
INFERRING IN-SCREEN ANIMATIONS AND INTER-SCREEN TRANSITION FROM

USER INTERFACE SCREENSHOTS

by

SIVA NATARAJAN BALASUBRAMANIA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2017

ii

Copyright © by SIVA NATARAJAN BALASUBRAMANIA 2017

All Rights Reserved

iii

Acknowledgements

I would like to thank my supervising professor, Dr. Christoph Csallner for

his continuous support, endless patience and trust in my skills. He has been a great

teacher and a mentor steering me in the right direction. I could not have imagined having

a better advisor for my thesis.

Besides my advisor, I am thankful to Dr. Tuan Ngyuen for inspiring me

and providing me the first glimpse of research and for supporting and motivating

whenever needed. He has been a mentor, a colleague and a friend helping me in being

successful!

I am grateful to Dr. Farhad Kamangar and Mr. David Levine for serving as

members of thesis committee and for your insightful comments and questions.

Finally, I would like to thank my father, mother and sister for their support and

trust in me throughout my life.

Apr 18, 2017

iv

Abstract

REVERSE ENGINEERING MOBILE APPLICATION UI

USING REMAUI

SIVA NATARAJAN BALASUBRAMANIA, MS

The University of Texas at Arlington, 2017

Supervising Professor: Christoph Csallner

In practice, many companies have adopted the concept of creating interactive

prototypes for explaining workflows and animations. Designing and developing a user

interface is a time-consuming process, and the user experience of the application has a

major impact on the success of the application itself. User interface designing marks the

start of the app development, and it is very expensive regarding cost and time for making

any modification after the coding phase kicks in. Currently, companies have adopted UI

prototyping as part of the app development process. Third-party tools like Flinto or

Invision use the high fidelity screen designs for making interactive prototypes, and other

tools like Flash is used to prototype animations and other transition effects. With this

approach, there are two major setbacks. Creating the screen designs (acts as the screen

specification for color, dimensions, margin, etc.) and the navigations or animations takes

a lot of time, but they are not reusable in the app development process. The prototypes

could act as a reference for the developers, but none of the output artifacts is reusable in

the developing the application With our technique of using REMAUI as a preprocessor to

identify different UI elements like images, texts, containers on the input bitmap images.

We have developed a user interface that allows users to interact with the preprocessed

inputs and create links for inter-screen transitions on click, long click with effects like a

v

slide, fade, and explode. We would be able to generate code for the intended navigation

targeting a specific platform say Android. Additionally, we have developed a heuristic

algorithm that analyses REMAUI processed input bitmaps and infers possible in-screen

animations such as translation, scaling and fading using perceptual hashing.

In our experiment, we evaluated our prototype’s inter- screen transition on screenshots of

10 different third party applications and it generated android code for transition in less

than 2s. We evaluated inferring in-screen animation on screenshots of top 30 third party

Android application generated user interfaces similar to the original on comparing pixel-

by- pixel (SSIM) and it takes 26s on an average for identifying possible animation.

vi

Table of Contents

Acknowledgements ...iii

Abstract .. iv

List of Illustrations ... viii

List of Tables .. xi

Chapter 1 .. 1

Introduction ... 1

Chapter 2 .. 6

Motivating Example .. 6

2.1 Transition Extension: .. 6

2.2 Animation Extension ... 15

Chapter 3 .. 19

Background ... 19

3.1 Native apps ... 19

3.2 Prototype .. 20

3.3 Hamming Distance ... 21

3.4 Android ... 21

3.5 REMAUI .. 26

3.6 Perceptual Hash ... 28

Chapter 4 .. 32

Overview and Design.. 32

4.1 Inferring in-screen animation .. 32

4.2 Transition Extension ... 43

vii

Chapter 5 .. 50

Research Questions (RQ), Expectations (E), and Hypotheses (H) 50

Chapter 6 .. 51

Evaluation ... 51

Prototype Information ... 51

Experiments .. 52

Chapter 7 .. 67

Related Work .. 67

Chapter 8 .. 69

Conclusion and Future work ... 69

Chapter 9 .. 70

Appendix I ... 70

Test Applications for inferring in-screen animations .. 70

Appendix II .. 73

Test Application for inter-screen transitions ... 73

References .. 74

Biographical Information ... 77

viii

List of Illustrations

Figure 1-1 Design-Development Process ... 1

Figure 2-1 Menu screen design of Amazon Underground app for Android 6

Figure 2-2 - Home screen design of Amazon Underground app for Android 6

Figure 2-3 - Working of Invision tool on Amazon app's menu screen 7

Figure 2-4 - Invision preview of menu screen design ... 8

Figure 2-5 - Invision preview of home screen design ... 8

Figure 2-6 - Working of Flinto on Amazon Underground app for Android 9

Figure 2-7 - Flinto preview of menu screen design ... 10

Figure 2-8 - Flinto preview of home screen design ... 10

Figure 2-9 - Working of REMAUI Transition extension on Amazon Underground App for

Android. ... 12

Figure 2-10 - Working of REMAUI Transition Extension on Amazon Underground app for

Android with Highlighted user click ... 13

Figure 2-11 - Working of REMAUI transition extension on Amazon Underground app for

Android with line representing navigation ... 14

Figure 2-12 - Real world example Facebook’s login screen animation 16

Figure 2-13 - Working of REMAUI - Animation extension on Facebook app for Android . 17

Figure 2-14 - REMAUI Animation extension generated code for Facebook Android

animation ... 18

Figure 3-1 - Working of REMAUI on Google Hangouts screen design 28

Figure 3-2 - Calculated MSE / SSIM on Chrome application’s landing screen 29

Figure 3-3-Overview of Perceptual Hashing ... 30

Figure 4-1-Example of In-screen animation .. 32

Figure 4-2 - Overview of in-screen animation inference ... 33

ix

Figure 4-3 - Example of Step 1 processing on Facebook app for Android 34

Figure 4-4 - Chrome Landing screen animation Intial and Final states 38

Figure 4-5 - REMAUI processed Whatsapp initial state ... 40

Figure 4-6 - REMAUI processed Whatsapp final state ... 40

Figure 4-7 - Pruning Text View Hierarchy of Initial and Final states of WhatsApp for

Android .. 41

Figure 4-8 - Snapshot of Generated Project Structure ... 42

Figure 4-9 - Code snippet for creating transition and scaling animations 43

Figure 4-10 - Search screen design of Google Play! Store .. 45

Figure 4-11 - App detail screen design of Google Play! Store.. 45

Figure 4-12 - Working of REMAUI Transition extension on Google Play! Store 46

Figure 4-13 - User interactions are highlighted and line represents a transition 46

Figure 4-14 - File structure of generated application with inter-screen transitions 48

Figure 4-15 - Generated Activity class with navigation ... 49

Figure 6-1 -Time taken for generating code vs Number of Transitions 54

Figure 6-2 - Identified View hierarchy is drawn over Music Free app screen design 55

Figure 6-3 - Identified View hierarchy is drawn over the Whatsapp app screen design ... 56

Figure 6-4 - Identified View hierarchy is drawn over the eBay app screen design 57

Figure - 6-5 - Runtime for inferring in-screen animation ... 58

Figure 6-6 - Identified View hierarchy is drawn over the Zedge app intial state screen

design .. 59

Figure 6-7 - Identified View hierarchy is drawn over the Zedge app final state screen

design .. 60

Figure6-8 - SSIM calculated for the test application's input screenshot vs. generated

screenshot ... 62

x

Figure 6-9 - Screenshot of generated final state of Zedge app .. 63

Figure 6-10 - Identified View hierarchy is drawn over the Beacon Flashlight app initial

state screen design ... 64

Figure 6-11 - Identified View hierarchy is drawn over the Beacon Flashlight app final state

screen design .. 65

Figure 6-12 - Screenshot of the generated final state of Beacon Flashlight app for

Android .. 66

xi

List of Tables

Table 2-1 - Comparison of time taken for uploading and assigning navigation 15

Table 4-1 - Heuristics for Perceptual hashing ... 36

Table 4-2 - Comparison of Similar Image views ... 37

Table 4-3 - Comparison of Non-similar Image views .. 37

Table 4-4- Heuristic for Pruning Text View Hierarchy ... 41

Table 6-1 - Runtime of Transition extension on Amazon Underground app for Android .. 53

1

Introduction

Developing the user interface of the mobile application is expensive in terms of cost and

time. In today’s competitive market, time to market, intuitive user interface design and

good user experience determine the quality of the mobile application [17]. For designing

high-quality user interface, companies are building a separate team (design team) for

creating high fidelity screen designs. Companies have formulated an app development

process as below,

Figure 1-1 Design-Development Process

Design team interacts with different stakeholders, gather the app requirements, and sketch

the low fidelity prototypes on paper. High-fidelity screen designs are designed using tools

like Photoshop or Sketch. The high fidelity screen designs provide the exact look-and-feel

of the final product. These designs are handed over to the programmers along with detailed

explanation of the navigations/transitions, transition effects, and animations. Since these

2

visual elements are hard to be documented, nowadays, designers are creating interactive

prototypes using tools such as Invision[3], Flinto[4]. These tools allow a user to upload the

visual designs and create navigational flows and effects.

