points are randomly generated in the precise position of a regular arrangement. 

Therefore, the arrangement of points for δ = 1 is generated by manually locating points at 

a distance of 42 units from its neighbors. For the irregular arrangement, a regularity of 

δ = 0.75 is arbitrarily chosen. Referencing equation (4), this results in an inhibition 

distance of 31.5 units. The point patterns for δ = 1 and δ = 0.75 are shown in Figure 2-6. 
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(a)                                                      (b) 

Figure 2-6  Nuclei pattern with a regularity of (a) δ = 1.0 and (b) δ = 0.75 

As stated in Section 2.1.2, a classical Voronoi diagram is constructed after the 

spatial arrangement of points is defined. The MATLAB
®
 function [v,c]=voronoin(X) is 

used to perform the Delaunay tessellation and construct the Voronoi diagram; where X is 

the nuclei point array input, v is the Voronoi vertice array output, and c is the Voronoi cell 

array output. The Voronoi honeycombs, along with their respective point patterns, for 

δ = 1 and δ = 0.75 are presented in Figure 2-7. 

           
(a)                                                      (b) 

Figure 2-7  Voronoi honeycomb with a regularity of (a) δ = 1.0 and (b) δ = 0.75 
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As expected, introducing irregularity also introduces significant variance in cell 

geometries. For Figure 2-7(b), the area of the largest cell is nearly 3 times that of 

smallest cell. When normalizing the cell areas so that the sum of all cell areas equates to 

1, the standard deviation (i.e. cell dispersion) is 0.155; implying a moderate dispersion of 

cell sizes. However, it is interesting to note that the average cell size is nearly the same 

between both figures. The average cell area in Figure 2-7(a) is roughly 1528 square units 

and the average cell area in Figure 2-7(b) is about 1506 square units; a difference slightly 

over 1%.  

Irregularity also influences the number of edges constituting a cell. For the 

arrangement in Figure 2-7(b), the cells range from 3 sides up to 12 sides. However, six 

sided cells are the most prevalent, as shown in Figure 2-8. 

 

Figure 2-8  Probability p(S) of finding cells with side S 

In addition to the high probability of 6 sided cells, the average number of sides per cell is 

also 6 in accordance with Euler’s law [2, 19].   
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It is interesting to observe the Voronoi cells along the boundary in Figure 2-7. 

The cell walls are forced to terminate at the boundary and the boundary closes off the 

cell. Otherwise, the cell walls would extend to infinity in what is termed an unbounded 

cell. Referencing Section 2.1.2, each Voronoi cell is the intersection of n-1 halfplanes 

containing the respective nucleation point. Investigating the cells along the boundary 

reveals that they lack a sufficient number of halfplanes to close off the cell. This is due to 

the absence of nucleation points beyond the boundary which results in the nucleation 

points near the boundary belonging to halfplanes that extend to infinity. Thus, cell walls 

extend to infinity. In actuality, majority of the cell walls will intersect and close off the cell. 

While the intersection points are not at infinity, they can be located well beyond the 

boundary such that they produce unrealistic cell geometries. An example of unbounded 

cells is provided in Figure 2-9. 

 

Figure 2-9  Unbounded Voronoi cells 

In the above example, the red box denotes the boundary specified for the SSI 

process (reference Section 2.1.1) and the blue box designates the specimen boundary. 

As can be seen, nucleation points do not exist outside the SSI boundary which results in 

Unbounded 
Cells 
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Boundary 

SSI 
Boundary 
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unbounded cells. It is common practice to close off the Voronoi cells by constructing a 

simple closed curved that intersects only the unbounded cell edges [2, 16]. An example 

of such curve is the SSI boundary. Enforcing the SSI boundary to close off the cells 

yields abnormal cell geometries along the boundary. Therefore, it is the practice of the 

present thesis to define the SSI boundary sufficiently beyond the desired specimen 

boundary and then close off the cells with the specimen boundary; thus, achieving more 

realistic cell geometries. In addition to expanding the SSI boundary, the number of 

nucleation points n must be increased so that the density of points remains constant. 

After creating the Voronoi partition in MATLAB
®
, the cell vertices are exported to 

Siemens NX™ for constructing the two-dimensional model geometries. The Siemens 

NX™ software package is a powerful computer-aided design (CAD) software program 

that includes several application programming interfaces (APIs) that allow the user to 

write programs to customize and enhance NX™. Therefore, the repetitive and time-

consuming task of manually creating honeycomb cells via the graphical user interface 

(GUI) is replaced by a simple application. Specifically, the Simple NX Application 

Programming (SNAP™) API is employed to automate the process of generating the 

honeycomb cells. The SNAP™ code imports the cell vertices into Siemens NX™ and 

then proceeds to create line segments between the points. The complete SNAP™ code 

is provided in Appendix A. 

Adding thickness to the line segments, i.e., cell walls, is conveniently achieved 

via the rib feature. Wall thicknesses are derived as a function of cell growth. It was stated 

earlier that the regular hexagonal arrangement has a total cell height 42 units. This is 

composed of an internal cell height hw of 41 units and a wall thickness tw of 1 unit. This 

geometry occurs when the cell is fully developed. To determine the wall thickness when 

the cell is 90% developed, 90% of 41 units is subtracted from the total cell height of 
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42 units. Using this methodology, cell wall thicknesses are calculated for cell growths 

ranging from 10% to 100% in increments of 10. The results are presented in Table 2-1. 

Table 2-1  Relative densities for honeycomb with regularity δ = 1.0 

Percent of Max 
Cell Height 

Cell Height (hw) 
Cell Wall 

Thickness (tw) 

Relative Density 

(ρ̅) for δ = 1.0 

10 4.1 37.9 0.991 

20 8.2 33.8 0.963 

30 12.3 29.7 0.916 

40 16.4 25.6 0.850 

50 20.5 21.5 0.766 

60 24.6 17.4 0.662 

70 28.7 13.3 0.538 

80 32.8 9.2 0.395 

90 36.9 5.1 0.221 

100 41.0 1 0.048 

The relative density 𝜌̅ is the density of the honeycomb ρ* divided by the density 

of the solid ρs of which it is made. For two dimensions, the relative density is equivalent to 

area fraction. Figure 2-10 shows the honeycomb geometries for the relative densities 

listed in Table 2-1. 

           
(a)                                                           (b) 
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(c)                                                           (d) 

           
(e)                                                           (f) 

           
(g)                                                           (h) 
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(i)                                                           (j) 

Figure 2-10  Varying relative density of honeycomb with regularity δ = 1.0. (a) ρ̅ = 0.991 

(b) ρ̅ = 0.963 (c) ρ̅ = 0.916 (d) ρ̅ = 0.850 (e) ρ̅ = 0.766 (f) ρ̅ = 0.662 (g) ρ̅ =0.538 

(h) ρ̅ = 0.395 (i) ρ̅ = 0.231 (j) ρ̅ = 0.048 

The cell wall thicknesses previously calculated for the regular honeycomb are 

applied to the irregular honeycomb. The corresponding relative densities for the irregular 

honeycomb are tabulated in Table 2-2. Similarly, the irregular honeycomb geometries are 

presented in Figure 2-11. 

Table 2-2  Relative densities for honeycomb with regularity δ = 0.75 

Cell Wall 
Thickness (tw) 

Relative Density 

(ρ̅) for δ = 0.75 

37.9 0.996 

33.8 0.981 

29.7 0.942 

25.6 0.879 

21.5 0.791 

17.4 0.686 

13.3 0.554 

9.2 0.405 

5.1 0.239 

1 0.049 
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(a)                                                          (b) 

           
(c)                                                          (d) 

           
(e)                                                           (f) 
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(g)                                                           (h) 

           
(i)                                                           (j) 

Figure 2-11  Varying relative density of a honeycomb with regularity δ = 0.75. 

(a) ρ̅ = 0.996 (b) ρ̅ = 0.981 (c) ρ̅ = 0.942 (d) ρ̅ = 0.879 (e) ρ̅ = 0.791 (f) ρ̅ = 0.686 

(g) ρ̅ =0.554 (h) ρ̅ = 0.405 (i) ρ̅ = 0.239 (j) ρ̅ = 0.049 

 

2.3 Finite Element Modeling 

 
2.3.1 Isotropic Microstructural Properties 

The geometries are then imported from Siemens NX™ to MSC Patran via a 

Parasolid Model Part file (*.x_t). Each specimen is finely meshed via a combination of 

quadrilateral, CQUAD4, and triangular, CTRIA3, isoparametric plane strain elements. 
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Triangular elements are not ideal because their strain matrix is constant. This makes 

them excessively stiff and less accurate than quadrilateral elements [33]. While 

quadrilateral elements are preferred, their sole use is infeasible. The cell walls are 

discretized with at least two rows of quadrilateral elements. However, the complex 

geometry requires the implementation of triangular elements at the cell wall junctions, as 

shown in Figure 2-12 for the irregular honeycomb with relative density of 0.049. 

