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Abstract 

 
STEADY STATE AND TRANSIENT ANALYTICAL MODELING OF NON-UNIFORM 

CONVECTIVE COOLING OF A MICROPROCESSOR  

CHIP DUE TO JET-IMPINGEMENT 

 

Swapnil Luhar, MS 

 

The University of Texas at Arlington, 2017 

 

Supervising Professor: Ankur Jain 

Heat removal from microprocessor chips with multiple regions of dynamic heat 

generation remains a critical technological challenge. Excessive temperature rise is 

undesirable for performance as well as reliability. Jet impingement cooling has been 

widely investigated as a potential thermal management technique due to the capability of 

localized cooling and of dynamically following the heat generation distribution. A jet offers 

large local convective heat transfer coefficient, for which theoretical models and 

correlations have been proposed for a variety of scenarios. However, not much work 

exists on using this information to determine the resulting temperature distribution. This 

work addresses this need by developing analytical steady state and transient heat 

transfer models that account for the spatial variation in convective heat transfer 

coefficient and for spatially non-uniform heat flux. The solution is derived in the form of an 

infinite series, the coefficients of which are determined by solving a set of algebraic 

equations. Temperature rise predicted by the models are found to be in excellent 

agreement with finite-element simulations, while offering faster computation time and 

easier integration with design and performance optimization tools used in 

microelectronics. The analytical model is used for predicting temperature rise in a variety 

of scenarios to examine interesting optimization problems such as the cooling of multiple 
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hotspots with a single jet, determining the optimal location of a jet, etc. Results presented 

here may facilitate improved thermal design and real-time performance optimization of 

microprocessor chips. 
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INTRODUCTION 

 
Cooling of a microprocessor chip is an important technological problem that has 

attracted significant research over past several decades [1–4]. Heat generated during 

transistor operation on a chip must be conducted through the chip and package, and 

rejected to the ambient in order to maintain the microprocessor temperature below an 

acceptable threshold. Thermal management directly affects device performance, as the 

mobility of charge carriers deteriorates at higher temperatures [5]. Device and package 

reliability is also adversely affected by high temperatures. Most modern microprocessor 

chips are multi-core in nature, and include several other power-intensive blocks such as 

Graphics Processing Units (GPUs) on the same substrate. This results in multiple regions 

of high power density, or hotspots, on the chip. Further, hotspots also shift dynamically, 

depending on the nature of microprocessor load, thereby presenting significant thermal 

management challenges. Specifically, it is difficult to reduce peak temperature rise on a 

hotspot using a passive thermal management technique that does not specifically 

address the hotspot location and the dynamic changes in power dissipation on the chip. 

Natural convective cooling may be sufficient for very low power chips. At higher 

powers, air cooling is employed, typically by attaching a metal heat sink to the chip via a 

thermal interface material and heat spreader, and providing air flow over the heat sink [6]. 

Heat removal is also often carried out using a heat pipe or vapor chamber [7,8], 

particularly in space-constrained applications such as laptops. Single-phase and two-

phase liquid cooling offer much larger heat transfer coefficients than air cooling. Much 

research has also been carried out for investigating liquid cooling for thermal 

management of higher-power chips [9]. These include liquid flow through microchannels, 

either in the heat sink, or on the back of the microprocessor chip itself, jet impingement 
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on the chip backside [10], thin film liquid cooling utilizing electrowetting-on-discharge 

(EWOD) [11], etc. Both implementation and modeling of liquid-based cooling are more 

complicated than air cooling. 

A laminar liquid jet impinging on the backside of a chip offers very large local 

convective heat transfer coefficients in the vicinity of the impingement spot. This cooling 

approach offers several advantages such as spatially directed cooling, and rapid 

temporal response, and thus has been extensively studied. Key challenges in this 

approach include management of vapor formation due to boiling, laminar fluid delivery 

and exit, and dynamic hotspot management. Several papers have demonstrated the 

experimental implementation of this approach, often employing a chip with resistive 

heating and temperature sensors for mimicking an actual microprocessor chip. Synthetic 

air jets impinging on such a thermal test die have been shown to result in significant 

reduction in thermal resistance [12]. A method has been developed for three-dimensional 

visualization of single and multijet arrays using micron resolution particle image 

velocimetry [13]. Experiments have been carried out to study the effect of jet 

impingement of alumina–water based nanofluids for a range of physical parameters such 

as Reynolds number, Prandtl number and volume fraction [14]. Cu–water nanofluid jet 

array impingement has been reported to result in 6.8% heat transfer enhancement [15]. 