Our key observation is that the tools mentioned above are not suitable for prototyping in-

screen animations and they cannot generate code specific to a platform (Android or iOS).

Still, designers use them for defining inter-screen in response to user interaction such as

click, long click or swipe with the transition effects such as slide, fade, etc. These tools

allow users to upload screen designs and create clickable rectangular regions on the input

images called as Hotspots. Thereby enabling users to create more realistic or complex

navigations between different screens/pages of the application. The output deliverable of

this type of tools is an interactive prototype. It can be previewed on a web application or

emulated within another application provided by these companies. They do not generate

platform specific code and hence is not capable of generating an output deliverable

capable of physically running a device itself. Also, these prototypes do not export a single

artifact such as images, texts, dimensions of images, style information, etc. These tools

are not capable of prototyping in-screen animation. These tools allow only a few specific

set of actions (user interactions) and effects.

Consequently, designers either use conventional animation creator such as Adobe Flash,

Adobe After Effects, etc. or modern framework like FramerJS[15]. The former is more of a

design studio whereas the latter requires the knowledge of scripting technologies

(Javascript and CoffeeScript). The output deliverable of the conventional ones says Flash

is video files displaying each animation present and reworking these Flash animation

videos for every design iteration is very expensive. Since the output deliverable is a video,

3

developers cannot reuse the output deliverable in the development process. In the case of

FramerJS, the animation is generated using JavaScript, FramerJS do create output

deliverable targeting a platform (Android or iOS) and animation scripts developed for

FramerJS is not consumable in the app development process for Android or iOS.

The designer spends at least 80 hours for creating the visual designs and prototypes [18].

That is a substantial time in the app development process. Even though designers spend

a lot of time on sketching the app, the output deliverables such as screen designs of the

application or the interactive prototypes and animation prototypes are not reusable in

application development process. Since the deliverable of the prototyping tools is just an

interactive prototype that viewed on a web application or emulated on a device that cannot

be installed physically on a mobile device, they do not generate platform (Android or iOS)

specific code for creating the screen navigation or animations. The programmers have to

rework the entire work of the designers in the making of the inter-screen transitions and in-

screen animations.

Additionally, iterating the design improves the quality of the user interface [17] that is,

sketching the visual screen designs, creating a prototype, evaluating the prototype,

modifying the visual design and repeating the entire process. Thus, the constant rework of

maintaining the prototyping is another setback for designer’s productivity.

These challenges would become much more significant as many companies are adopting

Mobile First strategy, and interestingly several companies are adopting Mobile Only

strategy.

4

Specifically, our technique solves the following problems,

• Creating inter-screen prototypes (say Invision) and in-screen prototypes (say

Flash) need separate platforms, adding more challenges while iterating the

designs.

• Neither the interactive prototypes nor the in-screen prototypes are reusable in the

actual application development process.

We focused on solving above mentioned challenges and came up with the following

approach,

• Providing a unified platform for building prototypes both inter-screen transitions

(navigations) and in-screen animations. It can be used for building prototypes that

could be installed physically on a mobile device would save a lot of time and money

in the development process.

• Using REMAUI for preprocessing the input images for generating the user

interface code specific to a platform along with the following enhancements,

o Transition extension: The computed view hierarchy is overlying on input

images. We allow the users to create navigation links with transitions

effects. Finally, on exporting, compilation ready source code containing

code blocks for creating the specified transition is auto-generated.

o Animation Extension: REMAUI Animation extension analyses the view

hierarchy of the input bitmaps and infers the in-screen animation. Finally,

on exporting, compilation ready source code for creating the inferred

animation is auto-generated.

5

Summarizing the major contributions made,

• Enhanced existing REMAUI with Animation and Transition extensions.

Transition extensions allows the user to interact with computed view

hierarchy and create navigation links. Whereas Animation extension

analyses the computed view hierarchies and infers an in-screen animation. In

both these cases, our prototype tool that generates code for Android UI,

transition, and inferred animations.

• In an evaluation on 10 screenshots from Amazon Underground app for

Android, the prototype generated code for transition in 1.7s

• In an evaluation on 10 out of Top 30 popular Android application, the

prototype generated UIs similar to the original evaluated by pixel-by-pixel

comparison. The average runtime for inferring is 26s.

6

Motivating Example

2.1 Transition Extension:

Let us consider an UI designer is creating an interactive prototype of the

following real world example Amazon Underground App (version 10.3.0.200) for Android.

Figure 2-1 and 2-2 represents the Application’s menu screen and landing screen.

Figure 2-1 Menu screen design of

Amazon Underground app for Android

Figure 2-2 - Home screen design of

Amazon Underground app for Android

7

The designer has to create a prototype that allows the user to tap/click on the area

represented by ‘A’ in Figure 2-1. On tapping the specified area, the landing screen slides

in forming a transition or navigation.

2.1.1 Case Study: Invision

Invision, a web-application allows the user to create a clickable rectangular area

called as Hotspot on the input bitmap. “Build” mode is selected as shown in Figure 2.3. In

this mode, Invision allows the user to draw rectangular regions over the image. A

rectangular area surrounding the menu Home is drawn and shown in Figure 2.3.

Figure 2-3 - Working of Invision tool on Amazon app's menu screen

On clicking the specified location, the panel pops out allowing the user to select the

triggering action (tap) with transition effect (Push-left) and destination screen design.

8

After saving the navigation, the designer has to switch to the “Preview” mode shown in

Figure 2.4. This mode would emulate the navigation on the web browser as shown

below. Clicking on the “Home” menu triggers the Home screen design shown in Fig 2-5

slides in

Figure 2-4 - Invision preview of menu

screen design

Figure 2-5 - Invision preview of home

screen design

2.1.2 Case Study: Flinto

Flinto provides a stand-alone application for Mac. Similar to Invision, Flinto allows

drawing hotspots over the image and creating links representing the navigation.

9

Figure 2-6 - Working of Flinto on Amazon Underground app for Android

Figure 2-6 shows the working of Flinto prototyping tool. One significant advantage over a

web-based tool is that the addition of input bitmaps is instantaneous. The user does not

have to wait for uploading the screen designs. The Rectangle toolbar button allows the

user create a hotspot over the image. Create Link or Draw Link toolbar button is used to

specify the linkage between different screens. Also, additional information such as trigger

event (Tap), transition effect (Pop Right) and target are defined. Preview toolbar pops out

the simulation of the navigation as shown below,

10

Figure 2-7 - Flinto preview of menu

screen design

Figure 2-8 - Flinto preview of home

screen design

Clicking on the hotspot area defined over the Home menu would navigate to the home

screen as shown in Figure 2.8 with a Pop effect.

2.1.3 REMAUI with Transition extension

As we know designing is an iterative process, in all these tools, any modification

made to the input source image would invalidate the hotspot information, or the links

created. There is a constant rework of creating hotspots and links. As mentioned before,

these prototypes are throw-away prototypes. After spending quite some time on creating

the prototype, it is not useful in the development process.

11

Our approach is developing a tool for users to interact with REMAUI preprocessed input

bitmaps. REMAUI would apply computer vision and OCR on the source images, identify

different visual elements and arrange in a hierarchical order. The input screen designs

are displaying these visual elements as an overly. Users interact with these hotspots and

define various transition and effects. This way of automatically populating the hotspots

has a significant advantage in the development process eliminating the constant

recreation of these hotspots for every iteration. REMAUI with the transition extension

exports source code of Android UI, specified transition, images, and text. The generated

source code is compilation ready. Our tool packages the necessary artifacts such as

source code, layouts, styles and strings as an android application. If needed, we can

install the generated application installed physically on a device.

Figure 2-9 represents the working of REMAUI transition extension on Amazon

Underground App for Android. We provide the Menu screen design (Figure 2-1) and

Home screen design (Figure 2-2) as the input.

12

Figure 2-9 - Working of REMAUI Transition extension on Amazon Underground App for

Android.

