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ABSTRACT

CROWD DATA ANALYTICS AND OPTIMIZATION

Habibur Rahman, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Gautam Das

Crowdsourcing can be defined as outsourcing with crowd, where crowd refers

to the online workers who are willing to complete simple tasks for small monetary

compensation. The overwhelming reach of internet has enabled us to exploit crowd

in an unprecedented way. Crowdsourcing, nowadays, is considered as a tool to solve

both simple tasks (such as labeling ground truth, image recognition etc.) and complex

tasks (such as collaborative writing, citizen journalism etc.). Furthermore, it is also

used to solve computational problems such as Entity Resolution, Top-k, Group-by

etc. While crowdsourcing provides us with plenty of opportunities, it also presents us

with a plenty of challenges due to the complex interplay between the tasks and the

workers.
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In this dissertation, we first study the aspect of collaboration on solving com-

plex task with crowdsourcing. Collaborative crowdsourcing acknowledges as one of

the most promising areas of next-generation crowdsourcing. It refers to a specific form

of human-based computation involving skilled workers forming groups and solving

problems that require advanced skills in different domains in a collaborative manner.

A number of emerging applications, such as collaborative document editing, sentence

translation, and citizen journalism require human workers with complementary skills

and expertise to form groups in order to achieve a complex goal. There are several key

challenges to overcome in collaborative crowdsourcing- i) Task Assignment in such

applications are primarily self-coordinated to date, or sometimes such assignments

are performed manually by the domain experts in a task-specific manner without

considering the affinity among the workers and ii) lack of principled solutions for es-

timating human factors such as skill/cost etc. We first initiate the investigation of

the task assignment optimization problem for collaborative crowdsourcing and show

how to incorporate team-based factors such as affinity and critical mass. Then, we

demonstrate the deployment of our task assignment algorithm in a real-time collabo-

rative system named Crowd4u. Finally, we present comprehensive optimization based

formulations for estimation of the skill of workers in collaborative systems.

Then we propose a novel technique for task recommendation in crowdsourcing.

There are some notable differences between task recommendation and the area of

item recommendation. The main challenge here is that the worker does not explicitly

says which task she likes (or dislikes). So, we propose several methods for task

recommendation, which consider both the implicit signals and task similarity.

Finally, we propose a probabilistic framework for estimating all pair distance of

a set of objects with crowdsourcing. This problem is appropriate for several distance-

based machine learning applications such as clustering,k-nearest neighbor etc. We
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divide the overall problem into three smaller problems- i)Aggregate crowd inputs ii)

Estimate distance of the unknown object pairs from the known set of distances iii)

Find the next best question to be asked to the crowd.

viii



TABLE OF CONTENTS

Chapter Page

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Dissertation Overview and Impact . . . . . . . . . . . . . . . . . . . . 3

1.2 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Task Assignment Optimization in Collaborative Crowdsourcing . . . . . . 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 An Application of Collaborative Task . . . . . . . . . . . . . . . . . . 14

2.3 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Human Factors . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Optimized Group Formation . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Optimization Models . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Algorithms for AffAware-Crowd . . . . . . . . . . . . . . . . . 25

2.5 Enforcing Skill & Cost : GRP . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Subroutine GrpCandidateSet . . . . . . . . . . . . . . . . . . 30

2.5.2 Further Search Space Optimization . . . . . . . . . . . . . . . 31

2.5.3 Approximation Algorithm ApprxGrp . . . . . . . . . . . . . . 32

ix



2.5.4 Optimal Algorithm OptGrp . . . . . . . . . . . . . . . . . . . 37

2.6 Enforcing Upper Critical Mass : SPLT . . . . . . . . . . . . . . . . . 38

2.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7.1 Real Data Experiments . . . . . . . . . . . . . . . . . . . . . . 44

2.7.2 Synthetic Data Experiments . . . . . . . . . . . . . . . . . . . 51

2.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.9 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 60

3. Collaborative Crowdsourcing with Crowd4U . . . . . . . . . . . . . . . . . 61

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Crowd4U for Collaboration . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.1 Collaboration Architecture . . . . . . . . . . . . . . . . . . . . 63

3.2.2 Task assignment . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.3 Result coordination . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.4 Interface Design and Worker Interaction . . . . . . . . . . . . 69

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4. Worker Skill Estimation in Team-Based Tasks . . . . . . . . . . . . . . . . 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Applications of Team-Based Tasks . . . . . . . . . . . . . . . . . . . . 75

4.3 Data Model and Formalism . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Sum-Skill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.1 Sum-Skill-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.2 Sum-Skill-P . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Max-Skill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5.1 Max-Skill-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

x



4.5.2 Max-Skill-P . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7.1 Dataset Descriptions . . . . . . . . . . . . . . . . . . . . . . . 96

4.7.2 Implemented Algorithms . . . . . . . . . . . . . . . . . . . . . 97

4.7.3 Experimental Analyses Setup . . . . . . . . . . . . . . . . . . 99

4.7.4 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . 100

4.7.5 Qualitative Experiments . . . . . . . . . . . . . . . . . . . . . 102

4.7.6 Scalability Experiments . . . . . . . . . . . . . . . . . . . . . 106

4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5. Feature Based Task Recommendation in Crowdsourcing with Implicit Ob-

servations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Data Model and Preliminaries . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.1 Feature Preference Model . . . . . . . . . . . . . . . . . . . . 117

5.3.2 Latent Factor Model . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Algorithms for Task Recommendations . . . . . . . . . . . . . . . . . 120

5.4.1 Solution using Feature Preference Model . . . . . . . . . . . . 120

5.4.2 Solution using Latent Factor Model . . . . . . . . . . . . . . . 122

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.5.1 Dataset Descriptions . . . . . . . . . . . . . . . . . . . . . . . 123

5.5.2 Implemented Baseline Algorithms . . . . . . . . . . . . . . . . 124

5.5.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

xi



5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6. A Probabilistic Framework for Estimating Pairwise Distances Through

Crowdsourcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Data Model and Problem Formulations . . . . . . . . . . . . . . . . . 135

6.2.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2.2 Problem Formulations . . . . . . . . . . . . . . . . . . . . . . 139

6.3 Problem 1: Aggregation of Workers Feedback . . . . . . . . . . . . . 145

6.4 Problem 2: Estimation of Unknown Distances . . . . . . . . . . . . . 148

6.4.1 Algorithms for Optimal Solution . . . . . . . . . . . . . . . . . 148

6.4.2 Efficient Heuristic Algorithm . . . . . . . . . . . . . . . . . . . 152

6.5 Problem 3: Asking the Next Best Question . . . . . . . . . . . . . . . 155

6.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.6.1 Datasets Description . . . . . . . . . . . . . . . . . . . . . . . 158

6.6.2 Implemented Algorithms . . . . . . . . . . . . . . . . . . . . . 159

6.6.3 Experimental Set up . . . . . . . . . . . . . . . . . . . . . . . 161

6.6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

xii



LIST OF ILLUSTRATIONS

Figure Page

2.1 A partially constructed tree of GrpCandidateSet using the example in Sec-

tion 2.2. At node u1 = 1, LBC = wu6 + wu4 + wu3 + wu5 + wu1 = 3.2 and

UBd1 = u6d1 +u4d1 +u3d1 +u5d1 +u1d1 +u2d1 = 2.32. The entire subtree is pruned,

since LBC(3.2) > C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Possible search space using the example in Section 2.2, after the cost of the

workers are discretized into k = 2 buckets, considering only one skill d1. The

tree is constructed in descending order of skill of the workers per bucket. For

bucket 1, if the most skilled worker u2 is not selected, the other two workers

(u1, u5) will never be selected. . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 An instantiation of GrpDia(0.66) using the example in Section 2.2. A

star graph centered u1 is formed. . . . . . . . . . . . . . . . . . . . . . 35

2.4 An instantiation of GrpDia(0.66) using the example in Section 2.2. The clique

involving u1, u3, u4, u6 can not have an edge with distance > 2× 0.66, due to

the triangle inequality property. . . . . . . . . . . . . . . . . . . . . . . . 37

xiii



2.5 Balanced Partitioning in SpltBOpt when the distance satisfies triangle in-

equality for a graph with 6 modes. The left hand side figure has two

partitions({a, b, c}, {d, e, f}) with 3-nodes in each (red nodes create one par-

tition and blue nodes create another). The intra-partion edges are drawn

solid, whereas, inter-partition edges are drawn as dashed. Assuming K = 4,

in the right hand side figure, node d is moved with a, b, c. This increases the

overall inter-partition weights, but is bounded by a factor of 2. . . . . . . . 40

2.6 Worker profile distributions for the Sentence Translation Tasks in Sec-

tion 2.7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 Worker profile distributions for the Collaborative Document Writing in

Section 2.7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.8 Stage 3 results of sentence translation: Collected data with sta-

tistical significance (standard error) is presented. These results clearly

corraborate that our affinity-aware optimization model Optimal-CST out-

performs its affinity-unaware counterpart [43] with statistical signifi-

cance across both quality dimensions.Optimal-Affinity-Region apperas

to outeprform Optimal-Affinity-Age in “correctness”. The results of

CrtMass-Optimal-10 clearly appers to be less effective than the other two,

showing some anecdotal evidence that group size is important in collaborative

crowdsourcing applications. . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.9 Grp&Splt : Objective Function varying Number of Workers . . . . . . . . 54

2.10 Grp&Splt : Objective Function varying Task Mean Skill . . . . . . . . . . 54

2.11 Grp&Splt: Objective Function varying Critical Mass . . . . . . . . . . . . 54

2.12 Grp&Splt:Objective function over Simulation Days . . . . . . . . . . . . . 54

2.13 Grp : Mean Diameter varying Mean Skill . . . . . . . . . . . . . . . . . . 55

2.14 Grp :Mean Diamter varying Simulation Days . . . . . . . . . . . . . . . . 55

xiv



2.15 Grp&Splt : Mean Completion Time varying Number of Workers . . . . . . 55

2.16 Grp&Splt : Mean Completion Time varying Simulation Days . . . . . . . . 55

2.17 Grp : Mean Completion Time varying Mean Skill . . . . . . . . . . . . . . 57

2.18 Grp :Mean Completion Time varying Simulation Days . . . . . . . . . . . 57

3.1 Deployment process for complex collaborative tasks. Result coordina-

tion is achieved via worker collaboration schemes in task completion.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Crowd4U architecture and workflow for collaborative task assignment . 64

3.3 Constraint entry form in an project administration page . . . . . . . . 67

3.4 Worker human factors on a worker page . . . . . . . . . . . . . . . . . 67

3.5 Conducting simultaneous collaboration task . . . . . . . . . . . . . . . 68

4.1 An example joint pdf after, (a) Sum aggregation using Sum-Convolution (b)

Maximum aggregation using Max-Convolutions. In fact, our objective is to

learn the individual skill pdfs, given qt. . . . . . . . . . . . . . . . . . . . 85

4.2 Quality and Scalability trade-off: Deterministic/Probabilistic Mod-

els . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Experiments for hypothesis validation: Average relative `2 error for

Sum-Skill-D and Max-Skill-D considering NBA and DBLP datasets, with

varying # tasks. For Sum-Skill-D , NBA has significantly lower error, and

for Max-Skill-D DBLP dataset outputs smaller relative error. . . . . . . . 102

4.4 Experiments to validate Sum-Skill aggregation: These results clearly

demonstrate the our solutions consistently outperform the baseline for both

the measures we present in the Y -axis. The underlying dataset that is used

is NBA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xv



4.5 Experiments to validate Max-Skill aggregation : In these experiments,

we compute the average error by varying the number of tasks. Clearly,

our proposed solutions Max-Skill-D outperforms the baseline algorithm

BL-Max-D and Max-Skill-P outperforms BL-Max-P. The underlying dataset

is DBLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Experiments to validate the scalability of the deterministic skill

estimation algorithms: The following default settings is considered: #

workers=5000, # tasks=10000, # workers/task=10, # domains= 1. These

results clearly demonstrate that our proposed solutions are scalable. . . . . 105

4.7 Experiments to validate the scalability of the probabilistic skill es-

timation algorithms: default settings: # domains=1, n = 1000, w = 3, δ =

0.2, # failed iterations=200, # random restarts=5; despite having to solve a

polynomial of degree 20, our solutions scale well and terminate within a few

minutes. We only present a subset of results for brevity. . . . . . . . . . . 108

5.1 An example with 3 features and 2 tasks . . . . . . . . . . . . . . . . . 117

5.2 Worker Task Distribution . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3 PR Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1 Illustrative Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2 Worker Feedback Aggregation . . . . . . . . . . . . . . . . . . . . . . . 146

6.3 Example to Illustrate Tri-Exp . . . . . . . . . . . . . . . . . . . . . . 152

6.4 Quality Experiments: i)Worker Feedback Aggregation ii) Unknown Edge

Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.5 Experiments for validating Offline algorithms and Entity Resolution165

6.6 Quality Experiments: Asking the Next Best Question . . . . . . . . . . 165

6.7 Scalability Experiments: 4 different parameters are varied. Our default

settings is n = 100, p = 0.8, |Du| = 50%, b′ = 4. . . . . . . . . . . . . . . . 167

xvi



LIST OF TABLES

Table Page

2.1 Workers skill and wage table . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Workers Distance Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Task Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Description of different tasks; the default upper critical mass value is 5. De-

fault affinity calculation is region based. . . . . . . . . . . . . . . . . . . . 49

2.5 Stage 3 results of document writing application in Section 2.7.1:

Quality assessment on the completed tasks of Stage-2 is performed by a new

set of 60 AMT workers on a scale of 1−5. For all three tasks, the results clearly

demonstrate that effective collaboration leads to better task quality. Even

though all three groups (assigned to the same task) surpass the skill threhsold

and satisfy the wage limit, however, our proposed formalism Optimal enables

better team collaboration, resulting in higher quality of articles. . . . . . . 50

4.1 Task Assignment Matrix and Quality Evaluation Vector . . . . . . . . . . 75

4.2 Discretized pdfs using 3-equi-width histograms for Example 2 . . . . . . . 87

5.1 Notations & Interpretations . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 MPR Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xvii



6.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xviii



CHAPTER 1
Introduction

The emergence of Web 2.0 has given rise to a virtual workforce with unlimited

opportunities. Crowdsourcing is a term, widely used to describe a framework, which

enables these virtual workers to carry out a set of tasks through an online platform.

Examples of such platforms are Amazon Mechanical Turk(AMT), Crowdflower etc.

While crowdsourcing is generally used for solving simple tasks (also known as micro-

tasks), it is also envisioned as a framework for solving complex, knowledge-intensive

tasks such as creating a document or creating subtitle in different languages. These

days, crowdsourcing gained an immense popularity as people can get their work done

by numerous virtual workers for very low compensation. This new form of out-

sourcing has created a plenty of opportunity for business owners, academicians and

various other entities. Businesses use crowdsourcing primarily to i) get feedback for

their products, ii) promote their products on social media and other platforms. Re-

searchers, on the other hand, primarily use crowdsourcing to get ground truth(labeled)

data, or to solve complex computational problems where machine performs badly.

Citizen Science is a popular crowdsourcing platform, where scientists use volunteers

to gather data for their scientific expedition.
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The two main components of crowdsourcing are ”worker” and ”task”. The role

of workers varies significantly with different types of tasks. Here, we try to give a

brief overview of these two components.

Worker: We refer to ”worker” as an online user, who registers into the crowd-

sourcing platform, willing to complete tasks for monetary compensation. The quality

of a crowdsourcing task depends on the skill of the workers. Generally, crowdsourc-

ing platforms use simple evaluation metrics for workers, such as acceptance ratio or

average task rating etc. Both estimation of skill of workers and worker compensation

for tasks are studied thoroughly in the context of crowdosurcing [1, 2, 3]. In this

dissertation, we will explore skill estimation of the workers for collaborative tasks.

Tasks: A ”task” is considered as a single unit of work, which is to be completed

by one or multiple workers. Sometimes, a task is referred as a microtask or a Human

Intelligence Task(HIT). Initially, the crowdsourcing platforms only facilitate simple

tasks. Nowadays, with more computational power and more people being available

online, crowdsourcing proves to be an effective tool for solving complex tasks.

Although crowdsourcing promises a new way of solving tasks, there are several

challenges that need to be addressed. Broadly, existing research on crowdsourcing

generally falls into two categories-

i) Optimization in crowdsourcing framework: These set of problems stems

from the necessity to improve the existing framework while keeping an application in

mind. Examples include the optimization of the worker to task assignment, estimation

of the skill of workers, recommending a set of tasks to the workers based on the past

history of the task completion [4, 5]. Solving these problems would improve the

latency of task completion and would improve the quality of the completed tasks.

ii) Solving novel problems with crowdsourcing Another challenge is to

demonstrate how the power of crowd can be used to solve complicated problems.
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Crowdsourcing has been used to solve a number of problems such as top-k, group-by,

ranking, database join, sorting, entity resolution etc [6, 7, 8].

In view of this challenges, next, we are going to present the overview and the

impact of this dissertation.

1.1 Dissertation Overview and Impact

In this dissertation, first, we study the aspect of collaboration on solving com-

plex task with crowdsourcing. Collaborative crowdsourcing is widely considered as the

most important area of next generation crowdsourcing which is designed for solving

complex tasks [9]. However, the task assignments in such applications are primarily

self-coordinated to date, or sometimes such assignments are performed manually by

domain experts in a task-specific manner. In the latter scenario, domain experts also

manually evaluate the expertise of the workers. This leads us to explore the following

problems. First, we formalize the notion of collaboration among crowd workers and

propose a comprehensive optimization model for task assignment in a collaborative

crowdsourcing environment. Then, we integrate our task assignment module in an

academic crowdsourcing platform named Crowd4u [10]. Furthermore, we present

comprehensive optimization based formulations for estimation of the skill of workers

in team-based tasks.

Next, we propose techniques for task recommendation based on the previous

history of completed tasks by the worker. A common problem for the crowdsourcing

platform is that the workers suffer a huge latency to find a suitable task. To alleviate

that, we propose two alternative formulations for task recommendation that exploit

the implicit feedback and similarity of the tasks.

Finally, we propose a framework for estimating pairwise distances with crowd-

sourcing. This problem has applications in data mining and machine learning. Here,
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we describe how to aggregate the crowd inputs when they are uncertain (or, have a

probability of being incorrect). We also describe how to select the best question to

be asked to the crowd.

We present a high-level overview of different chapters below.

Task Assignment Optimization in Collaborative Crowdsourcing: The

current systems in ”Collaborative Crowdsourcing” are clearly sub-optimal- with pri-

marily because of the workers self-coordinate to form the groups. Also, there is no ma-

chine assisted intelligence that maximizes quality or minimizes cost. In this work, we

initiate the investigation of optimization opportunities in collaborative crowdsourc-

ing. Many popular applications, such as collaborative document editing, sentence

translation, or citizen science resort to this special form of human-based comput-

ing, where, crowd workers with appropriate skills and expertise are required to form

groups to solve complex tasks. Central to any collaborative crowdsourcing process is

the aspect of successful collaboration among the workers, which, for the first time,

is formalized and then optimized in this work. Our formalism considers two main

collaboration-related human factors, affinity and upper critical mass, appropriately

adapted from organizational science and social theories. Our contributions are (a)

proposing a comprehensive model for collaborative crowdsourcing optimization, (b)

rigorous theoretical analyses to understand the hardness of the proposed problems,

(c) an array of efficient exact and approximation algorithms with provable theoret-

ical guarantees. Finally, we present a detailed set of experimental results stemming

from two real-world collaborative crowdsourcing application using Amazon Mechan-

ical Turk, as well as conduct synthetic data analyses on scalability and qualitative

aspects of our proposed algorithms. Our experimental results successfully demon-

strate the efficacy of our proposed solutions.
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Integrating Task Assignment to Existing Platforms: Our aim is to in-

tegrate the task assignment algorithms in an existing Crowdsourcing platform. We

present Crowd4U[10], an educational crowdsourcing platform capable of handling

complex tasks. Currently, there exists no crowdsourcing platform today enables the

end-to-end deployment of collaborative tasks. In addition to treating workers and

tasks as rich entities, Crowd4U also provides an easy-to-use form-based task UI.

Crowd4U implements worker-to-task assignment algorithms that are appropriate for

each kind of task. Once workers are assigned to tasks, appropriate worker collabora-

tion schemes are enforced to enable effective result coordination.

Worker Skill Estimation in Team-Based Tasks Estimating skills of work-

ers is of paramount importance for complex tasks. Typically, completed tasks are

evaluated either by human experts or by machine algorithms. Skill estimation mod-

els need to leverage the underlying skill aggregation function which determines how

the skill of a team is aggregated from its constituent members. Many emerging ap-

plications such as collaborative editing, multi-player games, or fan-subbing require

forming a team of experts to accomplish a task together. In this work, we investigate

how to estimate individual worker’s skill based on the outcome of the team-based

tasks they have undertaken. We consider two popular skill aggregation functions

and estimate the skill of the workers, where skill is either a deterministic value or

a probability distribution. We propose efficient solutions for worker skill estimation

using continuous and discrete optimization techniques. We present comprehensive

experiments and validate the scalability and effectiveness of our proposed solutions

using multiple real-world datasets.

Task Recommendation in Crowdsourcing with Implicit Observations:

We initiate the study of task recommendation problem for crowdsourcing platforms,

where we leverage both implicit feedback and explicit features of the tasks. We assume

5



that we are given a set of workers, a set of tasks, interactions (such as the number of

times a worker has completed a particular task), and the presence of explicit features

of each task (such as task location). We intend to recommend tasks to the workers

by exploiting implicit interactions, and the presence or absence of explicit features in

the tasks. We present two alternative optimization problems and propose effective

solutions. We validate our proposed method using real-world dataset by comparing

with several baseline methods.

Estimating Pairwise Distance through Crowdsourcing Researchers have

been studying on how to use crowdsourcing to solve computational problems such as

finding maximum [11], group by [12], top-k [12], reducing the uncertainty of the

data [13] etc. Estimating all pairs of distances among a set of objects has wide appli-

cability in various computational problems in databases, machine learning, and statis-

tics. This work presents a probabilistic framework for estimating all pair distances

through crowdsourcing, where the human workers are involved in providing distance

between some object pairs. Since the workers are subject to error, their responses are

considered with a probabilistic interpretation. In particular, the framework comprises

of three problems: (1) Given multiple feedback on an object pair, how do we combine

and aggregate those feedbacks and create a probability distribution of the distance?

(2) Since the number of possible pairs is quadratic in the number of objects, how do

we estimate, from the known feedback of small numbers of object pairs, the unknown

distances among all other object pairs? For this problem, we leverage the metric

property of distance, in particular, the triangle inequality property in a probabilistic

setting. (3) Finally, how do we improve our estimate by soliciting additional feed-

back from the crowd? For all three problems, we present principled modeling and

solutions. We experimentally evaluate our proposed framework by involving multiple
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real-world and large-scale synthetic data, by enlisting workers from a crowdsourcing

platform.

1.2 Dissertation Organization

In chapter 2 we describe the task assignment model for collaborative crowd-

sourcing. Our key contributions are threefold. First, we investigate the optimization

opportunities in collaborative crowdsourcing. Second, we propose a comprehensive

theoretical analysis of our overall problem and our staged solution Grp&Splt. Fi-

nally, we present a comprehensive set of experimental results that demonstrate the

effectiveness of the proposed solution.

In chapter 3, we describe the deployment of our task assignment algorithm,

Grp, in an existing crowdsourcing platform, Crowd4u.

We formalize the problem of skill estimation for team-based tasks in chapter 4.

There, we describe both deterministic and probabilistic interpretation of skills. We

define two different skill aggregation functions, Sum and Max. We propose principled

solutions and theoretical analyses to estimate workers skill under both of these ag-

gregation mechanisms. We conduct comprehensive experiments on NBA and DBLP

datasets to show that our algorithms are accurate and efficient.

In chapter 5, we present the study of task recommendation in crowdsourcing

exploiting both implicit feedback and the presence of the explicit task features. First,

we present an explicit feature preference model for task recommendation. Second, we

propose an optimization model based on the latent factors. We empirically validate

our proposed methods using real-world datasets and we compare our results with the

state of the art baseline solutions.

Finally, In chapter 6, we consider the novel problem of all-pairs distance estima-

tion via crowdsourcing in a probabilistic setting. We identify three sub-components
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of our frameworks and present solutions to each problem. Furthermore, we experi-

mentally evaluate the framework using both real and synthetic dataset.
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CHAPTER 2
Task Assignment Optimization in

Collaborative Crowdsourcing

Many popular applications, such as collaborative document editing, sentence

translation, or citizen science resort to collaborative crowdsourcing, a special form of

human-based computing, where, crowd workers with appropriate skills and expertise

are required to form groups to solve complex tasks. While there has been extensive

research on workers’ task assignment for traditional microtask based crowdsourc-

ing, they often ignore the critical aspect of collaboration. Central to any collab-

orative crowdsourcing process is the aspect of solving collaborative tasks that re-

quires successful collaboration among the workers. Our formalism considers two main

collaboration-related factors - affinity and upper critical mass - appropriately adapted

from organizational science and social theories. Our contributions are three fold.

First, we formalize the notion of collaboration among crowd workers and propose a

comprehensive optimization model for task assignment in a collaborative crowdsourc-

ing environment. Next, we study the hardness of the task assignment optimization

problem and propose a series of efficient exact and approximation algorithms with
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provable theoretical guarantees. Finally, we present a detailed set of experimental

results stemming from two real-world collaborative crowdsourcing application using

Amazon Mechanical Turk.

2.1 Introduction

Crowdsourcing Complex Tasks: Micro task based crowdsourcing has been

applied successfully in a number of domains such as collecting labeled data, fact check-

ing, image recognition etc [14]. Here, the crowd workers can operate independently

because of the simplicity of the tasks. However, such an individualistic approach

will not work for many complex knowledge intensive tasks such as Citizen Science

where crowdsourcing is increasingly being used. Collaborative crowdsourcing is an

emerging paradigm where a set of workers with complementary skills form groups and

collaborate to perform complex tasks. The synergistic effect of collaboration in group

based activities is widely accepted in socio-psychological research and traditional team

based activities [15, 16, 17]. A number of popular applications such as collaborative

document editing, sentence translation, or citizen science could be modeled as collab-

orative crowdsourcing tasks. Despite its immense potential, the transformative effect

of “collaboration” remains largely unexplored in crowdsourcing [9].

Task Assignment Optimization for Solving Collaborative Tasks: The

optimization goals for task assignment is putatively similar between collaborative task

and traditional micro-task - maximize the quality of the completed tasks while mini-

mizing cost by assigning appropriate tasks to appropriate workers. Task assignment

has been extensively studied for microtask based crowdsourcing. However, none of

those algorithms are applicable for collaborative crowdsourcing as they ignore the crit-

ical aspect of Collaboration. Instead of working individually, workers collaboratively

work on tasks and build on each others’ contributions.
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This collaborative aspect requires that a task assignment algorithm must take

into account both the characteristics of individual workers and that of the group.

Prior work has identified some key individual characteristics of the worker, dubbed

as human factors, such as skill and wages. From prior work on socio-psychological

research[15, 16], we have identified two key factors for group characteristics that entail

successful collaboration. The first factor worker-worker affinity [18, 19] represents the

comfort-level between workers in a group who work on the same task. It has been

noted that successful teams have members with high affinity with each other. In

contrast, teams with low affinity often suffer from low productivity and take longer

to complete the tasks [?]. Social theories widely underscore the importance of upper

critical mass [20] for group collaboration, which is a constraint on the size of groups

beyond which the collaboration effectiveness diminishes [20, 21].

Overview of Technical Approach: Despite the importance of collabora-

tive crowdsourcing, there has been a dearth of work that formalizes the notion of

collaboration and the optimization objectives for task assignment for collaborative

crowdsourcing tasks. Additionally, while key factors for successful collaboration such

as worker affinity and critical mass has been identified in psycho-social theories, there

has been no prior effort on formalizing these individual and group based human fac-

tors in a principled manner to optimize the outcome of a collaborative crowdsourcing

environment. Hence, our first significant contribution lies in appropriately incorporat-

ing the interplay of this variety of complex human factors into a set of well-formulated

optimization problems.

Intuitively, the objective for task assignment is to choose, for each task, a group

of workers who collectively hold skills required for the task, collectively cost less than

the task’s budget and collaborate effectively. Using the notions of affinity and upper

critical mass, we formalize the flat model of work coordination [22] in collaborative
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crowdsourcing as a graph with nodes representing workers and edges labeled with pair-

wise affinities. A group of workers is a clique in the graph whose size does not surpass

the critical mass imposed by a task. A large clique (group) may further be partitioned

into subgroups (each is a clique of smaller size satisfying critical mass) to complete a

task because of the task’s magnitude. Each clique has an intra and an inter-affinity

to measure respectively the level of cohesion that the clique has internally and with

other cliques. A clique with high intra-affinity implies that its members collaborate

well with one another. Two cliques with a high inter-affinity between them imply

that these two groups of workers work well together. Our optimization problem

reduces to finding a clique that maximizes intra-affinity, satisfies the skill threshold

across multiple domains, satisfies the cost limit, and maximizes inter-affinity when

partitioned into smaller cliques. We note that no existing work on team formation

in social networks [23, 24] or collaborative crowdsourcing [9, 18, 19] has attempted

similar formulations.

We show that solving the complex optimization problem explained above is

prohibitively expensive and incurs very high machine latency. Such high latency

is unacceptable for a real-time crowdsourcing platform. Therefore, we propose an

alternative strategy Grp&Splt that decomposes the overall problem into two stages

and is a natural alternative to our original problem formulation. Even though this

two-stage formulation is also computationally intractable in the worst case, it allows us

to design instance optimal exact algorithms that work well in the average case, as well

as efficient approximation algorithms with provable bounds. In the first stage (referred

to as Grp), we first form a single group of workers by maximizing intra-affinity, while

satisfying the skill and cost thresholds. In the second stage, (referred to as Splt), we

decompose this large group into smaller subgroups, such that each satisfies the group

size constraint (imposed by critical mass) and the inter-affinity across sub-groups

12



is maximized. Despite being NP-hard [25], we propose an instance optimal exact

algorithm OptGrp and a novel 2-approximation algorithm ApprxGrp for the stage-

1 problem. Similarly, we prove the NP-hardness and propose a 3-approximation

algorithm Min-Star-Partition for a variant of the stage-2 problem.

We conduct a comprehensive experimental study with two different applications

(sentence translation and collaborative document editing) using real world data from

Amazon Mechanical Turk and present rigorous scalability and quality analyses using

synthetic data. Our experimental results demonstrate that our formalism is effec-

tive in aptly modeling the behavior of collaborative crowdsourcing and our proposed

solutions are scalable.

In summary, this work makes the following contributions:

1. Formalism: We investigate the optimization opportunities in collaborative

crowdsourcing. In section 2.4, we formally define our problem which incor-

porates a variety of human factors.

2. Solutions: We propose a comprehensive theoretical analysis of our problems

and approaches. We analyze the computational complexity of our problems

and propose a principled staged solution. We propose exact instance optimal

algorithms as well as efficient approximation algorithms with provable approx-

imation bounds.