In comparison with a sizable literature on experimental investigation, there is relatively 

lesser work done on theoretical modeling of jet impingement based cooling of 

microprocessors. 

A key parameter to consider in such a modeling effort is the spatial variation of 

convective heat transfer coefficient due to the impinging jet. Correlations for different 

shapes and flow conditions have been developed through experiments and theoretical 

modeling. Typically, the heat transfer coefficient is the highest in the vicinity of the 
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impingement spot, and reduces farther away. A number of heat transfer regions have 

been identified, in which heat transfer correlations have been developed. Analytical 

development of correlations for local Nusselt number for single phase free surface 

circular liquid jets has been carried out [16]. By combining experimental results and 

theoretical solutions of jet impingement boundary layer, the impinging jet has been shown 

to hydrodynamically evolve through four distinct regions: stagnation zone, boundary 

layer, viscous similarity, developing turbulence and fully turbulent [17]. 

While such models help understand the fundamental nature of heat transfer in an 

impinging jet, such models have not been sufficiently translated into tools for predicting 

temperature distribution in the presence of an impinging jet. Modeling the spatial variation 

in convective heat transfer coefficient due to an impinging jet presents significant 

analytical difficulties that are not present when the heat transfer coefficient is uniform 

[18]. Some work exists where spatially varying convective heat transfer has been 

accounted for in fins [19], heat generating slab [20], cylinder [21] and sphere [22] using a 

variant of Fourier series expansion method, but there is a lack of such work for jet 

impingement cooling of microprocessors. 

In this work, a theoretical model is developed for predicting the steady-state and 

transient temperature distribution on a microprocessor chip in presence of spatially 

varying convective cooling due to jet impingement. A series solution is derived, and it is 

shown that the coefficients in this series can be determined by solving a set of coupled 

algebraic equations. The transient problem is solved by combining this approach with the 

Laplace transform technique. The resulting solutions are shown to agree well with finite-

element simulation results. The models are used for analyzing the effect of jet cooling on 

thermal performance of microprocessor chips. Several interesting optimization problems, 

such as jet placement and jet fluid distribution are analyzed using the model, 
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demonstrating the capability of rapid computation of temperature rise in a microprocessor 

with spatial and dynamic variation of convective cooling and heat generation. 



 

14 

  

DERIVATION OF TEMPERATURE DISTRIBUTION IN STEADY STATE  

 

Figure 2.1 shows a schematic of the geometry of a microprocessor chip of 

dimensions a×b×c, with spatially varying heat flux on the bottom face and spatially 

varying convective heat transfer coefficient h(x,y) on the top face due to impingement of 

one or multiple jets. 

 

Figure 2.1 Schematic of the geometry 

The steady state problem is considered in this section. In general, thermal 

conductivity is assumed to be orthotropic. In this case, the governing energy equation for 

the temperature field is given by  

 0
2

2

2

2

2

2

=
∂
∂+

∂
∂+

∂
∂

z

T
k

y

T
k

x

T
k zyx  (1) 

The temperature field T(x,y,z) satisfies the following boundary conditions given 

by  
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In this case, the solution for the temperature field may be written as the following 

two-variable Fourier series 
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Note that the double summation in equation (6) and subsequent equations in 

Chapters 2 and 3 excludes the case where n and m are both zero, since that term is 

being considered separately. Equation (6) satisfies equations (2) and (3). Functions 

C00(z) and Cnm(z) must be chosen so as to satisfy the remaining equations. To proceed, 

the given heat flux distribution q(x,y) is expressed as a Fourier cosine series in two 

variables [23,24] 
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are the thermal conductivity ratios that account for 

orthotropy in thermal conduction, if present. 

