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Abstract 
 

THEORETICAL PREDICTION OF MATERIALS FOR EFFICIENT CONVERSION OF 

SOLAR ENERGY 

 

Pranab Sarker, PhD 

 

The University of Texas at Arlington, 2015 

 
Supervising Professor: Muhammad N. Huda 

Our present work represents a systematic theoretical and computational 

research to find an affordable material for solar energy application using density 

functional theory (DFT) and post-DFT such as DFT+U and DFT-HSE06. Here, we predict 

a new photovoltaic material (CuSnW2O8) and a new photocatalyst (ZnSnW2O8). In 

addition, a new method for predicting the higher power conversion efficiency (PCE) 

optimized growth conditions will be presented.  

It is well known that all physical properties are calculated once crystal structure is 

known. However, knowing crystal structure is extremely challenging and to date, there is 

no success has been claimed in the case of a material which is yet to exist. Under this 

circumstance, an existing method was adopted and extended to a great extent in 

predicting the crystal structures of new materials. This method invokes global 

optimization of possible candidates (motif structures) by means of DFT; the motif 

structures were obtained from existing structures in mineral database through an in-

house algorithm. In addition to crystal prediction, determining suitable growth conditions 

before the material is synthesized is another challenge. To tackle this difficulty, a method 

has been developed, which includes chemical potential (Gibbs free energy) landscape 

analysis (CPL) as well as defects calculation.  
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The DFT-derived opto-electroinc properties and stability analysis of CuSnW2O8 

show that it can be a perfect alternative of currently commercialized solar cell such as 

silicon (Si) and CuInxGa1-xSe2 (CIGS). It possesses band gaps of 1.25 eV (indirect) and 

1.37 eV (direct), which were evaluated using the hybrid functional (HSE06) as a post-

DFT method. The hole mobility of CuSnW2O8 was higher than that of Si. Further, optical 

absorption calculations demonstrate that CuSnW2O8 is a better absorber of sunlight than 

other promising solar cells, namely Cu2ZnSnS4 (CZTS) and CIGS. In addition, it exhibits 

rigorous thermodynamic stability comparable to WO3. CPL analysis further revealed that 

CuSnW2O8 can be synthesized at flexible experimental growth conditions although the 

co-existence of at least one secondary phase is likely. The formation of Cu vacancies 

was found to be highly probable, even at Cu-rich growth condition, which could introduce 

p-type activity in CuSnW2O8. 

Like CuSnW2O8, ZnSnW2O8 also exhibited primary features of the PEC process 

such as moderate band gap (~2.34 eV in DFT-HSE06), proper band edges positions, 

and higher stability. In addition, the higher optical absorption ability and dispersive band 

features embodied it a very attractive candidate for PEC process. According to CPL 

analysis, ZnSnW2O8 could also be synthesized at flexible experimental growth; however, 

at least two secondary phases were likely. Defects were found to be less probable at 

cationic-rich growth conditions in which the probable defects could be the Zn at Sn site 

and O-vacancy which give rise to n-type activity in ZnSnW2O8. Finally, the results 

presented here reveal that our predicted materials could be an effective choice for 

considering the synthesis of the next general solar cells.  



v 

Table of Contents 

Acknowledgements ......................................................................................................... ii 

Abstract ......................................................................................................................... iii 

List of Illustrations ........................................................................................................... x 

List of Tables .............................................................................................................. xvii 

Chapter 1 Introduction .................................................................................................... 1 

Chapter 2 Methodology .................................................................................................. 7 

2.1 Density Functional Theory .................................................................................... 7 

2.1.1. Historical Background .................................................................................. 7 

2.1.2. Foundation of Density Functional Theory ...................................................... 9 

2.1.2.1 Hohenberg-Kohn (HK) theorems ...........................................................10 

2.2 Computational Techniques ..................................................................................17 

2.2.1. The Kohn-Sham (KS) Energy Functional .....................................................18 

2.2.2. Kohn-Sham (KS) Equations ........................................................................18 

2.2.3. The Exchange Correlation Energy ...............................................................20 

2.2.3.1. Local Density Approximation (LDA) ......................................................21 

2.2.3.2. Generalized Gradient Approximation (GGA) .........................................22 

2.2.4. DFT+U ........................................................................................................22 

2.2.5. DFT-Hybrid .................................................................................................24 

2.2.6. Projector Augmented Wave (PAW) Method .................................................25 

2.2.6.1 Formalism .............................................................................................27 

2.2.6.2. Approximations ....................................................................................30 

2.2.6.3. Expectation Values in PAW ..................................................................31 

2.2.7. Periodic Supercell Approximation ................................................................31 

2.2.7.1 Bloch’s Theorem ...................................................................................31 



vi 

2.2.7.2 Plane Wave Basis Sets .........................................................................33 

2.3 Computational Details .........................................................................................35 

2.4 Physical Properties .............................................................................................36 

2.4.1. Formation Enthalpy .....................................................................................36 

2.4.2. Cohesive Energy .........................................................................................37 

2.4.3. Fragmentation Energy .................................................................................37 

2.4.4. Chemical Potential Landscape ....................................................................38 

2.4.5. Defect Formation Energy.............................................................................39 

2.4.6. Defect Concentration...................................................................................40 

2.4.7. Conductivity Effective Mass .........................................................................40 

2.4.8. Optical Absorption .......................................................................................41 

Chapter 3 Crystal Structure Prediction...........................................................................43 

3.1 Introduction .........................................................................................................43 

3.2 Computational Details .........................................................................................43 

3.3 Materials with AgBiW2O8 Stoichiometry ...............................................................44 

3.3.1 AgBiW2O8 ....................................................................................................44 

3.3.2 CuBiW2O8 ....................................................................................................44 

3.4 Sn2O3..................................................................................................................48 

3.5 Cu2ZnSn(S1-xSex)4 (CZTSSe) ..............................................................................52 

3.6 Conclusion ..........................................................................................................54 

Chapter 4 Thermodynamic Phase Stability and Optimal Growth Conditions ...................55 

4.1 Binary Compound: SnOx .....................................................................................55 

4.1.1. Introduction .................................................................................................55 

4.1.2. Computational Details .................................................................................56 

4.1.3. Phase Stability and Optimal Growth Conditions ...........................................58 



vii 

4.1.4. Conclusion ..................................................................................................64 

4.2. Ternary Compounds ..........................................................................................65 

4.2.1 CuBi2O4 .......................................................................................................65 

4.2.1.1 Introduction ...........................................................................................65 

4.2.1.2 Computational Details ...........................................................................65 

4.2.1.3 Single-Phase stability, Defects, and Effective Growth 

Conditions ........................................................................................................65 

4.2.1.4 Conclusion ............................................................................................67 

4.2.2 α-SnWO4 .....................................................................................................68 

4.2.2.1 Introduction ...........................................................................................68 

4.2.1.2 Computational Details ...........................................................................68 

4.2.1.3 Single-Phase stability, Defects, and Effective Growth 

Conditions ........................................................................................................68 

4.2.2.4 Conclusion ............................................................................................70 

4.3. Quaternary Compound: Cu2ZnSnS4 (CZTS) .......................................................70 

4.3.1. Introduction .................................................................................................70 

4.3.2. Computational Details .................................................................................72 

4.3.3 Single-phase stability of CZTS .....................................................................74 

4.3.4. Defects formation ........................................................................................79 

4.3.5. Role of intrinsic defects on single-phase stability of CZTS ...........................82 

4.3.6. High efficient CZTS .....................................................................................85 

4.3.6.1 Determination of an effective growth condition.......................................85 

4.3.6.2. Prediction of high efficiency pathway ....................................................93 

4.3.7. Conclusion ..................................................................................................96 

4.4. Pentarnary Compound: Cu2ZnSn(S1-xSex) (CZTSSe) .........................................97 



viii 

4.4.1 Introduction ..................................................................................................97 

4.4.2 Computational Details ................................................................................101 

4.4.3 Single-phase stability .................................................................................101 

4.4.4 Defect calculation .......................................................................................106 

4.4.5 High efficient growth conditions and alloy composition ................................108 

4.4.6. Conclusion ................................................................................................114 

Chapter 5 New PV Material (CuSnW2O8).....................................................................115 

5.1 Introduction .......................................................................................................115 

5.2 Computational Details .......................................................................................115 

5.3 Crystal Structure Prediction ...............................................................................117 

5.4 Results .............................................................................................................118 

5.4.1 Structural Properties ..................................................................................118 

5.4.2. Electronic Properties .................................................................................120 

5.4.3. Optical Absorption .....................................................................................122 

5.4.4. Thermodynamic Stability ...........................................................................124 

5.4.4.1. Bonding Rigidity and Stability against Phase Segregation ..................124 

5.4.4.2. Single-Phase Stability ........................................................................125 

5.4.5. Defects .....................................................................................................128 

5.4.5.1 p-type activity ......................................................................................129 

5.4.5.2 Optical absorption with defects induced CTTO ....................................131 

5.5. Conclusion .......................................................................................................132 

Chapter 6 New PEC Material (ZnSnW2O8) ..................................................................134 

6.1 Introduction .......................................................................................................134 

6.2 Computational Details .......................................................................................134 

6.3 Crystal Structure Prediction ...............................................................................135 



ix 

6.4 Results .............................................................................................................135 

6.4.1 Structural Properties ..................................................................................135 

6.4.2 Electronic Properties ..................................................................................137 

6.4.3 Optical Absorption ......................................................................................137 

6.4.4 Band Edge Positions ..................................................................................139 

6.4.5 Stability ......................................................................................................141 

6.4.5.1. Bonding Rigidity and Stability against Phase Segregation ..................141 

6.4.5.2. Single-phase Stability and Effective Growth Conditions ......................142 

6.5 Conclusion ........................................................................................................144 

Chapter 7 Conclusion ..................................................................................................146 

Chapter 8 Future Research .........................................................................................149 

Appendix A Electronic Properties of CuBi2O4 and α-SnWO4 ........................................151 

Appendix B A Brief Study of ANbxOy (A = Cu and Zn) ..................................................154 

References .................................................................................................................157 

Biographical Information ..............................................................................................168 

 



x 

List of Illustrations 

Figure 1.1 A flowchart of optimizing a solar absorber material for PV and PEC 

 process. ........................................................................................................................ 5 

Figure 2.1 Correspondence between external potentials 𝑣𝑖, associated ground states 

Ψ0, 𝑣𝑖 and ground state densities n0, 𝑣𝑖, in the case of non-degenerate ground  

states
25

. ........................................................................................................................11 

Figure 2.2 Flow-chart depicting a generic Kohn-Sham calculation. ................................20 

Figure 2.5 A closed N-atom ring. ...................................................................................32 

Figure 3.1 a) Crystal structure and b) XRD of AgBiW2O8. Two models: (left) ball-and-stick 

and (right) polyhedra of DFT derived crystal structure are presented in figure a. On the 

other hand, the two XRDs in figure b correspond to two samples of AgBiW2O8, which 

were synthesized in solution combustion synthesis (SCS) and solid state reaction (SSR) 

methods. .......................................................................................................................45 

Figure 3.2 a) The polyhedral model of probable crystal of CuBiW2O8: (left) CuBi2O4 -

derived, Ref.
12

 (middle), and (right) Ref. 
112

. The K-mesh used for these structures are 

13x9x11, 7x11x3, and 9x13x11, respectively. b) The calculated XRDs of three structures 

in figure a in conjunction with an experimental counterpart of a CuBiW2O8 sample that 

was recently synthesized through solid state reaction (SSR) method in Dr. Rajeshwar’s 

lab at UTA. ....................................................................................................................47 

Figure 3.3 Evolution of different ‘Motif Structures’ of Sn2O3. ‘nx’ (n=2, 3, and 4)  indicates 

that original structures, which had Z=1(Z = No. of formula unit) in the cell, were doubled, 

tripled, and quadrupled to form motif structures; structures having Z=2 in the cell were 

doubled only. ................................................................................................................50 

Figure 3.4 Crystal structure of Sn2O3, derived from one of the SnO2 (mp-560417) 

polymorphs. Sn1 and Sn2 atoms correspond to Sn (IV) and Sn (II) oxidation states in 



xi 

Sn2O3, respectively. A 13x15x7 k-point sampling was used for Sn2O3 in DFT and DFT-D2 

geometry optimization. ..................................................................................................50 

Figure 3.5 Crystal structures of CZTSSe for three different alloy compositions: (a) x = 

0.375, (b) x = 0.5, and (c) x = 0.625. A and B are the two reference points for each 

composition from which two different S-Se arrangement along positive ‘c’  

can be viewed. ..............................................................................................................53 

Figure 4.1 The formation of different SnOx phases with respect to Sn and O growth 

conditions. Figure b is the magnified version of GZ1in Figure a. It is clear that all the 

phase transformations are occurring in the relatively O-poor and Sn-rich growth 

conditions. Figure c is also the magnified version of GZ1 while no vdW correction was 

incorporated. The broken line represents direct transition from SnO-to-SnOx  

or vice versa. ................................................................................................................62 

Figure 4.2 The left figure represents the probability of forming different intrinsic defects in 

CuBi2O4 with respect to its single-phase growth region (see yellow bounded region at 

right figure); the yellow region in the left figure was achieved using the chemical potenial 

landscapre analysis (see ref.
17

). In the right figure, ∆μα (α = Cu, Bi, and O) axes 

correspond to growth conditions, from rich (∆μα = 0 eV) to poor (∆μα = formation 

enthalpy), of respective species. The values of A, B, and C in the figure are  (∆μcu = -0.33 

eV, ∆μBi = -0.96 eV, ∆μO = -1.42 eV), (∆μcu = -1.74 eV, ∆μBi = -3.10 eV, ∆μO = 0 eV), and 

(∆μcu = -1.60 eV, ∆μBi = -3.17 eV, ∆μO = 0 eV), respectively. ..........................................66 

Figure 4.3 The defects formation energies and chemical potential landscape analysis of 

α-SnWO4. The left figure represents the probability of forming different intrinsic defects in 

α-SnWO4 with respect to its single-phase growth region (see yellow bounded region on 

the right figure). In the right figure, ∆μα (α = Sn, W, and O) axes correspond to growth 

conditions of respective species. ...................................................................................69 



xii 

Figure 4.4 Partial density of states of Cu 3d in CZTS with (green broken line; K-mesh: 

15x15x9) and without U (red solid line; K-mesh:15x15x9), and HSE06-hybrid (black line; 

K-mesh: 5x5x3). Due high computational demand, hybrid-DFT calculation was performed 

with less number of K-points, hence some features of DOS at the valence band are 

under-estimated; however, the small contribution of Cu 3d empty band at the conduction 

band minimum is still visible. The extra correlation (exchange) added through U (HSE06-

hybrid) lowers the contribution of Cu 3d in the bottom part of the conduction band that 

manifests the filled shell nature of Cu 3d band better than DFT-only calculations. Inset 

shows the magnified version of Cu 3d contributions at the bottom of the conduction band 

in three different methods. .............................................................................................73 

Figure 4.5 The triangles represent chemical potential landscapes for Cu2ZnSnS4 drawn at 

different Cu chemical potentials, ∆μCu. Point P (figure (a)) and point Q (figure (d)), 

correspond to starting and end point growth conditions, respectively for stoichiometric 

Cu2ZnSnS4. Point S (figure (f)) corresponds to minimum ∆μCu at which VCu  

becomes spontaneous. .................................................................................................77 

Figure 4.6 Various defect formation energies are shown. Point P, point Q, and point S 

correspond to three sets of ∆μα values in Figures 4.5a, 4.5d, and 4.5f, respectively. Point 

R is not shown in figure 4.5, chosen at ∆μCu = -0.78 eV. See table 4.2 for the values of 

∆μα at P, Q, R, and S. ...................................................................................................79 

Figure 4.7Chemical potential landscapes of non-stoichiometric Cu2ZnSnS4 that contain 

one CuZn defect per supercell (64 atoms). Grey bounded regions (GBR1 and GBR2) in 

the figures represent the occurrence of one secondary phase (ZnS or Cu2SnS3) along 

with Cu2ZnSnS4. ...........................................................................................................84 

Figure 4.8 Chemical potential landscapes of non-stoichiometric Cu2ZnSnS4 that contain a 

Vcu defect per supercell (64 atoms). Grey bounded regions (GBR1) in the figures 



xiii 

represent the occurrence of one secondary phase (ZnS) along  

with Cu2ZnSnS4. ...........................................................................................................89 

Figure 4.9 The measured Voc  and  Jsc  for different CZTSSe samples ( 9.1% -12.6%). 

