
ADAPTIVE TORQUE CONTROL OF A

ROBOTIC MANIPULATOR

by

DREW WALLER

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN

ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2016

ii

Copyright © by Drew Waller 2016

All Rights Reserved

iii

Acknowledgements

The work for this project began with my first graduate class in Spring 2015. I

thank Dr. Popa for initializing my interest and foundational understand of robotic systems,

introducing me to the youBot device, and critical mentorship to begin and finish this

thesis. Further, the technical understanding necessary to implement the controls logic

would not have been possible without Dr. Lewis’s instruction and text material. The

Neural Network [1] book is a truly excellent adaptive controls resource. Also Dr. Bahare

provided critical insight and support whilst I struggled with some of the more difficult

controls concepts this effort required. I am very grateful for my thesis committee

including Dr. Davis and Dr. Manry for taking interest and time to challenge my thesis

defense and contribute questions I attempt to better address here.

Many thanks to the students and faculty of UTA’s Next Generation Systems [2].

During their continuing mission to study and enable opportunities for robot-human

interaction, these great people made space for my school and thesis work which I hope

will serve them well. Oguz Yetkin, Rommel Alonzo, Raghavendra Sriram, Joshua

Baptist, Sven Cremer, Fahad Mirza, Roopak Karulkar, Yathartha Tuladhar, and Cody

Lundberg each provided moments of keen insight, valuable motivation, or pleasant

company which certainly improved the quality of this thesis and my time at UTA.

Special thanks to Sven Cremer for pushing me into using repositories for offline

code revision, as well as some of the intricacies of working with the youBot itself. Also

my dad George for defeating some programming challenges, my mom Barbara for

critiquing my writing, and my brother Matthew for being awesome. Mostly, huge gratitude

to both my parents, who’s endless sponsorship has enabled me to stumble through so

many periods of study and unemployment whilst searching for a happy career path.

July 17, 2016

iv

Abstract

ADAPTIVE TORQUE CONTROL OF A

ROBOTIC MANIPULATOR

Drew Waller, MS

The University of Texas at Arlington, 2016

Supervising Professor: Dan Popa

In this thesis, I present the theory and application of enabling intuitive control and

physical interaction between a human operator and a mobile manipulator. To do so, the

model of the manipulator was estimated for its kinematic and inertial properties.

Specifically selected in this project was the Kuka youBot for its ease of use and wide

academic availability. With thorough modeling of this device that included the arm as

well as the base, and advanced control and guidance techniques, an adaptive controller

was used to guide the manipulator towards a goal trajectory with great accuracy. The

goal trajectory was built in cartesian reference frame was translated into the n-dimension

joint parameters of the device through the kinematic techniques here discussed. These

were then demonstrated with thorough virtual simulation using Matlab Simulink, and also

applied to an actual device using custom ROS code written in C++. These

demonstrations highlighted the difficulty of cartesian guidance with a limited manipulator

whilst also showing adaptive methods can work with jacobian based error estimation.

While the jacobian math suggests orientation as well as position guidance are possible,

there are limiting interactions in under articulated manipulators that can be overcome

using motions of the mobile base. However, until these base motions can be well

observed, they cannot be used with an adaptive torque control of a mobile manipulator.

v

Table of Contents

Acknowledgements ...iii

Abstract .. iv

List of Illustrations .. vi

List of Tables ..vii

Chapter 1 Robots in application .. 8

Motivation for an Intuitive Interface ... 8

Robot Control Challenges .. 9

Description of Related Work ... 13

Contributions to Ongoing Research by this Thesis .. 14

Chapter 2 Literature and Research ... 16

Kinematic Fundamentals .. 17

Nonlinear Dynamics.. 24

Adaptive Control ... 27

Chapter 3 Platform Description: The Kuka youBot ... 33

Chapter 4 Simulation and Experimentation .. 37

Virtual Analysis with Matlab/Simulink ... 37

Physical Experimentation ... 52

Chapter 5 Conclusion .. 56

Discussion .. 56

Future Work .. 57

Appendix A Matlab Jacobian Construction with and youBot C++ code 58

Appendix B Selected Code for Adaptive Torque .. 61

References .. 63

Biographical Information ... 68

vi

List of Illustrations

Figure 1-1 Graphical depiction of ξ vectors... 17

Figure 2-1 This Layout is structurally similar to that proposed here. 28

Figure 2-2 Functionally organized subnets from [1] .. 30

Figure 3-1 YouBot Device [42] .. 33

Figure 4-1 Simulation Layout .. 37

Figure 4-2 Torque control subsystem ... 38

Figure 4-3 20mm Cartesian trace history .. 39

Figure 4-4 Error state history .. 40

Figure 4-5 90mm Circle tracing. (a) xyz position and (b) joint state error. 41

Figure 4-6 Basis weights. (a) friction (b) gravity (c) inertia (b) coriolis 42

Figure 4-7 Line tracing Simulink layout ... 44

Figure 4-8 condensed control layout ... 44

Figure 4-9 Line tracing. (a) xyz position and (b) joint state error. 46

Figure 4-10 Circle tracing. (a) xyz position and (b) joint state error. 47

Figure 4-11 Kinematic demo with logarithmic orientation navigation 48

Figure 4-12 Error history of logarithmic orientation navigation ... 49

Figure 4-13 Error history with k=0 ... 50

Figure 4-14 Position trace history with 𝑘 = −2 − 27 ... 51

Figure 4-15 Error history with 𝑘 = −2 − 27 ... 52

Figure 4-16 Adaptive demo error state history with traces offset 55

vii

List of Tables

Table 3-1: The estimated ξ vectors of the complete youBot with extended manipulator . 33

Table 3-2 The suggested manipulator link mass centers in mobile platform frame 35

Table 3-3 Inertial value estimations for manipulator links ... 35

8

Chapter 1 Robots in application

Motivation for an Intuitive Interface

From industry to consumer entertainment, robots are becoming ubiquitous in

modern life. This is to be expected as the once cost prohibitive nature of these devices is

rapidly yielding to cheap reliability. In response manufacturers, service providers, and

academic researchers are creating opportunities with complex tasks or abstract goals

that have very mission specific challenges. These challenges are often related to the

type of mission to be executed, and they are sometimes based on technical challenges

related to guiding a mobile and thoroughly articulated manipulator through the

environment to accomplish the mission goals.

To help users with limited robotics experience, the next generation of robots,

particularly manipulators, need to include control programs that can accept commands

phrased in terms of desired world coordinates and translate them to the required internal

robot coordinates. World or Cartesian coordinates are preferred as the most universal

coordinate method for expressing a desired object state with three dimensions of position

and three dimensions of orientation. These Cartesian commands however, must be

relayed to an articulated manipulator that can only observe its joint positions through

encoders, and apply appropriate joint torques through motors. Therefore, driving the

robot requires translating Cartesian commands into joint vectors through the robot

kinematics, while determining torques to achieve those joint vectors and commands is

dependent on the dynamics of the device. The robots and control algorithms capable of

accommodating both kinematics and dynamics in an adaptive manner, without user

intervention and specialized technical knowledge, will enable faster and greater success

in future applications.

9

The research presented here is aimed at formulating adaptive controllers for

mobile manipulators, and was enabled by a grant from the National Science Foundation’s

National Robotics Initiative, “IIS #1208623 – Multimodal skin and garments for home and

healthcare robots” [3].

Robot Control Challenges

Kinematic Guidance

In a serially linked manipulator, every joint motion creates some relative motion

between the base and end effector coordinate frames. In the case of most manipulators,

this motion will include quantities of both rotation and translation and rarely will any sole

joint provide the desired motion of a given Cartesian task. Therefore, guidance of a

manipulator requires the simultaneous coordination of every joint between a reference

base and the effector frame [4]. The calculation of the end effector position for a known

joint state, is known as forward kinematics and is a calculation based on well-known

transformations using a robot model, such as the Denavit-Hartenberg notation [5].

Solving for the joint state corresponding to a desired effector position requires the

inversion of the robot kinematic map, called inverse kinematics. This is a problem that is

often fraught by a lack of analytical methods and includes multiple or infinite solutions.

Solving the inverse kinematics problem is made more manageable by using the so

known Jacobian method [6]. In this manner, rather than calculating a directly inverted

kinematic solutions, the manipulator is directed iteratively toward the goal. To clarify

consider equation (1) below. Here 𝑔𝑠𝑡 is the forward kinematic transformation as a

function of the robot joints which are indicated as a n-vector by 𝜃. Here, n is the number

of joints. This transformation matrix is translated into the six-dimension vector x which

expresses all the dimensions an object’s position and orientation.

10

 𝑔𝑠𝑡(𝜃) → 𝑥, 𝐽(𝜃)−1𝑥̇𝑑𝑒𝑠𝑖𝑟𝑒𝑑 + 𝐽(𝜃)−1(𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑥) = 𝜃̇𝑐𝑜𝑚𝑚𝑎𝑛𝑑 (1)

Assuming a task or operator expresses some desired trajectory through

cartesian space, this six-dimension input would need be translated to the n-dimension 𝜃.

For this, the Jacobian 𝐽 which also a function of the joints is applied relay desired

behavior and bound errors through the joint velocity command calculation.

This is a simplistic expression of how the manipulator’s joint encoders are

observed and translated through forward kinematics into the task space of a desired

trajectory. However, this method may not work if the robot does not have sufficient joints

or degrees of freedom to accomplish certain tasks. Each joint in a manipulator

represents a degree of freedom available to the motion of the robot. This is critical

because placing any object in three space requires exactly six degrees of freedom. For

this reason, a manipulator requires at least six joints to move its end effector in any

arbitrary direction inside its workspace. Additionally, as a manipulator approaches a

position where joint motions produce identical transformations of the end effector, i.e. the

joints are redundant, an efficient manipulator will lose the ability to move in certain

directions which depend on the pose of the effector. These are referred to as

singularities in the inverse jacobian transformation.

Therefore, constructing the jacobian simplifies the kinematic challenge in some

ways while introducing its own difficulties. A mobile manipulator may further complicate

this challenge by attempting to augment a deficient manipulator of five or less joints with

a base with one or more freedoms of motion. However, due the extrinsic nature of a

mobile base lacking the clarity of transform provided by intrinsic joint state encoders,

controllers and operators will have only a limited perception of base motion if any.

This nature of mobile devices likely restricts a roboticist from simply incorporating

these freedoms of motion as joints due to the inability to observe their absolute state.

11

However, these base freedoms might enable jacobian solutions for end effector velocities

that would be otherwise impossible for a lack of observable and actuated joints.

A method considered in this thesis incorporates the mobile base to augment the

freedoms of the manipulator. Asserting mobile freedoms as having zero state while

applying their velocities allows an operator to use a robust jacobian controller while also

creating dependency on said operator to continuously transform desired goal coordinates

into the current frame of the device. This is not unfamiliar to any remote control hobbyist

since such a transformation becomes routine and subconscious as one practices control

of a selected device.

To further augment the control challenge of interpreting input commands into a

desired joint state, a control method is proposed that would relieve the operator of

selecting position and acceleration values. In this method, the absence of input declares

the current position as the desired state, otherwise the input heading is linearly filtered to

determine desired position, velocity and acceleration states for guidance commands.

12

Torque Control

Many robots, particularly those capable of rapid movement, cannot act directly on

joint state commands. While encoders allow controllers and operators to observe the

joint state, joint motors through electrical current regulation are only capable of effecting

torque inputs to the dynamic system. Determining the torque to guide a manipulator

towards a goal with precision requires studying the general dynamics of the system.

Understanding the dynamics and how a manipulator changes state with time is a

mechanical challenge that has can also be solved with classical mathematics. With an

exact understanding of these dynamics, a controller could use a linear filter to translate

desired states into appropriate input derivatives which is typically acceleration for most

devices. Knowing the exact dynamics however, is near impossible even with an

exhaustively thorough measurement of the system. To avoid this exhaustive effort,

methods exist to guide an unknown system whilst adapting to it [7]. Thus, a controller

initialized with crude performance, through time and adaptive learning, will eventually

become exceptionally accurate for a given device [8].