As a result, C00(z) and Cnm(z) may be written as  
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These expressions involve several unknowns – A00 and Anm – which may be 

obtained using the boundary conditions at z=c. Substituting equations (14) and (15) in (5) 

results in 
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In order to extract the unknowns A00 and Anm, equation (16) is integrated in x and 

y, resulting in a linear algebraic equation involving the unknown coefficients 
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Also, equation (16) is multiplied by 
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where the various terms are given by 
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The norms Nx,i and Ny,j in equation (19) are given by [25] 
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Equation 17 and 18 represent a set of (N+1)×(M+1) equations in (N+1)×(M+1) 

variables, which can be solved using matrix inversion to complete the solution for the 

steady-state temperature field.  
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DERIVATION OF TRANSIENT TEMPERATURE DISTRIBUTION 

 
The governing transient energy equation is similar to equation (1), and includes a 

transient term as follows: 
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subject to boundary conditions given by equations (2), (3) and (5). There is a small 

change in the boundary condition at z=0 to account for the transient variation in heat flux 
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In addition, zero temperature rise is assumed at the initial time. 
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The Laplace transform method is used to solve for the transient temperature 

field. Laplace transform of equation (27) results in 
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),,( syxq in equation (33) is the Laplace transform of the applied heat flux ),,( tyxq . 

The transient temperature distribution is determined using a similar approach as 

chapter (2). ),,( syxq is first expanded as follows 
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where the coefficients )(00 sP and )(sP nm are found similar to the coefficients P00 and 

Pnm in chapter 2.  
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The temperature solution is given by 
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Substituting equation (38) in equation (34) results in, 
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Similar to chapter 2, integration of equation in x and y results in 
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Also, equation (42) is multiplied by 
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Simplification using principle of orthogonality similar to chapter 2 results in 
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This set of linear algebraic equations can be solved using matrix inversion similar 

to chapter 2. The solution for the temperature distribution in the Laplace domain 

represented by equation (38) must be inverted for the final solution. Due to the 

complicated nature of the solution, Laplace inversion is carried out using the de Hoog’s 

quotient difference method algorithm [26] as implemented by Hollenbeck [27]. 
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RESULTS AND DISCUSSION 

 

The impingement of a cooling jet on a surface produces a spatially varying 

convective heat transfer coefficient. While the precise nature of the convective heat 

transfer coefficient depends on a number of parameters related to the fluid flow in the jet 

[17], such as turbulence, convective heat transfer due to an impinging jet is often 

modeled using representative functions that produce large values of the convective heat 

transfer coefficient in and close to the jet region, which decline to lower values farther out. 

In this work, in order to demonstrate the capability of the analytical model to compute the 

temperature distribution for spatially varying convective heat transfer, the following 

expression is used for h(r) based on past work [20]: 
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where r is the distance away from the jet center and
minmax

minmax

hh

hh
R

+
−= . In this definition, d 

refers to the jet diameter, and hmax and hmin refer to the convective heat transfer 

coefficient at the jet impingement location and far away from the jet respectively. The 

parameter γ is representative of the width of the h vs r curve. 
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Figure 4.1 Convective heat transfer coefficient function 

Figure 4.1 plots h as a function of r for two values of γ, showing that the value of 

γ can be used to modulate the region of influence of the impinging jet. In general, the 

lower the value of γ, the larger is the region of influence due to the jet. While the purpose 

of the present work is not to analyze convective heat transfer due to an impinging jet, 

equation (51) provides a convenient model for convective heat transfer coefficients for jet 

impingement with which to study the analytical models in chapters 2 and 3 for predicting 

steady state and transient temperature rise due to the spatially varying convective heat 

transfer. 