This figure was produced using data of Voc  and  Jsc  available in Ref. 
121,197,201,202

 Jsc 

values have been multiplied by 100 for better visibility. It is obvious from the figure that 

the progression of Voc and Jsc in most of  CZTSSe samples is inverse to  

each other. ....................................................................................................................98 

Figure 4.10 Chemical potential landscapes of CZTSSe for three different alloys:  x = 

0.375, 0.5 (a), and 0.625(c). Cu (poor) and S (rich) growth conditions are fixed on each 

plane in the triangles. Each yellow bounded region on those Cu-poor/Se-rich planes 

corresponds to single-phase growth zone of respective CZTSSe; area of which is 

commensurate with the respective CZTSSe’s single-phase stability; the more Se in the 

composition, higher the stability. Figure (d)  was drawn considering a single defect (VCu) 

in CZTSSe (x = 0.375) supercell (64 atoms). Unlike CZTS, the single-phase stability of 

CZTSSe remains intact even with the presence of a single-defect; other alloys exhibit 

similar feats which, however, were omitted here to avoid  

redundancy of figures. .................................................................................................104 

Figure 4.11 Defects formation energies of various defects in CZTSSe for its different 

alloys. The probability of forming defects in the figure was determined with respect to 

single-phase growth zones in Figure 4.4.2(a-c). The defects which have formation 

energies higher than 3 eV were not shown. From the figure, it is obvious that defects are 

evident in the single-phase CZTSSe, no matter the growth condition is. ......................106 

Figure 4.12 The formation of CZTSSe and its different secondary phases with respect to 

S (∆µS) and Se (∆µSe) growth conditions while keeping cationic growth conditions fixed: 

(a) all cations-rich and (b) all cations-poor. The diagonal line represents stable formation 



xiv 

of CZTSSe while all other arrow ended lines in (a) indicate the formation of secondary 

phases. Each arrow corresponding to inequality sign in Equation (4.27) indicates 

unbound ∆µS/Se poor value of respective phase. The unbounded values were chosen to 

extrapolate the co-existence of secondary phases (intersecting points with diagonal) with 

CZTSSe at given growth conditions for the primary phase. The single-phase of CZTSSe 

was indicated by the broken line. Figure (b) represents a high efficient growth conditions 

at which no secondary phases form. ...........................................................................109 

Figure 4.13 Anionic defect formation energies of CZTSSe for three different composition 

alloys (x = 0.375, 0.5, and 0.625) at fixed cationic growth conditions. All three cationic 

growth conditions ∆µα (α = Cu, Zn, and Sn) were fixed as equally poor as to produce ∆H 

(VS/Se) ≥ 1 eV in Equation 4.27a-c. The poor values of ∆µSe and ∆µS at S-rich and Se-rich 

growth conditions respectively are presented in Table 4.4. P, Q, and R the optimal values 

to avoid anionic defects for each x...............................................................................112 

Figure 5.1 Evolution of motif structures from existing structures. “nx” (n=2 and 4) 

indicates that original structures were doubled and quadrupled to form motif structures. 

"⨂” corresponds to all possible different arrangements among the cations  

in a unit cell. ................................................................................................................117 

Figure 5.2 Theoretical XRDs of three DFT+U possible structures of CuSnW2O8. .........118 

Figure 5.3 Crystal structure of CuSnW2O8: (top) ball-and-stick model and (bottom) 

polyhedral model. ........................................................................................................120 

Figure 5.4 The DFT+U and DFT-HSE06: a) electronic band structures and b) projector 

density of states (p-DOS). The Fermi level was set to 0 eV. The overall features of band 

structures and p-DOS in both methods were found to be similar except band gaps which 

can be attributed to the difference in adopted empirical corrections in two different post-

DFT methods. .............................................................................................................121 



xv 

Figure 5.5 DFT+U optical absorption spectrum: red, green, and blue lines represent the 

absorption of CTTO, CZTS, and CIGS, respectively the used K-meshes for those were 

7×13×15, 9×9×5, and 13×13×7, respectively. ..............................................................123 

Figure 5.6 Chemical potential landscape of CTTO in two different Cu growth conditions: 

(a) Cu-rich and (b) Cu-poor. Yellow-bounded regions represent the range of growth 

conditions of all chemical species to form CTTO-WO3, as well as the stability of this 

mixed phase: the larger the spread, the higher the stability. .........................................127 

Figure 5.7 The DFT+U defects formation energy in CTTO at two different growth 

conditions: Cu-rich and Cu-poor. .................................................................................129 

Figure 5.8 Band structures of three defects: (a) VCu, (b) SnCu, and  

(c) SnCu+VCu-induced CTTO. .......................................................................................130 

Figure 5.9 The DFT+U optical absorption spectra of pristine and defect-induced CTTO. It 

is seen that the absorption spectra of pristine and defects-induced CTTO have similar 

features except the very early absorption in SnCu-CTTO. The first two early rises in the 

SnCu absorption spectrum correspond to the transition between occupied and unoccupied 

states around the conduction band edge, which do not contribute to PV efficiency. A 

7×11×13 K- point sampling was used to produce the absorption spectrum of pristine 

CTTO, while it was 5×5×5 for those of defect-induced CTTO. ......................................131 

Figure 6.1 The DFT+U optimized crystal structure of ZnSnW2O8. Figure a represents two 

different models of the unit cell of 24 atoms: (left) ball-and-stick and (right) polyhedra. A 

2x1x2 supercell of 96 atoms in the polyhedra model is shown in figure b, which contains 

hollows in the long-ranged periodicity. .........................................................................136 

Figure 6.2 The DFT+U and DFT-HSE06: a) electronic band structures and b) projector 

density of states (p-DOS). The Fermi level was set to 0 eV. The overall features of band 

structures and p-DOS in both methods were found to be similar except band gaps which 



xvi 

can be attributed to the difference in adopted empirical corrections in two different post-

DFT methods. .............................................................................................................138 

Figure 6.3 The DFT+U optical absorption spectrum of pristine-ZnSnW2O8. ..................139 

Figure 6.4 The relative band edges positions of ZnSnW2O8 and different metal-tungstates 

with respect to WO3. ...................................................................................................140 

Figure 6.5 Chemical potential landscape of ZnSnW2O8 in two different W growth 

conditions: (a) W-rich and (b) W-poor. Yellow-bounded region represents a growth region 

which can be suitable for synthesizing ZnSnW2O8 with least detrimental defects. 

However, ZnWO4 and ZnO are highly probable to be co-existed with the primary  

phase in this region. ....................................................................................................143 

 



xvii 

List of Tables 

Table 3.1 A comparison between DFT+U energetics, volumes, and lattice constants of 

three probable structures of CuBiW2O8. .........................................................................48 

Table 3.2 vdW-DFT predicted energies, volumes, and lattice parameters of few most 

probable structures of Sn2O3. The formation enthalpies, ∆Hf  were calculated with respect 

to bulk Sn and molecular O2 phases following the method described in reference.
12

The 

‘(n = an integer)’ in the fourth column represents the ranking of the corresponding free 

energy; the stability of each probable structures runs from most to lowest with the 

ascending order of n. ....................................................................................................51 

Table 4.1 A comparison of structural and band gap attributes of SnO between calculated 

(with vdW correction) and experimental results. .............................................................57 

Table 4.2 The values of chemical potentials for cations, ∆μα (α = Cu, Zn, Sn, and S), at 

points P, Q, R, and S with respect to figure 4.5. .............................................................80 

Table 4.3 The values of ∆μα (α = Cu, Zn, Sn, and S) at different points shown in Figures 

4.7 and 4.8. ...................................................................................................................92 

Table 4.4 Defect formation energies at all cations-equally-poor and anions rich/richer 

growth conditions. .......................................................................................................111 

Table 5.1 DFT+U formation enthalpies (∆Hf) and volumes of few most probable 

structures for CuSnW2O8. The value of ∆Hf presented here for StructurePredictor (SP) 

structure is the lowest among all SP generated structures. All ∆Hf were calculated 

following the reference.
12

 .............................................................................................119 

 

 



 

1 

Chapter 1  

Introduction 

Accelerating the discovery of new functional materials in the proliferation of novel 

technologies such as solar energy, high-Tc superconductivity, and spintronics has been 

an imperative but extremely challenging task to the scientific community. The traditional 

experiment-only way of developing new materials is neither cost- nor time-effective, and 

often requires a stroke of luck.
1
 In contrast, systematic and successful theoretical 

predictions in this regard not only do the discovery faster, but also at minimal cost. For 

my dissertation, as a computational condensed matter physicist, I embrace the challenge 

to discover a new affordable material for solar energy application.  

Even though all cultural, scientific and technological advancements so far have 

been empowered by fossil fuels - oil, coal, and natural gas - directly or indirectly, the 

continuous emission of greenhouse gases, while burning fossil fuels, in the atmosphere, 

most notably CO2, have put our habitable earth into a vulnerable position. Therefore, for 

environmental remediation, the immediae need to have an affordable alternative of it is 

irrefutable at present days. While other approaches such as wind and ocean energies, 

and neuclear power plants  incur either higher cost or environmental safety concerns, 

converting the inexhaustible solar energy into current (PV approach) or into fuel such as 

hydrogen (PEC approach) have been unanimously accepted as the most pragmatic ways 

of replacing the use of fossil fuels. However, both of these conversion processes require 

semiconductors with specific characteristics for a cost-effective, eco-friendly, and efficient 

conversion process, which neither exists in nature nor has been engineered successfully 

thus far. To solve this issue, the discovery of the new suitable semiconductors has been 

essential, which has been pursued in the current dissertation research. 



 

2 

Note that it is possible to easily make more than a hundred of millions binary, 

ternary, and quaternary compounds out of all the materials available in the periodic table. 

Predicting a new solar absorber material out of those numerous combination is not only 

extremely challenging but also an arduous task, and a systemic approach therefore is 

must-needed. An efficient approach in this regard is ‘Materials by Design’ which itself has 

different variations such as inverse band structure methods,
2
 and data mining;

1,3,4
 both of 

these methods screen out possible candidates of the prospective material through 

classical approaches such as genetic algorithm and data mining. Therefore, the 

successes in those predictions are less guaranteed. Here, we attempt a different 

approach that takes a selected compound composition as an input and then determines 

its structural and opto-electronic properties, stability, and optimal growth conditions 

through density functional theory. Since the efficiency of this method depends on the 

given input, an educated input based on quantum mechanical knowledge is needed for 

the best performance. In my dissertation, it will be demonstrated that a new material 

discovery can be faster and cost-effective if the input compound is chosen carefully. 

To design (select) an optimal compound (input) one must pay attention to the 

targeted properties such as band gap and higher stability, for the considered application. 

For sustainable and affordable PV/PEC process the first two targeted characteristics of a 

material are to be non-toxic and earth abundant semiconductors. Further, those 

semiconductors must possess moderate band gaps (1-1.5 eV for PV
5
 and 1.8-2.2 eV for 

PEC processes), suitable band edge position (for PEC processes only), higher optical 

absorption ability, and higher stability. In addition to those, the presence of p-type activity 

and higher carrier mobility in a semiconductor is desirable for maximum efficiency. Taking 

all these criteria into consideration we design a solar material, expecting to have all the 

aforementioned characteristics in that material. In designing new materials, we focus on 
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W-based oxides in the form of ABW2O8. Three reasons for pursuing a W-based oxide as 

a suitable solar material are the following: i) non-toxicity and Earth abundance of both W 

and O, ii) relatively delocalized nature of W 5d (compared to 3d) orbital around the 

conduction band edge in W-based oxides—e.g., WO3, CuWO4, Bi2W2O9, and so on—

demonstrating strong sunlight absorption in those materials, and iii) robust stability
6
 of 

those oxides even at different aqueous media over a relatively wide P
H
 (P

H
 <8) range. 

Despite the fact that γ-WO3 is the most stable W oxide, it possesses a band gap of 2.70 

eV, which is higher than what is required for PV/PEC process. However, several 

pathways can be taken to reduce the larger band gap of a binary oxide. For example, 

suitable cations can be alloyed with γ-WO3,
7–12

 which is pursued in the present work. The 

selection of two other cations to form a desired W-based quaternary oxide was 

accomplished through three steps: i) choose elements that conform to the needs of a 

cost-effective and ecofriendly solar energy application, ii) keep elements whose atomic 

orbital contributions to band gap reduction in their respective WO3-derived phases are 

known, and finally, iii) select those elements that provide beneficial attributes such as p-

type activity and higher carrier mobility for improved solar-to-current/hydrogen 

conversion. A quaternary W-based oxide predicted through the method above is 

expected to have the desired electronic properties as well as higher stability like WO3.  

Once the new material is designed, my work encompasses (i) predicting crystal 

structures, (ii) determination of electronic and optical properties, (iii) carrying out static 

stability analysis at thermodynamic equilibrium conditions. Crystal structure which 

uniquely determines all physical properties of a material is needed to be predicted 

accurately at the very beginning. The successful determination of crystal structure of the 

predicted mateial ensures the success in predicting its optimal PV or photocatalytic 

attributes. However, theoretical crystal structure prediction is termed as one of the 
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“continuing scandals” in the physical sciences.
13

 Crystal structure prediction was believed 

fundamentally impossible like predicting earthquake until 2003 albeit the chemical 

composition or stoichiometry are known 
14

. With the advent of high efficient computers 

and advancement of computational physics, it is possible to predict stable atomic 

arrangement of a new material, without even being synthesized, quantitatively with 

minimal time and cost
115

. There are many systematic approaches
16

 to predict crystal 

structure successfully have been devised so far, however, no exemplary success of it to 

date is citable especially, for the materials which are yet to be synthesized. Most of the 

approaches are either empirical, biased to historical knowledge such as data mining 

approach or limited to symmetrical geometry of structures. One of the approaches that is 

non-empirical, not bounded only on historical knowledge, and even applicable to 

asymmetric structures is to explicit calculation of the (free) energy of all possible 

structures using “computation optimization”. However, this approach often requires 

having a large set of all possible structures for optimization to determine the 

thermodynamically stable crystal structure of a material successfully. Note that the 

structures having exact stoichiometry and atomic coordination but differ, at least, either in 

atomic arrangement or in lattice parameters are treated as possible structures. In our 

present work, we embrace “computation optimization” approach using DFT to predict the 

thermodynamically stable crystal structure of a new material with desired elemental 

component. A credible crystal structure determination of a new material may require DFT 

optimization of all possible structures that the material can possess. We define each 

possible crystal structures as ‘Motif Structure’ of the predicted material. All these motif 

structures can be found through a comprehensive mineral database search considering 

topological symmetry, covalent and ionic radii proximity of atoms, coordination numbers, 

oxidation states of the ions, etc. Hence, our set of possible or motif structures 
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encompasses an unbiased, systematic, and more general scheme to predict crystal 

structure. A major part of our present work is to determine the possible stable structure of 

the predicted material that had been accomplished with the help of database search 

methodology as outlined here within the context of DFT. The predicted structures are 

then exposed to density of states (DOS), band structure, optical absorption calculations, 

and further analysis, including stability, necessary to quantify PV/photocatalytic attributes. 

If the newly designed material satisfies all the required criteria, we predict that one as our 

desired material. Otherwise, a new search of A or/and B would be taken as input and the 

optimization process as shown in Figure 1.1 would go on and on until the desired 

material is found. Following the approach mentioned above we have predicted 

CuSnW2O8 and ZnSnW2O8 as our predicted PV material and photocatalyst, respectively. 

The justification of selecting cations A and B in respective ABW2O8 will be given in 

Chapters 5 and 7. 

 

Figure 1.1 A flowchart of optimizing a solar absorber material for PV and PEC 

process. 
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Soon after the new affordable material is predicted, the next challenge is to synthesize it. 

During the synthesis process, defects are inherent in a material. Further, unwanted 

phases may co-exist with primary material if the growth conditions are not well chosen. 

These defects/mixed-phases enhance or degrade the materials' properties. A suitable 

choice of growth conditions during the synthesis process can maximize the efficiency of 

the material of interest; however, determining such a high efficient growth conditions 

often involves trial-and-error. An effective prediction in this regard would not only do 

ensure the higher efficiency of the desired material, but also save time and cost. To 

tackle the second challenge, I have developed a method
17

 using chemical potential 

analysis that predicts an effective growth condition to achieve relatively higher 

PV/photocatalytic efficiency from the predicted material. 
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Chapter 2  

Methodology 

2.1 Density Functional Theory 

One of the basic problems in theoretical physics and chemistry is the description 

of the structure and dynamics of many-electron systems. Density functional theory (DFT) 

is an extremely successful quantum mechanical modeling method used in physics and 

chemistry to investigate the electronic structure (principally the ground state) of many-

body systems, in particular atoms, molecules, and the condensed phases. The main idea 

of DFT is to describe an interacting system of fermions via its density and not via its 

many-body wave function. For N electrons in a solid, which obey the Pauli principle and 

repulse each other via the Coulomb potential, the basic variable of the system depends 

only on three -- the spatial coordinates x, y, and z -- rather than 3N degrees of freedom. 

With this theory, the ground state properties of a many-electron system can be 

determined by using functionals, i.e. functions of another function, which in this case is 

the spatially dependent electron density, 𝑛[𝜓(𝑟)]. Hence the name density functional 

theory comes from the use of functionals of the electron density. DFT is among the most 

popular and versatile methods available in condensed-matter physics, computational 

physics, and computational chemistry. Its applicability ranges from atoms, molecules and 

solids to nuclei and quantum and classical fluids. 