 

Figure 2-12  Cell walls discretized with 2D plane strain elements 

The use of triangular elements is extremely small. For the honeycomb depicted in 

Figure 2-12, triangular elements constitute less than 0.05% of the elements. Therefore, 

their use has negligible impact on the overall model stiffness. 

The PSHELL property entry is used to define the properties of the 

aforementioned elements [33]. The specimens are modeled using the properties of 

7075-T6 Bare Aluminum which are described in Table 2-3.   

Table 2-3  Material properties of 7075-T6 Bare Aluminum [1] 

Elastic Modulus, Es 
(GPa) 

Shear Modulus, Gs 
(GPa) 

Poisson’s Ratio, νs 
Density, ρs  
(kg / m

3
) 

71.02 26.89 0.33 2800 
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The loads and boundary conditions required to investigate the effective 

mechanical properties of the geometries presented in Figure 2-10 and Figure 2-11 are 

shown in Figure 2-13 through Figure 2-15. The loads and boundary conditions are shown 

for the fully developed hexagonal honeycomb; however, the model setups are applicable 

to all geometries. Figure 2-13 shows the model setup for determining the elastic modulus 

𝐸𝑥
∗ and Possion’s ratio 𝜈𝑥𝑦

∗  for loading in the x-direction.  

 

Figure 2-13  Model setup for calculation of elastic modulus and Poisson’s ratio for 
x-direction loading 

As shown in the figure, a displacement, corresponding to a strain ε of 1%, is 

applied in the x-direction to the nodes along the right hand side of the specimen (denoted 

by ). The nodes along the left hand side are constrained in x-direction (denoted by ). 

A single node on the left hand side that is vertically centered is constrained in the 

y-direction (denoted by ). Lastly, all nodes along the perimeter of the specimen are 

constrained in the z-direction or out-of-plane direction (not shown). Thus, the model is 

fully constrained. The applied displacement generates reaction forces on the nodes 

constrained in the x-direction. These reaction forces are summed and then divided by the 

cross-sectional area to yield the tensile stress induced on the specimen. The stress is 

X 

Y 

ε
x
 ≈ 1% 
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then divided by the applied strain to yield the elastic modulus of the specimen. As the 

specimen expands in the longitudinal direction (direction of applied loading), it contracts 

in the lateral direction. The Poisson’s ratio is then calculated by taking the negative ratio 

of lateral strain to longitudinal strain. For Figure 2-13, the Poisson’s ratio is calculated for 

each node along the top edge of the specimen. The Poisson’s ratios are then averaged 

to obtain a final value.  

The same methodology is used to calculate the elastic modulus 𝐸𝑦
∗ and 

Possion’s ratio 𝜈𝑦𝑥
∗  for loading in the y-direction, as shown in Figure 2-14. 

 

Figure 2-14  Model setup for calculation of elastic modulus and Poisson’s ratio for 
y-direction loading 

Figure 2-15 demonstrates the model setup for calculating the shear modulus 𝐺𝑥𝑦
∗  

for loading in the x-direction. As shown in the figure, a displacement, corresponding to a 

strain γ of 1%, is applied in the x-direction to the nodes along the top of the specimen 

(denoted by ). The nodes along the bottom are constrained in x-direction (denoted by 

). Lastly, all nodes along the perimeter of the specimen are constrained in the 

y-direction and the z-direction (not shown). Thus, the model is fully constrained. The 

εy ≈ 1% 



24 

applied displacement generates reaction forces on the nodes constrained in the 

x-direction. These reaction forces are summed and then divided by the cross-sectional 

area to yield the shear stress induced on the specimen. The stress is then divided by the 

applied strain to yield the shear modulus of the specimen. 

 

Figure 2-15  Model setup for calculation of shear modulus for x-direction loading 

The same methodology is used to calculate the shear modulus 𝐺𝑦𝑥
∗  for loading in 

the y-direction, as shown in Figure 2-16. 

 

Figure 2-16  Model setup for calculation of shear modulus for y-direction loading 

γ
yx

 ≈ 1% 
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The relative elastic modulus 𝐸̅ is calculated by dividing the elastic modulus of the 

specimen, 𝐸𝑥
∗ or 𝐸𝑦

∗, by the elastic modulus of the of the base material 𝐸𝑠. Similarly, the 

relative shear modulus 𝐺̅ is calculated by dividing the shear modulus of the specimen, 

𝐺𝑥𝑦
∗  or 𝐺𝑦𝑥

∗ , by the elastic modulus of the of the base material 𝐸𝑠. 

 

2.3.2 Anisotropic Microstructural Properties 

The anisotropic models are created from the isotropic models and maintain 

identical geometry, elements, nodes, loads, and boundary conditions. The only difference 

is the material property of the solid. A local coordinate system is constructed for each 

ligament such that the x-axis corresponds to the longitudinal direction and the y-axis 

corresponds to the lateral direction. Each element property is applied in the local 

coordinate system of the ligament it belongs to. An example of the local coordinate 

systems is illustrated in Figure 2-17.   

 

Figure 2-17  Local coordinate system definition 

The elements making up the junction do not belong to a specific ligament and 

therefore, are not assigned anisotropic properties. Instead, they retain the isotropic 
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Y 
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properties used for the isotropic models. For the hexagonal honeycombs, the ligaments 

are oriented at 0 degrees, 60 degrees, and 120 degrees from the horizontal axis. Thus, 

only three coordinate systems are required. For the irregular honeycombs, each ligament 

is at a unique angle above the horizontal axis and requires its own unique local 

coordinate system. This quickly adds up to over 1,300 coordinate systems. The time 

consuming task of creating the coordinate systems and applying the element properties 

is accomplished in Microsoft Excel via several VBA Macros. The geometric, elemental, 

and nodal data contained in the MSC Patran input file (*.bdf) is extracted and imported 

into Excel. The VBA Macros create a coordinate system for each ligament, locate the 

elements belonging to a respective ligament, apply the appropriate elemental property, 

and then create a new .bdf input file for MSC Patran. The coordinate systems are applied 

using the CORD2R entry and the anisotropic properties are applied using the MAT8 

entry [33].  

Many cellular materials in nature exhibit significant anisotropic properties. For 

example, cork has an elastic modulus of 13 MN/m
2
 in the axial direction and 20 MN/m

2
 in 

the radial direction [19]. Similarly, wood is significantly stronger in the axial direction when 

compared to the radial direction. For instance, balsa wood has an elastic modulus of 

6 GPa in the axial direction and 0.3 GPa in the radial direction [39]. Therefore, the finite 

element models are given properties that capture significant anisotropy. Two separate 

material property scenarios are considered. The first case defines properties such that 

stiffness in the elemental x-direction is greater than stiffness in the elemental y-direction 

and the second case vice versa. The properties used for the anisotropic models are 

defined in Table 2-4. 
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Table 2-4  Anisotropic material properties  

 Elastic 
Modulus, 
Esx (GPa) 

Elastic 
Modulus, 
Esy (GPa) 

Shear 
Modulus, 
Gs (GPa) 

Poisson’s 

Ratio, νsxy 

Poisson’s 

Ratio, νsyx 

Density, ρs  
(kg / m

3
) 

Case 1 71.02 35.51 26.89 0.33 0.165 2800 

Case 2 35.51 71.02 26.89 0.165 0.33 2800 

The subscript s indicates that the property pertains to the solid material to avoid 

confusion between the global mechanical properties and the properties of the solid 

material. For Case 1, the elastic modulus in the longitudinal direction, Esx, the shear 

modulus, Gs, the Poisson’s ratio, νsxy, and the density, ρs, are the same as the isotropic 

material properties in Table 2-3. The elastic modulus in lateral direction, Esy, is chosen to 

be half of the elastic modulus in the longitudinal direction, Esx. The Poisson’s ratio, νsyx, is 

not an input in the MAT8 property entry. Instead, MSC Patran calculates νsyx internally 

using the following relationship [33],  

 𝐸𝑠𝑥𝜈𝑠𝑦𝑥 = 𝐸𝑠𝑦𝜈𝑠𝑥𝑦 (10) 

For Case 2, the elastic modulus in the lateral direction, Esy, the shear modulus, 

Gs, the Poisson’s ratio, νsyx, and the density, ρs, are the same as the isotropic material 

properties in Table 2-3. The elastic modulus in longitudinal direction, Esx, is chosen to be 

half of the elastic modulus in the lateral direction, Esx. The two aforementioned cases 

capture the influence of microstructural anisotropy for a dominant stiffness in either the x 

or y-direction.  