REMAUI preprocess the input images are preprocesses and identify the view hierarchy of

the input images. Our prototype represents the computed view hierarchy as rectangular

box over the image. The web application allows the user to click on the rectangular area

as in Figure 2.10. When the user clicks on a rectangular box, the prototype highlights the

box with Red color and the Text boxes above the screen designs displays the property ID

of the element. In this case, Figure 2-10 displays TextView_11 as the property ID. The

code generator use these property IDs.

13

Figure 2-10 - Working of REMAUI Transition Extension on Amazon Underground app for

Android with Highlighted user click

14

Figure 2-11 - Working of REMAUI transition extension on Amazon Underground app for

Android with line representing navigation

The designer selects the Event and Transition Animation from the web interface and

clicks on a rectangular region. The user then clicks and drags towards the destination

activity (in this case Amazon Home screen design). When we release the mouse button,

a line is drawn representing a navigation flow. Figure 2-11 shows the creation of

navigation. Clicking on Assign button saves the navigation. Clicking on the Generate

Code button generates the Android code for UI and transitions.

15

Time taken for building a basic interactive prototype for Amazon Underground app for

Android (version 10.3.0.200) for 10 screen designs on Invision, Flinto and REMAUI with

transition extension are as follows,

Product Time taken in seconds

Invision Upload Inputs 37.8

Assigning navigation 122

Flinto Upload inputs 12

Assign navigation 192

REMAUI with Transition extension REMAUI processing 102.3

Assigning navigation 135

Code generation 1.7

Table 2-1 - Comparison of time taken for uploading and assigning navigation

On an average, it takes 4 – 5hrs for developing an UI for Android or iOS from

screen shots.

2.2 Animation Extension

Consider the following real-world example Facebook for Android (version

105.0.0.23.137) Figure 2-12 (a) is representing the initial state of the animation, Figure 2-

12 (b) is displaying the intermediate state and Figure 2-12 (c) displaying the final state of

the animation. Visually, the Facebook logo image undergoes two transformations slides

towards the top, forming the Translation animation and grows before reaching its final

position, forming the Scaling animation. The logo changes its position and increases in its

size as it reaches the intermediate state. Then the system renders the elements not part

of the animation. From an Android developer’s standpoint, the initial, intermediate and

final screens are all part of same Activity. It is an example of View Property animation.

16

(a) (b) (c)

Figure 2-12 - Real world example Facebook’s login screen animation

Nowadays, the design team would be using conventional approach of using Flash to

prototype this animation or a modern approach to using FramerJS or similar tool to

prototype the animation. With both these approaches, creating a prototype needs a

prototyping tool different from tools used for prototyping app’s navigation/workflow. This

adds a significant overhead in the design phase. Similar, to the challenges in prototyping

workflows, any change in screen design would require a complete rework of the

animation prototype.

These tools allow the user to export the preview in specified format accessing through

their application. Embedding a prototyping within another application would cause some

delay in the orchestration of the animations or some lagging in playing it on devices

because of the hardware constraint. The user experience does not match with real

17

application’s user experience. Our approach is to keep a unified platform for prototyping

application workflow/navigation and to reduce time by predicting possible animations.

Since our approach is using REMAUI as the preprocessing technique, we would be able

to generate code for creating the animation and the UI itself. Hence, the

designers/developers would be able to obtain the real experience of the final app as

prototype would contain expected UI, navigations, and animations. Predicting animations

would be an extension of REMAUI itself. The designers/developers would provide the

necessary inputs such as screen designs of the initial state and the final state of the

animation. Using the output of REMAUI, we could identify the different views and their

positions, and by using image-processing techniques, we could compute the view

undergoing the animation.

Figure 2-13 - Working of REMAUI - Animation extension on Facebook app for Android

18

Figure 2-13 represents the working of REMAUI with Animation extension on Facebook

app for Android. The initial state in Figure 2-12 (a) and the final state in Figure 2-12 (b) of

Facebook Login screen animation are the inputs. Applying REMAUI on the input screen

design generates the view hierarchy. Our prototype analyses view hierarchies of the input

screen design and infer possible in-screen animation. Clicking on the Generate Code

generates the Android code for UI, animation. Figure 2.14 shows the snippet of the

generated code.

Figure 2-14 - REMAUI Animation extension generated code for Facebook Android

animation

REMAUI Animation extension also generates the necessary layout XML file, and

other JAVA attributes and methods for defining the view elements say imageview_0 and

mViewRoot. Code blocks for setting up the visibility of the elements as part of the

animation is also auto-generated.

The time taken to infer a possible in-screen animation from the Facebook login screen

designs is 27s.

19

Background

3.1 Native apps

 Native apps are applications that run physically on a device and are

coded specifically to run on an operating system such as Android or iOS. Each of these

platforms provides comprehensive set User Interface (UI) widgets. Also, these platforms

provide a detailed specification for designing UI such as Material design [7] and iOS

Human Interface Guidelines.

Mobile friendly website (Responsive Web Designs) is an alternative for

developing UI that fits all sizes and platforms. It is possible to create an UI very similar to

that of a native UI widget, but the user experience is not the same. Native apps provide a

lot of control over the hardware/device such as GPS or camera. It is even possible to

spawn background threads and pre-process and cache information before loading.

Native mobile apps could reduce the amount of data transferred between the server and

app because the UI is rendered locally on the device. On the contrary, a mobile website

is just a client, the wait time for the server to respond back is significantly more, and JS,

CSS and images are loaded externally from the server. Apart from following the design

guidelines of the platforms, UI designers must consider the following parameters in

android,

1. Screen sizes and orientations – Appropriate layout with constraints should

be used to support various screen sizes and orientations.

2. Screen density – resources dimensions such as width, height, margin, etc.

should be defined in resolution independent pixels (dpi) and bitmaps

20

(images) should be scaled appropriately for low, medium, high and extra-

high densities.

Designing an app UI is very different from designing desktop (PC) applications.

Mobile apps are designed to support these variations whereas PC applications work in

fixed width mode. The second major difference is processing speed. Desktop CPUs are

much faster when compared to current generation multicore mobile CPUs [1].

Responsiveness of the mobile application is very crucial for the smooth function of the

application. In the case of Android, the application being unresponsive for 5s triggers

“Application Not Responding” (ANR) dialog and provides the user an option to quit. This

happens a lot of time when compared to PCs because of the reduced memory and

processing power. The last major difference is the battery. Mobile applications should be

designed considering lesser battery capacity. For instance, an application performing too

many background processing tends to consume more battery. Hence, there should be a

proper trade-off between battery consumption and performance (responsiveness).

3.2 Prototype

 The prototype is an early model of a product built to test a concept. Nowadays,

many software companies have adopted rapid prototyping methodologies. Ideally,

designers would make prototypes for communicating their ideas effectively. These

prototypes are of two type’s namely low fidelity, and high fidelity prototypes based on the

tools used [16]. Low fidelity prototypes consist of a series of static screen designs

sketched on paper in general. Tools like Invision and Flinto helps in building interactive

prototypes. The digital prototypes represent the complete functionality of the application

and the final look and feel of the product. In the modern developmental process, most

companies validate the concept using digital prototypes. In addition, the final prototype

21

acts as the reference for developers as well further in the development process.

Prototype Builders are tools created for building interactive prototypes. For example,

Invision is allowed the users to upload the bitmap image of the screen designs and create

navigation workflows across the screens. The prototype could be previewed on a web

browser and a mobile device as well.

3.3 Hamming Distance

 Hamming distance between two strings of equal length is the number positions at

which the corresponding symbols are different. For example Hamming distance between

1011101 1001001 is two.

3.4 Android

 3.4.1 GUI Framework

 Android GUI framework consists of UI elements such as layouts

(containers) and widgets (leaf nodes). Layouts are special kind of widgets, which

could hold other widgets and layouts could even nest other layouts. Different types of

layouts are Linear Layout, Relative Layout, Frame Layout and Grid Layout.

Commonly used widgets are as follows; View is generic view and parent Class of all

widgets. Text View is read-only text. Edit Text is editable text element; Image View is

bitmap; Button is text button.

Activity is the visual representation of an android application. The activity consists of

widgets and users interact with the widgets. An application can have several

activities. Users could navigate from one Activity to another with various effects.

22

Android is an event-based framework and events are bound to actions. User

interaction is the input mechanism to invoke an action. Actions are the response to

an interaction. They are user-defined methods registered as a callback to an event.

With the introduction of material designs, animations became an integral part of the

application. Android framework is pretty robust that allows animating any view

element. View animation is the transformations such as position, size, and rotation

applied on the view elements.

