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Abstract 

 
TOWARD HIGH-RESOLUTION FLOOD FORECASTING FOR LARGE 

URBAN AREAS - NEW SOLUTIONS FOR 1D ROUTING 

 

Behzad Nazari, PhD 

 

The University of Texas at Arlington, 2017 

 

Supervising Professor: Dong-Jun Seo 

The ability to forecast flow, depth, and velocity in flooding events is one of the 

most important needs in highly populated urban areas. Urbanization and climate 

change highlight the necessity to understand and accurately predict water-related 

hazards in urban areas due to extreme precipitation.  Towards that end, this study 

initially assesses the impact of changes in precipitation magnitude and 

imperviousness on urban inundation in a flooding prone urban catchment in the 

Dallas-Fort Worth Metroplex.  Consequently, this study focuses on identifying 

potential alternatives to the conventional inundation models to improve 

operational viability of real-time flood forecasting in urban areas by downscaling 

coarse-resolution model output. Taking advantage of high-resolutions 

physiographic information, the problem is then transformed into developing 

efficient methods for routing flow in a network of 1D channels to represent sub-
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grid variability of hydraulic parameters within coarse 2D cells. Accordingly, two 

existing methods for such a routing problem are discussed, i.e., the diffusion wave 

routing and nonlinear routing with power-law storage functions. Each of the 

aforementioned methods is then solved innovatively to improve their efficiency 

for real-time routing of flow through many small streams quickly over a large 

area. In this work, two new methods for solving the 1-dimensional linear diffusion 

wave equation for finite domain is presented. Referred to as the Continuous Time 

Discrete Space (CTDS) methods, they yield explicit symbolic expressions for 

time-continuous solutions at discrete points in space. As such, the methods 

provide a powerful tool for very easily obtaining accurate diffusive wave 

solutions in lieu of numerical integration when predictions are desired only at 

specific locations along the channel. The proposed methods are easy to implement 

and may be used in a variety of routing applications where accurate explicit 

symbolic solutions are desired for linear advection-diffusion at specific locations. 

Also, a new direct solution for nonlinear reservoir routing with a general power-

law storage function is presented. The resulting implicit solution is expressed in 

terms of the incomplete Beta function and is valid for inflow hydrographs that 

may be approximated by a series of pulses of finite duration. A separate solution 

for zero inflow representing recession is also presented. The new analytical 

solution extends the previous results reported in the literature which provide 

direct solutions only for certain exponents in the power-law storage function. In 
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addition to the wide spectrum of applications that require modeling of nonlinear 

reservoirs or open channels, the direct solution may also be used for physically-

based semi-distributed routing of hillslope flow following simplification of the 

flow paths as a dendritic network of nonlinear reservoirs. The proposed solutions 

offer new pathways for simple and efficient modeling of flood waves in real-

world applications with minimal computational effort that makes them suitable 

candidates for flood forecasting in large urban areas.
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Chapter 1  

General Introduction 

The complex system of water cycle in an urban environment, or the urban 

hydrological system (see Fig 1), is not fully understood (Salvadore et al., 2015). 

Among water-related hazards in large population centers, flooding and inundation 

pose arguably the largest threat. As a part of this research, detailed geo-spatial and 

statistical analyses are performed to improve understanding of urban flooding by 

assessing the sensitivity of inundation to urbanization and climate change. 

 
Figure 1 Water cycle in an urban area (Salvadore et al., 2015). 

Detailed inundation mapping is an effective tool for mitigating flood 

hazards in highly urbanized areas. Recent advances in computing, data science 

and technology, and remote sensing have led to emergence of new breeds of 

models for urban flood modeling (Chang et al., 2015, Gires et al., 2014). High-

resolution urban inundation mapping, however, is still a relatively new area of 
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research and remains a large challenge particularly for large urban areas due to 

extremely large computational and modeling costs. Hydraulic models for flood 

forecasting and inundation mapping solve the mathematical equations of flow, or 

the Saint Venant equations, to obtain depth and velocity (Dutta et al. 2003). 

Depending on the purpose of modeling, data availability, and computational 

resources, the governing equations of flood flow are usually discretized and 

solved in either one or two dimensions. One-dimensional (1D) models are easy to 

set up and calibrate (Seyoum et al., 2011), computational inexpensive and 

relatively easy to parameterize (Horrit and Bates, 2001). However, 1-D models 

fail to capture the distributed nature of flood hydraulics in certain cases of urban 

flooding (Bernard et al., 2007). Two dimensional (2D) models, on the other hand, 

can produce areal inundation maps. High-resolution 2D hydraulic modeling, 

however, is difficult to perform and computationally too expensive (Leandro, 

2008; Seyoum et al., 2011) for large urban areas, particularly for real-time 

forecasting . The above limitations spurred efforts to develop methods that make 

use of the simplicity of hydrologic and hydraulic1D models but at the same time 

address their inadequacies when and where necessary. Among the methods 

emerged are the 1D-2D models (Bernard et al., 2007; Leandro, 2008; Seyoum et 

al., 2011; Simões et al., 2011, Gires et al., 2013) which simulate the flows in 

channels and pipes in 1D and the overland surcharge flow in 2D (see Fig 2). The 

goal of this research is to: 1) assess the feasibility of hydraulic and hydrologic 
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modeling for real-time flood forecasting for large urban areas using the 1D-2D 

approach, 2) formulate potential alternative approaches, and 3) develop core 

modeling elements in support of such approaches.  

For 1), the possibility of operational real-time flood forecasting for select 

locations, or hot spots, in the City of Fort Worth was considered using the 

Computational Hydraulics International’s 1D-2D PCSWMM model. It was found 

that high-resolution 1D-2D hydraulic models are computationally too expensive 

for real-time inundation mapping in large urban areas. For instance, high-

resolution 1D-2D simulation of inundation in Edgecliff Branch Catchment of 

Sycamore Creek (~12.17 km2) takes approximately 10 to 15 minutes while a 

target simulation time of 5 to10 minutes is desired to produce actionable 

forecasts.  This conclusion is in agreement with previous studies, even the most 
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Figure 2 General framework of 1D-2D models 
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recent ones that consider the latest developments. For example, Russo et al. 

(2015) reports that using a specific GPU card (as opposed to the commercial 

software package used in the current study) significantly reduces the 

computational time of a 1D-2D model from about 2 hours to 3-4 minutes for a 3-

hr simulation period. The above modeling used a sophisticated adaptive mesh of 

400,000 cells for a 44 km2 domain in Barcelona, Spain. Inundation mapping for 

larger urban areas such as the City of Dallas, which has 20 times the area, will 

take much longer. Just as importantly, detailed modeling of such a large area will 

require very large human resources.  As such, real-time inundation mapping using 

high-resolution 1D-2D models is currently practical only for smaller urban 

catchments. The detailed high resolution 1D-2D modeling of the study area in the 

City of Fort Worth nevertheless allowed detailed geo-spatial and statistical 

analyses of inundation due to urbanization and climate change to improve 

understanding of urban flooding. Chapter 2 discusses the results of this element 

obtained via multi-dimensional sensitivity analysis (Nazari et al. 2016). 

Although high-resolution modeling is very effective in conveying flood 

hazards, the model should be kept as simple as possible while still being 

physically realistic (Hunter et al., 2007). In addition, many studies (see Hunter et 

al., 2007 and references therein) suggest that the uncertainties in topography and 

boundary conditions influence the simulated results of hydraulic models more 

than those introduced by appropriately simplified process modeling. Moreover, 
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hydraulic models with reduced complexity combined with detailed descriptions of 

topography are easier to calibrate (Hunter et. al., 2007), a rather important point in 

that lack of data for calibration and validation poses one of the biggest challenges 

for modeling. Also, high resolution 1D-2D models make difficult uncertainty 

assessment using standard Monte Carlo methods as it is impractical to make a 

very large number of runs. Therefore, it is highly desirable to produce detailed 

descriptions of hydraulic variable without impractical high-resolution hydraulic 

modeling. Distributed hydrologic models such as the National Weather Service 

(NWS) Hydrology Laboratory Research Distributed Hydrologic  Model 

(HLRDHM, Koren et al. 2004) have been shown to be a viable tool for real-time 

flood forecasting in large urban area if relatively coarse resolutions are chosen 

(Habibi et al., 2015). If one could effectively and efficiently downscale coarse-

resolution model output by utilizing physiographic information such as elevation, 

building footprint, etc., to produce high-resolution hydraulic information such as 

flow, depth and velocity, one may overcome the limitations of 1D-2D modeling. 

The above problem amounts to mapping subgrid-scale variations of hydraulic 

variables given output from a lower-resolution hydraulic model. Such 

downscaling approaches have been used extensively in hydrometeorology for 

atmospheric variables but have not been explored as much for hydrologic or 

hydraulic variables. This work formulates such an approach and develop the key 

necessary elements. 
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One way to reduce the complexity of high-resolution 2D models is to 

represent the detailed hydraulics within a coarse-resolution 2D cell with a 

relatively dense network of 1D channels which may be identified based on 

physiographic features. Then, a physically-based and computationally-

inexpensive 1D model with upstream and lateral flow may be used to route flow 

through many small streams quickly over a large area. Although the spatial 

resolution of such models is less than 2D models, it is hypothesized that the gain 

in computational feasibility marginalizes the reduction in spatial resolution. 

Successful application of efficient flood routing in large networks has already 

been verified by many researchers (Gupta and Waymire, 1998; Reggiani et al., 

2001; Menabde and Sivapalan, 2001; Gupta, 2004; Mantilla and Gupta, 2005; 

Mantilla et al., 2006; Mandapaka et al., 2009; Small et al., 2013; Ayalew et al., 

2014; Choi et al., 2015 among many others). Flow direction maps derived from 

high-resolution topographic data may be used to construct the downscaling 1D 

networks within each coarse-resolution cell.  Modeling flow paths is important in 

determining the hydrologic response of urban catchments (Gironas et al., 2009, 

see also the references therein) for which numerous algorithms have been 

developed. In the widely used D8 method, an eight-cell neighborhood is assumed 

around each grid cell. As seen in Figure 3a-c, one may analyze the Digital 

Elevation Model (DEM) and identify the steepest descending slope at each grid 

cell as the most likely direction of flow at each cell as shown in Figure 3d (NWS, 
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2015; Maidment, 2002). The flow accumulation, which is defined as the total 

number of upstream pixels that flow into each cell, may be constructed by 

tracking the flow direction matrix (Figure 3e). Finally, flow accumulations may 

be used to construct the hillslope flow network as shown in Figure 3f. The cross-

sectional geometries of the channels in the network may be extracted from the 

DEM. If DEM is not available, it may be possible to invoke self-similarity to 

estimate the hydraulic geometries of channels (Menabde and Sivapalan, 2001).  

The resulting downscaling problem amounts to solving equations of conservation 

of mass and momentum on the reduce 1D network of channels using the inflow 

boundary conditions derived from the coarse-resolution model output (see Fig 4).  

This research develops two models to solve 1D linear diffusion wave 

equation with lateral inflow (Chapter 3) and nonlinear routing (Chapter 4) through  

(f)  

(d) 
 

(e) 
 

(c) 
 

(b) 
 

(a) 

Figure 3 the process of producing a network of 1D channels to represent flow paths 
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Figure 4 the general framework of downscaling coarse-resolution model output to the boundary 

conditions of a higher-resolution reduced hydraulic model 

a network of channels. The newly proposed methods use innovative efficient 

solutions and hence offer a generalized approach that may be applied to large 

urban areas. Chapter 3 discusses the development of two new quasi-analytical 

symbolic solutions for 1D linear diffusion wave equation with lateral inflow for 

Neumann (know values of flux) or Dirichlet (known values of flow) downstream 

boundary conditions. The new methods produce explicit symbolic expressions for 

non-dimensionalized solutions for arbitrary inflow hydrographs. In addition, a 

generic unit response function to a constant inflow has also been developed 

(Chapter 2). It may be used to route flood hydrographs in wide-ranging real-world 

applications with minimal computational effort with the principles of 
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superposition and proportionality. Due to the linear nature of diffusive wave with 

constant coefficients, application of the principles of superposition and 

proportionality results in exact solutions at discretized nodes.  Although this 

approach cannot be directly applied to nonlinear diffusive wave equation with 

flow-dependent coefficients, a common practice is to adopt a “layered” 1D 

diffusive wave routing which updates the value of coefficients based on the 

upstream flow magnitude. However, implementing such an approach requires 

additional research and evaluation which is outside the scope of current study. All 

newly developed explicit solutions to linear diffusive wave equation are closed-

form and continuous functions of time, and hence do not suffer from numerical 

instabilities. Chapter 4 discusses the development of an analytical solution for 

nonlinear reservoir routing with a general power-law storage function. The new 

implicit solution is useful in practical modeling, design, forecasting and control 

when applied to single reservoirs, cascade of reservoirs, and/or networks of 

channels. In addition, an improved parametrization of nonlinear channel routing 

with general flow resistance and cross-sectional area as power-law storage 

function is presented (Chapter 4) which may serve as an improved solution 

technique for the downscaled 1D network of channels in large urban areas. 

Finally, Chapter 5 discusses general conclusions and broad implications of the 

present work and offers recommendations for future research. Figure 5 
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summarizes the general framework of the current research. 

 

The main findings of this research are can be summarized as follows: 

• Changes in precipitation and impervious cover have a large impact on local 

and catchment scale urban inundation. 

• With climate change and continuing urbanization for accurate mapping of 

inundation in urban areas, high resolution rainfall forcing and physiographic 

information are essential.  

• Quasi-analytical methods offer simple and computationally efficient solutions 

to the 1D linear diffusive wave equation. The obtained solutions are in very 

High-Resolution Flood 
Forecasting for Large Urban 

Areas 

1D-2D Modeling 

Downscaled 2D 

Evaluation of Real-Time 
Performance 

Sensitivity Analysis 

Chapter 2 

Efficient 1D Diffusive Wave Routing 

Chapter 3 

Efficient Nonlinear Channel Routing 

Chapter 4 

Sub-grid 1D Network of 
Channels 

Figure 5 Topical organization and flow of the dissertation. 
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good agreement with numerical integration methods and obviate the need for 

problem-specific model setup. 

• Contrary to conclusions drawn from previous studies, it was found that the 

general nonlinear routing problem with power-law storage functions of any 

arbitrary exponent has an analytical solution. Many different components of 

the urban hydrological system could potentially be approximated by power-

type storage functions and be solved by the presented solution.  
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Abstract 

There is a great need for timely prediction of the extent and depth of 

flooding and related hazards in highly populated urban areas such as the Dallas-

Fort Worth Metroplex (DFW).  The hydrologic, hydraulic and 

hydrometeorological processes involved and the large number of factors that 

control them are complex, inter-related and generally scale-dependent, which 

makes real-time prediction of flood inundation in urban areas particularly 

challenging. In addition, a large number of manmade structures such as channels, 

pipes, culverts, buildings, parking lots, manholes, etc., add complexity. With 

continuing urbanization and climate change, it is critical that the dynamics of 

urban flooding be better understood to improve prediction and to mitigate water-

related hazards under changing conditions. In this work, we assess how different 

factors may impact urban flood inundation using the 1D-2D PCSWMM model 

through a series of controlled simulation experiments.  The main study area is the 

3.3 km2 Forest Park-Berry Catchment in the City of Fort Worth in North Central 

Texas which has a high density of underground storm drainage. Specifically, we 

assess the impact of variations in precipitation and impervious cover on simulated 

inundation maps.  

Keywords: Urban Flood Inundation Mapping, PCSWMM, Integrated 1D-

2D Modelling. 
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Introduction 

Urbanization and climate change increase risks for flooding in many urban 

areas. According to the Global Health Observatory data of the World Health 

Organization (WHO  2015), 54% of the global population live in urban areas as of 

2014, an increase of 20% from 1960.  O’Brien and Burn (2014) and references 

therein showed evidences of increasing amplitude and decreasing time-to-peak in 

flooding events as a result of increasing impervious areas. The annual flood loss 

data for the US (National Weather Service (NWS) 2015; see Figure 1) indicate 

that, although flood warning has been improving owing to the increase in both 

detection and understanding of the causes of heavy-to-extreme precipitation, 

floods still cause large losses with an annual average in the last 30 years of 89 

fatalities and $8.2 billion in damages (Kunkel et al. 2013 a, 2013b). Sharif et al. 

(2014) point out that the annual average number of fatalities in Texas is 16.8 with 

no apparent downward trend although a decline may be seen when normalized by 

population. 

Urban flash flooding, or urban pluvial flooding, is defined as a condition 

where, as a result of heavy or prolonged rainfall, water escapes from or cannot 

enter the sewer system or minor urban watercourses, thus remaining on the 

surface and eventually entering buildings (Gires and ten Veldhuis 2013). The 

severity of this type of often short-term but high-peak flooding events depends on 

many different hydrologic, hydraulic and hydrometeorological factors. The 
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purpose of this work is to assess the different factors that control flood inundation 

in urban areas using an integrated 1D-2D PCSWMM model through a series of 

simulation experiments. 

 

Figure 1  Annual (water year) flood damages and fatalities in United States (NWS 2015). 

Study Area 

The study area is in the City of Fort Worth in the Dallas-Fort Worth 

Metroplex (DFW) in North Central Texas. According to Zahran et al. (2008), 

Central Texas is the most flash flood-prone area in North America and DFW is 

located within the so-called “Flash Flood Alley”. Fort Worth is the 16th most 

populous city in the US with a population of 777,992 as of 2012 in an area of 

904.4 km2 that includes parts of Tarrant, Denton, and Wise Counties. It has had 
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the highest population growth among large US cities in the period of 2000 to 2013 

with a 42.34% increase (Kezar 2014).  On the other hand, Walsh et al. (2014) 

show that the amount of heaviest 1% daily precipitation has increased by 16% in 

Texas from 1958 to 2012 (Figure 2). Therefore, our study area makes an excellent 

subject for urban flooding studies under changing conditions. 