For the anisotropic models, the effective elastic and shear moduli are calculated 

by dividing the elastic and shear moduli of the specimen by the elastic modulus of the 

isotropic base material described in Table 2-3.  
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Chapter 3  

Isotropic Analysis 

 

3.1 Theoretical Analysis of Hexagonal Honeycombs 

 
Using Timoshenko beam theory, Gibson et al. [19, 20] derived formulae that 

accurately describe the five in-plane mechanical properties (Ex, Ey, Gxy, νxy, and νyx) of 

hexagonal honeycombs (δ = 1). Their original derivation utilized Euler-Bernoulli beam 

theory which solely accounted for cell wall bending and ignored axial and shear 

contributions. Through experimental tests, they substantiated their bending only formulae 

for low relative densities [20]. While cell wall bending is the primary source of 

deformation, they point out that the contribution of axial and shear deformation 

significantly increases as the relative density increases. As acknowledged by Silva, 

Hayes, and Gibson [38], axial and shear deformation constitute approximately 10% of the 

total deformation for a relative density of 0.15. Therefore, Gibson and Ashby [19] derive a 

new set of equations, using Timoshenko beam theory, that account for the contributions 

of axial and shear deformations, which are presented below. 

 𝜌̅ =
𝜌∗

𝜌𝑠
= (

𝑡𝑤

𝑙
)

(ℎ 𝑙⁄ )+2
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ρ*, E*, G*, and ν* are the density, Young’s Modulus, Shear Modulus, and Poisson’s ratio 

of the cellular structure and ρs, Es, Gs, and νs are the density and moduli of the solid 

material from which it is made (reference Table 2-3 for material properties). The variables 

h, l, tw, and θ are illustrated in Figure 3-1.  

 

Figure 3-1  Hexagonal unit cell 

The cell wall thickness is denoted by tw, cell wall angle by θ, and cell wall length 

by h and l. For regular hexagonal cells, h and l are equivalent and θ is equal to 30 

degrees. As discussed in Section 2.2, hw is the cell height. As relative density increases, 

the cell walls thicken and the cell height decreases. Therefore, the cell wall thickness and 

cell height are the only variables that change with varying relative densities (reference 

Table 2-1). The aforementioned equations are used to validate the finite element models 

that have low relative densities and thus, behave as cellular solids.  
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3.2 Theoretical Analysis of Porous Media 

 
The effective elastic properties of materials containing defects such as voids is a 

popular topic of interest and has been studied for several decades. Numerous theoretical 

methods have been developed in an attempt to estimate the properties of these porous 

media. Hu and colleagues [26] indicate that some of the most prominent 

micromechanical methods include the Mori-Tanaka method (M-T) [3, 40], the generalized 

self-consistent method (GSCM) [27], the interaction direct derivative method (IDD) [13, 

45], and the composite cylinder model (CCM) [22, 23]. These models were developed to 

estimate the effective Young’s modulus and shear modulus of particle reinforced 

composites and fiber reinforced composites. However, the theory developed by these 

models can be applied to the case of a material containing empty voids. The theory and 

application of these models is a rigorous and labor-intensive process that is beyond the 

scope of this thesis. Fortunately, Hu applied these methods to a plate containing 

randomly generated holes [26]. Therefore, the theoretical results obtained by Hu are 

leveraged and used for comparison. For convenience, a brief discussion of each method 

is presented in the following paragraphs.  

The Mori-Tanaka method (M-T) assumes that the average strain in the inclusion 

is related to the average strain in the matrix by a fourth order tensor. The approximated 

fourth order tensor is then used to estimate the effective moduli [3]. One disadvantage of 

this method is that it assumes that each inclusion is embedded in an infinite matrix. 

Therefore, this method fails to account for void interaction which leads to erroneous 

estimates for high void concentrations [45].  

The generalized self-consistent method (GSCM) is based on the strain energy 

equivalence framework proposed by Budiansky [4]. The GSCM improves Budiansky’s 
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method by incorporating the three phase model (void-matrix-composite model) proposed 

by Christensen and Lo [7]. The three-phase model considers the inclusion as embedded 

in a finite matrix layer which is then embedded in an infinite effective medium. The 

advantage of this model is that it is capable of capturing the interaction among inclusions. 

However, the inclusions are restricted to spherical and cylindrical geometries. Another 

disadvantage, as noted by Klusemann and Svendsen [29], is the complexity in 

application due to its implicit structure. 

The interaction direct derivative method (IDD) employs the same three-phase 

model as the GCSM. Unlike the GCSM, the IDD is not restricted to spherical and 

cylindrical geometries and its application is much simpler due to its explicit structure. The 

spherical and cylindrical geometric restrictions are circumvented when assuming the void 

to be an ellipsoid [45]. Additionally, the estimated effective moduli are independent of 

void size and distribution. 

The composite cylinder model (CCM), also known as the composite cylinder 

assemblage model, estimates the effective properties of a homogeneous and 

transversely isotropic fiber-reinforced composite [22, 23]. The model considers the 

composite as the assemblage of parallel cylindrical fibers embedded in a matrix material. 

When the model is subjected to uniform strains, the effective elastic moduli may be 

determined from the strain energy by using variation principles [24]. This method is 

incapable of providing exact solutions and is limited to estimating the upper and lower 

bounds of the effective properties.  

A means of determining the Poisson’s Ratio for porous media has been 

proposed by Day, Snyder, Garboczi, and Thorpe [10]. The aforementioned authors 

studied the properties of a sheet containing equal sized circular holes where the hole 

centers are arranged in a hexagonal lattice. Their analysis employed a discretized spring 
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scheme on a digital image based model. This method allowed them to represent the 

pixels of an image on a lattice so that the mathematical operations can be carried out on 

the lattice rather than the continuum. They then construct a spring network connecting 

each pixel to its nearest neighbors. Their expression for Poisson’s ratio is an interpolation 

of the Milton Proof [10] which derived the Poisson’s ratio at a percolation threshold, ρc. 

The percolation threshold is defined as the area fraction when the circular holes touch. 

Recall equation (2) in Section 2.1.1 which provided the packing density η for the 

hexagonal lattice arrangement. For the hexagonal arrangement of circular holes, Day and 

colleagues [10] define the percolation threshold as    

 𝜌𝑐 = 1 − 𝜂 = 0.0931 (17) 

They then express the Poisson’s ratio for varying relative densities with the following 

interpolation formula: 

 𝜈∗ =
1

3
(1 − [

1−𝜌̅

1−𝜌𝑐 
]

𝑛

) + [1 + 𝛼(𝜌̅ − 𝜌𝑐)] [
1−𝜌̅

1−𝜌𝑐 
]

𝑛

 (18) 

where the number of holes n in a unit area is equal to 4 and the adjustable parameter α is 

equal to 2.5. The adjustable parameter was first introduced by Garboczi [17] in order to 

optimize the fits between the interpolation formula and his experimental data. The same 

intent was later adopted by Day et al. [10]. Equation (18) is used to validate the Poisson’s 

ratios obtained from the finite element models. 

 
3.3 Finite Element Analysis Results 

 
The finite element analysis results are shown in Figure 3-2 which plots the 

relative Young’s modulus 𝐸̅, relative shear modulus 𝐺̅, and Poisson’s ratio ν* versus 

relative density 𝜌̅. The black data represents the regular honeycomb (δ = 1) and the red 

data represents the irregular honeycomb (δ = 0.75). The solid lines represent 𝐸̅𝑥, 𝐺̅𝑥𝑦, 
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and 𝜈𝑥𝑦
∗  while the dashed lines represent  𝐸̅𝑦, 𝐺̅𝑦𝑥, and 𝜈𝑦𝑥

∗ . Additionally, all of the results 

are tabulated in Appendix B. 

 

Figure 3-2  Relative moduli and Poisson’s ratio vs relative density 

For both the regular and irregular arrangements, loading direction has minimal 

impact on the global mechanical properties. While the impact is minimal, lower relative 

densities exhibited the largest variations in properties. For the regular arrangement at a 

relative density of 0.048, 𝐸̅𝑥 and 𝐸̅𝑦 vary by 2.0%, 𝐺̅𝑥𝑦 and 𝐺̅𝑦𝑥 vary by 2.0%, and 𝜈𝑥𝑦
∗  and 

𝜈𝑦𝑥
∗  vary by 1%. For larger relative densities, the variations are below 1%. Per the 

theoretical analysis put forth by Gibson and Ashby [19], the material properties of 

isotropic hexagonal honeycombs are not dependent on direction (i.e. 𝐸̅𝑥 = 𝐸̅𝑦, 𝐺̅𝑥𝑦 = 𝐺̅𝑦𝑥, 

and 𝜈𝑥𝑦
∗  = 𝜈𝑦𝑥

∗ ). The aforementioned variances are small and are considered in agreement 

with their theoretical analysis. Additionally, Vajjhala’s [42] finite element analysis of a 
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hexagonal honeycomb with relative density of 0.15 resulted in slightly over a 1% 

difference in 𝐸̅𝑥 and 𝐸̅𝑦. The same trend in property differences was found for the 

irregular arrangement, as well. For the irregular arrangement at a relative density of 

0.049, 𝐸̅𝑥 and 𝐸̅𝑦 vary by 1.5%, 𝐺̅𝑥𝑦 and 𝐺̅𝑦𝑥 vary by 1.5%, and 𝜈𝑥𝑦
∗  and 𝜈𝑦𝑥

∗  vary by 1%. 