Although the models are derived assuming orthotropic thermal conductivity, the 

rest of the paper assumes a constant thermal conductivity in all directions, as is usual for 

Silicon and other commonly used materials for substrates of microelectronic chips. The 
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analytical model described in chapters 2 and 3 are validated by comparison with finite-

element simulations. Finite-element simulations are carried out in a commercial software 

in which the geometry of the microprocessor chip, including the desired power map is 

modeled and meshed with around 750000 elements. Power dissipation is modeled as a 

heat flux boundary condition on one face, whereas jet cooling is modeled with a spatially 

varying convective heat transfer coefficient on the other face. Grid-independence of the 

finite-element simulation is ensured. The finite-element simulation serves to provide a 

validation of the analytical model.  

Figure 4.2 presents a comparison for a steady-state case, where two hotspots of 

sizes 1mm by 1mm, each generating 10 W/mm2 heat in a 10mm×10mm microprocessor 

die, which is being cooled by a single jet impinging on the die backside at the location 

corresponding to the first hotspot. The convective heat transfer parameters of the 

impinging jet are hmax=60000 W/m2K, hmin=5000 W/m2K, γ=2, and d=0.5 mm. Colorplots 

for the analytical model and finite-element simulation results shown in Figure 4.2(a) 

indicate very close agreement between the two, less than 4.8 % over the entire 

microprocessor die. The close agreement between the two is further illustrated in Figure 

4.2(b), which show the variation of temperature along two lines passing through the 

centers of the two hotspots. 

The typical computation time for computing temperature at a point of interest 

using the analytical model is around 5 seconds, compared to 1-2 minutes for the finite-

element simulation depending on the level of convergence desired. Note that this is in 

addition to time taken for setting up the geometry and creating a mesh for the simulation. 

A further computational advantage is observed for transient cases, where the finite-

element simulation takes much longer due to need for timestepping and convergence at 

each time step. 
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In order to validate the transient model presented in chapter 3, a computation is 

carried out to predict temperature as a function of time for a two-hotspot case, where the 

first hotspot remains on between t=0s and t=0.1s, and the second hotspot stays on 

afterwards. For ease of computation, a two-dimensional geometry is considered for 

transient computations. Figure 4.3(a) compares the computed temperature at the center 

of the first hotspot as a function of time with finite-element simulations. The two are found 

to be in very good agreement through the computation period, with a worst-case 

deviation of less than 2.4%. The first hotspot temperature rises during its active duration 

up to 0.1s, and reduces afterwards. Figure 4.3(b) plots the temperature as a function of x 

at t=0.25s, at which the first hotspot of size 1mm by 1mm and centered at 2.5mm has 

switched off while the second hotspot of the same size and centered at x=7.5mm is 

active. As expected, the peak temperature occurs at the second hotspot, and there is 

very good agreement between analytical computations and finite-element simulation 

results, with a worst-case deviation of less than 1.6%. 

The very good agreement of temperature computed using the models presented 

in chapters 2 and 3 with finite-element simulation results provide validation of these 

analytical models. In comparison with finite-element simulations, these models offer 

faster computational time. The analytical nature of the solution also offers greater ease of 

integration with other computations related to the microprocessor chip, which might make 

possible to predict and monitor the temperature of the chip in real time. Finally, the 

analytical solution enables parametric study of the effect of various parameters on the 

temperature field on the chip, which is cumbersome and time-consuming to perform 

through finite-element simulations. 
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Figure 4.2 Comparison of the steady-state analytical model results with finite-element simulations 

(a) (b) 
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Figure 4.3 Comparison of transient analytical model with finite element simulations 

 

(a) (b) 
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Since the analytical solution for temperature is obtained in terms of an infinite 

series, the coefficients of which must be determined by solving a set of coupled algebraic 

equations, it is important to determine the minimum number of eigenvalues required to 

ensure reasonable accuracy of the analytical model. In general, the larger the number of 

eigenvalues, the larger is the set of algebraic equations such as equation (18) and thus 

the greater is the computational effort. Figure 4.4 plots the computed temperature as a 

function of space with varying numbers of eigenvalues in each spatial direction. For 

comparison, results from a finite-element simulation are also shown. Two hotspots of size 