The study basin is the Forest Park-Berry Catchment (3.28 km2, see Figure 

3), which drains into the Clear Fork of the Trinity River. The Forest Park-Berry 

Catchment has a long history of flooding (City of Fort Worth 2015). The origin of 

the flooding problems in the Forest Park-Berry area goes back to the 20th century 

when, due to the City’s developing business district, the flood plains of the 

previously natural water ways were reclaimed and replaced by storm drains of the 

same capacity which later became inadequate as the development escalated.  As a 

result, despite much effort put in over the years, the area remains flood prone. 

Figure 4 shows the current storm drainage network in the Forest Park-Berry 

Catchment. 

Approach 

Table 1 lists the candidate controls considered. In each simulation 

experiment, the input to the hydrologic and hydraulic models is first specified. 

Then, the hydrologic-hydraulic simulations are made and the corresponding 

inundation maps are produced.  
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Table 1  Candidate controls in urban flood inundation modelling. 

Type Control 
Hydrometeorological 
 

Magnitude of precipitation  
Spatiotemporal variability of precipitation 
(Effective) Resolution of precipitation input 

Hydrologic Topography, resolution of Digital Elevation  
Model (DEM) 
Resolution of subcatchment delineation  
Imperviousness, land use 
Initial soil moisture 

Hydraulic Roughness coefficient  
Slope, size, and length of storm drains 
Initial conditions 
Mesh size 

 

In this study, we focus on precipitation and imperviousness as part of a 

larger ongoing work. We also compare the performance of the storm drainage 

network between the current conditions and the altered conditions under 

continuing urbanization and climate change.  

Figure 2  Increase in daily precipitation in top 1% of the heavy precipitation events in the US 
from 1958 to 2012 (Walsh et al. 2014). 
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Figure 3 Forest Park-Berry Catchment. 

 

Figure 4  Storm drainage network in the Forest Park-Berry Catchment. 

 
 

Forest Park-Berry Catchment (3.28 km2) 
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Models Used 

Despite recent advances in computing, data science and technology, and 

remote sensing which led to emergence of new models for urban flooding (Chang 

et al 2015; Gires et al. 2014), high-resolution urban inundation mapping is still a 

relatively new area of research. Different approaches exist for modelling urban 

pluvial flooding (van Dijk et al. 2014). Zhang and Pan (2014) compared some of 

the most commonly used models in terms of hydrologic and hydraulic modules, 

model input and output, and applicable flood types. Among them, dual drainage 

1D-2D models have been gaining popularity for simulating urban flooding in 

recent years, due to their computational efficiency compared to full 2D models 

(Nania et al 2014). 

Two types of overland flow occur in urban flooding (Gires and ten 

Veldhuis 2013):  

Direct runoff following abstraction which then enters the storm drainage 

network (runoff concentration) and 

Surcharged runoff from exceeding the storm drainage network’s capacity 

which then joins overland flow (exceedance overland flow). The first is simulated 

with hydrologic models and the second with hydraulic models. In this study, we 

used the integrated 1D-2D PCSWMM model which combines semi-distributed 

hydrologic routing model, 1D hydraulic model for the storm drainage network, 

and 2D overland flow model. PCSWMM uses the Storm Water Management 
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Model Version 5 (Rossman 2010) engine for modelling junctions, or nodes, and 

conduits, or links, of various cross sections and connects them to a 2D overland 

flow model for 1D-2D dual drainage modelling.  PCSWMM also has the 

capability to ingest radar-based quantitative precipitation estimates (QPE). The 

choice for the coupled hydrologic-hydraulic modelling approach is based on the 

need to account for both types of flow in the study basins. 

To set up the integrated 1D-2D PCSWMM model, we followed the steps 

in Figure 7. The subcatchments were delineated by inputting the digital elevation 

model (DEM) into the Arc Hydro GIS tool (Maidment 2002), and locating outlets 

and identifying the contributing areas (see Figure 6). 

Precipitation is the main forcing for flooding. Spatiotemporal variability of 

precipitation and accuracy and resolution of QPE are among the most influential 

factors in inundation mapping particularly for small and highly impervious urban 

catchments. Gires and ten Veldhuis (2013) summarize the results of a number of 

studies to conclude that for detailed urban hydraulic modelling, rainfall forcing 

should have a spatiotemporal resolution higher than 100 to 500 m and 1 to 5 min.  

In this study, we used the 1 min-500 m resolution QPE from the 

Collaborative Adaptive Sensing of the Atmosphere (CASA) X-band weather 

radar located at the University of Texas at Arlington (UTA). The radar XUTA is 

one of 5 X-band radars currently in operation in the DFW Demonstration 

Network (Habibi et al. 2015). 
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Figure 5  Steps used in hydrologic-hydraulic modelling: a. Rada QPE of the event is imported to 

PCSWMM. 

b. PCSWMM produces hyetographs for each subcatchment. 

c. Hyetographs are input into the hydrologic model in PCSWMM. 

d. Hydraulic model in PCSWMM simulates flow depth and velocity. 

e. The depth, duration, and extent of inundation are mapped in PCSWMM. 

 

A severe flash flooding occurred in the area on June 24, 2014. During this 

event, more than 70 mm of rain fell in just a few hours (see Figures 7) resulting in 

(e) 

(d) 

(a) 

(b) 
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severe inundation in some areas of the city which resulted in more than 40 

responses from the Fort Worth emergency services (FloodList 2014). 

 

Figure 6  Elevation map and subcatchment delineation.  

 
Figure 7  NEXRAD QPE for the June 24, 2014, event (1 inch = 25.4 millimetres). 
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Figure 8  The XUTA-observed rainfall map for June 24, 2014. 

Using PCSWMM’s Radar Acquisition and Processing (RAP) tool, the 

hyetographs were produced for all subcatchments from the CASA QPE for June 

24, 2014. The reader is referred to Habibi et al. (2015) for the CASA QPE 

generation process. Figure 8 shows the 24-hr rainfall map as estimated from 

XUTA. The black lines in the figure delineate, from left to right, the Cities of Fort 

Worth, Arlington, Grand Prairie, and parts of Dallas. The hyetographs derived 

above represent the baseline input in the reference scenario. The input is then 

modified by ±15% for sensitivity analysis. Three example hyetographs derived 

from the CASA QPE are shown in Figure 9. 

To model the mean areal impervious fraction for each subcatchment, an 

impervious cover map was used consisting of a building footprint layer, parking 

lots and streets (Figure 10). 

For 2D overland flow modeling, the building footprint layer was added 

representing obstructions. Other model parameters were specified, wherever 



27 

 

Figure 9 Three examples of derived hyetographs for the June 24, 2014, event. The solid red line 

is for a downstream subcatchment. The dashed black line is for a subcatchment in the centre of the 

study area and the dashed blue line is for a subcatchment in upstream part of the study area.  

 

Figure 10 Mean areal impervious fraction for each subcatchment. 
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possible, based on the information available from the City of Fort Worth as 

explained below. The elevations of most inlets and pipes were available. Missing 

elevations were handled differently case by case depending on the location. If the 

elevation of an inlet node was not available, the overlain ground surface elevation 

from the DEM was used. If the underground elevation was missing, a distance-

based interpolation technique was used to estimate the elevation from the known 

neighbouring elevations.  Since PCSWMM doesn’t allow variable manning 

roughness values in a 2D mesh boundary, we used a constant manning roughness 

of 0.015 for all 2D cells.The flow length parameter for each subcatchment was 

estimated based on the flow accumulation map. For runoff generation, the SCS 

Curve Number (CN) method was used (Chow et al. 1988). The spatially-varying 

CNs were initially extracted from the hydrologic models provided by the City of 

Fort Worth. However, a sensitivity analysis showed little difference in inundation 

maps due to spatially-varying CN vs. spatially-uniform CN for heavy-to-extreme 

rainfall cases. Therefore, the average CN of 80 was used in the simulations. 

Surface storage was neglected, given that they will be quickly filled in very 

heavy-to-extreme rainfall events modelled here.  Table 2 summarizes the model 

parameters.  

In the initial stages of the simulation study, the impact of resolution of 

subcatchment delineation on runoff was analysed using a 1D model. A large 

impact was seen. The effect of spatial resolution of subcatchment delineation on 
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hydrologic simulation has been extensively studied. The state of the art review of 

urban hydrological modelling in Salvadore et al. (2015) concludes that high 

spatial resolution is required for resolving the heterogeneity and fast dynamics of 

urban hydrological processes. 

Table 2  Model parameters. 

Parameter Description 
Infiltration method SCS Curve Number 
Flow routing method Dynamic wave (Rossman 

2010) 
Manning roughness of the pipes 0.013 
Manning roughness of 2D mesh 0.05 
Manning roughness of 
impervious surfaces 

0.012 

Manning roughness of pervious 
surfaces 

0.015 

2D domain area 1.67 x 107 ft2 (~1.55 x 
106 m2) 

2D mesh type Hexagonal 
2D mesh resolution 35 ft  (~10.67 m) 
Number of cells 14268 

.Figure 11  Part of the 1D-2D integrated model domain and an example of simulated inundation. 

Ghosh and Hellweger (2011), who investigated the scale effect using 

SWMM, concluded that, coarser subcatchment delineations under-simulate the 
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peak flows in large storms. Note that the SWMM engine uses semi-distributed 

modelling and, by construction, runoff from each subcatchment has only a single 

point of entry into either a junction or a downstream subcatchment. If the 

subcatchment is so large that it contains multiple inlets, they are ignored except 

the one identified as the outlet. If, on the other hand, the subcatchment is 

excessively small, the connectivity of the subcatchments may not be physically 

realistic due to possible errors in the DEM and storm drain data. Note also that 

subcatchment delineation is impacted also by the resolution of the DEM used. 

Lastly, it is very difficult in SWMM-based modelling to break up channels into 

multiple sections because short conduits can potentially cause numerical 

instabilities. Therefore, the approach taken in this study was to produce the finest 

subcatchments that may be derived using the available 5m resolution DEM and 

the inlet locations.  The delineated subcatchments were then visually inspected to 

identify any clearly erroneous or suspect results. It was found that the erroneous 

delineations were due to the high resolution of the DEM which resulted in 

unrealistically small subcatchments at a few locations.  

 Simulation Experiments, Results and Discussion 

The main focus of the study was to assess the impact of variations in 

precipitation magnitude and percentage of the impervious cover. They are directly 

associated with climate change and urbanization and hence are of particular 

interest. We used the June 24, 2014, flash flooding event and the imperviousness 
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percentage map in Figure 10 as references, and perturbed the precipitation 

magnitude and imperviousness as summarized in Table 3 to produce a total of 

nine different simulations. Wobus et al. (2015) used 3 different climate models to 

project changes in heavy-to-extreme precipitation. While consistent patterns were 

not found in the model projections of heavy-to-extreme precipitation, they report 

approximately a 15% change in precipitation amount for the study area. This 

figure is also comparable to the 16% change in observed precipitation for large 

amounts for our study area (Figure 2).  As such, we chose 15% for the sensitivity 

analysis. 

Table 3 List of model simulations. 

 
 
 
 

 

 

The impact of the changes in precipitation amount and imperviousness 

was assessed by comparing the extent and depth of inundation, and flow velocity. 

Figure 12 shows the extent of inundation, as measured by the number of wet cells 

at each time step, for the 9 different cases.  For all cases, the maximum inundation 

extent increases sharply in the first 20 min, less so from 20 to 0 min and very 

slowly after 30 min. It is interesting to note that the maximum difference among 

the 9 cases occurs at about 12 min when the inundation extent is fast increasing. 

 Impervious Cover 
-15% Existing +15% 

Precipitation -15% Case 1 Case 2 Case 3 
Base  Case 4 Case 5 Case 6 
+15% Case 7 Case 8 Case 9 
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The difference is about 10% of the total inundation extent. It suggests that 

changes in precipitation amount and imperviousness may significantly alter the 

wetting dynamics even though the final inundation extent may be similar (see the 

results at 60 min). 

 Figure 12  Simulated inundation extent as a function of time elapsed. 

The differences among the 9 cases are more discernible in location-

specific analyses. Figure 13 shows the maximum inundation depth for the 9 cases. 

Comparison of Cases 1 through 9 shows that, the modelled inundation is more 

sensitive to a 15% change in precipitation than that in imperviousness.  

Figure 14 shows the relative magnitude of standard deviation of maximum 

inundation depths among the 9 cases.  It is seen that, although the variation of 

inundation is generally higher in the downstream parts of the study area, there 

exist some interior locations with very large variations.  Since they are all located 
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along the storm drainage network depicted by red lines in the figure, one may 

hypothesize that the large variations are due to the limited capacity of the pipes. 

For example, when a certain pipe is not at full capacity in some cases but becomes 

surcharged in other cases, one may expect large variations in inundation depth at 

its inlet cell. In fact, using PCSWMM’s design tool, it was found that almost 40% 

of the pipes become surcharged for the June 24, 2014, extreme event.  

 
Figure 13  Spatial comparison of maximum inundation depth. The columns have been multiplied 

by a factor of 300, for better discernibility.  
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Figure 14  Relative magnitude of standard deviation of maximum inundation depth. The 

columns have been multiplied by a factor of 3000, for better discernibility.  

 

Figures 15 and 16 show the time series of the location-specific depth and 

velocity, respectively, for the 2D cell encircled in red in the inset of Figure 15. 

Figures 15 and 16 show an increasing trend in peak inundation depth and velocity, 

respectively, with increasing impervious cover and increasing precipitation. The 

maximum difference in peak depth is about 17% which occurs between Case 1 

and Case 9. The figures also show that increased rainfall increases peak discharge 

more so than increased impervious cover. In addition, the effect of 

imperviousness decreases when precipitation is more intense. 

 

North 
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Figure 15  Location-specific comparison of simulated depth time series. 

Figure 16  Location specific comparison of simulated velocity time series. 
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The patterns in the velocity time series in Figure 16 are generally similar 

to those of peak inundation depth. Note, however, that, at about 10 min into the 

event, the velocity is reduced to near zero though the depth is non-zero, an 

indication that ponding may be occurring due possibly to an overwhelmed 

drainage system before flow resumes. Similar analysis may be performed for 

different locations of interest. One may also delineate the areas of increased risks 

by identifying all locations where the maximum depth or velocity exceeds some 

critical threshold.  

 While useful, the type of local analyses shown above is not very practical 

when many locations are involved. Therefore, there is a need for more general, 

model domain-wide comparisons and characterization of the simulation results. 

To that end, we derived the empirical cumulative distribution functions (ECDF) 

of the simulated inundation duration, depth, and velocity (see Figures 17 to 19). 

The figures consider only the “wet” cells; all cells that remained dry during the 

event were excluded. Also, because we are interested primarily in higher depths 

and velocities, only the upper tails are shown in Figures 18 and 19. Figure 17 

indicates that, e.g., given that some location gets inundated at all during the 60-

min event, there is about 58% chance the inundation lasts for 50 min or more. 

Similarly, the chances of inundation at the location lasting more than 20, 30, and 

40 minutes are approximately 97%, 92%, and 80%, respectively.   
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The figure indicates that the variations in the inundation duration among 

the 9 cases can be as large as 7 min (at the exceedance probability of 0.95). It can 

also be seen in Figure 17 that, the exceedance probability of occurrence of the 

same inundation duration can vary up to 7%, which occurs at the 46th min, among 

the 9 cases. 

Figure 17  ECDFs of simulated inundation duration. 

 
Figure 18 shows that, e.g., the probability of maximum inundation depth 

exceeding 20 cm at some location that gets inundated at all during the 60-min 

event is about 0.01. This probability increases by approximately 0.005 from Case 

1 to Case 9. Similarly, the probability of maximum inundation depth exceeding 40 
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cm varies from 0.004 to 0.007 for Cases 1 through 9. Note that these variations in 

exceedance probabilities are large, with potentially very significant implications 

in hydrologic design in urban areas. 

Figure 19 is completely analogous to Figure 18 but that it is for maximum 

flow velocity. Figure 19 indicates that the probability of maximum velocity 

exceeding 0.8 m/s at some location that gets inundated at all during the 60-min 

event increases from 0.002  in Case 1 to 0.008 in Case 9.  For velocities 

exceeding 0.5 m/s, the probabilities vary from 0.016 in Case 1 to 0.027 in Case 9.  

Figure 18  ECDFs of simulated maximum inundation depth. 
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Figure 19  ECDF of simulated maximum flow velocities. 

 

Verification of the model simulation results was carried out qualitatively 

by comparing with the locations of historical high water reports. The simulated 

inundation extent for the June 24, 2014, rainfall event used for our simulation 

experiments, matched reasonably well with the high water reports. Of the seven 

reports in our study area, four matched with the PCSWMM-modelled inundation 

areas, two were approximately a block away from the nearest simulated wet cell, 

and one was missed by a large margin. Due to lack of permission to publish the 

above reports, in this paper we present the high water reports from a larger event 

of October 21, 2009, which produced 5.5 to 6 inches of rainfall in a 24-hr period 
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(see Fig 20). Though the model simulation is not for the same event, one may 

expect a simulated inundation extent similar to the June 24, 2014, case owing to 

the fact that this is very small catchment (3.3 km2) and hence spatial variability of 

rainfall is not very important.  Among the six available high-water records for this 

heavier rainfall event, four are within the modelled inundation extent. The model 

simulation, however, missed two high-water locations in the eastern part of the 

catchment. This is likely due to the fact that the 2009 event was more intense and 

hence flooding was probably more severe than indicated by the June 24th 

simulation. As illustrated above, lack of observations poses a large challenge in 

verification of inundation mapping which requires spatially dense and frequently 

sampled ground truths. We note here that we are deploying real-time water level 

sensors in the study area and elsewhere in the DFW area and will be gathering 

crowdsourced observations for near real-time and post-event verification (Hanna 

2016). 