Similarly, for larger relative densities, the variations are below 1%. These property 

differences at low relative densities are expected. For twenty irregular honeycombs with 

relative density of 0.15 and regularity 0.7, Silva and colleagues [38] report differences in 

𝐸̅𝑥 and 𝐸̅𝑦 up to 12% with an average of only 1%. They also report differences in 𝜈𝑥𝑦
∗  and 

𝜈𝑦𝑥
∗  up to 19% with an average of only 1%. Additionally, Vajjhala’s [42] finite element 

analysis of an irregular honeycomb with relative density of 0.15 resulted in a 7% variance 

in 𝐸̅𝑥 and 𝐸̅𝑦 (regularity not clearly defined, speculated to be 0.7). 

It is interesting to compare the properties of the regular arrangement to the 

irregular arrangement. The relative Young’s moduli of both arrangements vary by a few 

percent for most ranges of relative densities. The greatest variances occur for low relative 

densities where the structures exhibit cellular behavior. At a relative density of 0.049, the 

irregular arrangement is approximately 6.5% stiffer than the regular arrangement. 

Similarly, the shear moduli vary by a few percent for most ranges of relative densities 

with the greatest variances occurring for low relative densities. At a relative density of 

0.049, the irregular arrangement is roughly 13% higher than the regular arrangement. 

Interestingly, the Poisson’s ratio consistently differs by several percent for nearly all 

ranges of relative density. At a relative density of 0.049, the irregular arrangement is 

about 3.5% lower than the regular arrangement. These results are in close agreement 

with the twenty irregular models analyzed by Silva and colleagues [38]. They found that 

the relative Young’s modulus varied up to 26% with an average increase of 6%, the 
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relative shear modulus varied up to 28% with an average increase of 11%, and the 

Poisson’s ratio varied up to 9% with an average decrease of 1% [38]. 

Each of the properties previously discussed are isolated and compared to the 

theoretical methods presented in Sections 3.1 and 3.2. The relative Young’s moduli are 

shown in Figure 3-3, the relative shear moduli are shown in Figure 3-6, and the Poisson’s 

ratios are shown in Figure 3-7.  

 
                                                  (a)                                                                                     (b) 

Figure 3-3  Relative Young’s modulus vs relative density with regularity (a) δ = 1 and 
(b) δ = 0.75 

Figure 3-3(a) and 3-3(b) plot the relative Young’s modulus against relative 

density for the regular and irregular arrangements. It is apparent from the above figures 

that the generalized self-consistent method (GSCM) and the composite cylinder model 

(CCM) yield reasonable trends for the full range of relative densities while the Mori-

Tanaka method (M-T) and the interaction direct derivative method (IDD) only provide 

meaningful results at high relative densities. Unsurprisingly, Gibson’s formulation 

produces meaningful results at low relative densities. For large relative densities of the 
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regular arrangement in Figure 3-3(a), the M-T and IDD models predict relative Young’s 

moduli that are within a few percent of the FEM results. As the relative density 

decreases, the difference between the FEM and the M-T and IDD models increases; 

achieving a 10% difference at a relative density of 0.65. As the relative density continues 

to decrease, the models drastically over predict the relative Young’s modulus. This 

deviation is due to the fact that the M-T and IDD models do not take into account void 

distribution and interaction and thus, lose their usefulness. The same phenomenon can 

be said for the irregular arrangement in Figure 3-3(b); except that the 10% deviation 

occurs for a relative density of about 0.75. Similar to the M-T and IDD models, the GSCM 

and CCM models produce accurate results at larger relative densities. These models 

achieve a 10% deviation at a relative density of about 0.6 for the regular arrangement 

and roughly 0.5 for the irregular arrangement. While the deviation is not as drastic as the 

M-T and IDD models, it is nonetheless significant with deviations upwards of 200% for 

low relative densities. The GSCM and CCM models produce better results than the M-T 

and IDD models since they are equipped to handle void interaction. However, it is noted 

that their application is for circular voids and not for polygonal voids as in our case. It is 

believed that our unique void geometry may contribute to the large deviations at low 

relative densities. It is worth noting that these results corroborate the work of Hu et al. 

[26] who obtained similar results for a plate containing non-overlapping circular holes. 

Their analysis concludes that the GSCM and CCM schemes provide reasonable results 

for the entire spectrum of relative densities while the M-T and IDD schemes severely 

under predict the hole interaction and are only applicable to high relative densities. 

Gibson et al. [19, 37, 38] has consistently maintained that their theoretical 

formulations (discussed in Section 3.1) are applicable to isotropic hexagonal 

honeycombs with relative densities up to 0.3. At this relative density, Gibson’s formulation 
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under predicts the FEM results for the regular arrangement by roughly 50%. For the 

irregular arrangement, the under prediction is approximately 45%. It is hypothesized that 

these large differences are attributed to the modeling technique employed. Recall that the 

honeycomb structures are modeled as meshed two-dimensional plates (reference 

Section 2.3). As the ligament width tw increases, the ligament length l decreases. This is 

dissimilar to Gibson’s formulation which measures the ligament length from the center 

points of the ligament intersections. Each scenario is depicted in Figure 3-4. 

 
                           (a)                                                                       (b) 

Figure 3-4  Analysis dimensions (a) FEM, (b) Gibson’s formulation 

As can be seen, the ligament length remains constant for Gibson’s analysis while 

it shrinks in the finite element analysis. Therefore, Gibson’s analysis analyzes beams that 

are longer than what is actually present. The reduction in ligament length increases the 

ligaments stiffness which is not accounted for in the analytical approach. This additional 

stiffness can be accounted for by adapting Gibson’s measurement for ligament length. 

Using simple trigonometry, the new ligament length in Figure 3-4(a) is calculated. 

 𝑙 = 𝑙𝑜 − 𝑡𝑤(cos 30° − 0.5 tan 30°) (19) 

Gibson’s prediction for the relative Young’s modulus is recalculated using the 

above equation. Figure 3-5 recreates Figure 3-3 using the updated ligament length. The 

data resulting from the modified ligament length is represented by the red line. 
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                                                  (a)                                                                                     (b) 

Figure 3-5  Updated Relative Young’s modulus vs relative density with regularity (a) δ = 1 
and (b) δ = 0.75 

From inspection of Figure 3-5, it is obvious that the updated Gibson formulation 

yields much more accurate results. Recall that at a relative density of 0.3, Gibson’s 

formulation originally under predicted the FEM results for the regular arrangement by 

roughly 50% and the irregular arrangement by about 45%. Using the updated ligament 

length, Gibson’s formulation now differs from the FEM by 4% for the regular arrangement 

and 3% for the irregular arrangement. This is a significant improvement; thus, confirming 

the hypothesis regarding ligament length. It can be argued that Gibson’s equations return 

acceptable results at higher relative densities. It is at a relative density of just over 0.4 

that the regular arrangement produces a 10% difference. Similarly, it is at a relative 

density of 0.55 that the irregular arrangement produces a 10% difference. As relative 

density increases, the percent difference climbs to over 50%.   
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                                                    (a)                                                                                    (b) 

Figure 3-6  Relative shear modulus vs relative density with regularity (a) δ = 1 and 
(b) δ = 0.75 

Figure 3-6(a) and 3-6(b) plot the relative shear modulus against relative density 

for the regular and irregular arrangements. The same phenomenon witnessed in 

Figure 3-3 is observed in the relative shear modulus plots. Namely, the M-T and IDD 

schemes provide accurate results at high relative densities and drastically overestimate 

the relative shear modulus at low to mid relative densities while the GSCM and CCM 

schemes produce reasonable trends for the full range of relative densities. More 

specifically, the M-T and IDD methods differ from the regular honeycomb FEM results by 

10% at a relative density of 0.65 and differ from the Voronoi honeycomb FEM results by 

10% at a relative density of about 0.7. Below the aforementioned relative densities, the 

variations drastically increase. Similarly, the GSCM and CCM methods produce accurate 

results for higher relative densities. When compared to the FEM results, these models 

achieve a 10% difference at a relative density of 0.65 for the regular arrangement and 0.6 

for the irregular arrangement. The discussion for the relative Young’s modulus in 
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Figure 3-3 is also applicable here. Specifically, that the GSCM and CCM schemes 

produce better results than the M-T and IDD models since they are equipped to handle 

void interaction. Additionally, these results corroborate the work of Hu et al. [26] who 

obtained similar results of a plate containing non-overlapping circular holes. 