3. Experiments: We present a comprehensive set of experimental results (two real

applications as well as synthetic experiments) that demonstrate the effectiveness

of our proposed solutions.

The chapter is organized as follows. Sections 2.2, 2.3, and 2.4 discuss a database

application of collaborative crowdsourcing, our data model, problem formalization,

and initial solutions. Sections 2.5 and 2.6 describe our theoretical analyses and pro-
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posed algorithmic solutions. Experiments are described in 2.7, related work in Sec-

tion 2.8, and conclusion are presented in Section 2.9.

2.2 An Application of Collaborative Task

Sentence translation [26, 18, 19] is a frequently encountered application of col-

laborative task, where the objective is to use the workers to build a translation

database of sentences in different languages. Such databases later on serve as the

“training dataset” for supervised machine learning algorithms for automated sentence

translation purposes.

As a running example for this chapter, consider a translation task t designed

for translating an English video clip to French. Typically, such translation tasks

follows a 3-step process [18, 19]: English speakers first translate the video in English,

professional editors edit the translation, and finally workers with proficiency in both

English and French translate English to French. Consequently, such task requires

skills in 3 different domains: English comprehension (d1), English editing (d2), and

French Translation ability (d3).

In our optimization setting, each task t has a requirement of minimum skill

per domain and maximum cost budget, and workers should collaborate with each

other (e.g., to correct each others’ mistakes [18]), and the collaboration effectiveness is

quantified as the affinity of the group. Some aspects of our formulation has similarities

with team formation problems in social networks [23]. The notion of affinity has been

identified in the related work on sentence translation tasks [18, 19], as well as team

formation problems [23].

However, if the group is “too large”, the effectiveness of collective actions di-

minishes [20, 21] while undertaking the translation task, as an unwieldy group of

workers fail to find effective assistance from their peers [18, 19]. Therefore, each task
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u1 u2 u3 u4 u5 u6

d1 0.66 1.0 0.53 0.0 0.13 0.0
d2 0.0 0.0 0.66 0.73 0.66 0.13
d3 0.0 0.33 0.53 0.0 0.8 0.93
Wage 0.4 0.3 0.7 0.8 0.5 0.8

Table 2.1: Workers skill and wage table

u1 u2 u3 u4 u5 u6

u1 0.0 1.0 0.66 0.66 0.85 0.66
u2 1.0 0.0 0.66 0.85 0.66 0.85
u3 0.66 0.66 0.0 0.4 0.66 0.40
u4 0.66 0.85 0.4 0.0 0.4 0.0
u5 0.85 0.66 0.66 0.4 0.0 0.4
u6 0.66 0.85 0.4 0.0 0.4 0.0

Table 2.2: Workers Distance Matrix

t is associated with a corresponding upper critical mass constraint on the size of an

effective group, i.e., a large group may need to be further decomposed into multi-

ple subgroups in order to satisfy that constraint. A study of the importance of the

upper critical mass constraint in the crowdsourcing context, as well as how to set

its (application-specific) value, are important challenges that are best left to domain

experts; however, we experimentally study this issue for sentence translation.

When this task arrives, imagine that there are 6 workers u1, u2, . . . , u6 available

in the crowdsourcing platform. Each worker has a skill value on each of the three

skill domains described above, and a wage they expect. Additionally, the workers’

cohesiveness or affinity is also provided. These human factors of the workers are

summarized in Tables 2.1 and 2.2, and the task requirements of t (including thresholds

on aggregated skill for each domain, total cost, and critical mass) are presented in

Table 2.3 and are further described in the next section. The objective is to form

a “highly cohesive” group G of workers that satisfies the lower bound of skill of the

task and upper bound of cost requirements. Due to the upper critical mass constraint,
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Q1 Q2 Q3 C K
1.8 1.4 1.66 3.0 3

Table 2.3: Task Description

G may further be decomposed into multiple subgroups. After that, each sub-group

undertakes a subset of sentences to translate. Once all the subgroups finish their

respective efforts, their contributions are merged. Therefore, both the overall group

and its subgroups must be cohesive. Incorporation of upper critical mass makes our

problem significantly different from the body of prior works [23], as we may have to

create a group further decomposed into mutiple subgroups, instead of a single group.

2.3 Data Model

We introduce our data model and preliminaries that will serve as a basis for

our problem definition.

2.3.1 Preliminaries

Domains: We are given a set of domains D = {d1, d2, . . . , dm} denoting knowl-

edge topics. Using the running example in Section 2.2, there are 3 different domains -

English comprehension (d1), English editing (d2), and French Translation ability(d3).

Workers: We assume a set U = {u1, u2, . . . , un} of n workers available in

the crowdsourcing platform. The example in Section 2.2 describes a crowdsourcing

platform with 6 workers.

Worker Group: A worker group G consists of a subset of workers from U i.e.

G ⊆ U .

Skills: A skill is the knowledge on a particular skill domain in D, quantified in

a continuous [0, 1] scale. It is associated with workers and tasks. The skill of a worker
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represents the worker’s expertise/ability on a topic. The skill of a topic represents

the minimum knowledge requirement/quality for that task. A value of 0 for a skill

reflects no expertise of a worker for that skill. For a task, 0 reflects no requirement

for that skill.

How to learn the skill of the workers is an important and independent research

problem in its own merit. Most related work has relied on learning skill of the workers

from “gold-standard” or benchmark datasets using pre-qualification tests [27, 28].

Collaborative Tasks: A collaborative task t has the following characteristics

:

• Skill Threshold: Each Qi ∈ R represents the minimum skill requirement that

a task needs to achieve for domain di. A task is deemed complete, if it attains

its skill requirement over all the domains.

• Cost Threshold: C ∈ R, the cost budget to hire workers for a particular task.

This gives an upper bound on the aggregated cost of assigning the workers.

• Critical Mass: K is a positive integer (greater than 0) which denotes the

maximum group size for a task. Tasks that require high skill threshold may

need many workers and may violate the critical mass threshold. In that case,

the workers should be splitted in subgroups (each satisfying the critical mass

constraint) such that the workers across all the subgroups satisfy the skill and

cost threshold.

Specifically, t is characterized by a vector, 〈Q1, Q2, . . . , Qm, C,K〉, of length

m + 2. For the example in Section 2.2, there are 3 domains (m = 3) and their

respective skill requirements, its cost C, and critical mass K of the task is described

in Table 2.3. A task is considered complete if it attains its skill requirement over all

domains and satisfies all the constraints.
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2.3.2 Human Factors

A worker is described by a set of human factors. We consider two types of

factors - factors that describe individual worker’s characteristics and factors that

characterize an individual’s ability to work with fellow workers. Our contribution is

in appropriately adapting these factors in collaborative crowdsourcing from multi-

disciplinary prior works such as team formation [23, 24] and psychology research [20,

21].

2.3.2.1 Individual Human Factors: Skill and Wage

Individual workers in a crowdsourcing environment are characterized by their

skill and wage.

Skill: For each knowledge domain di, udi ∈ [0, 1] is the expertise level of worker

u in di. Skill expertise reflects the quality that the worker’s contribution has on a

task accomplished by that worker.

Wage: wu ∈ [0, 1] is the minimum amount of compensation for which a worker

u is willing to complete a task. We choose a simple model where a worker specifies a

single wage value independent of the task at-hand.

Table 2.1 presents the respective skill of the 6 workers in 3 different domains

and their individual wages for the running example.

2.3.2.2 Group-based Human Factors: Affinities

Although related work in collaborative crowdsourcing acknowledges the impor-

tance of workers’ affinity to enable effective collaboration [18, 19], there is no attempt

to formalize the notion any further. A worker’s effectiveness in collaborating with her

fellow workers is measured as affinity. We adopt an affinity model similar to group
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formation problems in social networks [29, 23], where the atomic unit of affinity is

pairwise, i.e., a measure of cohesiveness between every pair of workers. After that,

we propose different ways to capture intra-group and inter-group affinities.

Pairwise affinity: The affinity between two workers ui and uj, aff (ui, uj),

can be calculated by capturing the similarity between workers using simple socio-

demographic attributes, such as region, age, gender, as done in previous work [18], as

well as more complex psychological characteristics [30]. For our purpose, we normalize

pairwise affinity values to fit in [0, 1] and use a notion of worker-worker distance

instead, i.e., where dist(ui, uj) = 1 − aff (ui, uj). Thus a smaller distance between

workers ensures a better collaboration. Table 2.2 presents the pair-wise distance of

all 6 workers for running example in Section 2.2. As will be clear later, the notion of

distance rathey than affinity enables the design of better algorithms for our purposes.

Intra-group affinity: For a group G, its intra-group affinity measures the

collaboration effectiveness among the workers in G. Here again we use distance and

compute intra-group distance in one of two natural ways: computing the diameter

of G as the largest distance between any two workers in G, or aggregating all-pair

worker distances in G:

DiaDist(G) = Max∀ui,uj∈Gdist(ui, uj)

SumDist(G) = Σ∀ui,uj∈Gdist(ui, uj)

For both definitions, smaller value is better.

Inter-group affinity: When a group violates the upper critical mass con-

straint [20], it needs to be decomposed into multiple smaller ones. The resulting

subgroups need to work together to achieve the task. Given two subgroups G1, G2

split from a large group G, their collaboration effectiveness is captured by comput-

ing their inter-group affinities. Here again, we use distance instead of affinity. More
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concretely, the inter-group distance is defined in one of two natural ways: either the

largest distance between any two workers across the sub-groups, or the aggregation

of all pair-wise workers distances across subgroups:

DiaInterDist(G1, G2) = Max∀ui∈G1,uj∈G2dist(ui, uj)

SumInterDist(G1, G2) = Σ∀ui∈G1,uj∈G2dist(ui, uj)

This can be generalized to more than two subgroups: if there are x subgroups, overall

inter-group affinity is the summation of inter-group affinity for all possible
(
x
2

)
pairs.

2.4 Optimized Group Formation

Problem Settings: For each collaborative task, we intend to form the most

appropriate group of workers from the available worker pool. A collaborative crowd-

sourcing task has skill requirements in multiple domains and a cost budget, which is

similar to the requirements of collaborative tasks in team formation problems [29].

Then, we adapt the “flat-coordination” models of worker interactions, which is con-

sidered important in prior works in team formation [23] as the “coordination cost”,

or in collaborative crowdsourcing [18] itself, as ‘the ‘turker-turker” affinity model.

However, unlike previous work, we attempt to fully explore the potential of “group

synergy” [31] and how it yields the maximum qualitative effects in group based ef-

forts by maximizing affinity among the workers (or minimizing distance). Finally, we

intend to investigate the effect of upper critical mass in the context of collaborative

crowdsourcing as a constraint on group size, beyond which the group must be de-

composed into multiple subgroups that are cohesive inside and across. Indeed, our

objective function is designed to form a group (or further decomposed into a set of

subgroups) to undertake a specific task that achieves the highest qualitative effect,

while satisfying the cost constraint.
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(1) Qualitative effect of a group: Intuitively, the overall qualitative effect of a

formed group to undertake a specific task is a function of the skill of the workers

and their collaboration effectiveness. Learning this function itself is challenging, as

it requires access to adequate training data and domain knowledge. In our initial ef-

fort, we therefore make a reasonable simplification, where we seek to maximize group

affinity and pose quality as a hard constraint1. Existing literature (indicatively [31])

informs us that aggregation is a mechanism that turns private judgments (in our

case individual workers’ contributions) into a collective decision (in our case the final

translated sentences), and is one of the four pillars for the wisdom of the crowds.

For complex tasks like sentence translation or document editing, there is no widely

accepted mathematical function of aggregation. We choose sum to aggregate the skill

of the workers that must satisfy the lower bound of the quality of the task. This sim-

plest and yet most intuitive functions for transforming individual contributions into

a collective result has been adopted in many previous works [23, 29, 32]. Moreover,

this simpler function allows us to design efficient algorithms. Exploring other complex

functions (e.g., multiplicative function) or learning them is deferred to future work.

(2)Upper critical mass: Sociological theories widely support the notion of

“critical mass”[20, 21] by reasoning that large groups are less likely to support

collective action. However, whether the effect of “critical mass” should be imposed

as a hard constraint, or it should have more of a gradual “diminishing return” effect,

is itself a research question. For simplicity, we consider upper critical mass as a

hard constraint and evaluate its effectiveness empirically for different values. Ex-

ploring more sophisticated function to capture critical mass is deferred to future work.

1Notice that posing affinity as a constraint does not fully exploit the effect of “group

synergy”.
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Problem 1. AffAware-Crowd: Given a collaborative task t, the objective is to

form a worker group G, further partitioned into a set of x subgroups G1, G2, ....Gx (if

needed) for the task t that minimizes the aggregated intra-distance of the workers, as

well as the aggregated inter-distance across the subgroups of G, and G must satisfy

the skill and cost thresholds of t, where each subgroup Gi must satisfy the upper

critical mass constraint of t. Of course, if the group G itself satisfies the critical mass

constraint, no further partitioning in G is needed, giving rise to a single worker group.

As explained above, quality of a task is defined as an aggregation (sum) of the skills of

the workers [23, 29]. Similarly, cost of the task is the additive wage of all the workers

in G.

2.4.1 Optimization Models

Given the definition of AffAware-Crowd above, we propose multiple optimiza-

tion objective functions based on different inter- and intra-distance measures defined

in Section 2.3.

For a group G, we calculate intra-distance in one of the two possible ways:

DiaDist , SumDist . If G is further partitioned to satisfy the upper critical mass con-

straint, then we also want to enable strong collaboration across the subgroups by

minimizing inter-distance. For the latter, inter-distance is calculated using one of

DiaInterDist , SumInterDist . Even though there may be many complex formulations

to combine these two factors, in our initial effort our overall objective function is a

simple sum of these two factors that we wish to minimize. This gives rise to 4 possible

optimization objectives.
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• DiaDist ,DiaInterDist :

Minimize {DiaDist(G) +

Max{∀Gi, Gj ∈ G DiaInterDist(Gi, Gj)}}

• SumDist ,DiaInterDist :

Minimize {SumDist(G) +

Max{∀Gi, Gj ∈ G DiaInterDist(Gi, Gj)}}

• DiaDist , SumInterDist :

Minimize {DiaDist(G) +
∑

Gi,Gj∈G

SumInterDist(Gi, Gj)}

• SumDist , SumInterDist :

Minimize {SumDist(G) +
∑

Gi,Gj∈G

SumInterDist(Gi, Gj)}

where, each of these objective function has to satisfy the following three con-

straints on skill, cost, and critical mass respectively, as described below:

Σ∀ui∈Gudi ≥ Qi ∀di

Σ∀u∈Gwu ≤ C

|Gi| ≤ K ∀i ∈ {1, 2, . . . , x}

The rest of our discussion only considers DiaDist on intra-distance and

SumInterDist on inter-distance. We refer to this variant of the problem as

AffAware-Crowd. We note that our proposed optimal solution in Section 2.4 could

be easily extended to other combinations as well.
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Theorem 1. Problem AffAware-Crowd is NP-hard [25].

Proof. Given a collaborative task t and a set of users U and a real number value X,

the decision version of the problem is, whether there is a group G (further partitioned

into multiple subgroups) of users (G ⊆ U), such that the aggregated inter and intra

distance value of G is X and skill, cost, and critical mass constraints of t are satisfied.

The membership verification of the decision version of AffAware-Crowd is clearly

polynomial.

To prove NP-hardness, we consider a variant of compact location [33] problem

which is known to be NP-Complete. Given a complete graph G with N nodes, an

integer n ≤ N and a real number X ′, the decision version of the problem is whether

there is a complete sub-graph g′ of size n′ ∈ N , such that the maximum distance

between between any pair of nodes in g′ is X ′. This variant of the compact location

problem is known as Min-DIA in [33].

Our NP-hardness proof uses an instance of Min-DIA and reduces that to an

instance of AffAware-Crowd problem in polynomial time. The reduction works as

follows: each node in graph G represents a worker u, and the distance between any

two nodes in G is the distance between a pair of workers for our problem. We assume

that the number of skill domain is 1, i.e., m = 1. Additionally, we consider that each

workers u has same skill value of 1 on that domain, i.e., ud = 1,∀u and their cost is

0, i.e., wu = 0,∀u. Next, we describe the settings of the task t. For our problem, the

task also has the quality requirement in only one domain, which is, Q1. The skill,

cost, and critical mass of t are, 〈Q1 = n′, C = 0, K = ∞〉. This exactly creates an

instance of our problem in polynomial time. Now, the objective is to form a group G

for task t such that all the constraints are satisfied and the objective function value
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of AffAware-Crowd is X ′, such that there exists a solution to the Min-DIA problem,

if and only if, a solution to our instance of AffAware-Crowd exists.

2.4.2 Algorithms for AffAware-Crowd

Our optimization problem attempts to appropriately capture the complex

interplay among various important factors. The proof of Theorem 1 shows that the

simplest variant of the optimization problem is NP-hard. Despite the computational

hardness, we attempt to stay as principled as possible in our technical contributions

and algorithms design. Towards this end, we propose two alternative directions:

(I) ILP: We propose a Integer Linear Programming (ILP) [34] formulation to

optimally solve our original overarching optimization problem. We note that even

translating the problem to an ILP is non-trivial, because the subgroups inside the

large group are unknown and are determined by the solution.

(II) Staged Approach: We propose an alternate strategy due to the fact

that ILP is prohibitively expensive. We refer it as Grp&Splt. As the name suggests,

it decomposes the original problem into two phases-

a) Grp: In this phase, a single group is formed that satisfies the skill and cost threshold

but ignores the upper critical mass constraint. We briefly summarize the algorithms

for Grp stage below:

• ApprxGrp: This is an approximation algorithm with approximation factor of

2. It invokes a subroutine, which uses branch and bound method, to find a

group of workers who satisfy skill and cost constraint for the task. For ef-

ficiency, we rely on bucketing the cost values. We refer to this variant as

Cons-k-Cost-ApprxGrp.
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• OptGrp: This is an instance optimal algorithm that also uses branch and bound

method. However, it iterates over all the valid solutions to find the optimal one.

b) Splt: In this phase, we partition the worker group (returned from the Grp phase)

into smaller collaborative subgroups. First, we attempt to find the optimal number

of subgroups and then find the assignment of workers into these subgroups. We

propose Min-Star-Parition, an approximation algorithm for this problem.

Of course, this staged solution may not have any theoretical guarantees for our orig-

inal problem formulation. However, our experimental results demonstrate that this

formulation is efficient, as well as adequately effective.

2.4.2.1 ILP for AffAware-Crowd

We discuss the ILP next as shown in Equation 2.1. Let e(i,i′) denote a boolean

decision variable of whether a user pair ui and u′i would belong to same sub-group

in group G or not. Also, imagine that a total of x groups (G1, G2, . . . , Gx) would be

formed for task t, where 1 ≤ x ≤ n (i.e., at least the subgroup is G itself, or at most n

singleton subgroups could be formed). Then, which subgroup the worker pair should

be assigned must also be determined, where the number of subgroups is unknown

in the first place. Note that translating the problem to an ILP is non-trivial and

challenging, as the formulation deliberately makes the problem linear by translating

each worker-pair as an atomic decision variable (as opposed to a single worker) in

the formulation, and it also returns the subgroup where each pair should belong to.

Once the ILP is formalized, we use a general-purpose solver to solve it. Although

the Max operator in the objective function (expresses DiaDist) must be translated
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appropriately further in the actual ILP implementation, in our formalism below, we

preserve that abstraction for simplicity.

minimize D = Max{ei,i′ × dist(ui, ui′)} +∑
∀Gi,Gj∈G

∑
∀ui∈Gi,uj∈Gj

ei,jdist(ui, uj)

subject to

n∑
i=1

x∑
j=1

u(i,Gj) × uidl ≥ Ql ∀l ∈ [1,m]

n∑
i=1

x∑
j=1

u(i,Gj) × wiu ≤ C

n∑
i=1

u(i,Gj) ≤ K ∀j ∈ [1, x]

x∑
j=1

u(i,Gj) ≤ 1 ∀i ∈ [1, n]

ei,i′ =


1 ∃j ∈ [1, x] & u(i,Gj) = 1 & u(i′,Gj) = 1

0 otherwise

x ∈ {0, 1, . . . , n}

u(i,Gj) ∈ {0, 1} ∀i ∈ [1, n],∀j ∈ [1, x]

(2.1)

The objective function returns a group of subgroups that minimizes

DiaDist(G) + Σ∀Gi,Gj
SumInterDist(Gi, Gj). The first three constraints ensure the

skill, cost and upper critical mass thresholds, whereas the last four constraints ensure

the disjointedness of the group and the integrality constraints on different Boolean

decision variables.

When run on the example in Section 2.2, the ILP generates the optimal solution

and creates group G = {u1, u2, u3, u4, u6} with two subgroups, G1 = {u1, u2, u4}, and
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G2 = {u3, u6}. The distance value of the optimization objective is 4.23, which equals

to DiaDist(G) + InterDist(G1, G2).

2.4.2.2 Grp&Splt : A Staged Approach

Our proposed alternative strategy Grp&Splt works as follows: in the Grp stage,

we attempt to form a single worker group that minimizes DiaDist(G), while satisfying

the skill and cost constraints (and ignoring the upper critical mass constraint). Note

that this may result in a large group, violating the upper critical mass constraints.

Therefore, in the Splt phase, we partition this big group into multiple smaller sub-

groups, each satisfying the upper critical mass constraint in such a way that the

aggregated inter-distance between all pair of groups Σ∀Gi,Gj
SumInterDist(Gi, Gj) is

minimized. As mentioned earlier, there are three primary reasons for taking this

alternative route: (a) In many cases we may not even need to execute Splt, because

the solo group formed in Grp phase abides by the upper critical mass constraint

leading to the solution of the original problem. (b) The original complex ILP is

prohibitively expensive. Our experimental results demonstrate that the original ILP

does not converge in hours for more than 20 workers. (c) Most importantly, Grp&Splt

allows us to design efficient approximation algorithms with constant approximation

factors as well as instance optimal exact algorithms that work well in practice, as long

as the distance between the workers satisfies the metric property (triangle inequality

in particular) [35, 36]. We underscore that the triangle inequality assumption is not

an overstretch, rather many natural distance measures (Euclidean distance, Jaccard

Distance) are metric and several other similarity measures, such as Cosine Similarity,

Pearson and Spearman Correlations could be transformed to metric distance [37].

Furthermore, this assumption has been extensively used in distance computation in
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the related literature [38, 23]. Without metric property assumptions, the problems

remain largely inapproximable [36].

2.5 Enforcing Skill & Cost : GRP

In this section, we first formalize our proposed approach in Grp phase, discuss

hardness results, and propose algorithms with theoretical guarantees. Recall that our

objective is to form a single group G of workers that are cohesive (the diameter of

that group is minimized), while satisfying the skill and the cost constraint.

Definition 1. Grp: Given a task t, form a single group G of workers that minimizes

DiaDist(G), while satisfying the skill and cost constraints, i.e., Σ∀u∈Gudi ≥ Qi, ∀di, &

Σ∀u∈Gwu ≤ C.

Theorem 2. Problem Grp is NP-hard.

Proof. Given a collaborative task t with critical mass constraint and a set of users

U and a real number X, the decision version of the problem is, whether there is a

group G of users (G ⊆ U), such that the diameter is X, and skill and cost constraints

of t are satisfied.The membership verification of this decision version of Grp is clearly

polynomial.

To prove NP-hardness, the follow the similar strategy as above. We use an

instance of Min-DIA [33] and reduce that to an instance of Grp, as follows: each node

in graph G of Min-DIA represents a worker u, and the distance between any two nodes

in G is the distance between a pair of workers for our problem. We assume that the

number of skill domain is 1, i.e., m = 1. Additionally, we consider that each workers

u has the same skill value of 1 on that domain, i.e., ud = 1,∀u and their cost is 0,

i.e., wu = 0,∀u. Task t has quality requirement on only one domain, which is, Q1.

The skill requirement of t is 〈Q1 = n′ and cost C = 0〉. Now, the objective is to form
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a group G for task t such that the skill and cost constraints are satisfied with the

diameter of Grp as X ′, such that there exists a solution to the Min-DIA problem, if

and only if, a solution to our instance of Grp exists.

Proposed Algorithms for Grp: We discuss two algorithms at length -

a) OptGrp is an instance optimal algorithm. b) ApprxGrp algorithm has a 2-

approximation factor, as long as the distance satisfies the triangle inequality property.

Of course, an additional optimal algorithm is the ILP formulation itself (referred to

as ILPGrp in experiments), which could be easily adapted from Section 2.4. Both

OptGrp and ApprxGrp invoke a subroutine inside, referred to as GrpCandidateSet.

We describe a general framework for this subroutine next.

2.5.1 Subroutine GrpCandidateSet

Input to this subroutine is a set of n workers and a task t (in particular the

skill and the cost constraints of t) and the output is a worker group that satisfies

the skill and cost constraints. Notice that, if done naively, this computation takes

2n time. However, Subroutine GrpCandidateSet uses effective pruning strategy to

avoid unnecessary computations that is likely to terminate much faster. It computes a

binary tree representing the possible search space considering the nodes in an arbitrary

order, each node in the tree is a worker u and has two possible edges (1/0, respectively

stands for whether u is included in the group or not). A root-to-leaf path in that tree

represents a worker group.

At a given node u, it makes two estimated bound computation : a) it computes

the lower bound of cost (LBC) of that path (from the root upto that node), b) it

computes the upper bound of skill of that path (UBdi) for each domain. It compares

LBC with C and compares UBdi with Qi, ∀di. If LBC > C or UBdi < Qi for any of the
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domains, that branch is fully pruned out. Otherwise, it continues the computation.

Figure 2.1 has further details.

u6#

u4#

u3#

u5#

u1#

u2#

1#

0#

1#
0#

0#

0#

0#

0#1#

1#

0#

0#

0#
1#

1#

1#

1# 1#0#

1#

u1#

u2#u2#
u2#

u2# u2#

u1#

u5#

u1#

u2# u2#

1#

1#

1#

0#

0#

0# 0#1#

1#

1# 1#0# 0#

0#

u3#

u4#

LBC=#3.2#
UBd1#=#2.32#

Figure 2.1: A partially constructed tree of GrpCandidateSet using the example in
Section 2.2. At node u1 = 1, LBC = wu6 + wu4 + wu3 + wu5 + wu1 = 3.2 and
UBd1 = u6d1 + u4d1 + u3d1 + u5d1 + u1d1 + u2d1 = 2.32. The entire subtree is pruned, since
LBC(3.2) > C.

ApprxGrp uses this subroutine to find the first valid answer, whereas, Algorithm

OptGrp uses it to return all valid answers.

2.5.2 Further Search Space Optimization

When the skill and cost of the workers are arbitrary, a keen reader may notice

that Subroutine GrpCandidateSet may still have to explore 2n potential groups in the

worst case. Instead, if we have only a constant number of costs and arbitrary skills,

or a constant number of skill values and any arbitrary number of costs, interestingly,

the search space becomes polynomial. Of course, the search space is polynomial when

both are constants.

We describe the constant cost idea further. Instead of any arbitrary wage of the

workers, we now can discretize workers wage apriori and create a constant number of

k different buckets of wages (a worker belongs to one of these buckets) and build the

search tree based on that. When there are m knowledge domains, this gives rise to
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a total of mk buckets. For our running example in Section 2.2, for simplicity if we

consider only one skill (d1), this would mean that we discretize all 6 different wages

in k (let us assume k = 2) buckets. Of course, depending on the granularity of the

buckets this would introduce some approximation in the algorithm as now the workers

actual wage would be replaced by a number which may be lesser or greater than the

actual one. However, such a discretization is realistic, since many crowdsourcing

platforms, such as AMT, allow only one cost per task.

For our running example, let us assume, bucket 1 represents wage 0.5 and below,

bucket 2 represents wage between 0.5 and 0.8. Therefore, now workers u3, u4, u6 will

be part of bucket 2 and the three remaining workers will be part of bucket 1. After

this, one may notice that the tree will neither be balanced nor exponential. Now, for

a given bucket, the possible ways of worker selection is polynomial (they will always

be selected from most skilled ones to the least skilled ones), making the overall search

space polynomial for a constant number of buckets. In fact, as opposed to 26 possible

branches, this modified tree can only have (3+1)×(3+1) possible branches. Figure 2.2

describes the idea further.

Once this tree is constructed, our previous pruning algorithm GrpCandidateSet

could be applied to enable further efficiency.

2.5.3 Approximation Algorithm ApprxGrp

A popular variant of facility dispersion problem [35, 36] attempts to discover

a set of nodes (that host the facilities) that are as far as possible, whereas, compact

location problems [33] attempt to minimize the diameter. For us, the workers are

the nodes, and Grp attempts to find a worker group that minimizes the diameter,

while satisfying the multiple skills and a single cost constraint. We propose a 2-

approximation algorithm for Grp, that is not studied before.
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Figure 2.2: Possible search space using the example in Section 2.2, after the cost of
the workers are discretized into k = 2 buckets, considering only one skill d1. The tree is
constructed in descending order of skill of the workers per bucket. For bucket 1, if the most
skilled worker u2 is not selected, the other two workers (u1, u5) will never be selected.

Algorithm ApprxGrp works as follows: The main algorithm considers a sorted

(ascending) list L of distance values (this list represents all unique distances between

the available worker pairs in the platform) and performs a binary search over that

list. First, it calls a subroutine (GrpDia) with a distance value α that can run at the

most n times. Inside the subroutine, it considers worker ui in the i-th iteration to

retrieve a star graph2 centered around ui that satisfies the distance α. The nodes of

the star are the workers and the edges are the distances between each worker pair,

such that no edge in that retrieved graph has an edge > α. One such star graph is

shown in Figure 2.3.

Next, given a star graph with a set of workers U ′, GrpDia invokes

GrpCandidateSet(U ′, t) to select a subset of workers (if there is one) from U ′, who

together satisfy the skill and cost thresholds. GrpCandidateSet constructs the tree

in the best-first-search manner and terminates when the first valid solution is found,

or no further search is possible. If the cost values are further discretized, then the tree

2Star graph is a tree on v nodes with one node having degree v−1 and other v−1 nodes

with degree 1.

33



is constructed accordingly, as described in Section 2.5.2. This variant of ApproxGrp

is referred to as Cons-k-Cost-ApproxGrp.

Upon returning a non-empty subset U ′′ of U ′,

GrpCandidateSet terminates. Then, ApprxGrp stores that α and associated U ′′ and

continues its binary search over L for a different α. Once the binary search ends, it

returns that U ′′ which has the smallest α associated as the solution with the diameter

upper-bounded by 2α, as long as the distance between the workers satisfy the triangle

inequality3. In case GrpDia returns an empty worker set to the main function, the

binary search continues, until there is no more option in L. If there is no such U ′′

that is returned by GrpDia, then obviously the attempt to find a worker group for

the task t remains unsuccessful.

The pseudo-code of the algorithm ApprxGrp is presented in Algorithm 1. For

the given task t using the example in Section 2.2, L is ordered as follows: 0, 0.4,

0.66, 0.85, 1.0. The binary search process in the first iteration considers α = 0.66 and

calls GrpDia(α, {Qi,∀di}, C). In the first iteration, GrpDia attempts to find a star

graph (referred to Figure 2.3) with u1 as the center of the star. This returned graph is

taken as the input along with the skill threshold of t inside GrpCandidateSetnext. For

our running example, subroutine GrpDia(0.66, 1.8 , 1.66, 1.4, 2.5) returns u1, u3, u4, u6.