1 mm by 1 mm, each generating 10 W/mm2 heat in a 10mm×10mm microprocessor die, 

which is being cooled by a single jet impinging on the die backside at the center of the 

microprocessor chip. Figure 4.4(a) shows the power map and figure 4.4(b) shows the 

heat transfer coefficient distribution for this computation. Figure 4.4(c) shows 

convergence of the computed temperature distribution towards the finite-element 

simulation curve as the number of eigenvalues increase. For this specific problem, Figure 

4.4(c) shows that around 40 eigenvalues are needed in each spatial direction for 

reasonable accuracy of better than 0.5%. For a three-dimensional microprocessor, this 

corresponds to around 1681 unknown coefficients to determine, which is still not 

particularly challenging, since robust methods for solving much larger sets of algebraic 

equations exist and are commonly used.  

The analytical model is then used for analyzing a number of thermal optimization 

problems related to the jet impingement cooling of a microprocessor. Figure 4.5 shows 

the computed temperature distribution for a number of cases with the same power, but 

increasing heat generation density in a single hotspot located at the center of the 

microprocessor, which is being cooled by a jet impinging on the backside, along at the 

center of microprocessor. In each case, the background heat generation in the remainder  
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Figure 4.4 (a) Power dissipation map (b) Heat transfer coefficient distribution (c) 
Resulting temperature rise as a function of x for multiple number of eigenvalues 

 
of the chip is changed in order to maintain the total power dissipation in the chip. 

Colorplots in Figure 4.5(a) for four cases of 0, 100, 500 and 1000 W/cm2 dissipation in 

the hotspot show that as more and more heat is dissipated in a small region of the chip, 

the peak temperature rise increases significantly. This is also shown in Figure 4.5(b) 

(a) (b) 

(c) 



 

 

32

 

 

 

 

 

Figure 4.5 Effect of localization of heat generation 

 

 

(a) (b) 
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Figure 4.6 Effect of changing the peak heat transfer coefficient of the impinging jet
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where the temperature rise is plotted along the centerline of the chip on the heat-

generating face for the four cases. For a single 1000 W/cm2 hotspot in the center, Figure 

4.6 presents the effect of changing hmax. As expected, increasing the value of hmax results 

in lower peak temperatures. 

Figure 4.7 examines the effect of varying the jet diameter on the temperature 

distribution in the case of a single hotspot at the center of the chip. The jet also impinges 

at the center of the chip on the back face. Colorplots in Figure 4.7(a) show minimal effect 

of increasing the jet diameter on peak temperature in the chip. This is also shown in the 

lineplots in Figure 4.7(b) that show less than 5.3% change in peak temperature rise in 

changing the jet diameter from 0.1mm to 1.0mm. This may be a useful insight in the 

design of jet impingement cooling, since a lower diameter jet will consume much lesser 

cooling fluid without a dramatic impact on peak temperature.  

The effect of the location of the jet is examined next. Figure 4.8 presents 

computed temperature fields for a single hotspot in the center of the die being cooled by 

a single jet. Four cases with varying location of the jet impingement are computed. In 

case 1, the jet impingement corresponds to the center of the hotspot. In other cases, the 

jet progressively moves farther away from the center of the hotspot, thereby increasing 

the offset distance. As shown in the colorplots in Figure 4.8(a) and lineplots in Figure 

4.8(b), Case 1 results in the lowest temperature as expected due to the alignment of heat 

dissipation with the cooling jet. Peak temperature rise in the chip becomes progressively 

larger as the jet moves farther away from the center of the hotspot. For Cases 2 through 

4, the temperature plot in Figure 4.8(b) shows a local depression in the temperature field 

at the location where the jet impinges on the chip.  