The modified Gibson formulation achieves accurate results for low relative 

densities. Recall that Gibson’s equations are applicable for relative densities up to 

0.3 [19, 37, 38]. At this relative density, the modified Gibson equation under predicts the 

FEM results by roughly 5% for the regular arrangement and by roughly 4% for the 

irregular arrangement. For comparison, the unmodified Gibson equation produces 

differences of about 60% for both arrangements. It is obvious from Figure 3-6 that the 

modified Gibson equation is applicable to relative densities beyond 0.3. For the regular 

arrangement, a 10% difference occurs at a relative density of just under 0.4 while for the 

irregular arrangement, the same percent difference occurs at a 0.5 relative density.  

      
                                                 (a)                                                                                  (b) 

Figure 3-7  Poisson’s ratio vs relative density with regularity (a) δ = 1 and (b) δ = 0.75 
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Figure 3-7(a) and 3-7(b) plot the Poisson’s ratio against relative density for the 

regular and irregular arrangements. With outstanding accuracy, the Milton Proof 

(reference equation (18) in Section 3.2) predicts the Poisson’s ratio of both the 

arrangements for the full range of relative densities. At most, the Milton Proof differs from 

the FEM results by 3% for the regular arrangement and 4% for the irregular arrangement. 

In addition to being independent of void geometry [10], the success of the Milton Proof is 

attributed to the adjustable parameter α. The adjustable parameter is used to optimize 

the fits between equation (18) and the FEM results. The downside to this method is that 

the analyst needs to have experimental data to substantiate the selection of the 

adjustable parameter. This dilemma can be circumvented by constructing a library of 

adjustable parameters corresponding to specific hole arrangements (e.g. hexagonal, 

square, triangular, etc.). For the regular and irregular arrangements analyzed herein, an 

adjustable parameter of 2.5 provides sufficiently accurate results.  

The modified Gibson formulations achieve accurate results for low relative 

densities. At a relative density of 0.3, the modified Gibson equation over predicts the 

FEM results by 4% for the regular arrangement and by 3% for the irregular arrangement. 

The modified Gibson formulation provides the same level of accuracy as the Milton Proof 

for relative densities below 0.3. For higher relative densities, the modified Gibson 

equation differs from the FEM results by over 20%. For comparison, the unmodified 

Gibson equation at a relative density of 0.3 results in a 15% difference for the regular 

arrangement and 10% difference for the irregular arrangement. 

Now that the FEM results have thoroughly been discussed, it is worth revisiting 

the dilemma concerning the modeling technique and ligament length. Referring back to 

Figure 3-4(b), Gibson measures the ligament length from the center points of the 

ligament intersections which remains constant regardless of relative density. It was 
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proven that this erroneously predicts the global mechanical properties. Throughout the 

relevant literature [6, 37, 38, 46, 47], researchers model their honeycomb structures with 

beam elements due to the ease and simplicity. Consequently, it is believed that this 

erroneous prediction has largely gone unnoticed. In order to understand the implications 

of these different modeling techniques, the regular honeycomb specimens (reference 

Figure 2-10) are remodeled using simple beam elements known as CBEAM 

elements [33]. The CBEAM elements use the PBEAM property entry which implements 

Timoshenko beam theory; thus, the shear deformations are accounted for. The elements 

retain the same material properties that are listed in Table 2-3. 

Figure 3-8 plots the effective mechanical properties obtained from the 

quadrilateral isoparametric plane strain elements and the simple beam elements along 

with the predictions from the modified and unmodified Gibson equations. Since Gibson 

et al. [19, 37, 38] maintains that their formulations are applicable up to relative densities 

of 0.3, this portion of Figure 3-8(a), (c), and (e) is magnified in Figure 3-8(b), (d), and (f). 

 
                             (a)                                                                                      (b) 

Mod Mod 
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                            (c)                                                                                       (d) 

        
                            (e)                                                                                      (f) 

Figure 3-8  Comparison of quadrilateral plane strain elements and beam elements on the 
effective mechanical properties of regular, hexagonal honeycombs: (a) relative elastic 
modulus full scale and (b) magnified scale, (c) relative shear modulus full scale and 

(d) magnified scale, and (e) Poisson’s ratio full scale and (f) magnified scale. 

Mod Mod 
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Observation of the plots reveals that the simple beam elements closely align with 

the unmodified Gibson equation; especially for relative densities below 0.3 as shown in 

the magnified plots. It has already been determined that the unmodified Gibson equation 

returns erroneous results. Thus, it can be stated that the use of CBEAM elements does 

not accurately capture the true global mechanical properties. 

In addition to improperly calculating the effective material properties, the relative 

density is incorrectly calculated, as well. Studying Figure 3-8(b), (d), and (f), it is observed 

that the bend in the elastic modulus curve for the quadrilateral element model occurs at a 

relative density lower than that predicted by the modified Gibson equation. Reviewing 

Figure 3-4(b), the corners of the beam elements overlap. This mass overlap results in 

Gibson’s equation for relative density (reference equation (11) in Section 3.1) overstating 

the relative density that actually exists. As the beam width increases, the mass overlap 

increases; thus, increasing the overstatement. For the hexagonal honeycomb described 

in Section 2.2, Gibson’s equation for relative density achieves a value of 0.3 when the 

wall thickness is 6.3 units. At this wall thickness, the actual relative density is slightly over 

2.8; resulting in an overestimation of 6.7%. This phenomenon was also acknowledged by 

Joshi [28] who created two-dimensional meshes of auxetic chiral honeycombs. His 

investigation consisted of comparing the in-plane effective material properties of a hexa-

chiral structure modeled with two-dimensional plane stress quadrilateral elements against 

the same structure modeled via Timoshenko beam elements. His concluded that the 

quadrilateral element model produced accurate results whereas the Timoshenko beam 

model did not.  

While the simple beam element modeling approach is not ideal, the time-savings 

is enormous. Using quadrilateral elements introduces several labor-intensive hurdles. For 

instance, unique models must be created for each relative density. Each wall thickness 
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requires the creation of a two-dimensional surface that must be properly meshed. As a 

result, each model has a different element and node numbering scheme. Therefore, each 

model requires the analyst to select the appropriate nodes when applying the loads and 

boundary conditions. These obstacles are not present in the beam model since the wall 

thicknesses are handled in the beam property set. Therefore, only one model is required 

which contains the curves making up the centerlines of the honeycomb walls. The analyst 

only has to mesh the curves and apply the loads and boundary conditions one time. 

Subsequent relative densities are analyzed by creating a new property set and applying it 

to the existing CBEAM elements. For the present thesis, the beam model and all property 

sets were created in less time than it took to mesh the geometry in Figure 2-10(j). In 

addition to faster modeling times, analysis of the beam models is significantly faster. The 

beam models run faster due to the simplicity of the beam element and the small number 

of beam elements required. For comparison, the mesh for the regular honeycomb in 

Figure 2-10(j) required over 283,000 quadrilateral elements and over 376,000 nodes. 

Using beam elements, only 9,180 elements and 10,488 nodes were required. Also, post 

processing the results is remarkably faster for the beam model. Since node numbering 

does not change, extracting the forces and displacements at the desired nodes is 

simplified. Therefore, it is left to the reader’s discretion whether the more accurate results 

of the quadrilateral elements outweigh the significantly longer modeling times. 
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Chapter 4  

Anisotropic Analysis 

 

4.1 Finite Element Analysis Results 

 
The anisotropic properties in Table 2-4 are applied to the specimens that have a 

wall thickness of 25.6 units and smaller (reference Table 2-1 for regular honeycombs and 

Table 2-2 for irregular honeycombs). This corresponds to specimens where the cellular 

structure is 40% to 100% developed. Comparing the geometries of the irregular 

honeycomb at 20% and 30% development, Figure 2-11(b) and Figure 2-11(c) in 

Section 2.2, it is apparent that not all of the nucleation points have formed for the 

specimen at 20% development. For the specimen at 30% development, the voids are 

extremely small which results in virtually nonexistent cell walls. Therefore, the anisotropic 

properties are applied to specimens at 40% to 100% development.  

The finite element analysis results are shown in Figure 4-1 through Figure 4-6. 

Figure 4-1 through Figure 4-3 correspond to the regular honeycomb (δ = 1) and 

Figure 4-4 through Figure 4-6 correspond to the irregular honeycomb (δ = 0.75). 