13

Description of Related Work

The Kuka youBot is a well-known academic robotic platform, which has been

widely distributed and published in recent years [9] [10]. It is a relatively easy to use

device, and many users have focused on very specialized or advanced applications [11].

The focus of our work is to enable more intuitive human machine interaction, and both

the robot kinematics and dynamics have to be taken into account for adaptive controllers

for the youBot.

Beginning with kinematics, many texts thoroughly describe the methods of

forward kinematic analysis [12] [13]. Additionally, many works published regarding the

youBot detail possible solutions to the challenge of inverse kinematics [14] [15] [16].

Very few, if any provide a satisfying solution to the vector space challenge of the inverse

Jacobian function. This is probably due to the manipulator’s joint deficiency which will be

more thoroughly discussed later. Therefore, this study will pursue a Jacobian solution to

provide direct trajectory solutions for cartesian task descriptions [17] [6] [18] [19].

Further, while many texts discuss torque control methods [20] [21], applying

these methods from estimation to application and validation is difficult. Although others

[11], discuss implementing robust torque control for the youBot. This study will attempt to

better elucidate the process of dynamic study and provide an adaptive method of torque

control for the Kuka youBot with methods that could be applied to manipulators in

general.

14

Contributions to Ongoing Research by this Thesis

Because of the growing interest in robot that directly interact with humans, new

initiatives have begun to direct studies in robotics towards appropriate interfacing [22]

[23] [24]. Here, this means better understanding methods by which a human operator

can provide task guidance through non-technical means such as physical interaction [25]

[26]. One direction of research includes creating new sensing devices to recognize and

quantify physical contact between human and robots such as robot skins [27]. Our study

however, builds on the concept that physical interaction can be recognized and quantified

in terms of imparted disturbance forces that exceed known expectations [28] [29]. If a

robot has high confidence in its controllers as verified by its proprioceptive encoders,

sudden or even slight deviations from an expected trajectory can inform a controller of

informationally significant disturbances. This proposed method is based on physical

experiments in robotic interaction and is better discussed later on.

15

To this purpose, the Kuka youBot was quantified in terms of both its kinematics

and dynamics. The kinematic nature and challenges as discussed are confronted and

resolved according to published works. This understanding also provides the

fundamentals to construct the dynamic model of the device known also as the joint state

dependent gravity, inertial, and coriolis function matrices. Further, this thesis applies the

established methods of neuro adaptive techniques to enable a controller to refine these

estimation dependent models whilst retaining stable control of a physical device along a

desired trajectory. All of these components are successfully combined in a virtual

demonstration of a six jointed manipulator based on the youBot device. Both the

jacobian guidance and neuro adaptive control are physically realized on an actual device

with selected code and demonstration video appended.

The work detailed in this thesis includes several concepts of robotic manipulator

characterization and control as applied to the Kuka youBot. These include:

 A formulation of the forward kinematics and Jacobian into matrix equations to utilize

both the manipulator and mobile base motions. These matrices are critical to the

guidance and control of this device for applications that generate task space goals

during the operation of the platform.

 A method of adaptive torque control [1] with a preprocessed single layer neural

network which was validated in numerical simulation and on the device itself.

16

Chapter 2 Literature and Research

Because robotic systems represent fantastic opportunities with a wide field of

solvable technical challenges, there exists a great wealth of technical papers on the

subject. While many papers were reviewed, only a few texts can be cited for their

technical and inspirational contribution to this paper. Most critical is the mathematical

introduction to robotic manipulators by Murray, Li, and Sastry [12]. This text provides the

thorough, fundamental details necessary to mathematically describe both the kinematics

and dynamic behavior of robot manipulators. The aspects relevant to this project are

discussed in this chapter beginning pages fifteen and twenty respectively.

Of great inspiration and some technical insight was a thesis from ETH Zurich on

the subject of Torque Control of a Kuka youBot Arm by Ben Keiser [11]. Discussed here

are many of the same motivations and challenges. However, his solution seems light in

technical detail and more relevant to low speed minimal dynamic control to demonstrate

the possibilities of robotic perception. His work is cited here for his useful insights on

experiments and possibilities for human interaction.

Enabling the methods of robust and high dynamic torque control required the

insights of Lewis’s Neural Network control of manipulators [1]. This text adopts the

technical understanding of Lyapunov stability, robot dynamics, and neural network

programming into a unified engineering applicable approach. These invaluable insights

define the selected torque control methods applied by this paper. The specific insights of

which are discussed in the final section of this literature review.

17

Kinematic Fundamentals

Beginning the design of any robotic controller is the study and understanding of

the device’s movement. These rules of how the motion of each joint affects the following

joints and the end effector are known as the kinematics. To characterize a given robot,

nearly every joint can be considered either a revolute, a prismatic or some combination of

those two. Similar to a hand, the end-effector of a manipulator has a pose that is

determined by its position and orientation. This pose can be determined directly from the

state of the joints by the application of the forward kinematics. This kinematic function

can be readily solved with mathematical descriptions of these joints described in [12] [13]

as a series product of exponentials known as the kinematic chain. Specifically, each joint

is described with the ξ vector which is referred to as a twist as shown in Figure 1-1.

Figure 1-1 Graphical depiction of ξ vectors

 𝜉 = [
−𝜔 × 𝑞

𝜔
] (𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛) 𝑜𝑟 𝜉 = [

𝑣
0
] (𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛) (2)

A twist contains details for an axis of rotation with a magnitude or a displacement

either of which is constructed as shown by equation (2) which build the transformations

made by each joint of a manipulator. The product of a given displacement theta along a

twist is known as a screw motion. The transformation of a coordinate frame induced by

the scalar displacement of a twist is expressed mathematically as shown in equation (3).

18

 𝑒𝜉̂𝑖𝜃𝑖 = [
𝑅 𝑝
0 1

] (3)

In equation (3), p is a three-dimension vector representing the simple x, y, and z

displacement of the joint transformed coordinate frame. R is a three by three matrix which

expresses the rotation of this transformation. This format, allows series of

transformations to be multiplied together, creating the kinematic rules of a manipulator.

 𝑎 = [

𝑎1

𝑎2

𝑎3

] , 𝑎̂ = [

0 −𝑎3 𝑎2

𝑎3 0 −𝑎1

−𝑎2 𝑎1 0
] , 𝑎 × 𝑏 = 𝑎̂𝑏 (4)

To clarify, a in equation (4) is a generic three-dimension vector for representing

the unit length axis component of a twist in the three space (x, y, z) also known as

cartesian navigation. The up carrot operation known as the skew of a produces the skew

symmetric matrix which when matrix multiplied by a similar vector b, produces the same

result as a cross b. The wedge operation of the ξ vector which is a six-dimension vector

relies on this skew to create the special orthogonal matrix of four by four dimensionality

which forms the exponent of a joint transformation described by the ξ matrix.

 𝜉 = [
𝑣
𝜔

] , 𝜉 = [
𝜔̂ 𝑣
0 0

] , [
𝜔̂ 𝑣
0 0

]
∨

= [
𝑣
𝜔

] (5)

 𝑔(𝜃) = [𝑒
𝜔̂𝜃 (𝐼 − 𝑒𝜔̂𝜃)(𝜔 × 𝑣) + 𝜔𝜔𝑇𝑣𝜃

0 1
] (6)

Here in equations (5) and (6), a transformation imposed by a single joint is

produced. The product of a series of joint screw motion transformations produces the

general kinematic solution for any serially linked manipulator. If it helps clarify, the vector

ξ and transformation matrix g do not necessarily describe the appearance of physical

joints they represent. It would be more accurate to say they describe the parameter

dependent motions or transformations of coordinate frames within which points and

objects might be constructed. A series of these could describe a serially linked robotic

manipulator.

19

 𝑔𝑠𝑡(𝜃) = 𝑒𝜉̂1𝜃1𝑒𝜉̂2𝜃2 ⋯𝑒𝜉̂𝑛𝜃𝑛𝑔𝑠𝑡(0) = [
𝑅 𝑝
0 1

] (7)

This resulting matrix function g is also known mathematically as a special

Euclidean which has four by four dimensionality. Using this to navigate the six vector

task space requires transforming this into a six vector of position and orientation

dimensions. The position of a transformation matrix is readily expressed in the first three

rows and last column ‘[1:3,4]’ or p. However, the rotation information of this kinematic

function is described by the field of the first three rows and columns ‘[1:3,1:3]’, R, which is

otherwise known as a special orthogonal matrix. Many methods of transforming this

rotation matrix into rotational dimensions exist. For this project one of two methods were

preferred depending on the situation. The first of which comes directly from MLS [12].

Known as exponential mapping, both of these methods consider orientation dimensions

as a scalar displacement applied to a unit vector axis.

 𝑅 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] , 𝑅̌ = [

𝑟32 − 𝑟23

𝑟13 − 𝑟31

𝑟21 − 𝑟12

] 2⁄ (8)

Recovering the orientation information from the rotation set R of the

transformation matrix in (7) begins with determining the inverse skew of this set. This

inverse operation as shown in (8) is referred to as the hex.

 𝜃 = 𝑐𝑜𝑠−1 (
𝑡𝑟𝑎𝑐𝑒(𝑅) − 1

2
) , 𝜔 = 𝑅̌ 𝑠𝑖𝑛(𝜃)⁄ , 𝑥 = [

𝑝
𝜔𝜃

] (9)

The scalar magnitude of the rotation is the inverse cosine of half the trace

reduced by one as shown in equation (9). The hex of the rotation set divided by the sine

of this magnitude yields the rotation axis 𝜔. The position vector appended with axis-

magnitude produce produces the six-dimension cartesian state vector x.

This method is simple and can be rapidly evaluated, however it has a severe

issue with rotation matrices corresponding to poses that approach zero rotation. This is

20

due to the denominator approaching zero creating an unreliable calculation. A more

robust method is derived from the rotation definition of an arbitrary screw.

 𝑥 = [
𝑝

𝜔𝜃
] , 𝜔̂𝜃 = log𝑚 𝑅 , [

𝑅 𝑝
0 1

] = 𝑔𝑠𝑡(𝜃) (10)

As before, the rotation coordinates are conceived as a scalar rotation around a

unit axis vector. Here. however, the axis angle product is yielded directly from the earlier

described inverse skew (or vex) of the matrix logarithm of the rotation matrix shown in

(10). This matrix logarithm is a specialized calculation that may be processor intensive

and perhaps should be applied only when singularities in the orientation are expected.

While this produces a function g of theta, that can be evaluated for the Cartesian

pose of the end-effector or any manipulator dependent location, this function is not easily

inverted if it can be at all. That is to say one cannot easily if at all apply a desired pose x

through some function inverse g to produce a desired joint state. Indeed, some desired

poses are not reachable and are often referred to as being outside the manipulator’s

work space. Further, if an inverse kinematic solver is not careful, some solutions may

‘toggle’ the states of the kinematic chain which if signaled to a controller would be an

immediate disaster. For these reasons an inverse kinematic solver was not attempted for

this project, and instead the desired end effector pose is translated to desired joint states

through a method known as the Jacobian.

If the forward kinematics produce a function g of the joint state 𝜃 yields the

Cartesian position x, then the Jacobian would simply be the derivative of that function g

with respect to 𝜃. Appling the time derivative to the kinematic function via the chain rule

reveals this analytic Jacobian while a further derivative yields acceleration (11).

 𝑥̇ = 𝐽(𝜃)𝜃̇, 𝑥̈ = 𝐽(𝜃)𝜃̈ +
𝜕

𝜕𝜃
𝐽(𝜃)

𝑑𝜃

𝑑𝑡
 (11)

21

By rephrasing these equations in terms of the Cartesian coordinates, the inverse

Jacobian can be applied to yield the desired joint state derivatives [30] seen in (12).