Conclusions and future research recommendations 

This work assesses the impact of variations in hydrologic, hydraulic and 

hydrometeorological factors that control urban inundation. The study area is a 

flooding-prone urban catchment in the City of Fort Worth in North Central Texas.  

This study was focused on assessment of changes in precipitation magnitude and 

imperviousness. 
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The results of the nine simulation experiments presented in this work 

highlight the large impact of changes in precipitation and impervious cover on 

local and catchment-scale urban flooding.  They suggest that, with climate change 

and continuing urbanization, many areas, and that, for accurate mapping of 

inundation in urban areas, high-resolution rainfall forcing and physiographic 

information is essential.  

Once demonstrated operation-worthy, we plan to run the integrated 1D-2D 

model in real time for selected urban catchments in the DFW area as a part of the 

flash flood warning system under implementation for the area (Habibi et al. 

         Figure 20 Comparison of June 24, 2014, model simulation with historical high-

water reports.  

Disclaimer: Flooding incidence data provided by the City of Fort Worth for 

informational purposes only; The City of Fort Worth assumes no responsibilities for the 

accuracy of the data. 
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2015). The sensitivity analyses undertaken in this work are part of the effort to 

assess the feasibility of real-time operation of a 1D-2D model, identify potential 

alternatives for reduced complexity and computational requirements,  increase 

lead time by the use of rainfall nowcasts (Ruzanski et al 2011; Ruzanski and 

Chandrasekar 2012) and develop impact-based warning products (Calianno et al 

2013). 

Due to sparsity of observations, verification of high-resolution prediction 

is a large challenge. While the model results are generally in agreement with 

historical reports of inundation (Nazari et al. 2014), they are yet to be verified 

dynamically. For that, we will be using observations from a network of recently 

deployed real-time water level sensors and the newly developed crowdsourcing 

app, iSeeFlood. Higher resolution modelling does not always result in higher 

accuracy while potentially imparting a false sense of confidence in high resolution 

output (Dottori et al2013). To provide a measure of uncertainty associated with 

inundation mapping, ensemble approaches (Aronica et al. 2012, Gires et al. 2014) 

or other probabilistic methods (Fu et al. 2011) are necessary. To that end, we plan 

to explore ensemble inundation mapping as a part of the ongoing effort on 

integrative sensing and prediction of urban water for sustainable cities (Seo et al. 

2015). 
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Abstract 

The diffusion wave equation, a simplified form of the Saint-Venant equations, is used 

extensively in flood routing. To solve the equation, numerous methods have been developed 

over the years most of which are numerical. Because most numerical methods must meet the 

Courant–Friedrichs–Lewy (CFL) condition and that the CFL condition is only the necessary 

condition, their application requires case-specific modeling and analysis to ensure convergence. 

For many practical routing applications, however, simpler but accurate methods are highly 

desirable. In this work, we present two new methods for solving the 1-dimensional linear 

diffusion wave equation for finite domain quasi-analytically. Referred to as the Continuous 

Time Discrete Space (CTDS) methods, they yield explicit symbolic expressions for time-

continuous solutions at discrete points in space. As such, the methods provide a powerful tool 

for very easily obtaining accurate diffusive wave solutions in lieu of numerical integration when 

predictions are desired only at specific locations along the channel. The proposed methods are 

easy to implement and may be used in a variety of routing applications where accurate explicit 

symbolic solutions are desired for linear advection-diffusion at specific locations.  

1. Introduction 

The Saint Venant equations, also known as the dynamic wave model, are the governing 

equations for conservation of mass and momentum for unsteady open channel flow (Chanson, 

2004). Solving these equations requires large amounts of data to prescribe the fixed boundary 

conditions (BC) of channel geometry along the reach and elaborate numerical integration to 

ensure accuracy and convergence (Szymkiewicz, 2010). Over the years, simplified forms of the 

equations have been sought that can be used more easily in practical applications such as 

operational flood forecasting (Szymkiewicz, 2010). Among the most frequently used 



51 

simplifications is the diffusive wave approximation which neglects the inertial terms. Though a 

new more appropriate name “noninertia wave” has been proposed (Yen and Tsai 2001), the term 

“diffusive wave” is still widely used which we adopt here to avoid confusion. The diffusive wave 

model is attractive for a number of reasons (Cappelaere, 1997). It combines the system of 

equations into a single equation of a single state variable of flow or depth. The model describes 

translation and attenuation of flood waves with a single advection-diffusion equation for which 

many different solution techniques are available from multiple fields such as heat transfer 

(Ozisik, 1994), environmental engineering (Freijer et al., 1998) and biology (Mueller et al., 

2005). The model accounts for pressure gradients which have significant effects on propagation 

of flood waves in mild-sloped channels where the kinematic wave approximation breaks down. 

Lastly, the model provides a physically-based solution with minimum data requirements. 

Diffusive wave approximation has been shown to yield satisfactory results in a wide range of 

applications including operational canal control, real-time flood forecasting, overland flow 

modeling, modeling of stormwater runoff on impervious surfaces, and flood routing with lateral 

inflow and backwater effects. The spatial scale of application ranges from small catchments to 

the Amazon River Basin, and the types of catchments of application include urban, lowland, 

mountainous, and tropical catchments (Cheviron and Moussa, 2016). The recently launched 

National Water Model (Gochis et al. 2014) also uses diffusive wave model to route surface 

runoff to channels. 

Neglecting the inertial terms, one may reduce the Saint Venant equations (Chanson, 2004) 

to:  

 ∂
∂𝑡𝑡
𝑄𝑄(𝑥𝑥, 𝑡𝑡) = 𝐷𝐷

∂2

∂𝑥𝑥2
𝑄𝑄(𝑥𝑥, 𝑡𝑡) − 𝐶𝐶

∂
∂𝑥𝑥

𝑄𝑄(𝑥𝑥, 𝑡𝑡) + 𝐶𝐶𝐶𝐶 (1) 
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where Q(x,t) is the discharge at location x and time t (cms), x is the distance along the 

longitudinal direction of flow (m), t is the time (s), q is the constant lateral inflow (cms/m), C is 

the celerity (m/s) and D is the diffusivity in (m2/s). C is a measure of the speed of the flood 

wave and D is a measure of attenuation in the flood wave magnitude as it travels downstream. 

In general, C and D are not constant but functions of flow, channel geometry, roughness, and 

slope. Bajracharya and Barry (1997) argue that C and D affect flood predictions only 

marginally. The resulting diffusive wave equation of Eq. (1) with constant C and D is 

sometimes referred to as the Hayami equation (Litrico and Fromion, 2009). In this work, we 

assume that C and D are constant for derivation of quasi-analytical solutions. In the Discussion 

Section, we describe how the above assumption may be relaxed in practical applications. The 

partial differential equation (PDE) in Eq.(1) admits the initial condition (IC) and upstream BC 

of the following form: 

 𝑄𝑄(𝑥𝑥, 0) = 𝑞𝑞𝑞𝑞 

𝑄𝑄(0, 𝑡𝑡) = 𝑄𝑄0(𝑡𝑡) 
(2) 

The downstream BC may take on one of the following forms: 

 ∂𝑄𝑄
∂𝑥𝑥

|𝑥𝑥→∞ = 𝑞𝑞 

∂𝑄𝑄
∂𝑥𝑥

|𝑥𝑥→L = 𝑞𝑞 

𝑄𝑄(𝐿𝐿, 𝑡𝑡) = 𝑄𝑄𝐿𝐿(𝑡𝑡) 

(3a) 

(3b) 

(3c) 

Eqs. (3a) and (3b) are the Neumann BCs for a semi-infinite channel of 0 < x < ∞ and for a finite 

channel of length L (m), respectively. The Dirichlet BC of Eq.(3c) is applicable if the 

downstream flow is known as a function of time. The choice for the downstream BC has been 

one of the least well-established aspects of diffusive wave modeling because its prescription has 
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a limited theoretical basis as explained below. Combining the equations for conservation of 

mass and momentum into a single diffusive equation requires an additional differentiation step. 

The resulting higher-order spatial derivative requires an additional BC. Because an integration 

constant is lost during this additional differentiation, it is not possible to prescribe the BCs 

uniquely. For this reason, in practice the choice for the most appropriate BC is made problem-

specifically based on the intended application. 

The diffusive wave equation for finite domains with the Dirichlet BC of Eq. (3c), may be 

solved via separation of variables (SoV) (Fan and Li, 2006), analytical methods (Moussa, 1996; 

Moramarco et al., 1999; Chang and Yeh, 2014; Tingsanchali and Manandhar, 1985) or semi-

analytical methods (Kazezyılmaz-Alhan, 2012, Jia et al., 2013). The majority of such solution 

techniques cannot, however, handle the downstream Neumann BC of Eq. (3b). Also, to the best 

of the authors’ knowledge, all existing closed-form solutions for either the Neumann BC of Eq. 

(3b) or the Dirichlet BC of Eq. (3c) on a finite domain can only be expressed as infinite series 

(Fan  and Li, 2006; Chen and Liu, 2011). During the last decades, new solution methods have 

been developed and applied to the diffusion wave equation. They include various explicit and 

implicit numerical methods (Moussa and Bocquillon, 1996; Santillana and  Dawson, 2010; 

Novak et al., 2010;  Szymkiewicz, 2010), Hayami convolution (Moussa, 1997), the discrete 

Hayami convolution method (Wang et al., 2014), the fractional-step method (Moussa and 

Bocquillon, 2001), the Green’s function approach (Bull, 2016), the differential quadrature 

method (Hasanvand et al., 2013), and the mixing cell method (Singh et al., 1997, Wang et al., 

2003a, 2003b). The majority of the proposed solutions are, however, purely numerical. They are 

hence subject to numerical diffusion, oscillation, and instability (Novak et al., 2010) which 

become more important with rapid changes in the upstream BCs such as in flash flooding. 
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While many solution methods exist as described above, no general and practical methods 

currently exist for solving the diffusive wave equation that can easily handle a variety of 

downstream BCs. In this work, we propose two new quasi-analytical methods which provide 

approximate closed-form symbolic solutions for diffusive wave routing, the Laplace-

Transformed Continuous-Time Discrete-Space (LTCTDS) method and the Decoupled 

Continuous-Time Discrete-Space (DCTDS) method. Both methods produce explicit expressions 

for the diffusive wave equation valid at a set of nodes along the reach of interest subject to 

constant lateral inflow. Many routing applications in the real world seek routed hydrographs at 

specific locations, such as the National Weather Service’s (NWS) forecast points, within the 

channel system given the observed or predicted inflows. The proposed methods are very well-

suited for such routing applications in diffusive wave conditions (see for example Tsai 2003) in 

lieu of numerical models. The specific new contributions of the paper are as follows.  

Two new methods have been developed for explicit quasi-analytical solutions for the 

diffusion wave equation with a desired number of spatial nodes.  

The LTCTDS method follows the general methodology of Subramanian and White (2000) 

to offer approximate, quasi-analytical solutions to partial differential equations with Neumann 

or Dirichlet BCs on a finite domain at a number of discretized points by explicit-symbolic 

expressions. The proposed LTCDS method is the first time such a methodology is applied to the 

1D linear diffusive wave equation.  However, the proposed LTCDS method goes further to offer 

non-dimensionalized solutions to arbitrary inflow hydrographs with pulse approximation. 

The DCTDS method on the other hand, is similar to the methodology Salkuyeh (2006), 

Bazán (2008), and Gopaul et al. (2011) used for solving 1D convection diffusion equations with 

Dirichlet BCs on a finite domain with a new contribution in the fact that it adds the ability to 
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model Neumann BCs on a finite domain as well. Other innovative aspects of the DCTDS 

method are its non-dimensionalized form and the ability to prescribe arbitrary inflow 

hydrographs with pulse approximation or a family of functionalized inflow hydrographs. 

Similar to the LTCDS method, the DCTDS derived approximate solution is explicit, quasi-

analytical, and symbolic. 

In addition, a generic 5-node unit response function to a constant inflow is also proposed 

that can be used in general real world applications with minimal computational effort using the 

principle of superposition. Moreover, all the proposed explicit solutions to linear diffusive wave 

are analytical and continuous functions of time that do not suffer from numerical instabilities. 

Generally speaking, analytical solutions make an attractive case for convenient coding, real-

time forecasting and control applications, and implementation in large networks (Moramarco et 

al., 1999; Moussa, 2008). Since the methods presented in this paper are among the only choices 

for providing explicit solutions to the diffusive wave model with various BCs, they can be good 

candidates for when the above-mentioned advantages are needed. This paper is organized as 

follows: In Section 2, the classical solution of the diffusive wave model on a semi-infinite 

domain of Eq.(1) is given to provide background for the proposed methods. Sections 3 and 4 

describe derivations of the LTCTDS and DCTDS methods, respectively. Section 5 provides an 

example application and discussion. Section 6 conclusions and future research 

recommendations. 

 

2. Analytical solution for 1-dimensional linear diffusive wave for semi-infinite domain 

In this section, we derive the analytical solution for 1-dimensional (1D) diffusive wave for 

semi-infinite domain. While not new, the solution provides an important reference for both 
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development and validation of the new methods. The classical solution may be obtained using 

the Laplace transform method as described. Defining the auxiliary function f( ), we write Q(x,t) 

in Eq.(1) as: 

 𝑄𝑄(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓(𝑥𝑥, 𝑡𝑡) + 𝑞𝑞 𝑥𝑥 (4) 

Eq.(1) is then reduced to the following homogeneous PDE: 

 ∂
∂𝑡𝑡
𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝐷𝐷

∂2

∂𝑥𝑥2
𝑓𝑓(𝑥𝑥, 𝑡𝑡) − 𝐶𝐶

∂
∂𝑥𝑥

𝑓𝑓(𝑥𝑥, 𝑡𝑡) (5) 

 𝑓𝑓(𝑥𝑥, 0) = 0, 

𝑓𝑓(0, 𝑡𝑡) = 𝑄𝑄0(𝑡𝑡) 

∂𝑓𝑓
∂𝑥𝑥

|𝑥𝑥→∞ = 0 

(6) 

To render the above PDE to an ordinary differential equation (ODE), we define the Laplace 

transform of f(x,t): 

 
𝑢𝑢(𝑥𝑥) = ℒ[𝑓𝑓(𝑥𝑥, 𝑡𝑡)] = � 𝑓𝑓(𝑥𝑥, 𝑡𝑡)𝑒𝑒−𝑠𝑠 𝑡𝑡𝑑𝑑𝑑𝑑

∞

0
 (7) 

With Eq.(7), we may rewrite Eq.(5) in terms of x only: 

 
𝐷𝐷

d2

d𝑥𝑥2
𝑢𝑢(𝑥𝑥) − 𝐶𝐶

d
d𝑥𝑥

𝑢𝑢(𝑥𝑥) − 𝑠𝑠𝑠𝑠(𝑥𝑥) = 0 (8) 

where the Laplace domain variable s may be treated as a constant. The ODE described by Eq. 

(8) admits the following solution: 

 
𝑢𝑢(𝑥𝑥) = 𝐴𝐴1e

(𝐶𝐶+√𝐶𝐶2+4𝐷𝐷𝐷𝐷)𝑥𝑥
2𝐷𝐷 + 𝐴𝐴2e

(𝐶𝐶−√𝐶𝐶2+4𝐷𝐷𝐷𝐷)𝑥𝑥
2𝐷𝐷  (9) 

where 𝐴𝐴1 and 𝐴𝐴2 are the integration constants. For a constant inflow of 𝑄𝑄0(𝑡𝑡) = 𝑄𝑄0, the 

transformed BCs are: 
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𝑢𝑢(0) =

𝑄𝑄0
𝑠𝑠

,
d

d𝑥𝑥
𝑢𝑢(𝑥𝑥)|𝑥𝑥→∞ = 0 (10) 

Using the above BCs, the constants 𝐴𝐴1 and 𝐴𝐴2 may be determined as: 

 
𝐴𝐴1 = 0, 𝐴𝐴2 =

𝑄𝑄0
𝑠𝑠

 (11) 

The first condition in Eq.(11), 𝐴𝐴1 = 0, may also be arrived at from physically-based reasoning 

in that, at the end of a very long channel, the effect of inflow is negligible. A mathematical 

explanation may also be made using the first term in the right hand side of Eq.(9) in that, if A1 is 

nonzero, u(x) diverges as 𝑥𝑥 → ∞. Given that the response of the system must be finite, one may 

conclude that 𝐴𝐴1 must be zero. This is consistent with the observation made by Hasanvand et al. 

(2013) regarding multiple efforts made by previous researchers to eliminate the need for 

downstream BCs. In other words, there exists an intrinsic incompatibly within the intended 

application of diffusive wave routing and the theory of partial differential equations that 

necessitates the availability of BCs in both ends of the channel. For example, the diffusive wave 

is essentially used for modelling subcritical flows. However, subcritical flows are controlled 

from downstream, which is in contrast with the above mentioned explanation for 𝐴𝐴1 = 0 in an 

infinite domain. Moreover, with the analytical formulation above, prescribing a known 

downstream boundary condition at infinity is physically meaningless, although the theory of 

open channel hydraulics dictates such a condition for subcritical flows.   