Additionally, all of the results are tabulated in Appendix B. In each figure, the solid red 

line represents the property Case 1, where Esx is twice Esy, and the dashed black line 

represents the property Case 2, where Esy is twice Esx. For comparison purposes, the 

isotropic result, where Esx is equal to Esy, is represented by the solid black line. Since 

Gibson et al. [19, 37, 38] maintains that their formulations are applicable up to relative 

densities of 0.3, these portions of the figures are magnified, similar to the presentation of 

data in Figure 3-8.  
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                                  (a)                                                                                      (b) 

        
                                  (c)                                                                                      (d) 

Figure 4-1  Relative Young’s modulus vs relative density for a regularity of δ = 1: (a) 𝐸̅𝑥 

full scale and (b) 𝐸̅𝑥 magnified scale, and (c) 𝐸̅𝑦 full scale and (d) 𝐸̅𝑦 magnified scale 
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                                  (a)                                                                                       (b) 

        
                                  (c)                                                                                        (d) 

Figure 4-2  Relative shear modulus vs relative density for a regularity of δ = 1: (a) 𝐺̅𝑥𝑦 full 

scale and (b) 𝐺̅𝑥𝑦 magnified scale, and (c) 𝐺̅𝑦𝑥 full scale and (d) 𝐺̅𝑦𝑥 magnified scale 
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                                  (a)                                                                                     (b) 

        
                                  (c)                                                                                      (d) 

Figure 4-3  Poisson’s ratio vs relative density for a regularity of δ = 1: (a) 𝜈𝑥𝑦
∗  full scale 

and (b) 𝜈𝑥𝑦
∗  magnified scale, and (c) 𝜈𝑦𝑥

∗  full scale and (d) 𝜈𝑦𝑥
∗  magnified scale 
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                                  (a)                                                                                      (b) 

        
                                  (c)                                                                                      (d) 

Figure 4-4  Relative Young’s modulus vs relative density for a regularity of δ = 0.75: 

(a) 𝐸̅𝑥 full scale and (b) 𝐸̅𝑥 magnified scale, and (c) 𝐸̅𝑦 full scale and (d) 𝐸̅𝑦 magnified 

scale 



 

51 

        
                                  (a)                                                                                      (b) 

        
                                  (c)                                                                                      (d) 

Figure 4-5  Relative shear modulus vs relative density for a regularity of δ = 0.75: 

(a) 𝐺̅𝑥𝑦 full scale and (b) 𝐺̅𝑥𝑦 magnified scale, and (c) 𝐺̅𝑦𝑥 full scale and (d) 𝐺̅𝑦𝑥 magnified 

scale 
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                                  (a)                                                                                      (b) 

        
                                  (c)                                                                                      (d) 

Figure 4-6  Poisson’s ratio vs relative density for a regularity of δ = 0.75: (a) 𝜈𝑥𝑦
∗  full scale 

and (b) 𝜈𝑥𝑦
∗  magnified scale, and (c) 𝜈𝑦𝑥

∗  full scale and (d) 𝜈𝑦𝑥
∗  magnified scale 

Similar to the isotropic results presented in Figure 3-2, the loading direction has 

minimal impact on the global mechanical properties for both the regular and irregular 
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arrangements. This relationship is applicable to both property Cases 1 and 2 and is 

observed by comparing plots (a) and (c) for each figure. While the impact of loading 

direction is minimal, the lower relative densities exhibited the largest variations in 

properties. For both property Cases 1 and 2, the regular arrangement at a relative density 

of 0.048 had the following property variations: 𝐸̅𝑥 and 𝐸̅𝑦 varied by 3.0%, 𝐺̅𝑥𝑦 and 𝐺̅𝑦𝑥 

varied by 2.0%, and 𝜈𝑥𝑦
∗  and 𝜈𝑦𝑥

∗  varied by 1%. For both property Cases 1 and 2, the 

irregular arrangement at a relative density of 0.049 had the following property variations: 

𝐸̅𝑥 and 𝐸̅𝑦 vary by 2%, 𝐺̅𝑥𝑦 and 𝐺̅𝑦𝑥 vary by 2%, and 𝜈𝑥𝑦
∗  and 𝜈𝑦𝑥

∗  vary by 1%. Therefore, it 

is proposed that the effective mechanical properties are not dependent on load direction 

for regular and irregular honeycombs with microstructural anisotropic properties (i.e. 𝐸̅𝑥 = 

𝐸̅𝑦, 𝐺̅𝑥𝑦 = 𝐺̅𝑦𝑥, and 𝜈𝑥𝑦
∗  = 𝜈𝑦𝑥

∗ ). 

It is interesting to compare the properties of the anisotropic specimens to the 

isotropic specimens. Recall that for property Case 1, Esy and νsyx are half the value of Esx 

and νsxy. Observing the Case 1 properties in Figure 4-1(a) and (c) and Figure 4-2(a) 

and (c), the Young’s and shear moduli for the anisotropic specimens are up to 7% lower 

than their isotropic counterparts. Referencing Figure 4-3(a) and (c), the Poisson’s ratio is 

up to 10% lower than the isotropic specimens. The same observations are made for the 

irregular honeycombs in Figure 4-4(a) and (c), Figure 4-5(a) and (c), and Figure 4-6(a) 

and (c). For the Case 1 properties, the Young’s and shear moduli are up to 4% lower and 

the Poisson’s ratio is up to 9% lower than the isotropic specimens. Recall from 

Section 3.1 that cell wall bending is the primary source of deformation and the 

contributions from axial and shear deformations are minimal. Per Silva et al. [38], axial 

and shear deformation constitute approximately 10% of the total deformation for a 

regular, hexagonal honeycomb with a relative density of 0.15. The results previously 

discussed substantiate Silva’s et al. findings since the effective properties varied by no 
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more than 10% due to the 50% reduction in material properties in the elemental shear 

direction (i.e. lateral direction).  

Recall that for property Case 2, Esx and νsxy are half the value of Esy and νsyx. 

Observing the Case 2 properties in Figure 4-1(a) and (c) and Figure 4-2(a) and (c), the 

Young’s and shear moduli for the anisotropic specimens are nearly 50% lower than their 

isotropic counterparts for a relative density of 0.048. As the relative density increases, the 

anisotropic specimens are 25% lower than the isotropic specimens. As the relative 

density increases, the amount of variation narrows. This is due to the fact the elements 

making up the junction do not belong to a specific ligament and therefore, are not 

assigned anisotropic properties. Instead, they retain the isotropic properties used for the 

isotropic models. Thus, as relative density increase, the anisotropic models become more 

and more similar to the isotropic models and the amount of variation in the effective 

properties reduces. Referencing Figure 4-3(a) and (c), the Poisson’s ratio is less than 1% 

lower than the isotropic specimen for a relative density of 0.048. As the relative density 

increases, the Poisson’s ratios are up to 40% lower than the isotropic models. This is 

attributed to νsxy being half the value of νsyx. It is therefore concluded that the 

microstructural Poisson’s ratio becomes more prevalent as the relative density increases 

and the specimen transitions from a cellular structure to a solid, porous structure.  

The same observations are made for the irregular honeycombs in Figure 4-4(a) 

and (c), Figure 4-5(a) and (c), and Figure 4-6(a) and (c). For the Case 2 properties, the 

Young’s and shear moduli for the anisotropic specimens are nearly 48% lower than their 

isotropic counterparts for a relative density of 0.049. As the relative density increases, the 

anisotropic specimens are 23% lower than the isotropic specimens. For a relative density 

of 0.049, the Poisson’s ratio is less than 1% lower than the isotropic specimen. As the 

relative density increases, the Poisson’s ratios are up to 35% lower than the isotropic 
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models. The significant change in the effective mechanical properties indicates that the 

material properties in the longitudinal elemental direction dominate the model behavior. It 

therefore can be said that the material properties in elemental lateral direction, i.e., the 

shear direction, have minimal impact on the effective mechanical properties.  
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Chapter 5  

Conclusion 

 

This thesis demonstrated the usefulness of the finite element method in obtaining 

the effective mechanical properties of regular, hexagonal honeycombs and irregular, 

Voronoi honeycombs. Finite element models were developed to explore the effective 

mechanical properties of honeycomb structures for isotropic and anisotropic 

microstructural material properties. The finite element models varied in relative density 

from purely solid to purely cellular to better understand the ranges of relative densities 

where a structure behaves as a cellular structure versus a porous solid.  