 

2.1.1. Historical Background 

Thomas and Fermi
18,19

 were the first 
20

 to contemplate a model for the electron 

many-body problem based uniquely on the electron density 𝑛(𝑟). The basic idea of the 

theory is to find the energy of electrons in a spatially uniform potential as a function of 

density. Then one uses this function of the density locally even when the electrons are in 
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the presence of an external potential. The Thomas-Fermi energy functional is composed 

of three terms,  

 
𝐸 𝑇𝐹[𝑛] = 𝑇 𝑇𝐹[𝑛] +∫𝑛(𝑟)𝑣𝑒𝑥𝑡(𝑟)𝑑𝑟 +

1

2
∬𝑑𝑟𝑑𝑟′

𝑒2𝑛(𝑟)𝑛(𝑟′)

|𝑟 − 𝑟′|
 

(2.1)  

The first term in Equation (2.1) is the electronic kinetic energy associated with a 

system of non-interacting electrons in a homogeneous electron gas. This form is obtained 

by integrating the kinetic energy density of a homogeneous electron gas  
21,22 𝑡0[𝑛], 

 
𝑇 𝑇𝐹[𝑛] = ∫𝑡0[𝑛(𝑟)]𝑑𝑟 

(2.2)  

where 𝑡0[𝑛(𝑟)] is obtained by summing all of the free-electron energy states 

휀 =
ℏ2𝑘2

2𝑚
 up to the Fermi wave vector 𝑘𝐹 = [3𝜋

2𝑛(𝑟)]
1
3⁄ . Finally, 

 
𝑇 𝑇𝐹[𝑛] = ∫

ℏ2

2𝑚

3

5
(3𝜋2)

2
3⁄  𝑛(𝑟)

5
3⁄ (𝑟) 

(2.3)  

                     The second term is the classical electrostatic energy of attraction between 

the nuclei and the electrons, where 𝑣𝑒𝑥𝑡(𝑟) is the static Coulomb potential arising from the 

nuclei, 

 
𝑣𝑒𝑥𝑡(𝑟) = −∑

𝑒2𝑍𝑗

|𝑟 − �⃗⃗�𝑗|

𝑁

𝑗=1

 
(2.4)  

Finally, the third term represents the electron-electron interactions of the system 

approximated by the classical Coulomb repulsion between electrons, known as the 

Hartree energy.  

To obtain the ground state density and energy of a system, the Thomas-Fermi 

energy functional must be minimized subject to the constraint that the number of 

electrons is conserved. This type of constrained minimization problem, which occurs 

frequently within many-body methods, can be performed using the technique of Lagrange 
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multipliers. In general terms, the minimization of a functional 𝐹[𝑓], subject to the 

constraint 𝐶[𝑓], leads to the following stationary condition,  

 𝛿 (𝐹[𝑓] − 𝜇𝐶[𝑓]) = 0 (2.5)  

Where 𝜇 is a constant known as the Lagrange multiplier. Minimizing the above 

equation leads to the solution of the corresponding Euler equation, 

 𝛿𝐹[𝑓]/𝛿𝑓 − 𝜇 𝛿𝐶[𝑓]/𝛿𝑓 = 0 (2.6)  

 When Thomas-Fermi energy functional incorporates the exchange term of the 

following form, 

 
휀𝑥𝑐 = −∫

3

4
( 
3

𝜋
)

1
3⁄

𝑒2 𝑛(𝑟)
4
3⁄ (𝑟) 

(2.7)  

the theory is called Thomas-Fermi-Dirac 
23

. 

 

2.1.2. Foundation of Density Functional Theory 

Due to the severe shortcomings of Thomas-Fermi method 
23

 such as inability to 

predict molecular binding, failure to demonstrate the electrons’ distribution into different 

shells, better accuracy only for nearly uniform charge distribution etc., it was hard to be 

imagined that an exact theory could be based on the density. However, almost forty 

years later, Hohenberg and Kohn proved in a seminal paper
24

 that this was indeed 

possible. In two remarkably powerful theorems they formally established the electron 

density as the central quantity describing electron interactions contained in a many-

electron wave function, and so devised the formally exact ground state method known as 

density functional theory (DFT). Hence, the starting point of any discussion of DFT is the 

Hohenberg-Kohn (HK) theorems. 
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2.1.2.1 Hohenberg-Kohn (HK) theorems 

The Hohenberg-Kohn theorems relate to any system consisting of electrons 

moving under the influence of an external potential 𝜐𝑒𝑥𝑡(𝒓). Stated simply they are as 

follows: 

Theorem 1: The external potential 𝜐𝑒𝑥𝑡(𝒓) , and hence the total energy, is a 

unique functional of the electron density. In other words, the electron density determines 

the external potential (to within an additive constant) uniquely. 

 Proof:  

In the original Hohenberg-Kohn paper, this theorem is proven for densities with 

non-degenerate ground states [8]. This extension of this proof to degenerate ground 

states is also valid. The proof in both cases is elementary, and by contradiction. Let us 

first consider non-degenerate case. 

 

Non-degenerate Ground States 

Let us define the set of all external potentials 𝜐𝑒𝑥𝑡(𝒓), 𝕍 such that 

 𝕍

= {𝜐𝑒𝑥𝑡(𝒓)
∣
∣
∣
∣
∣ 𝑤𝑖𝑡ℎ:  𝜐𝑒𝑥𝑡(𝒓) 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 ,

𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 ∣ Ψ0 > 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎𝑛𝑑 

𝑖𝑠 𝑛𝑜𝑛 − 𝑑𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒, 𝜈′𝑒𝑥𝑡(𝒓) ≠ 𝜐𝑒𝑥𝑡(𝒓) + 𝑐𝑜𝑛𝑠𝑡.  

} 

(2.8)  

for which Schrödinger equation 

 �̂� ∣ Ψ𝑘 >  =  𝐸𝑘 ∣ Ψ𝑘 > (2.9)  

 leads to a non-degenerate eigenstate ∣ Ψ0 >. 

The set of all external potentials 𝜐𝑒𝑥𝑡(𝒓), 𝕍 leads to a set non-degenerate ground 

eigenstates ∣ Ψ0 >, 𝒢 such that 

 

𝒢 =

{
 

 
∣ Ψ0 >

∣
∣
∣
∣
∣
∣
∣ 𝑤𝑖𝑡ℎ:  ∣ Ψ0 > 𝑔𝑟𝑜𝑢𝑛𝑑 𝑠𝑡𝑎𝑡𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 

𝑜𝑛𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝕍 ,

 ∣ Ψ′0 >≠ 𝑒
𝑖𝜑 ∣ Ψ0 >  

𝑤𝑖𝑡ℎ 𝜑 𝑏𝑒𝑖𝑛𝑔 𝑠𝑜𝑚𝑒 𝑔𝑙𝑜𝑏𝑎𝑙 𝑝ℎ𝑎𝑠𝑒 }
 

 
 

(2.10)  
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And the set 𝒩 of all ground state densities obtained from some element of  𝒢 is 

defined as 

 𝒩 = { n0 ∣∣ n0(𝒓) =< Ψ0 ∣ �̂�(𝒓) ∣ Ψ0 >,  ∣ Ψ0 >∈ 𝐺 } (2.11)  

Where, n0(𝒓) =< Ψ0 ∣ �̂�(𝒓) ∣ Ψ0 > 

                =  𝑁∑ ∫𝑑3𝑟1 … . .𝜎1,…..,𝜎𝑁
𝑑3𝑟𝑁  ∣ (𝒓𝟏𝝈𝟏, 𝒓𝟐𝝈𝟐, … . . , 𝒓𝑵𝝈𝑵 ∣ Ψ0 >∣

2 

Correspondence between the elements of  𝕍, 𝒢 and 𝒩 can be thought as the 

following two maps (shown in Figure 2.1) 

                 A: 𝕍 → 𝓖  

 and          B: 𝓖 → 𝓝 

 

 

Figure 2.1 Correspondence between external potentials 𝑣𝑖, associated ground states 

Ψ0,𝑣𝑖 and ground state densities n0,𝑣𝑖 , in the case of non-degenerate ground states
25

. 

 
It is sufficient to show that map A and map B are unique in order to proof first 

Hohenberg-Kohn theorem in the non-degenerate case. 



 

12 

The proof of uniqueness for map A consists in demonstrating the validity of the 

following two statements: 

(i) For given 𝜐𝑒𝑥𝑡(𝒓) there exists only one ∣ Ψ0 >in 𝓖, i.e. there is no 𝜐𝑒𝑥𝑡(𝒓) which 

is mapped onto two elements of 𝓖. This statement is trivial due to the restriction to non-

degenerate ground states. 

(ii) There is no ∣ Ψ0 > which is simultaneously ground state for two different 

potentials 𝜐𝑒𝑥𝑡(𝑟) and 𝜈′𝑒𝑥𝑡(𝑟) which differ by more than a constant. The standard proof of 

this statement is based on a reductio ad absurdum
25

. 

Let us assume that ∣ Ψ0 > is simultaneously ground state for two different 

potential 𝜐𝑒𝑥𝑡(𝒓) and 𝜈′𝑒𝑥𝑡(𝒓) ≠ 𝜐𝑒𝑥𝑡(𝒓) + 𝑐𝑜𝑛𝑠𝑡 thus satisfies two Schrӧdinger equations, 

 �̂� ∣ Ψ0 >= [�̂� +  �̂�𝑒𝑥𝑡 + �̂�] ∣ Ψ0 >  =  𝐸0 ∣ Ψ0 > (2.12)  

 

 �̂�′ ∣ Ψ0 >= [�̂� + �̂�
′
𝑒𝑥𝑡 + �̂�] ∣ Ψ0 >  =  𝐸0

′ ∣ Ψ0 > (2.13)  

�̂�= kinetic energy operator 

 
�̂� =∑

(−𝑖ℏ𝛻𝑖)
2

2𝑚

𝑁

𝑖=1

 
(2.14)  

 �̂�𝑒𝑥𝑡 is the operator that accounts the interaction of the particles with external 

sources characterized by a given, time independent potential 𝜐𝑒𝑥𝑡(𝒓) 

  �̂�𝑒𝑥𝑡  = ∑ 𝜐𝑒𝑥𝑡(𝒓𝒊)
𝑁
𝑖=1 = ∫𝑑3𝑟𝜐𝑒𝑥𝑡(𝒓𝒊) �̂�(𝒓) 

(2.15)  

In practical applications 𝜐𝑒𝑥𝑡(𝒓) is given by 

 
�̂�𝑛−𝑒 = −∑∑

𝑍𝛼𝑒
2

|𝑹𝛼 − 𝒓𝑖|

𝑁

𝑖=1

𝑘

𝛼=1

 

 

(2.16)  

Where 𝑹𝛼 denotes the Cartesian coordinates of nucleus 𝛼 and 𝒓𝑖 denotes the 

position of electron 𝑖 

�̂�= a particle-particle interaction operator 
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 =∑ 𝑤(𝒓𝒊, 𝒓𝒋) =
𝑛
𝑖,𝑗=1

1

2
∑ 𝑤(𝒓𝒊, 𝒓𝒋)
𝑛
𝑖,𝑗=1;𝑖≠𝑗  

 

(2.17)  

The basic DFT formalism is independent of the form of 𝑤 keeping it same 

throughout discussion.  

The subtraction of Equation (2.12) and Equation (2.13) yields 

 [�̂�𝑒𝑥𝑡 − �̂�
′
𝑒𝑥𝑡] ∣ Ψ0 >  = [𝐸0 − 𝐸0

′ ] ∣ Ψ0 > (2.18)  

The wavefunction Ψ0(𝒓𝟏𝝈𝟏, … . . , 𝒓𝑵𝝈𝑵) does not vanish for all points 𝒓𝒊. Thus, one 

obtains 

 
∑[𝜐𝑒𝑥𝑡(𝒓𝒊) − 𝜈

′
𝑒𝑥𝑡(𝒓𝒊)]

𝑁

𝑖=1

= 𝐸0 −𝐸0
′  

 

(2.19)  

Keeping N −1 of the 𝒓𝒊 fixed, and letting the remaining position vary, Eq. (2.15) 

leads to a contradiction (as the right-hand side is constant, while 𝜐𝑒𝑥𝑡(𝒓) and 𝜈′𝑒𝑥𝑡(𝒓) are 

assumed to differ by more than a constant). Consequently, the map A is unique: there is 

a one-to-one correspondence between the potential 𝜐𝑒𝑥𝑡(𝒓) and the resulting ground 

state∣ Ψ0 >   (up to some additive constant in 𝜐𝑒𝑥𝑡(𝒓)). 

In order to demonstrate the uniqueness of B, one has to show that two different 

∣ Ψ0 >∈ 𝐺 cannot lead to the same ground state density 𝑛0. The proof again relies on 

reductio ad absurdum. 

Assume that 𝑛0 is obtained from two different elements of ∣ Ψ0 > and ∣ Ψ′0 >. 

From the Ritz variational principle one then obtains an inequality for the ground state 

energy, 

 𝐸0 =< 𝛹0 ∣ �̂� ∣ 𝛹0 >   <  < 𝛹
′
0 ∣ �̂� ∣ 𝛹

′
0 > (2.20)  

 

 𝐸0 <    < 𝛹
′
0 ∣ �̂� ∣ 𝛹

′
0 > 

 

(2.21)  
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Where �̂� is the unique Hamiltonian leading to ∣ Ψ0 > (due to the uniqueness of 

map A) and the strict inequality originates from the non-degeneracy ∣ Ψ0 > and ∣ Ψ′0 > . 

After manipulation 

   𝐸0 <    < 𝛹′0 ∣ �̂�
′ ∣ 𝛹′0 > +< 𝛹

′
0 ∣ �̂� − �̂�

′ ∣ 𝛹′0 > (2.22)  

               

Or, 𝐸0 <    𝐸0
′+< 𝛹′0 ∣ (�̂� +  �̂�𝑒𝑥𝑡) − (�̂� + �̂�

′
𝑒𝑥𝑡) ∣ 𝛹

′
0 > (2.23)  

 

Or,     𝐸0 <    𝐸0
′+< 𝛹′0 ∣   �̂�𝑒𝑥𝑡 −  �̂�′𝑒𝑥𝑡 ∣ 𝛹

′
0 > (2.24)  

 

Or,       𝐸0 <    𝐸0
′+< 𝛹′0 ∣   �̂�𝑒𝑥𝑡 −  �̂�

′
𝑒𝑥𝑡 ∣ 𝛹

′
0 > (2.25)  

 

Or, 𝐸0 <    𝐸0
′+< 𝛹′0 ∣  ∫𝑑3𝑟𝜐𝑒𝑥𝑡(𝑟𝑖) �̂�(𝑟)- 

∫𝑑3𝑟 𝜈′𝑒𝑥𝑡(𝑟𝑖) �̂�
′(𝑟) ∣ 𝛹′0 > 

(2.26)  

 

Or, 
 

𝐸0 < 𝐸0
′ +∫𝑑3𝑟 [𝜐𝑒𝑥𝑡(𝑟𝑖) < 𝛹

′
0 ∣   �̂�(𝑟) ∣ 𝛹

′
0 > −𝜈

′
𝑒𝑥𝑡(𝑟𝑖)

< 𝛹′0 ∣  �̂�
′(𝑟) ∣ 𝛹′0 >]  

 

(2.27)  

Using the multiplicative form of  �̂�𝑒𝑥𝑡  Equation (2.15) and the assumption that 

both states lead to the same density 𝑛0, one obtains 

Or,              

  
  𝐸0 <    𝐸0

′ +∫𝑑3𝑟 [𝜐𝑒𝑥𝑡(𝑟𝑖)n0(𝑟) − 𝜈
′
𝑒𝑥𝑡(𝑟𝑖)n0(𝑟)] 

(2.28)  

 

Or,        
 

𝐸0 <    𝐸0
′ +∫𝑑3𝑟 n0(𝑟)[𝜐𝑒𝑥𝑡(𝑟𝑖) − 𝜈

′
𝑒𝑥𝑡(𝑟𝑖)]  

 

(2.29)  

Interchanging primed and unprimed quantities, 

 
𝐸0
′ <  𝐸0 +∫𝑑

3𝑟 n0(𝑟)[𝜈
′
𝑒𝑥𝑡(𝑟𝑖) − 𝜐𝑒𝑥𝑡(𝑟𝑖)]  

 

(2.30)  

Upon addition of Eqs. (2.29) and (2.30), one ends up with a contradiction, 
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 𝐸0 +𝐸0
′ <    𝐸0

′ + 𝐸0 
 

(2.31)  

One therefore concludes that the map B is also unique: there is a one-to-one 

correspondence between ∣ Ψ0 > and 𝑛0. 

Hence, 𝜐𝑒𝑥𝑡 , ∣ Ψ0 > and n0 determine each other uniquely. 

 𝜐𝑒𝑥𝑡(𝒓) ⟺∣ Ψ0 >⟺ n0(𝒓) =  < Ψ0 ∣ �̂�(𝒓) ∣ Ψ0 > 

                               ↑            ↑ 
              unique (up to some constant in 𝜐𝑒𝑥𝑡) 
 

(2.32)  

 

Theorem 2: The density that minimizes the total energy functional is the exact 

ground state density. If one find the functional 𝐸[𝑛], then the true ground state density 

𝑛(𝒓) minimizes it  being subjected only to the constraint that 

 
∫𝑑3𝑟 𝑛(𝒓) = 𝑁 

 

For any positive definite trial density, 

 𝑛0
′ (𝑟) ≠ 𝑛0(𝑟)  such that ∫𝑑3𝑟 𝑛′(𝒓) = 𝑁  

 𝐸[𝑛0] < 𝐸[𝑛0
′ ] ⟺  𝐸0 = min

𝑛∈𝒩
𝐸[𝑛]    

 

 

i.e., the ground state energy can be obtained variationally.  