 With the BCs obtained in Eq. (11), we have for u(x): 

 
𝑢𝑢(𝑥𝑥) =

𝑄𝑄0
𝑠𝑠
𝑒𝑒
�𝐶𝐶−√𝐶𝐶2+4𝐷𝐷𝐷𝐷�𝑥𝑥

2𝐷𝐷  
(12) 
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Inverse-transforming the Laplace-domain solution, we arrive at the following solution for Eq. 

(5): 

 
𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝑄𝑄0 �1 −

1
2

erfc �
𝐶𝐶𝐶𝐶 − 𝑥𝑥
2√𝐷𝐷𝐷𝐷

� +
1
2
𝑒𝑒
𝐶𝐶𝐶𝐶
𝑑𝑑 erfc �

𝐶𝐶𝐶𝐶 + 𝑥𝑥
2√𝐷𝐷𝐷𝐷

�� (13) 

In the above, erfc denotes the complementary error function: 

 
erfc (𝜒𝜒) =

2
√π

� 𝑒𝑒−𝜏𝜏2𝑑𝑑𝑑𝑑
∞

𝜒𝜒
 (14) 

By dividing f(x,t) with Q0, we may define the following system response function due to a 

constant unit inflow:  

 
𝑟𝑟(𝑥𝑥, 𝑡𝑡) =

𝑓𝑓(𝑥𝑥, 𝑡𝑡)
𝑄𝑄0

= 1 −
1
2

erfc �
𝐶𝐶𝐶𝐶 − 𝑥𝑥
2√𝐷𝐷𝐷𝐷

� +
1
2
𝑒𝑒
𝐶𝐶𝐶𝐶
𝑑𝑑 erfc �

𝐶𝐶𝐶𝐶 + 𝑥𝑥
2√𝐷𝐷𝐷𝐷

� (15) 

If the channel reach is so long that the effects of downstream BC may safely be neglected, 

𝑟𝑟(𝑥𝑥, 𝑡𝑡) may be used as the unit response function to a unit step inflow as shown in Fig 1. This 

result will be used in the following sections to obtain routed flow for an arbitrary inflow via the 

method of superposition. Finally, replacing f(x, t) in Eq. (15) with Q(x,t) using Eq. (4), we have 

the solution for the linear diffusive wave equation on an infinite channel with constant upstream 

and lateral inflows: 

 𝑄𝑄(𝑥𝑥, 𝑡𝑡) = 𝑄𝑄0𝑟𝑟(𝑥𝑥, 𝑡𝑡) + 𝑞𝑞𝑞𝑞

= 𝑄𝑄0 �1 −
1
2

erfc �
𝐶𝐶𝐶𝐶 − 𝑥𝑥
2√𝐷𝐷𝐷𝐷

� +
1
2
𝑒𝑒
𝐶𝐶𝐶𝐶
𝑑𝑑 erfc �

𝐶𝐶𝐶𝐶 + 𝑥𝑥
2√𝐷𝐷𝐷𝐷

��

+ 𝑞𝑞 𝑥𝑥 

(16) 

The above solution, however, does not hold for a finite channel which necessitates the search 

for new solution methods which is described below. 
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3. Continuous-Time Discrete-Space Methods 

Many flood routing problems in the real world seek routed hydrographs at specific 

locations within the channel system in response to arbitrary upstream inflows that are observed 

or predicted in real-time. In such cases, we may eliminate the space variable x and transform the 

PDE of Eq. (1) into a system of ODEs in time. To eliminate the space variable x, we use in this 

work the central finite difference approximation at equidistant nodes. Other forms of finite 

differencing or arbitrarily spaced nodes are also possible. The resulting system of ODEs at 

discretization nodes are then solved via two new methods, i.e., the Laplace transform method 

and the decoupling method which  are presented in Sections 3.1 and 3.2, respectively. 

3.1 Laplace Transformed Continuous-Time Discrete-Space (LTCTDS) Method 

We first non-dimensionalize Eq. (5) by newly defining the following state variables: 

 
𝑋𝑋 =

𝑥𝑥
𝐿𝐿

 ,𝑇𝑇 =
𝐶𝐶 𝑡𝑡
𝐿𝐿

 (17) 

With Eq.(17), Eq.(5) is rendered to its non-dimensional equivalent as follows: 

 ∂
∂𝑇𝑇

𝑓𝑓(𝑋𝑋,𝑇𝑇) =
1

Pe
∂2

∂𝑋𝑋2
𝑓𝑓(𝑋𝑋,𝑇𝑇) −

∂
∂𝑋𝑋

𝑓𝑓(𝑋𝑋,𝑇𝑇) 

𝑓𝑓(𝑋𝑋, 0) = 0 

𝑓𝑓(0,𝑇𝑇) = 𝑄𝑄0(𝑇𝑇) 

∂𝑓𝑓
∂𝑋𝑋

|𝑋𝑋→1 = 0 

(18) 

The main advantage of this non-dimensional form is that we have scaled the length to be  

0 < 𝑋𝑋 < 1. In addition, this form is easier to manipulate since three parameters (C, D, and L) 

have been combined and represented in the compact form of  
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Pe =

𝐶𝐶𝐶𝐶
𝐷𝐷

 (19) 

where Pe denotes the Peclet number. The Peclet number, which has been extensively studied 

(Szymkiewicz, 2010), is a dimensionless ratio of the advective component to the diffusive 

component in the advection-diffusion process. Applying the Laplace transform (Subramanian 

and White, 2000) to Eq. (18) and rearranging the terms, we have: 

 1
Pe

d2

d𝑋𝑋2
𝑢𝑢(𝑋𝑋) −

d
d𝑋𝑋

𝑢𝑢(𝑋𝑋) − 𝑠𝑠 𝑢𝑢(𝑋𝑋) = 0 (20) 

where 𝑢𝑢(𝑋𝑋) = ℒ[𝑓𝑓(𝑥𝑥, 𝑡𝑡)] as defined in Eq. (7). Discretizing Eq.(20) via central finite 

differencing with spatial resolution of ℎ = 1/𝑁𝑁 for N equidistant nodes, we may approximate 

Eq.(20) as: 

 𝑢𝑢𝑖𝑖−1 − 2𝑢𝑢𝑖𝑖 + 𝑢𝑢𝑖𝑖+1
Pe ℎ2

−
𝑢𝑢𝑖𝑖+1 − 𝑢𝑢𝑖𝑖−1

2ℎ
− 𝑠𝑠𝑢𝑢𝑖𝑖 = 0 (21) 

For example, for a 5-point discretization Eq. (21) and the transformed BCs of 𝑢𝑢0 = 1/𝑠𝑠 and 

d
d𝑋𝑋
𝑢𝑢5 = 0 form the following system of linear equations: 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−4 −

2Pe 𝑠𝑠
25

2 −
Pe
5

0 0 0

2 +
Pe
5

−4 −
2Pe 𝑠𝑠

25
2 −

Pe
5

0 0

0 2 +
Pe
5

−4 −
2Pe 𝑠𝑠

25
2 −

Pe
5

0

0 0 2 +
Pe
5

−4 −
2Pe 𝑠𝑠

25
2 −

Pe
5

0 0 1 −4 3 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
𝑢𝑢4
𝑢𝑢5⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡−

10 + Pe
5𝑠𝑠
0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎤

 

(22) 
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In order to obtain a closed-form solution for Eq.(22), we use symbolic algebra. Symbolic 

algebra is a process during which the variables are kept in their symbolic form while 

undergoing algebraic manipulation. The results are expressed in terms of symbols that can be 

valid for all the numerical values within each symbol’s domain which usually encompasses 

infinite possibilities. On the other hand, if the symbols are assigned numeric values from the 

beginning, arithmetic computations must be repeated for each value and the results are valid 

only for those finite numbers of assigned values that were prescribed. In addition, symbolic 

solutions require less processing and memory demand due to the fact that the processes 

involved in evaluating mathematical expressions are more efficient than solving systems of 

equations.  There are multiple readily available software packages such as Mathematica, Maple, 

and Matlab for symbolic algebra. The resulting exact symbolic solution describes the response 

of the linear diffusive wave model at five uniformly-spaced discretized points in Laplace 

domain: 

⎣
⎢
⎢
⎢
⎡
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
𝑢𝑢4
𝑢𝑢5⎦
⎥
⎥
⎥
⎤

= 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡5(Pe + 10)(Pe3(12𝑠𝑠3 + 40𝑠𝑠2 + 175𝑠𝑠 + 250) + 50Pe2(28𝑠𝑠2 + 70𝑠𝑠 + 125) + 12500Pe(3𝑠𝑠 + 4) + 125000)

2𝜂𝜂𝜂𝜂
25(Pe + 10)2(Pe2(3𝑠𝑠2 + 10𝑠𝑠 + 25) + 25Pe(8𝑠𝑠 + 15) + 1250)

𝜂𝜂𝜂𝜂
125(Pe + 10)3(Pe (3𝑠𝑠 + 10) + 50)

2𝜂𝜂𝜂𝜂
625(Pe + 5)(Pe + 10)3

𝜂𝜂𝜂𝜂

−
125(Pe + 10)3(Pe (𝑠𝑠 − 10) − 50)

2𝜂𝜂𝜂𝜂 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(23) 

where  
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 𝜂𝜂 = 3125000 + 62500Pe(25 + 24𝑠𝑠) + 6250Pe2(45 + 32𝑠𝑠 + 16𝑠𝑠2)

+ 125Pe3(175 + 160𝑠𝑠 + 44𝑠𝑠2 + 16𝑠𝑠3) + Pe4(625 + 500𝑠𝑠

+ 250𝑠𝑠2 + 40𝑠𝑠3 + 12𝑠𝑠4) 

(24) 

Eq. (23) may be back-transformed into the time domain using inverse Laplace transform by 

taking advantage of the fact that the rational polynomials of Laplace domain in Eq. (23) have 

closed-form inverse Laplace solutions. The resulting explicit solution is of particular interest for 

the last point, 𝑢𝑢5, or the most downstream location: 

 𝑓𝑓(𝑋𝑋 = 1,𝑇𝑇) = 1

+
1

24Pe3
�
𝑘𝑘(𝑚𝑚4)𝑒𝑒𝑚𝑚4𝑇𝑇

𝑚𝑚14𝑚𝑚24𝑚𝑚34
−
𝑘𝑘(𝑚𝑚3)𝑒𝑒𝑚𝑚3𝑇𝑇

𝑚𝑚13𝑚𝑚23𝑚𝑚34
+
𝑘𝑘(𝑚𝑚2)𝑒𝑒𝑚𝑚2𝑇𝑇

𝑚𝑚12𝑚𝑚23𝑚𝑚24

−
𝑘𝑘(𝑚𝑚1)𝑒𝑒𝑚𝑚1𝑇𝑇

𝑚𝑚12𝑚𝑚13𝑚𝑚14
� 

(25) 

In Eq.(25), m1, m2, m3, and m4 denote the roots of Ω(m) = 0, mij = mi - mj , and k(m) and Ω(m) 

are given by: 

 𝐾𝐾(𝑚𝑚) = Pe3 𝛹𝛹(𝑚𝑚) + 250Pe2 𝜔𝜔(𝑚𝑚) + 12500Pe 𝜃𝜃(𝑚𝑚) + 3125000 

Ω(m) = 3125000 + 1562500Pe + 281250Pe2 + 21875Pe3 + 625Pe4

+ (1500000Pe + 200000Pe2 + 20000Pe3 + 500Pe4)m

+ (100000Pe2 + 5500Pe3 + 250Pe4)m2 + (2000Pe3

+ 40Pe4)m3 + 12Pe4m4 

(26a) 

 

(26b) 

In Eqs.(26), Ψ(m), ω(m), and θ(m) are given by: 

 𝛹𝛹(𝑚𝑚) = 24m3 + 80m2 + 500m + 1125 

𝜔𝜔(𝑚𝑚) = 16 m2 + 44 m + 175 

𝜃𝜃(𝑚𝑚) = 16 m + 35 

(27a) 

(27b) 

(27c) 
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For Pe ≥ 10, the roots of Eq. (26b) become imaginary (see Fig 2). As such, Eq. (25) is valid 

only for Pe < 10. Similar results can be obtained for any spatial discretization. For any value of 

the Pe number, at least ⌈Pe/2⌉ + 1  nodes, where ⌈ ⌉  denotes the ceiling operator, are required 

to produce a real-valued response function for a single application of the LTCTDS method. 

Because Pe is directly proportional to the length of the channel, for larger values of the Pe 

number it is necessary to subdivide the channel and apply the LTCTDS method to each 

subreach successively from up- to downstream to ensure that the Pe number stays within the 

valid range. In practice, the above constraint does not pose a limitation as the response functions 

obtained via symbolic algebra can be programmed only once and run in real-time repeatedly 

each time using the appropriate IC and BCs.  

To route the inflow hydrograph of any shape using the unit response function derived 

above, we use a linear systems approach similar to the unit hydrograph theory (Chow et al., 

1988) or the linear operator method (Singh et al., 1997; Kazezyılmaz-Alhan, 2012). Any inflow 

hydrograph 𝑄𝑄0(𝑡𝑡) within some time window may be approximated by a series of pulses to a 

desired level of resolution. Any observational data would in fact consist of a series of pulses due 

to the finite temporal sampling intervals. One may hence express any inflow hydrograph as: 

 𝑄𝑄0(𝑡𝑡) = 𝐼𝐼0𝑟𝑟(𝑡𝑡) + (𝐼𝐼1 − 𝐼𝐼0) 𝑟𝑟(𝑡𝑡 − 𝛥𝛥𝛥𝛥) + (𝐼𝐼2 − 𝐼𝐼1) 𝑟𝑟(𝑡𝑡 − 2𝛥𝛥𝛥𝛥)⋯ (28) 

where 𝐼𝐼𝑖𝑖 is the magnitude of the i-th pulse, 𝑟𝑟(𝑡𝑡) is the response to a unit step function, and 𝛥𝛥𝛥𝛥 is 

the time step. Because the total response to a series of pulses is equal to the superposition of the 

responses to each individual pulses owing to the linear nature of the linear diffusive wave 

equation, one may calculate the response to any 𝑄𝑄0(𝑡𝑡) using only the unit response function 

𝑟𝑟(𝑡𝑡) in a manner completely analogous to Chow et al.(1988) or the linear operator method of 

Singh et al. (1997). To illustrate, Fig 3 shows the unit response functions 𝑟𝑟(𝑡𝑡) obtained from the 
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quasi-analytical solution of the LTCTDS method for a 10-node discretization. Fig 4 shows how 

the principles of proportionality and superposition may be applied to any such unit response 

functions. Note in Fig 4 that, the response of the system to a unit pulse of duration 𝛥𝛥𝛥𝛥 = 100 

can be obtained by the first two terms of the right-hand side of Eq. (28) by summing the unit 

step function at t=0 and the negative unit step function at t=100. 

To test the LTCTDS method, a synthetic inflow hydrograph (see Fig 5) is prescribed as the 

upstream BC. For comparison, the diffusive wave equation with the same inflow BC was solved 

numerically using the method of lines (Wolfram Research, Inc., 2017) (see Fig 6). The results 

show a strong agreement between the numerical solution and the quasi-analytical solution from 

the LTCTDS method (Fig 7). Note that the y-axis is in logarithmic scale, and that those regions 

where the differences are near-zero (i.e., perfect agreement) have been cut off to highlight only 

the noticeable differences. It is interesting to note that the differences are the smallest when the 

peak flow passes the downstream sections between t=200 (s) and t=300 (s), and that the largest 

differences are associated with the sharp edges in the first few upstream sections. The largest 

differences are due largely to the inaccuracies associated with numerical integration when there 

are sharp edges in the inflow BC where the gradients may be discontinuous. In purely numerical 

approaches, treatment of such edges requires refinement of the computational mesh. The quasi-

analytical response functions, on the other hand, do not suffer from such limitations. Fig 8 

shows an example comparison among the 5-node LTCTDS solution, the 10-node LTCTDS 

solution and the numerical solution for the most downstream location.  At other nodes within 

the channel, similar accuracies could be obtained using the 5-node LTCTDS solution by 

adjusting the Pe number for shorter channel lengths. The figure indicates that thhe LTCTDS 

method is able to produce high-quality solutions even with relatively coarse spatial 
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discretization. Fig 9 shows the effect of the Peclet number on the 5-node LTCTDS-derived unit 

response function. Larger advective effects (and hence larger Pe numbers) results in the wave 

front traveling downstream faster whereas larger diffusivity (and hence smaller Pe numbers) 

result in larger degrees of attenuation of the peak.Fig 9 also shows a slight drawback of the 

solution in Eq. (25). For small values of dimensionless time of 𝑇𝑇 <  0.00017𝑃𝑃𝑃𝑃3  −

 0.00423𝑃𝑃𝑃𝑃2  +  0.04690𝑃𝑃𝑃𝑃 +  0.00243, the unit response function becomes slightly negative. 

Because this solution is for the downstream end of the channel, the response function is almost 

certainly zero over the time interval above. Therefore, this very minor artifact can easily be 

addressed in practice by forcing any negative responses to be zero. 

For a large number of nodes, the symbolic derivation of the inverse Laplace transform may 

become unstable. Even if the inversion is simplified by specifying the Peclet number 

numerically, numerical errors start to appear in the unit response function for small T and grow 

larger as N increases. This is because, as the level of discretization increases, the NxN matrix in 

the lefthand side of Eq.(22) becomes numerically nearly singular as the model states between 

two adjacent locations become nearly identical. Because a finer spatial mesh descretization is 

required for larger Peclet numbers, the above loss of accuracy limits the universal applicibilty of 

LTCTDS method. Although there exist numerical methods for approximating the symbolic 

solution of inverse Laplace trasform (Kazezyılmaz-Alhan 2012), an additional numerical 

inversion step may negate any additional gains from explicit symbolic methods. In such cases, 

symbolic approaches may not offer any significant advantages over purely numerical methods 

or even analytical solutions of partial sums of infitie series derived from SoV-based methods for 

semi-infinite domain. The further interested reader is referred to Hassanzadeh and Pooladi-

Darvishi (2007) and Wang and Zhan (2015) which include comparison of several different 



66 

numerical Laplace inversion methods applied to advection-diffusion equations. The DCTDS 

method described below is developed to address the above shortcomings of the LTCTDS 

method. 