 3.4.2 Input Events

 Android supports several ways for the user to interact with the

application. To support user interactions Android framework provides two major

components, events, and events listeners. In programming terms, an event is an object

that is created when something changes within the UI, for example, clicking on a button,

typing an edit field, etc. An event listener is an interface that contains a callback method.

View objects such as Text View, ImageView, Button, etc. registers itself with the event

listeners. Event listeners respond to the events of a particular view object. Android

framework is responsible for triggering the event listeners based on the user interaction.

Commonly used events are Click / tap, long click, swipe left / swipe right and the

corresponding callback methods are onClick, onLongClick, onTouch respectively

3.4.3 Transition

 The Introduction of Material Design [7] remarkably enhanced transition

and animation frameworks. Activity transitions in material design app provide a visual

23

connection between different activities through motion and transformation. It allows

specifying animation effects enter and exit transitions while navigating from Activity to

Activity (Screen-to-Screen).

• An Enter transition specifies how views in an activity enter the scene. Say for

example, in the slide exit transition, the views enter the scene with a sliding out

towards left or right.

• An Exit transition specifies how views in an activity enter the scene. Say for

example, in the fade-out transition, the views exit the scene with a fading out

animation.

Material Design introduced in Android 5.0 (API Level 21) supports transition framework

[8] with these following enter and exit transitions,

• Explode – Moves views in or out from the center of the scene

• Slide – Moves views in or out from one of the edges of the scene

• Fade – Adds or removes a view from the scene by changing its opacity.

Consider the following example of a simple transition. Below is the snippet of two

different activities such as MainActivity and DetailsActivity.

MainActivity.java

DetailsActivity.java

24

On navigating from MainActivity to DetailsActivity, views in the MainActivity moves out

from one of its edges while the views in the DetailsActivity show up with a fade-in effect.

 3.4.4 Animation

 Animation package [9] is robust and used for animating any view

element in an activity. Animations provide a visual cue of the intended action. Android

supports API to perform a tween animation on Views. The programmer provides with the

initial and final state of the view and tweening technique generate the intermediate

states/frames. The supported tween transformations are,

• Translate

• Scale

• Rotate

• Alpha

For example, applying a translation transformation to a Text View, programmers define

the initial and final positions in code, and the Android system generates a smooth

animation changing the view’s position to its final state. We can define these animations

by either using declarative XML style or using APIs [9]. When using the declarative XML

style for defining the animation, programmers create the correct XML files and places

25

them in /res/anim/ directory of the Android project. In the case of APIs, Animation is the

base class for all transformations. It contains the necessary attributes for the animation

such as duration, repeatMode, and repeatCount.

 Playing a sequence of such animations grouped together forming an AnimationSet [9].

AnimationSet acts a single transformation, and it contains other simple transformation

defined earlier. Properties defined for the atomic animations stands valid when grouped

together.

The difference between using XML-based declarative style and APIs for generating the

intended animation is the former is statically bound, and latter creates the animation at

runtime. REMAUI code generation module uses the APIs for creating an animation.

Developing animation with APIs offers more control over the animation for the

developers.

Let us consider the animation in Android’s Facebook Application login screen as shown

in Fig 2.9 (a) and (c). The Facebook Icon is undergoing a translation and scaling

transformations.

The following code snippet shows the Android code developed to create an animation,

26

The two different animation Scale and Translate animations are grouped together to form

an animation set. startAnimation() method is invoked to play the entire set of animations.

At the end of the animation, the target view reaches its final state.

3.5 REMAUI

 REMAUI is a software tool to reverse engineer the screen design and generate

working UI code specific to a platform (Android / iOS). Android application has a

declarative style for defining the UI for various elements such as text views, image views,

buttons, and declaring layouts as an XML file called as layout file. This layout file would

contain the specification for its elements such as its position, width, height and other style

attributes. Nesting Layout tags are possible for placing the view elements at specific

positions. In other words, layouts act as a container for different elements and even other

nested layouts. Layout XML file would contain two types of nodes, container nodes

(layouts) and leaf nodes (text, image, buttons, etc.) forming a view hierarchy.

The working of REMAUI is very similar to that of humans. It identifies the different visual

elements on the screen and classifies them as layout or text or image. As widely

recommended by the Android platform, REMAUI follows declarative GUI programming

[12]. REMAUI identify visual elements and arrange them in a hierarchical fashion with

parent –child relationship with layouts acting as a parent and other elements acting like

children. This kind of view (images or texts) within another view (layout) forms the view

hierarchy. REMAUI converts the View hierarchy to layout XML file as defined by the

Android platform. Since REMAUI generate prototypes specific to a platform; it generates

the JAVA code targeting Android platform. Generated UI code contains the necessary

27

constructs for binding the layout XML with the activity. REMAUI generated UI Code, and

layout definitions are compilation ready. REMAUI compiles the source code against

Android SDK and packages assets generating a native prototype.

The working of REMAUI works in three main steps,

1. Visual elements (text, images, layouts) are identified using Computer Vision

2. Text recognition by OCR

3. REMAUI internally uses Tesseract as the OCR Tool. Tesseract performs on par

with existing commercial OCR tools. Tesseract's precision and recall are less

than one. Therefore, even a powerful OCR tool could classify non-text as text.

REMAUI removes the false positives by merging the results of computer vision

and OCR. REMAUI further refines the output by merging nearby visual elements

forming a single element thus forming a minimal View Hierarchy.

Step1 comprises of the following activities, translating the View hierarchy to layout XML

file and identifying Assets such images and icons. In Step 2 consists of identifying Text

styles like size, color, bold, italics.

Consider the following Fig 3.1 (Image Source: http://cseweb.uta.edu/~tuan/REMAUI/),

shows the working of REMAUI on Google Hangouts conceptual drawing of iOS platform.

REMAUI initially identifies different visual elements using computer vision operations.

OCR identifies text from non-textual elements. REMAUI prunes the UI view hierarchy and

merges the closer view elements. At this stage, REMAUI identifies List View using

heuristic approaches, such as Identify by Item Size and Identify by drawables. REMAUI

analyses the view hierarchy, and if there is a pattern of repeating visual elements then, it

may contain a ListView. When the repeating visual elements have a constant size, then a

28

List view is recognized. Similarly, when the repeating visual elements have the same

visual element, then a List view is recognized.

REMAUI extracts icons used in the application and saves as separated icons in the

required folder (/res/drawables). REMAUI performs OCR and stores text content and

styles such as font size, font type, and font color as strings.xml and styles.xml

respectively. REMAUI generates necessary JAVA source code for binding the UI with

content, and the entire app is compilation ready with Android SDK, and generating the

output deliverable (.apk file) targeting a physical device.

Figure 3-1 - Working of REMAUI on Google Hangouts screen design

3.6 Perceptual Hash

 Perceptual hashing [10] is an algorithm that produces a fingerprint of images.

The Hamming distance computed between the perceptual hashes of the source images

are smaller if the same features are present in the source images. Thus, perceptual

hashes could be used to identify similar images. Other commonly used way of finding

29

similar images is performing a pixel-by-pixel (Mean-Squared-Error) match. Unlike pHash,

MSEs do not perform well for all cases.

Consider the following example shown in Fig 3.2

Figure 3-2 - Calculated MSE / SSIM on Chrome application’s landing screen

Fig 3.2 (a) and (b) represent the Android version of Chrome application’s landing screen

initial and final state respectively. The input screens differ in a few elements’ position and

brightness. Using SSIM [19] algorithm, the similarity was calculated as 0.57. SSIM has a

range of 0 to 1. The SSIM index increases with increase in similarity. Identical images

have SSIM index as 1.0.

30

Unlike MSE, pHash works better even when the inputs images are different in scale,

color, brightness. Since pHash looks for the dominant feature in the image and does not

perform a pixel-to-pixel match. For example, as of ImageMagick version 6.9.4, compares

the source images were compared based on the metric pHash. The syntax is as follows,

Compare –metric phash <image1> <image2>

Using the same source images mentioned above the comparison by pHash metric

calculated it as 309.709. This number represents the similarity between the source

images with zero for identical ones.

Figure 3-3-Overview of Perceptual Hashing

The working of Perceptual hashing (Figure 3-3) will elaborate more on the robustness of

this algorithm. The first step is resizing the source input image to common resolution say

(32x32), and we apply the Discrete Cosine Transformation (DCT) on the resized image.

Because of using DCT, the resultant image contains higher significant components on

the top left and lower significant components on the bottom right. We then select the

higher significant components from top-left (8x8) and discarding the rest of the image.

Finally, we generate a 64-bit hash string using the reduced DCT components (8x8). The

similarity between any two generated hash values is calculated using Hamming distance.