Now notice, these 4 workers do not satisfy the skill threshold of task t (which are

respectively 1.8, 1.66, 1.4 for the 3 domains.). Therefore, GrpCandidateSet(U , t)

returns false and GrpDia continues to check whether a star graph centered around

u2 satisfies the distance threshold 0.66. When run on the example in Section 2.2,

ApprxGrp returns workers u1, u2, u3, u5, u6 as the results with objective function value

upper bounded by ≤ 2× 0.66.
3Without triangle inequality assumption, no theoretical guarantee could be ensured [36].
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Figure 2.3: An instantiation of GrpDia(0.66) using the example in Section 2.2. A
star graph centered u1 is formed.

Algorithm 1 Approximation Algorithm ApprxGrp

Require: U , human factors for U and task t

1: List L contains all unique distance values in increasing order

2: repeat

3: Perform binary search over L

4: For a given distance α, U ′ = GrpDia(α, {Qi, ∀di}, C)

5: if U ′ 6= ∅ then

6: Store worker group U ′ with diameter d ≤ 2α.

7: end if

8: until the search is complete

9: return U ′ with the smallest d

Theorem 3. Algorithm ApprxGrp has a 2-approximation factor, as long as the dis-

tance satisfies triangle inequality.

Proof. Algorithm ApprxGrp overall works as follows: it sorts the distance values in

ascending fashion to create a list L and performs a binary search over it. For a

given distance value α, it makes a call to GrpDia(α). Recall Figure 2.3 that forms

a star graph centered on u1 with GrpDia(0.66) using the example in Section 2.2.

Consider Figure 2.4 and notice that for a given distance value =α, the complete

graph induced by the star graph can not have any edge that is larger than 2 × α,

as long as the distance satisfies the triangle inequality property. Therefore, when
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Algorithm 2 Subroutine GrpDia

Require: Distance matrix of the worker set U , distance α, task t.

1: repeat

2: for each worker u

3: form a star graph centered at u, such that for each edge u, uj , dist(u,uj) ≤ α. Let

U ′ be the set of workers in the star graph.

4: U ′′ = GrpCandidateSet(U ′, t)

5: if U ′′ 6= ∅ then

6: return U ′′

7: end if

8: until all n workers have been fully exhausted

9: return U ′′ = ∅

GrpDia(α) returns a non-empty worker set (that only happens when the skill and

cost thresholds are satisfied), then, those workers satisfies the skill and cost threshold

with the optimization objective value of ≤ 2α. Next, notice that algorithm ApprxGrp

overall attempts to return the smallest distance α’ for which GrpDia(α’) returns a

non-empty set, as it performs a binary search over the sorted list of distance values

(where distance is sorted in smallest to largest). Therefore, any group of workers

returned by ApprxGrp satisfies the skill and cost threshold value and DiaDist(G) is

at most 2-times worse than the optimal. Hence the approximation factor holds.

Lemma 1. Cons-k-Cost-ApproxGrp is polynomial.

Proof. Under a constant number of k-costs, subroutine GrpCandidateSet will accept

a polynomial computation time of O(p + 1)mk at the worst case, where p is the

maximum number of workers in one of the k buckets (p = O(n)). Subroutine GrpDia

runs for all n workers at the worst case, and there is a maximum number of log2|L|
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Figure 2.4: An instantiation of GrpDia(0.66) using the example in Section 2.2. The clique
involving u1, u3, u4, u6 can not have an edge with distance > 2 × 0.66, due to the triangle
inequality property.

calls to GrpDia from the main function (|L| = O(n2)). Therefore, the asymptotic

complexity of Cons-k-ApproxGrp is O(n× log2|L| × (p+ 1)mk), which is polynomial.

2.5.4 Optimal Algorithm OptGrp

Subroutine GrpCandidateSet leaves enough intuition behind to design an

instance optimal algorithm that works well in practice. It calls subroutine

GrpCandidateSet with the actual worker set U and the task t. For OptGrp, the tree is

constructed in depth-first-fashion inside GrpCandidateSet and all valid solutions from

the subroutine are returned to the main function. The output of OptGrp is that candi-

date set of workers returned by GrpCandidateSet which has the smallest largest edge.

When run on the example in Section 2.2, this OptGrp returns G = {u1, u2, u3, u5, u6}

with objective function value 1.0.

Furthermore, when workers wages are discretized into k buckets, OptGrp could

be modified as described in Section 2.5.2 and is referred to as Cons-k-Cost-OptGrp.

Theorem 4. Algorithm OptGrp returns optimal answer.
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Proof. Algorithm OptGrp invokes the subroutine GrpCandidateSet. Notice that

GrpCandidateSet operates in the spirit of the branch-and-bound technique [39]

to efficiently explore the search space and avoid unnecessary computations.

GrpCandidateSet exploits the upper bound of cost and lower bound of skill to prune

out all unnecessary branches of the search tree, as shown in Figure 2.1 and Fig-

ure 2.2. However, this subroutine returns all valid worker groups to OptGrp, and

then, the main function selects the group with the smallest longest edge (i.e., smallest

diameter value), and minimizes the objective function. Therefore, OptGrp is instance

optimal, i.e., it returns the group of workers with the smallest diameter distance, while

satisfying the skill and cost threshold. Therefore, OptGrp returns optimal answer.

Lemma 2. Cons-k-Cost-OptGrp is polynomial.

Proof. Under a constant number of k-costs, subroutine GrpCandidateSet will accept

a polynomial computation time of O(n+1)mk at the worst case. Once the subroutine

returns all valid answers, the main function will select the one that has the smallest

diameter. Therefore, the computation time of Cons-k-Cost-OptGrp is dominated

by the computation time of the subroutine GrpCandidateSet. Therefore, Algorithm

Cons-k-OptGrp runs in polynomial time of O((p+ 1)mk.

2.6 Enforcing Upper Critical Mass : SPLT

When Grp results in a large unwieldy group G that may struggle with collabo-

ration, it needs to be partitioned further into a set of sub-groups in the Splt phase

to satisfy the upper critical mass (K) constraint. At the same time, if needed, the

workers across the subgroups should still be able to effectively collaborate. Precisely,

these intuitions are further formalized in the Splt phase.
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Definition 2. Splt: Given a group G, decompose it into a disjoint set of subgroups

(G1, G2, . . . , Gx) such that ∀i|Gi| ≤ K,
∑

i |Gi| = |G| and the aggregated all pair inter

group distance Σ∀Gi,Gj∈G
SumInterDist(Gi, Gj) is minimized.

Theorem 5. Problem Splt is NP-hard.

Proof. Given a group G, an upper critical mass constraint K, and a real number X,

the decision version of the Splt is whether G can be decomposed to a set of subgroups

such that the aggregated distances across the subgroups is X and the size of each

subgroup is ≤ K. The membership verification of Splt is clearly polynomial.

To prove NP-hardness, we reduce the Minimum Bisection [40] which is known

to be NP-hard to an instance of Splt problem.

Given a graph G(V,E) with non-negative edge weights the goal of Minimum

Bisection problem is to create 2 non-overlapping partitions of equal size, such that

the total weight of cut is minimized. The hardness of the problem remains, even when

the graph is complete [40].

Given a complete graph with n′ nodes, the decision version of the Minimum

Bisection problem is to see whether there exists a 2 partitions of equal size, such

that the total weight of the cut is X ′. We reduce an instance of Minimum Bisection

to an instance of Splt as follows: the complete graph represents the set of workers

with non-negative edges as their distance and we wish to decompose this group to two

sub-groups, where the upper critical mass is set to be K = n′/2. Now, the objective

is to form the sub-groups with the aggregated inter-distance of X ′, such that there

exists a solution to the Minimum Bisection problem, if and only if, a solution to our

instance of Splt exists.

Proposed Algorithm for Splt: Since the ILP for Splt can be very expensive,

our primary effort remains in designing an alternative strategy that is more efficient,
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Figure 2.5: Balanced Partitioning in SpltBOpt when the distance satisfies triangle inequal-
ity for a graph with 6 modes. The left hand side figure has two partitions({a, b, c}, {d, e, f})
with 3-nodes in each (red nodes create one partition and blue nodes create another). The
intra-partion edges are drawn solid, whereas, inter-partition edges are drawn as dashed.
Assuming K = 4, in the right hand side figure, node d is moved with a, b, c. This increases
the overall inter-partition weights, but is bounded by a factor of 2.

that allows provable bounds on the result quality. We take the following overall

direction: imagine that the output of Grp gives rise to a large group G with n′ workers,

where n′ > K. First, we determine the number of subgroups x and the number of

workers in each subgroup Gi. Then, we attempt to find optimal partitioning of

the n′ workers across these x subgroups that minimizes the objective function. We

refer to this as SpltBOpt which is the optimal balanced partitioning of G. For the

running example in Section 2.2, this would mean creating 2 subgroups, G1 and G2,

with 3 workers in one and the remaining 2 in the second subgroup using the workers

u1, u2, u3, u5, u6, returned by ApprxGrp.

For the remainder of the section, we investigate how to find SpltBOpt. There

are intuitive as well as logical reasons behind taking this direction. Intuitively, lower

number of subgroups gives rise to overall smaller objective function value (note that

the objective function is in fact 0 when x = 1). More importantly, as Lemma 3

suggests, under certain conditions, SpltBOpt gives rise to provable theoretical results

for the Splt problem. Finding the approximation ratio of SpltBOpt for arbitrary

number of partitions is deferred to future work.
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Lemma 3. SpltBOpt has 2-approximation for the Splt problem, if the distance sat-

isfies triangle inequality, when x = dn′
K
e = 2.

Proof. Sketch: For the purpose of illustration, imagine that a graph with n′ nodes is

decomposed into two partitions. Without loss of generality, imagine partition-1 has

n1 nodes and partition-2 has n2 nodes, where n1+n2 = n′ with total weight of w′. Let

K be the upper critical mass and assume that K > n1, K > n2. For such a scenario,

SpltBOpt will move one or more nodes from the lighter partition to the heavier one,

until the latter has exactly K nodes (if both partitions have same number of nodes

then it will choose the one which gives rise to overall lower weight). Notice, the worst

case happens, when some of the intra-edges with higher weights now become inter

edges due to this balancing act. Of course, some inter-edges also gets knocked off

and becomes intra-edges. It is easy to notice that the number of inter-edges that gets

knocked off is always larger than that of the number of inter-edges added (because the

move is always from the lighter partition to the heaver one). The next argument we

make relies heavily on the triangle inequality property. At the worst case, every edge

that gets added due to balancing, could at most be twice the weight of an edge that

gets knocked off. Therefore, an optimal solution of SpltBOpt has 2-approximation

factor for the Splt problem.

An example scenario of such a balancing has been illustrated in Figure 2.5,

where n1 = n2 = 3, K = 4. Notice that after this balancing, three inter-edges get

deleted (ad,bd,cd), each of weight α and two inter-edges get added, where each edge

is of weight 2α. However, the approximation factor of 2 holds, due to the triangle

inequality property.

Even though the number of subgroups (aka partitions) is dn′
K
e with K workers

in all but last subgroup, finding an optimal assignment of the n′ workers across those
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subgroups that minimizes the objective function is NP-hard. The proof uses an easy

reduction from [41]. We start by showing how the solution to SpltBOpt problem

could be bounded by the solution of a slightly different problem variant, known as

Min-Star problem [41].

Definition 3. Min-Star Problem: Given a group G with n′ workers, out of which

each of x workers (u1, u2, . . . , ux), represents a center of a star sub-graph (each sub-

graph stands for a subgroup), the objective is to partition the remaining n′ − x work-

ers into one of these x subgroups G1, G2, . . . , Gx such that
∑x

i=1 kidist(ui,∪j 6=iGj)

+
∑

i<j kikjdist(ui, uj) is minimized, where ki is the total number of workers in sub-

group Gi.

Intuitively, Min-Star problem seeks to decompose the worker set into x sub-

groups, such that ui is the center of a star graph for subgroup Gi, and for a fixed

set of such workers {u1, u2, . . . , ux}, the contribution of ui to the objective function

is proportional to the sum of distances of a star subgraph rooted at ui.

Solving Min-Star:Algorithm Min-Star-Partition: The pseudocode is listed in

Algorithm 3 and additional details can be found in [41]. The key insight behind this

algorithm is the fact that for a fixed set of workers {u1, u2, . . . , ux}, the second term of

the objective function
∑

i<j kikjdist(ui, uj) is a constant. Furthermore, this expres-

sion could only take
(
n′

x

)
distinct values corresponding to all possible combination of

how the workers {u1, u2, . . . , ux} are chosen from the group G with n′ workers. Hence

for a fixed set of workers, the objective now reduces to finding an optimal subgroups

G1, . . . , Gx that minimizes the first expression. Interestingly, this expression corre-

sponds exactly to a special case of the popular transportation problem [42] that could

be solved optimally with time complexity O(n′) [41]. We refer to [41] for further

details.
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Algorithm 3 Algorithm Min-Star-Partition

Require: Group G with n′ workers and upper critical mass K

1: x = dn′K e

2: for all subset {u1, . . . , ux} ⊂ G do

3: Find optimal subgroups {G1, . . . , Gx} for {u1, . . . , ux} by formulating it as trans-

portation problem

4: Evaluate objective function for {G1, . . . , Gx}

5: end for

6: return subgroups {G1, . . . , Gx} with least objective function

Finally, the objective function of the SpltBOpt is computed on the optimal

partition of each instance of the transportation problem, and the one with the least

value is returned as output. When run using G = {u1, u2, u3, u5, u6} from ApprxGrp,

this algorithm forms subgroups G1 = {u1, u2, u5} and G2 = {u3, u6} with objective

function value 3.89.

Theorem 6. Algorithm for Min-Star-Partition has a 3-approximation for

SpltBOpt problem.

Proof. sketch: This result is a direct derivation of the previous work [41]. Previous

work [41] shows that Min-Star-Partition obtains a 3-approximation factor for the

Minimum k-cut problem. Recall that SpltBOpt is derived from Minimum k-cut by

setting each partition size (possibly except the last one) to be equal with K nodes,

giving rise to a total number of dn′
K
e partitions. After that, the result from [41]

directly holds.

Lemma 4. Min-Star-Partition is polynomial.

Proof. It can be shown that Min-Star-Partition takes O(n′x+1) time, as there are

O(n′x) distinct transportation problem instances (corresponding to each one of
(
n′

x

)
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combinations), and each instance can be solved in O(n′) [41] time. Since, x is a

constant, therefore, the overall running time is polynomial.

2.7 Experiments

We describe our real and synthetic data experiments to evaluate our algorithms

next. The real-data experiments are conducted on Amazon Mechanical Turk(AMT).

The synthetic-data experiments are conducted using a parametrizable crowd simula-

tor.

2.7.1 Real Data Experiments

Two different collaborative crowdsourcing applications are evaluated using

AMT: i) Collaborative Sentence Translation (CST), ii) Collaborative Document Writ-

ing (CDW).

Workers: A pool of 120 workers participate in the sentence translation study,

whereas, a different pool of 135 workers participate in the second one. Hired workers

are directed to our website where the actual tasks are undertaken.

Pair-wise Affinity Calculation: Designing complex personality test [30] to

compute affinity is beyond the scope of this work. We instead choose some simple

factors to compute affinity that have been acknowledged to be indicative factors in

prior works [18]. We calculate affinity in two ways - 1) Affinity-Age: age based

calculation discretizes workers into different age buckets and assigns a value of 1 to

a worker-pair, if they fall under the same bucket, 0 otherwise. 2) Affinity-Region:

assigns a value of 1, when two workers are from the same country and 0 otherwise.

Evaluation Criteria: - The overall study is designed to evaluate: (1) Effec-

tiveness of the proposed optimization model, (2) Effectiveness of affinity calculation

techniques, and (3) Effect of different upper critical mass values.
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Algorithms: We compare our proposed solution with other baselines: (1) To

evaluate the first criteria, we use the ILP described in Section 2.4 against an alterna-

tive Aff-Unaware Algorithm [43]. The latter assigns workers to the tasks considering

skill and cost but ignoring affinity. Since, ILP outputs optimal task assignment, we

refer to this as Optimal(2) Optimal-Affinity-Age and Optimal-Affinity-Region

are two variants of Optimal that use two different affinity calculation methods

(Affinity-Age and Affinity-Region respectively) and are compared against each

other to evaluate the second criteria. (3) CrtMass-Optimal-K assigns workers to tasks

based on the optimization objective and varies different upper critical mass values K,

which are also compared against each other for different K.

Overall user-study design: The overall study is conducted in 3-stages : (1)

Worker Profiling: in stage-1, we hire workers and use pre-qualification tests using

“gold-data” to learn their skills. We also learn other human factors as described

next.(2) Worker-to-task Assignment: in stage-2, a subset of these hired workers are re-

invited to participate, where the actual collaborative tasks are undertaken by them.(3)

Task Evaluation: in stage-3, completed tasks are crowdsourced again to evaluate their

quality.

Summary of Results: There are several key takeaways of our user study

results. First and foremost, effective collaboration is central to ensuring high quality

results for collaborative complex tasks. We evaluated 2 different affinity computation

models and the results show that the people from same region collaborate more ef-

fectively than people in same age group. Interestingly, upper critical mass also has

a significance in collaboration effectiveness, consequently, in the quality of the com-

pleted tasks. Quality increases from K = 5 to K = 7, but it decreases with statistical

significance when K = 10 for CrtMass-Optimal-10.
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2.7.1.1 Stage 1 - Worker Profiling

We hire two different sets of workers for sentence translation and document

writing. The workers are informed that a subset of them will be invited (through

email) to participate in the second stage of the study.

Skill learning for Sentence Translation: We hire 60 workers and present

each worker with a 20 second English video clip, for which we have the ground truth

translation in 4 different languages: English, French, Tamil, Bengali. We then ask

them to create a translation in one of the languages (from the last three) that they

are most proficient in. We measure each workers individual skill using Word Error

Rate(WER) [44].

Skill learning for Document Writing: For the second study CDW , we hire a

different set of 75 workers. We design a “gold-data” set that has 8 multiple choice

questions per task, for which the answers are known (e.g. for the MOOCs topic in

table 2.4 - one question was, “Who founded Coursera?”). The skill of each worker is

then calculated as the percentage of her correct answers. For simplicity, we consider

only one skill domain for both applications.

Wage Expectation of the worker: We explicitly ask a question to each worker

on their expected monetary incentive, by giving them a high level description of the

tasks that are conducted in the second stage of the study. Those inputs are recorded

and used in the experiments.

Affinity of the workers: Hired workers are directed to our website, where they

are asked to provide 4 simple socio-demographic information: gender, age, region,

and highest education. Workers anonymity is fully preserved. From there, affinity

between the worker is calculated using, Affinity-Age or Affinity-Region.
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Figure 2.6: Worker profile distributions for the Sentence Translation Tasks in Sec-
tion 2.7.1

Figure 2.6 and Figure 2.7 contain detailed workers profile distribution informa-

tion.

2.7.1.2 Stage 2 - Worker-to-Task Assignment

Once the hired workers are profiled, we conduct the second and most important

stage of this study, where the actual tasks are conducted collaboratively.

Collaborative Sentence Translation(CST): We carefully choose three English docu-

mentaries of suitable complexity and length of about 1 minute for creating subtitle in

three different languages - French, Tamil, and Bengali. These videos are chosen from

YouTube with titles: (1) Destroyer, (2) German Small Weapons, (3)British Aircraft

TSR2.
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Figure 2.7: Worker profile distributions for the Collaborative Document Writing in
Section 2.7.1

Collaborative Document Writing (CDW): Three different topics are chosen for

this application: 1) MOOCs and its evolution, 2) Smart Phone and its evolution, 3)

Top-10 places to visit in the world.

The skill and cost requirements of each tasks are described in the Table 2.4.

These values are set by involving domain experts and discussing the complexity of

the tasks with them.

Collaborative Task Assignment for CST: We set up 2 different worker groups

per task and compare two algorithms Optimal-CST and Aff-Unaware-CST to eval-

uate the effectiveness of proposed optimization model. We set up additional

2 different worker groups for each task to compare Optimal-Affinity-Region
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Task Name Skill Cost Critical Mass
CST1- Destroyer 3.0 $5.0 5,7,10
CST2- German Weapons 4.0 $5.0 5,7,10
CST3 - British Aircraft 3 $4.5 5,7,10
CDW1- MOOCs 5 $3 5,7,10
CDW2- Smartphone 5 $3 5,7,10
CDW3- top-10 place 5 $3 5,7,10

Table 2.4: Description of different tasks; the default upper critical mass value is 5. Default
affinity calculation is region based.

with Optimal-Affinity-Age. Finally, we set up 3 additional groups per task

to compare the effectiveness of critical mass and compare CrtMass-Optimal-5,

CrtMass-Optimal-7, CrtMass-Optimal-10. This way, a total of 15 groups are cre-

ated. We instruct the workers to work incrementally using other group members

contribution and also leave comment as they finish the work. These sets of tasks are

kept active for 3 days.

Collaborative Task Assignment for CDW: An similar strategy is adopted to

collaboratively edit a document within 300 words, using the quality, cost, and critical

mass values of the document editing tasks, described in Table 2.4.

2.7.1.3 Stage 3 - Task Evaluation

Collaborative tasks, such as knowledge synthesis, are often subjective. An

appropriate technique to evaluate their quality is to leverage the wisdom of the crowds.

This way a diverse and large enough group of individuals can accurately evaluate

information to nullify individual biases and the herding effect. Therefore, in this

stage we crowdsource the task evaluation for both of our applications.

For the first study of Sentence Translation (CST), we have taken 15 final out-

comes of the translation tasks as well as the original video clips and then set up as 3

different HITs in AMT. The first HIT is designed to evaluate the optimization model,
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Average Rating
Task Algorithm Compl. Gram. Neutra. Clarity Time AV

MOOCs
Optimal-CDW 4.6 4.5 4.3 4.3 4.3 3.7
Aff-Unaware-CDW 4.1 4.2 4.2 3.9 3.9 3.0
CrtMass-Optimal-10 4.0 4.1 4.2 3.9 3.9 3.5

Smartphone
Optimal 4.8 4.6 4.7 4.1 4.2 4.2
Aff-Unaware 4.1 4.1 4.2 4.2 3.9 3.3
CrtMass-Optimal-10 4.0 3.9 3.8 4.1 3.9 3.3

Top-10 places
Optimal 4.4 4.2 4.3 4.2 4.3 4.3
Aff-Unaware 3.9 3.8 3.7 3.6 3.3 2.9
CrtMass-Optimal-10 3.9 4.0 4.1 4.0 3.9 3.9

Table 2.5: Stage 3 results of document writing application in Section 2.7.1:
Quality assessment on the completed tasks of Stage-2 is performed by a new set of 60 AMT
workers on a scale of 1−5. For all three tasks, the results clearly demonstrate that effective
collaboration leads to better task quality. Even though all three groups (assigned to the
same task) surpass the skill threhsold and satisfy the wage limit, however, our proposed
formalism Optimal enables better team collaboration, resulting in higher quality of articles.

the second one to evaluate two different affinity computation models, and the final

one to evaluate the effectiveness of upper critical mass. We assign 20 workers in each

HIT, totaling 60 new workers. We evaluate the completed tasks in two quality dimen-

sions, as identified by prior work [18] - 1. correctness of translation. 2.completeness

of translation. The workers are asked to rate the quality in a scale of 1− 5 (higher is

better) without knowing the underlying task production algorithm. Then, we average

these ratings which is similar to obtaining the viewpoint of an average reader. The

CST results of different evaluation dimensions are presented in Figure 2.8.

A similar strategy is undertaken for the CDW application, but the quality is

assessed using 5 key different quality aspects, as proposed in prior work [45]. They

are Completeness(Compl), Grammar, Neutrality(Neut), Clarity, Time and Added

Value(AV). The results are summarized in Table 2.5. Both these results indicate

that, indeed, our proposed model successfully incorporates different elements that

are essential to ensure high quality in collaborative crowdsourcing tasks.
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Figure 2.8: Stage 3 results of sentence translation: Collected data with statistical
significance (standard error) is presented. These results clearly corraborate that our affinity-
aware optimization model Optimal-CST outperforms its affinity-unaware counterpart [43]
with statistical significance across both quality dimensions.Optimal-Affinity-Region
apperas to outeprform Optimal-Affinity-Age in “correctness”. The results of
CrtMass-Optimal-10 clearly appers to be less effective than the other two, showing some
anecdotal evidence that group size is important in collaborative crowdsourcing applications.

2.7.2 Synthetic Data Experiments

The purpose of this experiments is to show that our proposed algorithms per-

form well both qualitatively and efficiently. Besides evaluating the algorithms for our

staged solution Grp&Splt, we also evaluate the algorithms for the grp stage. This will

help us illustrate the fact that our algorithms for Grp create effective collaborative

groups. This is also essential for the performance of Splt stage.
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We conduct our synthetic data experiments on an Intel core I5 with 6 GB RAM.

We use IBM CPLEX 12.5.1 for the ILP. A crowd simulator is implemented in Java to

generate the crowdsourcing environment. All numbers are presented as the average

of three runs.

Simulator Parameterization: The simulator parameters presented below are cho-

sen akin to their respective distributions, observed in our real AMT populations.

1. Simulation Period - We simulate the system for a time period of 10 days, i.e. 14400

simulation units, with each simulation unit corresponding to 1 minutes. With one

task arriving in every 10 minutes, our default setting runs 1 day and has 144 tasks.

2. # of Workers - default is 100, but we vary |U| upto 5000 workers.

3. Workers skill and wage - The variable udi in skill di receives a random value from

a normal distribution with the mean set to 0.8 and a variance 0.15. Worker’s wages

are also set using the same normal distribution.

4. Task profile - The task quality Qi, as well as cost C is generated using normal

distribution with specific mean 15 and variance 1 as default. Unless otherwise stated,

each task has a skill.

5. Distance - Unless otherwise stated, we consider distance to be metric and generated

using Euclidean distance.

6. Critical Mass - the default value is 7.

7. Worker Arrival, Task Arrival - By default, both workers and tasks arrive following

a Poisson process, with an arrival rate of µ = 5/minute 1/10 minute, respectively.

Implemented Algorithms: Here we first describe the algorithms for Grp stage.

1. ApprxGrp: We implement the algorithm ApprxGrp, described in Section 2.5.3.

2. Cons-k-AG: This is a variant of the algorithm ApprxGrp referred to as

Cons-k-cost-ApprxGrp, described in Section 2.5.3. We set the number of cost buck-

ets k to 15.
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3. GrpILP: An ILP designed for Grp stage only.

3. OptGrp: This is an optimal algorithm that is similar to GrpILP both in terms of

quality and efficiency. Hence, we decided to omit the results for OptGrp.

5. RandGrp: We also design an affinity unaware algorithm that finds a set of workers

who satisfy skill and cost threshold, but does not optimize affinity.

Here are the list of algorithms for Grp&Splt

1. Overall-ILP: An ILP, as described in Section 2.4.

2. Grp&Splt: Uses Cons-k- AG for Grp and Min-Star-Partition for Splt.

3. RandGrp&GrdSplt: An alternative implementation. In phase-1, we use RandGrp.

In phase-2, we partition users greedily into most similar subgroups satisfying critical

mass constraint.

6. No implementation of existing related work: Due to critical mass constraint, we

intend to form a group, further partitioned into a set of subgroups, whereas, no prior

work has studied the problem of forming a group along with subgroups, thereby

making our problem and solution unique.

Summary of Results: Our synthetic experiments also exhibit many interest-

ing insights. First and foremost, Grp&Splt is a reasonable alternative formulation

to solve AffAware-Crowd, both qualitatively and efficiency-wise, as Overall-ILP is

not scalable and does not converge for more than 20 workers. Second, our proposed

approximation algorithms for Grp&Splt are both efficient as well as effective, and

they significantly outperform other competitors. Finally, our proposed formulation

AffAware-Crowd is an effective way to optimize complex collaborative crowdsourcing

tasks in a real world settings. We first present the overall quality and scalability of

the combined Grp&Splt, followed by that of Grp individually.
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over Simulation Days

2.7.2.1 Quality Evaluation

We present the quality evaluations next.

2.7.2.1.1 Grp&Splt Quality: The average of overall objective function value,

which is the sum of DiaDist(G) and aggregated all pair SumInterDist() across the

subgroups, is evaluated and presented as mean objective function value for 144 tasks.

Overall-ILP does not converge beyond 20 workers.

Varying # of Workers: Figure 2.9 has the results, with mean skill=15 and

variance=1, demonstrates that Grp&Splt outperforms RandGrp&GrdSplt in all the

cases, while being very comparable with Overall-ILP.

Varying Tasks Mean Skill: With varying mean skill (cost is proportional to skill),
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Figure 2.15: Grp&Splt : Mean Completion
Time varying Number of Workers
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Figure 2.16: Grp&Splt : Mean Completion
Time varying Simulation Days

Figure 2.10 demonstrates that the objective function gets higher (hence worse) for

both the algorithms, as skill/cost requirement increases, while Grp&Splt outperforms

RandGrp&GrdSplt. This intuitively is meaningful, as with increasing skill require-

ment, the generated group is large, which decreases the workers cohesiveness further.

Varying Critical Mass: As Figure 2.11 shows, with increasing critical mass, qual-

ity of both solutions increases, because the aggregated inter-distance across the par-

tition gets smaller due to less number of edges across.

Varying Simulation Period: In Figure 2.12 simulation period is varied, where

both workers and tasks arrive based on Poisson process. Grp&Splt convincingly out-
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performs

RandGrp&GrdSplt in this experiment.

2.7.2.1.2 Grp Phase Quality: The objective function is the average DiaDist()

value.

Varying Task Mean Skill: Figure 2.13 demonstrates that, although ApprxGrp

and Cons-k-AG is 2-times worse than optimal theoretically, but in practice, it is as

good as optimal. GrpILP.

Varying Simulation Period: Figure 2.14 demonstrates, that, as more workers are

active in the system GrpILP cannot converge. Hence, we can not get the results for

GrpILP beyond day-2. But, ApprxGrp and Cons-k-AG works fine and achieves almost

optimal result.

2.7.2.2 Efficiency Evaluation

In this section, we demonstrate the scalability aspects of our proposed algo-

rithms and compare them with other competitive methods by measuring the average

completion time of a task. Like above, we first present the overall time for Grp&Splt

phase, then followed by Grp phase.

2.7.2.2.1 Grp&Splt Efficiency: Varying # Workers: Figure 2.15 demon-

strates that our solution Grp&Splt is highly scalable, whereas, Overall-ILP fails to

converge beyond 20 workers. RandGrp&GrdSplt is also scalable (because of the simple

algorithm in it), but clearly does not ensure high quality.

Varying Task Mean Skill: Akin to previous result, Grp&Splt and

RandGrp&GrdSplt are both scalable,Grp&Splt achieves higher quality. We omit the

chart for brevity.