 𝜃̇ = 𝐽(𝜃)−1𝑥̇, 𝜃̈ = 𝐽(𝜃)−1𝑥̈ − 𝐽(𝜃)−1𝐽(̇𝜃)𝜃̇ (12)

It should be noted that an inverse Jacobian solution is incomplete for any

manipulator without at least six degrees of freedom. Additionally, some joints depending

on device and joint state may become redundant which effectively reduces the degree of

freedoms available to a given manipulator [31]. This would also make some inverse

solutions unattainable in such cases.

Because the desired static joint space is never exactly solved, a method to

closely approximate the joint state error must be produced. When there exists a desired

cartesian position, the joint state error can be determined by distributing the differential

time across the jacobian equation. The forward kinematic solution provides the actual

position which is removed from the desired end-effector pose as shown in (13).

 𝑒𝜃 = 𝜃𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝜃 ≅ 𝐽(𝜃)−1(𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑥) (13)

In the event, where the desired static position is not known, as is the case of a

mobile device, the desired joint state could be constructed by integrating the desired joint

velocity. The error is then found simply by removing the observed joint state.

22

Building the Jacobian as detailed in [12] begins with using the kinematic details

collected earlier. The spatial Jacobian becomes a concatenation of adjoint modified twist

parameters as shown by the following equations (14)(15)(16).

 𝐽𝑠𝑡
𝑠 (𝜃) = [𝜉1 𝜉2

′ ⋯ 𝜉𝑛
′] (14)

 𝜉𝑖
′(𝜃) = 𝐴𝑑

(𝑒𝜉̂1𝜃1⋯𝑒𝜉̂𝑖−1𝜃𝑖−1)
𝜉𝑖 (15)

 𝐴𝑑𝑔 = [
𝑅 𝑝̂𝑅
0 𝑅

] , 𝑔 = [
𝑅 𝑝
0 1

] (16)

However, equation (14) only yields the spatial Jacobian. The geometric

Jacobian relating joint rates to the end-effector rate requires the final adjoint of the

forward kinematic displacement as shown in (17)(18). The chain rule is then used to

find the acceleration by taking the time derivative of the jacobian.

 𝑝 = 𝑔𝑠𝑡(𝜃)1:3,4 (17)

𝐽(𝜃) = 𝐴𝑑

[
𝐼 −𝑝
0 1

]
𝐽𝑠𝑡
𝑠 (𝜃)

(18)

23

Thus jacobian control for motion vectors reachable within the device’s workspace

is processed as follows. Assume desired cartesian states of position, velocity and

acceleration, as well as actual joint positions and velocities are known.

 𝑘𝑛𝑜𝑤𝑛: 𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = [
𝑝

𝜔𝜃
] , 𝑥̇𝑑𝑒𝑠𝑖𝑟𝑒𝑑, 𝑥̈𝑑𝑒𝑠𝑖𝑟𝑒𝑑, 𝜃, 𝜃̇ (19)

Using the mathematic methods described earlier, the inverse Jacobian matrix 𝐽𝑖

and the cartesian position and orientation of the end effector x is produced.

 𝜃 → 𝐽(𝜃)−1 → 𝐽𝑖 , 𝜃 → 𝑔𝑠𝑡(𝜃) → [
𝑅 𝑝
0 1

] → [
𝑝

𝜔𝜃
] → 𝑥 (20)

Now, joint position error 𝑒𝜃, desired velocity 𝜃̇𝑑 and acceleration 𝜃̈𝑑 are produced.

 𝐽𝑖, 𝑥𝑑, 𝑥 → 𝐽𝑖(𝑥𝑑 − 𝑥) → 𝑒𝜃, 𝐽𝑖𝑥̇𝑑 → 𝜃̇𝑑 (21)

 𝐽𝑖 , 𝜃̇, 𝑥̈𝑑 → 𝐽𝑖𝑥̈𝑑 − 𝐽𝑖𝐽(̇𝜃)𝜃̇ → 𝜃̈𝑑 (22)

This should be sufficient to navigate the kinematics of a plausible and reachable

task vector. For a hypothetical device capable of a direct acceleration command, a linear

control algorithm might function with these details and gain coefficients for proportional P

and derivative D error mitigation.

 𝜃̈𝑑 + 𝐷(𝜃̇𝑑 − 𝜃) + 𝑃(𝑒𝜃) → 𝜃̈𝑐𝑜𝑚𝑚𝑎𝑛𝑑 (23)

24

Nonlinear Dynamics

Predicting the evolution of the manipulator states is made possible by

constructing a thorough dynamic model of the forces acting on the device. These forces

are stated generally by [12] as matrix equations. Inertia 𝑀, Coriolis 𝐶, gravity 𝐺, friction

𝐹, disturbances torque 𝜏𝑑, and input torque 𝜏 are shown in equation (24).

 𝑀(𝜃)𝜃̈ + 𝐶(𝜃, 𝜃̇)𝜃̇ + 𝐺(𝜃) + 𝐹(𝜃̇) + 𝜏𝑑 = 𝜏 (24)

While this equation might appear simple enough for planar devices or those with

only a few degrees of freedom, a general solution for generic serially linked manipulators

can be a thoroughly intense study that deserves its own scrutiny to understand well.

Regardless, the process begins with building the Lagrangian and its derivatives from

which the derivation of the resulting terms can be produced [20]. The Lagrangian ℒ

which is the difference of total kinetic and potential energy of a system is stated (25).

 ℒ(𝜃, 𝜃̇) = 𝐾(𝜃, 𝜃̇) − 𝑃(𝜃) (25)

From this the equations of motion for all mechanical systems are related by the

series of differential equations for n degrees of freedom with state variables θ, and

external forces or torques Υ𝑖.

𝑑

𝑑𝑡

𝜕ℒ

𝜕𝜃̇𝑖

−
𝜕ℒ

𝜕𝜃𝑖
= Υ𝑖 𝑖 = 1,⋯ , 𝑛 (26)

Solving the potential energy of (25) is simply the sum of products each link’s

mass 𝑚𝑖, gravity 𝑔, and height ℎ𝑖 as function of 𝜃. Kinect energy is the product of each

link’s local velocity 𝑉𝑠𝑙𝑖
𝑏 , inertia ℳ𝑖, and velocity transpose. Substituting the yields (27).

 ℒ(𝜃, 𝜃̇) = ∑
1

2
(𝑉𝑠𝑙𝑖

𝑏)
𝑇
ℳ𝑖𝑉𝑠𝑙𝑖

𝑏

𝑛

𝑖=1

− 𝑚𝑖𝑔ℎ𝑖(𝜃) (27)

25

The link velocities are functions of the joint state and its derivative. Therefore,

this equation cannot be reduced until the body Jacobian 𝐽𝑠𝑙𝑖
𝑏 is applied for each link of the

manipulator chain as described in equations (28)-(31) by [12].

 𝑉𝑠𝑙𝑖
𝑏 = 𝐽𝑠𝑙𝑖

𝑏 (𝜃)𝜃̇ (28)

 𝐽𝑠𝑙𝑖
𝑏 (𝜃) = [𝜉2

† ⋯ 𝜉𝑖
†

0 ⋯ 0] (29)

𝜉𝑖

† = 𝐴𝑑
(𝑒

𝜉̂𝑗𝜃𝑗⋯𝑒𝜉̂𝑖𝜃𝑖𝑔𝑠𝑙𝑖
(0))

−1 𝜉𝑗 𝑗 ≤ 𝑖
(30)

 𝐾(𝜃, 𝜃̇) = 𝜃̇𝑇 ∑𝐽𝑖
𝑇(𝜃)ℳ𝑖𝐽𝑖(𝜃)

𝑛

𝑖=1

𝜃̇ = 𝜃̇𝑇𝑀(𝜃)𝜃̇ (31)

Through substitution equation (27) now becomes more tractable.

 ℒ(𝜃, 𝜃̇) =
1

2
∑ 𝑀𝑖𝑗(𝜃)𝜃̇𝑖𝜃̇𝑗 − 𝑚𝑖𝑔ℎ𝑖(𝜃)

𝑛

𝑖,𝑗=1

 (32)

By applying the Lagrangian derivatives of (26) to form the equations of motion,

the inertial derivative terms can be expanded to yield equation (33).

 ∑𝑀𝑖𝑗(𝜃)𝜃̈𝑗

𝑛

𝑗=1

+ ∑ (
𝜕𝑀𝑖𝑗

𝜕𝜃𝑘
𝜃̇𝑗𝜃̇𝑘 −

1

2

𝜕𝑀𝑘𝑗

𝜕𝜃𝑖
𝜃̇𝑘𝜃̇𝑗)

𝑛

𝑗,𝑘=1

+
𝜕

𝜕𝜃𝑖
𝑚𝑖𝑔ℎ𝑖(𝜃) = Υ𝑖 (33)

From here, the inertia matrix can now be readily extracted and defined through

the above jacobian functions with equations (34)(35)(36).

 𝐴𝑖𝑗 = {

𝐴𝑑
(𝑒

𝜉̂𝑗+1𝜃𝑗+1⋯𝑒𝜉̂𝑖𝜃𝑖)

−1 𝑖 > 𝑗

𝐼 𝑖 = 𝑗
0 𝑖 < 𝑗

 (34)

 𝑀𝑖𝑗(𝜃) = ∑ 𝜉𝑖
𝑇𝐴𝑙𝑖

𝑇ℳ𝑙
′𝐴𝑙𝑗𝜉𝑗

𝑛

𝑙=max (𝑖,𝑗)

 (35)

26

 ℳ𝑙
′ = 𝐴𝑑

𝑔𝑠𝑙𝑖(0)
−1

𝑇 ℳ𝑖𝐴𝑑𝑔𝑠𝑙𝑖(0)
−1 (36)

Further the Coriolis matrix as defined by the indexed inertia derivatives can be

determined through the following equations. Note the brackets in (38) here denote the

mathematical lie bracket function which requires wedge and inverse wedge operations as

described earlier in equation (5).

 𝐶𝑖𝑗(𝜃, 𝜃̇) =
1

2
∑ (

𝜕𝑀𝑖𝑗

𝜕𝜃𝑘
+

𝜕𝑀𝑖𝑘

𝜕𝜃𝑗
−

𝜕𝑀𝑘𝑗

𝜕𝜃𝑖
) 𝜃̇𝑘

𝑛

𝑘=1

 (37)

𝜕𝑀𝑖𝑗

𝜕𝜃𝑘
= ∑ (

[𝐴𝑘𝑖𝜉𝑖, 𝜉𝑘]
𝑇𝐴𝑙𝑘

𝑇 ℳ𝑙
′𝐴𝑙𝑗𝜉𝑗 +

𝜉𝑖
𝑇𝐴𝑙𝑖

𝑇ℳ𝑙
′𝐴𝑙𝑘[𝐴𝑘𝑗𝜉𝑗, 𝜉𝑘]

)

𝑛

𝑙=𝑚𝑎𝑥(𝑖,𝑗)

 (38)

 [𝜉1, 𝜉2] = (𝜉1𝜉2 − 𝜉2𝜉1)
∨
 (39)

As stated, the torque due to gravity is the joint dependent derivative of the

potential energy function. Finally, the friction force is approximated as the sum of a gain

on joint rate 𝑑𝑖 and a gain of signed rate 𝑓𝑖 to capture both damping and friction forces.

 𝐺𝑖(𝜃) =
𝜕

𝜕𝜃𝑖
𝑚𝑖𝑔ℎ𝑖(𝜃) (40)

 𝐹𝑖(𝜃̇) = 𝑑𝑖𝜃̇𝑖 + 𝑓𝑖𝑠𝑔𝑛(𝜃̇𝑖) (41)

With these equations, the dynamic model of the serially linked manipulator could

be applied to evaluate the joint acceleration due to a Torque vector at the current state

with the following method. Assume, an input torque vector 𝑇 and the joint states of

position 𝜃 and velocity 𝜃̇ are known. An integrable signal 𝜃̈ is produced.