3.2 Decoupled Continuous-Time Discrete-Space (DCTDS) Method 

As in the LTCTDS method, we first discretize the PDE into a system of ODEs. 

Approximating the spatial derivative in Eq.(18) via central finite differencing over a grid of N 

internal points with the (N+1)th point representing the most downstream location, we have: 

 𝑑𝑑2

𝑑𝑑𝑋𝑋2
𝑓𝑓𝑖𝑖(𝑇𝑇) =

𝑓𝑓𝑖𝑖+1(𝑇𝑇) − 2𝑓𝑓𝑖𝑖(𝑇𝑇) + 𝑓𝑓𝑖𝑖−1(𝑇𝑇)
ℎ2

 (29) 

where 𝑓𝑓𝑖𝑖(𝑇𝑇) = 𝑓𝑓(𝑋𝑋𝑖𝑖,𝑇𝑇) and h=1/(N+1). Using the 3-term backward scheme (Subramanian and 

White, 2000) for the derivative for the last node, we have: 

 𝑓𝑓𝑁𝑁−1(𝑇𝑇) − 4𝑓𝑓𝑁𝑁(𝑇𝑇) + 3𝑓𝑓𝑁𝑁+1(𝑇𝑇) = 0 (30) 

After some manipulation, Eq. (18) may be written in the following matrix form: 

 𝑑𝑑
𝑑𝑑𝑑𝑑

𝒇𝒇 =
1

Pe ℎ2
(𝑨𝑨𝑨𝑨 + 𝒇𝒇𝟎𝟎) (31) 

where f is the transpose of the vector (f1(T), f2(T),…, fN(T)), and the NxN matrix A and the Nx1 

vector f0 are given by: 

 

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −2 1 −

ℎPe
2

0 ⋯ 0 0 0

1 +
ℎPe

2
−2 1 −

ℎPe
2

⋱ 0 0 0
⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮

0 0 0 ⋯ 1 +
ℎPe

2
−2 1 −

ℎPe
2

0 0 0 … 0
2(1 + ℎPe)

3
−

2(1 + ℎPe)
3 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑁𝑁×𝑁𝑁

 (32a) 
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𝒇𝒇𝟎𝟎 =

⎣
⎢
⎢
⎡
𝑓𝑓1,0
𝑓𝑓2,0
⋮
𝑓𝑓𝑁𝑁,0⎦

⎥
⎥
⎤

𝑁𝑁×1

=

⎣
⎢
⎢
⎢
⎡�1 +

ℎPe
2
�𝑄𝑄0(𝑇𝑇)

0
⋮
0 ⎦

⎥
⎥
⎥
⎤

𝑁𝑁×1

 (32b) 

Eq. (31) represents a coupled system of differential equations which in general can only be 

solved numerically. In this work, we use eigenvalue decomposition of A to orthogonalize, or 

decouple, the system of equations for analytical solution. As Eqs. (29) and (30) show, every 

component of the system of differential equations of Eq. (31) includes more than one unknown 

elements of vector f. However, if the system can be simplified to a diagonalized form, the 

differential equations become decoupled so that each one contains only one unknown fi. In 

order to diagonalize the system of equations, the matrix A may be eigenvalue-decomposed as: 

 𝑨𝑨 = 𝑷𝑷𝑷𝑷𝑷𝑷−𝟏𝟏 (33) 

Eq.(31) may then be written as: 

 𝑑𝑑
𝑑𝑑𝑑𝑑
𝒇𝒇 =

1
Pe ℎ2

(𝑷𝑷𝑷𝑷𝑷𝑷−𝟏𝟏𝒇𝒇 + 𝒇𝒇𝟎𝟎) (34) 

In the above, Z is the diagonal matrix of eigenvalues and P is the column-wise augmented 

matrix of the corresponding eigenvectors (Meyer, 2000): 

 

𝒁𝒁 = �

𝜆𝜆1 0 0 ⋯ 0
0 𝜆𝜆2 0 ⋱ 0
⋮ ⋱ ⋱ ⋱ ⋮
0 0 0 0 𝜆𝜆𝑁𝑁

� (35) 

 

 𝑷𝑷 = [𝑷𝑷𝟏𝟏|𝑷𝑷𝟐𝟐⋯𝑷𝑷𝐍𝐍−𝟏𝟏|𝑷𝑷𝑵𝑵] (36) 

Owing to the fact that A is symmetric and tri-diagonal, we may obtain the eigenvalues 

analytically using the Chebyshev polynomials of the second type (Kulkarni et al., 1999): 
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𝑈𝑈𝑚𝑚(𝑥𝑥) =

sin�(𝑚𝑚+1)cos−1 𝑥𝑥�

sin(cos−1 𝑥𝑥)  for |𝑥𝑥| ≤ 1 (37) 

where 𝑈𝑈𝑚𝑚(𝑥𝑥) is the second type Chebyshev polynomial of order m. Using Kulkarni et al.(1999), 

one may obtain the characteristic equation of matrix A: 

 

𝑈𝑈𝑁𝑁−1

⎝

⎜
⎜
⎛
− 2

�4 − Pe2
(1 + 𝑁𝑁)2

− 𝜆𝜆
2

⎠

⎟
⎟
⎞

𝑈𝑈𝑁𝑁−2

⎝

⎜
⎜
⎛
− 2

�4 − Pe2
(1 + 𝑁𝑁)2

− 𝜆𝜆
2

⎠

⎟
⎟
⎞

= −

4(1 + 𝑁𝑁)(1 + Pe
1 + 𝑁𝑁)�4 − Pe2

(1 + 𝑛𝑛)2

(2 + 2𝑁𝑁 + Pe)�28 + 4Pe
1 + 𝑁𝑁 + 3�4 − Pe2

(1 + 𝑁𝑁)2 𝜆𝜆�

 (38) 

The eigenvalues of A are given by the ordered roots of Eq. (38).  It is worth mentioning that the 

roots of the function 𝑈𝑈𝑁𝑁−2 �−
2

�4− Pe2

(1+𝑁𝑁)2

− 𝜆𝜆
2
�  which have analytical expressions prescribe the 

feasible ranges for root finding algorithms. Fig 10 shows three examples of root finding for 

determination of the eigenvalues with different combinations of Pe and N. An additional 

advantage of using Eq. (38) is that it provides the theoretical bound for minimum N to ensure 

real-valued solution, i.e., 𝑁𝑁 > Pe
2
− 1. Since A is non-singular, there always exists a matrix P 

that satisfies: 

 𝒇𝒇 = 𝑷𝑷𝑷𝑷 (39) 

By substituting Eq. (39) in Eq. (34), we then have: 

 
𝑷𝑷
𝑑𝑑
𝑑𝑑𝑑𝑑

𝒗𝒗 =
1

Pe ℎ2
(𝑷𝑷𝑷𝑷𝑷𝑷+ 𝒇𝒇𝟎𝟎) (40) 

Pre-multiplying 𝑷𝑷−𝟏𝟏 to both sides of Eq. (40), we have: 
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 𝑑𝑑
𝑑𝑑𝑑𝑑

𝒗𝒗 =
1

Pe ℎ2
(𝒁𝒁𝒁𝒁 + 𝒗𝒗𝟎𝟎) (41) 

where 

 𝒗𝒗𝟎𝟎 = 𝑷𝑷−𝟏𝟏𝒇𝒇𝟎𝟎 (42) 

Because Z is diagonal, the system of N first-order differential equations may be decoupled into 

the n simple ODEs of the following form: 

 𝑑𝑑
𝑑𝑑𝑑𝑑

𝑣𝑣𝑖𝑖(𝑇𝑇) =
1

Pe ℎ2
�𝜆𝜆𝑖𝑖𝑣𝑣𝑖𝑖(𝑇𝑇) + w𝑖𝑖𝑄𝑄0(𝑇𝑇)� (43) 

Furthermore, for a constant uniform inflow it may be shown that: 

 𝑑𝑑
𝑑𝑑𝑑𝑑

𝑣𝑣𝑖𝑖(𝑇𝑇) =
1

Pe ℎ2
(𝜆𝜆𝑖𝑖𝑣𝑣𝑖𝑖(𝑇𝑇) + 𝑤𝑤𝑖𝑖) (44) 

where 𝑤𝑤𝑖𝑖 is a constant. Eq. (44) has the following analytical solution: 

 
𝑣𝑣𝑖𝑖(𝑇𝑇) =

𝑤𝑤𝑖𝑖(𝑒𝑒
𝑇𝑇𝜆𝜆𝑖𝑖
ℎ2Pe − 1)
𝜆𝜆𝑖𝑖

 (45) 

Using 𝒇𝒇 = 𝑷𝑷𝑷𝑷  and substituting f(x,t) back in Eq. (4), we may obtain the set of response 

functions to a constant inflow at all internal nodes. The solution at the most downstream point, 

which is often the most important for flood routing, is given solving Eq. (30) for fN+1 and by: 

 
𝑄𝑄𝐿𝐿(𝑡𝑡) = 𝑞𝑞𝑞𝑞 −

𝑓𝑓 �𝑥𝑥𝑁𝑁−1,𝐶𝐶 𝑡𝑡
𝐿𝐿 �

3
+

4𝑓𝑓 �𝑥𝑥𝑁𝑁 ,𝐶𝐶 𝑡𝑡
𝐿𝐿 �

3
 (46) 

The solution for the diffusion wave equation at the N+1 discretized points to a series of 

arbitrary pulsed inflows may be obtained using the principle of superposition as described in the 

previous subsection. As expected, the response functions are summations of N+1 exponential 

terms.  

In the above, the DCTDS method is described in the context of routing a unit inflow 

hydrograph. The same method may also be used to route more complex inflow hydrographs. 
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For example, many studies (Szymkiewicz, 2010; Hasanvand et al., 2013; Perumal and Sahoo, 

2007) have used generic functions as inflow hydrographs such as a Pearson Type-III 

distribution: 

 
𝑄𝑄0(𝑇𝑇) = 𝑄𝑄0(𝑇𝑇 = 0) + �𝑄𝑄𝑇𝑇𝑇𝑇 − 𝑄𝑄0(𝑇𝑇 = 0)� �

𝑇𝑇
𝑇𝑇𝑇𝑇
� 𝑒𝑒1−�

𝑇𝑇
𝑇𝑇𝑇𝑇� (47) 

where 𝑄𝑄𝑇𝑇𝑇𝑇 is the peak flow and 𝑇𝑇𝑇𝑇 is the dimensionless time-to-peak. For the above inflow 

hydrograph, the solution to Eq. (43) is given by: 

 
𝑣𝑣𝑖𝑖(𝑇𝑇) = −

𝑤𝑤𝑖𝑖 𝑒𝑒
1−� 𝑇𝑇𝑇𝑇𝑇𝑇�

(ℎ2Pe + 𝑇𝑇𝑇𝑇𝜆𝜆𝑖𝑖)2
�ℎ2Pe�𝑇𝑇 + 𝑇𝑇𝑇𝑇�1 − 𝑝𝑝 𝑒𝑒

�� 𝑇𝑇𝑇𝑇𝑇𝑇�+
 𝑇𝑇𝜆𝜆𝑖𝑖
ℎ2Pe��� + 𝑇𝑇 𝜆𝜆𝑖𝑖𝑇𝑇𝑇𝑇� (48) 

As an example application, we now consider an inflow hydrograph of 𝑄𝑄0(𝑡𝑡) = 5 +

95 � 𝑡𝑡
600
� 𝑒𝑒1−�

𝑡𝑡
600�  where t is time (s) and the flow (cms) increases from the initial value of 5 

(cms) to a peak flow of 100 (cms) at t=600 (s). Following the properties of the hypothetical 

channel analyzed in Szymkiewicz (2010), we assume C=1.88 m/s and D= 2100 m2/s and the 

length of the channel to be 10 km. After non-dimensionalizing the hydrograph using Eq. (17), 

solving with a 15-node DCTDS method, and finally back-transforming to the dimensional form, 

we obtain the explicit solution shown in Fig 11. The figure shows a very close agreement with 

the numerical solution obtained via the method of lines with a maximum difference of about 

0.634 (cms) (see Fig 12). In Appendix, we provide analytical solutions of the Eq. (43) for 

different types of inflow hydrographs using the DCTDS methodology. They includes solutions 

for generic inflow of the functional forms of 𝑇𝑇𝑟𝑟𝑒𝑒𝑘𝑘𝑘𝑘,  𝑒𝑒𝑘𝑘 𝑇𝑇2+𝑗𝑗,  𝑇𝑇𝑒𝑒𝑘𝑘 𝑇𝑇2+𝑗𝑗, 𝑇𝑇2𝑒𝑒𝑘𝑘 𝑇𝑇2+𝑗𝑗, sin(𝑘𝑘𝑘𝑘), 

and cos(𝑘𝑘𝑘𝑘). Note that many other functions may be constructed using these generic functions 

following approximations using Taylor series expansion, Fourier transform, Legendre 

polynomials, and Chebyshev polynomials (Hamming, 2012; Komzsik, 2006).  
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3.3 Dirichlet boundary condition downstream 

The development above deals with the Neumann BCs at the downstream point. The CTDS 

methods can still be used when the downstream BC is a known function of time. An analytical 

Laplace-based solution is already available when the downstream depth is available (Cimorelli 

et al., 2014). Here we describe an alternative solution using DCTDS. In this case, the problem 

becomes one of boundary-value advection-diffusion in which the matrix A is a standard tri-

diagonal matrix whose diagonal eigenvalue matrix is given by the following (Meyer, 2000): 

 𝜆𝜆𝑖𝑖 = −2 + 2cos(
𝑖𝑖𝑖𝑖

𝑁𝑁 + 1
) (49) 

where λi denotes the i-th eigenvalue, i=1,…,N. The i-th column, Pi, of the eigenvalue vector, P, 

is given by: 

 

𝑷𝑷𝒊𝒊 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡sin(

𝑖𝑖𝑖𝑖
𝑁𝑁 + 1

)

sin(
2𝑖𝑖𝑖𝑖
𝑁𝑁 + 1

)
⋮

sin(
𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁 + 1

)⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (50) 

In practice, a known downstream BC is often available for depth-based diffusive wave with 

backwater consideration: 

 ∂
∂𝑇𝑇

𝑦𝑦(𝑋𝑋,𝑇𝑇) =
1

Pe 
∂2

∂𝑋𝑋2
𝑦𝑦(𝑋𝑋,𝑇𝑇) −

∂
∂𝑋𝑋

𝑦𝑦(𝑋𝑋,𝑇𝑇) 

𝑦𝑦(𝑋𝑋, 0) = 𝑦𝑦𝑡𝑡0(𝑋𝑋) 

𝑦𝑦(0,𝑇𝑇) = 𝑦𝑦0(𝑇𝑇) 

𝑦𝑦(1,𝑇𝑇) = 𝑦𝑦𝐿𝐿(𝑇𝑇) 

(51) 
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where y denotes the depth and the rest of the symbols have already been defined. The solution 

process is analogous to that above except for: 

 

𝒇𝒇𝟎𝟎 =

⎣
⎢
⎢
⎢
⎡
𝑓𝑓1,0
𝑓𝑓2,0
⋮

𝑓𝑓𝑁𝑁−1,0
𝑓𝑓𝑁𝑁,0 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑦𝑦𝑡𝑡0(𝑋𝑋1) + 𝑦𝑦0(𝑇𝑇)

𝑦𝑦𝑡𝑡0(𝑋𝑋2)
⋮

𝑦𝑦𝑡𝑡0(𝑋𝑋𝑁𝑁−1)
𝑦𝑦𝑡𝑡0(𝑋𝑋𝑁𝑁) + 𝑦𝑦𝐿𝐿(𝑇𝑇)⎦

⎥
⎥
⎥
⎤

 (52) 

Owing to the availability of the closed-form expressions in Eqs. (49) and (50), the DCTDS 

method provides a parsimonious and accurate solution to the diffusive wave model with 

Dirichlet BCs. For example, there may exist tidal backwater waves that follow a sine or cosine 

pattern. Using the methodology described above and the ODE solutions in Appendix, one may 

easily obtain quasi-analytical expressions for the temporal evolution of flood waves at specific 

forecast points of interest.  

4. Application and discussion 

The two new methods introduced in this paper provide the users with additional tools for 

diffusive wave routing. Depending on the problem, one method may be better-suited than the 

others. For very short channel reaches typical of urban catchments, the analytical solution of 

Eq.(14) may not be appropriate due to the semi-infinite length assumption. In this section, we 

compare the two CTDS methods and the analytical solution for semi-infinite domain for a real-

world flooding event that occurred in Aug 1968 in a 112 km reach of the Yuanling- Wangjiahe 

River, China (Singh et al., 1997). For this event, diffusive wave routing is considered to be 

appropriate (Singh et al., 1997, Wang et al., 2003a, 2003b) and the parameters C and D were 

already estimated to be 3.327 m/s and 16,935 m2/s, respectively (Singh e al. 1997). Estimation 

of C and D has been a subject of many previous studies (Cappelaere 1997, Knight and 

Shamseldin 2005) and may be carried out in a number of different ways. One may use their 
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theoretical description (Szymkiewicz 2010; Moussa and Bocquillon 2001) and the most recently 

observed inflow similar to the “freezing” approach of Koussis (1983). If available, one may use 

long-term observations to calibrate, parametrize and summarize the parameter values in look-up 

tables or approximation functions (Singh et al. 1997). Fig 13 shows the inflow hydrograph, the 

three outflow hydrographs predicted by the three solutions and the verifying observed outflow. 