Proof:  

Let 𝛹0 be the wavefunction associated with the correct ground state.          The 

variational principle asserts, 

 < 𝛹0[𝑛(𝒓)] ∣ �̂� + �̂�+ �̂�𝑒𝑥𝑡 ∣< 𝛹0[𝑛(𝒓)] <   

< 𝛹′0[𝑛
′(𝒓)] ∣ �̂� + �̂�+ �̂�𝑒𝑥𝑡 ∣ 𝛹

′
0[𝑛

′(𝒓)] > 

 

(2.33)  

Define the functional 

 𝐹[𝑛] ≔  <  Ψ[𝑛] ∣ �̂� + �̂� ∣ Ψ[𝑛] > 
 

(2.34)  
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The energy functional 𝐸[𝑛(𝒓)]  alluded to in the first Hohenberg-Kohn theorem 

can be written in terms of the external potential 𝜐𝑒𝑥𝑡(𝒓) in the following way, 

 
𝐸[𝑛(𝒓)] = 𝐹[𝑛] +∫𝑑3𝑟 𝜐𝑒𝑥𝑡(𝒓)𝑛(𝒓) 

 

(2.35)  

These lead to 

 
𝐹[𝑛0(𝒓)] +∫𝑑

3𝑟 𝜐𝑒𝑥𝑡(𝒓)𝑛0(𝒓)

< 𝐹[𝑛0
′ (𝒓)] +  ∫𝑑3𝑟 𝜐𝑒𝑥𝑡(𝒓)𝑛0

′ (𝒓) 

 

(2.36)  

 

 𝐸[𝑛0(𝒓)] < 𝐸[𝑛0
′ (𝒓)]  

 
(2.37)  

Where,  

 𝐸[𝑛0(𝒓)] = min
n
 𝐸[𝑛(𝒓)] 

 

(2.38)  

Hence, the variational principle of the second Hohenberg-Kohn theorem is 

obtained. 

The most intriguing feature of this proof is that the functional 𝐹[𝑛] is universal for 

all system of 𝑁 particles and does not depend upon the external potential 𝜐𝑒𝑥𝑡(𝒓) i.e., if 

one could minmizes this functional with respect to ground state density, it would solve all 

many-body problems for all external potentials 𝜐𝑒𝑥𝑡(𝒓). The possibility to determine the 

ground state density of a many-particle system is given by a variational equation 

 𝛿

𝛿𝑛
{𝐸[𝑛] − 𝜇 (∫𝑑3𝑟 𝑛(𝒓) − 𝑁)} ∣𝑛(𝒓)=𝑛0(𝒓)= 0 

 

(2.39)  

 

 𝛿

𝛿𝑛
{𝐹[𝑛] +∫𝑑3𝑟𝜐𝑒𝑥𝑡(𝒓)𝑛(𝒓) − 𝜇 (∫𝑑

3𝑟 𝑛(𝒓) − 𝑁)} ∣𝑛(𝒓)=𝑛0(𝒓)

= 0 
 

(2.40)  

 

 𝛿𝐹[𝑛]

𝛿𝑛
∣𝑛(𝒓)=𝑛0(𝒓)+ 𝜐𝑒𝑥𝑡(𝒓) = 𝜇 

(2.41)  
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Where,     𝐹[𝑛] ≔  <  Ψ[𝑛] ∣ �̂� + �̂� ∣ Ψ[𝑛] >  = 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑝𝑎𝑟𝑡 

 

We can identify the constant µ as the chemical potential of the system, since 

𝜇 =
𝛿𝐸[𝑛]

𝛿𝑛
. One adds to it any particular set of nuclei, in the form of the external potential 

𝜐𝑒𝑥𝑡(𝒓), and then has only to find the function 𝑛(𝒓) that minimizes it in order to solve the 

full complexities of Schrodinger’s equation. The exact density is such that it makes the 

functional derivative of  𝐹 exactly equal to the negative of the external potential (up to a 

constant). If we had an adequate approximation to 𝐹[𝑛] for our purposes, it would be 

possible to solve the equation for 𝐸[𝑛] directly. Unfortuntely, no adequate approximation 

is available for  𝐹[𝑛] 

 

2.2 Computational Techniques 

 
For many body system the Hohenberg-Kohn theorems states that knowledge of 

the ground state density is sufficient to determine all ground state observables. In 

addition, the ground state energy functional 𝐸[𝑛] allows the determination of the ground 

state density itself via the variational equation discussed in the previous section. Although 

the Hohenberg-Kohn theorems are extremely powerful, do not give any hint concerning 

the explicit form of 𝐸[𝑛]  (or 𝐹[𝑛]) and therefore, do not offer a way of computing the 

ground-state density of a system in practice. About one year after the seminal DFT paper 

Hohenberg and Kohn devised a simple method for carrying-out DFT calculations that 

retains the exact nature of DFT and replaces the many-body problem by an exactly 

equivalent set of self-consistent one-electron equations. This method is described next. 
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2.2.1. The Kohn-Sham (KS) Energy Functional 

Unfortunately, the Hohenberg-Kohn theorem provides no guidance as to the form 

of 𝐸[𝑛], and therefore the utility of DFT depends on the discovery of sufficiently accurate 

approximations. In order to do this, the unknown functional, 𝐸[𝑛], is rewritten as the 

Hartree total energy plus another, but presumably smaller, unknown functional, called the 

exchange-correlation (𝑋𝐶) functional, 𝐸𝑋𝐶[𝑛]. The Kohn-Sham (KS) total-energy 

functional for a set of doubly occupied electronic states 𝜓𝑖 can be written as 

 𝐸[𝑛(𝒓)] = 𝑇𝑠[𝑛] + 𝐸𝑒𝑖[𝑛] + 𝐸𝐻[𝑛] + 𝐸𝑖𝑖[𝑛] + 𝐸𝑋𝐶[𝑛] 
 

(2.42)  

Here 𝑇𝑠[𝑛] denotes the single particle kinetic energy, 𝐸𝑒𝑖[𝑛] is the Coulomb 

interaction energy between electrons and nuclei, 𝐸𝑖𝑖[𝑛] arises from the interaction of the 

nuclei with each other, and 𝐸𝐻[𝑛] is Hartee component of the electron-electron energy 

with density , 

 
𝐸𝐻[𝑛] =

𝑒2

2
∫
𝑛(𝒓)𝑛(𝒓′)

|𝒓 − 𝒓′|
 𝑑3𝒓 𝑑3𝒓′ 

 

(2.43)  

including self-interaction energy of the electrons. Where 𝑛(𝒓) is the electron 

density given by 

 𝑛(𝒓) = 2∑|𝜓𝑖(𝒓)|
2

𝑖

 

 

(2.44)  

As mentioned, 𝐸𝑋𝐶[𝑛] is an unknown functional. 

            Only the minimum value of Kohn-Sham (KS) energy functional has 

physical meaning. At the minimum, Kohn-Sham (KS) energy functional is equal to the 

ground-state energy of the system of electrons with the ions in positions {𝐑𝑰}. 

 

2.2.2. Kohn-Sham (KS) Equations 

It is necessary to determine the set of wave functions 𝜓𝑖 that minimize the Kohn-

Sham (KS) energy functional. These are given [10] by self-consistent solutions to the 
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Kohn-Sham (KS) equations
26

 which represent a mapping of the interacting many-electron 

system onto a system of non-interacting moving in an effective potential due to all other 

electrons. Kohn-Sham system is simply a fictitious system of non-interacting electrons, 

chosen to have the same density as the physical system. Then its wave functions are 

given by 

 
[
ℏ2

2𝑚
𝛻2 + 𝑉𝑒𝑓𝑓] 𝜓𝑖(𝒓) = 휀𝑖𝜓𝑖 

(2.45)  

This is a single-electron equations where 𝜓𝑖 is the wave function of electronic 

state 𝑖, 휀𝑖 is the Kohn-Sham eigenvalue, and 𝑉𝑒𝑓𝑓  is the effective potential due to 𝑁 − 1 

electrons in the Kohn-Sham system, 

 𝑉𝑒𝑓𝑓 = 𝑉𝑖𝑜𝑛(𝒓) + 𝑉𝐻(𝒓) + 𝑉𝑋𝐶(𝒓) 

 

(2.46)  

The celebrated Kohn-Sham (KS) equations resulting from insertion of 

 
[
ℏ2

2𝑚
𝛻2 + 𝑉𝑖𝑜𝑛(𝒓) + 𝑉𝐻(𝒓) + 𝑉𝑋𝐶(𝒓)]𝜓𝑖(𝒓) = 휀𝑖𝜓𝑖 

 

(2.47)  

 𝐻𝐾𝑆𝜓𝑖(𝒓) = 휀𝑖𝜓𝑖 
 

(2.48)  

have to be solved in a s elf-consistent fashion. Where 𝐻𝐾𝑆 is the Hamiltonian for 

a Kohn-Sham system, 

 
𝐻𝐾𝑆 =

ℏ2

2𝑚
𝛻2 +𝑉𝑖𝑜𝑛(𝒓) + 𝑉𝐻(𝒓) + 𝑉𝑋𝐶(𝒓) 

 

(2.49)  

Here, 𝑉𝑖𝑜𝑛(𝒓) is the total electron-ion potential, 𝑉𝐻(𝒓) is the Hartee potential of 

electrons given by 

 
𝑉𝐻(𝒓) = 𝑒

2∫
𝑛(𝒓′)

|𝒓 − 𝒓′|
  𝑑3𝒓′ 

 

(2.50)  

and the exchange-correlation potential, 𝑉𝑋𝐶(𝒓), is given formally by the functional 

derivative 

 
𝑉𝑋𝐶(𝒓) =

𝛿𝐸𝑋𝐶(𝒓)

𝛿𝑛(𝒓)
 

 

(2.51)  
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The Kohn-Sham (KS) equations must be solved self-consistently i.e., a  density 

must be found such that it yields an effective potential that when inserted into the 

Schrodinger-like equations yields wavefunctions that reproduce it . A flow chart that 

depicts the self-consistent solutions of KS equations is shown in Figure 2.2. Thus, 

instead of having to solve a many-body Schrodinger equation, using DFT we have the far 

easier problem of determining the solution to a series of single particle equations, along 

with a self-consistency requirement . The sum of the single-particle Kohn-Sham 

eigenvalues does not give the total electronic energy because this overcounts the effect 

of electron-electron interaction in the Hartee energy and in the exchange-correlation 

energy. 

 

Figure 2.2 Flow-chart depicting a generic Kohn-Sham calculation. 

 

2.2.3. The Exchange Correlation Energy 

If the exchange-correlation energy functional were known exactly, taking the 

functional derivative with respect to the density would produce an exchange-correlation 
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potential that included the effects of exchange and correlation exactly. No analytical form 

has yet been identified and therefore, an approximation must be used. The Hohenberg-

Khon theorem provides some motivation for using approximate methods to describe the 

exchange-correlation energy as a function of electron density. The simplest method of 

describing the exchange-correlation energy of an electronic system is to use the local-

density approximation
27

. 

 

2.2.3.1. Local Density Approximation (LDA) 

In the local-density approximation the exchange-correlation energy of an 

electronic system is constructed by assuming that the exchange-correlation energy per 

electron at a point 𝒓 in the electron gas, 휀𝑋𝐶(𝒓), is equal to the exchange-correlation 

energy per electron in a homogeneous electron gas that has the same density as the 

electron gas at point 𝒓. In the LDA, 𝐸𝑋𝐶(𝒓) is written as  

 𝐸𝑋𝐶[𝑛(𝒓)]  = ∫ 휀𝑋𝐶(𝑛(𝒓)) 𝑛(𝒓)𝑑
3𝒓  

 

(2.52)  

and 

 𝛿𝐸𝑋𝐶(𝒓)

𝛿𝑛(𝒓)
=
𝜕[휀𝑋𝐶(𝑛(𝒓))𝑛(𝒓)]

𝜕𝑛(𝒓)
 

 

(2.53)  

with 휀𝑋𝐶(𝒓) = 휀𝑋𝐶
ℎ𝑜𝑚[𝑛(𝒓)]. 

where  휀𝑋𝐶
ℎ𝑜𝑚[𝑛(𝒓)] is approximated by a  local function of the density, usually that 

which reproduces the known energy of the uniform electron gas. The local-density 

approximation assumes that the exchange-correlation energy functional is purely local 

and, in principle, ignores corrections to the exchange-correlation energy at a point 𝒓 due 

to nearby inhomogeneities in the electron density.  

A straightforward generalization of the LDA to include electron spin is local spin-

density approximation (LSDA) 
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𝐸𝑋𝐶[𝑛↑, 𝑛↓] = ∫ 휀𝑋𝐶(𝑛↑, 𝑛↓) 𝑛(𝒓)𝑑

3𝒓 

 

(2.54)  

 

2.2.3.2. Generalized Gradient Approximation (GGA) 

Generalized gradient approximations (GGAs), where the local gradient as well as 

the density is used in order to incorporate more information about the electron gas in 

question, favor density inhomogeneity more than LSDA does. In GGA, 휀𝑋𝐶(𝑛(𝒓)) is 

replaced by 휀𝑋𝐶(𝑛(𝒓), |∇𝑛(𝒓)|) to take the account of inhomogeneity for a slowly varying 

density. Generalized gradient approximations (GGA) 
28

 
29

 has the following form:\ 

 𝐸𝑋𝐶[𝑛↑, 𝑛↓] = ∫ 휀𝑋𝐶(𝑛↑, 𝑛↓, ∇𝑛↑, ∇𝒏↓) 𝑛(𝒓)𝑑
3𝒓  

 

(2.55)  

 

In comparison with LDA and LSDA, GGAs have many advantages
28,30–36

. For 

example, GGAs significantly improve the ground state properties of light atoms and 

molecules, clusters and solids composed of them. Unlike the LSDA the correct bcc 

ground state of 𝐹𝑒 is obtained through GGAs. Structural properties are generally 

improved, although GGAs sometimes lead to overcorrection of the LDA errors in lattice 

parameters. 

 

2.2.4. DFT+U 

In solid, both 𝑑 – and 𝑓 -states have tendency to retain their atomic character 

while the valence 𝑠 - and 𝑝-states tend to form bands. Both LDA and GGA descriptions 

for 𝑠 - and 𝑝-states are well agreement with the experimental observations. However, it 

has been a common practice that both LDA and GGA can not predict the behavior of 

highly localized and  atomic-like 𝑑 – and 𝑓 – states accurately in many compounds 

especially which contain rare-earth or late transition metal elements 
25

. For many 
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transition metal oxides, where a sizeable  band gap is observed experimentally, both LDA 

and GGA predict metallic ground states and itinerant 𝑑 –states or underestimate the band 

gap significantly. These descrepencies are inherited in the calculation primarily due to the 

lack of proper treatment of the self-interaction correction (SIC) of the electrons [47]. The 

improper treatments of band gap and 𝑑 or 𝑓 –states can be improved by a decomposition 

of the complete Hilbert space into two subsystems, following the Anderson model
37

: (i) 

the localized 𝑑 -or 𝑓 -states for which a more explicit, orbital-dependent treatment of all 

Coulomb effects is required, and (ii) the 𝑠 - and 𝑝-states which are well described by the 

LDA (or GGA). The technical implementation of this concept in DFT is the LDA (or 

GGA)+ U method where U is known as  Hubbard parameter
38

 
394041

 . For its derivation the 

only assumption required is that the 𝑑 -or 𝑓 -states are localized within well-separated 

atomic spheres, so that the bulk states are well represented by a superposition of the 

corresponding atomic states only. The Hubbard parameter 𝑈 is defined as 
42

 

 𝑈 = 𝐸(𝑑𝑛+1) + 𝐸(𝑑𝑛−1) − 2𝐸(𝑑𝑛) 
 

(2.56)  

i.e., the Coulomb energy cost to place the two electrons at the same site. In all 

model Hamiltonians the U parameter is treated as a constant which only depends on the 

type of atom and its environment in the crystal through the screening (or renormalization) 

effects but not on the configuration of the localized electrons. The new functional
39

 is 
4243

:  

 
 

𝐸𝐷𝐹𝑇+𝑈 = 𝐸𝐷𝐹𝑇 [𝑛(𝒓)] + 𝐸𝑈[{𝑛𝑚
𝐼𝜎}] − 𝐸𝑑𝑐[{𝑛𝐼𝜎}] 

 

(2.57)  

where 𝑛𝑚
𝐼𝜎 are the atomic-orbital occupations for the atom 𝐼 experiencing the 

“Hubbard correction” term, 𝐸𝐷𝐹𝑇 [𝑛] is a standard approximate DFT functional, 𝐸𝑈[𝑛𝑚
𝐼𝜎] is 

Hubbard correction term, and the last term in the above equation 𝐸𝑑𝑐[{𝑛𝐼𝜎}] is called the 

“double counting” term subtracted explicitly to avoid the double counting of energy 

contribution of these orbitals included in 𝐸𝑈[{𝑛𝑚
𝐼𝜎}]  and, in some average way, in 

𝐸𝐷𝐹𝑇 [𝑛(𝒓)] (LDA or GGA functionals). The DFT + U functional introduced in the above 
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eqution contains only a minimal set of on-site interaction parameters that takes account 

the effect only associated to on-site Coulomb repulsion  and therefore, neglect the proper 

treatment of magnetic (exchange) interaction. These effects can be compensated, or 

alternatively  can be mimicked redefining the 𝑈 parameter as 𝑈𝑒𝑓𝑓 = 𝑈 − 𝐽
44

 where 𝐽 

denotes the Stoner exchange parameter. Taking both on-site Coulomb and proper 

magnetic (exchange) interactions into the consideration the total energy functional of 

DFT+ U can be written as 
45

 

 𝐸𝐷𝐹𝑇+𝑈 = 𝐸𝐷𝐹𝑇 [𝑛(𝒓)] + 𝐸𝑈[{𝑛𝑚𝑚′
𝐼𝜎 }]  

 

(2.58)  

 

Where 𝐸𝑈[{𝑛𝑚𝑚′
𝐼𝜎 }]  is the simplified form of the Hubbard correction to the energy 

functional 
45

 

 𝐸𝑈[{𝑛𝑚𝑚′
𝐼𝜎 }] =  𝐸𝑈[{𝑛𝑚𝑚′

𝐼 }] − 𝐸𝑑𝑐[{𝑛𝐼𝜎}] 
 

=
𝑈𝐼

2
∑∑𝜆𝑖

𝐼𝜎(1 − 𝜆𝑖
𝐼𝜎)

𝑖𝐼,𝜎

              

    𝑤𝑖𝑡ℎ 0 ≤ 𝜆𝑖
𝐼𝜎 ≤ 1  

 

(2.59)  

In the above equation, 𝑈𝐼 is the Coulomb repulsion parameter on atomic site 𝐼 . 