31

When two hash values are identical, the Hamming distance between them is zero. The

similarity increases with a decrease in Hamming distance between them.

With our approach to recognize an in-screen animation automatically, the first step is to

compute if the source images are similar. We compute Perceptual Hash or pHash for all

image views. We can infer the similarity between input images by computing Hamming

distance between the respective pHash values. When the Hamming distance is lesser

than a threshold, then the image views are similar. Likewise, when the Hamming distance

is greater than a threshold, the image views are similar. After identifying the similar from

the screen designs, we are analyzing if they constitute an animation.

32

Overview and Design

4.1 Inferring in-screen animation

The following image (Figure 4-1) displays the login screen animation in Facebook

app for Android. Figure 4-1 highlights the image view elements that translates and

scales. In the case of Android, it provides APIs that accepts the initial and final state

(position, size) of view elements and automatically generates the intermediate frames.

Figure 4-1-Example of In-screen animation

The working of in-screen inference is very similar to humans. The steps involved are as

follows,

1. Identifying view elements present in the inputs

2. Identifying matching view elements present on both the inputs

33

3. Inferring possible animation

Figure 4-2 - Overview of in-screen animation inference

Figure 4-2 displays the various steps involved in in-screen animation inference.

Step 1 – Identifying view elements

The first step in inferring in-screen animation is identifying the view elements such as

text views, image views etc. present in input and final states. We use the identified view

34

elements for further processing.

Figure 4-3 - Example of Step 1 processing on Facebook app for Android

Figure 4-3 shows the Step 1 processing on Facebook app for Android. We provide the

initial and final state of the animation as input and applying REMAUI generates the view

hierarchy of the inputs. The black rectangular boxes represents the view hierarchy.

Step 2 – Identifying Matching View Elements

The next step is identifying the common elements between the screen designs.

Identifying matching text view elements is different from identifying matching image view

elements.

35

Step 2 (a) – Identifying matching image view elements

Few common techniques are

1. Mean Squared Error

2. Histogram Comparison [13]

3. Perceptual Hashing

Mean Squared Error (MSE) performs a pixel-to-pixel comparison for identifying the

common element. This technique can be applied only when the comparable elements are

of the same size (width x height). Using this we cannot identify the resizes elements

(image views) shown in Figure 4-1. Hence, we are not adopting this technique.

Another technique is to compute the Histogram of the comparable elements and

identifying if they are similar. In this technique, we compute a histogram, one for each

channel red, green and blue. We can identify similar images by comparing these based

on the standard metrics [7]. This technique is heavily dependent on the color intensity.

Histogram matching technique does not work when one of the input images is gray

scaled. In other words, it is not color-invariant. Thus, Mean Squared Error (MSE) and

Histogram are not ideal choices.

Perceptual Hashing is one of the best contenders for our requirement since it is more

accurate in identifying the similarity between images even with scaling or change in color

intensities. The runtime complexity of all the techniques is O (n x m) as we are

processing a 2D image and identifying similar view is by comparing each image view with

a runtime complexity of O (k x l) with k and l as the number of view elements in the

source images. The total runtime time complexity is O (kl (nm)). However, we can reduce

runtime complexity by caching the perceptual hashes. We cache the perceptual hash for

36

each non-textual element and compute the Hamming distance on the fly. Thus reducing

total complexity is O ((k+l) (nm)). With this method of using pHash is much faster and

memory efficient than other techniques.

For example, consider the Facebook for Android’s login animation (Figure 4-1). This

example is exploring in detail the working of pHash technique when comparable images

change by scale or size. Our prototype generates the visual hierarchy of the screen

designs and represents the visual hierarchy as a rectangular box. Our prototype

computes the pHash of all the images and caches in memory. The Facebook icon

changes its size and position as part of the animation.

Based on our experiments, the threshold for Hamming distance is 5 that is two image

views are similar if and only if the Hamming distance between the perceptual hashes is

less than 5.

Name Heuristics

Hamming distance < 5 Similar elements

Table 4-1 - Heuristics for Perceptual hashing

Consider the following examples,

Image

37

Perceptual

Hash Value
304FFEC61BFF9 104EFEC61BDD9

Hamming

Distance
3

Similarity Yes

Table 4-2 - Comparison of Similar Image views

Since the images are similar to one another, the Hamming distance between the

perceptual hashes is 3 and is less than the threshold

Image

Perceptual

Hash Value
304FFEC61BFF9 1FDFFF3EFE47F

Hamming

Distance
23

Similarity No

Table 4-3 - Comparison of Non-similar Image views

Since the images are very different to one another, the Hamming distance between the

perceptual hashes is 23 and is greater than the threshold.

Consider another example, Android Chrome (Version 53.0.2785.135) App’s

landing screen animation in Figure 4.4. This case study explains the robustness of using

Perceptual Hashing technique even when one of the inputs is gray scaled as part of an

animation.

38

Figure 4-4 - Chrome Landing screen animation Intial and Final states

When the search “Search or type URL” edit text gets the focus, the edit text and

thumbnails below it are pulled to the top forming a Translation animation. Since the edit

text is focused, the entire screen is gray scaled.

REMAUI identifies the view hierarchy and it computes the pHash values of all images

and caches it. For example, when comparing, and , REMAUI looks up the

pHash value of these images and computes the hamming distance as 4. This value is still

less than the threshold value (5).

Step 2 (b) – Identifying matching text view elements

 Identifying matching text view elements is much simpler. A simple content based

matching (text comparison) is sufficient for identifying matching text view elements. A

39

simple text comparison could lead to incorrect inference. Hence, pruning text view

hierarchy is essential.

Let us consider a more complex inference, applying our REMAUI technique on the Android

version of Whatsapp application (2.17.107) as shown below in

Figure 4-5 and 4-6. Similar to the previous one, REMAUI identifies view hierarchy and the

system computes the perceptual hash value of all image views and caches them in

memory.

Then REMAUI tries to identify similar image views by computing the respective Hamming

distance. We can identify similar text views by comparing their content.

40

Figure 4-5 - REMAUI processed

Whatsapp initial state

Figure 4-6 - REMAUI processed

Whatsapp final state

In this scenario, the text “Yesterday” is repeating quite often. When we compare text

elements by their content, we might not get the correct matching element. To rectify this,

we would be making a complete pass over the view hierarchy (as shown in Fig 4.7 and

4.8) and remove matching elements and thus reduce the candidates eligible for possible

animation.

41

Name Heuristics

Difference in A and B elements’ position < 10

^

Difference in A and B element’s dimension < 10

Eligible for pruning

Table 4-4- Heuristic for Pruning Text View Hierarchy

Figure 4-7 - Pruning Text View Hierarchy of Initial and Final states of WhatsApp for

Android

Figure 4-7 shows the text view hierarchy of initial and final states of WhatsApp for Android

with elements eligible for pruning. We reduce the search space for a possible animation by

eliminating elements based on their positions (Table 4-1). We iterate through the view

elements in a view hierarchy, and we compare against all elements in the other view

hierarchy. We eliminate elements that are of the same dimension and positioned at the

42

exact same place on both the view hierarchies. With this approach, we would be able to

eliminate false positives caused by text comparisons.

Step 3 – Inferring animation

The next step is inferring in-screen animations. After identifying the matching

view elements, we can infer possible animations. When we identify a difference in the

elements position, then it infers a translation animation. Similarly, when we identify a

difference in elements dimensions, then it infers a scaling animation.

Step 4 – Export

In the case of in-screen animation the initial and final state are part of the same

activity thus the generated application has only one Activity (Figure 4-8).

Figure 4-8 - Snapshot of Generated Project Structure

Figure 4-9 displays the snippet of code for creating a translation and scaling animation.

43

Figure 4-9 - Code snippet for creating transition and scaling animations

This method in Figure 4-9 updates the left and top margin thereby changing the position

of the element and changes the width and height thereby changing the size of the

element.

4.2 Transition Extension

 It is normal for an application to have more than one activity and users navigate

from activity to another with transition effects. REMAUI with transition extension enables

the users to define navigation from one screen to another in response to events such as

Click, Long Click and with predefined transitions effect.

The users upload screen designs to the web interface. REMAUI identify visual hierarchy

and displays on the web interface. The system allows the users to interact and create

navigations and effects. Currently, we support the following events such as Click, Long

Click and Item Click and transition effects such as Slide, Fade, Explode and Shared

Element. Our tool does not support the following events related to Edit Text such

KeyPress, Focus. The existing version of REMAUI does not identify Edit Text widgets,

because of that our tools is not capable of handling events related to Edit Text view

object. We allow the user to upload multiple screen designs and create links for

44

navigating from one screen to another. The user has to click on the “Generate code”

button to generate Android code for UI, and transitions.