Varying Critical Mass: As before, increasing critical mass leads to better effi-

56



1

10

100

1000

10000

100000

5 10 15 20 25M
ea

n
 C

o
m

p
le

ti
o

n
 T

im
e 

(l
o

g 
sc

al
e,

 m
s)

Task Mean Skill

RandGrp ApprxGrp

GrpILP Cons-k-AG

Figure 2.17: Grp : Mean Completion Time
varying Mean Skill

1
10

100
1000

10000
100000

1000000
10000000

1 2 3 4 5 6 7 8 9 10M
ea

n
 C

o
m

p
le

ti
o

n
 T

im
e

 
(l

o
g 

sc
al

e,
 m

s)

Simulation Days

RandGrp
ApprxGrp
GrpILP
Cons-k-AG

Figure 2.18: Grp :Mean Completion Time
varying Simulation Days

ciency for the algorithms. We omit the chart for brevity.

Varying Simulation Period: Figure 2.16 demonstrates that Grp&Splt is highly

scalable in a real crowdsourcing environment, where more and more workers are en-

tering into the system. The results show that RandGrp&GrdSplit is also scalable

(but significantly worse in quality). But as number of worker increases, efficiency

decreases, for both, as expected.

2.7.2.2.2 Grp Phase Efficiency: We evaluate the efficiency of ApprxGrp by

returning mean completion time for 144 tasks.

Varying Task Mean Skill: As Figure 2.17 demonstrates, ApprxGrp outperforms

GrpILP significantly. As expected, Cons-k-AG is more efficient than ApprxGrp since it

bucketize the cost values. With higher skill threshold, the difference between RandGrp

and our algorithms becomes even more noticeable.

Varying Simulation Period: Figure 2.18 shows the average task completion time

in each day for ApprxGrp, Cons-k-AG,GrpILP, RandGrp. Clearly, GrpILP is impractical

to use as more workers arrive in the system.

++
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2.8 Related Work

We discuss how our work is different from a few existing works that discuss

the challenges in crowdsourcing complex tasks, as well as traditional team formation

problems.

Crowdsourcing Complex Tasks: This type of human based computation [9,

46, 47] handles tasks related to knowledge production, such as article writing, sentence

translation, citizen science, product design, etc. These tasks are conducted in groups,

are less decomposable compared to micro-tasks (such as image tagging) [11, 48], and

the quality is measured in a continuous, rather than binary scale.

A number of crowdsourcing tools are designed to solve application specific com-

plex tasks. Soylent uses crowdsourcing inside a word processor to improve the quality

of a written article [49]. Legion, a real time user interface, enables integration of

multiple crowd workers input at the same time [50]. Turkit provides an interface

to programmer to use human computation inside their programming model [51] and

avoids redundancy by using a crash and return model which uses earlier results from

the assigned tasks. Jabberwocky is another platform which leverages social network

information to assign tasks to workers and provide an easy to use interface for the

programmers [52]. CrowdForge divides complex task into smaller sub-tasks akin to

map-reduce fashion [19]. Turkomatic introduces a framework in which workers aid

requresters to break down the workflow of a complex task and thereby aiding to solve

it using systematic steps [53].

The common aspects of these works is that they study the problem of decom-

posing a complex task into simpler tasks, which can be solved by independent workers.

On the contrary, we focus on optimization based task assignment for complex task

which may not indivisible. A preliminary work discusses modular team structures

for complex crowdsourcing tasks, detailing however more on the application cases,
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and not on the computational challenges[54]. One prior work investigates how to

assign workers to the task for knowledge intensive crowdsourcing [43] and its compu-

tational challenges. However, this former work does not investigate the necessity nor

the benefit of collaboration. Consequently, the problem formulation and the proposed

solutions are substantially different from the one studied here.

Automated Team Formation: Although tangentially related with crowd-

sourcing, automated team formation is widely studied in computer assisted coop-

erative systems. [29] forms a team of experts in social networks with the focus of

minimizing coordination cost among team members. Although their coordination

cost is akin to our affinity, but unlike us, the former does not consider multiple skills.

Team formation to balance workload with multiple skills is studied later on in [38]

and multi-objective optimization on coordination cost and balancing workload is also

proposed [23, 55], where coordination cost is posed as a constraint. Density based co-

ordination is introduced in [32], where multiple workers with similar skill are required

in a team, such as ours. Formation of team with a leader (moderator) is studied in

[56]. Minimizing both communication cost and budget while forming a team is first

considered in [57, 58]. The concept of pareto optimal groups related to the skyline

research is studied in [57].

While several elements of our optimization model are actually adapted from

these related work, there are many stark differences that precludes any easy adapta-

tion of the team formation research to our problem. Unlike us, none of these works

considers upper critical mass as a group size constraint, that forms a group multiple

subgroups, which makes the former algorithms inapplicable in our settings. Addi-

tionally, none of these prior work studies our problem with the objective to maximize

affinity with multiple skills and cost constraints. In [59], authors demonstrate em-

pirically that the utility is decreased for larger teams which validates our approach
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to divide group into multiple sub-groups obeying upper critical mass. However, no

optimization is proposed to solve the problem.

In summary, principled optimization opportunities for complex collaborative

tasks to maximize collaborative effectiveness under quality and budget constraints is

studied for the first time in this work.

2.9 Conclusion and Future Work

We borrow our motivation from the fact that the aspect of collaboration nat-

urally fits into solving many complex tasks. To that end, we develop a framework

which aims to find the optimal group of workers for collaborative tasks. We iden-

tify both individual and group based human factors (i.e. affinity, critical mass) that

are significant for successful completion of collaborative tasks. We propose a set of

optimization objectives, which maximize the collaboration, while appropriately con-

sidering the complex interplay of human factors. We show that our overall problem

is NP-complete, and then provide a two-staged solution to our problem. Further-

more, we show that the problem at each individual stage is also NP-Complete. This

prompts us to design efficient approximation algorithm for both of the stages. Our

extensive experiments on real data collected from Amazon Mechanical Turk show the

superiority of our algorithms on their respective baseline counterparts. In the next

chapter, we show the implementation of our task assignment algorithm to an existing

crowdsourcing platform.
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CHAPTER 3
Collaborative Crowdsourcing with

Crowd4U

3.1 Introduction

We propose to demonstrate Crowd4U, a prototype system for the deployment

of collaborative tasks. Unlike other crowdsourcing frameworks, collaboration is a

central tenet of Crowd4U and permeates all its features. Crowd4U provides support

for end-to-end deployment of collaborative tasks and enables task decomposition,

worker-to-task assignment, and effective worker collaboration during task comple-

tion. Requesters can specify collaborative tasks in a declarative manner. Tasks are

then assigned to groups of workers taking human factors [60, 61] and worker-to-worker

affinity into account. Crowd4U incorporates diverse task decomposition approaches

and handles various worker collaboration schemes that ensure effective result coordi-

nation. We will demonstrate 3 scenarios that represent best emerging collaborative

crowdsourcing: text translation, citizen journalism, and surveillance in the aftermath

of a disaster.
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Figure 3.1: Deployment process for complex collaborative tasks. Result coordination
is achieved via worker collaboration schemes in task completion.

Comparison with Other Frameworks: While existing research has inves-

tigated task assignment for crowdsourcing in diverse contexts, it often ignored the

aspect of collaboration among workers, that is central to the success of complex tasks.

For example, well-known crowdsourcing systems such as Deco [62], CrowdDB [63] that

focus on enabling important primitives in database query processing through micro-

tasks that are performed by individual workers whose responses are then aggregated.

Other frameworks such as PyBossa [64] or Hive [65] are more generic and can be used

for a variety of tasks but are still bound by fixed workflows and micro-tasks with no

distinct notion of collaboration. Frameworks such as Argonaut [66] enables complex

context-heavy data processing tasks (dubbed “macrotasks”) but are still performed

by individual workers and not by teams. In contrast, Crowd4U is declarative, generic

and collaboration-aware.

Collaboration Types: To illustrate the range of applications that can be en-

abled by Crowd4U, we organize our demonstration based on the three collaboration

types specified above through three different demonstration scenarios. We use the

application of video subtitle generation and translation to highlight sequential collab-

oration where workers improve the contribution of each other. Support for simulta-

neous collaboration is exemplified by a citizen journalism application where workers

generate report on a specific topic by working in parallel. Hybrid collaboration is

showcased by surveillance tasks where some workers contribute to fact collection in a

sequence, and correcting each others’ observations, while others provide testimonials

separately and simultaneously.
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The rest of the chapter is organized as follows. We first describe how the

architecture of Crowd4U was revisited to enable collaboration (Section 3.2.1). We

then describe how task assignment is enabled under different worker coordination

schemes (Section 3.2.2).

3.2 Crowd4U for Collaboration

Crowd4U is a non-profit all-academic open crowdsourcing platform that has

been used in a variety of domains such as libraries, natural disasters, digital archives,

cognitive science, and health informatics. Crowd4U was initially designed to support

micro-tasks wherein a requester posts a task that is achieved by one worker at a

time [10]. In this section, we describe how the platform has been revisited to support

collaboration. We first describe the extended architecture, then we explain how tasks

are assigned to workers, and finally, show how workers complete tasks.

3.2.1 Collaboration Architecture

Figure 3.2 shows the major components of Crowd4U. A requester who wants to

register tasks into Crowd4U writes a project description in CyLog, a rule-based declar-

ative language for crowdsourcing applications with complex data flows [67]. Crowd4U

also provides tools to help requesters generate CyLog rules by allowing them to define

tasks with a form-based user interface and spreadsheets. The rules describing a task

are interpreted and executed by the CyLog processor, which dynamically generates

and registers tasks into the task pool. We now describe how tasks are processed.

Crowd4U can use any task decomposition algorithm to break a complex task

into micro-tasks. Its key innovations are the reliance of a task-specific assignment

algorithm to find the best group of workers to complete a task, and the implementation
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Figure 3.2: Crowd4U architecture and workflow for collaborative task assignment

of sequential, simultaneous and hybrid worker collaboration, to ensure effective result

coordination. We describe how task assignment and result coordination are achieved.

3.2.2 Task assignment

A feature of Crowd4U is that the task assignment is conducted in a declara-

tive manner. To make that possible, Crowd4U manages three types of relationships

between workers and tasks explicitly. (1) Eligible means that a worker is eligible

for performing a task. This is computed by the CyLog processor using the project

description and worker human factors. For example, in a project description a task

requester may specify that only workers who log in to Crowd4U and speak English as

a native language are eligible for their tasks. (2) InterestedIn means that a worker is

interested in performing a task. This is declared by each worker when she is shown a

list of eligible tasks. (3) Undertakes means that a worker confirms that she performs

a task. A (worker,task) pair can go into this relationship status only when the worker

is Eligible for that task.
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3.2.2.1 Task assignment workflow

Task assignment for collaborative tasks is performed as follows (Figure 3.2):

(1) For each submitted project description, an administration page for the project is

generated. The page has a form to enter desired human factors for collaborative task

assignment. (2) The entered factors are sent to the task assignment controller. (3)

User pages show workers the list of collaborative tasks for which they are eligible, and

ask them to specify their interest in tasks. The InterestedIn relationship is recorded

in the worker human factors table maintained by the worker manager. (4) The worker

manager supplies the task assignment controller with desired human factors and a

worker affinity matrix. (5) The assignment controller chooses a team of workers that

satisfies the desired human factors, out of the workers who are eligible and interested

in the task. Then, the controller outputs the suggested team and each worker in the

team is asked to join the collaborative task.

Depending on the nature of the task, the assignment algorithm combines differ-

ent human factor such as workers’ skills, worker-to-worker affinity and upper critical

mass [61], to find the right team of workers to complete a task. Skills are used to

filter out unqualified workers. Worker-to-worker affinity corresponds to the “comfort-

level” of workers who are part of a team solving a collaborative task. Upper crit-

ical mass is a constraint on the size of the team beyond which the collaboration

effectiveness diminishes. The worker manager supplies the CyLog processor and the

task assignment manager with worker human factors (e.g., languages, countries, and

application-specific human factors) and the relationship among workers encoded in

the worker affinity matrix, which maintains the information on how a pair of workers

is expected to work well. For example, in the case of surveillance tasks, if workers live

in the same geographic area, their affinity value is larger. The assignment controller
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waits for a sufficient number of workers to show interest in the task before building

a team satisfying the requester’s desired human factors. Then, the suggested team

members are asked to perform the task. Unless all suggested workers start to perform

the collaborative task (i.e., to go into the undertakes status) by the specified dead-

line, task assignment is re-executed to find a new team. In addition, if none of the

possible teams satisfying human factors accepts the task, Crowd4U suggests to the

requester to update her input. Once workers undertake a task, Crowd4U monitors

their collaboration to ensure effective result coordination on behalf of requesters.

3.2.2.2 Illustration of Task assignment algorithm

Task assignment depends on the nature of the task. We adapt the task as-

signment algorithm that we proposed in [61] to each kind of task. In a nutshell,

that algorithm is based on a 2-stage approach, Grp&Splt. that decomposes the task

assignment into two phases. In the Grp phase, the algorithm forms a single team

(possibly larger than upper critical mass) that satisfies the knowledge, budgetary

and other constraints. In the Splt phase, the large group is partitioned into smaller

groups (of size at most upper critical mass) such that the total pairwise distance (i.e.

complement of affinity) is minimized.

In the text translation case (sequential tasks), task assignment only uses the Grp

phase to find a single team of relevant workers, i.e., those with appropriate language

skills. The task is equally divided among the team members. For citizen journalism

(simultaneous tasks), task assignment relies on Grp and a variant of Splt, where the

task is decomposed into a set of independent sub-tasks (such as, independent sections

of a document to draft together). The sub-group members edit simultaneously on

their allocated section, and at the end, collaboration across the sub-groups is needed

to effectively merge the sections and prepare the overall document. The surveillance
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Figure 3.3: Constraint entry form in an project administration page

Figure 3.4: Worker human factors on a worker page

task, on the other hand, uses a hybrid collaboration pattern. The task is first decom-

posed into a set of geographic regions. Workers from the same region (as a substitute

measure of affinity) are considered to form sub-groups and they can work both se-

quentially and simultaneously. The number of sub-groups is equal to the number of

regions. Splt phase is not needed explicitly, as the sub-groups across the regions may

not need to collaborate.
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Figure 3.5: Conducting simultaneous collaboration task

3.2.3 Result coordination

Once workers have been assigned to tasks, they must be monitored to enforce

appropriate collaboration. Result coordination is ensured via the following worker

collaboration schemes:

Sequential Collaboration: In this mode, the team members collaborate with

each other through the tasks dynamically generated based on other members’ task

results. For example, after a worker translates a sentence into another language, a

task for checking the result is dynamically generated, and the result is sent to another

team members.

Simultaneous Collaboration: In this mode, Crowd4U first assigns the task

to solicit her SNS ID (e.g., Google account) to communicate with other members in

the team. After all the members are in the “undertakes” status, the collaborative

task is generated and assigned to all the members with the list of obtained IDs. The

members work together with any collaboration tool (e.g., Google docs). The result

of the collaborative task is submitted by one of the team members, but recorded as

the result produced by the team. This collaboration scheme is most appropriate for

citizen journalism where workers with complementary skills co-edit a report.
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Hybrid Collaboration: Crowd4U allows to interleave the two result coor-

dination schemes in a complex data flow. For example, surveillance and correction

tasks are executed as a sequential collaboration while the testimonials are provided

simultaneously.

3.2.4 Interface Design and Worker Interaction

Figure 3.3 is part of screen-shot of the project administration page where a

requester specifies the desired human factors for task assignment. The requester also

specifies an expiration time for worker recruitment.

Figure 3.4 shows the set of human factors that can be updated by each worker.

Those factors are either provided by the worker when creating an Crowd4U account

(e.g., native languages, location) or computed by the system based on previously

performed tasks (e.g., via qualification tests, or by learning workers’ profiles as in [68].

Figure 3.5 is a worker’s screen in a simultaneous collaboration where she commu-

nicates with other workers using Google doc and submits the result for a Crowd4U

task. Crowd4U could be combined with any collaboration tool. While delegating

communication methods to other collaboration tools, Crowd4U controls task gener-

ation and assignment; it manages relationships between workers and tasks, builds

teams, generates new tasks based on the intermediate task results, and assigns tasks

to workers in any type of collaboration.

3.3 Conclusion

We demonstrate Crowd4U, a declarative and collaboration-aware crowdsourc-

ing framework. We also show that Crowd4U can elegantly handle different worker

collaboration schemes and thereby deploy tasks in diverse domains, such as, sentence

translation, citizen journalism, and surveillance. Crowd4U’s declarative and extensi-
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ble architecture can easily be leveraged to incorporate additional worker collaboration

schemes and other task assignment algorithms. In the next chapter, we present how

to estimate skill for collaborative tasks.
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CHAPTER 4
Worker Skill Estimation in Team-Based

Tasks

4.1 Introduction

Automated team formation is widely studied in computer-assisted cooperative

systems [69, 70, 71, 72, 57, 58]. This body of work assumes that a team of experts is

to be formed to undertake a task that requires expertise in one or more domains. The

formed team is assumed to have the expertise or skills required to meet the expected

quality of the task (as well as other constraints such as coordination cost). Naturally,

the formulation of this team formation problem assumes that the skills of individual

workers are known a priori. We seek to investigate an orthogonal question: Given

a set of completed tasks undertaken by a team of workers, estimate the skills of the

individual workers. We refer to this as the skill estimation problem for team-based

tasks.

A number of applications rely on team-based work. Examples are researchers

co-authoring a paper, experts reviewing scientific papers, athletes playing team-based
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games, as well as some emerging crowdsourcing applications, such as Galaxy Zoo1 or

Foldit2.

Skill Estimation Problem: Estimating the skills of individual workers for

team-based tasks is acknowledged to be an important open problem [73] in this space.

We borrow the settings of the team formation problem [69, 70, 71, 72, 57, 58]. Inputs

to our skill estimation problem are a set of teams (each team is a set of workers),

that has completed one (or more) tasks. Each task requires a skill that is also known

a-priori. Each completed task gets evaluated quality-wise and a numeric score is

assigned to it. A worker may participate in different tasks with different teams. A

worker skill is a deterministic value, or a probability distribution (pdf) that we wish

to estimate as accurately as possible from the quality feedback assigned to the tasks

in which her team participated. Modeling skill as a pdf can capture the fact that

some workers have large variance in their skill levels when performing tasks, whereas

others have smaller variances. For example, two players may have the same average

points per game, but one has greater variance over the other.

Skill Aggregation Functions: To be able to effectively estimate the skills

of workers involved in team-based efforts, it is critical to formulate how a team’s

skill is computed by aggregating the skills of individual workers in the team. Prior

work [73] indicates that there exists several skill aggregation functions: (1) Sum where

the skill of a team is the sum of skills of individual workers. As an example, the

number of blocks that a basketball team makes in a game is the sum of the defense

skills of the defenders. (2) Max where the skill of a team corresponds to its most

skilled worker. The quality of a research paper may be dominated by the expertise of

the most skilled author. (3) A complex function defined over workers skills, as well

1http://www.galaxyzoo.org/
2http://fold.it/portal/

72



as other aspects, such as collaboration effectiveness, is another alternative. Such a

complex function might not assume independence between different workers’ skills.

We explore Sum and Max in depth and discuss extending our algorithms to handle

complex aggregation functions in section 4.6.

Task Quality: In general, measuring task quality depends on the application.

We assume that we are provided with a quality evaluation (as a numeric score) for

each task. The applications we describe above can indeed be evaluated in many ways:

for example, the number of citations of a paper reflects its (quality) impact, a team

has an offense or a defense score in a particular basketball game.

Team Skills and Task Quality: Typically, workers are evaluated based on

their skills (where skill is deterministic or probabilistic) while tasks are evaluated

based on quality. It is apparent that the skills of the workers in a team contribute

to the quality outcome of the task they undertake together. We assume that there

is a known, one-to-one correspondence between worker skills and task quality. In the

basketball example, defense skills of workers provide defense score for the game, while

offense skills give rise to an offense score.

Challenges: Even when the relationship between skill and quality is injective,

i.e. one-to-one, there are number of challenges in solving the skill estimation prob-

lem. The key challenge comes from the fact that the quality evaluation reflects the

aggregated skill of the entire team, while we seek to estimate the skill of individual

workers. Proportionally allocating the final quality of a task among its constituent

workers to estimate the skill of every worker, considering different tasks that she has

undertaken, is non-trivial.

Our Approach: In this chapter, we primarily focus on learning individual

worker skills under Sum and Max aggregation functions. Our methods could be trivially

extended to Min aggregation. Moreover, if dependency between the workers can be
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expressed in a linear fashion, our deterministic solutions can be extended to handle

those scenarios as well. We defer more detailed discussion on this to Section 4.6. At a

high level, our approach is based on computing the “distance” between the estimated

skills of the individuals and the known quality of the completed tasks that they have

undertaken, assuming a given skill aggregation function. We refer to this distance as

error and quantify it using the `2 function, a common distance measure. Thereby,

we formalize skill estimation as an optimization problem with the goal of minimizing

error.

We start by considering deterministic skills. The Sum variant, Sum-Skill-D, is

formalized as a continuous optimization problem while the Max variant, Max-Skill-D,

is posed as a discrete optimization problems. We propose quadratic programming-

based solutions for Sum and max-algebra[74, 75] based solutions for Max. We employ

a similar optimization framework for skills described as a probability distribution

function (pdf). Both variants, Sum-Skill-P for Sum and Max-Skill-P for Max, are

designed to estimate the skill pdf of each worker such that the aggregated `2 error

between the joint pdf, i.e., the team’s skill, and that of the individual pdfs is mini-

mized. For Sum-Skill-P (resp., Max-Skill-P), the pdf that represents the team skill

is a joint pdf computed by taking the sum convolution (resp., max convolution) [76]

of individual skill pdfs of the participants. The key challenge here is to be able to

deconvolve the joint pdfs to estimate the individual pdfs accurately.

Finally, we present a comprehensive evaluation of our solutions using two real-

world datasets and demonstrate that they indeed estimate the true skills of individual

workers effectively and compare with several appropriate baseline algorithms. Addi-

tionally, we demonstrate that our solutions are scalable using large-scale synthetic

data. In summary, we make the following contributions:
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u1 u2 u3 quality (
−→
Q)

t1 1 1 0 15
t2 0 1 1 10

Table 4.1: Task Assignment Matrix and Quality Evaluation Vector

• Formalism: We formalize the problem of skill estimation for team-based tasks

for different skill aggregations (Section 4.3).

• Solutions: We propose a comprehensive optimization-based formulation con-

sidering both deterministic and probabilistic interpretations of skills. We pro-

pose principled solutions and present theoretical analyses (Sections 4.4 & 4.5).

• Discussion & Experimental results: We conduct comprehensive experi-

ments on multiple real-world datasets and a synthetic one that show that our

algorithms are accurate and efficient (Section 6.6). We discuss the extensions

of the problems in Section 4.6.

4.2 Applications of Team-Based Tasks

We now present a generic running example which will be used throughout the

chapter and motivate the two skill aggregation functions studied in here.

Example 1. Running Example: Imagine a specific instance of the skill estimation

problem where the following input is provided: A Boolean matrix, that represents

which worker worked on which tasks (i.e., worker to task assignment matrix) and

a vector that represents the evaluated quality of the two tasks (see Table-4.1). Our

objective is to learn the skills of workers u1, u2, u3.

Sum Skill Aggregation - Team-based sports: Consider a team-based ac-

tivity such as Basketball where each player contributes to a game in multiple ways:

attack players who together contribute to scores and defense players who together
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contribute to blocks. Naturally, the scores and blocks of a team are the sum of its in-

dividual worker’s scores and blocks. Given available history of past games and their

respective outcomes (scores and blocks), we intend to learn the skill of individual

players in scores and in blocks.

Maximum Skill Aggregation - Research paper co-authorship: For a

team of researchers co-authoring a paper, the qualitative outcome of the work is

often driven by the most skilled (or experienced) researcher. Similarly, the quality

evaluation of a paper could be modeled simply as the number of citations it gets

within a given time period. As a concrete scenario, the number of citations that a

database paper gets is an indicator of its technical quality. In this example, we intend

to learn each co-author’s skill (expertise) in the database area.

These two aggregation functions represent a wide range of team formation ap-

plication scenarios [77, 78]. Further discussions on other skill aggregation is deferred

to Section 4.6.

4.3 Data Model and Formalism

4.3.1 Data Model

Workers: We have a set U = {u1, u2, . . . , un} of n available workers. For

the NBA application, workers are players, whereas in the co-authorship application,

workers are the authors.

Domains & Skills: We are given a set of skill domains D = {d1, d2, . . . , dm}.

Skill domains are associated with both tasks and workers. We assume that each

domain is independent and focus on estimating workers’ skill per domain. For the

NBA application, domains could be defense or attack and each player has a value for

each domain (0 denotes no skill in a domain).
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Our problem now simplifies to estimating a single skill per worker and invoking

the estimation for each domain independently. We represent a worker skill as su. The

skills of all n workers are presented by a vector
−→
S . su is either a deterministic value,

or a probability distribution. The latter scenario assumes that some workers have

large variance in their skill levels when performing tasks, whereas others have smaller

variances. For example, in NBA two players may have the same average points per

game, but one has greater variance over the other. Thus, su is a random variable and

is represented by a probability distribution function (pdf). To simplify exposition,

we assume that the skill pdf of a worker u is discretized across w possible range of

values (i.e.,buckets), where
∑

w Pr(s
u = w) = 1. Using Example 2, if the skill pdf

of worker u1 (in the range of [0 − 15]) is discretized using 3 equi-width buckets, the

buckets may represent skill [0− 5], [5− 10], [10− 15].

Team Based Tasks: We assume a set T of l completed team-based tasks.

Each task involves a team of workers. For the NBA application, each game is a task,

whereas for co-authorship, each research paper is a task.

Teams or Groups: A team or group G ⊆ U comprises of a set of workers from

U who participate in a task together. A team G undertaking a task t is referred to as

Gt.

Task Assignment Matrix: For each completed task t, we know the workers

in Gt who undertook t. This gives rise to the task assignment matrix Al×n (n workers

and l tasks). Each cell aij ∈ {0, 1} contains a binary value, where a 1 indicates that

the ith task was undertaken by the jth worker, and 0 otherwise.

Task Quality Evaluation Vector: Each completed task t is assigned a con-

tinuous quality score. For all l tasks, we obtain a vector of length l,
−→
Q . For example,

the quality of a team G in a game t could be measured as the total scores in that
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game. The number of citations could automatically reflect the quality of a published

research paper.

4.3.2 Formalism

Next, we formalize different skill aggregation functions for team-based applica-

tions.

Additive (Sum) Skill Aggregation Model: In this model [73], the per-

formance of a team for a task t is computed as the sum of skills of the workers who

undertook task t together. Formally, the skill of a team Gt for task t, can be computed

as:

qt =
∑
u∈Gt

su (4.1)

Team-based sports are popular examples of the additive skill aggregation model,

where more workers add more value to the task. In the running example, the skill of

team of workers u1 and u2 working on task t1 is (su1 + su2) = 15.

Maximum (Max) Skill Aggregation Model: In this model [73], the team

skill is dominated by the skill of the most skilled worker in the team. Formally, we

have:

qt = max
u∈Gt

su (4.2)

This model fits closely with creative tasks[77]. For example, a research work

may require forming a team, where the quality is primarily dominated by the highest

skilled researcher. In the running example, the skill of team (u1, u2) working on task

t1 can be computed as max (su1 , su2) = 15.
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4.3.2.1 Problem Definition

Worker Skill Estimation: For each worker u, su needs to be computed consid-

ering all the tasks undertaken by u. As a simple example, for the additive aggregation

model, this gives rise to a system of linear equations, satisfying A ×
−→
S =

−→
Q , where

the objective is to estimate
−→
S .

In many scenarios, there may not be any feasible solution to a given problem

instance. Consider our running example again under Max skill and assume that worker

u1 also participated in task t2. Now we can assign either skill value of 15 or 10 to her;

either way, this does not produce a feasible solution (because A ×max(
−→
S ) and

−→
Q

are not same). Therefore, we must estimate skill accuracy by measuring some error.

We relax our formulation into an inequality - i.e A×
−→
S �

−→
Q . Our objective is

to estimate an optimal value for
−→
S that satisfies all the inequalities, and has a small

reconstruction error. For every task t, the reconstruction error is the difference be-

tween the estimated skills of Gt and the given quality of t. The overall reconstruction

error across all l tasks is denoted by E(
−→
Q,A⊗

−→
S ). Our optimization, therefore, is to

Minimize
−→
Q −A⊗

−→
S (4.3)

The operator ⊗ is × for additive skill model and max for maximum skill aggregation

model.

Reconstruction Error: Our problem is most aptly represented with one sided

error [79] which assumes that the actual quality value of task t (i.e., qt) is never

smaller than that of the estimated skills of the team that undertook t, for a given

skill aggregation model. While this conservative approach may underestimate the

true skill of a worker, it in turn provides better assignment of workers to future tasks,

where the assigned workers will necessarily surpass the minimum skill requirement of

the tasks. On the other hand, two sided error may overestimate worker’s skill, which
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may lead to poor task assignment, because the true skill of a worker is actually smaller

than what is estimated. Formally, one sided error could be specified as
−→
Q−A×

−→
S and

we require this expression to be non-negative. Considering one sided error, operator

� only represents ≤ between the left and the right hand side of the above equation.

Error Functions: Recall that we compute the reconstruction error E(
−→
Q,A⊗

−→
S ) between two vectors,

−→
Q and A ⊗

−→
S by measuring their distance or norm. The

distance between two vectors
−→
V and

−→
V ′ could naturally be computed using several

norms. We focus on `2 and note that our solution framework requires simple adapta-

tion for `1 and L∞.

`2 norm: ||
−→
V −
−→
V ′||2 =

√
Σk(vk − v′k)

2. As an example, for our running example,

if A⊗
−→
S is a vector (9, 10)T for two tasks and

−→
Q is (15, 10)T , the reconstruction error

is E(
−→
Q,A⊗

−→
S ) =

√
(9− 15)2 + (10− 10)2 = 6

Selecting Optimal
−→
S : In an over-determined system [80], where there are

more tasks than workers, there may not be any feasible solution. Our objective in

this case is to identify a solution that has the smallest `2 reconstruction error. For an

under-determined system [80], there are more workers than tasks. In this scenario,

there may be many feasible solutions and the objective is to select one of them that

minimizes some prior function. The most common approach is to use MaxEnt or

principle of Maximum Entropy [81] for such scenarios. We explore the former in

depth (which is realistic for our applications) and defer the latter to future work.

Optimization Problems: Formally, given a task assignment matrix A and

task quality estimate
−→
Q , where, A ×

−→
S ≤

−→
Q , estimate

−→
S (where su is the skill of

worker u in this vector) that minimize:

Problem 2. Sum-Skill-D E(
−→
Q,A×

−→
S ), where su is deterministic.

Problem 3. Sum-Skill-P E(
−→
Q,A×

−→
S ), where su is a discrete pdf.

Problem 4. Max-Skill-D E(
−→
Q,A×max(

−→
S )), where su is deterministic.
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Problem 5. Max-Skill-P E(
−→
Q,A×max(

−→
S )), where su is a discrete pdf.