This is how the new functional 𝐸𝑈[{𝑛𝑚𝑚′
𝐼𝜎 }] compensates the known deficiencies of LDA 

or GGA for atomic systems. However, the price is paid appeared obvious in the above 

equation that 𝐸𝑈[{𝑛𝑚𝑚′
𝐼𝜎 }] favors only partial occupation of the localized orbitals and 

vanishes for fully occupied (𝜆 ≈ 1) or completely empty (𝜆 ≈ 0) orbitals. This is the basic 

physical effect built in the DFT + U functional.  

 

2.2.5. DFT-Hybrid 

This method of approximation incorporates exact exchange from Hartree Fock 

with exchange-correlation term from LDA or GGA. Hybrid functionals are better than DFT 
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in determining band gap, vibrational properties, static and dynamic dielectric function and 

also magnetic properties. Hybrid functional are step forward compared to LDA and GGA 

but still it is not a universal improvement and not as cost effective as standard DFT 

calculation.  

There are many hybrid functionals in use such as B3LYP, HSE, and MO6. In our 

study we use HSE06
46–48

 functional.  

 𝐸𝑋𝐶
𝐻𝑆𝐸 = α𝐸𝑋

𝑆𝑅(µ) + (1-α)𝐸𝑋
𝑃𝐵𝐸,𝑆𝑅(µ) + 𝐸𝑋

𝑃𝐵𝐸,𝐿𝑅(µ) + 𝐸𝐶
𝑃𝐵𝐸 (2.60)  

 

where 𝐸𝐶
𝑃𝐵𝐸 is the PBE functional for the correlation energy, SR and LR denotes short 

range and long range part of the electron-electron interaction respectively. The mixing 

coefficient α was set to ¼ i.e only 25% of exact exchange was used in the present work. 

For screening parameter, µ =  0.2 Å
-1
 was used as required in HSE06 functional.  

 

2.2.6. Projector Augmented Wave (PAW) Method 

In order to solve the electronic structure problem within the DFT formalism, the 

Kohn-Sham equations are to be solved in some efficient numerical way. The key problem 

is to expand electron orbitals used to express the single particle density in K-S equation 

in terms of any converged basis set that accounts different behavior of wave functions of 

real materials in different regions of space. Atomic wave functions of real materials, which 

are the eigenstates of the atomic Hamiltonian and are all mutually orthogonal to each 

other, are fairly smooth in the bonding region, however, oscillates rapidly close to the 

nucleus owing to the large attractive potential of the nucleus. In order to maintain the 

orthogonal property of atomic wave functions, which is required by the exclusion 

principle, the valence wave functions oscillate rapidly in the core region since the core 

wave functions are well localized around the nucleus. This arises difficulty in solving K-S 
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equations within the DFT formalism numerically to describe the bonding region to a high 

degree of accuracy while accounting for the large variations in the atom center requiring 

a very large basis set, or a very fine mesh. Numerous methods have been developed to 

solve the resulting single particle K-S equation treating core and valence electrons in a 

different way, possibly obtaining numerical advantages. 

One common approach is to use frozen-core approximation that treats core 

states are invariant in the different chemical environments. Pseudopotential, which 

exploits frozen-core approximation, replaces the strong ionic potential experienced by 

core electrons with an effective, smooth and weaker potential. This pseudopotential acts 

on a set of pseudo wave functions rather true valence wave functions in such a way to 

reproduce the true effect on the valence electrons outside the core region. This 

approximation allows one to solve Kohn-Sham equations only for the valence electrons 

reducing computational cost, however, makes harder to calculate properties that rely on 

the core region e.g., electric field gradients, hyperfine parameters, etc. Another major 

drawback is that the procedure to generate good pseudopotentials is not well controlled. 

Another approach is the so called class of “all-electron” methods (AE), in which 

the strong ionic potential in core region is no longer replaced with an effective, smooth 

and weaker potential. Hence, full information about real wave functions in the core region 

is available compared to pseudopotential approach. One of the most important of such 

methods is the Augmented-Plane-Wave method (APW) 
4950

, in which the space is 

partitioned in two regions: a spherical one around each atom in which the wavefunction is 

expanded onto a local basis in order to reproduce the great variations, and an interstitial 

region in which another basis is chosen (plane waves for instance) and connected to the 

first local basis. A modification of APW which provides a flexible and accurate band 

structure method is known as Liner-APW (LAPW) [37]. 
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The projector augmented wave method (PAW) 
51

 is a technique used in ab initio 

electronic structure calculations. It is a generalization of the pseudopotential and linear 

augmented-plane-wave methods, and allows for density functional theory calculations to 

be performed with greater computational efficiency. It is an all electrons (AE) method for 

ab-initio molecular dynamics that provides the full wave functions that are not directly 

accessible with the pseudopotential approach, and the potential is determined properly 

from the full charge densities. PAW avoids transferability problems of pseudopotentials 

and provides theoretical basis for pseudopotentials. Like APW (or LAPW), PAW method 

transforms the rapidly oscillating wavefunctions in the core region into smooth 

wavefunctions which are more computationally convenient. 

 
2.2.6.1 Formalism 

The trick in PAW method is to divide the wave functions into two parts: i) a 

partial-wave expansion within an atom-centered sphere and ii) envelope functions 

outside the spheres. The partial waves are the solution of radial Schrödinger equation 

times spherical harmonics for the isolated atom and exhibits orthogonally to the core 

states if needed. On other hand, the envelope function is expanded into plane waves or 

some other convenient basis set. However, both envelope function and partial-wave 

expansions are continuous at boundary of the sphere.  

In PAW method, a linear transformation operator �̂� maps the physically relevant 

AE wave functions, which are orthogonal to the core states, onto the computationally 

convenient Pseudo (PS) wave functions or vice versa. The PS wave functions will be 

identified with the envelop functions of the linear method
52

 or the Pseudopotential 

approach. This approach is somewhat reminiscent of a change from the Schrödinger 

picture to the Heisenberg picture.  
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Linear transformation from pseudo wave functions to AE wave functions 

 |𝛹⟩ = �̂�|𝛹𝑙
𝑝𝑠⟩ (2.61)  

where 𝑙 is a quantum state label, consisting of a band index and possibly a spin 

and 𝑘-vector index.  The linear transformation operator 

 �̂� = 1 + �̂�𝑅  
 

(2.62)  

where �̂�𝑅  is non-zero only within some spherical augmentation region Ω𝑅 

enclosing atom 𝑅 and unity outside this region where AE and PS wave functions coincide 

with each other. The augmentation spherical regions are chosen such a way that there is 

no overlap between the spheres. Around each atom, it is useful to expand the pseudo 

wave function into pseudo partial waves: 

                                  |𝛹𝑙
𝑝𝑠⟩ = ∑ 𝑐𝑙𝑖

𝑅|𝜙𝑙𝑖
𝑝𝑠 𝑅⟩𝑖𝑅  within Ω𝑅 

 

(2.63)  

The corresponding AE wave function is of the form 

 |𝛹⟩ = �̂�|𝛹𝑙
𝑝𝑠⟩  

 

(2.64)  

 

 |𝛹⟩ = �̂� ∑ 𝑐𝑙𝑖
𝑅|𝜙𝑙𝑖

𝑝𝑠 𝑅⟩𝑖𝑅   

 

(2.65)  

 

 |𝛹⟩ = ∑ 𝑐𝑙𝑖
𝑅|𝜙𝑙𝑖

𝑅⟩𝑖𝑅  within Ω𝑅 
 

(2.66)  

with 𝑐𝑙𝑖
𝑅 same as in pseudo partial wave expansions. Hence, we can express the 

AE wave function as 

 |𝛹⟩ = (1 + �̂�𝑅) |𝛹𝑙
𝑝𝑠⟩ = |𝛹𝑙

𝑝𝑠⟩ + �̂�𝑅|𝛹𝑙
𝑝𝑠⟩ 

 

= |𝛹𝑙
𝑝𝑠
⟩ + (�̂� − 1)|∑𝑐𝑙𝑖

𝑅|𝜙𝑙𝑖
𝑝𝑠 𝑅
⟩

𝑖𝑅

 

 

= |𝛹𝑙
𝑝𝑠⟩ +∑𝑐𝑙𝑖

𝑅|𝜙𝑙𝑖
𝑅⟩

𝑖𝑅

−∑𝑐𝑙𝑖
𝑅|𝜙𝑙𝑖

𝑝𝑠 𝑅⟩

𝑖𝑅

 

 

(2.67)  
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where the expansion coefficients for the partial wave expansions have to be 

determined. Because the operator �̂� is linear, the coefficients 𝑐𝑛𝑖
𝑅 are linear functions of 

pseudo wave functions and thus, can be written as an inner product with a set of so-

called projector functions, |𝑝𝑖
𝑝𝑠⟩  

 𝑐𝑙𝑖
𝑅 = ⟨𝑝𝑖

𝑝𝑠
| 𝛹𝑙𝑖

𝑝𝑠 𝑅
⟩ 

 

(2.68)  

where  ⟨𝑝𝑖
𝑝𝑠|𝜙𝑙𝑗

𝑝𝑠 𝑅⟩ = 𝛿𝑖𝑗 and ∑ |𝜙𝑙𝑖
𝑝𝑠 𝑅⟩⟨𝑝𝑖

𝑝𝑠| = 1𝑖  

The most general form for the projector functions is 

 |𝑝𝑖
𝑝𝑠⟩  = ∑({⟨𝑓𝑘|𝜙𝑙𝑚

𝑝𝑠 𝑅⟩})
𝑖𝑗

−1

𝑗

⟨𝑓𝑗| 

 

(2.69)  

where |𝑓𝑗⟩  form an arbitrary, linearly independent set of functions. The projector 

functions are localized within Ω𝑅 if the functions |𝑓𝑗⟩  are localized. The final form of the 

linear transformation operator can be written as  

 �̂� = 1 +∑(|𝜙𝑙𝑖
𝑅⟩ − |𝜙𝑙𝑖

𝑝𝑠 𝑅⟩)
𝑖𝑅

⟨𝑝𝑖
𝑝𝑠
| 

 

(2.70)  

which allows one to obtain AE Kohn-Sham wave function as 

 |𝛹⟩ = |𝛹𝑙
𝑝𝑠⟩ +∑(|𝜙𝑙𝑖

𝑅⟩ − |𝜙𝑙𝑖
𝑝𝑠 𝑅⟩)

𝑖𝑅

⟨𝑝𝑖
𝑝𝑠
|𝛹𝑙

𝑝𝑠⟩ 

 

(2.71)  

explicitly separating the extended-space and the atom-centered contributions. A 

schematic representation of PAW method is shown in Figure 2.4. The first term can be 

evaluated on a plane wav or any convenient basis set, while the last two terms are 

evaluated on fine radial grids.  

In summary, PAW transformation has three properties:  

i) Projector functions are localized inside the augmentation spheres i.e., 

𝑝𝑖
𝑝𝑠 𝑅(𝑟) = 0 𝑓𝑜𝑟 𝑟 >  𝑅𝑎 

ii) AE orbitals and pseudo orbitals are equal outside the augmentation  
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spheres 

 𝜙𝑙𝑖
𝑅 = 𝜙𝑙𝑖

𝑝𝑠 𝑅
, 𝑟 >  𝑅𝑎   

 

(2.72)  

iii) Projector functions are orthogonal to pseudo orbitals, i.e., ⟨𝑝𝑖
𝑝𝑠|𝜙𝑙𝑗

𝑝𝑠 𝑅⟩ =

𝛿𝑖𝑗 

The partial waves 𝜙𝑙𝑖
𝑅, which are used as an atomic basis for the all-electron 

wavefunctions within the augmentation sphere,  are constructed as radial solutions of the 

Schrodinger equation for the isolated atom. 

 

2.2.6.2. Approximations 

Like other electronic structure methods some approximations are needed to 

make PAW method a practical scheme within the DFT formalism. These approximations 

are: 

 Frozen Core 

The frozen core approximation assumes that the core states are invariant 

under the different chemical environments and   localized in the 

augmentation spheres. No projector functions are needed to define for the 

core states. 

 Finite number of projectors 

The number of projector functions is obviously finite. 

Typically two projectors per angular momentum are used. 

 Truncated angular momentum expansions 

 Overlapping augmentation spheres 
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2.2.6.3. Expectation Values in PAW 

we can obtain physical quantities, represented as the expectation value (A) of 

some operator A, from the PS wave functions |𝛹𝑙
𝑝𝑠⟩ either directly as ⟨𝛹|𝐴|𝛹⟩ after 

transformation to the true AE wave functions |𝛹⟩ = �̂�|𝛹𝑙
𝑝𝑠⟩ or as the expectation value 

〈𝐴〉 = ⟨𝛹𝑙
𝑝𝑠
|𝐴𝑝𝑠|𝛹𝑙

𝑝𝑠
⟩ of PS operator 𝐴𝑝𝑠 = �̂�†𝐴 �̂� in the Hilbert space of the PS wave 

functions. Similarly we can evaluate the total energy directly as a functional of the PS 

wave functions. The ground-state PS wave functions can be obtained from 

 𝜕𝐸[�̂�|𝛹𝑙
𝑝𝑠⟩]

𝜕⟨𝛹𝑙
𝑝𝑠
|
= 𝜖 �̂�† �̂�|𝛹𝑙

𝑝𝑠⟩ 
(2.73)  

 

Expectation values in PAW: 

Total energy: 𝐸 = 𝐸𝑙
𝑝𝑠
+∑ (𝐸𝑙

𝑅 𝑎 −𝐸𝑙
𝑝𝑠 𝑎
 )

𝑎
 (2.74)  

 

Electron density: 𝑛(𝒓) = 𝑛𝑙
𝑝𝑠(𝑟) +∑[𝑛𝑙

𝑅 𝑎(𝒓 − 𝑹𝑎) − 𝑛𝑙
𝑝𝑠 𝑎(𝒓 − 𝑹𝑎)] (2.75)  

 

2.2.7. Periodic Supercell Approximation 

Although Kohn-Sham equations reduce the interacting many-electron 

Schrödinger equation into an effective single-problem, however, solving infinite number of 

non-interacting Schrödinger equation with infinite basis set computationally is formidable 

task. This cumbersome task can be simplified performing calculation on the periodic 

supercell approximation and applying Bloch’s theorem to the electronic wave functions. 

 

2.2.7.1 Bloch’s Theorem 

Bloch’s theorem states that in a periodic solid each electronic wave function can 

be written as the product of a periodic unit cell part and a wave like part, 
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 𝜓𝑖(𝒓) = 𝑓𝑖(𝒓)𝑒
𝑖𝒌.𝒓 

 

(2.76)  

 

where 𝑓𝑖(𝒓) periodic unit cell part i.e.,  𝑓𝑖(𝒓) = 𝑓𝑖(𝒓 + 𝒍). 𝑓𝑖(𝒓) can be expanded 

using a discrete basis set of plane waves such as 

 𝑓𝑖(𝒓) =∑𝑐𝑖,𝑮 𝑒
𝑖𝑮.𝒓 

𝑮

 

 

(2.77)  

where 𝑮 are the reciprocal lattice vectors defined by 𝑮. 𝒍 = 2𝜋𝑚 for all 𝒍 where 𝒍 is 

a lattice vector of the crystal and m is an integer. 

Hence, each electronic wave function can be written as 

 𝜓𝑖(𝒓) =∑𝑐𝑖,𝑲+𝑮 𝑒
𝑖(𝑮+𝒌).𝒓 

𝑮

 

 

(2.78)  

or equivalently  

 𝜓𝑖(𝒓 + 𝒍) =∑𝑐𝑖,𝑲+𝑮 𝑒
𝑖(𝑮+𝒌).(𝒓+𝒍) 

𝑮

 

 

(2.79)  

 

 𝜓𝑖(𝒓 + 𝒍) =  𝑒
𝑖𝒌.𝒍∑𝑐𝑖,𝑲+𝑮 𝑒

𝑖𝒌.𝒓 𝑒𝑖𝑮.(𝒓+𝒍) 
𝑮

 

 

(2.80)  

 

 𝜓𝑖(𝒓 + 𝒍) =  𝑒
𝑖𝒌.𝒍𝑓𝑖(𝒓 + 𝒍) 𝑒

𝑖𝒌.𝒓 =  𝑒𝑖𝒌.𝒍𝑓𝑖(𝒓) 𝑒
𝑖𝒌.𝒓 

 

(2.81)  

 

 𝜓𝑖(𝒓 + 𝒍) =  𝑒
𝑖𝒌.𝒍 𝜓𝑖(𝒓) 

 

(2.82)  

Imposing periodic boundary condition envisioning the lattice (Figure 2.5) to be in 

the form of a closed N-atom ring, one must have 

 

Figure 2.3 A closed N-atom ring. 
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  𝜓𝑖(𝒓 + 𝑵𝒍) = 𝜓𝑖(𝒓) (2.83)  

 

which in turn requires 

  𝑒𝑖𝒌.𝑵𝒍 = 1 
 

(2.84)  

 

Or, 
𝑘 =

2𝜋𝑛

𝑁𝑙
………… .𝑛 = 0, ±1, ±2,±3,… . . , ±

𝑁

2
 

 

(2.85)  

Bloch’s representation with periodic boundary condition points out that the 

number of occupied electronic states is finite, at each k-point, even for infinite periodic 

systems. This advantage turns out the problem of computing an infinite number of wave 

functions to one of computing finite number wave functions at infinite number of k-points. 