Most modern microprocessor chips contain multiple computation and data 

storage blocks, each of which has its own power dissipation characteristics. The discrete 
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Figure 4.7 Effect of jet diameter in cooling effectiveness 

 

(a) (b) 
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Figure 4.8 Effect of changing the jet impingement location relative to the center of the hotspot 

 

 

(a) (b) 
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power dissipation in each block is usually modeled through electrical simulations [28], 

and measured through voltage and current measurements. In general, the power map is 

significantly distributed due to the presence of multiple computation and data storage 

blocks, each of which dissipates power at different rates [29]. In case the chip is being 

cooled by multiple jets with different coolant flowrates, the variation of the convective heat 

transfer coefficient in space can also be complicated. In order to demonstrate the efficacy 

of the analytical model in such complicated scenarios, the temperature is computed when 

there are ten blocks of unequal sizes and heat dissipation rates on the chip, along with 

ten cooling jets of different characteristics and at different locations. In such a case, the 

resulting temperature field is not intuitive at all, and must be computed carefully in order 

to account for the effects of various parameters. Figure 4.9 presents the heat dissipation 

map, variation of the convection heat transfer coefficient in space, and the resulting 

temperature field computed by the analytical model. As expected, the temperature field is 

quite complicated and not intuitive. For example, the peak temperature shown in Figure 

4.9(c) does not correspond to the block with the highest power. This happens because of 

the relatively small size of the block, which increases the power density, and because 

that block is not being effectively cooled by any of the cooling jets. Such quantification 

enabled by the analytical model is critical for a variety of optimization tasks, such as 

power distribution, distribution of cooling jets, as well as the allocation of coolant flow 

among the jets. 
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Figure 4.9 (a) Power dissipation map, (b) Heat transfer coefficient distribution, and (c) resulting temperature field due to a 
complicated power map comprising ten heat dissipation regions with varying shapes and powers being cooled by ten impinging 

jets with varying locations and strengths

(a) (b) (c) 
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The analytical models presented here can also be used for optimization of 

transient thermal performance of jet-cooled microprocessors. An illustration is provided 

through a scenario summarized in Figure 4.10. Here, two hotspots of equal strength 5 

W/cm and size 1mm are centered at 2.5mm and 7.5mm respectively. The first hotspot is 

active from t=0s to t=0.1s, whereas the second hotspot becomes active at t=0.1s and  

 

 

Figure 4.10 Temperature as a function of time for a transient process involving two 
hotspots of equal magnitude, one of which is active between t = 0 s and t = 0.1 s and the 

other is active afterwards. 

Hotspot1 

Hotspot2 
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remains active afterwards. Three jet configurations are considered. In the first case, the 

jet is located directly at the first hotspot, in which case, Figure 4.10 shows reduced peak 

temperature of the first hotspot compared to the other two cases. However, due to the 

absence of direct cooling of the second hotspot, temperature of the second hotspot is 

significantly greater than the other two cases. These findings are reversed for Case 2, 

where a single jet impinges on top of the second hotspot. A compromise between these 

two extremes is shown in Case 3, where two equal strength jets impinge on each of the 

hotspots, due to which both hotspot temperatures are relatively lower and are between 

the extremes observed in Cases 1 and 2. Note that the strength of the two jets in Case 3 

are determined assuming the same total coolant flowrate as Cases 1 and 2. Because the 

jet is most effective close to where it impinges, the splitting up of a single large jet into 

multiple smaller jets offers better thermal performance and ability to cool more hotspots.  

While the choice of which cooling configuration to use depends on the overall 

thermal management objective, the analytical model presented here provides the 

capability for rapid computation of temperature rise due to a variety of thermal dissipation 

and spatially varying convective cooling of the microprocessor chip. Having studied the 

effect of various parameters on the cooling profile, raises the question of optimization i.e. 

which configuration of the parameters offers the best possible cooling. As mentioned 

earlier, which cooling configuration to be used depends on the overall thermal 

management objective. Here is an effort to try and optimize a few of those parameters to 

offer an improved cooling configuration. 