The code generator module is robust enough to handle,

1. Multiple events listeners set for the same view element. In other words, our tool

allows user to create the two different links navigating to different screens for two

different events but the same view element. For example, our tool allow a user to

create a navigation defined as Clicking on an Image navigates to screen 1 and

Long clicking on the same image navigates to screen 2.

2. Same event listeners set for different view elements. In other words, our tool

allows a user to create a different links navigating to different screen for the same

event but different view elements. For example, our tools allow user to create

multiple navigations defined the same event such as Clicking but for different

elements, says Clicking on Image view 1 navigates to Screen1, clicking on Image

View 2 navigates to Screen2, etc.

Let us consider the following example that illustrates the working of REMAUI transition

extension with the input images shown in Fig 4-10 and 4-11. REMAUI identifies the view

hierarchy and the supported web application displays the view hierarchy as rectangular

boxes. Figure 4 – 12 illustrates the working REMAUI with Transition extension on Google

Play Store app (version 7.6.08)

45

Figure 4-10 - Search screen design of

Google Play! Store

Figure 4-11 - App detail screen design

of Google Play! Store

Our tool allows a user to create links for navigation along with transition effects. In this

example, tapping on Google Allo icon, the app navigates to the second screen

Our tool allows the user to interact with the rectangular boxes, click, and drag to the

destination screen design. Figure 4-13 shows the working of REMAUI transition

extension and line representing navigational links.

.

46

Figure 4-12 - Working of REMAUI Transition extension on Google Play! Store

Figure 4-13 - User interactions are highlighted and line represents a transition

47

When the user clicks on the “Assign Event”, REMAUI handles the request that is sent to

the server. It contains the information about the click element, destination activity, type of

event and transition effect. The web application handles the requests and stores the

information about the navigation in a predefined XML format.

When the user clicks on the “Generate Code”, REMAUI handles the request and parses

the corresponding XML that contained information about the navigations. The REMAUI

generates the android UI code, navigations and animation effects. The REMAUI uses

APIs for generating animations instead of declarative XML styles.

Apart from generating compilation ready java source code, REMAUI packages the

generated source code and other assets such as layout.xml, strings.xml, images into an

Android executable (.apk) file.

Using REMAUI with Transition extension generates artifacts that are wholly consumable

in the app development process.

48

Figure 4-14 - File structure of generated application with inter-screen transitions

The generated application contains one layout file for each input screen design and one

Activity class for each input screen design. Figure 4-14 displays the file structure with two

Activity classes and two layout files.

49

Figure 4-15 - Generated Activity class with navigation

The Activity class implements the OnClickListener and overrides the onClick method.

Intent is the message passing mechanism in Android. Transition effect (Slide) is

instantiated and startActivity method instructs the Android system to navigate to a new

new screen.

50

Research Questions (RQ), Expectations (E), and Hypotheses (H)

To evaluate this extension of REMAUI, we ask (a) runtime for generating code for

Transitions (b) runtime for recognizing type of animation (c) Qualitative analysis on

generated UI vs. the inputs.

• RQ1: What is the runtime for generating code for Transitions?

o E1: We expect REMAUI with Transition extension helps users to create

working native prototype faster than conventional ways.

o H1: REMAUI with Transition extension could generate code for

navigations in less than 30s

• RQ2: What is the runtime for predicting and generating animations?

o E1: Given the variety of animations, we do not expect REMAUI

animation extension to predict all animations.

o H1: REMAUI predicts the animations (translation, scaling and fade in /

out) from the conceptual UI drawings.

• RQ3: Is a REMAUI assisted with animation or transitions recognition generates

UI visually similar to one created by the user?

o E1: Given the ability to generated complicated animations (sprite

animations and 3D), we do not expect to do well for those applications

o H1: REMAUI assisted animation generator produces visually similar

animations.

51

Evaluation

Prototype Information

We developed a web application that acts as the wrapper for the core REMAUI

actions. We provide the input screen designs to the web application and then the web

application invokes the REMAUI core modules for identifying the view hierarchy, images,

and texts and generates source code for animations and transitions. The workflow of the

experiments are as follows,

• Transition Extension

The web application works on the input screen designs provided

by the user. The web application invokes the REMAUI processing of the

input images. The web application allows the user to create navigation

links and effects.

• Animation Extension

We capture the initial and final screen designs of the animation

and we provide the input bitmaps to the web application. The web

application infers the possible in-screen animation and generates the

Android source code. The source code is compiled, and the web

application generates the executable. The generated prototype is

installed on the device. We play the animation on the device and capture

the screenshot of the final state of the auto-generated animation.

For evaluation, we performed the experiments on a 2.7Ghz Intel Core i5 Mac

Book Pro with 16GB of RAM.

52

Experiments

a. Subjects

We explored the Third party Android applications published on Google play store

for the dataset. Since RQ1 is for evaluating the Transition extension, we needed an

application with more number of (different) screen designs that we can navigate within

the application. This is contrary to the dataset needed for the evaluating Animation

extension (RQ2, RQ3). For evaluating Animation extension, we need a couple of screen

designs representing the initial and final state of the transformation.

We selected Top 100 Free Apps in Apr 2017; we preselected non-games

applications. Not all application contains transition effects; we selected application with

more than 5 transition effects discarding the rest and it left us with 10

applications comprising of 107 screenshots. We evaluated the RQ1 using this dataset.

We selected Top 100 Free Apps in Apr 2017 and went through all screen in a

depth first search manner in search of an in-screen animation. Only thirty applications

contained an in-screen animation. In case of applications having multiple in-

screen animations, we arbitrarily chose one. Thus forming a dataset with 30 in-screen

animations, one per application. This group of data is used for evaluating RQ2 and RQ3.

b. RQ 1 – Runtime for inter-screen transitions extension

Table 6-1 shows the runtime of REMAUI Transition extension. We provided 10

Screen designs of Amazon Underground App for Android as input, and the three major

steps are,

53

1. REMAUI processing

2. Creating links or navigations with effects

3. Generating Android code for UI and transitions.

Step 1 has a longer runtime than the other steps (2) and (3). The time taken for Step 2

depends on the input image and the user’s familiarity with the tool. Step 3 takes the least

runtime, and this depends on the number links or navigation defined.

Step Time taken in seconds

REMAUI Processing 102.3

Creating Links / Navigation 135

Code generation 1.7

Table 6-1 - Runtime of Transition extension on Amazon Underground app for Android

54

Figure 6-1 -Time taken for generating code vs Number of Transitions

Figure 6-1 shows the runtime of all 10 applications considered for evaluation.

Number of transitions is plotted against the time taken for generating the code. We could

notice that applications are requiring different time to generate code for the same number

of transitions. The prototype reads the generated layout XML into memory as part of the

code generation module. Even though we do not modify the generated layout XML for

inter-screen transition, the code generation method is common for generating inter-

screen transition and in-screen animation and it is having an impact on the time taken for

inter-screen transitions.

0
100

200

300

400
500

600

700

800

900

1000
1100

1200

1300

1400
1500

1600

1700

1800

1900

2000

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of Transitions vs Time Taken for code generation

eBay Facebook Yahoo! Whatsapp

Twitter Outlook Google Translate News

Free Music Amazon

Number of Transitions

T
im

e
T

a
k
e
n
 i
n
 m

s

55

For example, let us consider the runtime of using Music Free for Android (version 1.69)

and Whatsapp for Android (version 2.16.396) inputs.

Figure 6-2 - Identified View hierarchy is drawn over Music Free app screen design

56

Figure 6-3 - Identified View hierarchy is drawn over the Whatsapp app screen design

We could see that input of Music Free (Figure 6-2) application has more number

of view elements than the input of WhatsApp (Figure 6-3) application and hence the

generated XML from Music Free input would contain more number of XML nodes than

that of WhatsApp. Consequently, the time taken for loading Music Free app’s XML takes

more time than WhatsApp’s XML and causing a variation in the total runtime.

Another variation we could identify is sudden spike in runtime. For example, in

the case of eBay for Android (version 4.10.5), the runtime increases drastically in runtime

from transition 11 to 12.

57

Figure 6-4 - Identified View hierarchy is drawn over the eBay app screen design

Figure 6-4 shows the input used. We could see that there are many view

elements and hence the XML generated is larger. Similar to the previous scenario, the

amount of time required for loading them in memory is greater, thereby increasing the

total runtime sharply.

c. RQ 2 – Runtime for Inferring in-screen animation

The major steps in inferring in-screen animations are,

1. Identifying view elements

2. Identifying matching view elements

3. Pruning Text view hierarchy

58

4. Export layouts and code

On an average, the time taken for inferring in-screen animation using our prototype is 26s

and the maximum is 69s..