In this example, lateral inflow is considered negligible. Fig 13 also indicates that the DCTDS 

and LTCTDS methods produce nearly identical results, but that they are very close to the 

analytical solution. This is a long channel and hence the assumption of semi-infinite length may 

be considered reasonable. The error in predicting the peak values may be due to a combination 

of the assumption of constant C and D and ignoring the lateral inflow. That the observed 

hydrograph has a larger volume than the model solutions suggests that there may exist small 

lateral inflow. In fact, integrating the area under the curves of  observed inflow and outflow 

hydrographs shows a 9,558,000 m3 discrepancy, that could be partly due to at least a small 

amount of lateral inflow. Our experiment showed that even a very small lateral inflow, which is 

very likely to exist in such a long reach during a large event, may modify the routed 

hydrographs closer to the observed flows. In fact, as Fig 14 shows, an envelope created by the 

range of values of C from 2.7 to 4.2 m/s, D from 16000 to 16,935 m2/s, and q from 0.001to 

0.0015  m3/s/m captures encompasses all the observed flows. Therefore, appropriate values of 

these parameters have the ability to model the observed hydrographs.  

To apply the CTDS methods, it is necessary to specify a priori the number of nodes to be 

used in discretizing the channel. Because the optimal resolution of spatial mesh depends on the 

Peclet number, it is important to evaluate the combined effects of the number nodes and the 

Peclet number on the accuracy of the results. For this assessment, we compared the unit 
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response functions derived from the CTDS methods with that derived from numerical 

simulation via the method of lines. Figs 15 and 16 show the differences between the numerical 

solution and the CTDS solution for various combinations of N and Pe. The figures indicate that, 

for smaller values of Pe and N, the response functions derived from DCTDS and LTCTDS are 

nearly identical. For a combination of relatively large N and small to moderate Pe, however, the 

LTCTDS method quickly deteriorates (see Fig 15 for Pe=5 and 11) as explained in Subsection 

3.1. The DCTDS method, on the other hand, does not suffer from this limitation and produces 

solutions that are nearly identical to the numerical solutions (see Fig 16). As such, the DCTDS 

method offers a distinct advantage over purely numerical methods in that the former provides 

closed-form solutions that can be very easily evaluated without numerical integration. 

The Muskingum-Cunge (MC) method is one of the most widely used simplified methods in 

flood routing (Szymkiewicz, 2010). The MC method is theoretically equivalent to linear 

diffusive wave model and hence offers a useful and practical point of comparison with the 

CTDS methods. For numerical integration, the MC method employs two free parameters, the 

spatial step and the temporal step (USACE 1991). The accuracy of the MC method depends on 

the Courant number and the choice of travel time and cross sectional weighting parameters. 

Barry and Bajracharya (1995) investigated which combination of spatial and temporal steps 

may yield the best solution. They found that a simple explicit scheme is the best method to 

solve the complete diffusion wave equation starting from the kinematic wave equation, and that 

third-order accuracy is attained if the optimal Courant number is 12. While simpler than 

dynamic wave routing, the MC method still requires careful selection of the spatial and 

temporal steps, the numerical integration scheme and initialization. The DCTDS method, on the 

other hand, provides near-exact closed-form solutions for the unit response function for 
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arbitrary combinations of C and D from which the forecast hydrograph can very easily be 

constructed via the principle of superposition. As noted above, the parameters, C and D, depend 

on flow, channel geometry, roughness, and slope. For channels in which significant variations 

in C and D may exist due to longitudinal variations in channel geometry, roughness and/or 

slope, it will be necessary to sectionalize the channel so that different combinations of values 

for C and D may be used for different sections. To account for dependence of C and D on the 

magnitude of flow, one may prescribe different values of C and D depending on the magnitude 

of each pulse in the inflow hydrograph. The above approach would amount to a diffusive wave 

version of layered routing which is commonly practiced in operational flood forecasting with 

the lag-K, Muskingum and other routing techniques (NWS, 2005). Additional research and 

evaluation are needed, however, to develop a robust objective procedure for layered diffusive 

wave routing using the CTDS methods.  

Lastly, while the computational savings may not be significant for small-scale applications 

of the proposed methods, one may expect significant savings if routing has to performed for a 

large network of channels (Moramarco et al., 1999; Liu et al., 2003; Choudhury, 2007) or a 

dense network of small channels in large urban areas (Habibi et al., 2016). The simplicity and 

computational ease of the CTDS methods also mean that they can be easily implemented on site 

on single-board computers such as Raspberry Pi modules for real-time forecasting. Table 1 

provides a general comparison among different methods, their applicability and capabilities.   

5. Conclusions and future research recommendations 

Diffusive wave routing is an important methodology for predicting the movement of flood 

waves in open channels. Unlike dynamic wave routing, diffusive wave routing does not require 

large amounts of data. Unlike kinematic wave routing, diffusive wave routing accounts for 
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pressure gradients which are important for mildly-sloped channel. Most solution techniques for 

diffusive wave routing that are currently available, however, are purely numerical. To satisfy 

the CFL condition and to ensure convergence, numerical integration has to be carried out in 

general problem-specifically. This work proposes two new methods for 1D diffusive wave 

routing which do not require numerical integration. Referred to as the LCTDS method, the new 

method renders the original PDE into a system of ODEs via the Laplace transform which are 

then solved via symbolic algebra following finite difference approximation of the ODEs. If the 

number of nodes used is large, the accuracy of the LCTDS method may deteriorate due to 

numerical singularity. The DCTDS method addresses the above shortcoming by 

orthogonalizing the PDE via eigenvalue decomposition. The new methods provide closed-form 

symbolic solutions for 1D diffusive routing for a set of nodes in a finite domain due to a unit 

pulse of inflow and a constant lateral inflow. The complete hydrographs at downstream 

locations may be obtained via the principle of superposition and proportionality from a fixed-

interval pulse representation of the inflow hydrograph. 

The proposed solutions in addition to classical analytical solution offer a wide range of tools 

for practical flood routing. In addition, unlike conventional numerical models, the symbolic-

explicit nature of the proposed solutions provides modelers with algorithmic flexibility in 

implementing them. Because the new methods assume constant C and D, they may not be 

directly applicable if the parameters vary in time due, e.g., changes in the magnitude of the 

flood wave. For “layered” 1D diffusive wave routing which uses flow magnitude-dependent 

parameters as commonly practiced with the existing routing methods, additional research and 

evaluation are needed to develop a robust objective procedure. Owing to the closed-form 

solutions, the proposed methods are expected to provide significant computational savings for 
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routing through large channel systems. The simplicity and the computational ease of the CTDS 

methods also mean that they can be easily implemented on site on single-board computers such 

as Raspberry Pi modules in various real-time applications. 
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7. Appendix 

Several different generic hydrographs and their analytical ODE solutions associated with the 

DCTDS method is presented below:  

A.1.  If 𝑄𝑄0(𝑇𝑇) = 𝑇𝑇𝑟𝑟Exp(𝑘𝑘 𝑇𝑇) then 

 𝑣𝑣𝑖𝑖(𝑇𝑇)

=
𝑤𝑤𝑖𝑖𝑒𝑒

𝑇𝑇𝜆𝜆𝑖𝑖
ℎ2Pe �ℎ2Pe𝑇𝑇𝑟𝑟Γ �1 + 𝑟𝑟,−𝑘𝑘𝑘𝑘 + 𝑇𝑇𝜆𝜆𝑖𝑖

ℎ2Pe� + Γ(1 + 𝑟𝑟, 0)(ℎ2𝑘𝑘Pe − 𝜆𝜆𝑖𝑖) �−𝑘𝑘𝑘𝑘 + 𝑇𝑇𝜆𝜆𝑖𝑖
ℎ2Pe�

𝑟𝑟

ℎ2Pe(ℎ2𝑘𝑘Pe − 𝜆𝜆𝑖𝑖) �−𝑘𝑘𝑘𝑘 + 𝑇𝑇𝜆𝜆𝑖𝑖
ℎ2Pe�

𝑟𝑟  

(A1

) 

 

Where  Γ(𝑎𝑎, 𝑥𝑥) is the incomplete Gamma function defined as 

 
Γ(𝑎𝑎, 𝑥𝑥) = � 𝑡𝑡𝑎𝑎−1𝑒𝑒−t𝑑𝑑𝑑𝑑

∞

𝑥𝑥
 (A2) 

 

A.2.  If 𝑄𝑄0(𝑇𝑇) = Exp (𝑘𝑘 𝑇𝑇2 + 𝑗𝑗 𝑇𝑇) then 
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 𝑣𝑣𝑖𝑖(𝑇𝑇)

= −
√𝜋𝜋𝑤𝑤𝑖𝑖 𝑒𝑒

4ℎ2Pe𝑇𝑇𝜆𝜆𝑖𝑖−
(𝜆𝜆𝑖𝑖−ℎ2𝑗𝑗Pe)2

𝑘𝑘
4ℎ4Pe2 �erfi �ℎ

2𝑗𝑗Pe − 𝜆𝜆𝑖𝑖
2ℎ2√𝑘𝑘Pe

� − erfi �ℎ
2Pe(𝑗𝑗 + 2𝑘𝑘𝑘𝑘) − 𝜆𝜆𝑖𝑖

2ℎ2√𝑘𝑘Pe
��

2ℎ2√𝑘𝑘Pe
 

(A3) 

 

A.3.  If 𝑄𝑄0(𝑇𝑇) = T Exp (𝑘𝑘 𝑇𝑇2 + 𝑗𝑗 𝑇𝑇) then 

 

 

𝑣𝑣𝑖𝑖(𝑇𝑇) = −
𝑤𝑤𝑖𝑖 𝑒𝑒

4ℎ2Pe𝑇𝑇𝜆𝜆𝑖𝑖−
(𝜆𝜆𝑖𝑖−ℎ2𝑗𝑗Pe)2

𝑘𝑘
4ℎ4Pe2

4ℎ4𝑘𝑘3 2⁄ Pe2
�√𝜋𝜋𝜆𝜆𝑖𝑖 �erfi �

ℎ2𝑗𝑗Pe − 𝜆𝜆𝑖𝑖
2ℎ2√𝑘𝑘Pe

�

− erfi �
ℎ2Pe(𝑗𝑗 + 2𝑘𝑘𝑘𝑘) − 𝜆𝜆𝑖𝑖

2ℎ2√𝑘𝑘Pe
��

+ ℎ2Pe�−√𝜋𝜋𝑗𝑗erfi �
ℎ2𝑗𝑗Pe − 𝜆𝜆𝑖𝑖
2ℎ2√𝑘𝑘Pe

� + √𝜋𝜋𝑗𝑗erfi �
ℎ2Pe(𝑗𝑗 + 2𝑘𝑘𝑘𝑘) − 𝜆𝜆𝑖𝑖

2ℎ2√𝑘𝑘Pe
�

+ 2√𝑘𝑘 �𝑒𝑒
(𝜆𝜆𝑖𝑖−ℎ2𝑗𝑗Pe)2
4ℎ4𝑘𝑘Pe2 − 𝑒𝑒

(𝜆𝜆𝑖𝑖−ℎ2Pe(𝑗𝑗+2𝑘𝑘𝑘𝑘))2
4ℎ4𝑘𝑘Pe2 ��� 

 

(A4) 

where erfi(𝑥𝑥) is the imaginary error function defined as 

 
erfi(𝑥𝑥) =

2
√𝜋𝜋

� 𝑒𝑒𝑡𝑡2𝑑𝑑𝑑𝑑
𝑥𝑥

0
 (A5) 
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A.4.  If 𝑄𝑄0(𝑇𝑇) = 𝑇𝑇2Exp (𝑘𝑘 𝑇𝑇2 + 𝑗𝑗 𝑇𝑇) 

 

𝑣𝑣𝑖𝑖(𝑇𝑇) =
𝑒𝑒−

ℎ4𝑗𝑗2Pe2+𝜆𝜆𝑖𝑖
2

4ℎ4kPe2 𝑤𝑤𝑖𝑖

8ℎ6k5 2⁄ Pe3
�𝑒𝑒

(𝑗𝑗+2k𝑇𝑇)𝜆𝜆𝑖𝑖
2ℎ2kPe √𝜋𝜋erfi�

ℎ2𝑗𝑗 Pe − 𝜆𝜆𝑖𝑖
2ℎ2√kPe

� (−ℎ4(𝑗𝑗2 − 2k)Pe2

+ 2ℎ2𝑗𝑗Pe𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑖𝑖2)

− 𝑒𝑒
(𝑗𝑗+2k𝑇𝑇)𝜆𝜆𝑖𝑖
2ℎ2kPe √𝜋𝜋erfi�

ℎ2Pe(𝑗𝑗 + 2k𝑇𝑇) − 𝜆𝜆𝑖𝑖
2ℎ2√kPe

� (−ℎ4(𝑗𝑗2 − 2k)Pe2

+ 2ℎ2𝑗𝑗Pe𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑖𝑖2)

+ 2𝑒𝑒
ℎ4𝑗𝑗2Pe2+𝜆𝜆𝑖𝑖

2

4ℎ4kPe2 ℎ2√kPe�𝑒𝑒
𝑇𝑇𝜆𝜆𝑖𝑖
ℎ2Pe(ℎ2𝑗𝑗Pe − 𝜆𝜆𝑖𝑖)

+ 𝑒𝑒𝑇𝑇(𝑗𝑗+k𝑇𝑇)(−ℎ2Pe(𝑗𝑗 − 2k𝑇𝑇) + 𝜆𝜆𝑖𝑖)�� 

 

(A6) 

 

A.5.  If 𝑄𝑄0(𝑇𝑇) = sin(𝑘𝑘 𝑇𝑇) 

 

𝑣𝑣𝑖𝑖(𝑇𝑇) = −
𝑤𝑤𝑖𝑖  �ℎ2𝑘𝑘Pe�cos (𝑘𝑘 𝑇𝑇) − 𝑒𝑒

𝑇𝑇𝜆𝜆𝑖𝑖
ℎ2Pe� + 𝜆𝜆𝑖𝑖 sin(𝑘𝑘 𝑇𝑇)�

ℎ4𝑘𝑘2Pe2 + 𝜆𝜆𝑖𝑖2
 

(A7) 

 

A.6.  If 𝑄𝑄0(𝑇𝑇) = cos(𝑘𝑘 𝑇𝑇) 

 

𝑣𝑣𝑖𝑖(𝑇𝑇) =
𝑤𝑤𝑖𝑖 �𝜆𝜆𝑖𝑖 �𝑒𝑒

𝑇𝑇𝜆𝜆𝑖𝑖
ℎ2Pe − cos (𝑘𝑘 𝑇𝑇)� + ℎ2𝑘𝑘Pe sin(𝑘𝑘 𝑇𝑇)�

ℎ4𝑘𝑘2Pe2 + 𝜆𝜆𝑖𝑖2
 

 

(A8) 
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Figures 

 Figure 1 The unit response function for a semi-infinite channel with C=3 units and D= 1000 

units. 
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Figure 2 Roots of Ω(r) = 0 for a different values of Peclet number 
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Figure 3 10-node LTCTDS derived unit response functions for C=2.88, D=2000, q=0, and 

L=1000. 
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Figure 4 Illustration of system response to a pulse. 
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Figure 5 Results of 10-node LTCTDS derived response functions for a synthetic inflow with 

C=2.88, D=2000, q=0, and L=1000 
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Figure 6 Numerical solution of the synthetic case study 
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Figure 7 The difference between numerical solution and LTCTDS method. 
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Figure 8 The difference between numerical solution, 10-node LTCTDS, and 5-node LTCTDS at 

the downstream section of the synthetic inflow example  
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Figure 9 The effect of Peclet number on the 5-node LTCTDS  derived unit response function  
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Figure 10 The eigenvalues of Matrix A can be determined by finding the  intersections of the 

curves defined by the left hand side of the Eq. (44) depicted by solid lines and the curves defined 

by the right hand side of the Eq. (44) depicted by the dashed line are for a) Pe=1 and N=9 
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   b) Pe=5 and N=12 
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     c) Pe=10 and N=20 
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Figure 11 Comparison of the results of the 15-node DCTDS derived routed flood against the 

numerical solution. The hypothetical inflow defined by 𝑸𝑸𝟎𝟎(𝒕𝒕) = 𝟓𝟓 + 𝟗𝟗𝟗𝟗� 𝒕𝒕
𝟔𝟔𝟔𝟔𝟔𝟔

� 𝒆𝒆𝟏𝟏−�
𝒕𝒕

𝟔𝟔𝟔𝟔𝟔𝟔� was used 

for this example.  
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Figure 12 The difference between the results of the 15-node DCTDS derived routed flood and the 

numerical solution.  
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Figure 6 Application of the proposed methods for routing a flooding event that occurred in 

Yuanling- Wangjiahe River reach. 
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Figure 14 Envelope of downstream discharges produced by variation of C, D, and q 
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Figure 15 Sensitivity of the LTCTDS derived unit response function to N and Pe  
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   Figure 15 Sensitivity of the LTCTDS derived unit response function to N and Pe  
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     Figure 15 Sensitivity of the LTCTDS derived unit response function to N and Pe  
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   Figure 15 Sensitivity of the LTCTDS derived unit response function to N and Pe  
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     Figure 15 Sensitivity of the LTCTDS derived unit response function to N and Pe  
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Figure 16 Sensitivity of the DCTDS derived unit response function to N and Pe 
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   Figure 16 Sensitivity of the DCTDS derived unit response function to N and Pe 
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  Figure 16 Sensitivity of the DCTDS derived unit response function to N and Pe 
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 Figure 16 Sensitivity of the DCTDS derived unit response function to N and Pe 
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 Figure 16 Sensitivity of the DCTDS derived unit response function to N and Pe 
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Table 1 Comparison of capabilities of different methods in solving diffusive wave equation 

 LTCTDS DCTDS Numerical 
solutions 

Analytical 
solution (semi-
infinite) 

Applicability  in short 
channels 

Yes Yes Yes No 

Applicability  in long 
channels 

Yes * Yes * Yes No 

Explicit expressions for 
solution   

Yes Yes No Yes 

Capable of prescribing 
various boundary 
conditions 

Yes Yes Yes No 

Ease of prescribing 
variable  C and D 

No No Yes No 

Ease of prescribing quasi-
variable  C and D 

Yes** Yes** Yes No 

Stability (numerical 
artifacts, Courant 
condition, etc.)  