 𝑇, 𝜃, 𝜃̇ → [𝑇 − 𝐹(𝜃̇) − 𝐺(𝜃) − 𝐶𝑖𝑗(𝜃, 𝜃̇)𝜃̇] 𝑀(𝜃)⁄ = 𝜃̈ (42)

27

Adaptive Control

These thoroughly modeled dynamics make for an adequate dynamic simulator.

However, they are even more valuable in the construction of the controller for the

manipulator. According to [1] [32] [33], there are few ways of building an adaptive

controller, some of which require little knowledge of the robot’s dynamics. The proof

begins with the general dynamic equation of manipulator motion, the assumption of a

desired trajectory, and a new state variable r combines the static error from that trajectory

and its first time dependent derivative. This sum uses a coefficient matrix Λ to manage

units and effectively replicates a linear proportional-derivative control gain.

 𝑒𝜃 = 𝜃𝑑 − 𝜃, 𝑟 = Λ𝑒 + 𝑒̇ (43)

 𝑁(𝜃, 𝜃̇) = 𝐺(𝜃) + 𝐹(𝜃̇) (44)

 𝑀(𝜃)(𝜃̈𝑑 + Λ𝑒̇ − 𝑟̇) + 𝐶(𝜃, 𝜃̇)(𝜃̇𝑑 + Λ𝑒 − 𝑟) + 𝑁(𝜃, 𝜃̇) + 𝜏𝑑 = 𝜏 (45)

Beginning in (46), x represents the concatenation of all desired states and actual

states, and the new state variable r becomes the core expression of the error state.

 𝑥 = [𝜃𝑇 𝜃̇𝑇 𝜃𝑑
𝑇 𝜃̇𝑑

𝑇 𝜃̈𝑑
𝑇] (46)

 𝑀𝑟̇ = −𝐶𝑟 + 𝑓(𝑥) + 𝜀(𝑥) + 𝜏𝑑 − 𝜏 (47)

 𝑓(𝑥) + 𝜀(𝑥) ≡ 𝑀(𝜃̈𝑑 + Λ𝑒̇) + 𝐶(𝜃̇𝑑 + Λ𝑒) + 𝑁(𝜃, 𝜃̇) (48)

Beginning with (47) an unknown nonlinear function, 𝑓, plus some intractable

approximation error, 𝜀, is determined by the actual system dynamics and dependent on

some or all of the variables included within the newly declared x vector.

 𝜏 = 𝑓(𝑥) + 𝐾𝑣𝑟 (49)

A control method (49) that would minimize the error vector r should begin by

estimating the nonlinear function approximation 𝑓 as well as including some proportional

error feedback gain 𝐾𝑣. Through substitution, the dynamic error equation becomes (50).

28

𝑓(𝑥) = 𝑓(𝑥) − 𝑓(𝑥)

𝑀𝑟̇ = −𝐶𝑟 − 𝐾𝑣𝑟 + 𝑓(𝑥) + 𝜏𝑑(𝑡) + 𝜀(𝑥)

(50)

Note the new function label 𝑓 merely represents the error between some ideal

approximation 𝑓 and the current estimate 𝑓. Because the dynamics are believed to be

well modelled, the preferred method of approximation would be to create a set of basis

functions 𝜙(𝑥). These basis functions, many of which would be nonlinear, would be

proportionally adjusted through some integration method for each respective joint until

the weights 𝑊̂ and basis product perfectly replicate the nonlinear dynamics of 𝑓.

 𝑓(𝑥) = 𝑊̂𝑇𝜙(𝑥), 𝑊̃ = 𝑊 − 𝑊̂ (51)

Similar to the function error 𝑓 earlier, 𝑊 is the weight matrix of an ideal function

approximation 𝑓, while 𝑊̂ indicates the current estimate and 𝑊̃ is there error of this

estimate. The illustration Figure 2-1 generated by my colleague [34] [35] [36] is

structurally identical in that a task is first generated in cartesian space x. The nonlinear

function approximation negates the dynamics while the linear control gains of 𝐾𝑣 and Λ

bound the error to the desired trajectory.

Figure 2-1 This Layout is structurally similar to that proposed here.

29

For the system to improve and adapt, it must continuously integrate in a way that

reduces the trajectory error r and the function approximation error 𝑓. Ideally, this will

occur quickly and smoothly. Of course, the most universally recognized method for

nonlinear systems such as this, is the Lyapunov method [5] [37] [38]. This begins with

the positive definite scalar sum of the relevant state variables which are the error r and

basis weights error 𝑊̃.

 𝐿 =
1
2
𝑟𝑇𝑀𝑟 +

1
2
𝑡𝑟 {𝑊̃

𝑇
𝐹−1𝑊̃} (52)

𝑑𝐿

𝑑𝑡
= 𝑟𝑇𝑀𝑟̇ +

1
2
𝑟𝑇𝑀̇𝑟 + 𝑡𝑟 {𝑊̃

𝑇
𝐹−1𝑊̃̇

} (53)

This is known as the Lyapunov candidate. Determined here as the norm of a

weight matrix deviation 𝑊̃ and error r which are positive definite and monotonically

increases with either input. If selected parameters are designed such that the time rate

of change is always negative, then the sum will approach zero with time. To observe and

design these selectable parameters, the dynamics established earlier are applied to the

Lyapunov derivative.

𝑑𝐿

𝑑𝑡
= 𝑟𝑇 (−𝐶𝑟 − 𝐾𝑣𝑟 + 𝑓̃(𝑥) + 𝜏𝑑(𝑡) + 𝜀(𝑥)) +

1
2
𝑟𝑇𝑀̇𝑟 + 𝑡𝑟 {𝑊̃

𝑇
𝐹−1𝑊̃̇

} (54)

𝑑𝐿

𝑑𝑡
= −𝑟𝑇𝐾𝑣𝑟 + 𝑟𝑇 (𝑊̃

𝑇
𝜙(𝑥) + 𝜏𝑑 + 𝜀) + 𝑡𝑟 {𝑊̃

𝑇
𝐹−1𝑊̃̇

} (55)

By the skew symmetric property of twice the coriolis matrix removed from the

time derivative of inertia (𝑀̇ − 2𝐶), this term is known to be zero [12] which yields (55).

𝑑𝐿

𝑑𝑡
= −𝑟𝑇𝐾𝑣𝑟 + 𝑡𝑟 {𝑊̃

𝑇
(𝜙(𝑥)𝑟𝑇 + 𝐹−1𝑊̃̇

)} + 𝑟𝑇(𝜏𝑑 + 𝜀) (56)

The basis term 𝜙(𝑥) can now be evaluated within trace to further simplify the

candidate function (56). From here, a weights derivative function can be proposed (57).

 𝑊̇̃ = −𝐹𝜙(𝑥)𝑟𝑇, 𝜏𝑑(𝑡) ≤ 𝑑𝐵 (57)

30

 𝐿̇ = −𝑟𝑇(𝐾𝑣𝑟 − 𝜏𝑑 − 𝜀) ≤ −𝐾𝑣𝑚𝑖𝑛
‖𝑟‖2 + (𝑑𝐵 + 𝜀)‖𝑟‖ (58)

Substituting this proposed derivative function, the final statement (58) indicates

the behavior of the Lyapunov function [39] [40]. However, the Lyapunov function is only

negative semidefinite where the error variable r is non-zero, which may satisfy some

applications. Regardless, Barbalat’s Lemma shows the system can not only bound the

error of the joint states, but also attenuate error in the nonlinear function approximation.

 𝐿̈ = −𝑟̇𝑇(2𝐾𝑣𝑟 − 𝜏𝑑) (59)

 𝐿̈ = (2𝐾𝑣𝑟 − 𝜏𝑑)𝑇𝑀−1(𝐶𝑟 + 𝐾𝑣𝑟 − 𝑊̃𝑇𝜙 − 𝜏𝑑 − 𝜀) (60)

Given the bounded assumptions of 𝜏𝑑, r, 𝜙, as well as the non-zero value of any

device’s inertia, the second derivative of L is bounded, which implies that 𝐿̇ is uniformly

continuous and L itself must approach zero eventually. This requires not only bounded

error of the joint states but also bounded error of the weight nonlinear function

approximations. This only leaves the basis vectors to be designed which has further

opportunity to expedite the training process with structured networks as in Figure 2-2.

Figure 2-2 Functionally organized subnets

31

 𝑀(𝜃)(𝜃̈𝑑 + 𝛬𝑒̇) = 𝑊𝑀
𝑇𝜙𝑀(𝑥) + 𝜀𝑀 (61)

 𝐶(𝜃, 𝜃̇)(𝜃̇𝑑 + 𝛬𝑒) = 𝑊𝐶
𝑇𝜙𝐶(𝑥) + 𝜀𝐶 (62)

 𝐺(𝜃) = 𝑊𝐺
𝑇𝜙𝐺(𝑥) + 𝜀𝐺 (63)

 𝐹(𝜃̇) = 𝑊𝐹
𝑇𝜙𝐹(𝑥) + 𝜀𝐹 (64)

Rather than a single network spanning all aspects of the nonlinear approximation

function 𝑓, four distinct networks are processed independently. This structured

approximation function builds parallel weight matrices and basis sets for each of the

inertia, coriolis, gravity, and friction influences. Each subnet of Figure 2-2 shows two

nodes where the x vector is preprocessed into the basis function sets which is then

matrix multiplied with the approximation matrix W. The n-vector outputs of each is

summed together which ideally would mitigate the nonlinear forces acting on the device.

Each basis set is constructed through a process that begins with summing

together all the components of a selected matrix function from the dynamic model. The

sum is then processed into separate input functions and scalar weights. These functions

are the basis set from which guides the initial weight matrix of the nonlinear network.

32

So to clarify, each subnet must produce a n dimension torque vector. Here, n

refers to the number of joints in the manipulator. For each functionally organized net, this

vector could be referred to as 𝑇𝑖(𝑥) 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, … 𝑛. To derive the 𝜙𝑖 function vectors,

the dynamics models constructed earlier are directly applied.

𝑅𝑒𝑐𝑎𝑙𝑙: 𝑥 = [𝜃𝑇 𝜃̇𝑇 𝜃𝑑
𝑇 𝜃̇𝑑

𝑇 𝜃̈𝑑
𝑇]

𝑀(𝜃)(𝜃̈𝑑 + 𝛬𝑒̇) → 𝑀𝑖(𝑥) 𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑡𝑜𝑟𝑞𝑢𝑒 𝑣𝑒𝑐𝑡𝑜𝑟

𝐶(𝜃, 𝜃̇)(𝜃̇𝑑 + 𝛬𝑒) → 𝐶𝑖(𝑥) 𝑐𝑜𝑟𝑖𝑜𝑙𝑖𝑠 𝑡𝑜𝑟𝑞𝑢𝑒 𝑣𝑒𝑐𝑡𝑜𝑟

The sum of these vectors including gravity and friction will be a scalar function

dependent on numerous linear and nonlinear functions of x components. The 𝜙𝑖 vectors

are composed by identifying a complete list of these input functions while removing the

scalar gains 𝑆 that will later be replaced by the adapting weight matrix W as follows.

∑𝑀𝑖(𝑥)

𝑛

𝑖=1

→ 𝑆 × 𝜙𝑀(𝑥) 𝑎 𝑠𝑐𝑎𝑙𝑎𝑟 𝑠𝑢𝑚 𝑜𝑓 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

𝑙𝑖𝑠𝑡 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 → 𝜙𝑀(𝑥) 𝑎 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Repeating this process will yield an appropriate basis set for each subnet. This

basis or 𝜙𝑖 function vector should be capable of perfectly replicating the properties of the

dynamic model they represent, i.e. 𝜀𝑠 = 0; for at least a virtual simulation.

33

Chapter 3 Platform Description: The Kuka youBot

Critical to the demonstration and research of the topics in this thesis is the

platform upon which these methods will be applied. Manufactured by Kuka [41], a

German robotics company, the youBot is a simple example of a customizable mobile

manipulator. Its mission seems to be purely academic and is an ideal platform to

demonstrate fundamental robotics control methods. The youBot includes an

omnidirectional base with all three freedoms of planar motion and a five jointed

manipulator with a two state gripper. Detailed in this section will be the mathematical

description of the platform, control design, and overall system signal path.