The isotropic finite element analysis revealed that a theoretical solution that 

accurately determines the global mechanical properties across the full range of relative 

densities does not exist. It was determined that the current theoretical methods of porous 

media are sufficient in predicting the effective material properties for high relative 

densities for regular, hexagonal honeycombs and irregular, Voronoi honeycombs.  For 

low relative densities, a modification to the ligament length parameter is proposed to 

improve Gibson and Ashby’s [19] theoretical formulations for regular, hexagonal 

honeycombs. The aforementioned modification improves the correlation between the 

theoretical analysis and the finite element analysis and it expands the range of applicable 

relative densities beyond the 0.3 limit recommended by Gibson and Ashby. It was shown 

that there exists a range of relative densities where neither the theoretical analysis of 

honeycombs nor the theoretical analysis of porous media accurately predicts the effective 

mechanical properties. For this region, the finite element method is recommended. It was 

determined that the irregular honeycomb was stiffer than the regular honeycomb which is 

in good agreement with the relevant literature. It was also determined that the prevalent 
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method of modeling honeycombs with Timoshenko beam elements does not predict the 

effective mechanical properties as accurately as using two-dimensional, isoparametric 

plane strain elements. It is noted that the increased accuracy of the two-dimensional 

plane stain elements comes at the expense of significantly longer modeling and analysis 

times.  

The anisotropic finite element analysis revealed that, similar to the isotropic 

models, the effective mechanical properties are not dependent on the loading direction 

(i.e. 𝐸̅𝑥 = 𝐸̅𝑦, 𝐺̅𝑥𝑦 = 𝐺̅𝑦𝑥, and 𝜈𝑥𝑦
∗  = 𝜈𝑦𝑥

∗ ). The anisotropic analysis also revealed that the 

material properties in the longitudinal elemental direction dominated the model behavior 

for the regular, hexagonal honeycombs and the irregular, Voronoi honeycombs. Silva, 

Hayes, and Gibson [38] state that bending is the predominant mode of deformation and 

the axial and shear deformations are less significant. Similarly, it is concluded that 

material properties in the elemental longitudinal direction dominate the model behavior 

while the material properties in the elemental lateral direction (i.e. shear direction) play a 

less significant role. Therefore, the additive manufacturing processes are of the upmost 

importance since the anisotropy between the travel direction and build direction can 

significantly alter effective mechanical properties of cellular structures.  

It is recommended that future work should expand the modeling techniques and 

microstructural anisotropy to three-dimensional foams. The research could also be 

expanded by studying the effects of microstructural anisotropy on the bulk modulus. The 

relationships observed via the finite element analysis should be substantiated through 

testing. This could be accomplished by using additive manufacturing techniques to 

fabricate the cellular structures for different build directions.  
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Appendix A 

MATLAB
® 

 and NX SNAP™ Software Codes 
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1. MATLAB
®
 code used to generate points in 2D space, via the simple sequential 

inhibition process [31], and construct the Voronoi diagram. 

% Dist. btwn nuclei in hexagonal array is 42 
d = 0.75*42;  
 
% Get the vertices for the regions. 
rx = [-48.5 825.03 825.03 -48.5 -48.5]; 
ry = [-63 -63 903 903 -63]; 
rx1 = [0 776.54 776.54 0 0]; 
ry1 = [0 0 840 840 0]; 
n = 588; 
X = zeros(n,2); 
 
% Generate the first event. 
X(1,:) = csbinproc(rx,ry,1); 
i = 1; 
 
% Generate the other events. 
while i<n 
    [sx,sy] = csbinproc(rx, ry, 1); 
    xt = [sx sy ; X(1:i,:)]; 
    % Find the distance between the events 
    dist = pdist(xt); 
    % Find the distance between the candidate event 
    % and the others that have been generated already. 
    ind = find(dist(1:i) <= d); 
    if isempty(ind) 
        % Then we keep the event. 
        i = i+1 
       X(i,:) = [sx, sy]; 
    end 
end 
 
%Plot nucleation points 
xx=X(:,1); yy=X(:,2); 
scatter(xx,yy,'.'); 
xxx=[0 776.54]; yyy=[0 0]; 
line(rx1,ry1) 
axis([-100 1000 -100 1000]) 
 
% Construct the Voronoi Diagram 
hold on 
[v,c] = voronoin(X); 
for j=1:length(c); 
    nx{j}=v(c{j},:); 
    %Plot Voronoi 
    plot(nx{j}(:,1),nx{j}(:,2),'k') 
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    plot([nx{j}(1,1) nx{j}(length(nx{j}),1)],[nx{j}(1,2)… 
        nx{j}(length(nx{j}),2)],'k') 
end 
 
plot(rx1,ry1,’k’) 
axis([0 1000 0 1000]) 
 

 
function [x,y] = csbinproc(xp, yp, n) 
% CSBINPROC Generate homogeneous 2-D Poisson process. 
% [X,Y] = CSBINPROC(XP,YP,N) This function generates a 
% homogeneous 2-D Poisson process. Conditional on the number 
% of data points N, this is uniformly distributed over the 
% study region. The vectors XP and YP correspond to the x and y 
% vertices of the study region. The vectors X and Y contain 
% the locations for the generated events. 
% EXAMPLE: 
% xp = [0 1 1 0];  % vertices for region 
% yp = [0 0 1 1]; 
% [X,Y] = csbinproc(xp,yp,100); 
% plot(X,Y,'.') 
% See also CSPOISSPROC, CSCLUSTPROC, CSINHIBPROC, CSSTRAUSPROC 
% W. L. and A. R. Martinez, 9/15/01 
% Computational Statistics Toolbox 
x = zeros(n,1); 
y = zeros(n,1); 
i = 1; 
% find the maximum and the minimum for a 'box' around 
% the region. Will generate uniform on this, and throw 
% out those points that are not inside the region. 
minx = min(xp); 
maxx = max(xp); 
miny = min(yp); 
maxy = max(yp); 
cx = maxx-minx; 
cy = maxy - miny; 
while i <= n 
    xt = rand(1)*cx + minx; 
    yt = rand(1)*cy + miny; 
    k = inpolygon(xt, yt, xp, yp); 
    if k == 1 
        % it is in the region 
        x(i) = xt; 
        y(i) = yt; 
        i = i+1; 
    end 
end 
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2. Simple NX Application Programming (Siemens NX SNAP™ software [36]) code used 

to import the Voronoi diagram into Siemens NX™ software. 

Option Explicit Off 
Imports MiniSnap, MiniSnap.Create 
 
Module SnapSample 
 
Public Sub Main() 
 
' Specimen boundary 
b1=Point(0,0) 
b2 = Point(776.54,0) 
b3=Point(776.54,840) 
b4=Point(0,840) 
Line(b1,b2) 
Line(b2,b3) 
Line(b3,b4) 
Line(b4,b1) 
 
' Exclude unbounded pts outside this boundary 
c1=Point(-50,-50) 
c2 = Point(850,-50) 
c3=Point(850,900) 
c4=Point(-50,900) 
Line(c1,c2) 
Line(c2,c3) 
Line(c3,c4) 
Line(c4,c1) 
 
'Each array element represents a Voronoi cell vertice 
'Integer value represents the cell that the vertice belongs to 
'1st and last element are the same vertice so the cell gets closed 
'Cell 1 has 6 edges, Cell 2 has 5 edges, etc. 
'Due to large size of array, not all values are shown 
Dim Length As Integer() = {1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 
...} 
 
'X coordinate of Voronoi pts 
'Due to large size of array, values are not shown 
Dim Xvalues As Double() = {}  
 
'Y coordinate of Voronoi pts 
'Due to large size of array, values are not shown 
Dim Yvalues As Double() = {}  
 
For i =0 To 4076     
  If Length(i)=Length(i+1) 
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    p1 = Point(Xvalues(i),Yvalues(i)) 
    p2 = Point(Xvalues(i+1),Yvalues(i+1)) 
    m=0 
    n=0 
    If i=0 
      Line(p1,p2) 
      Else  
      For j=0 To i-1 
        If Xvalues(i)=Xvalues(j) And Yvalues(i)=Yvalues(j) 
          If Xvalues(i+1)=Xvalues(j+1) And Yvalues(i+1)=Yvalues(j+1) 
            m=1 
          End If 
          If j>0 
            ‘Eliminate ... and put entire IF statement on one line 
            If Xvalues(i+1)=Xvalues(j-1) And ... 
               Yvalues(i+1)=Yvalues(j-1) 
              n=1 
            End If 
          End If                      
        End If 
      Next 
      If m=0 And n=0 
        ‘Eliminate ... and put entire IF statement on one line 
        If  Xvalues(i)>=0 And Xvalues(i)<=776.54 And ... 
            Yvalues(i)>=0 And Yvalues(i)<=840 Or ... 
            Xvalues(i+1)>=0 And Xvalues(i+1)<=776.54 And ...  
            Yvalues(i+1)>=0 And Yvalues(i+1)<=840  
 
          Line(p1,p2) 
        End If 
      End If 
    End If      
  End If       
next 
 
End Sub 
End Module 
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Appendix B 

Results 
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Table B-1  Isotropic results for honeycomb with regularity δ = 1.0 