Figure - 6-5 - Runtime for inferring in-screen animation

Figure 6-5 shows the time taken for each application for inferring animation and

generating android code. It is very clear that step 1 consumes the more time than other

steps. The time taken for generating code (Step 4) is very similar to that of Step 2, 3.

Step 1 is applying REMAUI on both the inputs. Step 2, 3 is identifying matching view

images views and text views and inferring animations. The time taken for generating

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

F
a
c
e
b

o
o
k

H
e

a
rt

R
a
d

io

H
u

lu

M
a

rc
o

 P
o

lo

P
a
n
d

o
ra

W
a
lm

a
rt

W
h
a
ts

a
p
p

C
h

ro
m

e

In
s
ta

g
ra

m

S
n
a
p

c
h

a
t

F
la

s
h

K
ik

L
y
ft

M
u

s
ic

 F
re

e

O
ff
e

ru
p

P
h
o
to

s

P
in

te
re

s
t

P
la

y
 G

a
m

e
s

S
o
u
n

d
 C

lo
u
d

S
p
o
ti
fy

T
w

it
te

r

U
b

e
r

W
a
z
e

Z
e
d

g
e

L
iv

e
_
M

e

M
C

D

O
u
tl
o
o

k

P
o
w

e
r_

C
le

a
n
e

r

T
u
rb

o
ta

x

Runtime for inferring in-screen animation

 Step 1 Step 2,3 Step 4

T
im

e
 t
a
k
e
n
 i
n
 s

59

code is similar to Step 2, 3 because for each inferred animation the number lines of code

(generated) increases.

The highest runtime is for inferring in-screen animation in Zedge app for Android

(version 5.16.5). Total time required for inferring in-screen animation is 69s. Step 1 takes

32s, Step 2, 3 takes 18s and Step 4 takes 18s. Step 1 takes most of the time required for

inferring in-screen animation. Step 2, 3 determines the amount of time needed for Step 4

and hence they have similar runtimes.

Figure 6-6 - Identified View hierarchy is drawn over the Zedge app intial state screen

design

60

Figure 6-7 - Identified View hierarchy is drawn over the Zedge app final state screen

design

Figure 6-6 and 6-7 shows the identified view hierarchies over the input. Since,

there are many view elements, the Step 1 (Identifying view elements) took much longer

time. Step 2, 3 and Step 4 work on the identified view elements and thus they have

higher runtime too.

d. RQ 3 – SSIM Analysis:

Structure Similarity (SSIM) Index Method[19] is a method of measuring image

quality. SSIM values ranges from [0 to 1]. We calculate SSIM using the formula,

61

Variance is the expectation of squared deviation of a variable from its mean. We

calculated variance using the formula,

 , where E[X] is the expected value of X

We calculated covariance using the formula,

 , where E[X] and E[Y] are the

expected values of X and Y.

The value of SSIM index increases with increase in similarity. Identical images would

have SSIM index as 1.0. For this experiment, we used the SSIM part of Scikit-Image

package.

We compared the final state of the original screenshot against the screenshot of the final

state reached through the generated code for all 30 applications. Figure 6-8 shows the

calculated SSIM index against the application.

62

Figure6-8 - SSIM calculated for the test application's input screenshot vs. generated

screenshot

In our experiment, the worst-case result is for the Zedge for Android (version

5.16.5). Figure 6-6 and 6-7 displays the identified view hierarchies of the initial and final

states.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

a
c
e

b
o

o
k

H
e
a

rt
R

a
d

io

H
u
lu

M
a

rc
o
 P

o
lo

P
a

n
d

o
ra

W
a

lm
a
rt

W
h

a
ts

a
p

p

C
h
ro

m
e

In
s
ta

g
ra

m

S
n

a
p

c
h
a

t

B
e

a
c
o

n
 F

la
s
h

lig
h
t

K
ik

L
y
ft

M
u

s
ic

 F
re

e

O
ff

e
ru

p

P
h

o
to

s

P
in

te
re

s
t

P
la

y
 G

a
m

e
s

S
o

u
n

d
_

C
lo

u
d

S
p

o
ti
fy

T
w

it
te

r

U
b
e

r

W
a

z
e

Z
e

d
g

e

L
iv

e
_
M

e

M
C

D

O
u

tl
o
o

k

P
o

w
e
r_

C
le

a
n
e

r

T
u

rb
o

ta
x

G
o

o
g
le

 T
ra

n
s
la

te

SSIM Index Measure

63

Figure 6-9 - Screenshot of generated final state of Zedge app

Figure 6-9 displays the screenshot of the final state achieved through the

generated animation code. Since, the application is dark themed, the identification of

view elements were not so accurate there by resulting in poor results.

The best-case scenario is for Beacon Flashlight application for Android (version

1.34) with an similarity of 0.96

64

Figure 6-10 - Identified View hierarchy is drawn over the Beacon Flashlight app initial

state screen design

65

Figure 6-11 - Identified View hierarchy is drawn over the Beacon Flashlight app final state

screen design

Figure 6-10 and 6-11 shows the input initial state with the identified view

hierarchy. The identification of view elements is good and the view hierarchy is simple.

This eliminates the possibility of false inference.

66

Figure 6-12 - Screenshot of the generated final state of Beacon Flashlight app for

Android

Figure 6-12 displays the screenshot of the final state reached through the

generated animation code, which is very similar to the input final state.

67

Related Work

The mobile application industry has widely accepted the rapid prototyping

methodology. Prototypes are the systematic way of evaluating the concept of the

application [16] [20]. Prototypes are of two types namely low-fidelity prototypes and high-

fidelity prototypes based on the amount of information present on the prototype.

In software development process the challenges faced by the designer and developers is

not a recent one. Always, there have been a constant need and areas of research and

opportunities. With the advent of mobile technology, there is a constant need for

designing intuitive UI design and better user experience. Even with the adaptation of

modern tools, the communication gap exists between the designers and developer

communities [2].

GUI builders like AppInventor[21] assists developers in the front-end app development.

Developers are allowed to select various UI widget and drag-and-drop them in designing

the UI. From a designer's viewpoint, designers are always looking for custom/complex

designs[6]. Adding transitions and animations to the prototype needs basic programming

skills. In general, designers are non-programmers and do not prefer GUI builders

provided by Android Studio or XCode and even third-party GUI builders.

UI reverse engineering technique used in the tool, Androider [22] solves a problem of

porting Graphical User Interface (GUI) from one platform to another. Androider helps in

porting UI from Java Swing to Android SDK or even from Android SDK to Objective C.

68

For instance when porting Java Swing to Android; Android ports Swing code to

declarative XML representation. Androider does not reverse engineer the input bitmaps

to GUI code but extracts information from the applications in-memory representation

using Java Reflection. Unlike Androider, REMAUI with Animation extension infers in-

screen animation from static screen designs.

Working of MobiDev[23] is very similar to that of REMAUI both works on static screen

designs. MobiDev identifies view elements by recognizing matching view elements

against a model. The UI elements such as Text Field, Check Box, Label etc. needs be

sketched in particular style. MobiDev recognizes the specific shape and generates the UI

code targeting a platform such as Android. The existing version of REMAUI works on any

input bitmap. It recognizes elements based on Computer vision and OCR techniques and

there is no need to represent UI elements in any specific shape or style. Our prototype

infers animations based on the position and size of the view elements REMAUI with

Animation and Transition extensions do not need any modification made to their visual

screen designs.

Commercial tools like Zeplin increases the reusability of artifacts from design phase to

development phase. Zeplin allows importing designs / sketches from Photoshop or

Sketch and extracts the text styles designed by the designers and generates the

necessary snippet for layout.xml, styles.xml and colors.xml. REMAUI extracts the layout

information and styles information from plain bitmap image and generates Android code

for binding the UI with data. Our prototype generates necessary JAVA and XML code

transitions and animations, which Zeplin do not support.

69

Conclusion and Future work

Developing mobile application UI is an expensive process, and interactive

prototypes are bridging the communication gap between designers and developers. Still,

these prototypes are reusable in the development process and most cases the creating

and maintaining the prototypes are demanding a substantial amount of time. REMAUI

with transition and animation extension unifies transition prototyping tools and animation

prototyping tools, and these prototypes are wholly consumable in the development

process. In addition, Animation extension is capable of inferring in-screen animations with

generated UIs similar to the originals in terms of pixel-by-pixel comparison.