Figure 3-1 YouBot Device [42]

The kinematic description begins with the ξ vectors or collectively the ξ matrix.

Table 3-1: The estimated ξ vectors of the complete youBot with extended manipulator

 1 0 0 0 -267 -422 -557 0

 0 1 0 -160 0 0 0 -193

 0 0 0 0 193 193 193 0

 0 0 0 0 0 0 0 0

 0 0 0 0 1 1 1 0

 0 0 1 1 0 0 0 1

34

Note the first three columns represent of the movement capabilities of the mobile

base the manipulator sits on, which are two translation axes and one rotation axis.

However, the youBot lacks any built in odometry or global reference system with which to

observe the state of these joints. Therefore, while the motions the base provides are

critical to a full range kinematic freedom, for practical control purposes, the base

reference frame must travel with the base. This effectively means joints one, two, and

three will be hard coded with zero position at all times regardless of velocity.

The remaining columns describe the joints of the manipulator arm. All of which

are rotation axes, with positions determined by assuming the zero joint state has the links

of the manipulator extended vertically along the z axis. As described earlier, this

provides all the detail necessary for the forward kinematics and jacobian. Since these

are extensive trigonometric matrix functions, they will be listed in the appendix.

Continuing with the description of the device, the weights, inertia, and dynamic

properties must now be estimated. Many of these values will be imperfect since some

are outright guesses. Fortunately, the nature of adaptive control enables these to be

constantly improved and replaced as the manipulator moves [8]. Applying this freedom

of approximation, a construction of the robot’s dynamics is made according to:

 each link’s center of mass is near its volumetric center

 the first three links are not considered because they are not torque controlled

 the inertia of each manipulator link is proportional to its prismatic dimensions

 manipulator zero position aligns all inertial frames parallel to the base

35

Listed in Table 3-2 are the suggested coordinates for the mass centers of the

torque controlled links. Each vector set top to bottom indicates the millimeter distance

fore, left, and above the base center respectively.

Table 3-2 The suggested manipulator link mass centers in mobile platform frame

[
160
10
300

] , [
193
−30
395

] , [
193
20
540

] , [
193
−12
645

] , [
193
0

730
]

The following table lists the suggested inertias in kg·mm2 for the same joints as

table two with longitudinal, lateral, and vertical axes going top to bottom respectively.

Table 3-3 Inertial value estimations for manipulator links

6200
6400
3900

4400
4400
820

2600
2500
540

1200
1100
870

340
280
160

With these details, the inertia gravity and coriolis matrices are constructed as

described earlier. These are extensive matrix functions the programmatic code for which

should be found in attached materials.

36

From the dynamics described by these matrices, the basis equations would need

to be extracted. Some of these would be slightly complicated as they require the product

of the error vector and dynamic matrix as described by the unknown nonlinear function

earlier. Fortunately, appropriate attention to detail and symbolic math tools makes this a

simple task. For the initial six degree of freedom simulation, this produced three gravity

basis functions, ninety-eight inertia basis functions, four hundred and thirty-five coriolis

functions, and six friction functions. These basis sets will vary for other kinematic

scenarios described later. For clarity, the gravity basis is described here.

 𝜙𝑔(𝑥) = [sin(𝑞3 + 𝑞4 + 𝑞5) , sin(𝑞3 + 𝑞4) , sin(𝑞3)]
𝑇 (65)

 𝑊𝑔
𝑇 = 1𝑒7

[

0
0

−.2531
−.2531
−.2531

0

0
0

−.4442
−.4442

0
0

0
0

−3.0232
0
0
0]

 (66)

 𝐺(𝜃) = 𝑊𝐺
𝑇𝜙𝐺(𝑥) + 𝜀𝐺(𝑥) (67)

Unless the robot is placed on a non-level floor and/or some weight is added non-

coincident with the wrist axis, there should be no torque due to gravity on joints 1,2 or 6.

37

Chapter 4 Simulation and Experimentation

Virtual Analysis with Matlab/Simulink

Validating this control theory began with a virtual simulation. This simulation

requires an input that engages as many joints as possible while avoiding workspace

excursions or singularities. For this, the trajectory of a circle was generated in six

dimensions, which includes three static dimensions of orientation.

Next, all the pieces would be assembled in a simulation environment. For this

project, matlab Simulink was selected and the layout for the overall simulation is shown

below in Figure 4-1. In order to follow the trajectory without an operator, this simulation

assumes the base rotation is observable and torque controlled while translation of the

base is negated. Joint state error is the product of the cartesian error with the inverse

jacobian. This enables simulations without a human “in the loop”.

Figure 4-1 Simulation Layout

 Simulink is a powerful tool that readily simplifies the task of organizing and

implementing dynamic simulation and signal integration. Here each of the ‘fcn’ blocks

contain only a few lines matlab scripting according to their title and context. The Control

38

subsystem is somewhat more complex. Visible in Figure 4-2 below depicts a Simulink

implementation of the adaptive torque control described earlier.

Figure 4-2 Torque control subsystem

To ensure the feasibility of the of jacobian and the success of the adaptive

control method, only the six rotational joints off the mobile manipulator are included in this

simulation. Remember, the actual manipulator has five joints. Here, the rotation of the

mobile base is included as a sixth fully observable and torque controlled joint. Because

the manipulator base joint is offset from the platform center, this offsets the world frame

of a purely manipulator based reference while providing additional motion ability

necessary for the full rank jacobian.

To begin, the device simulation would be initialized in an arbitrary position. This

position would seed the path generation and hopefully avoid singularities and workspace

excursions. If these should occur, the simulation will quickly fail. Additionally, because

the end-effector points arbitrarily away from any specific axis, the exponential coordinates

39

of the rotation matrix can be reliably calculated. This calculation will become a

troublesome issue later. There are other parameters to be considered such as

proportional derivative gain and weight matrix derivative gain. Determining these

requires a thorough analysis of the expected trajectory, disturbances, and basis bounds.

Fortunately, these can be rapidly revealed with a series of simulation attempts.

Figure 4-3 20mm Cartesian trace history

Shown in Figure 4-3 is the task space or cartesian positon of the end effector

coordinate frame throughout this simulation. Each axis indicates two millimeter

increments of x, y, or z displacement. From these visual results the end-effector in blue

stabilizes along the desired circle path in red very well. While visual satisfying, the

history of the error state history shown in Figure 4-4 is more informative. In this figure,

each color indicates the error state of a specific joint as labeled in the upper corner from

base to wrist. Overall, the error which is unit less begins at something less than .005 and

attenuates to something much less than .0001. While tracing approximately three

revolutions of the circle trajectory, the error attenuating performance is disturbed in

40

approximately the same location along the circle. Since increasing the circle diameter

readily crashes the simulation in the same region due to a workspace excursion, this

disturbance is likely due to the desired trajectory exceeding the workspace limits of the

manipulator.

Figure 4-4 Error state history

While this simulation effectively demonstrated the feasibility of this control

method, the dynamics were slow and the weight matrices were initialized with their

expected final vales. To demonstrate the stabilization of the neural network weight

matrices and particularly coriolis, a simulation with more displacement and more speed

was required. This lead to the follow results where the start position and velocity were

reevaluated and the circle diameter is increased from 20 millimeters to 90 millimeters.

Linear control gains and weight integration factors were selected empirically after a series

of simulations.

41

 (a) (b)

 Figure 4-5 90mm Circle tracing. (a) xyz position and (b) joint state error.

Although initial errors are small, because the dynamics are initialized with desired

position and velocity, errors still emerge from the tracing attempt because the weight

matrices of the phi functions for this simulation are purposely perturbed from their

prescribed ideal states. To demonstrate how the controller, corrects and guides these

values to better represent the nature of the system, a summation is performed during the

simulation to express the evolution of these matrices, some with several hundred values

included. This summary condenses each matrix intro six values representing the six

joints of the hypothetical device. While these values shown in Figure 4-6 don’t contribute

to the system, they hopefully illuminate the functioning workings of the controller.

 (a) (b)

42

 (c) (d)

 Figure 4-6 Basis weights. (a) friction (b) gravity (c) inertia (b) coriolis

While successfully demonstrating the possibility of adaptive torque control with

guidance through jacobian inversion, this does not yet provide an opportunity for human

interaction nor can it be directly applied to this project’s robotic platform due its

dependency on joint capabilities that will simply not be available. Instead a new mission

with the possibility of human guidance while accepting robot limitations is devised.

To demonstrate these capabilities while respecting the limitations of the actual

device, a new mission is here described. Instead of a tracing a circle in six dimensions

requiring a six jointed manipulator, a seemingly simpler task of tracking and collecting a

small passing object is now considered. This requires initializing the manipulator near

the ground alongside the base and near its foremost reachability. The procedure here is

the robot and operator work collectively to collect objects from a cluttered area. The

operator targets an object and directs the base to drive next to it. The robot base

continues while the end-effector temporarily matches speed with the target. The operator

then delivers fine adjustments to the end-effector position and signals capture. When the

effector approaches the opposite end of the manipulator’s reachability, any captured

object is autonomously delivered to a collection bin. Meanwhile, the operator directs the

43

base to the next target and adjusts speed if the manipulator arm needs more time to

prepare and reinitialize.

Having shown the manipulator should perform well with joint trajectories defined

to avoid workspace excursions, the next challenge here to guide the joints along a motion

vector that negates the movement of the base. With regards to reachability, there exists

a circular area around the base joint the effector can easily reach in a z inverted, or end

effector pointed down, orientation for object capture. A kinematic solver should show that

much of this area can be reached with two positions of the base joint. Further, a dual of

elbow joint positions can reach the entire region within the perimeter. These are the

partial freedoms that might confuse a simple kinematic solver. Instead, reliance on a now

rank deficient jacobian must continue. Using the starting position of the manipulator, this

deficiency is well illustrated by the jacobian product with its inverse (68). The near

identity appearance indicates that cartesian velocities and z rotations can translated into

joint commands that perfectly recover the desired inputs. The x and y rotations however

are coupled, which means their instantaneous movements are proportional to each other.

 𝐽(𝜃𝑖)𝐽
−1(𝜃𝑖) ≅

[

 [

1
1

1

] [0]

[0] [
. 25 −.433 0

−.433 . 75 0
0 0 1

]
]

 (68)

Fortunately, this is not an immediate problem for the mission selected as no

rotations are desired. However, correcting on rotation errors may complicate guidance

and adaptive torque stability. For proof of concept a new simulation was devised with

appropriate basis functions, initial weights, and guidance calculation.

44

Figure 4-7 Line tracing Simulink layout

Much here is the same as the original six-jointed simulation. The kinematic and

jacobian calculation blocks are now incorporated within the joint space translator block,

the robot dynamics and integrators are now reduced to only consider the five joints of the

actual manipulator, and much of the math within the control block has been almost

entirely condensed into a matlab block as shown in Figure 4-8.

Figure 4-8 condensed control layout

45

However, initial attempts at this simulation revealed a new challenge. To

regulate and maintain a desired orientation, the kinematics must calculate the rotation

coordinates precisely. The exponential method described earlier works well when the

angle of the end-effector can be described as non-zero. In this task however, the

position of the effector is as near zero as the control algorithm can sustain. Buried in the

coordinate calculation is a near zero divided by near zero that yielded large rotation

errors that greatly confused every other aspect of the simulation. With some creativity, a

solution to solve orientation navigation with Euler angles and unit vector based saturation

logic was applied. Euler angles effectively describe all rotation matrix sets as the product

of elevation, azimuth, and rotation transformations. The resulting rotation matrix in (69)

is comprised of trigonometric functions of the orientation angles that must be recovered.

Here the letters s and c represent the sine and cosine functions with subscripted inputs.