With given amount of flow rate, hmax can be well known. With given several 

number of jets having maximum heat transfer coefficient hmax each, not much choices 

exist in jet flow parameters and the following optimization algorithm helps to obtain the 

best possible thermal performance. If the number of hotspots are same as number of 
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jets, it becomes clear to address each of the hotspot with each jet because of the 

localized nature of cooling jets. Similarly, if the number of hotspots are less than number 

of jets, each hotspot can be addressed with jet and additional jets can be used to address 

hotspots of high strength. The main optimization question arises when the resources are 

finite i.e. number of hotspots are more than number of jets. To demonstrate the 

usefulness of optimization algorithm developed, two cases are considered here in which 

one of the cases, the power on each hotspot is constant whereas in the other case, the 

power is variable. Without using any kind of optimization and addressing the first hotspots 

with jets results in higher temperature rise.  

 

 

Figure 4.11 (a) Heat flux distribution (b) Convective heat transfer coefficient distribution 
(c) Temperature distribution of seven hotspots of same strength cooled by five jets of 

same strength 
 

(a) (b) 

(c) 
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As for example, in figure 4.11(a) seven hotspots of equal strength of 70,000 

W/cm each at varied location are shown. Five jets of equal hmax of 6 W/cm2K addresses 

the first five hotspots as shown in plot of the heat transfer coefficient versus x in figure 

4.11(b) and as a result of it, the max temperature rise goes to around 93 K as shown in 

the figure 4.11(c). Using the optimization tool, it can be seen that the hotspots on the 

edges produces higher temperature rise compared to the hotspots in the center to the 

microprocessor chip. This is due to the adiabatic boundary conditions on the sides of the 

microprocessor chip. Thus, as a result if we decide to address the hotspots on the edges, 

the max temperature rise can be reduced to 62 K. This finding can be seen in figure 

4.12(b) where there are same seven hotspots as the case above in which same strength 

five jets address the hotspots on the edges as shown in the figure. This finding is the 

 

Figure 4.12 (a) Convective heat transfer coefficient distribution (c) Temperature 
distribution of seven hotspots of same strength cooled by five jets of same strength on 

the hotspots on the edges 
 

one of the best possible solutions if there are not enough resources to split the jets. If 

splitting of jets is considered, based on the number of hotspots and jets, the optimization 

algorithm developed, splits the jets in all possible configurations. As for example, given 

seven hotspots and five jets, only two configurations are possible i.e. to split one jet into 

three smaller equal parts each or split two of the jets into two smaller equal parts each. 

(a) (b) 
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Note that the strength of the split jets is determined assuming the same total coolant 

flowrate as of a full-strength jet. As for example if a full-strength jet of flowrate Q splits 

into two jets then the strength of each split jet is Q/2. In such a case, the maximum heat 

transfer coefficient becomes ℎ���/√2 as heat transfer coefficient is proportional to the 

square root of coolant flow rate. The results for these cases are as shown in figure 4.13. 

As shown in figure 4.13(a), one jet splits up into three equal parts to make seven jets in 

total. The jets with higher strengths are addressed to the hotspots on the edges as they 

 

Figure 4.13 (a) Convective heat transfer coefficient distribution for one jet splits into three 
(b) Convective heat transfer coefficient distribution for two jets splits into two each (c) 

Resulting temperature distribution of due for one jet splits into three (d) Resulting 
temperature distribution of due for two jet splits into two each 

 
 tend to generate more heat as discussed previously. The temperature rise plots are as 

shown in figure 4.13(c), in which the maximum temperature rise can be seen as 57.5 K. If 

(a) (b) 

(c) (d) 
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two of the jets splits up into 2 equal parts each, the convective heat transfer coefficient 

profile looks as shown in figure 4.13(b) and the temperature rise is as shown in figure 

4.13(d). Maximum temperature rise in this case is 54.6 K. Hence, using the optimization, 

the max temperature rise can be reduced from 93 K to 54.6 K. 