Yes Yes No Yes 

  * for very long channels, multiple sub-divisions might be needed 

** at every time step, C and D can be updated according to the new inflow values 
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Abstract 

A new direct solution for nonlinear reservoir routing with a general power-

law storage function is presented. The resulting implicit solution is expressed in 

terms of the incomplete Beta function and is valid for inflow hydrographs that 

may be approximated by a series of pulses of finite duration. A separate solution 

for zero inflow representing recession is also presented. The new solution 

extends the previous results reported in the literature which provide direct 

solutions only for certain exponents in the power-law storage function. In 

addition to the wide spectrum of applications that require modeling of nonlinear 

reservoirs or open channels, the direct solution may also be used for physically-

based semi-distributed routing of hillslope flow following simplification of the 

flow paths as a dendritic network of nonlinear reservoirs. This paper presents the 

solutions and illustrative examples of application. 

 

1 Introduction 

Hydraulic modelling involves solving the governing equations for conservation 

of mass and momentum, i.e., the Saint Venant equations (Chanson, 2004) and is 

the most accurate method for flood routing in theory (Kim and Georgakakos, 

2014). However, hydraulic routing models require large amounts of data to 

prescribe the fixed boundary conditions (BC) of channel geometry along the 
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reach and elaborate numerical integration to ensure accuracy and convergence 

(Szymkiewicz, 2010). 

One the other hand, hydrologic routing models, despite being less theoretically 

detailed McCuen (1989), are usually more feasible for large scale systems in 

practice (Kim and Georgakakos, 2014).  There exist many choices of hydrologic 

routing models depending on their underlying theoretical framework, availability 

of data, accuracy requirements, computational efficiency, etc.  Kim and 

Georgakakos (2014) provide a review of the hydrologic routing methods 

including linear reservoir, Muskingum method, Lag and K method, Muskingum-

Cunge method, and nonlinear cascade reservoirs.  Storage-based channel or 

reservoir routing models are among the oldest and most widely used conceptual 

models in hydrology (Nourani et al., 2009). Fread and Hsu (1993) discuss the 

errors associated with using storage routing methods in operational flood routing.  

In storage routing methods, the continuity equation for hydrologic routing is 

described by the following differential equation (Xiong and Melching, 2005): 

 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑆𝑆(𝑡𝑡) = 𝐼𝐼(𝑡𝑡) − 𝑂𝑂(𝑡𝑡) (1) 

where I(t), O(t), and S(t) denote the inflow, outflow and storage at time t, 

respectively. In most real-world applications, the storage and outflow are not 

known jointly and hence an additional equation is needed to solve Eq. (1). This 

closing equation usually relates storage and discharge and is referred to as the 
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storage–outflow relationship (Chow et al., 1988) or storage function (Sugiyama 

et al., 1997). Numerous studies (see Boyd et al., 1979; Basha, 1994; Basha, 

1995; Tallaksen, 1995; Sugiyama et al., 1997; and Basha, 2000 just to name 

several) have postulated that the storage function can in general be expressed as 

the following power-law function: 

 𝑆𝑆 = 𝑘𝑘𝑄𝑄𝑚𝑚 (2) 

where S and Q denote the storage and outflow, respectively, and k and m denote 

the storage coefficient and exponent, respectively. In stating Eq.(2), we assume 

that the storage function is time-invariant and  hence S is a proper function of Q. 

If m=1, the storage function becomes linear which renders Eq.(1) a linear 

reservoir routing problem. Linear storage models are simple and easy to 

parametrize. However, most hydrological systems do not show a linear storage 

behavior in practice (Kim and Georgakakos, 2014; Niazkar and Afzali, 2017).  

To overcome this limitation, Nash (1957) and many others have developed 

various hydrological models by adopting the concept of cascading such linear 

reservoirs (Chow et al., 1988) also known as multilinear methods (Perumal, 

1992; Camacho and Lees, 1999; Sahoo, 2013).  

If 𝑚𝑚 ≠ 1, the problem becomes one of nonlinear reservoir routing. Basha (1995) 

offers an approximate solution for nonlinear routing by using perturbation 

expansion around the parameter m. Glynn and Glynn (1996) presented another 

diffusion approximation for a network of nonlinear reservoirs with power-law 
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release rules.  To the best of the authors’ knowledge, however, no exact solutions 

to the above problem have been reported to date in the literature. In fact, Hughes 

and Murrell (1986) claimed that for non-zero inflows, no analytical solution to 

this problem exists unless m is 1/2 or 1. They presented several numerical 

solution methods and postulated that the accuracy of solution depends on the 

magnitude of time interval in the numerical integration.  

In this work, we present an exact implicit solution for nonlinear routing of Eq. 

(1) with the power-law storage function of Eq. (2). Because it is exact, the 

solution is not subject to possible instabilities due, e.g., to too large time steps as 

in numerical methods, and hence provides a significant addition to the suite of 

methods available for reservoir and channel routing.  When parametrized, the 

proposed  solution can be useful in practical modeling, design, forecasting and 

control problems when applied to single reservoirs, cascade of reservoirs, and 

network of channels. In fact, with an extension of the transfer function analogy 

(Chow et al., 1988; McCuen , 1989) of hydrological processes, the proposed 

methodology can be applied to any system with elements that can be 

approximated by power-type storage functions. The outflow from each 

component will be the inflow of the next element. 

A very useful consequence of such a system analysis approach is its application 

in nonlinear channel routing in networks. In fact, the hillslopes can be considered 

as such networks, even in ungagged basins. 
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In this work, we will improve a methodology based on coupling of mass and 

momentum conservation equations that has been widely used for distributed 

nonlinear flood routing in networks (see Gupta and Waymire, 1998; Reggiani et 

al., 2001; Menabde and Sivapalan, 2001; Gupta, 2004; Mantilla and Gupta, 

2005; Mantilla et al., 2006; Mandapaka et al., 2009; Small et al., 2013; Ayalew 

et al., 2014; Choi et al., 2015 among many others). In the present work, a general 

formulation for determining the parameters of power-type storage function using 

hydraulic properties of channels is developed. This step enables the modelers to 

apply the proposed exact implicit solution to the dynamic routing equation. The 

presented routing method can be parametrized either by using statistical methods 

(similar to the Muskingum method) or hydraulic properties of the channels 

(similar to the Muskingum-Cunge method) with an additional advantage of 

offering an exact solution to the governing nonlinear and nonhomogeneous 

ordinary differential equation. 

This paper is organized as follows: In section 2, the implicit exact solution of the 

nonlinear routing problem described by Eqs. (1) and (2) will be presented. In 

sections 3, general equations for  determining the parameters of power-type 

O2 (t) = I3 (t) 
 Transfer function 

  
 

O1 (t) = I2 (t) 
 

I1 (t) 
Transfer function 
  

 

1 2 

Figure 1 A general cascade approach for modelling hydrological systems. 
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storage functions in several typical routing problems will be presented . Sections 

4 demonstrate example applications of the proposed method for several routing 

problems, and finally, conclusions and recommendations for future works will be 

discussed in section 5.  

2 Exact solution for routing problem with a power-type storage function 

Using the chain rule, one may rearrange Eq. (1) as: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝐼𝐼(𝑡𝑡) − 𝑄𝑄(𝑡𝑡)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (3) 

If the storage function is of the power-law type of Eq. (2), there exist real-valued 

parameters a and b that satisfy: 

 1
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑄𝑄𝑏𝑏 (4) 

Combining Eqs. (3) and (4) gives the following nonhomogeneous nonlinear 

ordinary differential equation: 

 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑄𝑄(𝑡𝑡) = 𝑎𝑎𝑄𝑄(𝑡𝑡)𝑏𝑏(𝐼𝐼(𝑡𝑡) − 𝑄𝑄(𝑡𝑡)) (5) 

2.1 Non-zero inflow  
For a sufficiently short time interval over which the inflow may be assumed 

constant, or 𝐼𝐼(𝑡𝑡) = 𝑟𝑟, and 𝑟𝑟 ≠ 0, Eq.(5) may be rearranged to the following form 

via separation of variables: 
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 𝑑𝑑𝑑𝑑
𝑄𝑄𝑏𝑏(𝑟𝑟 − 𝑄𝑄) = 𝑎𝑎 𝑑𝑑𝑑𝑑 (6) 

Denoting the initial condition (IC) of Eq. (6) as 𝑄𝑄(𝑡𝑡0) = 𝑄𝑄0 and integrating both 

sides, we have: 

 
�

𝑑𝑑𝑑𝑑
𝑄𝑄𝑏𝑏(𝑟𝑟 − 𝑄𝑄) = 𝑎𝑎� 𝑑𝑑𝑑𝑑

𝑡𝑡

𝑡𝑡0

𝑄𝑄

𝑄𝑄0
 (7) 

After integrating the left hand side if Eq. (7) using Mathematica software package 

10.3 (Wolfram Research, Inc., 2015) and manual manipulation of the obtained 

expressions, the following exact implicit solution was obtained: 

𝑄𝑄01−𝑏𝑏  2𝐹𝐹1 �1,1 − 𝑏𝑏; 2 − 𝑏𝑏;
𝑄𝑄0
𝑟𝑟
� − 𝑄𝑄1−𝑏𝑏  2𝐹𝐹1 �1,1 − 𝑏𝑏; 2 − 𝑏𝑏;

𝑄𝑄
𝑟𝑟
�

= 𝑎𝑎 (𝑏𝑏 − 1)𝑟𝑟 (𝑡𝑡 − 𝑡𝑡0)  

(8) 

In the above  2𝐹𝐹1 is the hypergeometric function defined as (Weisstein, 2002b; 

Gradshteyn and Ryzhik, 2014): 

 2𝐹𝐹1(𝑥𝑥1, 𝑥𝑥2; 𝑥𝑥3; 𝑥𝑥4)

=
𝛤𝛤(𝑥𝑥3)

𝛤𝛤(𝑥𝑥2)𝛤𝛤(𝑥𝑥3 − 𝑥𝑥2)
�

𝑠𝑠𝑥𝑥2−1(1− 𝑠𝑠)𝑥𝑥3−𝑥𝑥2−1

(1 − 𝑥𝑥4𝑠𝑠)𝑥𝑥1 𝑑𝑑𝑑𝑑
1

0
 

(9) 

In Eq.(9), Γ(𝑥𝑥) is the Gamma function defined as (Weisstein, 2002a): 

Γ(𝑥𝑥) = � 𝑠𝑠𝑥𝑥−1𝑒𝑒−s𝑑𝑑𝑑𝑑
∞

0
 (10) 

On the other hand, the incomplete Beta function (see Figs 2 and 3) is defined as 

(Weisstein, 2003): 
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𝛣𝛣𝒙𝒙(𝑢𝑢, 𝑣𝑣) = � 𝑠𝑠𝑢𝑢−1(1 − 𝑠𝑠)𝑣𝑣−1𝑑𝑑𝑑𝑑

𝑥𝑥

0
 (11) 

which has the following relationship with the hypergeometric function  2𝐹𝐹1 

(Weisstein, 2003) 

 
𝛣𝛣𝒙𝒙(𝑢𝑢, 𝑣𝑣) =

𝑥𝑥𝑢𝑢

𝑢𝑢
 2𝐹𝐹1(𝑢𝑢, 1 − 𝑣𝑣;𝑢𝑢 + 1; 𝑥𝑥) (12) 

Accordingly, using Mathematica, Eq. (8) can be further simplified to the 

following implicit solution for Q(t): 

 𝛣𝛣Q
r

(1 − 𝑏𝑏, 0) − 𝛣𝛣Q0
r

(1− 𝑏𝑏, 0) = 𝑎𝑎 𝑟𝑟𝑏𝑏(𝑡𝑡 − 𝑡𝑡0) (13) 

Eq. (13) may be used to obtain 𝑄𝑄 for different values of 𝑡𝑡 as long as the inflow is 

constant. For the next pulse of inflow, 𝑟𝑟𝑖𝑖+1, Eq. (13) may be reinitialized by using 

𝑄𝑄 obtained from the previous inflow 𝑟𝑟𝑖𝑖. Solving for Q in Eq.(13) amounts to 

nonlinear root finding for which a combination of look-up tables for evaluation of 

the incomplete Beta functions and iterative root finding may be used. In this 

work, Eq.(13) was solved using the Mathematica. Note that, if 𝑄𝑄
𝑟𝑟

> 1, which 

occurs when the discharge is larger than the inflow, each incomplete Beta 

function in the right-hand side of Eq.(13) includes an imaginary term of –𝜋𝜋𝜋𝜋 

which gets cancelled out. Fig 2 shows the incomplete Beta function for various 

values of b in the real domain of 0 < 𝒙𝒙 < 1 and Fig 3 shows the real component 

of the incomplete Beta function for various values of b for 1 < 𝒙𝒙 .  
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Figure 2 The incomplete Beta function for different values of b in its real domain.  

These two figures highlight the singularity of the incomplete Beta function at x=1, 

has a physically sense explanation. This singularity corresponds to outflow being 

equal to a constant inflow, i.e., 𝑄𝑄
𝑟𝑟

= 1, which is the trivial solution to the dynamic 

routing equation with zero storage.  Interestingly, this conclusion can be reached 

with the assumption of power-type storage function as well, due to the fact that 

power functions never become zero.   In addition, Figs 2 & 3 show that the 

transition between  𝑄𝑄
𝑟𝑟

< 1 and 𝑄𝑄
𝑟𝑟

> 1 cannot be done in a single time step due to 

the discontinuity of the incomplete Beta function at 𝑄𝑄
𝑟𝑟

= 1.  

2.2 Zero inflow 
If inflow becomes zero, the analytic solution above is no longer applicable. 

Instead, one may simplify Eq. (5) to: 
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Figure 3 The real component of the incomplete Beta function for different values of b for x>1. 

Re(z) denotes the real component of a complex argument z. 

 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑄𝑄(𝑡𝑡) = −𝑎𝑎𝑄𝑄(𝑡𝑡)𝑏𝑏+1 (14) 

Eq.(13) may be rearranged as below following separation of variables: 

 𝑑𝑑𝑑𝑑
𝑄𝑄𝑏𝑏+1

= −𝑎𝑎 𝑑𝑑𝑑𝑑 (15) 

Integrating both sides of Eq. (15) and inserting the initial conditions, one arrives 

at the following exact solution for Q(t): 

𝑄𝑄(𝑡𝑡) = �
1
𝑄𝑄0𝑏𝑏

+ 𝑎𝑎 𝑏𝑏  (𝑡𝑡 − 𝑡𝑡0)�
−1𝑏𝑏

  (16) 

Eq. (16) represents the recession curve for nonlinear reservoir with a power-law 

storage function. 

b 0.1 b 0.2 b 0.5 b 0.9
b 0.1 b 0.1 b 0.2 b 0.5
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15

x
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B x
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2.3 Solution for a single pulse inflow 
 
In order to demonstrate the effect of different values of a and b, a single pulse 

inflow with the duration of 10 s is prescribed. As Fig 4 shows, the variation of a 

and b offer a wide range of hydrograph shapes that shows the versatility of power-

type storage functions in flood routing applications. As expected, it can be seen in 

Fig 4 that larger values of a correspond to larger storage which corresponds to 

larger attenuation and lag of flood peaks. On the other hand,  b dictates the shape 

of outflow hydrographs and makes the proposed solution significantly more 

flexible than previous studies that used either the linear reservoir approach or 

nonlinear reservoirs with fixed values of b. In Fig 4, it can also be seen that the 

proposed method has the ability to admit negative values of b. 

3 Theoretical determination of storage function parameters for simple cases  

3.1 A reservoir with an overflow spillway 

If a reservoir has an overflow spillway, its outflow follows the weir equation 

(Butler and Davies, 2004): 

 
𝑄𝑄 =

2
3
𝐶𝐶𝑑𝑑𝑊𝑊�2𝑔𝑔𝐻𝐻1.5 (17) 

where Cd is the coefficient of discharge, W is the width of spillway in meters, g is 

the gravitational acceleration of 9.81 m/s2 and H is the head over spillway in 

meters. 

 



 

127 

 

Figure 4 The effect of different values of a and b on the routed hydrograph in response to a 10s 

unit pulse. 