Moreover, states with similar 𝑘 vector are identical which allows one to replace electronic 

wave functions over a region of 𝑘 space by the wave functions at a single 𝑘 point. In that 

case, only finite number of appropriate sampled set of k-points is required inside the first 

Brilluoin zone to calculate the electronic potential and therefore determine the total 

energy of the solid. This advantage reduces computational cost significantly.  

 

2.2.7.2 Plane Wave Basis Sets 

According Bloch’s theorem it is possible to expand an electronic wave function at 

each 𝑘 point interms of a discrete plane wave basis set. In quantum mechanics, an 

electronic wave function belongs to an infinite-dimensional Hilbert space. Thus in 

principle, given an electronic wave function 𝜓𝑖(𝒓), an infinite number of basis plane 

waves is required in order to reproduce it. However, the infinite number of plane wave 

basis set can be reduced considering only the plane waves which have kinetic energies 

less than a particular cutoff energy i.e., 
ℏ2

2𝑚
|𝑲 + 𝑮|2 ≤ 𝐸𝑐𝑢𝑡. This choice of a particular 



 

34 

cutoff energy 𝐸𝑐𝑢𝑡, which produces a finite basis set, is reasonable since the coefficients 

𝑐𝑖,𝑮+𝑲 in Bloch’s theorem (equation) with smaller kinetic energies are typically more 

important than those with higher kinetic energies. With plane wave basis set KS 

equations take following simpler form 

 
∑[

ℏ2

2𝑚
|𝑲 + 𝑮|2𝛿𝐺𝐺′ + 𝑉

𝑒𝑓𝑓(𝐺 − 𝐺′)]

𝐺′

𝑐𝑖,𝑲+𝑮′ = 휀𝑖𝑐𝑖,𝑲+𝑮′  

 

(2.86)  

In this form, kinetic energy is diagonal, and effective potential is expressed in 

Fourier space. The number of elements in Hamiltonian matrix is limited by the choice of  

𝐸𝑐𝑢𝑡.  

The salient features of a plane-wave basis are: 

1. Only 𝐸𝑐𝑢𝑡 is needed to control the convergence of the result.   

2. Orthonormality and no dependence on atomic positions, i.e. no basis-set 

superposition error and Pulay forces. 

3. Very efficient to compute integrals and derivatives in reciprocal space which 

makes the calculation of the matrix elements of the Hamiltonian easier and faster. 

Despite these computational friendly features, plane wave basis sets have some 

drawbacks, especially for isolated systems, where the large number of plane waves is 

required. A large number of plane waves for a well-converged calculation increases 

computational cost. Plane waves, in fact, cannot take advantage of the vacuum to reduce 

the size of the basis. In order to conveniently reduce 𝐸𝑐𝑢𝑡, smooth pseudopotentials must 

be employed. Furthermore efficient parallelization is problematic due to the mathematics 

of delocalized plane waves. The required Fourier transforms are actually very difficult to 

parallelize. 
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2.3 Computational Details 

 
The present calculations were performed within the framework of the standard  

frozen-core  projector  augmented-wave (PAW)
53,54

 method using density functional 

theory (DFT) as implemented in Vienna ab initio simulation  package (VASP)
55,56

 code. 

Exchange and correlation potentials were treated in the generalized gradient 

approximation (GGA) as parameterized by Perdew-Burke-Ernzerhof (PBE).
28,57

 It is well 

known that underestimation of electron localization is a major failure of  both  local and 

semi-local DFT calculations, in particular, for systems with localized 𝑑 and 𝑓 electrons.
58–

60
 This failure manifests in the general trend of DFT to underestimate the band gaps and 

to produce incorrect metallic solutions for some 3d based metal oxides. This shortcoming 

of DFT-GGA needs to be corrected in a computationally cost effective manner since 

defect formation energies are affected by the incorrect band gap calculations. Several 

post-DFT methods are available to improve the band gap calculations such as hybrid 

DFT
61–66

, self-interaction corrected (SIC) density functionals
67

, dynamical mean-field 

theory
68

, reduced density matrix functional theory
69

, the screened exchange (sX) 

method
70

, GW
66,71–73

, or quantum Monte Carlo
74

; however they are computationally 

demanding. Moreover, popular methods like hybrid DFT does not guarantee to position 

defect levels correctly while intending to reproduce the experimental band gap by 

parameterization.
75

 Due to the heavy computational demand of the present work, it is 

desirable to embrace a post-DFT method that is computationally cost-effective as well as 

shows improved band gap over DFT. Under these circumstances, an on-site Coulomb 

correlation through the Hubbard-based U correction parameter
39,43,58 

can be the best 

option as post-DFT method to reduce the band gap error and predict other electronic 

properties. In the present work, we have used Ueff = 6 eV, (Ueff  = U-J=7-1= 6 eV, J = 
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Stoner exchange parameter) that externally provides Coulomb correlation to the desired 

orbital of the considered atoms. 

The basis sets were expanded with plane-waves with a kinetic energy cut-off of 

400 eV. The density-of-states (DOS) plots were generated with the tetrahedron method.
76 

 

The ion positions and volumes were always relaxed without any symmetry constraint to 

allow the internal geometry and the shape of the lattice to be changed freely until the 

force on each of the ion was 0.01 eV/Å or less. The Monkhorst–Pack
77

 k-point sampling 

was used for ionic relaxation. For visualization of the crystal structures, VESTA 

(Visualization for Electronic and Structural Analysis)
78,79

 was used. The k-mesh details for 

different cells and the computational specifications which differ from above will presented 

in respective chapters and sections. 

 

 

2.4 Physical Properties 

 
2.4.1. Formation Enthalpy 

The formation enthalpy of a compound represents the amount of energy required 

to form its stable composition at thermodynamic equilibrium. The formation enthalpy of a 

given bulk phase defined as 

 ∆Hf = Esolid − nα∑Eα
bulk/molecule

α

 (2.87)  

 

where, Esolid is the total energy of a given bulk phase, and Eα
bulk represents the energy 

per atom of a constituent species α in its standard elemental phase. For example, ECu
bulk 

corresponds to the energy per atom with respect to FCC phase of Cu. nα is the number of 
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atoms of species α present per unit formula of the given compound. For oxygen, we have 

considered its molecular (dimer) form i.e., EO
molecule = EO

dimer. 

2.4.2. Cohesive Energy 

The cohesive energy is a measure of cohesion of atoms in solid aggregates 

manifesting the thermal stability of solids. Hence, the cohesive energy is the solid state 

analog of the atomization energy or the energy needed to break a solid apart into isolated 

atoms i.e., 

 Ecohesive = Esolid −∑Eai
isolated

αi

 (2.88)  

 

where 𝛼𝑖 represents the different atoms that constitute the solid. It is well known, all 

stable arrangements of atoms in solids are such that the potential energy is minimum. 

The cohesive energy, which corresponds to the attractive part of the potential energy, 

tells that lower the cohesive energy, stronger the bonding between the atoms in solid 

aggregate. 

 
2.4.3. Fragmentation Energy 

The successful synthesis of a compound depends on the stability against its 

decomposition into different competitive phases such as pure elemental or secondary 

phases or combination all phases. Although formation enthalpy gives an estimate about 

the materials’ stability with respect pure elemental phases, it does not give any hint as to 

the stability against its fragmentation into other possible competitive phases. The 

fragmentation of a compound (p) with respect to secondary/elemental phases (s) is 

defined as 
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 ∆Hfrag,p = ∆Hf,p −∑∆Hf,s
si

 (2.89)  

 

2.4.4. Chemical Potential Landscape 

A chemical potential landscape, wherein the desired material is 

thermodynamically stable, can be defined as a region spanned by chemical potentials of 

the constituent atomic species of that material. In equilibrium, these chemical potentials 

must satisfy the following to form a stable desired crystal 

 
∑nα∆µα = ∆Hf,p

l

α=1

 
 

 

   where both α and nα have the same meanings as defined before. ∆Hf,p is 

the formation enthalpy of the primary compound as defined in equation (4) (here the 

subscript ‘p’ refers to ‘primary’ as the targeted material). 

The number of competitive secondary phases increases as the number of 

cations in a compound increases. These secondary phases split the chemical potential 

landscape up into different domains. The domains bounded by possible secondary 

phases determine the single-phase formation and degree of stability of a desired 

compound at particular growth condition. Larger bounded region implies higher stability of 

the material under consideration and more flexibility in tuning the growth conditions. For 

α = l ( l > 1), chemical potentials of other (l − 1) species have to be varied keeping 

chemical potential of one species fixed. To avoid a secondary phase, 

 
∑nβ∆µβ < ∆Hf,s

l

β=1

 
 

 



 

39 

where ∆Hf,s is the formation enthalpy of a secondary phase (here the subscript ‘s’ 

refers to ‘secondary’); β corresponds to different atomic species in a secondary phase; nβ 

is the number of atoms of the species β present per unit formula of each secondary 

phase. For example, CuS is one of the probable secondary phases for CZTS, where l = 2 

(Cu and S) for CuS, and nβ =1 for both Cu and S. To avoid the co-existence of CuS  

 ∆μCu + ∆μS < ∆Hf,CuS 

 
2.4.5. Defect Formation Energy 

The method to calculate total energy with periodic boundary conditions for a 

system that contains a defect has been devised based on the assumption that the 

interaction among the periodic image defects between the neighboring cells is negligible. 

This assumption is incorporated in the context of “supercell approximation” in which a 

defect is occurred in a periodic supercell. The formation energy for a defect δ in a charge-

neutral state is
80–83

 

 ΔH (δ) = E(δ)-E(host) + ∑ mαµαα   

where E(δ) and E(host) correspond to the total energies of the compound with 

and without defect δ, respectively. The index α represents different atomic species that 

constitute the solid; mα is the number of α atoms removed (added) from (to) the system 

for the defect δ. mα =1 if an atom of species α is removed from the system while mα = -1 if 

an atom of species α is added to the system. μα is the chemical potential of species α 

 µα  =  µα
0  + Δµα  

 

where µ𝛼
0  is the reference chemical potential of the constituent species α in its 

standard elemental phase, e.g. the standard phases of the metals Cu and Zn are FCC 

structures; Sn has metallic standard phase, alpha–Sn; and alpha–S (S8) is standard solid 
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phase of S. Δµα determines α-rich/α-poor growth condition with respect to a bulk phase 

and is bounded by  

 ΔHf  ≤ nαΔμα ≤ 0  

 

where, ΔHf is the formation enthalpy of a given bulk phase defined as         

 ∆Hf = Esolid − nα∑Eα
bulk

α

  

 

where, Esolid is the total energy of a given bulk phase, and Eα
bulk represents the 

energy per atom of a constituent species α in its standard elemental phase. For example, 

ECu
bulk corresponds to the energy per atom with respect to FCC phase of Cu. nα is the 

number of atoms of species α present per unit formula of the given compound. nαΔμα = 0 

corresponds to extreme α-rich growth conditions  where atoms of species a are readily 

available; whereas, nαΔμα = ΔHf  corresponds to extreme α-poor growth condition 

manifesting the scarcity of  a species  atoms in the surroundings.  

 
2.4.6. Defect Concentration 

The equilibrium concentration of a defect δ at charge state q in crystal can be 
given

80
 

 
 c(δ, q) = Nsites gq exp(-∆H(δ,q)/KBT (2.90)  

 
where KB = Boltzmann constant  

T = temperature 

ΔH(δ,q) = formation energy at T = 0 K 

Nsites = is the number of possible atomic sites at which the defect may be formed.  

gq = degeneracy factor, which equals the number of possible configurations for electrons 

occupying the defect levels and changes with the charge state q. 

 
2.4.7. Conductivity Effective Mass 
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A conductivity mass (mc) is defined
84

 by means of ratio  
ℏ𝑘

m𝑐
= 𝑣. For a general 

band 
 

𝑣 =
1

ℏ

𝜕𝜖

𝜕𝑘𝑖
=∑(

1

𝑚𝑐
)𝑖𝑗

𝑗

ℏ𝑘𝑗 
(2.91)  

 
If tensor in diagonal 
 

(
1

𝑚𝑐
)𝑖𝑖 =

1

ℏ2
1

𝑘𝑖

𝜕2𝜖

𝜕𝑘𝑖
2 

(2.92)  

 
2.4.8. Optical Absorption 

In the present work, we have studied the optical absorption as one of the most 

important optical property for PV/PEC process. In treating a solid, it is necessary to 

consider contributions to the absorption from various electronic energy band processes 

such as intraband, interband. However, we restrict ourselves to the interband processes 

because intraband processes are less important to semiconductors.
85

 All the 

semiconductors have a fundamental absorption edge in the near-infrared, visible or 

ultraviolet spectral region. The absorption edge is caused while electrons absorbing 

photon make an interband transition from an occupied state in the valence band to an 

unoccupied state in the conduction band. The probability of interband transition across 

the band gap in semiconductor is governed by a parameter called absorption coefficient, 

which is given by
85–87

 

 
𝛼(𝜔) =

2𝜔𝑘𝑖𝑖(𝜔)

𝑐
 

(2.93)  

 

Where 𝜔 is the frequency of absorbed light, 𝑐 be the speed of light, and 𝑘𝑖𝑖(𝜔) is the 

extinction coefficients which are directly related to the diagonal components of frequency 

dependent complex dielectric tensors, 𝜖𝑖𝑖  and have the following expression
86–88

 

 
𝑘𝑖𝑖(𝜔) =

1

√2
[{(𝑅𝑒 𝜖𝑖𝑖)

2 + (𝐼𝑚 𝜖𝑖𝑖)
2}
1
2⁄ −𝑅𝑒 𝜖𝑖𝑖]

1
2⁄

 
(2.94)  

 



 

42 

Once the ground state was determined, frequency dependent dielectric matrix had been 

evaluated using VASP 5.2. and above which  calculates directly 
89

   imaginary part  using 

the equation : 

 
𝐼𝑚 𝜖𝑖𝑗(𝜔) =

4𝜋2𝑒2

Ω
lim
𝑞→0

1

𝑞2
∑2𝜔𝒌𝛿(𝜖𝑐𝒌 − 𝜖𝑣,𝒌 −𝜔)

𝑐,𝑣,𝒌

× ⟨𝑢𝑐𝒌+𝒆𝒊𝒒|𝑢𝑣𝒌⟩ ⟨𝑢𝑐𝒌+𝒆𝒋𝒒|𝑢𝑣𝒌⟩
∗

 

(2.95)  

 

and real part with the usual Kramers-Kronig transformation 

 
𝑅𝑒 𝜖𝑖𝑗(𝜔) = 1 +

2

π
𝑃∫

[𝐼𝑚 𝜖𝑖𝑗(𝜔
′)]𝜔′

𝜔′2 −𝜔2 + 𝑖𝜂

∞

0

𝑑𝜔′ 
(2.96)  

 

where P denotes the principle value  and 𝜂 is the complex shift. 
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Chapter 3  

Crystal Structure Prediction 

3.1 Introduction 

All the motif structures (possible candidates for global optimization) in the present 

study were found from existing structures in mineral database.
1,90

Additionally, 

StructurePredictor
1,90 

 software generated structures were also considered for global 

optimization The existing structures were of the forms from similar stoichiometry to 

different ones of higher/lower order compounds. Several manipulations of existing 

structures produced the unit cells (motif structures) of the desired stoichiometry. Those 

motif structures were then exposed to DFT calculation, and the lowest energy structure 

was considered as the possible crystal structure for the material of interest. See 

References
12,91,92

 for the details of crystal structure modeling of the materials considered 

below. 

 

3.2 Computational Details 

We have used DFT (+U for 3d comprising compounds) for global optimizations of 

all motif structures. In addition, we employed van der Waals (vdW) correction to Sn2O3. It 

is well-known that the contributions from long-range non-bonded dispersion interactions 

between the layers in layered structures are non-negligible. Only DFT or hybrid-DFT or 

Hartree-Fock methods are unable
93–95

 in taking account those interaction precisely in 

layered structures.
96–99

Since Sn2O3 was previously reported to layered structure, vdW 

correction was further considered to compensate the failure of DFT. Among many 

existing flavors of vdW correction, a method introduced by Grimme
100

 and implemented 

in VASP as DFT-D2 has been a popular choice for a wide class of systems due to its 

satisfactory results in conjunction with computational efficiency.
101–105

 The ion positions 
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and volumes were always relaxed without any symmetry constraint to allow the internal 

geometry and the shape of the lattice to be changed freely until the force on each of the 

ion was 0.01 eV/Å (0.001 eV/Å for vdW -DFT
92

) or less. The Monkhorst–Pack
106

 k-point 

sampling was used for geometry optimization. For visualization of the crystal structures, 

VESTA (Visualization for Electronic and Structural Analysis) was used.  

 

3.3 Materials with AgBiW2O8 Stoichiometry 

3.3.1 AgBiW2O8 

With our total energy DFT calculations, the wolframite (P 2/c, S. G. 13, Z=2) 

structure in Figure 3.1a was found to be the most stable. The X-ray diffraction (XRD) of 

the latest experimental result
91

 (see Figure 3.1b) further confirms the wolframite crystal 

structure of AgBiW2O8.  

 

3.3.2 CuBiW2O8 

In our earlier work,
12

 we have predicted CuBiW2O8 as a suitable photocatalyst. 