 𝑅 = 𝑟𝑜𝑡𝑧(𝛼)𝑟𝑜𝑡𝑦(𝛽)𝑟𝑜𝑡𝑧(𝛾) = [

𝑐𝛼𝑐𝛽𝑐𝛾 − 𝑠𝛼𝑠𝛾 −𝑐𝛼𝑐𝛽𝑠𝛾 − 𝑠𝛼𝑐𝛾 𝑐𝛼𝑠𝛽
𝑠𝛼𝑐𝛽𝑐𝛾 + 𝑐𝛼𝑠𝛾 −𝑠𝛼𝑐𝛽𝑠𝛾 + 𝑐𝛼𝑐𝛾 𝑠𝛼𝑠𝛽

𝑠𝛽𝑐𝛾 𝑠𝛽𝑠𝛾 𝑐𝛽
] (69)

 𝑅 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] , 𝛽 = 𝑎𝑡𝑎𝑛2 (√𝑟13
2 + 𝑟23

22
, 𝑟33) , 𝑡𝑜𝑙 = √𝑝𝑖2 − 𝛽22

 (70)

 𝛼 = (−𝑡𝑜𝑙 ≤ 𝑎𝑡𝑎𝑛2 (
𝑟23

𝑠𝛽
,
𝑟13

𝑠𝛽
) ≤ 𝑡𝑜𝑙) , 𝛾 = (−𝑡𝑜𝑙 ≤ 𝑎𝑡𝑎𝑛2 (

𝑟32

𝑠𝛽
, −

𝑟31

𝑠𝛽
) ≤ 𝑡𝑜𝑙) (71)

This may not be an ideal solution, but it has been an effective one. With this, the

line trace simulation was enabled with cartesian and error state results in Figure 4-9 a.

Similar to the earlier visual results of the circle trace, the units are again in millimeters,

however while the x position moves almost 300 millimeters, extremely little motion is

seen on any other axis. Figure 4-9 b shows the joint error state history of the more

realistic youBot manipulator.

46

 (a)

 (b)

 Figure 4-9 Line tracing. (a) xyz position and (b) joint state error.

From the results, the system does not converge on the desired state as closely

as one might expect. This may be due to the nature of orientation logic and/or the

deficient jacobian guidance. Still, the y and z cartesian error is approximately 0.14 µm

Position trace

Y axis X axis

Z axis

47

which is thoroughly below any human perception and easily accepted. More concerning

is the divergent nature of the error in the final second of simulation. This behavior is

almost certainly due to the approaching workspace limit. In an object capture scenario,

this would be the moment to abort capture and reinitialize for the next target.

Some opportunity for proactive troubleshooting remains. For example, tracing a

line may not be the best opportunity to refine the weight matrix estimation. To further

validate the torque control with jacobian guidance performance, a new simulation was

considered to draw continuous circles within the manipulator’s workspace. Due to the

limited nature of the manipulator, a flat circle directly adjacent the device base defined

the details of the challenge. This proved incredibly more difficult than tracing the line.

(a) (b)

 Figure 4-10 Circle tracing. (a) xyz position and (b) joint state error.

From results shown in Figure 4-10 the error results show magnitudes greater

than the line trace. This may be due to the deficient jacobian matrix or the poor angular

coordinate calculation. Whichever the case, the nature of simulation requires the neural

net to continuously retrain to keep the system somewhat stable. This continuous training

is evident in the line trace as well though it is much subtler. It was simply not possible for

the controller to maintain stability with a static network. That’s to say, while the theory

indicates that if the joint trajectory and physics model is correct, then the network should

48

stabilize onto some static weight set that together with the linear controller gains

maintains a stable behavior. Further, the development of these simulations revealed an

extremely narrow range of control gains that retained stability. Because the virtual

physics is completely known, an error is suspected to exist in the trajectory calculation,

namely the jacobian and/or angular coordinates.

A late epiphany resulted in an alternative method of orientation navigation which

used the matrix logarithm function (10). With this method, a series of purely kinematic

simulations of the five jointed manipulator were performed using equation (23).

Figure 4-11 Kinematic demo with logarithmic orientation navigation

This navigation method was simulated for twenty-five revolutions of a one-

hundred-millimeter circle while demonstrating errors less than 10-8 as shown in Figure

4-11. However, the error history shown below in Figure 4-12 seems to indicate some

growing instability. It is possible that the system is over-actuated system because the

simulated device traces a desired path defined in six dimensions whilst utilizing only five

joints. Because of this, error signals into the controller may signal conflicting correction

49

information, which may be what is allowing these errors to accumulate. The orientation

navigation is the likely source of this error, as the position history seems stable.

Figure 4-12 Error history of logarithmic orientation navigation

This history of the errors for each joint never exceeds 10-7 units. Further, until

thirty-five pi radians, they generally remain below ten to the minus eight in magnitude. Of

course, this is ignoring these regularly occurring spikes. These seem to occur every pi

radian and have something to do with to orientation navigation toggling. To clarify, in the

inverted position the manipulator is attempting to maintain, the rotation angles should be

[0 𝑝𝑖 0]𝑇 𝑜𝑟 −[0 𝑝𝑖 0]𝑇. Because of this ‘wrapping’ of the angular position at the

trigonometric extremes, the controller effectively pulses an extreme error into the

simulation. In light of this and considering there are only five degrees of freedom to

control a method to mitigate this wrap effect is proposed by means of a gain matrix

between the cartesian error and inverse jacobian (72).

6

4

2

0

-2

-4

-6

E
rro

r m
a

g
n
itu

d
e
 1

0
-8

10 50 15 20 25 30 35 40 45 5 0
Time in pi radians

50

 𝑞𝑒 = 𝐽𝑖𝐾(𝑃𝑑 − 𝑃), 𝐾 =

[

1
 1
 1

1
 𝑘
 1]

, 𝑘 = 0 (72)

Through this method, inputs to one of the coupled motions of the end effector is

entirely negated. The thought is, if only five joints can be actuated then perhaps only five

error signals should be regulated. The results of this kinematic simulation are shown in

Figure 4-13.

Figure 4-13 Error history with k=0

Here, because the k value effectively nullifies this wrapping, the pulsing of the

error signal by the controller is virtually nonexistent at first but begins to re-assert itself

later. This must be because the remaining two dimensions of orientation are also

wrapping and signaling confusing corrections to the control method. Thus, rather than

simply zero the influence of the magnitude of this primary vector, a series of experiments

10 50 15 20 25 30 35 40 45 5 0

Time in pi radians

E
rro

r m
a

g
n
itu

d
e
 1

0
-9

3

2

1

0

-1

-2

-3

51

were attempted to rapidly explore a means balancing these dimensional extremes

against each other. To clarify, this kinematic simulation was reevaluated numerous times

to find an empirical factor to maintain a stable error performance. This ultimately yielded

an extremely small and negative k factor. Figure 4-14 shows the results of the latest

simulation. This position trace like many earlier is visual satisfying with a trend that

seems to suggest stabilizing around a static error of 4e-8. Apparent from Figure 4-15,

though the error is extremely small, less than 10-9, it is not attenuating. However, it is

difficult to ascertain stability since the dynamics of kinematic navigation have not been

formulated. Qualitatively, while the initial error is substantially larger than before, it now

seems to hold a stable magnitude for twenty-five revolutions of this circle which suggests

but not proves a stable system.

Figure 4-14 Position trace history with 𝑘 = −2−27

52

Figure 4-15 Error history with 𝑘 = −2−27

Physical Experimentation

To begin constructing an extensive demonstration on a physical device, a plan to

program and validate small pieces might help accelerate the troubleshooting and

debugging process of novel code development. As a simple introduction into torque

based control, a project to implement gravity mitigation only, served as an ideal

introduction for working with the youBot device itself. Before trajectories, or jacobian

guidance, or adaptive methods are developed on the platform, the method of simple

robust torque control was implemented. Based on the dynamic analysis earlier, only

three individual trig functions need to be evaluated to mitigate the influence of gravity.

The difficult part here is only learning the nature of programming the device which

required extensive assistance from online communities in similar fields [44] [45]. As with

most software, the simple step of computing the robust torque value must be preceded

10 50 15 20 25 30 35 40 45 5 0

Time in pi radians

E
rro

r m
a

g
n
itu

d
e
 1

0
-9

10

8

6

4

2

0

-2

-6

-4

-8

53

by numerous initialization commands and also followed by a safe shutdown procedure.

For clarity, only the code relevant to this concept is stated below.

q2 = armSensedAngles[2-1].angle.value() - 65 *3.141592654/180;

q3 = armSensedAngles[3-1].angle.value() + 146 *3.141592654/180;

q4 = armSensedAngles[4-1].angle.value() - 102.5*3.141592654/180;

t4 = 0 - (77970861*sin(q2 + q3 + q4))/ 50000000;

t3 = t4 - (692273061*sin(q2 + q3))/250000000;

t2 = t3 - (493626447*sin(q2))/100000000;

armSetTorques[2-1].torque = t2 * newton_meters;

armSetTorques[3-1].torque = t3 * newton_meters;

armSetTorques[4-1].torque = t4 * newton_meters;

This code, shows the key steps for this simple torque control application. The

joint positions are observed and adjusted by the difference between the natively zero

‘nested’ configuration and the kinematic known extended position. The torque is

evaluated based on the dynamic model as expressed by the three trigonometric functions

of the gravity model. Finally, these torques are imposed on the motors through the driver

functions. Since the programing has no desired pose or trajectory, the execution merely

holds the manipulator aloft against the force of gravity. This behavior could be applied as

a means of physically programming the device using a series of motions described by the

operator to the device by physically configuring the manipulator.

The next critical component would be to demonstrate the feasibility of the

jacobian guidance. Fortunately, the nature of this platform’s API [45] [46] enables direct

position control of the actuators. Therefore, a simple and critically unique component is

to demonstrate the Jacobian guidance. Following the task concept detailed earlier, the

end effector begins near the front of the device and using only joint velocity commands is

made to track alongside the platform base. Some of the code is available in appendix A

as well as information to find a video record. The code reveals some adjustments were

made to accommodate each joint’s zero position and apparent rotation direction.

54

Subjectively, the end effector appeared to stray from desired linear path. It should be

noted that the code includes some state feedback to observe and correct the manipulator

into the desired direction. However, the performance is ultimately dependent on the

application program interface included a motion control which has done well enough to

validate the Jacobian potential at this point. Unfortunately, no data is available since the

development immediately continued into the next phase.

Because the dynamics of the device are poorly known, a sensible approach to

begin the torque control validation should be to develop a routine to engage and refine

the neural network weights that characterizes the program’s understanding of these

properties. To this end, an arbitrary trajectory is constructed to purposely challenge the

device with seemingly frantic motion. A portion of the code constructed for this phase is

available in appendix B.

Critical to the performance in this phase as well as many feedback dependent

applications is the ability to observe and update the system input with some minimum

regularity. Something that would be a fascinating and useful to future control projects

might be quantify what this rate needs to be. Unfortunately, the stability proofs are

constructed in continuous time while practical application of the math requires discrete

steps. As the programming was originally developed, an arbitrary cycle rate of one

millisecond was selected to complete the necessary calculations while providing the

continuous feedback necessary for stable performance. This was later revealed to be

unachievable. Despite this, the controller updated the torque input roughly every two and

half milliseconds which proved robust enough to maintain the stability of the system.

Details to find a video record of this code in action are available in the appendix.

55

Figure 4-16 Adaptive demo error state history with traces offset

Shown in Figure 4-16 is the only data from the physical testing of the adaptive

controller. To improve the clarity of the graph, each error trace has a unique zero offset

in .2 unit increments. This performance is admittedly disappointing however despite the

very frantic motion and seemingly extreme dynamics and error excursions, the

manipulator never goes unstable and maintains a generally smooth behavior. As the

robot pursues the desired trajectory, it visibly stumbled and shuddered under close

scrutiny. This may be due to frictional type phenomena such as damping and static

friction that have not been anticipated. Because the control is based on a single layer

functional level neural network, the program’s ability to adapt to unanticipated

phenomena is extremely limited. This performance demonstrates the feasibility of

adaptive torque control and enables the possibility of thoroughly robust control modes for

physical interaction programs.