Assuming that the storage in the reservoir follows a power function 

 𝑆𝑆 = 𝑆𝑆𝑏𝑏 + 𝑗𝑗𝐻𝐻𝑘𝑘 (18) 

where Sb is volume of reservoir below the spillway and  j and k are the parameters 

that approximate the volume of the reservoir above the spillway with a power 

function. Solving Eq. (17) for H and substituting in Eq. (18) gives the storage as a 

function of discharge: 
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𝑆𝑆 = 𝑆𝑆𝑏𝑏 + 𝑗𝑗 �
𝑄𝑄

2
3𝐶𝐶𝑑𝑑𝑊𝑊�2𝑔𝑔

�

2𝑘𝑘
3

 (19) 

 
Since Sb is independent of discharge, Eq. (4) is still valid with  

 
𝑎𝑎 =

3
2 𝑘𝑘 𝑗𝑗

�
2
3
𝐶𝐶𝑑𝑑𝑊𝑊�2𝑔𝑔�

2𝑘𝑘
3

 (20) 

and  

 
𝑏𝑏 = 1 −

2𝑘𝑘
3

 (21) 

3.2 A reservoir with an orifice spillway 

Flow out of a reservoir through an orifice spillway follows the orifice equation 
(Butler and Davies, 2004): 
 𝑄𝑄 = 𝐶𝐶𝑑𝑑𝐴𝐴𝑜𝑜�2𝑔𝑔𝑔𝑔 (22) 

where Cd is the coefficient of discharge, Ao is the area of the spillway in m2, and 

H is the head over spillway in meters. If the storage in the reservoir can be 

approximated by Eq. (18), solving Eq. (22) for H and substituting in Eq. (18) 

gives the storage as a function of discharge: 

 
𝑆𝑆 = 𝑆𝑆𝑏𝑏 + 𝑗𝑗 �

𝑄𝑄
𝐶𝐶𝑑𝑑𝐴𝐴𝑜𝑜�2𝑔𝑔

�
2𝑘𝑘

 (23) 

 
Since Sb is independent of discharge, Eq. (4) is still valid with  
 

𝑎𝑎 =
1

2 𝑘𝑘 𝑗𝑗
�𝐶𝐶𝑑𝑑𝐴𝐴𝑜𝑜�2𝑔𝑔�

2𝑘𝑘
 (24) 

and  
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 𝑏𝑏 = 1 − 2𝑘𝑘 (25) 

 
3.3 Nonlinear channel routing 
 

In this section, the hydraulic properties of channels are used to construct the 

power-law storage function which is then used in the proposed nonlinear routing 

method for channel routing. A general flow resistance equation for wide 

channels that combines the geometric properties of the channel cross section and 

flow properties usually takes the following form (Menabde and Sivapalan, 2001; 

Yen, 2002): 

 𝑣𝑣 = 𝑐𝑐0𝑦𝑦𝛼𝛼𝑆𝑆0𝛽𝛽 (26) 

where v is velocity, y is the depth, and 𝑆𝑆0 is the slope. c0 , α, and β are the 

parameters of flow resistance equation. For example, in Manning equation c0 = 

1/n, α=2/3, and β=1/2, in Chezy equation c0 = C, α=1/2 and β=1/2, and in Darcy-

Weisback equation 𝑐𝑐0 = �8𝑔𝑔
𝑓𝑓

, α=1/2 and β=1/2 where n is manning’s roughness, 

C is Chezy’s roughness, and f is Darcy-Weisback‘s roughness. The cross-

sectional area may be approximated by a power law:  

 𝐴𝐴 = 𝑐𝑐1𝑦𝑦𝜔𝜔 (27) 

where c1 and ω are the parameters of a power law cross section. For example, for 

a rectangular cross section c1 is the width of the channel and ω=1. 
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From the continuity equation, the discharge is given by: 

 𝑄𝑄 = 𝐴𝐴 𝑣𝑣 = 𝑐𝑐0𝑐𝑐1𝑦𝑦𝛼𝛼+𝜔𝜔𝑆𝑆0𝛽𝛽 (28) 

Solving Eq. (28) for the depth gives: 

 
𝑦𝑦 =  �

𝑄𝑄
𝑐𝑐0𝑐𝑐1𝑆𝑆0𝛽𝛽

�

1
𝛼𝛼+𝜔𝜔

 (29) 

Assuming that the change in depth over the channel is not very large and the 

unsteadiness of flood wave has a wavelength larger than the channel length l, the 

storage, S, is given by (McCuen , 1989): 

 𝑆𝑆 = 𝐴𝐴𝐴𝐴 = 𝑐𝑐1𝑙𝑙𝑦𝑦𝜔𝜔 (30) 

Substituting Eq. (29) in Eq. (30) and expanding gives: 

 𝑆𝑆 = 𝑙𝑙 𝑐𝑐0
−𝜔𝜔
𝛼𝛼+𝜔𝜔 𝑐𝑐1

𝛼𝛼
𝛼𝛼+𝜔𝜔 𝑆𝑆0

−𝛽𝛽𝛽𝛽
𝛼𝛼+𝜔𝜔𝑄𝑄

𝜔𝜔
𝛼𝛼+𝜔𝜔 (31) 

Using Eq. (31), one may express a and b of Eq. (4) as follows: 

 𝑎𝑎 =
𝛼𝛼 + 𝜔𝜔
𝜔𝜔𝜔𝜔

 𝑐𝑐0
𝜔𝜔

𝛼𝛼+𝜔𝜔 𝑐𝑐1
−𝛼𝛼
𝛼𝛼+𝜔𝜔 𝑆𝑆0

𝛽𝛽𝛽𝛽
𝛼𝛼+𝜔𝜔 (32) 

and  

 𝑏𝑏 =
𝛼𝛼

𝛼𝛼 + 𝜔𝜔
 (33) 

 

While the parameters defined here are determined by specific flow resistance 

equations such as the Manning, Chezy, or Darcy-Weisbach equation, the 

proposed formulation allows prescribing a and b empirically based on actual 
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observations. When the physiographic information necessary to prescribe the 

parameters a and b is not available for hillslope flows, they may be determined 

using the fractal relationships if self-similarity holds for the hillslope networks 

(Menabde and Sivapalan, 2001). 

4 Applications  

In this section, we provide several example applications of the exact solutions 

derived above. The first and second examples show the application of the 

proposed method in routing an arbitrary inflow hydrograph through a reservoir 

with an overflow spillway and an orifice spillway, respectively. The third and 

fourth examples pertain to routing problem in a single channel and the fifth 

example shows how to route arbitrary inflow hydrographs through a system of 5 

channels. 

4.1 Example 1: A reservoir with an overflow spillway 

Assume a pond with the storage-head function of S=165 H2.5 and a 1m wide 

spillway with Cd=0.85. When the pond is full and water level is at the crest of the 

spillway, an inflow of  I(t) =  0.0453 e−0.0167 t  enters the pond. Using Eqs. (20) 

and (21), one can determine a= 0.0168 and b= -0.6667. If Eq. (13) is solved with 

a time interval of 𝛥𝛥t= 10 s, the routed hydrograph of Fig 5 is obtained.  
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4.2 Example 2: A reservoir with an orifice spillway 

Assume a tank with a 5m in 5m base with storage-head function of S=25 H and a 

24 inch orifice (0.6096 m) with Cd=0.6 in the bottom of the tank. Water is 

pumped into the tank with the inflow function shown in Fig 6. Using Eqs. (24) 

and (25), one can determine a= 0.012 5and b= -1. If Eq. (13) is solved with a 

time interval of 𝛥𝛥t= 10 s, the routed hydrograph of Fig 6 is obtained. This 

example shows that negative values of b can be used within the framework of the 

proposed method. In fact, the negative curvature of the recession limb in Fig 6 is 

because of the negative value of b.   

 

Figure 5 Flood routing in a reservoir with an overflow spillway of example 1. 
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4.3 Routing through a single channel 

4.3.1 Single peak inflow hydrograph 
Assume a rectangular channel 5-m wide and 200-m long with Manning’s 

roughness of 0.015, and slope of 0.001. Using Manning’s flow resistance 

equation, we have a=0.00684819 and b=0.4. The proposed method may then be 

used to route the inflow through this channel with a time step 10 s. Fig 7 shows 

the inflow and the routed outflow. 

4.3.2 Multiple peak inflow hydrograph 
Figure 8 shows the applicability of the proposed model for an inflow 

hydrograph with multiple peaks, such as periodic waves. The values of a=0.05 

and b=0.4 and time step of 10 s were used for this example. 

 

 

Figure 6 Flood routing in a reservoir with an orifice spillway of example 2. 
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Figure 7 The single peak inflow and routed outflow of hypothetical channel in example 3. 

 
 

 
Figure 8 The multiple peak inflow and routed outflow of hypothetical channel in example 3. 
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4.4 Routing through a network of channels 

In this example, arbitrary inflow hydrographs at three locations are routed 

through a network of five channels. Table 1 summarizes the hydraulic parameters 

used. Fig 9 shows the channel network. Fig 10 shows the inflow hydrographs 

used. 

 

 

Table 2 The hydraulic properties of the hypothetical network of channels in example 4. 

Figs 11-15 show the inflow and outflow in each of the channels. It can be seen 

that channels 1, 3, and 5 that are longer and have smaller a values, attenuate the 

flood peak more than channels 2 and 4. Also, channel 2 has a wide inflow 

hydrograph and shows a larger relative amount of outflow, which makes sense. 

Channel Length 
(m) 

Slope Manning’s n 
(m1/2/s) 

Width (m) a b 

1 3000 0.005 0.010 3 0.001158 0.4 
2 2500 0.006 0.013 1 0.001945 0.4 
3 5000 0.002 0.010 5 0.00043013 0.4 
4 2500 0.005 0.012 2 0.00146446 0.4 
5 2750 0.001 0.015 5 0.00049805 0.4 

5 

2 

3 

4 

1 

Figure 9 The schematic of the hypothetical network of channels in example 4. 
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due to the mass balance property of the model, its shorter length, and its steeper 

slope. 

 
Figure 10 Inflow hydrographs for example 4. 

 
Figure 11 The inflow and routed outflow of channel 1 in example 4. 
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Figure 12 The inflow and routed outflow of channel 2 in example 4. 

 
Figure 13 The inflow and routed outflow of channel 3 in example 4. 
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Figure 14 The inflow and routed outflow of channel 4 in example 4. 

 
Figure 15 The inflow and routed outflow of channel 5 in example 4. 
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5 Conclusions and future research recommendations 

 

A new solution to nonlinear routing equation for power-law storage functions 

with arbitrary exponents was proposed. In addition to flexibility that the 

proposed formulation offers for using different types of nonlinear reservoirs, 

general cross sections and flow resistance equations were implemented in the 

methodology to extend the application of the solution for nonlinear channel 

routing. 

Application of the new exact solution in different routing problems was 

presented. However, the capability of the proposed method is not limited to these 

examples. For example, different design and control problems could take 

advantage of the simplicity of the proposed method. In addition, other 

components of hydrologic cycle such as ground water aquifers, and various 

hydraulic structures such as tunnel spillways could potentially be approximated 

by power-type storage functions and be solved by the presented framework.  

One possible limitation of the proposed solution is that some programing 

environments do not have built-in functions for hypergeometric functions or 

incomplete beta function. This issue can be remedied by building look-up tables 

once (using numerical integration methods) and using them many times within 

the solution framework as an alternative to built-in functions. 
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Chapter 5  

General Conclusions 

Accurate and timely forecasting of floods and mapping of inundation 

extent and severity is one of the largest needs in highly populated urban areas. 

With urbanization and climate change, this need is fast increasing in many parts 

of the US and elsewhere. For large areas such as the Dallas-Fort Worth Metroplex 

(DFW), real-time high-resolution forecasting remains a large challenge due to 

very large resources required for modeling and computing. The objective of this 

research is to assess the currently available 1D-2D modeling capability for 

potential applications for large areas, propose a real world-viable alternative 

approach and develop key modeling elements that are necessary to realize it.  

The first part of this research assessed the applicability of 1D-2D 

modeling for real-time inundation mapping and the impact of changes in 

precipitation magnitude and imperviousness on urban inundation using 1D-2D 

modeling due to climate change and urbanization. The study areas were the Forest 

Park-Berry Catchment (~3.3 km2) and the Edgecliff Branch Catchment of 

Sycamore Creek (~12.17 km2) in the City of Fort Worth in North Central Texas. 

There are two of the flood-prone areas identify by the City. With respect to the 

real-time application of 1D-2D model, it was found that: 

• 1D-2D hydraulic modeling is currently not viable for real-time forecasting for 

large areas in which case its accuracy may be significantly compromised, 
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potentially negating the benefits of such modeling. The limitations of 1D-2D 

hydraulic modeling for large urban areas are due to modeling complexity and 

very large requirements for human resources for modeling. 

• Detailed hydrologic and hydraulic information (such as slope of pipes, 

dimensions of inlets and junction boxes, and invert elevation of all the 

elements) necessary for high-resolution 1D-2D modeling is often not available. 

• Due to computational requirements of 1D-2D models, 

o It is impractical to make a very large number of runs required for 

uncertainty assessment using standard Monte Carlo methods. 

o Simulation in real-time high-resolution inundation mapping is 

currently practical only for smaller urban catchments. 

With respect to the impact assessment, it was found that: 

• Large impact of changes in precipitation and impervious cover on local and 

catchment scale inundation. 

• With climate change and continuing urbanization for accurate mapping of 

inundation in urban areas, high resolution rainfall forcing and physiographic 

information are essential.  

The second and third parts of this research were directed to identifying 

potential alternatives to1D-2D modeling with reduced complexity and 

computational requirements. To that end, a modeling framework was proposed in 

which coarse-resolution model output is downscaled using high-resolution 
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physiographic data. Currently, coarse-resolution hydrologic models operate in real 

time in the DFW area as part of the CASAWX program which may provide the 

initial and boundary conditions necessary for the downscaling approach. To 

model the potentially very complex network of channels within each 2D cell, 

novel physically-based 1D solutions were developed for hydraulic and hydrologic 

routing. The newly developed approaches avoid solving large systems of linear or 

nonlinear equations in real-time and hence are computationally efficient as well. 

The newly developed hydraulic routing approach offers two continuous-

time discrete-space methods for explicit quasi-analytical solution of the 1D 

diffusion wave equation with a desired number of spatial nodes. In addition, a 

generic 5-node unit response function to the diffusive wave equation with 

constant inflow was developed. The proposed quasi-analytical solutions offer a 

new pathway for simple and efficient modeling of flood waves in real-world 

applications at a significantly reduced computational cost compared to numerical 

integration. The main conclusions from this element are: 

• CTDS methods offer simple and computationally efficient solutions that can be 

easily implemented on site on single-board computers such as Raspberry Pi 

modules for real-time forecasting. 

• Using CTDS methods, the complete hydrographs at downstream locations may 

be obtained via the principle of superposition and proportionality from a fixed-

interval pulse representation of the inflow hydrograph.  The obtained solutions 
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are in very good agreement with numerical integration methods and obviate the 

need for problem-specific model setup. 

• The obtained quasi-analytical solutions provide an important reference for both 

development and validation of new methods. 

The second new approach developed in this research offers a new implicit 

analytical solution for general nonlinear routing with power-law storage functions 

with arbitrary exponents. Power-law relationships between storage and discharge 

occur ubiquitously in nature. As such, the new solution has a wide range 

applications in the real world, including flood routing through large networks of 

channels, groundwater modeling, and hydraulic structures. Additionally, 

parametrization of nonlinear channel routing with general flow resistance and 

cross-sectional area as power-law storage function was presented. With the above 

parametrization, the proposed analytical solution may be used in nonlinear 

channel routing for real-time simulation of a very large number of 1D channels 

over large areas. The main conclusions from this element are: 

• Contrary to conclusions drawn from previous studies, it was found that the 

general nonlinear routing problem with power-law storage functions of any 

arbitrary exponent has an analytical solution. 

• Many components of hydrologic cycle such as ground water aquifers, and 

various hydraulic structures such as different spillways could potentially be 
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approximated by power-type storage functions and be solved by the presented 

solution. 

• General cross sections and flow resistance equations were implemented in the 

methodology to extend the application of the solution for nonlinear channel 

routing. 

Whereas the two new 1D routing models developed in this research will 

help realize real-time flood forecasting and inundation mapping in large urban 

areas, they represent only the first steps toward the downscaling approach put 

forth as an alternative to 1D-2D modeling. The following has been identified as 

the additional necessary elements: 

• Parametrization of power-type storage functions and diffusive wave constants 

for urban catchments with observational data. 

• Downscaling the coarse-resolution model output by prescribing the initial and 

boundary conditions to the new 1D routing models. 

• Delineating large urban catchments into subcatchments and prescribing the 

upstream simulation results as the boundary condition to downstream 

subcatchments. 

• Integrated real-time simulation over large areas. 

• Evaluating the performance and quantifying potential computational savings of 

quasi-analytical methods for routing a large network of channels or a dense 

network of small channels in large urban areas. 



 

150 

Finally, the newly developed solutions may also be implemented in the 

National Water Model (NWM) launched recently into the NWS operations to fill 

the hydrologic service gaps (Cosgrove et al., 2015). The NMW channel routing 

currently uses the Muskingum-Cunge (MC) method with variable parameters 

(Szymkiewicz, 2010) along the channels defined by the NHDPlus Version 2 

(Moore and Dewald, 2016). For modeling reservoirs and lakes, the NWM 

currently uses level-pool routing (Gochis et al. 2013). Whereas the MC method 

mimics diffusive wave, it requires careful selection of the parameters for stability 

(Novak et al., 2010). The new routing methods developed in this research may 

potentially be used in place of or in addition to the existing MC and level-pool 

routing methods with significant improvement in accuracy, computational 

efficiency and parsimony (and hence calibration). Such an application may be 

made at all catchment scales from small urban catchments to large river systems 

with estuary/ocean BCs incrementally and with spatially varying resolutions 

based on the need for high-resolution information.  
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