4.4 Sum-Skill

We consider the first skill aggregation function - Sum - where the team skill

corresponds to the sum of its members.

4.4.1 Sum-Skill-D

For the deterministic case, the skill of each worker u (i.e. su) corresponds to

an unknown variable. Given a task t, the skill of a team is the sum of its individ-

ual workers who undertook it -
∑

u∈t s
u. This expression is upper-bounded by the

qualitative skill assigned to the task. Formally, each task t completed by team Gt

corresponds to an inequality ∑
u∈Gt

su ≤ qt (4.4)

Sum naturally lends itself to formulating skill estimation as a system of linear inequal-

ities as follows:

A×
−→
S ≤

−→
Q (4.5)

Running Example: The example from Section 4.3.1 can be formalized as a

set of constraints, such as:

su1 + su2 ≤ 15; su2 + su3 ≤ 10; lb ≤ su ≤ ub

where lb and ub are problem specific lower and upper bounds for the skill of

workers. The above inequalities are trivially satisfiable by setting all entries of
−→
S to

0. In order to obtain realistic values, we need to design an optimization formulation

based on how close the current assignment is to the qualitative assignment provided

by the domain expert, i.e., by minimizing the reconstruction error.
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`2 Reconstruction Error: We use `2 measure that computes the Euclidean

distance between
−→
Q and A ×

−→
S . If the linear inequalities are indeed equalities,

this would reduce to linear least squares [82]. Due to inequalities and additional

constraints this becomes a constrained least square problem. Specifically, our formu-

lation has a quadratic objective and linear constraints - which we model as a quadratic

programming problem with linear constraints. This variant is a known instance of

convex optimization [83].

The corresponding optimization problem is formalized as

minimize

√∑
t

et2

subject to qt − (
−→
At × su) ≥ et,∀u ∈ Gt

lb ≤ su ≤ ub

(4.6)

where lb and ub are problem specific lower and upper bounds for the skill of workers.

Specifically, our problem corresponds to a box-constrained least squares as the solu-

tion vector must fall between known lower- and upper-bounds. The solution to this

problem can be categorized into active-set or interior-point methods. The active-set

based methods construct a feasible region, compute the corresponding active-set, and

use the variables in the active constraints to form an alternate formulation of least

square optimization with equality constraints [83]. The interior-point methods en-

code the convex set (of solutions) as a barrier function. Quasi-Newton methods are

then used to optimize this function. Using our running example, the estimated skill

vector of workers are 〈9.0014, 5.994, 4.0031〉 with `2 error of 0.

Complexity: Both the active-set and interior-point methods are very efficient

and run in polynomial time [80]. The worst case complexity for computing constrained

least squares (by using generalized singular value decomposition) is O(n2l+ n3) [80].
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In practice, iterative algorithms often return the solution within a small number of

iterations [80].

4.4.2 Sum-Skill-P

We now describe the skill estimation problem considering skill of a worker u,

i.e., su as a probability distribution function (or simply a pdf) that is unknown to us.

It can be any arbitrary distribution, which is discretized over a set of w possible range

of values (each range is a bucket) that the pdf can take. While such discretization

may introduce error in the overall calculation, there are no efficient alternatives that

can handle any arbitrary pdf.

If there is only a single task in the task assignment matrix A, we intend to

produce the skill pdfs of the workers such that the joint pdf of quality of the assigned

team is as close as possible to the obtained quality. However, the task assignment

matrix contains many tasks with (possibly) different quality and a worker has typically

undertaken many tasks. Thus, we need to estimate the skill pdfs of the workers such

that the `2 error across all the tasks is minimized. The quality of each completed

task (qt) by a team is known and performed by taking the Sum of individual worker’s

skill pdfs. As we describe below, this step is akin to taking the Sum-convolution of the

individual skill pdfs of the workers to compute the joint skill pdf of the team. However,

we do not know these individual skill pdfs - rather, only the quality of each team as

a whole (i.e., the qt’s) are available at our disposal. The challenge is to be able to

estimate the individual skill pdfs from these qt’s (in other words, deconvolve the qts

to generate the individual skill pdfs) such that the error is minimized. Moreover,

the one-sided error constraints must also be respected. More specifically, we need to

perform the following three necessary transformations for that.
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(1) Computing skill pdf of a team: When each worker’s skill in a team Gt

who undertakes task t is a pdf, the quality of the team Gt is also a pdf. We assume the

independence of workers’ skill, i.e., the skill of a worker does not improve/degrade

due to the presence of certain fellow workers. For Sum skill, the joint pdf of the

team’s skill (or quality) (e.g., multiparty online games) could be computed using

Sum-Convolution of the individual skill pdfs. The definition of Sum-Convolution of

two pdfs is adapted from prior work [76] and is given below. A simple example of the

joint skill distribution using Sum-aggregation (i.e., Sum Convolution) is presented in

Figure 4.1(a) (further described in (2)), considering two skill pdfs after appropriate

discretization. In general, Sum-Convolution of an arbitrary number of M pdfs can

be computed by performing a sequence of M − 1 Sum-convolutions, first convolving

the first and the second pdfs, then convolving the resultant pdf with the third pdf,

and so on.

Definition 4 (Sum-Convolution of Distributions). Assume that f(x), g(x) are the

pdfs of two independent random variables X and Y respectively. The pdf of the random

variable X + Y (the sum of the two random variables) is the convolution of the two

pdfs: ∗({f, g})(x) =
∫ x
0
f(z)g(x− z) dz.

(2) Representing qt as a pdf: The quality of task t, qt, a deterministic value,

should also be represented as a pdf. Consider Example 2 (Section 4.2) and notice

that qt1 = 15. If u1 and u2 have worked in task t1, without any prior information, the

skill of both workers su1 and su2 can range between [0, 15]. While the task quality

can be between [0 − 30], we know that it has a skill of 15. Therefore, the resultant

pdf is between [0, 30], yet only the skill value of 15 has a probability of 1, and all

other skill values have probability of 0. We translate the deterministic quality of each

completed task to a pdf and discretize involving w equi-width buckets: for t1, these
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(a) (b)

Figure 4.1: An example joint pdf after, (a) Sum aggregation using Sum-Convolution (b)
Maximum aggregation using Max-Convolutions. In fact, our objective is to learn the individ-
ual skill pdfs, given qt.

buckets are [0 − 10], [10 − 20], [20 − 30], where only the second bucket is associated

with a probability of 1 (as it contains 15).

(3) One sided error: Unlike the deterministic case, where one can easily

specify one sided error constraints, such as, su1 + su2 ≤ 15, there is no obvious easy

way to specify such hard constraints, when each su is a pdf. Therefore, we ensure that

the probability that the joint pdf su1 +su2 is larger than 15 is smaller than a predefined

threshold, λ. i.e., Pr(su1 + su2 > 15) ≤ λ. By controlling the value of λ, we can tune

these constraints in a flexible manner. Since the skill pdf of each worker is discretized

over a set of w different ranges, we can still use `2 distance to compute the difference

or error between the joint pdf (represented using Sum-Convolution) and the pdf that

represents the obtained quality [84].The corresponding optimization problem is,

minimize

√∑
t

(qt − (
−→
At × su))2 (4.7)

The constraints are to be set up such that the pdfs of the workers satisfy the probability

axioms as well as the one-sided error constraints, such as.

Pr(
∑
u∈t

su > qt) ≤ λ ∀t

∑
w

Pr(su = w) = 1 ∀u.
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If skill pdf a worker is represented involving w buckets, then, each skill pdf

is associated with w unknown variables. Table 4.2 shows the various pdfs that are

associated with Example 2, if each of the pdfs are discretized using 3 (w = 3) buckets.

Without loss of generality, imagine variables (unknowns) pui represent the probability

of the i-th skill bucket of su (for skill of u1, p
u1
1 , p

u1
2 , p

u1
3 are [0− 5], [5− 10], [10− 15],

respectively). Also, let pti (known) represent the probability of the i-th skill bucket of

qt (for qt1 , [0 − 10], [10 − 20], [20 − 30] are represented using pt11 , p
t1
2 , p

t1
3 respectively,

where, pt12 = 1).

The challenge in solving the optimization problem is estimating these variables

(in other words, deconvolve the qts to generate the individual skill pdfs) such that they

minimize the `2 error. For our running example, just considering the second bucket

of qt1 ([10−20], where the probability mass is 1), we need to set up the variables such

that the probability that the sum of su1 + su2 to be in [10− 20] is as high as possible.

This can be done by computing the probability, when su1 = [5− 10]& su2 = [5− 10],

or su1 = [0 − 5]& su2 = [10 − 15], or su1 = [10 − 15]& su2 = [0 − 5]. Therefore, the

corresponding formulation is to solve and minimize for

(pt12 − {pu12 ∗ pu22 + pu11 ∗ pu23 + pu13 ∗ pu21 })
2

It is easy to notice that even for the toy example that involves only two workers per

task, such a formulation gives rise to a quartic polynomial (degree of 4). For the

general case, the degree of the resultant polynomial could be of the order n. Solving

such functions optimally is thus prohibitively expensive. We resort to a hill climbing

based efficient heuristic solution, as a viable alternative.

Heuristic Algorithm: We design a hill climbing based heuristic algorithm

that uses random restarts. We start with a pdf for each su (uniform in our case in

lack of any prior knowledge) and the overall objective function value (i.e., `2 error) is
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pdf range known/unknown
su1 [0− 5], [5− 10], [10− 15] all unknown
su2 [0− 5], [5− 10], [10− 15] all unknown
su3 [0− 5], [5− 10], [10− 15] all unknown
qt1 [0− 10], [10− 20], [20− 30] all known
qt2 [0− 10], [10− 20], [20− 30] all known

Table 4.2: Discretized pdfs using 3-equi-width histograms for Example 2

computed. In a single iteration, this algorithm selects one of the workers u at random

and updates its pdf by a small value δ. Notice that, since the pdf of each worker is

discretized using w buckets, this step corresponds to randomly choosing one of the

w buckets and increasing (or decreasing) the probability of it by δ, while readjusting

the other buckets uniformly to keep the probability mass to 1. As an example, for

u1, if w = 3, δ = 0.2, and the first skill bucket (pu11 ) of the initial uniform distribution

(pu11 = 0.33, pu12 = .33, pu12 = .34) of su1 is being increased, then the adjusted pdf of su1

will be, pu11 = 0.53, pu12 = .23, pu12 = .24. With the modified pdf of u, it recomputes the

objective function value and takes this change, if the error is further reduced. This

process continues until no change can be found to improve the error. The solution is

then said to be “locally optimal”. With random restart, the algorithm performs hill-

climbing iteratively, each time with a random initial condition and the best solution

is kept at the end as the final solution. The various restarts increase the likelihood

of finding “global optima”. Our algorithm discovers the global optima on Example 2

and produces the following 3 distributions, su1 = [0, 0, 1], su2 = [1, 0, 0], su3 = [0, 1, 0].

Complexity: The exact asymptotic form is hard to derive, as that depends

on how fast it reaches the local optima in a given iteration. Our experimental results

indicate that the solution converges within a few minutes most of the time even for

a large scale dataset.
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4.5 Max-Skill

We now describe our solution for the maximum skill aggregation function

Maximum (or simply Max). Under Max, the skill of a team corresponds to that of

its most skilled member and the problem of estimation individual skills becomes a

discrete optimization problem. As before, we first describe the deterministic solution,

and then illustrate the probabilistic case.

4.5.1 Max-Skill-D

Before we describe our solution, we explain the correspondence between our

problem and a mathematical algebraic theory Max-Plus Algebra [74, 75], which has

been developed to solve a number of discrete optimization problems.

4.5.1.1 Overview of Max-Algebra

Traditionally, Max (or Max-Plus) Algebra provides techniques for solving non-

linear problems that could be specified in the form of linear problems, when arithmetic

addition is replaced by a maximum operation, and arithmetic multiplication is replaced

by addition [74, 75]. Further, the inverse of a number is equivalent to its negation and

∞ is denoted by ε. Using mathematical notations, the key max-algebraic equations

are given below:

a⊕ b = max(a, b) a⊗ b = a+ b a−1 = −a

a⊕ ε = a a⊗ ε = ε
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Almost all linear algebraic operations could be derived in the context of max

algebra. Specifically, the matrix-vector multiplication required for solving a system

of (in)equalities can be specified as:

A⊗ b =
⊗∑
k

ai,k ⊗ bk = max
k

(ai,k + bk) (4.8)

Intuitively, the system of inequalities A⊗ x ≤ b can be interpreted as

(a11 ⊗ x1)⊕ (a12 ⊗ x2)⊕ . . .⊕ (a1n ⊗ xn) ≤ b1

. . .

(al1 ⊗ x1)⊕ (al2 ⊗ x2)⊕ . . .⊕ (aln ⊗ xn) ≤ bl

Using the standard linear algebraic notation, this is equivalent to solving the

system of linear inequalities:

max{(a11 + x1), (a12 + x2), . . . , (a1n + xn)} ≤ b1

. . .

max{(al1 + x1), (al2 + x2), . . . , (aln + xn)} ≤ bl

If this system of inequalities has a solution, then we can see that it must satisfy

the following set of inequalities:

x1 ≤ min{(b1 − a11), (b2 − a21), . . . , (bl − al1)}

. . .

xn ≤ min{(bl − a1n), (b2 − a2n), . . . , (bl − aln)}
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The candidate solution that we derive this way is called the principal solu-

tion [74, 75], using Equation 4.9.

xi =
(
maxAi,j ⊗ (bi)

−1)−1 = min{bi ⊗ a−1ij } (4.9)

4.5.1.2 Proposed Solution

Considering Max, we however have slightly different formulations than in Max-

Algebra. Given a task t which is undertaken by group Gt, we intend to estimate the

skills of the workers to minimize, qt −max (
−→
At × su) ≥ et,∀u ∈ Gt. For our running

example, this gives rise to the following set of constraints:

max (su1 , su2) ≤ 15; max (su2 + su3) ≤ 10; lb ≤ su ≤ ub

where lb and ub are problem specific lower and upper bounds for the skill of workers.

Even though, the operator inside max (
−→
At × su) is a multiplication (instead of an

addition in the traditional max-algebra), the techniques proposed in Max-Algebra

leaves enough intuition behind to design a solution for our problem considering one

sided error. Algorithm 4 presents the pseudo-code.

Algorithm 4 Algorithm for Max-Skill-D

1: Input: A,
−→
Q

2: Replace 1 and 0 in A to 0 and ε respectively

3: Construct system of linear inequalities A⊗
−→
S ≤

−→
Q

4: Compute principal solution vector
−→
S using Equation 4.9

5: return
−→
S
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In particular, consider our running example and notice that we can adapt the

principal solution technique to form the following inequalities, based on the afore-

mentioned constraints.

su1 ≤ min (15) = 15 su2 ≤ min (15, 10) = 10

su3 ≤ min (10) = 10

Max becomes computationally much harder when two sided error is considered.

Exploration of two sided error for max skill aggregation is deferred to future work.

Lemma 5. The principal solution vector is a valid solution to the system of inequal-

ities for the max skill aggregation problem Max.

Proof. (Sketch): Once we express the maximum skill aggregation using the system of

inequalities, the proof directly follows from [74, 75].

Lemma 6. The principal solution vector minimizes the reconstruction error for `2

for one sided error.

Proof. (sketch): The principal solution vector outputs a feasible region for each vari-

able (each variable corresponds to a worker’s skill in the given domain). A detailed

proof in [85] shows that how the proposed solution minimizes `∞ norm. Extending it

to `2 is trivial.

Time Complexity: The principal solution could be computed by a single pass

over the matrix A and
−→
Q . The running time is dominated by the dimension of matrix

A which is l × n. Therefore, the time complexity is O(nl).

4.5.2 Max-Skill-P

Next, we describe the probabilistic skill estimation under Max. Akin to Sec-

tion 4.4.2, we first translate the quality of each completed task, i.e., qt as a pdf and

91



intend to estimate the skill pdf of each worker u, represented as su, while satisfying

the one-sided error constraints using `2. However, unlike Sum, the skill aggregation

function is now maximum (i.e., Max), reflected by taking the maximum skill among

the participating workers.

To compute the joint probability distribution of two independent random vari-

ables under Max, one has to compute the Max-Convolution [76] of two random vari-

ables, that we formally define below. The joint distribution of M random variables

under Max could be computed by performing a sequence of M − 1 pairwise Max-

Convolution. Consider Figure 4.1(b), where the joint pdf of two random variables

under Max skill aggregation is presented.

Definition 5 (Max-Convolution of Distributions). Assume that f(x), g(x) are the

pdfs of the two independent random variables X, Y respectively. The pdf of the

random variable Max(X, Y ) (the maximum of the two random variables) is the max

convolution of the two pdfs:max ∗ ({f, g})(x) = f(x)
∫ x
0
g(z) dz + g(x)

∫ x
0
f(z) dz.

The main challenge is to estimate the individual skill pdfs of the workers as

accurately as possible, such that, the distance between the obtained skills (based on

Max-Convolution) and the assigned quality is as small as possible. The optimization

problem exploits the same framework and is now restated as,

minimize

√∑
t

(qt − (
−→
At ×max(su)))2

The constraints are to be set up such that the pdfs of the workers satisfy the

probability axioms, as well as one sided constraints, akin to Section 4.4.2. Similar to

the Sum counterpart, we discretize the skill pdf of each worker using w buckets and

and assign a variable per worker per bucket that we intend to estimate.
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Similar to the sum problem, the optimization problem gives rise to solving a

polynomial of degree of n, if a task has n number of workers. Unfortunately, solving

the problem is prohibitively expensive. Therefore, we design a hill climbing based

efficient heuristic algorithm.

Heuristic Algorithm: Algorithm for Max-Skill-P runs is a greedy fashion

and performs hill climbing with random restarts. It is very similar with the algorithm

for Sum-Skill-P in flavor, except the fact that now it has to perform Max-Convolution

to compute the joint pdf of skill of the workers. We omit the details for brevity. Our

algorithm discovers the global optima on Example 2 and produces the following 3

distributions, su1 = [0, 0, 1], su2 = [1, 0, 0], su3 = [0, 1, 0].

Complexity: The running time complexity is similar to that of Sum-Skill-P.

4.6 Discussion

Min Skill Aggregation: It is easy to see that the techniques developed in

Section 4.5 can easily be extended to handle Min skill, should the application fit that

aggregation model. A well studied body of research, Min-Plus (or Tropical) algebra

[74] has been developed to study the algebraic operations with the Min operator.

The fundamental operations can be specified by the identities a ⊕ b = a + b and

a ⊗ b = min{a, b}. Most results from Max-Plus algebra are directly applicable just

by switching the Max operator with Min. Specifically, we can rewrite Equation 4.9

specifying the principal solution as,

xi =
(
MinAi,j ⊗ (bi)

−1)−1 = Max{bi ⊗ a−1ij } (4.10)

The only change required in Algorithm 4 is to replace Equation 4.9 with 4.10.

Similarly, the probabilistic skill learning algorithms could be adapted by decon-

volving Min-functions [76].
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Complex Skill Aggregations: In this chapter, we have initiated the first

ever formal treatment to estimate the skills of the workers for team based tasks. Our

chosen functions share some attractive properties: (a) They are representative of the

skill aggregation functions commonly used in a number of real-world team based tasks

[77, 78]. (b) They are supported by a well developed body of research (such as linear,

max-plus algebra, or min-algebra) that allows the development of efficient polynomial

time algorithms.

Our proposed optimization framework could be used to represent any arbitrary

skill aggregation function that takes the skills of a set of workers and outputs a

scalar score for the team. Specifically, the optimization objective for a complex skill

aggregation function f can be formulated as:

minimize E(
−→
Q, f(A,

−→
S ))

subject to qt − f(
−→
At, s

u) ≥ 0,∀u ∈ Gt

lb ≤ su ≤ ub

(4.11)

Under certain constraints (such as convexity), such a formulation might even

be solved efficiently. Investigation into their (in)tractability and design of efficient

solutions remain open problems at this point.

Independence and Collaboration: The independence assumption is indeed

true in several applications, such as online multi-party games and sentence translation

by fans (fan-subbing). It also allows us designing efficient solutions.

Our deterministic approaches could be extended to incorporate collaborations,

as long as, the aggregation functions are linearly expressible. Similarly, our prob-

abilistic algorithms could also be adapted by representing worker-dependence with

higher order histograms [86] to compute their joint distributions.
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In team productivity literature [77, 78], it is known that some individuals act

as “multipliers” or “enablers”. Similarly, affinity between team members also plays a

role. We describe two popular models next.

(1) Additive Factor Model [77, 78]: The skill of a worker is composed of two factors;

a baseline skill that the worker exhibits in all tasks, and a constant factor that de-

pends on the team and the task. Thus the same worker could have different levels

of performance for each task. If the additive factor is computed through a known

function, then it could be added into the model as a constant factor with a unit

weight. The problem then becomes finding the baseline skills of the workers, and our

algorithms are applicable. (2) Pairwise Affinity Model [77, 78]: Alternatively, the

skill of a worker in a task could be computed as the sum of the individual worker

and the pairwise affinity that she has with other members of the team. Our model

could be extended to handle this scenario through “linearization”, where, we add a

new variable for each pairwise interaction. Under this, our proposed deterministic

algorithms extend. (3) Non-Linear Affinity Models: Notice that both the models

described above could be described by a linear function. It is possible to design non-

linear affinity functions (such as based on a clique). These scenarios fall under the

broader category of complex aggregation functions.

4.7 Experimental Evaluation

Our development and test environment uses Python 2.7 on a Linux Ubuntu

14.04 machine, with Intel Core i5 2.3 GHz processor and a 6-GB RAM. We use

an existing convex optimization package 3 for solving Sum-Skill. All numbers are

presented as the average of three runs.

3http://cvxopt.org/userguide/solvers.html
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4.7.1 Dataset Descriptions

1) NBA: We collected 317, 371 tuples of NBA scores from 1991-2004 regular sea-

son. We pre-process this dataset and generate the worker to task assignment matrix

A by matching players with games. We consider two independent skill dimensions, i)

Number of points, ii) Number of Assists where the team skill is the computed by the

additive skill model. Our final dataset contains 21000 matches and 1200 players.

Ground truth in NBA dataset: The ground truth consists of the number of

points and the number of assists of a player played in a particular game. If a player has

played several games (which is really the case always), this gives rise to a distribution,

as opposed to a single skill value per worker.

2) DBLP: We use a subset of DBLP4 considering the papers that are published

from year 2000. We primarily consider authors who publish in database conferences

(SIGMOD, VLDB, CIKM, ICDE, EDBT), in the area of query processing. Each

publication is a completed task that is undertaken by a set of authors; we consider

the number of citations as its quality. This dataset consists of 20123 publications and

22700 unique authors.

Ground truth in DBLP dataset: Unlike the NBA dataset, there is no ground

truth available per worker (i.e., no truth is known about an author’s expertise).

Therefore, we neither have a skill pdf nor a single skill value per worker. As we

describe in Section 4.7.3, we take up a cross-validation type of approach for evaluation

here.

3) Synthetic Dataset: We generate a synthetic dataset for evaluating the scal-

ability of our proposed solutions for the deterministic and probabilistic algorithms.

The total number of workers varies between 5000 and 20000 and the total number of

4http://dblp.uni-trier.de/xml/
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tasks varies between 5000 and 250000. The quality vector is an uniform distribution

[0− 1].

4.7.2 Implemented Algorithms

Since no prior work has studied the skill estimation problem for team based

tasks, we ourselves design multiple baseline solutions for comparative evaluation.

4.7.2.1 Sum Skill

Deterministic Algorithms:

(1) BL-Sum-Regression-D: We treat the problem as a multivariate regression

problem, with the presence or absence of each individual in a team as the independent

variables. The quality of a completed task is the dependent variable. The objective

is to learn the co-efficients (skills) of the workers, such that the `2 error between the

estimated quality and actual quality is minimized. This is equivalent to solving a

least squares regression problem that minimizes ‖A ×
−→
S −

−→
Q‖2. Notice that this

baseline does not necessarily satisfy the one sided error constraints.

(2) BL-Sum-Uniform-Avg-D: For each task with quality value qt, we uniformly dis-

tribute the skill value among its constituent workers. Thus, any worker u, who under-

take t receives a skill score su = qt

|U ′| , where |U ′| is the set of workers who undertake

t. The final skill of u is calculated by taking the average of her received scores across

all the tasks. This baseline does not optimize the error value or satisfy the one sided

error constraints.

(3) BL-Sum-Uniform-Min-D: This baseline is similar to the the previous one, except

that we choose more conservative assignment of skill for each worker such that the one

sided error constraints are fully satisfied. First, we uniformly distribute the obtained

quality of each task among its constituent workers. The final skill of u is calculated

97



by taking the minimum of her received scores across all the tasks she has undertaken.

(4) Sum-Skill-D : Our proposed solution in Section 4.4.1 is compared with the base-

line solutions, whenever appropriate.

Probabilistic Algorithms: To the best of our knowledge, there does not ex-

ist a regression based model which treats the independent variables in a probabilistic

manner.

(1) BL-Sum-Uniform-P: This algorithm is similar to

BL-Sum-Uniform-Avg-D, but produces a pdf per worker at the end. For a task with

quality qt, we uniformly distribute qt among its constituent workers and generate a

discrete pdf per worker, after considering all the tasks she participated.

(2) Sum-Skill-P : Our proposed solution in Section 4.4.2 is compared with the base-

line solution, whenever appropriate.

4.7.2.2 Max-Skill

Deterministic Algorithms:

(1) BL-Max-D: In this baseline solution, we assume that the quality of a task reflects

the skill of only one of the constituent workers. For each task, in step 1, we first

choose a worker uniformly at random and assign her skill su as the quality of the

task qt. Each of the remaining workers u′ who undertook the same task receives a

su
′

smaller than su, using a uniform random distribution. In step 2, finally these

obtained skills are averaged per worker to compute the final skill value.

(2) Max-Skill-D : Our proposed solution in Section 4.5.1 is compared with the base-

line solution, whenever appropriate.

Probabilistic Algorithms:

(1) BL-MAX-P: This algorithm is designed in the same spirit as that of BL-MAX-D. The

step-1 of this algorithm is similar to its deterministic counterpart; In step 2, instead
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of averaging the skill of each worker, we generate a pdf.

(2) Max-Skill-P : Our proposed solution in Section 4.5.2 is compared with the base-

line solution, whenever appropriate.

4.7.3 Experimental Analyses Setup

4.7.3.1 Measures & Parameter Setup: Quality

Deterministic Scenario: We adopt a classical cross-validation based set

up [87] to evaluate our deterministic algorithms. We divide the dataset in train

and test and perform 3-fold cross validation. In particular, each record in a test set is

a task that is undertaken by a set of workers. For each such worker, we estimate their

respective skill considering only the train dataset (those who do not appear in train

get a skill of 0). For each task in test set, the ground truth (i.e., the true quality) is

the associated quality value. We compare the estimated quality of a task with that

of the ground truth for that task.

We compare and contrast different algorithms by presenting average absolute

error and normalized relative error. Relative error is computed as

√∑
∀t et×et√∑
∀t q

t×qt
. We

present the percentage of tasks in our test set which overestimates the task qual-

ity (compared to the ground truth), thus violating the one-sided error constraints

(Section 4.3.2.1).

Probabilistic Scenario: For the probabilistic variant of the NBA dataset,

we compute the `2 error between the estimated skill pdfs and that of the ground

truth distributions. We measure relative error over the test dataset (assuming the

evaluated quality of each task in the test set as ground truth). We need to transform

the estimated pdf of each worker to a single value by computing expected skill, i.e.,
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ExpectedSkill(u) =
∑

w(Pr(su = w) × w) and measuring the `2 error between the

actual quality and the expected quality of the tasks.

We discretize the pdfs using w equi-width histograms (buckets), where each

bucket is a skill range. To compute the expected skill of a worker, we consider the

upper limit of the skill range per bucket: for example, if the pdf of a worker is

Pr([0− 5]) = .7, P r([5− 10]) = .3, then the expected skill is .7× 5 + .3× 10 = .65.

Hill climbing algorithms have many parameters, w - # buckets to approximate

the equi-width pdfs, δ - the amount by which we modify the pdfs in each step, and

α - # failed iteration for the convergence of the hill climbing algorithm. Our default

set up is w = 10, δ = 0.05, λ = 0.01 (one sided error threshold), α = 1000, # random

restarts=5.

4.7.4 Summary of Results

Quality Experiments: Our first set of results (considering relative error)

strongly corroborate our hypothesis on the underlying skill aggregation model for

a given application - i.e., NBA dataset follows Sum-Skill, whereas, DBLP dataset

follows Max-Skill. After this result, we present the rest of the experiments by con-

sidering the most appropriate dataset for it (i.e.,NBA for Sum, DBLP for Max). Our

deterministic algorithms demonstrate that we consistently outperform all the base-

line algorithms (including the regression based one) in minimizing the error value, as

well as consistently obeying the one sided error constraints. Same observation holds

for the probabilistic algorithms, where Sum-Skill-P and Max-Skill-P significantly

outperform their respective baseline counterparts.

Scalability Experiments: For the deterministic scenario, our results indicate

that our proposed solutions are scalable. Even when the task assignment matrix is

very large, they only take a few minutes to complete. Max-Skill-D is more scalable

100



than Sum-Skill-D. This is consistent with our theoretical analyses in Section 4.5.1.

For the probabilistic scenario, the heuristic algorithms are more efficient than the

optimal variants and often converge within few minutes and scale well. For lack of

space, we only present a subset of results. The presented results are representative.
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Figure 4.2: Quality and Scalability trade-off: Deterministic/Probabilistic Models

Deterministic/Probabilistic Skill Models: To highlight the tradeoffs be-

tween deterministic and probabilistic models, we conduct three experiments. We gen-

erate a synthetic dataset where each worker is associated with a skill pdf where we

vary the variance for a fixed task assignment matrix. When the variance is low, then

the workers are more consistent in their performance across different tasks. When

the worker has high variance, her performance might have high deviation from the

expected value. The results in Figure 4.2a and Figure 4.2b show that the determinis-

tic variants are preferable for lower variance of worker’s skill, while the probabilistic

variants are preferable for higher variance. In our third experiment, we calculate

the runtime of our deterministic and probabilistic algorithms with varying task size.

Unsurprisingly, Figure 4.2c shows that deterministic algorithms are more scalable

than probabilistic algorithms. This is quite expected as probabilistic algorithm takes

longer time to converge due to greater number of unknowns than its deterministic

counterparts.
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4.7.5 Qualitative Experiments

4.7.5.1 Hypothesis Validation

In this set of experiments, we vary the number of tasks and measure the average

relative `2 error of both Sum-Skill and Max-Skill based skill estimation algorithms

using both DBLP and NBA dataset. We present these results using Sum-Skill-D and

Max-Skill-D algorithms. Figures 4.3a and 4.3b present the results which strongly

corroborate our hypothesis: i.e., NBA dataset follows Sum-Skill, ensuring lower error

compared to DBLP dataset. On the contrary, Max-Skill is better estimated using

DBLP dataset (with smaller error compared to that of NBA). Clearly, in case of

Sum-Skill error remains low in NBA dataset, as the training size gets higher where

as DBLP dataset did not show any of this pattern. These results show that the

formalized skill aggregation functions are indeed appropriate to capture real world

applications.
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Figure 4.3: Experiments for hypothesis validation: Average relative `2 error for
Sum-Skill-D and Max-Skill-D considering NBA and DBLP datasets, with varying # tasks.
For Sum-Skill-D , NBA has significantly lower error, and for Max-Skill-D DBLP dataset
outputs smaller relative error.
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Figure 4.4: Experiments to validate Sum-Skill aggregation: These results clearly
demonstrate the our solutions consistently outperform the baseline for both the measures
we present in the Y -axis. The underlying dataset that is used is NBA.