 

Figure 4.14 (a) Heat flux distribution (b) Convective heat transfer coefficient distribution 
(c) Temperature distribution of seven hotspots of different strength cooled by five jets of 

same strength 
 

 
For the case in which power of each of the hotspots are different, addressing jets 

with higher power is beneficial as an obvious result. As for example, seven hotspots with 

variable power as shown in figure 4.14(a) are being cooled by five jets of equal strength 

of hmax of 6 W/cm2K addressing the first five hotspots as a baseline case and in which 

the maximum temperature rise goes to around 91.1 K as seen in figure 4.14(c). If the jets  

(a) (b) 

(c) 
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Figure 4.15 (a) Convective heat transfer coefficient distribution (c) Temperature 
distribution of seven hotspots of different strength cooled by five jets of same strength on 

the hotspots of the maximum strength 
 

address the hotspots with maximum power it can be seen that the maximum temperature 

rise reduces to around 51.8 K as seen in temperature distribution plot in figure 4.15(b). 

Same as the case with constant power hotspots, if jets splits and all the hotspots 

are addressed the maximum temperature rise can be further reduced. The results for 

these cases are as shown in figure 4.16. As shown in figure 4.16(a), one jet is splits up 

into three equal parts to make seven jets in total. The jets with higher strengths are 

addressed to the hotspots with high power. The temperature rise plots are as shown in 

figure 4.16(c), in which the maximum temperature rise can be seen as 51.4 K. If two of 

the jets are splits up into two equal parts each, the convective heat transfer coefficient in 

figure 4.16(d). Maximum temperature rise in this profile looks as shown in figure 4.16(b) 

and the temperature distribution plot is as shown case is 50 K. Hence using the 

optimization, the max temperature rise can be reduced from 91.1 K to 50 K.  

 

 

(a) (b) 
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Figure 4.16 (a) Convective heat transfer coefficient distribution for one jet splits into three 
(b) Convective heat transfer coefficient distribution for two jets splits into two each (c) 

Resulting temperature distribution of due for one jet splits into three (d) Resulting 
temperature distribution of due for two jet splits into two each 

 

 

The effects of using optimization tool is summarized in table 1. For the case with 

constant power hotspots, the maximum temperature without using optimization tool was 

93.0 K which is reduced to 54.6 K using optimization tool which is around 41% of the 

temperature reduction. Similarly, for the case with variable power hotspots, the maximum 

temperature without using optimization tool was 91.2 K which is reduced to 50.0 K using 

optimization tool which is around 45% of the temperature reduction.  

 

 

(a) (b) 

(c) (d) 
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Table 4-1 Effects of Optimization Algorithm 

 

∆
 

Without optimization 

�� 

∆
 

With optimization 

�� 

% reduction 

Constant Heat Flux 93.0 54.6 41 % 

Variable Heat Flux 91.1 50.0 45 % 
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CONCLUSIONS  

 

The cooling of microprocessor chips is a significantly important technological 

problem. Since heat dissipation in multicore microprocessor chips is highly distributed 

and dynamic, the localized cooling offered by jet impingement is very attractive. The 

analytical models presented here offer a robust technique for rapid computation of steady 

state and transient temperature rise in a microprocessor chip with spatially varying heat 

dissipation and convective cooling due to an impinging jet. The model has been validated 

against finite-element simulations and has been shown to be effective for analysis of a 

variety of optimization problems that may be encountered in jet impingement based 

thermal management design. 

A key limitation of the model presented here is that it does not account for time-

varying convective cooling. This could arise, for example, in an actively cooled chip 

where the location of the jet can be modulated in time. Development of a model for such 

a scenario is considerably complicated and is an important direction for future work 
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Appendix A 

Nomenclature 
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a,b,c    Dimensions 

A00, B00, Anm, Bnm  Coefficients in the temperature field solution 

C00, Cnm   Fourier series coefficients for temperature field 

Cp    Heat capacity 

d    Jet diameter 

h    Convective heat transfer coefficient 

k    Thermal conductivity 

N    Norms 

P00, Pnm   Fourier series coefficients for heat flux field 

q    Heat flux 

r    Distance away from jet center 

s    Laplace parameter 

t    time 

T    Temperature rise 

α    Thermal diffusivity 

γ  Parameter representative of the width of the h vs r curve 

λ    Eigenvalue 

ρ    Density 

Subscripts: 

max    Maximum 

min    Minimum 

x,y,z    Rectilinear coordinates 

 

Overbars represent variables in Laplace domain. 
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