30 0
Time in pi radians

E
rro

r m
a

g
n
itu

d
e

-.8

.6

-.2

.4

.2

0

-.4

-.6

5 10 15 20 25

56

Chapter 5 Conclusion

Discussion

Despite many difficulties, the methods detailed here can be applied to rapidly

quantify and deploy manipulators of serial joint chains. It was noted during physical

execution that the performance of the actual device in the limited scenarios demonstrated

surprising controller gain tolerance where the virtual device did not. Specifically, the

device demonstrated stability across a wider range of selected proportional derivative

feedback gain as well as the neural network dynamic factor. This may be due to the un-

modeled friction phenomena creating some stabilizing influence. Thus far, demonstration

of physical human machine interaction, is shown through a robust torque mode to apply

gravity compensation only. This is a pertinent beginning for physical human machine

interaction, since this could allow an operator to program a device by physically guiding a

manipulator through a series of motions which it would record and repeat however its

instructions require. Because this functional layer NN allows separation of the various

forces acting on the device, and adapted controller could enable its gravity network to

hold its limbs aloft while a human guides and programs it. Conceivably, a static controller

could also enable an artificial inertia for massive robots operated by relatively light

humans.

A greater aspiration is that complex tasks with high dynamic motion can be made

to recognize operator input with entirely proprioceptive sensing. Assuming a given

desired trajectory with a stable neural network definition, external disturbances beyond

an arbitrary threshold can be recognized as physical human commands. The magnitude

and direction of such error vectors could, though appropriate logic, guide revision of the

desired trajectory.

57

Future Work

Of immediate interest is to find and apply a better method of angular coordinate

calculation, or perhaps better understand the nature of the Jacobian. There may also be

tools of inverse kinematic solution that are potentially more robust than the jacobian

method. Further, an improved frictional physics model of the device could greatly

improve the torque control performance. This might be achieved by constructing a multi-

layer sigmoid activation network parallel to the established subnets. While this method

would not directly reveal the underlying nature, it could well imitate an empirical model.

This model could either be left to simply improve the control or extracted and studied

virtually to perhaps recognize the classical physics components that might further

improve understanding and performance.

Additionally, opportunities remain to demonstrate purposeful disturbance

recognition. This would be the device following a known trajectory, could recognize

disturbances as described earlier and demonstrate goal revision based on the nature of

the disturbance. This could yet be accomplished with jacobian guidance for a high

degree of freedom manipulator. Since the original simulation still indicates, stable error

and network behavior is possible where the kinematics are well away from singularities

and the manipulator joints are capable of a full rank jacobian.

58

Appendix A

Matlab Jacobian Construction with and youBot C++ code

59

%% Jacobian via product of exponentials [12] [13]
% from rvctools import skew, vex, t2r

IAC = 'IgnoreAnalyticConstraints';
x = [1 0 0]; y = [0 1 0]; z = [0 0 1]; e = [0 0 0]; n = 5;
wedge = @(twist)[skew(twist(4:6)), twist(1:3); e 0];
adjoint = @(tf) ...

[t2r(t), skew(t(1:3,4))*t2r(t); zeros(3), t2r(t)];
theta = @(tf) ...

simplify(acos((trace(t2r(tf))-1)/2), IAC, true);
vee = @(tf) ...

 [tf(1:3,4); sin(theta(g))\theta(g)*vex(t2r(tf))];

q = sym('q',[1,n]); assume(q, 'real');
qd = sym('qd',[1,n]); assume(qd, 'real');

Xi= [[-cross(z, 0*x+ 0*z),z]', ...
 [-cross(y, 33*x+ 267*z),y]', ...
 [-cross(y, 33*x+ 422*z),y]', ...
 [-cross(y, 33*x+ 557*z),y]', ...
 [-cross(z, 33*x+ 724*z),z]'];
g = [eye(3), x'* 33 + z'*724; e 1];

Js = sym(zeros(6,n)); A = eye(4);
for i = 1:n; fprintf('.');
 Js(:,i) = simplify(adjoint(A)*Xi(:,i), IAC, true);
 A = A*expm(wedge(Xi(:,i))*q(i));
end; fprintf('\n') % spatial jacobian

Jb = sym(zeros(6,n)); A = g;
for i = n:-1:1; fprintf('.');
 A = expm(wedge(Xi(:,i))*q(i))*A;
 Jb(:,i) = simplify(adjoint(A)\Xi(:,i), IAC, true);
end; fprintf('\n') % body jacobian

T = eye(4);
for i = 1:n; fprintf('.');
 T = T*expm(wedge(Xi(:,i))*q(i));
end; fprintf('\n');

T = simplify(T*g, IAC, true); Tt = vee(T*g);
disp('The Tranformation twist:'); disp(Tt)

pd = simplify(wedge(Js*qd)*T(:,4));
 % partial solution
Jw = adjoint([eye(3) -T(1:3,4); e 1])*Js;
 % final PoE method for analytic jacobian

Jv = jacobian(vee(T), q);
disp('The analytic Jacobian:'); disp(Jv)

60

// 6x5 jacobian in c [47] translated to MS word clearest I could

J << -sin(q_(1))*(167*sin(q_(2) + q_(3) + q_(4)) +

 cos(q_(1))*(167*sin(q_(2) + q_(3) + q_(4)) +

135*sin(q_(2) + q_(3)) + 155*sin(q_(2)) + 33),

135*sin(q_(2) + q_(3)) + 155*sin(q_(2)) + 33),

 0,

 0,

 0,

 1,

cos(q_(1))*(167*cos(q_(2) + q_(3) + q_(4)) + 135*cos(q_(2) +

sin(q_(1))*(167*cos(q_(2) + q_(3) + q_(4)) + 135*cos(q_(2) +

 - 167*sin(q_(2) + q_(3) + q_(4)) - 135*sin(q_(2) +

q_(3)) + 155*cos(q_(2))), cos(q_(1))*(167*cos(q_(2) + q_(3) +

q_(3)) + 155*cos(q_(2))), sin(q_(1))*(167*cos(q_(2) + q_(3) +

q_(3)) - 155*sin(q_(2)) , - 167*sin(q_(2) + q_(3) +

 -sin(q_(1)) ,

 -cos(q_(1)) ,

 0,

q_(4)) + 135*cos(q_(2) + q_(3))), (167*cos(q_(1) + q_(2) + q_(3)

q_(4)) + 135*cos(q_(2) + q_(3))), (167*sin(q_(1) + q_(2) + q_(3)

q_(4)) - 135*sin(q_(2) + q_(3)) ,

 -sin(q_(1)) ,

 -cos(q_(1)) ,

 0,

+ q_(4)))/2 + (167*cos(q_(2) - q_(1) + q_(3) + q_(4)))/2,

+ q_(4)))/2 - (167*sin(q_(2) - q_(1) + q_(3) + q_(4)))/2,

 -167*sin(q_(2) + q_(3) + q_(4)) ,

 -sin(q_(1)),

 cos(q_(1)),

 0,

 0,

 0,

 0,

sin(q_(2) + q_(3) + q_(4))*cos(q_(1)),

sin(q_(2) + q_(3) + q_(4))*cos(q_(1)),

 cos(q_(2) + q_(3) + q_(4));

https://youtu.be/0wNv2FnbS7o

https://youtu.be/0wNv2FnbS7o

61

Appendix B

Selected Code for Adaptive Torque

62

// <- setup and initialization steps for adaptive torque

while (running) {

usleep((int)(tn - (t-t0))); // first loop should wait zero

// observe robot joint states

observe_joints(&myYouBotManipulator);

// static joint error, method varies with jacobian guidance

qe = qd_ - q_;

// calculate control vectors

control_vectors();

// calculate torque vector

Trq = Kv*r + Wf*phi_f + Wg*phi_g + Wm*phi_m + Wc*phi_c;

// for loop -> push torques in armSetTorques

myYouBotManipulator.setJointData(armSetTorques);

// update weights matrices, integrate: W_T = F*phi_*rT

controller_dynamics();

// run logging ...

// ready next desired joint states

tn += delta_t*1e+06;

trajectory(1e-06*tn);

// time to wait until time next (tn)

t = getMicrotime();

// run for _ seconds

running = ((t < (t0 + 1e7)) & (t > t0));

}

void controller_dynamics(){

// weight matrix derivative integration

Wf = Wf + delta_t/2 * s*(r*phi_f.transpose() - k*r.norm()*Wf);

Wg = Wg + delta_t/2 * s*(r*phi_c.transpose() - k*r.norm()*Wg);

Wm = Wm + delta_t/2 * s*(r*phi_m.transpose() - k*r.norm()*Wm);

Wc = Wc + delta_t/2 * s*(r*phi_c.transpose() - k*r.norm()*Wc);
// k set to a very small value, typ k=1e-08

https://youtu.be/Lk1DX9lSe9s

https://youtu.be/Lk1DX9lSe9s

63

References

[1] Frank L Lewis, S Jagannathan, and A Yesildirek, Neural Network Control

of Robot Manipulators and Nonlinear Systems. Philadelphia: Taylor &

Francis, 1999.

[2] University of Texas at Arlington. (2016, July) Next Generation Systems.

[Online]. http://www.uta.edu/ee/ngs/

[3] National Science Foundation, "NRI-Small: Multi-modal sensor skin and

garments for healthcare and home robots," University of Texas at Arlington,

Standard Grant 1208623, 2013.

[4] J. Norberto Pires, "Robot Manipulators and Control Systems," in Industrial

Robots Programming.: Springer US, 2007, pp. pgs: 35-107.

[5] University of Texas at Arlington, Electrical Engineering Dept. (2016, April)

Systems and Controls Course Sequence. [Online].

http://www.uta.edu/utari/acs/controls/controlcrse.htm

[6] C. C. Cheah, C. Liu, and H. C. Liaw, "Stability of inverse Jacobian control

for robot manipulator," in International Conference on Control

Applications, Taipei, Taiwan, 2004, pp. 321 - 326 Vol.1.

[7] Ghassan M. Atmeh et al., "Implementation of an adaptive, model free,

learning controller on the Atlas robot," in American Control Conference,

Portland, OR, 2014, pp. 2887 - 2892.

[8] Hamidreza Modares, A. Karimpour, and A. Rowhanimanesh, "A novel

adaptive neural sliding mode control for systems with unknown dynamics,"

in Third International Workshop on Advanced Computational Intelligence

(IWACI), Suzhou, Jiangsu, 25-27 Aug. 2010, pp. 40 - 45.

[9] Rainer Bischoff, Erwin Prassler, and Ulrich Huggenberger, "KUKA youBot

- a mobile manipulator for research and education," in International

Conference on Robotics and Automation (ICRA), Shanghai, 9-13 May 2011,

pp. 1 - 4.

[10] Andy Chang, "Mobile manipulators go mainstream," Machine Design, no.

00249114, Oct 2013.

[11] Benjamin Keiser, "Torque Control of a KUKA youBot Arm," Zurich, 2013.

[12] Richard M. Murray, Zexiang Li, and S. Shankar Sastry, A Mathematical

Introduction to Robotic Manipulation. Berkeley: CRC Press, 1994.

[13] F. C. Park and D. J. Pack, "Motion control using the product-of-

exponentials kinematic equations," in International Conference on Robotics

and Automation (ICRA), Sacramento, CA, 9-11 Apr 1991, pp. 2204 - 2209

vol.3.

http://www.uta.edu/ee/ngs/
http://www.uta.edu/utari/acs/controls/controlcrse.htm

64

[14] Shashank Sharma, Gerhard K. Kraetzschmar, Rainer Bischoff, and Christian

Scheurer, "Unified Closed Form Inverse Kinematics for the KUKA

youBot," in Robotics; Proceedings of ROBOTIK, Munich, Germany, 21-22

May 2012, pp. 1 - 6.