The crystal structure of it is also predicted from existing through mineral database search. 

Our DFT+U calculation determined CuWO4 derived structure, as shown in Figure 3.2a, 

as the probable crystal structure of CuBiW2O8. In a search for previously published 

literature on CuBiW2O8, we have found with only one experimental article
107

 published 

over twenty years ago, and no theoretical work at all. All the calculations at that time were 

done in VASP 5.2 and the predicted structure was found to be 0.001 eV higher than the 

experimental counterpart. 

 Since the crystal structure determines electronic properties of a material 

uniquely, and the reference structure is limited to one, the quest for finding further lower 
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(a) 

 

(b) 

Figure 3.1 a) Crystal structure and b) XRD of AgBiW2O8. Two models: (left) ball-and-stick 

and (right) polyhedra of DFT derived crystal structure are presented in figure a. On the 

other hand, the two XRDs in figure b correspond to two samples of AgBiW2O8, which 

were synthesized in solution combustion synthesis (SCS) and solid state reaction (SSR) 

methods. 
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energy structure(s) of CuBiW2O8 was continued, which produced a structure energetically 

0.004 eV lower than the experimental structure. This latest predicted structure was 

CuBi2O4 (mp-560165)-derived (note that mp-560165 was recently assigned to new 

structure and the older structure no longer exists in the Material Project database). The 

motif structure in this case was generated i) by replacing two Bi atoms along ‘a’ axis by 

two W atoms and ii) removing one Bi and Cu (farther from the corner along the edge) 

atom. Note that later optimizations of latest motif structures were carried out in both 

VASP 5.2 and 5.3.3. Although CuBi2O4 (mp-560165)-derived structures found to be most 

stable irrespective of VASP versions, the order of the stability of other two structures 

were switched, despite the fact that the energy difference were still nominal (see Table 

3.1). Since the energy difference is very small for all three probable structures, any 

structure can be the outcome in the synthesis process. Further, the small difference in 

energy may fall within the  accuracy of the theoretical methods used in the present 

calculations. A comparison between energetics and structural attributes of these probable 

structures was presented in Table 3.1.  

Recently, CuBiW2O8 has been synthesized in our experimental collaborator’s (Dr. 

Krishnan Rajeshwar, Department of Chemistry and Biochemistry, UTA) laboratory; solid 

state reaction (SSR) method was employed in synthesizing that. The details of the 

experimental investigation will be presented elsewhere. The XRD of this newly 

synthesized sample in conjunction with that of three DFT+U optimized possible structures 

is presentenced in Figure 3.2b. It is seen that the calculated XRD of CuBi2O4 -derived 

structure mostly corresponds to its experimental counterpart. This validates our crystal 

structure prediction on CuBiW2O8. Despite that fact dissimilarities were observed in those 

XRD’s which could be attributed to presence of secondary phases in the synthesized 

sample. The quest for achieving a pure single-phase of CuBiW2O8 is going on in our  
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(a) 

 

(b) 

Figure 3.2 a) The polyhedral model of probable crystal of CuBiW2O8: (left) CuBi2O4 -

derived, Ref.
12

 (middle), and (right) Ref. 
107

. The K-mesh used for these structures are 

13x9x11, 7x11x3, and 9x13x11, respectively. b) The calculated XRDs of three structures 

in figure a in conjunction with an experimental counterpart of a CuBiW2O8 sample that 

was recently synthesized through solid state reaction (SSR) method in Dr. Rajeshwar’s 

lab at UTA. 
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Table 3.1 A comparison between DFT+U energetics, volumes, and lattice constants of 

three probable structures of CuBiW2O8. 
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Z
 

Å
3
 

Lattice Parameters 

a b c α β γ 

Å degrees 

CuBi2O4 

-derived 

1 0.000 156.65 5.012 7.76 6.14 90.6 65.8 51.0 

Ref.
12

 2 0.002 151.56 5.064 5.97 5.02 90.0 92.9 90.0 

Ref. 
107

 1 0.004 156.53 6.912 5.01 6.14 65.8 54.6 69.9 

 

collaborator’s lab. Note that first reported synthesized structure (Ref. 
107

) has the highest 

energy among all, however, its XRD matches with that of the lowest energy structure, 

despite the difference in their lattice parameters. This means that these two structures 

are locally isotropic e.g. Cu in both structures forms planner CuO4 and further, ∠O-Cu-O 

are same. In contrast, the second lowest energy structure
12

 which has different XRD from 

others also has different ∠O-Cu-O, in which Cu forms pyramidal CuO4 tetrahedra. 

 

3.4 Sn2O3 

Although the existence of Sn2O3 has been reported for more many years,
108

 

unfortunately, to date, the crystal structures of it is not unambiguously determined.  

Recently, probable monoclinic crystal structures it been predicted.
109,110

 Due to the 

absence of atomic configurational information in the literatures, the predicted 

structure
109,110

 could not be compared. The predicted structures, although show good 

agreement with each other, are different from the first proposed triclinic structure by 

Murken et al.
111

 A good agreement  between theoretical and experimental XRDs of Sn2O3 

has been claimed,
109

 however, crystal systems, lattice parameters, and number of 
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formula unit in the cell differ significantly in two cases. Despite this fact, Sn atom in the 

predicted structure exhibits a mixed-valence state which is consistent with experimental 

result.
112

 Under such circumstances, we intend to predict or at least verify the crystal 

structures of Sn2O3. For this task, more than 250 motif structures were considered for 

DFT followed by vdW-DFT optimization. The pathway to form motif structures for Sn2O3 

is shown in Figure 3.3. and the formation of unit cells from existing structures has been 

explained in reference.
12,92

For the convenience of computation, initially, only DFT was 

employed for structural relaxation of probable structures of Sn2O3. Then DFT-derived few 

most probable structures were exposed to empirical vdW correction. Based on the lowest 

energy calculated by DFT, the ground state structure was predicted.  

After optimization, SnO2 (mp-560417) derived structure was determined as 

lowest energy structure for Sn2O3 (see Figure 3.4), which was derived by removal of 

middle layer of four O atoms from mp-560417. The energies, volumes, and lattice 

parameters of few most DFT-vdW predicted probable structures are shown in Table 3.2. 

StructurePredictor generated structures possess energies higher than those of structures 

presented in Table 3.2, and hence, were not presented therein. The lowest energy 

structure is energetically close to SnO (mp-545820) motif structure and same to 

reference;
109

 all these three structures have monoclinic symmetry. Moreover,  the 

predicted structure in the present study belong to same space group (S.G. 14, P21/c) as 

the previously predicted structures.
109,113

 The only difference between those is the 

orientation of the axes; the ‘c’ axis (β) in our structure corresponds to ‘a’ axis (180
o
 - β) in 

reference
109,113

 or vice versa. Therefore, our work verifies the predicted structure as the 

crystal structure of Sn2O3 with small deviations in lattice parameters. As for the two lowest 

energy structures the energy difference is only 0.031 eV,
92

 we further calculate the Gibbs 

free energies (G) of those at room temperature (T = 300 K) using the thermodynamic 
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Figure 3.3 Evolution of different ‘Motif Structures’ of Sn2O3. ‘nx’ (n=2, 3, and 4)  indicates 

that original structures, which had Z=1(Z = No. of formula unit) in the cell, were doubled, 

tripled, and quadrupled to form motif structures; structures having Z=2 in the cell were 

doubled only. 

 
 

Figure 3.4 Crystal structure of Sn2O3, derived from one of the SnO2 (mp-560417) 

polymorphs. Sn1 and Sn2 atoms correspond to Sn (IV) and Sn (II) oxidation states in 

Sn2O3, respectively. A 13x15x7 k-point sampling was used for Sn2O3 in DFT and DFT-D2 

geometry optimization. 
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Table 3.2 vdW-DFT predicted energies, volumes, and lattice parameters of few most 

probable structures of Sn2O3. The formation enthalpies, ∆Hf  were calculated with respect 

to bulk Sn and molecular O2 phases following the method described in reference.
12

The 

‘(n = an integer)’ in the fourth column represents the ranking of the corresponding free 

energy; the stability of each probable structures runs from most to lowest with the 

ascending order of n. 
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equation, G = H-TS. Here H is the enthalpy which corresponds to formation enthalpies, 

∆Hf of Sn2O3 in Table 3.2; S is the entropy which was calculated using Phonopy.
114

  

The entropy S was calculated from phonon frequency (force constants were 

determined by finite displacement method) within harmonic approximation on a sampling 

mesh (31x31x31) in the reciprocal space. It was found that the energy difference (0.031 

eV) and stability order of those structures do not alter even at room temperature. This 

confirms that SnO2 (mp-560417) will remain as the most stable structure even with the 

presence of thermal vibration. 

 

3.5 Cu2ZnSn(S1-xSex)4 (CZTSSe) 

CZTSSe is the most promising photovoltaic material in Cu2ZnSnS4 (CZTS)/ 

Cu2ZnSnSe4 (CZTSe) family. It is an alloy of S and Se, keeping the cationic ordering 

fixed as in their parent structures, CZTS and CZTSe; the mixing ratio of S and Se, x 

determines its PV performance, which is yet to be optimized. As we will be knowing in the 

next chapter that x = 0.5 ± 0.125 should be the optimized range of alloy mixing in 

achieving the maximum PV efficiency form it, knowing crystal structures of those alloy 

composition are prerequisite for any theoretical study. Since the crystal structures of x = 

0.5 ± 0.125 compositions are unknown, our investigations begins with determining those 

at first. To model crystal structures of CZTSSe x=0.375 and 0.625 in conjunction with 

x=0.5 a kesterite-CZTS unit cell was chosen wherein S atoms were replaced by Se 

atoms according to different alloy composition values x. All possible combinations of S 

and Se per unit cell producing different CZTSSe structures were considered for geometry 

optimization. However, cations-ordering was kept fixed as those in CZTSSe adopt 

kesterite configurations as well.
115–121

 Figure 3.5 represents DFT+U-determined lowest 

energy structures of CZTSSe for x=0.375, 0.5, and 0.625, which have been determined 
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for the first time while x = 0.5 structure is consistent with the previous result.
17

 In the 

present work, we have used Ueff = 6 eV to both Cu 3d and Zn 3d orbitals in order to 

correct the DFT description of 3d based compounds. A 13×13×7 K-point sampling was 

used for ionic relaxation of CZTSSe. 

The x = 0.375 and 0.625 lowest energy structures involve two different 

arrangements of S and Se atoms along ‘c’ axis. Considering ‘A’ and ‘B’ are as reference 

points these arrangements are SS-SeSe-SS and Se-SSS-Se along ‘(+)c’ axis for x = 

0.375 while S and Se are just interchanged in x=0.625. In contrast, S and Se have one 

arrangement which is SS- 

 

Figure 3.5 Crystal structures of CZTSSe for three different alloy compositions: (a) x = 

0.375, (b) x = 0.5, and (c) x = 0.625. A and B are the two reference points for each 

composition from which two different S-Se arrangement along positive ‘c’ can be viewed. 

 

SeSe in the ‘(+)c’ direction for x = 0.5 lowest energy structure. All these different 

arrangements irrespective of alloy compositions keep alternating along ‘b’ axis. 

Achieving the single phase crystallinity of these alloys as shown in Figure 3.5 is 

one of the primary criteria for enhanced solar-to-current conversion efficiency, however, it 

is often hard in practice, especially for a compound like CZTSSe comprising multi-
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catinos-anions. The single-phase formation with least defects ensures maximum 

crystallinity in the samples, which will be discussed in the next chapter. 

 

3.6 Conclusion 

In this chapter, we have successfully predicted the crystal structures of different 

composition through mineral database search. The existing structures in the database 

were chosen for generating the unit cell of the desired stoichiometry through several 

manipulations. Those unit cells were later exposed to DFT/DFT+U/vdW-DFT optimization 

and the lowest energy structure was considered as the most probable crystal structure. 

Two of our predicted structures (AgBiW2O8 and CuBiW2O8) were experimentally verified. 

Although our method was primarily developed and successful in predicting crystal 

structures in the form of ABW2O8, can be extended to other stoichiometry as well; one 

real example of that is the crystal structure prediction of Sn2O3. 
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Chapter 4  

Thermodynamic Phase Stability and Optimal Growth Conditions 

4.1 Binary Compound: SnOx 

4.1.1. Introduction  

 SnO decomposes into SnO2 and Sn above a certain temperature (> 

300
0
C 

111,122
) either directly or through intermediate phases. This phase transition, 

although has been known for a century, is not well understood yet. Moreover, various 

chemical formulae for these intermediate SnOx (1< x < 2) phases have been proposed 

without reaching a conclusion. Some studies
108,123

  proposed Sn3O4 as the stoichiometry 

of the intermediate SnOx phase, while Sn2O3 chemical formula was proposed by 

others.
111,124

 Though Sn5O6 chemical formula has also been mentioned as another 

probable intermediate SnOx phase,
125

 not much information is available of it. Several 

studies verified Sn3O4
122,126–129

 and Sn2O3
130

 as the correct intermediate SnOx phase. At 

this point, a valid question arises: why is a general consensus absent on measured 

stoichiometry of intermediate SnOx phases? The answer of this question calls for a 

methodical investigation of SnO → SnO2 phase transition. However, although many 

studies have reported the SnO decomposition followed by the formation of various SnOx 

phases while annealing at oxygen environment, the SnO to SnOx phase transformation 

process is still not well explained. Further, to the best of our knowledge, no theoretical 

study has been done thus far in this regard. These motivated us to pursue the present 

work which primarily intends to investigate the chemical mechanisms of SnO to SnOx 

phase transformation with respect to different oxygen growth conditions by means of ab 

initio calculation.  
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4.1.2. Computational Details 

In addition to DFT, we have employed van der Waals (vdW) correction as 

implemented in VASP code The reason to incorporate empirical vdW correction in our 

calculations to compensate well-known failure
93–95

 of DFT or hybrid-DFT or Hartree-Fock 

methods in taking account of non-bonded dispersion interaction between the layers in 

layered structures.
96–99

 SnO is well known layered structure; Sn3O4 and Sn2O3, which are 

integral parts of the present investigation, have been reported as Sn (II, IV)-oxides and 

hence possess layered structural framework as well. Therefore, these three tin-oxides 

warrant vdW correction for all DFT and post-DFT calculations as well. However, to the 

best of our knowledge, Sn3O4 and Sn2O3 were not treated with any sort of empirical vdW 

correction thus far. Therefore, SnO is our reference material for optimal parameterization 

of vdW corrections. Among many existing flavors of vdW correction, a method introduced 

by Grimme
100

 and implemented in VASP as DFT-D2 has been a popular choice for a 

wide class of systems due to its satisfactory results in conjunction with computational 

efficiency.
101–105

 DFT-D2 indeed shows an improvement, but limited, over DFT results of 

SnO. A slight modification
131

 of damping function in Grimme method reproduces 

experimental lattice constants quite well; however, the underestimation of the band gap 

without vdW correction was prevailed. This issue was resolved
132

 by incorporation of a 

hybrid flavor namely, PBE0 with modified-DFT-D2. Since modification
131

 of damping 

function is not available in VASP, we employ original DFT-D2 with a different hybrid flavor 

(HSE06
133

), intending to reproduce experimental results for SnO as precise as possible in 

the present calculation. For this purpose, we have used three different amount of exact 

exchanges (α =25%, 35%, and 40%) with the incorporation of plane-waves basis sets of 

a kinetic energy cut-off of 800 eV. The ion positions and volumes were always relaxed 

without any symmetry constraint to allow the internal geometry and the shape of the 
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lattice to be changed freely until the force on each of the ion was 0.001 eV/Å or less This 

criteria is consistent with the previous vdW ab initio calculations
131,132

 for SnO. A 

comparison of three different α-induced DFT-D2-HSE06 calculations of SnO is shown in 

Table 4.1. This shows that, not only does α = 40% reproduce experimental lattice 

constants quite well, improves the fundamental indirect band gap of SnO as well. 

Although it overestimates the direct band gap, we keep α = 40% for the rest of DFT-D2-

HSE06 calculations because of its better correction in c/a ratio and fundamental gap. 

 

Table 4.1 A comparison of structural and band gap attributes of SnO between calculated 

(with vdW correction) and experimental results. 
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9 
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1.27

1 

0.29 2.83 

40% 3.80

9 

4.84

2 

1.27
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0.36 3.06 

 

For DFT-D2-HSE06 calculations, the used k-point samplings were 3x4x2, 3x3x5, 

3x3x5, and 5x5x4 for Sn2O3, Sn3O4, SnO2, and SnO, respectively. The crystal structure of 
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Sn2O3 has been determined in the previous chapter while that of Sn3O4 was taken from 

Reference.
109

 

 

4.1.3. Phase Stability and Optimal Growth Conditions 

It has been reported  that Sn (II)- to Sn (IV) transition can occur either as (i) 

SnO→SnO2 through single oxidation state or as (ii) SnO →intermediate phase →SnO2 

through two oxidation states depending on the film deposition temperature,
141

 initial 

content of the oxygen,
142

 and annealing temperature.
141,142

 In the case of multi-steps 

phase transition, an intermediate phase exists between 400-550
0
C,

122,130,142
 co-exists 

with SnO2 between 500-600
0
C,

122,130,141–143
 and transforms into SnO2 eventually either at 

a temperature above 600
0
C with post-annealing at oxygen rich condition

142
 or at further 

heating (T = 700
0
C ) in air.