4.7.5.2 Sum-Skill

Here we vary the training dataset size to evaluate our proposed algorithms

Sum-Skill-D and Sum-Skill-P.

Normalized Error - Sum-Skill-D : Figure 4.4a presents the results and

clearly demonstrates that our proposed algorithm consistently outperforms all the

baseline solutions, including the regression based baseline. The error decreases with

increasing number of tasks, which corroborates that with increasing training set size,

the skill estimation becomes more accurate.

One-sided Error Constraints - Sum-Skill-D : Figure 4.4c clearly demon-

strates that our proposed algorithm consistently outperforms the three other baselines
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in one sided error constraints. BL-Sum-Uniform-Avg-D heavily overestimates work-

ers’ skill. BL-Sum-Uniform-Min-D is the best baseline, as it is designed to obey such

constraints. Same observation holds for Sum-Skill-P and BL-Sum-Uniform-P.

Normalized Error - Sum-Skill-P : We present the normalized error of our

proposed solution with that of the baseline algorithm, BL-Sum-Uniform-P. Figure ??

corroborates that Sum-Skill-P is significantly more accurate.

Normalized Error -Sum-Skill-D vs Sum-Skill-P : Figure 4.4d presents the

comparison between them. Although Sum-Skill-D performs better, Sum-Skill-P

provides more granular information on worker’s skill.

4.7.5.3 Max-Skill

We use the DLBP dataset to perform further experiments on Max-Skill. We

vary the number of tasks and measure the average absolute `2 error.

Figure 4.5a shows that Max-Skill-D outperforms BL-Max-D algorithm. With

increasing training set, the algorithm learns better, hence the error of Max-Skill-D

decreases. Figure 4.5b shows that Max-Skill-P outperforms the probabilistic baseline

BL-Max-P consistently. However, error varies with the task size using Max-Skill-P ,

because the algorithm cannot always find the global optima. Figure 4.5c shows the

comparison between Max-Skill-D and Max-Skill-P. We observe that Max-Skill-D

performs better for larger training data. However, Max-Skill-P provides the distri-

bution of worker skill which can be of importance for a particular application.
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Figure 4.5: Experiments to validate Max-Skill aggregation : In these experiments,
we compute the average error by varying the number of tasks. Clearly, our proposed so-
lutions Max-Skill-D outperforms the baseline algorithm BL-Max-D and Max-Skill-P out-
performs BL-Max-P. The underlying dataset is DBLP.
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Figure 4.6: Experiments to validate the scalability of the deterministic skill
estimation algorithms: The following default settings is considered: # workers=5000, #
tasks=10000, # workers/task=10, # domains= 1. These results clearly demonstrate that
our proposed solutions are scalable.
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4.7.6 Scalability Experiments

4.7.6.1 Deterministic Estimation: Sum and Max Skill

For the deterministic scenario, we vary number of workers, tasks, workers/task,

and domains. Our run-time experiments have the following default settings:

#workers=5000, #tasks=10000, #workers/task=10, #domains= 1.

Varying Number of Tasks: We vary the number of tasks in this experiment. Fig-

ure 4.6a shows that both Sum-Skill-D and Max-Skill-D scale well with increasing

number of tasks. Quite unsurprisingly, the latter outperforms the former algorithm

scalability-wise. This result is expected and is consistent with our theoretical

analyses of the algorithms.

Varying Number of Workers: Our observation here is akin to the previous

experiment. Both algorithms scale well. Figure 4.6b shows the result.

Varying Number of (Workers/Task): The objective of this experiment is to

observe the influence of the number of workers per task in the running time analyses.

From figure 4.6c, it is apparent that while Max-Skill-D scales very well due to its

linear time complexity. However, Sum-Skill-D also performs reasonably with larger

data size.

Varying Number of Domains: In this experiment, we vary number of domains

and measure the scalability of the proposed algorithms. Figure 4.6d presents the

results and demonstrates that our proposed solutions are scalable.
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4.7.6.2 Probabilistic Estimation: Sum and Max Skill

For the probabilistic skill, for brevity, we only present a subset of results. As

stated before, we vary the parameters that influence the efficiency of the hill climbing

algorithms.

Varying w - Max: As we increase the number of skill buckets, the number of

unknown to solve increases, hence it takes longer to converge. Figure 4.7a demon-

strates that Max-Skill-P scales well with varying w for five different size datasets.

Sum-Skill-P takes about 60% more time than Max-Skill-P as the joint pdf has

larger ranges (e.g., two pdfs in the range of [0− 15] gives a joint pdf between [0− 30]

for sum, whereas, it is still [0− 15] for max) for sum, thereby requiring more compu-

tations. Although efficiency decreases with increasing w, but we get the distribution

of worker skill with more granularity.

Varying δ - Sum: With higher step size (δ) in the hill climbing, the algorithm

converges faster but with lower accuracy. Sum-Skill-P results are presented in Fig-

ure 4.7b. Max-Skill-P has similar trend, but takes about 60% less time. We omit

the chart for brevity.

Varying # failed iterations α - Sum: This parameter α dictates after how

many failed iterations a random restart takes place inside the hill climbing algo-

rithms. Figure 4.7c shows that our solution scales well with increasing α. As usual,

Max-Skill-P takes about 60% less time always.

Parameter Tuning: This is evident from Figure 4.7a, 4.7b and 4.7c that with

the increase of w and α and decrease of δ, latency will be higher. However, high value

of w and α and low value of δ ensure better results in terms of quality. Additionally,

with higher # random restart, the solutions likely get better qualitatively, although

the running time also increases (1.1 minute per restart on an average). With smaller
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Figure 4.7: Experiments to validate the scalability of the probabilistic skill esti-
mation algorithms: default settings: # domains=1, n = 1000, w = 3, δ = 0.2, # failed
iterations=200, # random restarts=5; despite having to solve a polynomial of degree 20,
our solutions scale well and terminate within a few minutes. We only present a subset of
results for brevity.

λ (one sided error threshold), we get solutions that better satisfy the one-sided er-

ror constraint, but that improvement comes with an increasing computation time.

Clearly, we need to consider trade-offs while choosing these parameter values. Em-

pirically, with w = 10 , δ = 0.05, λ = 0.01, α = 1000, # random restarts=5, we get

the best trade-off between quality and scalability.

4.8 Related Work

While no prior work has solved skill estimation problem for team based tasks,

we present existing work that are tangentially related.

Team Formation: A tangential problem is the team formation problem [69,

88]. Formation of team considering a social network is first studied in [69, 70, 71].

The objective of these body of work is to form a team of experts to solve a particular

task, which assumes that the skill of the experts are known and given as inputs. On

the contrary, we intend to estimate the skill of the workers by investigating the quality

of the completed tasks they have undertaken. No prior work, however, studies any

formalism or solution to estimate worker’s skill for team based tasks.
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Skill Estimation in Micro-task based Crowdsourcing: Crowdsourcing

has gained significant traction in the research community for solving problems, such

as, image tagging, annotating labels, or looking up addresses of people [89]. These

applications are primarily designed on micro-tasks, where the task is completed by

an individual at its entirety (e.g., a worker tags an image all by herself). While skill

estimation or evaluating the quality of the workers in crowdsourcing has gained recent

research attention [1, 2, 3], the focus is entirely on micro-task based applications. We

however consider team based tasks [90, 91].

Disaggregation Methods: Disaggregation methods are studied to dis-

aggregate weather data to find hourly rainfall, temperature, or wind speed from daily

maxima or minima [92, 93]. These methods do not lend any extension to solve our

problem either, as their dis-aggregation happens “locally”, i.e., per day, as opposed

to our problem, where a worker can undertake many tasks and the skill estimation

must consider all of them to minimize the error.

Regression Based Models: The Sum-skill problem bears resemblance with

the least square regression [87] that we consider as a baseline, without having to sat-

isfy the one-sided error constraints. Quantile regression [87] models the relationship

between the independent variables and the conditional quantile of the dependent vari-

able. Maximum quantile regression will learn the relationship between the maximum

value of the dependent variable given the independent variables. Unlike that, our Max

aggregation problem intends to learn the dependent variable which is the maximum

of the independent variables. These are fundamentally different.

4.9 Conclusion

We initiate the study of estimating skill of the individual workers in team based

tasks for various applications. We formalize it as an optimization problem considering
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multiple skill aggregation functions, where skill of a worker is either deterministic or

a probability distribution. We propose principled solutions to all the studied vari-

ants of the problem and provide in-depth analyses. We run a comprehensive set of

experiments considering two real world datasets that demonstrate the effectiveness

of our proposed skill estimation algorithms. We also conduct large scale synthetic

experiments to validate the scalability of our proposed solutions. In the next chapter,

we present two task recommendation algorithm using implicit observations.
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CHAPTER 5
Feature Based Task Recommendation in

Crowdsourcing with Implicit Observations

Existing research in crowdsourcing has investigated how to recommend tasks

to workers based on which task the workers have already completed, referred to

as implicit feedback. We, on the other hand, investigate the task recommendation

problem, where we leverage both implicit feedback and explicit features of the task.

We assume that we are given a set of workers, a set of tasks, interactions (such as the

number of times a worker has completed a particular task), and the presence of explicit

features of each task (such as task location). We intend to recommend tasks to the

workers by exploiting the implicit interactions, and the presence or absence of explicit

features in the tasks. We formalize the problem as an optimization problem, propose

two alternative problem formulations and respective solutions that exploit implicit

feedback, explicit features, as well as the similarity between the tasks. We compare

the efficacy of our proposed solutions against multiple state-of-the-art techniques

using two large scale real world datasets.
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5.1 Introduction

Crowdsourcing platforms, such as Amazon’s Mechanical Turk or Crowdflower,

have recently gained immense popularity due to their elegant framework, where a

task requester can get work done by numerous virtual workers for very low compen-

sation. One common problem in these platforms is that the workers have to suffer a

huge latency to find suitable tasks. This creates unhappiness and eventually leads to

the abandonment of the platform. To that end, task recommendation problems are

proposed in the crowdsourcing context, where the objective is to recommend a set of

tasks to each worker such that these tasks are best suited for the workers [94, 95].

However, to the best of our knowledge, there does not exist any related work that fo-

cuses on the task recommendation problem by considering the explicit characteristics

of the tasks themselves, we refer to this as explicit task features. For example, if the

crowdsourcing task is from a citizen science application for identifying species, then,

the explicit features of the tasks may come from those respective locations of obser-

vation, or a given species taxonomy to describe the relationship between the species.

The novelty of our work is to leverage historical task completion of the workers (that

is referred to as implicit feedback) augmented with explicit task characteristics or

features to recommend tasks to the workers.

Our focus of the investigation is limited to citizen science applications that are

designed towards volunteer based crowdsourcing, where the importance of effective

task recommendation is pivotal. Currently, a volunteer, upon identifying a species,

uploads the information to the server specifying the details of the identification. A

common problem which frequently occurs in this scenario is incorrect identification.

A reliable task recommender system can alleviate the problem. If we have historical

data on how many tasks a volunteer has successfully performed and those observa-
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tions are on what species and from which locations, then the probability of incorrect

identification is much lower.

Concretely, we focus on solving the problem of task recommendation for crowd-

sourcing platforms, considering the implicit feedback of the workers (primarily con-

sidering what tasks workers have undertaken in the past) and exploiting the presence

of explicit task feature information (such as task locations). Notice that the implicit

feedback is only reasonable as opposed to exploring other alternative formulations,

such as, explicit feedback, because, the latter assumes what the workers rate a task

after completing that task. For a given set of tasks and a pool of workers, this infor-

mation could be presented in the form of a matrix, where the rows are the workers,

and the columns are the tasks. A particular row-column value may describe how

many times a specific worker has undertaken a given task in the past. We refer to

this as the Worker Task Completion matrix. Additionally, explicit features of

the tasks are also available. We define the task features as the presence of a set of

attributes which describe a task. For instance, we can think of a task as identifying

a particular species. Then, we can use structural information such as the taxonomy

of the Species nomenclature as task feature or the previous locations where the task

is identified as task features. We show that incorporating explicit feature improves

task recommendation.

Based on the description above, we propose two optimization models based on

explicit task features. The high-level idea is to exploit the worker task completion

matrix and task feature information. In particular, we propose two alternative prob-

lem formulations -(1) Feature Preference Model: We exploit the explicit task

feature preference information and formalize the problem as solving linear equations.

We use constrained least square to solve the problem and obtain user’s feature vector

which is used for recommending tasks to the worker. (2) Latent Factor Model:
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Since, the explicit task features are known to the recommender system, this addi-

tional information is fed to the matrix factorization model. We obtain two latent

factor matrices which are exploited for further recommendation.

Finally, we present a set of experimental results using a real world dataset. Our

dataset, Ebird, extracted from the eBird project website1 contains bird observation

data of 1767 observations and 5000 workers. We evaluate our proposed task recom-

mendation models using two different evaluation metrics, Mean Percentile Ranking

and Precision Recall Curve. In addition, we implement a state-of-the-art solution as

baseline solutions [97].

In summary, we make the following contributions-

(1) We initiate the study of task recommendation in crowdsourcing platform

exploiting both implicit feedback and the presence of explicit task features.

(2)We propose two optimization models and elegant solutions for task recommen-

dation that rely on both least squares and matrix factorization based techniques.

First, we present a feature preference model to acknowledge explicit task features.

Additionally, we exploit the explicit features of the task and propose an optimization

model that constraints the latent factors based on the task similarity.

(3) We empirically validate our proposed methods with a large scale real world dataset

and compare them against the state-of-the-art solution for task recommendations.

In the next section, we describe the data model and preliminaries. We then

present our proposed problem formulations and algorithms, which is followed by ex-

perimental evaluations and related work.

1ebird.org
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5.2 Data Model and Preliminaries

We first describe our data models and preliminaries.

Set of workers, W : We consider a set of workers/users as,W = 〈w1, w2, w3 . . . wnw〉

for which we want to provide recommendation based on their task preference.

Set of Tasks, T : We consider a set of tasks T = 〈t1, t2, t3, . . . tnt〉.

Features, F : We consider a set of task features as -

F = 〈f1, f2, f3, . . . fnl
〉

Worker Task Completion Matrix, Cnw×nt : cwi ∈ N represents the number of

times worker w has successfully completed a task i. This matrix is very sparse, which

is very common in recommender systems. However, this represents the implicit signal

as opposed to the explicit signal. In case of explicit feedback, each entry represents

preference which is normally in the scale of 1(bad) to 5(excellent). However, this

value here represents the frequency of action, or how many times worker has done

the task, which also represents the confidence worker w have on selecting task i.

Task Feature Matrix, Ynt×nl
: yil ∈ {0, 1}, represents the presence of feature l on

task i. The value of yil depends on the application, it can be 0 or 1 indicating the

presence or absence of the features. Or, it can be a real value which indicates the

weight of the feature for that task.

Worker Feature Matrix, Xnw×nl
: xwl ∈ R: This is similar to the task feature

matrix except that it represents the relation of each feature to user. Each row in

this matrix indicates the user’s preference to the features. We estimate this matrix

in order to calculate the user to task recommendation.
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Notation Description
W ,T ,F Set of workers, tasks, and features
C Worker-Task Completion Matrix
X Worker-Feature Matrix
Y Task-Feature Matrix
P Boolean Preference Matrix
U Worker-Latent Factor Matrix
V Task-Latent Factor Matrix
Sim Task Similarity Matrix

Table 5.1: Notations & Interpretations

Preference matrix, Pnw×nt : pwi ∈ {0, 1} This is a boolean matrix indicates the

preference of user to task, where ”0” indicates no preference and ”1” indicates the

preference of user to task. This matrix is derived from the confidence matrix C -

p(x) =


1, if c(x) ≥ 1

0, otherwise

Worker to Latent Factor Matrix, Unw×nf
: This represents the worker to latent

factor matrix.

Task to Latent Factor Matrix, Vnt×nf
: This represents the task to latent factor

matrix.

Task Similarity Matrix, Sim Task similarity is calculated based on the number

of attributes shared by two tasks. Similarity between two tasks ti and tj is calculated

as -sim(ti, tj) = 1

1+e−Y t
i
Yj

. For a task we normalize the similarity values such that it

sums up to 1.

Table 5.1 summarizes the above mentioned notations-
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Figure 5.1: An example with 3 features and 2 tasks

5.3 Problem Formulation

We present two alternative formulations of our proposed task recommendation

model. In our first formulation, we directly make use of the task feature matrix to

estimate worker’s feature preference. The second formulation is traditional latent

factorization based model with an added factor based on task similarity calculated

from using task feature matrix. The difference between the two formulation is that the

first formulation explicitly uses task feature matrix whereas the second formulation

implicitly uses the task feature matrix to put constraints on the latent factors.

5.3.1 Feature Preference Model

We assume that the reason that a particular worker has completed a particular

task is that the worker has a hidden preference over the task features which we want

to uncover. In the traditional low rank matrix factorization model, the task is to find

U and V in the latent space. However, in our case we have the explicit knowledge of

the feature space Y , hence by learning the preference of each worker in the feature

space, X we can recommend new task.

Illustrative Example: Consider the scenario illustrated in Figure 6.1a. Here

We consider 3 tasks and 3 features, where task t1 consists of feature f1 and f2. Both
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task t2 and t3 consists of f2 and f3. We also know that worker u has completed the

task t2 100 times, task t1 only once and hasn’t completed task t3. It is clear from

the facts that worker prefers f3 more than f2, otherwise task t1 would have been

completed more times. Hence, our method will find out the feature preference for f1,

f2 and f3 and recommend task t3 to the worker u which hasn’t been completed by

the worker.

Problem Definition: We are given a set of workers W , and a set of Tasks T

and the implicit interaction information between them are given in C. Additionally,

we assume the knowledge over the task feature matrix Y . Our aim is to compute

the matrix X as accurately as possible such that the dot product D = XY produces

meaningful recommendation.

Formally, we want to minimize the following objective function M -

M =
∑
w,i

qwi(pwi − xwyi)2 + λ(‖X‖2) (5.1)

where the non-negativity constraint must be satisfied. Such that,

X ≥ 0

and,

qwi = 1 + α× cwi

Here, qwi is designed such that, the weight of positive signals is amplified. In

other words, if a particular observation has high confidence the system will choose

xw such that xwyi becomes close to 1. α is set to a positive value and indicates the

confidence for the positive signals over negative signals.
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5.3.2 Latent Factor Model

First,we describe the intuition behind the latent factor models for implicit rec-

ommendation.

Let’s consider a simple recommender system where rij ∈ R represents the ex-

plicit ranking for workers to item. A typical model to find U and V is to minimize

the following loss function -

H =
∑

i,j(rij − UiVj)2 + λ(‖U‖2 + ‖V ‖2)

Here, λ is the regularization parameter. The goal is to find U and V such that it

minimizes the error. For any new item and new task the predicted recommendation

score is calculated by multiplying Ui with Vj. Here, the important thing to notice

is that the optimization procedure only minimizes the error for which ratings are

present.

Now, in the context of task recommendation we are dealing with implicit feed-

back, where the worker does not provide any explicit preference over tasks. Hence, the

number of times a worker has completed any particular task or the frequency of in-

teraction with the worker to task is deemed as a confidence value for that observation

[96, 97]. The cost function is to minimize -

M =
∑
i,j

qwi(pwi − uwvi)2 + λ(‖U‖2 + ‖V ‖2) (5.2)

qwi is the confidence value associated with each entry or how much confidence we

have on that entry, pij is the preference as described in section 5.2. In other words,

qwi reflects how much confidence we have on pwi. In [96], qwi is defined as -
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qwi = 1 + α× cwi (5.3)

Here, α is a positive value indicates the confidence boost for the positive signals over

the negative signals.

To incorporate the task similarity into the latent factor based formulation, we

add a penalty term in the equation. Our intuition is that if the similarity between

any two tasks is high, then they should also be similar in the latent factor space. Our

notion of similarity is defined in the previous section. The problem formulation is

given below.

Problem Definition: Given the worker Task Completion matrix C, we seek

to find latent factor matrix U and V by minimizing the following objective function.

M =
∑
i,j

qwi(pwi − uwvi)2 + λ(‖U‖2 + ‖V ‖2 −
∑
i,i′

vtiv
′
iSim(i, i′)) (5.4)

The last term in the objective function implies that if the similarity between

two items are high, two item latent vectors should also be close to each other. qwi is

defined exactly as Equation 5.3

5.4 Algorithms for Task Recommendations

We present our solutions based on the two alternative formulations described

in previous section.

5.4.1 Solution using Feature Preference Model

We present the techniques to solve the objective function described in

Equation 5.1. Throughout the following sections we refer to our algorithms as
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Feature-Based-NNLS or Feature Based Non-Negative-Least Square. Here, we have a

fixed Y matrix and the non-negativity of matrix X needs to be respected. Since Y

matrix is fixed in our case, the objective function is quadratic.

In order to solve for X by minimizing the objective function described in Equa-

tion 5.1, first we need to take the derivative against each user vector xw. Let’s

introduce another notation Ww which denotes a diagonal matrix, where Ww
ii = qwi.

∂M

∂xw
= −2

∑
i

qwi(pwi − xTwyi)yi + 2λxw

= −2Y tWwpw + 2Y tWwY xw + 2λxw

Now, by putting ∂M
∂xw

= 0 we get the analytical solution for xw as -

xw = (Y tWwY + λI)−1Y tWwPw (5.5)

However, we cannot solve exactly due to the non-negativity constraint. Hence

we want to minimize the L-2 error for each user ‖(Y tWwY + λI)xw − Y tWwPw‖2.

There exists two ways to solve this problem - i) the constrained version of this problem

can be transformed using a new formulation to an unconstrained version and then

solve it ii) or, the problem can be solved by treating as a Generalized Singular Value

Decomposition problem [80]

Complexity : The worst case complexity for solving this constrained version of

the least square problem for each user is O(n3
l ) since the size of the coefficient matrix

in our case is nl × nl [80]. Hence for each user the complexity becomes O(nwn
3
l ).

Presence of User-Feature: The first variant appears where we know the user’s

feature preference instead of task feature information. Then, we can use the sim-
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ilar formulation to find out the Task Feature-matrix and thereby solving the task

recommendation problem.

Presence of both User-Feature and Task-Feature: Another variant of this

problem appears, when we know only the zero entries of both Task-Feature matrix Y

and User-Feature matrix X, then the non-zero entries of both matrices are subject

to optimization. This problem is similar to solving a sparse constrained matrix fac-

torization problem. This can be computationally expensive if the number of explicit

features are too many.

5.4.2 Solution using Latent Factor Model

Here, we describe the techniques to solve the objective function described in

Equation 5.4. We call this algorithm as Implicit Factorization with Task Similarity,

IFTS. We apply alternating least square based approach to solve this problem. This

is an iterative approach where we partially differentiate objective M with respect to

both users and items. At each iteration, we fix the item’s latent factor matrix V in

order to solve for U and vice versa. If we differentiate the objective function with

respect to U , we get the similar solution as equation 5.5 for solving U ,

uw = (V tWwV + λI)−1V tWwPw (5.6)

However, for solving V we need to consider the penalty term while differentiat-

ing against V

∂M

∂vi
= −2

∑
i

qwi(pwi − uTwvi)vi + 2λvi − λ
nt∑
i′=1

Sim(i, i′)v′i

= −2V tW ipi + 2U tW iUvi + 2λvi − λ
nt∑
i′=1

Sim(i, i′)v′i
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By setting ∂M
∂vi

= 0, we get the following equation for solving vi

vi = (U tW iU + λI)−1(U tW iPi + λ ∗ 0.5 ∗
nt∑
i′=1

Sim(i, i′)v′i) (5.7)

We achieve reasonable speed-up by using the fact that U tWiU = U tU+U t(Wi−

I)U [96] . We can compute U tU once and reuse it over all the iterations and number

of non-zero elements in Wi − I is exactly the number of users for which qwi > 0,

let’s call that mi, is much smaller than the total number of users. Then, m <<

nu. The running time of this algorithm is O(n2
fN + n3

f ) with the additional cost of∑nt

i′=1 Sim(i, i′)v′i, where N is the total number of non-zero entries,
∑i=nt

i=1 mi = N.

So the overall running time of this algorithm is O(n2
fN + n3

f + nw ∗ nt).

5.5 Experiments

System: Our development and test environment uses Python 2.7 on a linux

Ubuntu 14.04 machine, with Intel Core i5 2.3 GHz processor and a 6-GB Ram. All

numbers are presented as the average of three runs.

5.5.1 Dataset Descriptions
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Figure 5.2: Worker Task Distribution
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We collect data from a popular citizen science platform named Ebird 2

Ebird: Ebird is a popular citizen science platform for bird observations. We

crawl all the observations from year 2012 and randomly choose a set of 5000 workers

for our experiments, number of tasks 1767, with a total number of 2.5 million ob-

servations. We use 294 locations as task features. Worker task distribution for this

dataset is given in Figure 5.2a

Evaluation: We evaluate our method using a hold out test set. We randomly

choose 90 percent of our data as the training set and remaining 10 percent we choose

as the test set.

5.5.2 Implemented Baseline Algorithms

i)Implicit-ALS-Negative: This algorithm is implemented according

to [97].This is a modification of the previous algorithm where they introduce the

idea of negative signals. If a worker has not completed a task then the total number

of times that task has been completed by other users is considered as the weight of

the negative signals.

ii) Feature-Based Regression: In this algorithm, we assume that the task-

feature matrix V is given to us. We solve the regularized regression [98] problem

(Cij − xiyj)2 + λ‖X‖2 to find X.

Our Proposed Solutions: We refer to our algorithms as follows: Feature Preference

Model as Feature-Based-NNLS and Implicit Factorization with Task Similarity as

IFTS. For the latter approach, we run 30 iterations of our algorithms.

2Ebird.org
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5.5.3 Evaluation Metrics

We use two evaluation metrics to justify our proposed method. Instead of

Root Mean Square Error(RMSE)[98], which is common in explicit recommendation

system, [96] proposes Mean Percentile Ranking(MPR) as a viable metric for implicit

feedback. We also use Precision-Recall curve introduced in [97] for evaluation. Our

recommendation is based on the estimated Worker-Task Preference matrix, P̂ . For

Feature-Based-NNLS, P̂ = XY , where X is Worker-Feature matrix and Y is Task-

Feature matrix. For IFTS, P̂ = UV . We experimented with different values of α and

choose α = 50, which gives us reasonable results.

Mean Percentile Ranking(MPR): The mathematical formula to calculate

MPR is
∑

ij cijρij∑
ij cij

. Here, cij indicates the number of task tj performed by worker ui.

ρij is the percentile ranking of the task j for worker i. For instance, if a task tj is

recommended as the first task, then it will be on the 0th percentile, hence ρij = 0,

or if it is the last task it is on the 100th percentile, then ρij = 100. If the tasks

are recommended at random then the process has an expected MPR of 50%. MPR

values become high, if the tasks completed by the worker higher number of times, are

at the top of the sorted list. Precision-Recall(PR)Curve: Precision is defined as

the percentage of recommended tasks that are relevant, whereas, Recall means the

percentage of relevant tasks that are retrieved. In this method, we want to evaluate

our method based on how many task in the test set we can correctly predict by taking

only (t%) of the top-tasks. We vary t (in an increment of 1%) in a continuous manner

and obtain PR curve.

Summary of Results: The objective of our empirical study is to see how ef-

fective our proposed task recommendation models are in comparison with the baseline

models. Our proposed algorithm Feature-Based-NNLS convincingly outperforms the

baseline algorithms in both MPR and PR-Curve. The reason behind the worse per-
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Algorithm MPR Value
Implicit-ALS-Negative 17.3
Feature-Based-Regression 13.706
Feature-Based-NNLS 5.68
IFTS 6.87

Table 5.2: MPR Results

formance of Implicit-ALS-Negative is that the worker does not choose tasks from

a list of available task list, so a task that hasn’t been attempted by the user really

has no preference rather than “negative preference”. IFTS also performs reasonably

well compare to other methods.

Results: MPR: The First results we present here is a comparison of different

algorithms with MPR. Feature-Based-Regression and Implicit-ALS-Negative

perform worse than other methods. Feature-Based-Regression does not perform

well, because it overfits the training data with negative feature values even after we ap-

ply regularization. The reason behind worse performance of Implicit-ALS-Negative

is twofold - i) Since worker does not choose tasks from a list of available task list,

so task that hasn’t been attempted by the user really has no preference rather than

“negative preference”. ii) Substituting task availability as ”negative preference” as

done by [97] may not be an ideal solution for the problem. IFTS performs better than

the other baselines. IFTS performs better in a small correlated feature space, which

explains the better performance in our dataset.

PR curve: Figure 5.3a show the precision recall results for Ebird dataset.

While this result mostly corroborate the MPR results, IFTS does not perform as well

as expected.
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5.6 Related Work

No existing work has studied the implicit feedback based task recommendation

problem considering explicit features for crowdsourcing applications. However, here

we describe some of the existing work which are of similar interest.

Recommender systems: Researchers have studied both content based rec-

ommender systems and collaborative filtering for personalized recommendation. The

former creates a user profile based only on her individual preferences and suffers from

sparsity and low quality recommendation [99, 100]. Collaborative filtering exploits

user-user similarity or task-task similarity for recommending items to user. They

are broadly categorized into two categories - i) Neighborhood based and ii) Latent

factor based [101, 102] models. Several efforts have been made to exploit the bene-

fits of both of this approach by combining them together [103, 104, 105]. However,

our study suggests that their techniques mostly rely on explicit feedback or content
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based feedback, whereas our model relies on implicit feedback. This precludes direct

adaptation.

With the growing popularity of websites like Quora3 and StackExchange4, an

orthogonal problem is to find a set of experts for a given task. This is orthogonal

to our work, as these methods try to find the right worker given a task, whereas, we

focus on the opposite problem of finding the right tasks for workers.

Task Recommendation in Crowdsourcing: Task recommendation with

explicit observation is studied in [95], where they employ probabilistic matrix factor-

ization to recommend task in Mechanical Turk. However, they assume the presence

of worker’s search history and task accept/reject data, from which they get explicit

signal whether user likes or dislikes a task. [5] proposes classification based task recom-

mender system, where the authors first create a user profile based on user meta-data

using explicit feedback, then train a binary classifier to determine the likelihood of

user selecting that particular task. Pick a crowd [4] uses social network as well as

worker’s information for task recommendation. We are the first to treat worker-task

completion history as implicit observations and incorporate task feature information

for recommendation.

5.7 Conclusion

In this paper, we study the task recommendation problem in crowdsourcing

applications considering implicit feedback and explicit task features. We formalize

the problem as an optimization problem and propose two alternative formulations.