[15] Yaolun Zhang, Xiao Xiao, and Yangmin Li, "A novel kinematics analysis

for a 5-DOF manipulator based on KUKA youBot," in International

Conference on Robotics and Biomimetics, Zhuhai, 2015, pp. 1477 - 1482.

[16] Carla González, Luis Moreno, and Dolores Blanco, "A memetic approach to

the inverse kinematics problem," in International Conference on

Mechatronics and Automation, Chengdu, 5-8 Aug. 2012, pp. 180 - 185.

[17] Ignacy Duleba and Michal Opalka, "A comparison of Jacobian-based

methods of inverse kinematics for serial robot manipulators," International

Journal of Applied Mathematics and Computer Science, vol. 23, no. 2, p.

373, Jun 2013.

[18] C. C. Cheah and Y. Zhao, "Inverse Jacobian regulator for robot manipulator:

theory and experiment," in Conference on Decision and Control, 14-17 Dec.

2004, pp. 1252 - 1257 Vol.2.

[19] Ross L. Hatton, "Geometric Mechanics of Locomotion and Optimal

Coordinate Choice," Carnegie Mellon University, Pittsburgh, PA, Thesis

3455985, 2011.

[20] Shinobu Sasaki, "A complete description of robot manipulator dynamics

based on Lagrangian mechanics," Japan Atomic Energy Research Inst,

Tokyo, DE90-741467 1989.

[21] Suresh Sampathkumar, "Real time motion control for natural human robot

interaction," Arlington, Texas, Master of Science Thesis 2013.

[22] Sven Cremer et al., "Investigation of human-robot interface performance in

household environments," in SPIE Vol. 9859, Sensors for Next-Generation

Robotics III, 13 May 2016, p. 13 pages.

[23] Chandan Datta, "Programming Behaviour of Personal Service Robots with

Application to Healthcare," The University of Auckland, New Zealand,

Dissertations & Theses 3648403, 2014.

[24] M. Nokata, H. Ishii, and K. Ikuta, "Safety-optimizing method of human-care

robot design and control," in International Conference on Robotics and

Automation, 2002, pp. pp. 1991-1996.

[25] C. C. Kemp, A. Edsinger, and E. Torres-Jara, "Challenges for robot

manipulation in human environments [Grand Challenges of Robotics],"

IEEE Robotics & Automation Magazine, pp. vol. 14, no. 1, pp. 20-29, 2007.

65

[26] Martin Wassink and Stefano Stramigioli, "Towards a novel safety norm for

domestic robotics," in International Conference on Intelligent Robots and

Systems, San Diego, CA, 2007, pp. pp. 3354-3359.

[27] Rommel Alonzo, Sven Cremer, Fahad Mirza, Sandesh Gowda, and Larry

Mastromoro, "Multi-modal sensor and HMI integration with applications in

personal robotics," in SPIE, Baltimore, Maryland, 2015.

[28] Sven Cremer, Isura Ranatunga, and Dan O. Popa, "Robotic waiter with

physical co-manipulation capabilities," in International Conference on

Automation Science and Engineering (CASE), Taipei, 2014, pp. 1153-1158.

[29] Shaikh Md Rubayiat Tousif, "Physical Human Robot Interaction using

model reference neuroadaptive control," Arlington, Texas, Master of

Science Thesis 2014.

[30] Pablo Sanchez-Sanchez and Fernando Reyes-Cortes, "A New Cartesian

Controller for Robot Manipulators," in International Conference on

Intelligent Robots and Systems, 2005, pp. 3733 - 3739.

[31] Q. -L. Huang, J. Wu, and R. Xiong, "A solution of inverse kinematics for 7-

DOF manipulators and its application," in World Congress on Intelligent

Control and Automation (WCICA), Beijing, 2012, pp. 3711 - 3717.

[32] S. Jagannathan and Frank L. Lewis, "Multilayer neural network controller

for a class of nonlinear systems," in International Symposium on Intelligent

Control, Monterey, CA, 27-29 Aug 1995, pp. 427 - 432.

[33] Jean-Jacques Slotine and Weiping Li, Applied Nonlinear Control.

University of Michigan: Prentice Hall, 1991.

[34] Isura Ranatunga, Sven Cremer, Frank L. Lewis, and Dan O. Popa, "Intent

aware adaptive admittance control for physical Human-Robot Interaction,"

in International Conference on Robotics and Automation (ICRA), Seattle,

WA, 26-30 May 2015, pp. 5635 - 5640.

[35] Isura Ranatunga, Sven Cremer, Dan O. Popa, and Frank L. Lewis,

"Neuroadaptive control for safe robots in human environments: A case

study," in International Conference on Automation Science and Engineering

(CASE), Gothenburg, 24-28 Aug. 2015, pp. 322 - 327.

[36] Isura Ranatunga, Shaikh M. Tousif, Dan O. Popa, and Frank L. Lewis,

"Adaptive Admittance Control for Human-Robot Interaction Using Model

Reference Design and Adaptive Inverse Filtering," Transactions on Control

Systems Technology, pp. 1 - 8, May 2016.

[37] John T. Wen, "A Unified Perspective on Robot Control: the Energy

Lyapunov Function Approach," in Conference on Oeclslon and Control,

Honolulu, Hawall, 1990, pp. 1968 - 1973 vol.3.

66

[38] Rafael Kelly and Victor Santibanez, "Strict Lyapunov Functions for Global

Regulation of Robot Manipulators," in International Conference on

Robotics and Automation (ICRA), Nagoya, 21-27 May 1995, pp. 2758 -

2763 vol.3.

[39] Paul N. Vernaza, "Efficient learning and inference for high-dimensional

Lagrangian systems," University of Pennsylvania, Pennsylvania,

Dissertations & Theses 3463096, 2011.

[40] Hamidreza Modares, Dan O. Popa, Frank L. Lewis, and Isura Ranatunga,

"Optimized Assistive Human–Robot Interaction Using Reinforcement

Learning," Transactions on Cybernetics, pp. 655 - 667, February 2015.

[41] (2016) Kuka youBot product page. website. [Online]. http://www.kuka-

robotics.com/germany/en/products/education/youbot/

[42] (2016) KUKA youBot Online Exhibition. [Online].

http://www.expo21xx.com/automation21xx/20317_st3_mobile-

robots/contact.htm

[43] Creative Commons Attribution. (2016, July) ROS Hydro Medusa. [Online].

http://wiki.ros.org/hydro

[44] (2016, July) youBot Driver Documentation. [Online].

https://janpaulus.github.io/

[45] Linsalata Robert S., "Development of a Universal Robotics API for

Increased Classroom Collaboration within Robotics Education," Tufts

University, Massachusetts, Dissertations & Theses 1512750, 2012.

[46] Benoît Jacob and Gaël Guennebaud. (2016, June) Eigen is a C++ template

library. [Online]. http://eigen.tuxfamily.org/

[47] KUKA, KUKA youBot User Manual. Stuttgart: Locomotec, December 6,

2012.

[48] Tzyh-Jong Tarn, Zuofeng. Li, Xiaoping Yun, and Anta1 K. Bejczy, "Effect

of motor dynamics on nonlinear feedback robot arm control," IEEE

Transactions on Robotics and Automation (Volume:7 , Issue: 1), pp. 114 -

122, Feb 1991.

[49] Y. H. Kim and F. L. Lewis, "Hamilton-Jacobi-Bellman optimal design of

CMAC neural network controller for robot manipulators," in International

Conference on Systems, Man, and Cybernetics, Orlando, FL, 12-15 Oct

1997, pp. 1361 - 1366 vol.2.

[50] Giovanni Buizza Avanzini, Paolo Rocco, and Andrea Maria Zanchettin,

"Constraint-based Model Predictive Control for holonomic mobile

manipulators," in International Conference on Intelligent Robots and

Systems (IROS), Hamburg, Sept. 28 2015-Oct. 2 2015, pp. 1473 - 1479.

http://www.kuka-robotics.com/germany/en/products/education/youbot/
http://www.kuka-robotics.com/germany/en/products/education/youbot/
http://www.expo21xx.com/automation21xx/20317_st3_mobile-robots/contact.htm
http://www.expo21xx.com/automation21xx/20317_st3_mobile-robots/contact.htm
http://wiki.ros.org/hydro
https://janpaulus.github.io/
http://eigen.tuxfamily.org/

67

[51] R. Fierro and Frank L. Lewis, "Control of a nonholonomic mobile robot

using neural networks," in International Symposium on Intelligent Control,

Monterey, CA, 27-29 Aug 1995, pp. 415 - 421.

[52] (2016, July) Kuka youBot Store. [Online]. http://www.youbot-store.com/

[53] Ioan Alexandru Sucan, "Task and motion planning for mobile

manipulators," Rice University, Texas, Dissertation/Thesis 3521301, 2011.

[54] Thien Nguyen Duc, Annalisa Terracina, and Massimo Mecella, "Robotic

Teaching Assistant for "Tower of Hanoi" Problem," in Academic

Conferences International Limited, Reading, 2014, pp. 723-731.

[55] Lluis Ribas-Xirgo, "Emerging Technology and Factory Automation," in

Emerging Technology and Factory Automation, Barcelona, Spain, 2014, pp.

1-4.

[56] Matthew Luciw, "Reinforcement and shaping in learning action sequences

with neural dynamics," in The Institute of Electrical and Electronics

Engineers, Genoa, Italy, 2014, pp. 48-55.

[57] Lorenzo Peppoloni, Filippo Brizzi, and Carlo Alberto Avizzano, "Immersive

ROS-integrated framework for robot teleoperation," in Symposium on 3D

User Interfaces, Arles, France, 2015, pp. 177-178.

[58] Joanna Ratajczak, "Design of inverse kinematics algorithms: extended

Jacobian approximation of the dynamically consistent Jacobian inverse,"

Archives of Control Sciences, vol. 25, no. 1, pp. 35-50, 2015.

[59] J M Hollerbach, "A recursive Lagrangian formulation of manipulator

dynamics and a comparative study of dynamics formulation complexity,"

Massachusetts Inst. of Tech, Cambridge, Report AD-A078067, 1979.

[60] Burhanettin Durmus, Hasan Temurtas, Nejat Yumusak, and Fevzullah

Temurtas, "A study on industrial robotic manipulator model using model

based predictive controls," Journal of Intelligent Manufacturing, vol. 20, no.

2, pp. 233-241, Apr 2009.

[61] W M. Silver, "Representation of Angular Velocity and Its Effect on the

Efficiency of Manipulator Dynamics Computation," National Technical

Information Service, p. 30 pp, 1981.

[62] Oguz Yetkina, Kristi Wallacea, Joseph D. Sanford, and Dan Popa, "Control

of a Powered Prosthetic Device via a Pinch Gesture Interface," in Next-

Generation Robotics II; and Machine Intelligence and Bio-inspired

Computation: Theory and Applications IX, Baltimore, Maryland, United

States, 2015, p. Volume 9494.

http://www.youbot-store.com/

68

Biographical Information

Drew started at UTA in 2004 to pursue interests in both mechanical and electrical

engineering fields. After just two years and deep involvement with the local Formula

student team, he committed to mechanical engineering. Serving as the team’s

suspension engineer for the remaining two years of his bachelor degree, he graduated in

2008 with his bachelors.

After two years of working, a passion for race cars would lead him to pursue a

specialized degree of Automotive Motorsports in England. While the experience was

uniquely satisfying, the racing career never emerged and eventually Drew would return

home and in 2014 begin a Master’s degree at UTA.

Reviving an old interest in electrical science, Drew pursued this most recent

degree with focus on its application to dynamic systems. Almost immediately after

resuming his studies, he attracted the recruiting pipeline of Bell Helicopter and began

what would be a long onboarding process that provided convenient opportunity to find a

fulfilling career while completing this latest degree.

Now he looks forward to having time to idle, be with friends and family, achieve

financial independence, and perhaps someday, flying a personal aircraft.