 We plan to (1) generalize the export step to iOS platform. (2) Currently,

REMAUI extracts icons and logo from the original image, we plan to point REMAUI to the

assets folder, and REMAUI automatically identifies the correct image or logo and

packages the right resolution image to the specified folders.

70

Appendix I

Test Applications for inferring in-screen animations

Following are the list of applications used for experiments,

S.No

Name Package Name Version In-Screen Animation

1. Facebook com.facebook.katana
105.0.0.23.13
7

Login screen

2. Heart Radio com.thisisglobal.player.heart 4.10.5 Login screen

3. Pandora com.pandora.android 7.9 Login screen

4. Whatsapp com.whatsapp 2.16.396 Message Info screen

5. Chrome com.android.chrome
53.0.2785.135

New Tab screen

6. Hulu com.hulu.plus 2.27.5 Login screen

7. Instagram com.instagram.android 10.15.0
New message
screen

8. Marco Polo co.happybits.marcopolo 0.99.0 Login screen

9. Snapchat com.snapchat.android 10.5.6.0 Splash screen

10. Walmart com.walmart.android 4.3.1 Login screen

11. Beacon Flashlight com.jiubang.fastestflashlight 1.34 Flashlight screen

71

12. Kik Kik.android
11.15.0.15115

Splash screen

13. Lyft Me.lyft.android 4.26.3 Invite friends screen

14. Music Free com.zentertain.freemusic 1.69 Search screen

15. OfferUp com.offerup 2.5.3 Item detail screen

16. Google Photos
com.google.android.apps.phot
os

2.12 Search screen

17. Pinterest com.pinterest 6.13.0 Pin details screen

18.
Google Play
Games

com.google.android.play.game
s

3.9.08 App details screen

19. SoundCloud com.soundcloud.android 2017.04.07 Home screen

20. Spotify com.spotify.music 8.3.0.681 Search screen

21. Twitter com.twitter.android 6.27.1 Add people screen

22. Uber com.ubercab 3.131.4 Promotions screen

23. Waze com.waze 4.22.1 Menu screen

24. Zedge net.zedge.android 5.16.5 Home screen

25. Live.Me com.cmcm.live 3.5.60 Login screen

26. McDonald’s com.mcdonalds.app 5.3.0 Login screen

72

27. Outlook com.microsoft.office.outlook 2.1.138 Settings screen

28. Power Clean com.lionmobi.powerclean 1.2.12
Adding Ignore list
screen

29. TurboTax com.intuit.turbotax.mobile 3.4.0 Splash screen

30. Google Translate
com.google.android.apps.trans
late

5.8.0 Home screen

73

Appendix II

Test Application for inter-screen transitions

S.No Name Package Name Version

1. Facebook com.facebook.katana 105.0.0.23.137

2. eBay com.ebay.mobile 4.10.5

3. Music Free com.zentertain.freemusic 1.69

4. Twitter com.twitter.android 6.27.1

5. Outlook com.microsoft.office.outlook 2.1.138

6.
Google
Translate

com.google.android.apps.translate 5.8.0

7. Whatsapp com.whatsapp 2.16.396

8.
Amazon
Underground

com.amazon.mShop.android.shopping 10.8.0.200

9. Yahoo! Mail com.yahoo.mobile.client.android.mail 5.14.5

10. News Break com.particlenews.newsbreak 3.1.2

74

References

[1] – M. Hapern, Y. Zhu, V.Reddi “Mobile CPU’s Rise to Power: Quantifying the Impact of

Generational Mobile CPU Design Trends on Performance, Energy, and User

Satisfaction”, High Performance Computer Architecture (HPCA) 2016. [online]. Available:

http://matthewhalpern.com/publications/mobile-cpus-hpca-2016.pdf

[2] – Kony, Inc., “Bridging the Gap: Mobile App Design & Development”,

http://forms.kony.com/rs/konysolutions/images/Bridging_Gap_Brochure_dec_10_14.pdf,

Dec 2014, accessed Dec 2016.

[3] – Invision, Inc., https://www.invisionapp.com/, accessed Feb 2017

[4] - Flinto, Inc., https://www.flinto.com/lite, accessed Feb 2017

[5] - Marvel App Inc., https://marvelapp.com/, accessed Feb 2017

[6] – T. A. Nguyen, C. Csallner “Reverse Engineering Mobile Application User Interfaces

with REMAUI”, 30th IEEE/ACM Internation Conference on Automated Software

Engineering (ASE), pp. 248 – 259, 2015.

[7] – Google, Inc., “Material Design for Android”,

https://developer.android.com/design/material/index.html, accessed Dec 2016.

[8] - Google, Inc., “Package android.transition”,

https://developer.android.com/reference/android/transition/package-summary.html,

accessed Dec 2016.

[9] - Google, Inc., “Package AnimationSet”,

https://developer.android.com/reference/android/view/animation/AnimationSet.html,

accessed Dec 2016.

[10] – C. Zauner, “Implementation and Benchmarking of Perceptual Image Hash

Function”, Master’s thesis, Upper Austria University of Applied Sciences, 2010.

https://www.invisionapp.com/
https://www.invisionapp.com/
https://marvelapp.com/
https://developer.android.com/reference/android/view/animation/AnimationSet.html

75

[Online]. Available: http://phash.org/docs/pubs/thesis_zauner.pdf

[11] – Google Inc., “Top Free in Android Apps,

”https://play.google.com/store/apps/collection/topselling_free?hl=en, accessed Dec

2016.

[12] – Google, Inc., “Layouts”, https://developer.android.com/guide/topics/ui/declaring-

layout.html, accessed Jan 2017.

[13] – OpenCV, “Histogram Comparison”,

http://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/histogram_comparison/histog

ram_comparison.html, accessed Jan 2017.

[14] – Apple, Inc., “iOS Human Interface Guidelines”,

https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/,

accessed Apr 2017

[15] – Motif Tools BV, “https://framer.com/”, accessed Apr 2017.

[16] – J. Rudd, K. Stern and S. Isensee “Low vs. High-fidelity prototyping debate”,

Interactions pp 76-85, 1996

[17] - J. A. Landay and B. A. Myers, “Interactive sketching for the early stages of user

interface design,” in Proc. ACM SIGCHI Conference on Human Factors in Computing

Systems (CHI). ACM, May 1995, pp. 43–50.

[18] – Clutch Inc, “Cost to Build a Mobile App: A Survey”, https://clutch.co/app-

developers/resources/cost-build-mobile-app-survey, accessed Apr 2017

[19] – Z. Wang, A.C. Bovik, ”Mean squared error: Love it or leave it? A new look at Signal

Fidelity Measures,” Signal Processing Magazine, IEEE, vol. 26, no. 1, pp. 98-117, Jan.

2009

[20] – M. Aleksy, “An Apporach to Rapid Prototyping of Mobile Applications”, Advanced

Information Networking and Applications(AIANA), IEEE, pp. 1072-1077, Mar. 2013

https://developer.android.com/guide/topics/ui/declaring-layout.html
https://developer.android.com/guide/topics/ui/declaring-layout.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/histogram_comparison/histogram_comparison.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/histogram_comparison/histogram_comparison.html
https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
https://clutch.co/app-developers/resources/cost-build-mobile-app-survey
https://clutch.co/app-developers/resources/cost-build-mobile-app-survey

76

[21] Google Inc., About – App Inventor for Android.

http://appinventor.mit.edu/explore/about-us.html.

[22] – E. Shah, E. Tilevich, “Reverse-engineering user interfaces to facilate porting to

cross mobile devices and platforms”, SPLASH ’11 Workshops, ACM, pp. 255 – 260, Oct

2011.

[23] - J. Seifert, B. Pfleging, E. del Carmen Valderrama Bahamondez, M. Hermes, E.

Rukzio, and A. Schmidt, “Mobidev: A tool for creating apps on mobile phones”, in Proc.

13th Conference on Human-Computer Interaction with Mobile Devices and Services

(Mobile HCI). ACM, Aug. 2011, pp. 109–112.

[24] - Zeplin, Inc., https://www.Zeplin.io/, accessed Feb 2017

http://appinventor.mit.edu/explore/about-us.html
https://www.zeplin.io/lite

77

Biographical Information

Siva Natarajan Balasubramania was born in Tirunelveli, India in 1990. He

received his B.E Computer Science degree from Anna University, Chennai in 2007. He

worked for three years in with Cognizant Technology Solutions and HeyMath! He started

his Master’s degree spring 2015.

He is very interested in mobile application specifically Android which inspired him

to pursue his research on mobile software engineering. He wishes to continue pursuing

his research aspirations.