We design two elegant solutions that exploit implicit feedback, explicit features, as

well as similarity between the tasks in constraining the latent factors of the tasks. We

3Quora.com
4www.stackexchange.com
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formally analyze the complexity and present the efficacy of our proposed solutions by

comparing against multiple state-of-the-art techniques.
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CHAPTER 6
A Probabilistic Framework for Estimating

Pairwise Distances Through Crowdsourcing

Estimating all pairs of distances among a set of objects has wide applicabil-

ity in various computational problems in databases, machine learning, and statistics.

This work presents a probabilistic framework for estimating all pair distances through

crowdsourcing, where the human workers are involved to provide distance between

some object pairs. Since the workers are subject to error, their responses are consid-

ered with a probabilistic interpretation. In particular, the framework comprises of

three problems : (1) Given multiple feedback on an object pair, how do we combine

and aggregate those feedback and create a probability distribution of the distance?

(2) Since the number of possible pairs is quadratic in the number of objects, how

do we estimate, from the known feedback for a small numbers of object pairs, the

unknown distances among all other object pairs? For this problem, we leverage the

metric property of distance, in particular, the triangle inequality property in a proba-

bilistic settings. (3) Finally, how do we improve our estimate by soliciting additional

feedback from the crowd? For all three problems, we present principled modeling and
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solutions. We experimentally evaluate our proposed framework by involving multiple

real-world and large scale synthetic data, by enlisting workers from a crowdsourcing

platform.

6.1 Introduction

In this chapter, we investigate the following problem: how to obtain pairwise

distance values between a given set of objects by using feedback from a crowdsourcing

platform? This problem lies at the core of a plethora of computational problems in

databases, machine learning, and statistics, such as top-k query processing, indexing,

clustering, and classification problems. We consider an approach where feedback

from the crowd is solicited in the form of simple pair-wise comparison questions. As

an example, given two images (a, b), workers are asked to rate (in a scale of [0, 1])

how dissimilar these two images are. The worker response may be interpreted as

the distance between the two images. Although the number of pairwise questions is

quadratic in the number of objects, the main idea in this chapter is to only involve the

workers in answering a small number of key pair-wise questions, and to estimate the

remaining pair-wise distances using the metric properties of the distance function, in

particular the triangle inequality property [106] - a property that is true for distance

functions that arise in many common applications.

Our iterative crowdsourcing distance estimation framework has three key prob-

abilistic components. When we solicit distance information for a specific object pair

from multiple workers, we recognize that due to the subjectivity of the task involved,

workers may disagree on their feedback, or may even be uncertain about their own

estimate. Thus we develop a probabilistic model for aggregating multiple workers

feedback to create a single probability distribution of the distance learned about that

object pair. Next, given that we have learned the distance distributions of several
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object pairs from the crowd, we estimate the probability distributions of the remain-

ing pairwise distances by leveraging the triangle inequality property of the distances.

Finally, if there is still considerable “uncertainty” in the learned/estimated distances

and we have an opportunity to solicit additional feedback, we investigate which ob-

ject pair should we choose to solicit the next feedback on. This iterative procedure

is continued until all pair-wise distances have been learned/estimated with a desired

target certainty (or alternatively, the budget for soliciting feedback from the crowd

has been exhausted).

Novelty: There have been a few prior works that have studied computational

problems using crowdsourcing that require distance computations. For example, en-

tity resolution [107, 7, 108] problems investigate entity disambiguation, and [8] study

top-k and clustering problems in a crowdsourced settings. However, these works have

developed their formalism and solutions tightly knit to their specific applications of

interest, and do not offer any obvious extension to solve other distance-based applica-

tions. For example,the work in [109] is focused on determining whether two objects

are the same or not, and not on the broader notion of quantifying the amount of

distance between them. In contrast, our proposed framework offers a unified solution

to all these computational problems, as they all can leverage our distance estimation

framework to obtain the distance between any pair of objects. Please note that once

all pair distances are computed, finding the top-k objects, or finding the clusters of

the objects is easier to compute. Hence, our problem is more general than the above

mentioned body of works. We discuss related work more thoroughly in Section 6.7.

Challenges and Technical Highlights: There are substantial challenges in

formalizing and solving the key problems that arise in our three probabilistic compo-

nents. Perhaps the most straightforward is the first component, i.e., how to aggregate
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the feedbacks received from multiple workers into a single pdf that describes the dis-

tance between two objects. There has been several prior works on reconciling the

answers from multiple workers, which range from simple majority voting to sophis-

ticated matrix factorization techniques [110, 111] on binary data, or opinion pool-

ing [112, 113, 114] on categorical data. However these methods are largely focused on

aggregating Boolean/categorical feedback (e.g., “are these two entities the same?”),

whereas in our case we need to merge the potentially diverging and uncertain numeric

(distance) feedback from multiple workers into a single probability distribution.

The most challenging aspect of our framework is the second component. Know-

ing distance distributions of some of the object pairs from the crowd, we have to

estimate the probability distributions of the distances of the remaining object pairs,

by leveraging the metric property of the distance. While the intuitive idea is simple

(e.g., “if a is close to b, and b is close to c, then a and c cannot be too far apart”), the

problem is challenging because (a) the known distances themselves are distributions

rather than deterministic quantities, and (b) the metric property imposes interdepen-

dence between all the pairwise distances in a complex manner. In fact, since there

are n(n − 1)/2 pair-wise distances (where n is the number of objects), each such

distance can be assumed to be a random variable such that all distances are jointly

distributed in a high dimensional (n(n−1)/2) space with interdependencies governed

by the triangle inequality. In principle, this joint distribution must be first computed,

and then the (marginal) pdfs computed as estimates of the unknown distances. The

unknown pairs cannot be estimated in isolation, as a small change in one pdf is likely

to disrupt the joint distribution and the triangle inequality property impacting the

other pdfs.

We argue that in certain cases, computing the joint distribution may require

us to solve a mixture of over and under-constrained nonlinear optimization system,
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whereas in other cases it may reduce to solving an under-constrained system with

many feasible solutions ([115]). For the former cases, we formalize the optimization

problem as a combination of least squares and maximum entropy formulation and

present algorithm LS-MaxEnt-CG that adopts a conjugate gradient approach [116, 117]

to iteratively compute the joint distribution. For the latter cases, the problem reduces

to that of maximizing entropy, and we present an algorithm MaxEnt-IPS that leverages

the idea of iterative proportional scaling [118, 119] to efficiently converge to an optimal

solution. Both of these solutions, while ideal, only work for small to moderate problem

instances since they are exponential in the dimensionality of the joint distribution

being estimated. Consequently, we also present a heuristic solution Tri-Exp that

scales much better and can handle larger problem instances.

In the third component, our task is to decide, from among the remaining un-

known object pairs, which one to select for soliciting distance feedback from the

crowd. Intuitively, the selected object pair should be the one whose distance (after

being learned from the crowd) is likely to reduce the “overall” uncertainty of the

remaining unknown distance pdfs the most, i.e., minimize the aggregated variance of

the remaining pdfs. To solve this problem in a meaningful way, it is critical to be able

to model how workers are likely to respond to a solicitation, because their anticipated

feedback needs to be taken into account for selecting the most effective pair. Finally,

we also recognize that this approach of resolving one object pair at a time by the

crowd may be sub-optimal and slow to converge. Thus, we also describe an extension

where we “look ahead” and select multiple promising unresolved object pairs, and

engage the crowd in simultaneously providing feedback for these pairs.

Summary of Contributions: In summary, we make the following contribu-

tions in this chapter:
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• We consider the novel problem of all-pairs distance estimation via crowdsourcing

in a probabilistic settings.

• We identify three key sub-components of our iterative framework, and present

formal definitions of problems and the solutions for each of the component

(Sections 6.2,6.3,6.4,6.5).

• We experimentally evaluate our framework using both real world and synthetic

datasets to demonstrate its effectiveness (Section 6.6).

6.2 Data Model and Problem Formulations

We first describe the data model and then formalize the problems considered

in this chapter.

6.2.1 Data Model

Objects and Actual Distances: We are given a set O of n objects, with no two

objects being the same. Objects could be images, restaurants, movies, etc. Let

d(i, j) be the actual distance between objects i and j. Assume that all distances

are normalized within the interval [0, 1], where larger values denote larger distances,

and that metric properties are satisfied, in particular the triangle inequality [106] or

relaxed triangle inequality [120] property, as we define below. We are interested in

using this property for learning all the
(
n
2

)
pairs of distances.

Triangle Inequality Property: For every three objects (i, j, k) that comprise a

triangle 4i,j,k, d(i, j) ≤ d(i, k) + d(k, j) and d(i, j) ≥
∣∣d(i, k)− d(k, j)

∣∣.
To lift the strict notion of triangle inequality, one can consider relaxed triangle in-

equality, that assumes d(i, j) ≤ c.(d(i, k) + d(k, j)), where c is a known constant that

is not too large. Indeed, the relaxed triangle inequality [120] property allows us to

effectively incorporate subjective human feedback from crowd workers.
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Question: A question Q(i, j) to a worker requests feedback on her estimate of d(i, j).

The same question Q is directed to m different workers in the available workers pool,

in order to gather multiple feedback.

Feedback: Let f(i, j) represents a worker’s feedback for the distance. The worker

could either give a single value, or a range/distribution of values (if she is uncertain

about the distance).1 Even if the worker gives a single value, if it is known from past

history of her performance that this worker is prone to making errors and is only

correct with a certain probability p (say, 80%) (referred to as correctness probabil-

ity), then her single-value feedback can be converted to a more general probability

distribution (pdf) over the range [0, 1] (e.g.,using techniques described in Section 6.3).

We henceforth assume that the “raw” feedback of the worker has been appropriately

processed into a pdf over [0, 1].

Known and Unknown Distances: Once a distance question Q(i, j) has been

answered by multiple workers, their respective feedbacks needs to be aggregated into

a single pdf representing how the crowd has estimated the distance between i and j.

Exactly how this aggregation is done is the first of the three key challenges of this

chapter, and is described in detail in Section 6.3. We denote the random variable

described by this pdf as dk(i, j), where the superscript k denotes that the distance is

now “known”. Note that it still may not be the actual deterministic distance d(i, j),

unless the crowd’s responses are completely error free, which is often not the case in

practice.

Of the
(
n
2

)
distances, let Dk represent the set of known distances, i.e., the

ones for which feedback has been obtained from the crowd. Let Du represent the

1The latter type of feedback is common in experts opinion aggregation problems [121], where a

worker has partial knowledge on a particular topic and her answer reflects that with a distribution

over the possible answers.
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Notation Interpretation
O set of n objects
d(i, j) distance between objects i

and j
Q(i, j) asking distance on an object

pair (i, j) in [0− 1] scale
f(i, j) feedback on object pair

(i, j)
4i,j,k triangle formed by objects

(i, j, k)
dk(i, j), du(i, j) known and unknown dis-

tance between an object
pair (i, j), respectively

Dk, Du known and unknown set of
distances, respectively

D distance vector
Pr(D) joint probability distribu-

tion of D
W vector representing all buck-

ets of the multi-dimensional
histogram of Pr(D)

m m different feedbacks on the
same question

A a Boolean matrix of con-
straints

Table 6.1: Notations

remaining set of “unknown” distances, i.e., distances between those pair of objects for

which feedback has not been explicitly obtained from the crowd. Consider du(i, j) ∈

Du. Even though no information about this distance has yet been solicited, some

distributional information about this distance can be derived since it depends on other

pairwise distances in a complex manner (due to the triangle inequality property). We

discuss this issue next.

Joint Distribution of All Pairs Distances: Consider the set of all distances

Dk∪Du. We may view this set as a distance vector D of length
(
n
2

)
, whose every entry

is a random variable representing the distance between the respective two objects
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Edges #Feedback Values

(𝒊, 𝒋) 1 0.55

2 0.8

3 0.6

(𝒋, 𝒌) 1 0.1

2 0.05

3 0.1

(𝒊, 𝒌) 1 0.09

2 0.12

3 0.15

𝒊, 𝒍 , 𝒋, 𝒍 , (𝒌, 𝒍) <no feedback> Needs 
estimation

Known 

Unknown

𝑘𝑙

j𝑖

(a) Illustration of Example 2
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j𝑖

?
?

?
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(b) Distances as Distributions (Histograms
with ρ = 0.5)

Figure 6.1: Illustrative Example.

(i, j). The space of all instances of D is [0, 1](
n
2), however since the

(
n
2

)
distances

are interdependent upon each other due to the metric properties, the valid instances

are those that satisfy the triangle property, i.e., for the triangle 4i,j,k defined by any

three objects (i, j, k), the three corresponding distances should satisfy the triangle

inequality.

Let Pr(D) represent the joint probability distribution of D. Our task is to

estimate Pr(D) such that the marginal distribution for a known random variable

dk(i, j) should correspond to the pdf learned from the crowd. We note that once we

have an accurate estimation of Pr(D), we can get estimates of the distributions of

the unknown random variables du(i, j) by computing their marginals. In the next

subsection we formalize the problems considered in this chapter.

Table 6.1 summarizes the notations used in the chapter.

Example 2. Image indexing for K-nearest neighbor queries: Our proposed framework

is apt to process K-nearest neighbor queries over an image database, where, given a

query image, the objective is to obtain an ordered list of images from the database,

ordered by how closely they match the query image. To handle such queries faster,
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one potential avenue is to pre-process the image database and create an index that

will cluster the images according to their distance among themselves. Then, as an

example, if we have found that a query image I is far from a database image i and

and if the indexes inform us that another image j is close enough to i, then, we may

never need to actually compute the distance between I and j.

With such an application in mind, consider a toy image database in Figure 6.1a

with n = 4 images (i, j, k, l), where our eventual goal is to find the distances between

all pairs of images. Assume that out of six possible pairs of distances, three are known:

(i, j), (j, k), and (i, k). I.e., for each of these pairs, we have solicited feedback from

several workers in the crowd, and aggregated the feedbacks to obtain a single probability

distribution to describe the distance. The distances of the remaining three pairs are

unknown and need to be estimated, again as probability distributions. Furthermore, if

we need to solicit further feedback on a question, i.e., get the crowd to provide distance

for an unknown pair, we intend to find what is the best question (best pair) to ask.

6.2.2 Problem Formulations

Recall from Section 1 that the iterative distance estimation framework involves

three probabilistic components, which gives rise to three problems that need to be

solved: (a) how to aggregate feedbacks from multiple workers for a specific distance

question, (b) given some of the learned distances, how to estimate the remaining

unknown distances, and (c) which object pair to select next for soliciting feedback

from the crowd. In the remainder of this section, we provide formal definitions of

these problems, and offer some insights into their complexities.

6.2.2.1 Problem 1: Aggregation of Workers Feedback for a Specific Object Pair

The first problem may be specified as follows:
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Problem 6. Given a set of m feedbacks for the distance question Q(i, j), where each

feedback could be a pdf, aggregate those feedback to create a single pdf for the random

variable dk(i, j).

Using Example 2, this is akin to aggregating three different feedbacks from three

different workers to compute dk(i, j).

6.2.2.2 Problem 2: Estimation of Unknown Distances

In this problem we need to leverage the known aggregated distances in Dk

to estimate the remaining unknown distances Du. Obviously, if the distances are

completely arbitrary, the unknown distances cannot be computed from the known

distances. However, if the distances are metrics, in particular satisfying the triangle

inequality property, then this property can be leveraged in making better estimates

of the unknown distances. Many well known distances are metric, such as, `2, `1, `∞,

while other popular distances such as, Jaccard distance and Cosine distance could be

transformed to metrics. For us, the challenge is to investigate how this property can

be used in the case when the distances are probability distributions rather than fixed

deterministic values.

Recall that D is a random vector representing all the
(
n
2

)
distances, and Pr(D)

represents the joint distribution of D. We now describe some important properties

that Pr(D) should possess.

The space of all instances of D, i.e., [0, 1](
n
2), may be divided into two as follows:

(a) Valid instances, i.e., any instance of D such that all triangles 4i,j,k satisfy the

triangle inequality, and (b) Invalid instances, i.e., any instance of D such that there

exists a triangle 4i,j,k that does not satisfy the triangle inequality. Thus Pr(D)

should be a function constrained such that the cumulative probability mass over all

valid (respectively invalid) instances of D should be 1 (respectively 0).
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Additionally, Pr(D) should be constrained such that the marginal distributions

corresponding to the individual random variables in Dk (i.e. the known distances)

should agree with the corresponding distance pdfs learned from the crowd. However,

this constraint may not be always possible to satisfy, as crowd feedback is inherently

an error-prone human activity, which can result in inconsistent feedback that vio-

lates the triangle inequality. Thus our task will be to estimate Pr(D) such that the

marginal distributions corresponding to individual random variables in Dk are “as

close as possible” to the pdfs learned from the crowd.

Once such a Pr(D) has been constructed, the pdfs of the unknown distances

can estimated by computing the marginal distributions of each variable in Du.

In the rest of this subsection, we provide more details of the problem formula-

tion.

Discretization of the pdfs using Histograms: For computational convenience,

for the rest of the chapter we assume that (single or multi-dimensional) probability

distributions are represented as discrete histograms, as is common in databases [122].

In particular, we assume that the [0, 1] interval is discretized into equi-width inter-

vals of width ρ (where ρ is a predefined parameter). A r-dimensional pdf is thus

represented by a r-dimensional histogram with (1
ρ
)
r

buckets. Each bucket contains

a probability mass representing the probability of occurrence of its center value, and

the sum of the probabilities of all buckets equals 1.

For the running example in Figure 6.1a, we use ρ = 0.5. Thus a one-dimensional

pdf is represented by a 2-bucket histogram, where the first bucket is between [0−0.5]

with center at 0.25 and the second bucket is [0.5−1.0] with center at 0.75. Figure 6.1b

of the running example shows how each known distance (known edge) is represented

as a one-dimensional histogram after discretizing and aggregating inputs from multi-
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ple users, where the feedback values are replaced by the corresponding bucket centers

(we describe details of our techniques for input aggregation, i.e., Problem 1, in Sec-

tion 6.3).

Estimating Pr(D): Once we have the histograms for each individual known edge,

the joint distribution Pr(D) needs to be estimated as a multi-dimensional histogram

with (1
ρ
)(

n
2) buckets. Our task is to estimate the probability mass of each of these

buckets. Using the running example, there are 26 buckets, whose centers range from

[0.25, 0.25, 0.25, 0.25, 0.25, 0.25] to [0.75, 0.75, 0.75, 0.75, 0.75, 0.75]. Computing

the probability mass of a specific bucket, e.g.,

Pr(0.25, 0.27, 0.25, 0.25, 0.25, 0.75), is equivalent of computing the probability of the

simultaneous events d(i, j) = 0.25 & d(j, k) = 0.27 & d(i, k) = 0.25 & d(i, l) = 0.25

& d(k, l) = 0.25 & d(j, l) = 0.75. The computation of Pr(D) can be modeled as a

linear system with (1
ρ
)(

n
2) unknowns, where each unknown represents the probability

mass of a bucket. These unknowns have to satisfy three types of linear constraints:

(1) Constraints imposed by the known pdfs: Pr(D) should be such that its marginal

for any known distance dk(i, j) should satisfy the corresponding one-dimensional pdf

learned from the crowd. Thus, each bucket of each known marginal pdf will gener-

ate a linear constraint. In our running example, a one-dimensional bucket such as

Pr(d(i, k) = 0.25) will generate a linear equation of the form
∑
Pr(∗, ∗, 0.25, ∗, ∗, ∗) =

Pr(d(i, k) = 0.25).

(2) Constraints due to triangle inequality: Some of the buckets in the joint distribution

must have zero probability mass if they violate triangle inequality constraints. In our

running example, consider any of the 8 bucket of the form (0.75, 0.25, 0.25, ∗, ∗, ∗).

The probability mass of each such bucket has to be set to 0, since d(i, j) = 0.75,

d(j, k) = 0.25 and d(i, k) = 0.25 does not satisfy the triangle inequality (this happens
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irrespective of any combination of the values for the remaining three edges, hence

they are represented as ‘*’).

(3) Probability axiom constraint: A final constraint requires that the sum of all the

buckets of the joint distribution adds up to 1. In our running example, this implies

that Pr(0.25, 0.25, 0.25, 0.25, 0.25, 0.25) + Pr(0.25, 0.25, 0.25, 0.25,

0.25, 0.75)+ . . .+ Pr(0.75, 0.75, 0.75, 0.75, 0.75, 0.75) = 1.

If W represents the vector of (1
ρ
)(

n
2) unknowns, and M represents the set of

constraints, then the linear system may be expressed as AW = b, where A is a

Boolean matrix of size |M | × (1
ρ
)(

n
2), and b is a vector of length |M |. Interestingly,

as the following discussion shows, solving this linear system is not a straightforward

task.

Scenario 1: Over-Constrained Case: In general, an over-constrained linear sys-

tem AW = b is one which has no feasible solution [123]. In our case, it is indeed

possible that the marginal distributions corresponding to the individual random vari-

ables in Dk (i.e. the known distances) that are learned from the crowd gives rise to an

over-constrained scenario. This is because crowd feedback is inherently an error-prone

human activity, which can result in inconsistent feedback that violates the triangle

inequality. For example, 4i,j,k in Example 2 has only one deterministic instance with

edge weights d(i, j) = 0.75, d(j, k) = 0.25 and d(i, k) = 0.25. Clearly, 4i,j,k does

not satisfy the triangle inequality, since d(i, j) > d(i, k) + d(j, k). Hence, there is

no valid joint distribution Pr(D) which can estimate the known pdfs.In such cases,

we estimate Pr(D) such that the marginal distributions corresponding to individual

random variables in Dk are “as close as possible” (using least squares principle) to

the pdfs learned from the crowd. More formally, given A and b, we estimate W such

that ||AW−b||2 is minimized.
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Scenario 2: Under-Constrained Case: In general, an under-constrained linear

system AW=b is one which has multiple feasible solutions [123]. In our case, while

estimating W, we may also encounter under-constrained scenarios. Using Example 2

and considering triangle4i,j,l, we note that any of the following solutions are feasible:

d(i, l) = 0.75, d(l, j) = 0.75, or d(i, l) = 0.75, d(l, j) = 0.25, or d(i, l) = 0.25,

d(l, j) = 0.75. In such cases, maximum entropy principles [118] are used to choose

a solution that is consistent with all the constraints but otherwise is as uniform as

possible. More formally, the objective is to solve the linear system AW=b that

maximizes the entropy of the joint distribution −
∑

w∈W Pr(w) logPr(w).

Scenario 3: Combined Case: Since our problem instances may involve both over

and under-constrained scenarios, we unify both into a single minimization problem

using a weighted linear combination, where the weight λ can be used to tune the

solution to ensure better least square or higher uniformity. Our final problem is

described as follows:

Problem 7. Estimate the joint distribution vector W such that f(W) = λ×||AW−

b||2 + (1− λ)×
∑

w∈W Pr(w) logPr(w) is minimized.

Before we move to our next problem definition, we point out an interesting issue.

The exponential size of Problem 2 (the number of buckets in the multi-dimensional

histogram is intractably large for most real-world instances) suggests that a complete

solution of Problem 2 is prohibitive. Fortunately, we observe that computing the

joint distribution is merely a intermediate (and not strictly necessary) objective - our

eventual objective is to estimate the one-dimensional pdfs of the unknown distances

du(i, j). This issue is discussed in more detail in Section 6.4, and in particular we

present heuristics to directly compute the unknown one-dimensional pdfs without

having to compute the intermediate joint distribution.
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6.2.2.3 Problem 3: Asking the Next Best Question

Recall that our overall approach is an iterative process. If we have the need to

solicit further feedback from the crowd, we have to select an object pair from Du, as

human workers have not yet been involved in providing feedback about such pairs.

Our objective is to select the most promising pair, i.e., that is most likely to reduce the

“uncertainty” of the remaining unknown distances the most. We measure uncertainty

by aggregating the variances of the remaining unknown distance pdfs (the variance

of du(i, j) with mean µ is measured as σ2
du(i,j) =

∑
∀q pq ∗ (q − µ)2).

Problem 8. From the set Du of the candidate object pairs, choose the next best ques-

tion Q(i, j) to solicit feedback from the human workers, such that, upon receiving the

feedback, the aggregated variance over the remaining unknown distances is minimized.

Aggregated variance, AggrVar is formalized in one of the two natural ways,

average variance or largest variance:

(1) Average variance over the remaining unknown distances:∑
σ2
du(i′,j′)

|Du| − 1
, du(i′, j′) ∈ {Du − du(i, j)}. (6.1)

(2) Largest variance over the remaining unknown distances:

max
du(i′,j′)

σ2
du(i′,j′), d

u(i′, j′) ∈ {Du − du(i, j)}. (6.2)

Considering Example 2, this problem will seek to choose the next best question

(i.e., edge or object pair) from Du = {(i, l), (j, l), (k, l)}.

6.3 Problem 1: Aggregation of Workers Feedback

In this section, we describe our proposed solution Conv-Inp-Aggr of aggregating

multiple feedbacks on a single object pair (i.e., an edge).
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Figure 6.2: Worker Feedback Aggregation

In general, given a set of m different feedbacks

f 1(i, j), f 2(i, j), . . . fm(i, j), where each feedback is a random variable describing dis-

tance on an object pair (i, j), such that the set of random variables are independently

distributed, our objective is to define a new random variable whose distribution repre-

sents the average of the underlying input pdfs, i.e., pdf of f1(i,j)+f2(i,j)+...+fm(i,j)
m

. The

independence assumption allows us to use the prior technique of sum-convolution [124]

to obtain the sum of the input pdfs and then averaging that convolved pdf to obtain

the average.

Algorithm 5 Conv-Inp-Aggr

1: Input: Set of m feedbacks for (i, j).

2: Perform a sequence of m− 1 Sum-convolutions over the feedback pdfs.

3: Calculate dk(i, j) by re-calibrating the resultant pdf of previous step into pre-

specified adjusted range. This step require averaging over the bucket values and

reallocate the probability masses accordingly.

4: return dk(i, j)
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We illustrate this approach using the first two feedbacks for the pair (i, j) in

our running example in Figure 6.1a. The first worker’s feedback (denoted as f 1(i, j))

of 0.55 is converted into a pdf. This is shown in Figure 6.2(a) as a 4-bucket histogram

(i.e., with ρ = 0.25, buckets with boundaries [0−0.25], [0.25−0.5], [0.5−0.75], [0.75−

1.0], and centers at 0.125, 0.375, 0.625, 0.875 respectively). As the feedback value

0.55 is in [0.5−0.75], we can assign a probability mass of 1 to this bucket, and 0 to all

other buckets. However, if we have prior information that the worker is only correct

80% of the time (correctness probability p = 0.8), we can assign a probability mass of

0.8 to the bucket [0.5−0.75], and distribute the remaining probability mass uniformly

among the remaining three buckets. This latter approach is used to generate the pdf

illustrated in Figure 6.2(a). Similarly, Figure 6.2(b) shows the pdf for feedback 2 of

(i, j).

The sum-convolution of these two pdfs is presented in Figure 6.2(c). Since

the centers of the buckets of each of the individual pdf are between [0.125, 0.875],

their sum can be any value between [0.25, 1.75]. For each discrete value x between

[0.25, 1.75], the probability of f 1(i, j)+f(2(i, j) equal to x is calculated by computing

the joint probability of f 1(i, j) = x′ and f 2(i, j) = x”, such that, x′ + x” = x.

With m = 2 feedbacks, the bucket values are then reassigned to the centers as

follows: 0.25 → 0.125, 0.5 → 0.25, . . ., 1.75 → 0.875. After this is done, if we have

a transformed bucket center with non-zero probability that does not correspond to

any of the input buckets, then the mass of that bucket is redistributed to its closest

bucket. When two buckets are equally close, the mass is equally divided between

the two buckets. As an example, since 1.0 → 0.5 after averaging, but 0.5 does not

correspond to any bucket center , the probability mass of Pr(f 1(i, j) + f 2(i, j) = 1.0)

gets uniformly split between its two closest centers 0.375 and 0.625. The resultant

distribution is given in Figure 6.2(d).
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Figure 6.1b shows the aggregation results for (i, j) of Figure 6.1a with worker

being completely accurate (p = 1.0) and with ρ = 0.5.

Running Time: If each pdf is approximated using an equi-width histogram

of width ρ, the time to perform average convolution involving m different pdfs is

O(m× 1/ρ2) [124].

6.4 Problem 2: Estimation of Unknown Distances

In this section, we present our proposed solutions of the problem 7- i.e.,

how to estimate the distance of the unknown object pairs from the given known

distances. Using Example 2, this step is to estimate three unknown distances

Du = {(i, l), (j, l), (k, l)}, by leveraging the three known distances. We present two

alternative solutions - an optimal solution by computing joint distribution that is

exponential to the number of object pair
(
n
2

)
, and a much faster heuristic alternative.

6.4.1 Algorithms for Optimal Solution

Recall our proposed formulation in Section 6.2.2 and note that the optimal

solution of computing the unknown distances is to first produce a joint distribution

Pr(D) on a high-dimensional space over all
(
n
2

)
object pairs. This is due to our

underlying abstraction that assumes that all objects are connected to each other

which gives rise to a complete graph - hence the distribution of an unknown edge

can not simply be learned in isolation. Once the joint distribution is obtained, the

unknown pdfs are to be computed as marginals from the joint distribution. We

investigate and design algorithms for the following two scenarios:

(1) As demonstrated in Example 2, our problem can unfortunately be both over as

well as under-constrained. In fact, when the known pdfs are inconsistent (i.e., do not
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satisfy triangle inequality), there may not be any feasible solution to compute Pr(D)

that satisfies all the known pdfs. At the same time, a part of our solution space may

still be under-constrained, especially the part that involves the unknown pdfs where

multiple feasible solutions may exist.

(2) For the special case when the known pdfs are consistent, the scenario is merely

under-constrained and may have multiple feasible solutions, as we describe in Sec-

tion 6.4.1.2.

6.4.1.1 Combined Case

For this scenario, the problem of computing the joint distribution is formalized

as an optimization problem (Problem 7) with the objective to minimize a weighted

linear combination of least square and negative entropy (notice −Pr(w) logPr(w)

is the entropy), i.e., f(W) = α × ||AW − b||2 + β ×
∑

w∈W Pr(w) logPr(w) is to

be minimized. The first part of the formulation is designed for the over-constrained

settings, i.e., we satisfy the known pdfs as closely as possible if there is no feasible

solution, whereas the second part of the formulation is to handle under-constrained

nature of the problem through maximum entropy modeling that will choose the joint

distribution model that is consistent with all the constraints but otherwise is as

uniform as possible. From the joint distribution Pr(D), we obtain the unknown

distance pdfs by computing appropriate marginals.

Lemma 7. f(W) is convex.

Proof. (Sketch) It can be shown that the linear aggregation of two convex functions

is always convex [125], which proves the above lemma.

Algorithm LS-MaxEnt-CG: Based on Lemma 7 f(W) is convex. We propose Algo-

rithm LS-MaxEnt-CG, by appropriately adapting nonlinear conjugate gradient algo-
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rithms [116, 117] that are popular iterative algorithms to solve such non-linear convex

optimization problems. The overall pseudo-code is presented below in Algorithm 6.