𝜌̅ 𝐸̅1 𝐸̅2 𝐺̅12 𝐺̅21 𝜈12
∗  𝜈21

∗  

0.048 1.69E-04 1.72E-04 4.25E-05 4.34E-05 0.9976 0.9991 

0.231 2.23E-02 2.20E-02 6.01E-03 6.08E-03 0.8325 0.8408 

0.395 0.0973 0.0980 0.0318 0.0320 0.6179 0.6167 

0.538 0.2215 0.2230 0.0768 0.0770 0.4636 0.4623 

0.662 0.3615 0.3627 0.1320 0.1323 0.3745 0.3719 

0.766 0.5083 0.5093 0.1887 0.1891 0.3396 0.3385 

0.850 0.6475 0.6470 0.2429 0.2433 0.3319 0.3311 

0.916 0.7846 0.7826 0.2947 0.2950 0.3305 0.3303 

0.963 0.8991 0.8993 0.3377 0.3379 0.3311 0.3305 

0.991 0.9728 0.9734 0.3655 0.3655 0.3311 0.3301 
 

Table B-2  Anisotropic Case 1 results for honeycomb with regularity δ = 1.0 

𝜌̅ 𝐸̅1 𝐸̅2 𝐺̅12 𝐺̅21 𝜈12
∗  𝜈21

∗  

0.048 1.60E-04 1.70E-04 4.21E-05 4.29E-05 0.997 0.999 

0.231 2.07E-02 2.07E-02 5.61E-03 5.69E-03 0.836 0.845 

0.395 0.0935 0.0930 0.0306 0.0308 0.6201 0.6218 

0.538 0.2137 0.2157 0.0744 0.0746 0.4583 0.4629 

0.662 0.3495 0.3572 0.1290 0.1292 0.3595 0.3591 

0.766 0.4919 0.4981 0.1855 0.1858 0.3301 0.3216 

0.850 0.6245 0.6285 0.2402 0.2404 0.3060 0.2995 
 

Table B-3  Anisotropic Case 2 results for honeycomb with regularity δ = 1.0 

𝜌̅ 𝐸̅1 𝐸̅2 𝐺̅12 𝐺̅21 𝜈12
∗  𝜈21

∗  

0.048 8.49E-05 8.78E-05 2.19E-05 2.23E-05 0.998 1.000 

0.231 1.24E-02 1.21E-02 3.31E-03 3.35E-03 0.822 0.832 

0.395 0.0590 0.0579 0.0200 0.0196 0.5633 0.5537 

0.538 0.1430 0.1442 0.0539 0.0539 0.3551 0.3407 

0.662 0.2471 0.2518 0.1006 0.1005 0.2441 0.2305 

0.766 0.3665 0.3729 0.1524 0.1525 0.2034 0.1989 

0.850 0.4887 0.4877 0.2030 0.2034 0.1979 0.1923 
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Table B-4  Isotropic results for honeycomb with regularity δ = 0.75 

𝜌̅ 𝐸̅1 𝐸̅2 𝐺̅12 𝐺̅21 𝜈12
∗  𝜈21

∗  

0.049 1.87E-04 1.90E-04 5.06E-05 5.15E-05 0.9943 0.9986 

0.239 2.16E-02 2.16E-02 6.64E-03 6.59E-03 0.8349 0.8313 

0.405 0.0929 0.0932 0.0310 0.0311 0.6131 0.6128 

0.554 0.2146 0.2147 0.0770 0.0771 0.4507 0.4543 

0.686 0.3631 0.3647 0.1365 0.1375 0.3627 0.3604 

0.791 0.5144 0.5162 0.1965 0.1968 0.3271 0.3292 

0.879 0.6762 0.6774 0.2592 0.2594 0.3254 0.3238 

0.942 0.8391 0.8437 0.3195 0.3196 0.3238 0.3214 

0.981 0.9512 0.9517 0.3581 0.3582 0.3309 0.3306 

0.996 0.9904 0.9905 0.3718 0.3718 0.3330 0.3324 
 

Table B-5  Anisotropic Case 1 results for honeycomb with regularity δ = 0.75 

𝜌̅ 𝐸̅1 𝐸̅2 𝐺̅12 𝐺̅21 𝜈12
∗  𝜈21

∗  

0.049 1.84E-04 1.86E-04 5.00E-05 5.08E-05 0.997 0.998 

0.239 2.10E-02 2.11E-02 6.48E-03 6.43E-03 0.837 0.835 

0.405 0.0902 0.0906 0.0301 0.0302 0.6155 0.6129 

0.554 0.2078 0.2078 0.0747 0.0748 0.4468 0.4501 

0.686 0.3509 0.3553 0.1330 0.1339 0.3509 0.3485 

0.791 0.4959 0.5000 0.1924 0.1928 0.3152 0.3126 

0.879 0.6502 0.6544 0.2548 0.2549 0.2976 0.2958 
 

Table B-6  Anisotropic Case 2 results for honeycomb with regularity δ = 0.75 

𝜌̅ 𝐸̅1 𝐸̅2 𝐺̅12 𝐺̅21 𝜈12
∗  𝜈21

∗  

0.049 9.64E-05 9.76E-05 2.60E-05 2.67E-05 0.992 0.993 

0.239 1.19E-02 1.19E-02 3.69E-03 3.66E-03 0.827 0.827 

0.405 0.0548 0.0552 0.0188 0.0188 0.6059 0.6007 

0.554 0.1349 0.1349 0.0509 0.0509 0.3777 0.3720 

0.686 0.2438 0.2461 0.0986 0.0992 0.2601 0.2495 

0.791 0.3691 0.3703 0.1532 0.1535 0.2110 0.2127 

0.879 0.5227 0.5232 0.2169 0.2170 0.2154 0.2061 
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Table B-7  Isotropic results for honeycomb with regularity δ = 1.0 using Timoshenko 
beam elements 

𝜌̅ 𝐸̅1 𝐸̅2 𝐺̅12 𝐺̅21 𝜈12
∗  𝜈21

∗  

0.048 1.56E-04 1.74E-04 4.07E-05 4.06E-05 0.9907 1.0225 

0.231 1.61E-02 1.73E-02 4.59E-03 4.58E-03 0.8597 0.8873 

0.395 0.0643 0.0681 0.0200 0.0199 0.7003 0.7190 

0.538 0.1294 0.1360 0.0429 0.0428 0.5868 0.6007 

0.662 0.1992 0.2084 0.0688 0.0687 0.5155 0.5273 

0.766 0.2694 0.2809 0.0956 0.0955 0.4706 0.4816 

0.850 0.3387 0.3525 0.1224 0.1222 0.4414 0.4520 

0.916 0.4070 0.4231 0.1488 0.1486 0.4216 0.4321 

0.963 0.4744 0.4927 0.1749 0.1747 0.4078 0.4182 

0.991 0.5410 0.5615 0.2008 0.2005 0.3977 0.4081 
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Appendix C 

Nomenclature 
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A Finite area in the SSI process 

API Application Programming Interface 

c Voronoi cell output array for [v,c] = voronoin(x) function 

C Circle constraint for the Delaunay tessellation  

CAD Computer-Aided Design 

CBEAM One-dimensional simple beam element 

CQUAD4 Isoparametric plane strain quadrilateral shell element 

CTRIA3 Isoparametric plane strain triangular shell element 

d Disk diameter in the SSI process (i.e. inhibition distance) 

dmax Maximum disk diameter for regular arrangement in SSI process 

Es Elastic modulus of solid material 

E* Elastic modulus of cellular material 

E Relative elastic modulus – the ratio of E* to Es 

FEM Finite element model 

Gs Shear modulus of solid material 

G* Shear modulus of cellular material 

G Relative shear modulus – the ratio of G* to Gs 

GUI Graphical User Interface 

hw Internal cell height 

l Ligament length 

n Number of disks in SSI process or number of points (i.e. disk centers) or 

 Number of holes in a unit area in Poisson’s equation for porous media 

PSHELL Property entry for CQUAD4 and CTRIA3 shell elements 

rx Array containing the x-coordinates of the boundary vertices 

ry Array containing the y-coordinates of the boundary vertices 
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SSI Simple Sequential Inhibition process 

SNAP™ Simple NX Application Programming 

tw Thickness of cell wall 

v Voronoi vertice output array for [v,c] = voronoin(x) function 

x Nuclei point input array for [v,c] = voronoin(x) function  

γ Shear strain 

α Adjustable parameter in Poisson’s equation for porous media 

δ Regularity – ratio of d to dmax 

ε Tensile strain 

η Packing density 

θ Angle of cell wall relative to the horizontal axis 

νs Poisson’s ratio of solid material 

ν* Poisson’s ratio of cellular material 

ρc Percolation threshold – 1 - η 

ρs Density of solid material 

ρ* Density of cellular material 

ρ̅ Relative density – the ratio of ρ* to ρs  

σ Tensile stress 

τ Shear stress 
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