Algorithm 6 LS-MaxEnt-CG

1: Input: matrix A, constraint vector b, vector W with 1
ρ
(n
2) unknown variables,

tolerance error η.

2: Initialize W with the steepest direction in the first iteration ∆W0 = −∇Wf(W0)

3: In the i-th iteration, compute β′i using Fetcher-Reeves method [126].

4: Update the conjugate direction: si = ∆Wi + β′isi−1.

5: Perform a line search to obtain α′i, α
′
i = arg min

α′
f(Wi + α′si).

6: Update the position: Wi+1 = Wi + α′isi

7: Repeat Steps 3− 7 to until the error ≤ η.

8: return f(W)

Using Example 2 with ρ = 0.5, the joint distribution produces the probability

for each of the 26 buckets that sum up to 1. From this joint distribution, the marginal

distributions can be computed for the three unknown edges. (i, l) : [0.25 : 0.366, 0.75 :

0.634],(j, l) : [0.25 : 0.366, 0.75 : 0.634], (k, l) : [0.25 : 0.366, 0.75 : 0.634].

Running Time: It has been shown in [117] that conjugate gradient has a

running time complexity of O(m′
√
κ), where m′ is the number of non-zero entries in

the matrix A and κ is the number of iteration before convergence. However, in our

case, as described in Section 6.2.2, the size of the input matrix A itself is exponential

to the number of object pairs.
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6.4.1.2 Under-Constrained Case

For the under-constrained settings, the optimization function becomes simpler,

with the objective to maximize entropy f(W) = −
∑

w∈W Pr(w) logPr(w), while

satisfying the known constraints. Each constraint Ci is a restriction on some subset of

these possible (1
ρ
)(

n
2) cells to sum up to some observed value p(Ci). More specifically,

each Ci =
∑

(wi× Ii,j), where Ii,j = 1 if j-th cell is included in the constraint Ci, and

0 otherwise.

Algorithm MaxEnt-IPS: It has been shown that the objective function always has

a unique solution as long as the constraints are consistent [119]. Of course, this

problem can be solved using a general purpose optimization algorithm. However, we

propose MaxEnt-IPS, an iterative proportional scaling (or IPS) algorithm [118, 119]

that exploits the structural property of the objective function and uses the observation

that the optimal wi values can be expressed in the following product form.

wµj = µ0ΠCi
µi
Ii,j

For each constraint Ci, there is a constraint µi that gets updated inside the IPS

algorithm and µ0 is a normalization constant to ensure that all cells add up to 1.

This algorithm iteratively updates the µi’s and the cell values wi’s. It is guaranteed

to converge to the optimal solution as long as all constraints are consistent. Once

the histogram buckets W and hence the joint distribution Pr(D) is computed, the

unknown marginals are obtained similarly as before. We omit further details and the

pseudo-code for brevity but refer to [118, 119] for for more information on the IPS

method.

MaxEnt-IPS does not converge for the input presented in Example 2 (b), as

it is over-constrained. However, if we modify the example such that the aggregated

feedback for (j, k) is 0.75 instead of 0.25, then the following outputs are obtained for
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the three edges: (i, l) : [0.25 : 0.333, 0.75 : 0.667],(j, l) : [0.25 : 0.333, 0.75 : 0.667],

(k, l) : [0.25 : 0.333, 0.75 : 0.667].

Running Time: The maximum entropy modeling is known to be NP-

hard [127]. The MaxEnt-IPS algorithm terminates based on the convergence of all

the µ’s. In each iteration it makes updates to all the buckets in the joint distribution,

which is exponential in size (O(1
ρ
)(

n
2))). If MaxEnt-IPS requires κ iterations to con-

verse, the asymptotic complexity of this algorithm is exponential, i.e., O(κ× (1
ρ
)(

n
2)).

6.4.2 Efficient Heuristic Algorithm

Both the problem variants and their respective solutions studied in Sec-

tions 6.4.1.1 and 6.4.1.2 first compute the joint distribution over an
(
n
2

)
-dimensional

space as optimization problems. After that, the unknown distributions are computed

from the joint distribution. Even with n = 5 objects and ρ = 0.5, the joint distribu-

tion is to be computed on an 2(5
2) = 210 dimensional space. Due to its exponential

nature, computing the joint distribution is practically impossible as n increases. As

a realistic alternative, we next present Tri-Exp, an efficient heuristic algorithm that

avoids computing the entire joint distribution, but explores the individual triangles

in a greedy manner to estimate the pdfs of the unknown edges. The pseudo-code is

presented in Algorithm 7.
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Figure 6.3: Example to Illustrate Tri-Exp
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While Algorithm Tri-Exp avoids computing the joint distribution and instead

performs a greedy exploration over the individual triangles one-by-one, there are still

considerable challenges - each unknown object pair (edge) is involved in n−2 different

triangles (with different triangle inequality constraints) and the algorithm must be

adapted to estimate the pdf of the unknown edge such that it satisfies all the triangles.

In particular, it encounters two scenarios.

Scenario 1: During execution, the algorithm may encounter some triangles which

have two edges already known and only the third edge is to be estimated. For such

cases, the algorithm will greedily select that unknown edge that completes the highest

number of triangles, once estimated. When an unknown edge is involved in multiple

triangles with two edges known for each triangle, then the final estimated pdf must

satisfy the triangle inequality property of all the triangles. We first estimate the

pdf of the unknown edge considering each triangle, following which the final pdf is

computed by performing the sum-convolution and averaging the convolved pdf (recall

Section 6.3), such that the triangle inequality property is satisfied for all the triangles.

Scenario 2: Another scenario that is likely to occur is when there only exists triangles

with two unknown edges. In such cases, both of the unknown edges are jointly

estimated, by relying on the known edge.

Solution Considering Scenario 1: As an example, consider Figure 6.3 and note

that based on this greedy selection, at the very first iteration, it will select (i, k) for

estimation, as that will complete at least one triangle 4i,k,l (because, the two edges

of this triangle are already known and the third edge is to be estimated), whereas

none of the other unknown edges will complete any triangle. Considering triangle

4i,j,k, the algorithm will have to apply the triangle inequality property to select the

possible ranges of values that (i, j) is allowed to take.
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Our method will estimate the pdf of (i, k) as Pr((i, k) = 0.25) = 0.0, Pr((i, k) =

0.75) = 1.0 considering 4i,j,k. After that, (i, k) should also be estimated considering

another triangle 4i,l,k. The final pdf of (i, k) must satisfy the triangle inequality

property of both of these triangles.

Algorithm 7 Tri-Exp: heuristic distance estimation algorithm

1: Input: known and unknown distance edges.

2: if There exists triangles with one unknown and two known edges then

3: Greedily select that unknown edge and estimate it such that it results in the

maximum number of triangles with all known edges

4: else

5: When no such triangle is found, consider a triangle and estimate two unknown

edges jointly

6: end if

7: Perform sum convolution and averaging for all associated triangles such that

triangle inequality is satisfied

8: Repeat steps 2− 7 until all edges are estimated

9: return distance edges

Solution Considering Scenario 2: Consider Figure 6.3 again and assume that

(i, k) is estimated in iteration one. Even after that, both 4i,j,l and 4j,k,l have two

unknown edges.

In 4j,k,l, where both (k, l) and (j, l) are unknowns and are to be estimated

using the pdf of the known edge (j, k). Without further knowledge, we calculate the

joint distribution for (j, l) and (k, l) by assigning uniform probability to each of these

possible values. Once, we get the joint distribution, we calculate the pdfs for both
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(j, k) and (j, l) which will be exactly equal to each other, which is {0.25 : 0.5, 0.75 :

0.5}. As before, when multiple triangles are involved with an unknown edge, the pdf

of that edge needs to be estimated considering triangle inequality property of all the

involved triangles.

Tri-Exp outputs the following pdfs for the example in Figure 6.3 (i, k) : [0.25 :

0.5, 0.75 : 0.5], (k, l) : [0.25 : 0.61, 0.75 : 0.39], (j, l) : [0.25 : 0.43, 0.75 : 0.57], (i, l) =

[0.25 : 0.4, 0.75 : 0.6]

Running Time: Time complexity of Tri-Exp is O(|Du|(n × 1
ρ

2
+ log(|Du|)),

where |Du| is the number of unknown pairs, ρ is the histogram-width, and n is

the number of objects. At worst case, |Du| = O(n2); in such cases, the algorithm

takes cubic time to run. Nevertheless, this analysis shows that the running time of

Tri-Exp is substantially superior than its exponential counterparts, LS-MaxEnt-CG

or MaxEnt-IPS.

6.5 Problem 3: Asking the Next Best Question

If there is still considerable “uncertainty” in the learned / estimated distances

and we have an opportunity to solicit additional feedback, we investigate (in this

third problem) which object pair should we choose to solicit the next feedback on.

There are several variants of this problem. In the online variant, we have the liberty

of asking one question at a time and continue the process until all initially unknown

pdfs converges “satisfactorily”, or a budget B expires. The budget could be used to

specify a limit on the number of questions to be asked, or the maximum number of

workers to be involved. In the offline variant, we need to decide all questions ahead of

time so that the fixed budget expired. In the hybrid variant, we could solicit workers

feedbacks for several batches of say k questions per iteration. In this chapter we
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mainly focus on the online variant, but also present a simple extension to solve the

offline problem.

Modeling Possible Worker feedback: Recall the definition of Problem 8 and note

that from a given candidate set of questions Du (where each question is on an object

pair), the problem is to select that question which minimizes the aggregated variance

AggrVar most. The challenge, however, is to be able to anticipate possible workers

responses that is currently unknown, to be able to guide the optimization problem.

A question Q(i, j) ∈ Du is essentially a random variable whose distribution has been

estimated already by solving Problem 7. Without any further information, the frame-

work has the following limited options to make guesses about future responses of the

workers:

(1) The response pdf from the m workers, when aggregated, will be the same

as the current estimated pdf of du(i, j). Under this scenario, the framework does

not learn anything new about d(i, j) and hence AggrVar remains unchanged. We

therefore do not use this option in our algorithm.

(2) The aggregated response of the worker will be identical to some measures

of the current pdf that dictates its central tendency; for example the mean µ of the

current pdf can used as the anticipated value of the future aggregated feedback.

In this latter case, the pdf of du(i, j) changes (its variance becomes 0), and it is

also likely to affect the pdfs of other edges (i.e., the joint distribution changes). More

intuitively, when a pdf is represented by its mean, the other pdfs (edges) involved with

it are likely to demonstrate lower divergence, hence tighter distribution. As described

later, this option is used in our algorithm for selecting the next best question.

Consider a very simple example with 3 objects (i, j, k) that satisfy triangle

inequality such that (i, j) : Pr(d(i, j) = 0.125) = 1; (i, k) : Pr(d(i, k) = 0.125) =
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0.9, P r(d(i, k) = 0.375) = 0.1. To satisfy triangle inequality, the pdf of the third edge

(j, k) must be between [0.0, 0.5]. However, if we substitute (i, k) with its mean 0.15

(considering it as a candidate question), the pdf of (j, k) becomes tighter and only

between [0, 0.275]. It is easy to notice that the latter pdf of (j, k) will result in a

smaller variance in comparison with the former one.

Algorithm Next-Best-Tri-Exp: The algorithm for computing the next best ques-

tion runs in iteration and considers each candidate question Q(i, j) in turn. Then, it

considers the impact of changing the current pdf of the object pair to its mean (to

emulate workers’ feedback). This is done by re-estimating the pdfs in Du − du(i, j).

For that, it uses a sub-routine to solve Problem 7, described in Section 6.4 using any

of LS-MaxEnt-CG, MaxEnt-IPS, or Tri-Exp algorithms. Once the unknown pdfs in

{Du−du(i, j)} are re-estimated, it computes AggrVar using either Equation 6.1 or 6.2

and maintains the so-far best question by choosing the minimum. Once all the candi-

dates are evaluated, the best candidate is the one that results in the smallest AggrVar.

The pseudo-code is presented in Algorithm 8. Using Example 2, this returns (i, l) as

Algorithm 8 Next-Best-Tri-Exp: Selecting the next best question

1: Input: known and estimated distance edges.

2: for du(i, j) ∈ Du do

3: Replace the distribution of du(i, j) by its mean

4: Select du(i, j) = argmax∀du(i,j)∈Du
AggrVar(du(i, j)) as the candidate question

5: end for

6: return du(i, j)

the next best question, as that minimizes the AggrVar based on both formulation of

aggregated variance. Running time: To choose the next best question, this algo-
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rithms has to evaluate each candidate question in Du. The primary computation time

in each candidate question is taken to invoke an algorithm to solve Problem 7 as a

subroutine. Therefore, the running time of this algorithm is asymptotically O(|Du|×

running time of the sub-routine).

Extension to the Offline Problem: If we need to decide how to spend all the

budget B ahead of time, we need to decide all the questions offline, we note that the

problem becomes computationally more challenging, as there will be an exponential

number of possible choices (
(|Du|
B

)
, assuming the budget allows for B questions) and

the ordering of the questions also matters in reducing aggregate variance. However,

a simple extension to our current algorithm can effectively solve this offline problem,

where we run our online solution B times to select the best B questions greedily.

We present experiments on this regard and show that our proposed solution can be

effective in solving the offline problem.

6.6 Experimental Evaluation

Our development and test environment uses python 2.7 on a Linux Ubuntu

14.04 machine, with Intel core i5 2.3 GHz processor and a 6-GB RAM. All values are

calculated as the average of three runs.

6.6.1 Datasets Description

We use three real world datasets and one synthetic dataset for our experiments.

(1) Image: The real world dataset is obtained from the PASCAL database2. A

total of 24 images of 3 different categories are extracted. We generate 3 subsets of

size 10, 5, 5 for which we have solicited all pair distance information. Each pair is

set up as a HIT (human intelligence task) in Amazon Mechanical Turk (AMT) and

2http://host.robots.ox.ac.uk/pascal/VOC/databases.html
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we solicit 10 different workers’ feedback on the similarity of the images. A total of

50 different workers are involved in this study. (3) SanFrancisco: We choose 72

locations from the city of San Francisco and crawl traveling distances (both-ways)

among all pair of locations (2556 pairs) using google api3. The purpose this dataset

is to validate the scalability of our algorithms. Here, we use the traveling distances as

worker feedback instead of explicitly soliciting the workers’ feedback. (2) Cora: This

is a real world publication dataset of 1838 records, 190 real world entities. We use

this dataset to compare our algorithms with Entity Resolution algorithms in [109].

We choose 3 random instances of this dataset with 20 records, which constitutes

of 190 edges. We apply our algorithms in these instances and present our results.

(4) Synthetic: We generate a large scale synthetic dataset for performing efficiency

experiments. Here, we vary from 100 to 400 objects which gives rise from 4950 to

79800 object pairs.Additionally, another small synthetic dataset of 5 objects with 10

edges is generated.

6.6.2 Implemented Algorithms

(1) Worker Feedback Aggregation: We consider the following algorithms:

(i) Conv-Inp-Aggr: This is our proposed convolution based solution to aggre-

gate workers feedback that is described in Section 6.3.

(ii) BL-Inp-Aggr: We implement a baseline algorithm that creates aggregated

pdf by calculating the average probability over each discrete bucket center of the

input pdfs. Here we ignore the ordinal nature of the feedback scale and treat each

bucket as a categorical value.

(2) Estimation of Unknown Edges: We are unaware of any related works that

study distance estimation in probabilistic settings.

3https://developers.google.com/maps/
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(i) Tri-Exp: This algorithm is described in Section 6.4.2.

(ii) LS-MaxEnt-CG: This algorithm is designed to estimate the unknown edges

considering both over and under constrained settings, described in section 6.4.1.1.

(iii) MaxEnt-IPS: This algorithm, described in section 6.4.1.2, refers to the

optimal estimation of unknown edges considering only under-constrained settings.

(iv) BL-Random: We design a baseline algorithm that is similar to Tri-Exp. It

estimates the unknown edges considering triangles; however, unlike Tri-Exp (which

first attempts to consider the edges that complete the highest number of triangles),

BL-Random arbitrarily chooses unknown edges and estimates them.

(3) Asking the Next Best Question: These algorithms are designed to demon-

strate the effectiveness of the next best question in reducing AggrVar, as described in

Section 6.5. As LS-MaxEnt-CG and Maxent-IPS are computationally prohibitive, we

implement Tri-Exp and BL-Random as subroutines to decide the next best questions.

We divide these algorithms into two parts - Online and Offline.

Online Algorithms: Here we solicit one question at a time to the crowd (i)

Next-Best-Tri-Exp: This is our proposed solution in Section 6.5 that uses

Tri-Exp at each iteration as the subroutine to re-estimate the unknown edges. (ii)

Next-Best-BL-Random: This is again our proposed solution in Section 6.5 that uses

BL-Random at each iteration as the subroutine.

Offline Algorithms: Here we solicit a set of questions ahead of time. (i)

Offline-Tri-Exp: This is the offline variant of Next-Best-Tri-Exp described in

Section 6.5.

(4) Entity Resolution(ER): As discussed in Section 6.7 on related works,

under certain circumstances the problem of entity resolution, in particular the tech-

niques proposed in [109], may be considered a special case of the distance estimation
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problem considered in this chapter. Consequently, we experiment with the following

algorithms:

(i) Next-Best-Tri-Exp-ER: This is a modified vesion of Next-Best-Tri-Exp

algorithm where we find the number of questions that need to be asked so that

Aggr-Var is zero.

(ii) Rand-ER : We implement the Random algorithm from [109]. We call this

algorithm Rand-ER. This algorithm has a proven complexity ofO(nk), where n denotes

the number of objects and k denotes the number of clusters/similar entities.

6.6.3 Experimental Set up

Parameter Settings: Unless otherwise mentioned, we assume ρ = 0.25. In other

words, there are 4 equi-width buckets with bucket range [0.0 − 0.25), [0.25 − 0.5),

[0.5− 0.75), [0.75− 1.0) with centers at 0.125, 0.375, 0.625 and 0.875. Depending on

the value of p (worker correctness), the distribution of the known edges are created.

For example, if a worker provides a feedback of 0.8, with p = 60%, that edge is created

by assigning probability of 60% on distance 0.875, and the remaining 40% probability

is uniformly assigned to the other buckets. In practice, correctness probability can be

obtained by asking a set of screening questions and then by averaging their accuracy.

The weight of λ is set to 0.5 (unless otherwise stated) for Problem 7.

Quality Experiments:(i)Worker Feedback Aggregation: We use real data for this

experiment as this dataset contains multiple workers feedback. We consider each tri-

angle in isolation where all the edge distances are known. Hence, for each edge with

10 different feebacks, we know the ground truth distribution. We use Conv-Inp-Aggr

and BL-Inp-Aggr for aggregating two out of the three edges. Based on our respec-

tive algorithm, we estimate the third edge. We then compute the `2 error of our
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estimated edge from the ground truth distribution for the third edge. (ii) Unknown

Edge Estimation: Since LS-MaxEnt-CG, MaxEnt-IPS are exponential in the number

of object pairs (i.e., S
nC2), we have to limit our settings to a very small dataset with

n = 5 nodes and 10 edges. We use the small Synthetic dataset, as well as a subset

of real world dataset for this experiment. For the Synthetic dataset, we consider

MaxEnt-IPS as the optimal solution, and compare the effectiveness of the other three

algorithms by calculating the average `2 error over the unknown edges, compared to

the optimal. Out of the 10 edges, we randomly mark 4 edges as known (and create

their distribution as described before), and estimate the remaining 6 unknown edges.

For the Image dataset, all ground truth distributions are known for the selected 5

objects. Like above, we mark 4 randomly chosen edges to be known and estimate the

remaining 6 edges by considering the 4 different algorithms. As before, we present

the average `2 error - but this time in comparison with the ground truth. (iii)Asking

the Next Best Question: We use the SanFrancisco dataset for which we have all pair

of ground truth information. At each step, we replace the step of asking a question

to the crowd by the ground truth information. The default value of p is 1.0 and the

default budget B = 20 questions. Number of known edges is is set to 90% of the total

edges.

Application to ER: We use Cora dataset to perform comparison with ER methods.

We assume that each edge is described by a pdf with two ordinal buckets 0 (duplicate)

and 1 (not duplicate). We use number of questions as our metric which is widely used

in ER literature. This value describes the number of questions to be asked before all

the entities are resolved. We use 3 random smaller instances of size 20 Cora dataset

to evaluate our algorithm.
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Scalability Experiments: We use the large scale synthetic dataset for the

scalability experiments. We vary the following 4 parameters: (i) number of objects n.

(ii) number of buckets b′ to approximate the pdfs. (iii) number of unknown edges |Du|.

(iv) worker correctness p.When one of these aforementioned parameters is varied, the

other three are kept constant. The default values for these 4 parameters are, n = 100,

|Du| = 40% of all edges, b′ = 4, p = 0.8. Please note that we primarily present the

scalability results for Tri-Exp and BL-Random, as LS-MaxEnt-CG and MaxEnt-IPS

takes 1.5 days to converge even when n = 6.
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6.6.4 Results

6.6.4.1 Summary of Results

Quality Experiments: Our first experiment on aggregating feedback suggests the

superiority of Conv-Inp-Aggr over BL-Inp-Aggr. For unknown edge estimation, the

results indicate that both Tri-Exp and LS-MaxEnt-CG perform better than the base-

line BL-Random. For both of them, we observe that with higher worker accuracy (cor-

rectness) p, the error increases for all these competing algorithms. While this may

appear counter-intuitive, our post-analysis indicates that this is due to the probabilis-

tic nature of our proposed framework and the algorithms, which are most effective,

when the workers responses are truly probabilistic. For the third problem, with more

questions asked, the AggrVar reduces. In both of these aforementioned scenarios,

Next-Best-Tri-Exp convincingly outperforms Next-Best-BL-Random.

Application to ER: Our result demonstrates that Rand-ER outperforms

Next-Best-Tri-Exp-ER. This is expected since our method is designed to solve a

more general problem than ER methods - the ER method assumes no worker uncer-

tainty (i.e., workers are always 100% accurate), and it is dependent on the notion of

transitive closure, which is a very special case of triangle inequality.

Scalability Experiments: We show that Tri-Exp performs reasonably well with

the increasing number of objects, buckets, known edges, or worker correctness. The

computation time of BL-Random is similar to that of Tri-Exp, while Tri-Exp is qual-

itatively superior. Therefore, we only present the results of Tri-Exp in these experi-

ments. The algorithms that rely on computing joint distribution LS-MaxEnt-CG,

MaxEnt-IPS do not converge beyond a very small number of objects (n = 5) even in

days.
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6.6.4.2 Quality Experiments

(i) Worker feedback aggregation: Figure 6.4a shows that Conv-Inp-Aggr consistently

outperforms the baseline.

(ii) Estimating Unknown Edges: We present the results for estimating unknown edges

in Figure 6.4b and 6.4c. For the synthetic data, LS-MaxEnt-CG is superior to the

other two methods, while Tri-Exp outperforms BL-Random. The pattern remains

the same for the real data as both LS-MaxEnt-CG and MaxEnt-IPS exhibit supe-

riority over BL-Random. Tri-Exp peforms reasonably well for real data. The fact

that LS-MaxEnt-CG is the best performing algorithm for the real data demonstrates

that, in reality, workers may indeed provide inconsistent feedback that do not obey

triangle inequality, hence our proposed optimization model is appropriate to capture

that settings.

(iii)Asking the Next Best Question: We first compare our online algorithms

Next-Best-Tri-Exp and Next-Best-BL-Random.

(a) Varying p: We vary p and present AggrVar considering maximum variance.

Figure 6.6a presents the results for this experiment. While the maximum variance

for Next-Best-BL-Random and Next-Best-Tri-Exp decreases with increasing worker

accuracy, latter performs better than the former. For average variance, we encounter

the same pattern. Hence, we omit the results for brevity.

(b) Varying B: Our goal here is to test how AggrVar reduces with the increasing

number of questions (budget B). Figure 6.6b and Figure 6.6c present the outcome

of these experiments. It is interesting to observe that with a fairly small number of

questions, the AggrVar reduces drastically and the system reaches a stable state.

(c) Online vs Offline Experiment: Figure 6.5a presents the result. As expected,

Next-Best-Tri-Exp performs better than the Offline-Tri-Exp, but with very small
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margin. This result proves that Offline-Tri-Exp is very suitable for traditional

crowdsourcing framework as online algorithms have high latency.

iv) Entity Resolution: Figure 6.5b shows the results for Entity Resolution. Although

Next-Best-Tri-Exp-ER performs a little worse than Rand-ER, we argue that our

method is not optimized for finding duplicate entities. Please notice that our method

can be applied to find duplicate entities while it is not possible vice versa.

6.6.4.3 Scalability Experiments
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(i) Worker feedback aggregation: We observe that the time to aggregate workers

feedback is akin to the triangle computation time of Tri-Exp. For brevity, we omit

the details.

(ii) Unknown Edge Estimation: We observe that both heuristic algorithms are equally

efficient. Hence, we just present the results of Tri-Exp. (a) Varying n: Figure 6.7a

presents these results and indicates that Tri-Exp converges in a reasonable time, even

for higher values of n.

(b) Varying b′: Figure 6.7b presents these results and indicates that Tri-Exp scales

well with increasing b′.

(c) Varying |Dk|: Figure 6.7c presents these results and shows that Tri-Exp is scalable

with increasing number of unknown edges and takes lesser time, as |Dk| increases.

(d) Varying p: Figure 6.7d indicates that the running time of Tri-Exp is not affected

by p.

(iii)Asking the Next Best Question: The running time of Next-Best-Tri-Exp and

Next-Best-BL-Random are similar and dominated by the size of |Du|. These results

are similar to that of Figure 6.7c and omitted for brevity.

6.7 Related Work

User Input Aggregation: Aggregation of opinions is studied in several prior works

in AI [112, 113, 114]. An opinion is described as a pdf over a set of categorical values.

Since, their methods do not consider the notion of distance, they do not offer an easy

extension to our problem. Aggregation of binary feedback(Yes/No) in crowdsourcing

is studied in [110, 111]. Their proposed models estimate both worker accuracy and

the true answer considering a bipartite graph of workers and tasks. They do not

extend beyond binary feedback while we assume a numeric feedback model. [128]

study how to find the ranking of a tuple, where tuple scores are given by probability
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distributions. While this problem is fundamentally different from our first problem,

their proposed approach nevertheless justifies our proposed way of convolving multiple

pdfs for aggregation.

Distance Estimation: Distance estimation using crowdsourcing has gained a sig-

nificant interest recently for solving a variety of computational problems that require

distance estimation, such as top-k, clustering, entity resolution (ER), etc [6, 7, 8]. In

most of these works, the dependency on distances is only indirect, as these works are

based on asking users to resolve Boolean similarity or ranking questions, e.g., whether

two objects are similar or not, or whether one object should be ranked higher than

the other. In contrast, our work is the first to directly solicit, from the crowd, the

broader notion of numeric distances between objects. In [6], the authors propose a

crowdsourced clustering method by leveraging matrix completion techniques, where

human workers are involved to annotate objects in a deterministic settings. Entity

resolution using crowdsourcing have been studied in [107, 7, 109]. The closest re-

lated work is that of [109]. The main differences between this work and ours are:

(a) the are only concerned with the Boolean notion of objects equivalency, whereas

we try to learn numeric distances between objects, (b) they assume that the crowd

can make no mistake, which is unrealistic for distance computations, and (c) they

leverage the notion of transitive closure, which is a much simpler notion compared

to that of triangle inequality. Therefore their main focus has been on determining

the optimal set of questions to ask the crowd, whereas our focus has been on even

more basic issues such as how to aggregate uncertain user feedbacks and update the

probabilistic distribution models of the distances.

Asking Next Best Question: Our third problem formulation borrows mo-

tivation from [129, 7, 130]. [129] describes the problem of finding the maximum
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item from paiwise comparisons, [7] tackles entity resolution, and [130] studies top-k

queries in uncertain database. They all designed algorithms for finding the next best

question which maximize the expected accuracy for their respective problems. Both

[129] and [7] prove that finding next best question is NP-Complete. In [130], authors

construct a Tree of Possible Ordering(TPO) in order to find the next best question.

Although we employ the similar settings, our unique problem formulation requires us

to design novel solutions.

6.8 Conclusion

We present a probabilistic distance estimation framework in crowdsourcing plat-

forms that has wide applicability in different domains. One of the novel contribu-

tions of the work is to consider worker feedback with probabilistic interpretation and

describe the overall framework with three key components.The effectiveness of our

proposed solutions are validated empirically using both real and synthetic data.
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[115] Å. Björck, “Numerical methods for least squares problems,” Pressure Rate De-

convolution Methods for Well Test Analysis, 1996.

181

http://doi.acm.org/10.1145/2882903.2915252


[116] C. Xie et al., “A maximum entropy-least squares estimator for elastic origin–

destination trip matrix estimation,” Transportation Research Part B: Method-

ological, 2011.

[117] R. Fletcher, Practical methods of optimization. John Wiley & Sons, 2013.

[118] S. Sarawagi, “User-adaptive exploration of multidimensional data.” in VLDB,

2000.

[119] H. Mannila et al., “Prediction with local patterns using cross-entropy,” in KDD,

1999.

[120] R. Fagin and L. Stockmeyer, “Relaxing the triangle inequality in pattern match-

ing,” International Journal of Computer Vision, vol. 30, pp. 219–231, 1998.

[121] D. Gerardi et al., “Aggregation of expert opinions,” Games and Economic Be-

havior, 2009.

[122] Y. Ioannidis, “The history of histograms (abridged),” in VLDB, 2003.

[123] G. H. Golub et al., “An analysis of the total least squares problem,” SIAM

Journal on Numerical Analysis, 1980.

[124] B. Arai et al., “Anytime measures for top-k algorithms,” in PVLDB, 2007.

[125] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university

press, 2004.

[126] R. Fletcher et al., “Function minimization by conjugate gradients,” The com-

puter journal, 1964.

[127] C.-W. Ko et al., “An exact algorithm for maximum entropy sampling,” Opera-

tions Research, 1995.

[128] J. Li and A. Deshpande, “Ranking continuous probabilistic datasets,” Proceed-

ings of the VLDB Endowment, vol. 3, no. 1-2, pp. 638–649, 2010.

[129] S. Guo et al., “So who won?: dynamic max discovery with the crowd,” in

SIGMOD, 2012.

182



[130] E. Ciceri, P. Fraternali, D. Martinenghi, and M. Tagliasacchi, “Crowdsourcing

for top-k query processing over uncertain data,” Knowledge and Data Engineer-

ing, IEEE Transactions on, vol. 28, no. 1, pp. 41–53, 2016.

183



BIOGRAPHICAL STATEMENT

Habibur Rahman was born in the district of Munshigonj, Bangladesh. He re-

ceived his B.Sc in Computer Science and Engineering in 2009 from Bangladesh Uni-

versity of Engineering and Technology, Dhaka. His research interests include Crowd-

sourcing, Social Analytics and Recommender Systems. He has interned in Microsoft

Research (Redmond), Qatar Computing Research Institute and WalmartLabs. He

has published in several premier conferences such as VLDB, ICDE, CIKM, ICDM

etc.

184