122
 In the present work, we intend to realize the formation of 

different SnOx (1 < x ≤ 2) phases and their transition from one phase to another with 

respect to the free energies of Sn and O. In Figure 4.1, lines representing Sn-O phases 

have been drawn with respect to their chemical potentials (Gibbs free energies) given in 

equations (4.1-4.4); these equations represent the necessary conditions of corresponding 

Sn-O phases to be formed at thermodynamic equilibrium. 

SnO: ∆µSn + ∆µO = ∆Hf,SnO         =  -2.358  eV, 4.1  

Sn3O4 : 3∆µSn + 4∆µO = ∆Hf,Sn3O4    = -9.736  eV, 4.2  

Sn2O3: 2∆µSn + 3∆µO = ∆Hf,Sn2O3    =  -7.317  eV, 4.3  

SnO2: ∆µSn + 2∆µO = ∆Hf,SnO2       = -4.865  eV 4.4  

 

∆Hf,SnOx  in the above equations are the formation enthalpies of corresponding 

SnOx phases calculated with respect to bulk Sn and molecular O2 phases.
12

 In Figure 4.1, 

points in the area under (towards the axes) each line can correspond to non-equilibrium 

growth conditions for that SnOx phase. Under such conditions, the formation of that 
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phase is possible if kinetics allow it to be formed. In contrast, the area above (outwards 

from the axes) of each line corresponds to growth conditions not suitable enough for that 

SnOx phases to be formed. Since equations (4.1-4.4) are valid only at thermodynamic 

equilibrium, SnO to SnO2 phase transition thermodynamically would possible only and if 

only a smooth transition between those respective lines is possible. Since this is not the 

case in Figure 4.1a and 4.1b, imposing non-equilibrium conditions such as heating would 

require to proceed SnO to SnO2 phase transition; T > 300
0
C is required for the 

decomposition of SnO, in fact. Since all DFT calculations are done at T = 0 K, any sort of 

non-equilibrium description of this phase transition will be beyond the scope of the 

present discussion. Therefore, our discussion starts at a point from which onward the 

SnO to SnO2 phase transition can be realized at thermodynamic equilibrium condition. In 

doing so, we assume that the decomposition of SnO was accomplished by means of a 

non-equilibrium process, and the decomposed phases thereafter were brought down into 

thermal equilibrium. With this assumption it is possible to realize the formation and 

transformation of different post SnO-decomposed phases and hence, would be enough 

to elucidate the SnO to SnO2 phase transition. Moreover, since SnO to SnO2 

transformation depends on initial content of oxygen and annealing at oxygen atmosphere 

as stated above, the difference in growth conditions at different points in Figure 4.1 can 

primarily be thought of controlling oxygen growth (tuning oxygen pressure) condition in 

practice.  

Our following phase transition discussion can be divided into two parts (see 

Figure 4.1a): growth zone 1 or GZ1 (-2.44 eV ≤ ∆µO ≤ -2.4 eV), and growth zone 2 or 

GZ2 (-2.4 eV < ∆µO ≤ -0 eV).  In GZ1, at thermal equilibrium, SnO2 – line intersects with 

Sn2O3- and Sn3O4- lines. In contrast, no such intersection between the lines is observed 

in GZ2. This tells that equilibrium consideration of SnO→SnO2 phase transitions are 
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realized only in GZ1 i.e., at relatively oxygen poorer and Sn-rich (∆µSn ≈ 0) conditions. 

Hence, our phase transition discussion is primarily restricted to this region only. For the 

sake of better visibility, GZ1 is presented separately in Figure 4.1b where points A, C, 

and F correspond to the required oxygen growth conditions to form SnO2, Sn3O4 and 

Sn2O3, respectively at Sn-rich condition; points B (∆µSn = -0.006 eV and ∆µO = -2.43 eV) 

and E (∆µSn = -0.039 eV and ∆µO = -2.413 eV) represent growth conditions at which two 

intermediate SnOx phases co-exist with SnO2; points D, G, and R are merely arbitrarily 

chosen, just as a matter of convenience.  

Let’s consider any point along AB line as a starting point of the phase transition 

at which a thermally equilibrium phase of SnO2 singly exists. Since AB can be reached 

directly from SnO-line (although involves non-equilibrium process), points along that can 

be thought of necessary growth conditions for happening direct SnO→SnO2 transition. No 

other point in Figure 4.1 allows to that happen. This implies that oxygen-poor growth 

condition must require for direct transition to proceed. A slight change of oxygen-growth 

condition (towards richer) would transform point A into point B at which SnO2 would co-

exist with Sn3O4. If oxygen annealing continues along BE growth conditions, SnO2 + 

Sn3O4 will transforms into SnO2 before coming to point E. This completes the indirect 

phase transition at oxygen poor growth condition. Since point A and point B are 

energetically so close, the latter rather than the former could be the starting point of 

indirect transition. In such case, indirect transition proceeds as SnO 
ℎ𝑒𝑎𝑡
→   SnO2 + Sn3O4 

 
𝑎𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔 𝑎𝑡 𝑂2 𝑎𝑡𝑚𝑜𝑠ℎ𝑝ℎ𝑟𝑒
→                       SnO2; however, that would require precise tuning of the growth 

conditions. Otherwise, SnO2 being ended up at E would co-exist with Sn2O3. This indeed 

could be often outcomes in experiments as points B and E are energetically not 

significantly different, and experimental precision therefore might fail to capture the 

variation between those points. Further, since Sn2O3 is comprised of SnO and SnO2 
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structures locally, the co-existed phase at E would be nothing but SnO2 + Sn2O3 → SnO2 

+ SnO + SnO2 →2SnO2 + SnO. Therefore, during the indirect phase transition at oxygen 

poor growth condition, SnO2 has higher probability to contain a certain portion of SnO. In 

contrast, further annealing in O-rich conditions along ER at the same annealing 

temperature would leave SnO2 to be existed alone. These explain the experimental 

facts,
143

 why SnO2 contains a certain amount of SnO, or forms as a purely polycrystalline 

phase during indirect transition proceeded at two different oxygen annealing growth 

conditions, although annealing temperature is same. Further, point E could be growth 

conditions which lead to the formation of amorphous Sn-O (SnO+SnO2) phase as found 

experimentally after post-annealing in O2 atmosphere at 500
0
C.

142
  

Besides transforming into SnO2, transition to intermediate phases (SnO → Sn3O4 

/ Sn2O3) is also possible. While SnO → Sn3O4 can be achieved through both direct and 

indirect pathways, SnO → Sn2O3 invokes multiple-steps, thereby transforming only 

indirectly. The reason is, a direct hoping from SnO- to Sn3O4 - line, although involves 

non-equilibrium process, is possible; however, SnO → Sn2O3 requires to overcome both 

SnO and Sn3O4 lines as shown in Figure 4.1a and 4.1b. In the case of direct transition, 

points along BD onwards correspond to growth conditions those make SnO → Sn3O4 to 

happen. In indirect SnO → Sn3O4 transition, if B is the starting point of thermal 

equilibrium process, viable pathways are either BD or BC. However, annealing at further 

and further oxygen-rich along BD would be preferable for more crystalline and stable 

single-phase Sn3O4. This indirect phase transition can be seen as SnO 
ℎ𝑒𝑎𝑡
→   SnO2 + 

Sn3O4  
𝑎𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔 𝑎𝑡 𝑂2 𝑎𝑡𝑚𝑜𝑠ℎ𝑝ℎ𝑟𝑒
→                       Sn3O4. During SnO → Sn2O3 phase transition, the first 

intermediate phase would be either SnO2 (AB) or SnO2 + Sn3O4 (B) or Sn3O4 (BC). 

Among those, point B would be most desirable as it requires only one more step to reach 

at point E where SnO2 starts to transform into Sn2O3; the complete transformation  
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(a) 

 

(b) 

 
(c) 

 
Figure 4.1 The formation of different SnOx phases with respect to Sn and O growth 

conditions. Figure b is the magnified version of GZ1in Figure a. It is clear that all the 

phase transformations are occurring in the relatively O-poor and Sn-rich growth 

conditions. Figure c is also the magnified version of GZ1 while no vdW correction was 

incorporated. The broken line represents direct transition from SnO-to-SnOx or vice 

versa. 
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requires further tuning of growth conditions either along EF or EG.  Like Sn3O4, annealing 

at oxygen richer condition i.e., EG would provide more controlling on Sn2O3 structural and 

hence opto-electronic attributes. This indirect phase transition can be seen as SnO 
ℎ𝑒𝑎𝑡
→   

SnO2 + Sn3O4  
𝑎𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔 𝑎𝑡 𝑂2 𝑎𝑡𝑚𝑜𝑠ℎ𝑝ℎ𝑟𝑒
→                       SnO2 + Sn2O3  

𝑎𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔 𝑎𝑡 𝑂2 𝑎𝑡𝑚𝑜𝑠ℎ𝑝ℎ𝑟𝑒
→                       Sn2O3. 

Compared to the thermodynamic formation of both intermediate phases, it is obvious that 

formation of Sn2O3 is more sophisticated than that of Sn3O4 since the latter (i) can be 

formed directly, (ii) invokes lesser intermediate steps during indirect transition, and (ii) 

forms at first followed by the former. For these reasons, the synthesis of Sn3O4 is 

probably more frequent than that of Sn2O3. 

A similar plot of GZ1 is presented in Figure 4.1c which does not incorporate vdW 

correction empirically. The calculated (DFT) ∆Hf,SnOx in Equation 4.1-4.4 would be -2.762 

eV, -10.691 eV, -7.952 eV, and -5.179 eV for SnO, Sn3O4, Sn2O3, and SnO2, 

respectively. In this figure, both SnO and SnO2 lines intersect with each other including 

lines of intermediate phases. This implies that the transformation of SnO-to-SnOx, even 

SnO2→SnO, can be happened without involving any non-equilibrium process. However, 

this is not the case in reality. For example, SnO2 → SnO decomposition requires T 

>1500
0
C.

144
 Therefore, empirical vdW correction of SnO is required to reproduce the 

correct mechanism of SnO-to-SnOx phase transition. 

It is worth to note that Sn2O3 and Sn3O4 lines in Figure 4.1 never intersect with 

each other i.e. in principle these two phases never co-exist at thermodynamic growth 

conditions. However, the distance between the two lines (difference in growth conditions) 

is very small, minimum at O-poor conditions. Hence, due to the narrow window of growth 

conditions, Sn2O3 and Sn3O4 phases can be transformed into each other within the 

experimental limitation; in addition, any of those intermediate phases can co-exist with 

SnO2 depending on initial oxygen conditions, points B (SnO2 + Sn3O4 ) or E (SnO2 + 
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Sn2O3). As a result, it would be extremely hard to distinguish between Sn2O3 and Sn3O4 

as intermediate SnOx phases experimentally; different stoichiometry of intermediates 

SnOx phases in different experiments indeed corroborate this conclusion. Further, 

although Figure 4.1 depicts possibility of direct SnO → SnO2 phase transition in GZ1, 

could be extremely difficult to achieve that in practice at thermodynamic equilibrium. The 

ranges of required growth conditions (AB) to allow SnO → SnO2 directly might not be 

significantly large enough to overcome the experimental limit for precision control. Hence, 

there will be potential probability of SnO to SnO2 phase transition to be accompanied by 

other intermediate SnOx phases. Any chemical formula (Sn2O3 or Sn3O4) of the 

intermediate phases could be possible outcome during the measurement depending on 

the initial thermal equilibrium growth conditions and annealing condition (oxygen 

rich/poor), considering it as a fact rather than a matter of measurement inconsistency. 

 

4.1.4. Conclusion 

In conclusion, oxygen growth condition determines the pathway of SnO-to-SnOx 

phase transition, whether in one step (through Sn(II) → Sn(IV)/Sn (II, IV) oxidation state) 

or multi-steps (through Sn(II) → Sn(II,IV) → Sn(IV) oxidation states). It is important to 

note, all the phase transitions occur only at sufficient O-poor growth conditions, -2.44 eV 

< ∆μo < -2.40 eV. Since this range of oxygen chemical potential is very small, a slight 

change of growth conditions would transforms intermediate SnOx phases one form to 

another. This explains why different stoichiometry of intermediate tin-oxides (Sn3O4 or 

Sn2O3) in different measurement was achieved. Further, it was shown that vdW 

correction of SnO needs to be incorporated to demonstrate the experimental feats. 

 



 

65 

4.2. Ternary Compounds 

 
4.2.1 CuBi2O4  

4.2.1.1 Introduction 

 As a visible light active p-type semiconductor, CuBi2O4 is of potential 

interest as a component in water splitting tandem photocatalysts for the generation of 

hydrogen fuel. It has an optical band gap of 1.8 eV.
145

 In 2007, Arai et al, identified 

CuBi2O4 during a combinatorial screening as a potential proton reduction 

photocathode.
146,147

 Unlike the Delafossites, CuBi2O4 contains stacks of square planar 

Cu(II)O4 groups linked to distorted trigonal Bi(III)O6 polyhedra.
148

 Although CuBi2O4 has 

been reported
147,149

 as a p-type semiconductor based on photocurrent measurements, 

the true origin of that is not known yet. Further, despite the fact that p-CuBi2O4 shows the 

potential for photoelectrochemical applications, has the limitations as a proton reducing 

photocathode.
150

 Besides the origin of p-type activity, the photophysical properties of p-

CuBi2O4 and its limitations as a proton reduction photocatalys can be understood with 

help of chemical potential analysis and defect calculations. 

 

4.2.1.2 Computational Details 

All calculations of CuBi2O4 were done using DFT+U; the effective value of U was 

chosen as 6 eV(Ueff =U–J=7–1=6 eV, J=Stoner exchange parameter) to be consistent 

with the previous work of a Cu-Bi-O derived compuound.
12

 A 9 x 9 x 13 Monkhorst–

Pack
77

 𝑘-point sampling was used for ion relaxation. For the defect calculations,
17

 we 

constructed a supercell containing 152 atoms, the used k-mesh for that was 5×3×5.  

4.2.1.3 Single-Phase stability, Defects, and Effective Growth Conditions 

Figure 4.2(right) represents the chemical potential landscape of CuBi2O4, 

which demonstrates a very narrow growth region (ABC-yellow region) of its single-
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phase formation. The probability of forming various charged neutral different 

defects with respect to ABC growth region is shown on the left of Figure 4.2. 

Defects calculations show that all cationic and intrinsic defects have higher 

formation energies (∆H(δ) ≥ 1.36 eV, δ = a single intrinsic defect) at single-phase 

growth conditions. Cu vacancies (VCu) and Cu substitution on Bi (CuBi) sites are 

the most probable defects at oxygen-rich single phase growth conditions  

 
Figure 4.2 The left figure represents the probability of forming different intrinsic defects in 

CuBi2O4 with respect to its single-phase growth region (see yellow bounded region at 

right figure); the yellow region in the left figure was achieved using the chemical potenial 

landscapre analysis (see ref.
17

). In the right figure, ∆μα (α = Cu, Bi, and O) axes 

correspond to growth conditions, from rich (∆μα = 0 eV) to poor (∆μα = formation 

enthalpy), of respective species. The values of A, B, and C in the figure are  (∆μcu = -0.33 

eV, ∆μBi = -0.96 eV, ∆μO = -1.42 eV), (∆μcu = -1.74 eV, ∆μBi = -3.10 eV, ∆μO = 0 eV), and 

(∆μcu = -1.60 eV, ∆μBi = -3.17 eV, ∆μO = 0 eV), respectively. 

(formation energies ~ 1.5 eV), but only the VCu reproduce the experimentally 

observed optical band gap of 1.75 eV (the band structure of CuBi2O4 with Cu 
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substitution defects is shown in Figure 1 in Appendix A). These Cu vacancies also 

lead to empty states in the CuBi2O4 valence band, explaining the observed p-type 

activity of the material. According to the p-DOS diagram (see Figure 2 Appendix 

A), the valence and conduction band edges of CuBi2O4 arise primarily from the 

combination of O 2p and Cu 3d orbitals, respectively, with additional contributions 

from the Cu 3d and Bi 6s orbitals just below the Fermi level. Trapping of 

photoelectrons in the Cu 3d band is the cause for the observed reductive 

photocorrosion of the material. The photocorrosion rate may further get higher if 

the presence CuBi can not be minimized. Because, this defect introduces defect 

states near conduction band which may act as electron trapping centers as well in 

addition to Cu 3d states near the conduction band edge.  Therefore, for optimal 

performance of CuBi2O4, it is needed to employ a set of growth conditions which 

would maximize p-type activity with lesser intermediated defect levels introduced 

by CuBi. Such an effective growth conditions could be towards B from A in Figure 4.2.  

4.2.1.4 Conclusion 

In conclusion, since VCu is not spontaneous (see Figure 4.2(left)) with respect to 

single-phase growth zone, the p-type activity in CuBi2O4 should not very significant. To 

achieve the maximum the p-type activity, the chosen growth conditions should intensify 

the formation of VCu. In addition, it has to ensure that such a growth conditions further 

limit the formation of detrimental defects. According to our chemical potential landscape 

analysis in conjunction with defect calculation, the preferable growth conditions would be 

∆μcu ≤ -1.74 eV, ∆μBi ≥ -3.10 eV and ∆μO ≈ 0 eV. These findings should facilitate the 

synthesis of p-CuBi2O4 with an improved photophysical and better proton reduction 

properties. 
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4.2.2 α-SnWO4  

4.2.2.1 Introduction 

α-SnWO4 (1.64 eV)
151

 is also an promising n-type photocatalyst in which valence 

band is formed by the hybridization of the Sn 5s and O 2p orbitals and the conduction 

band is mainly composed of W 5d orbitals. A materials of such orbital hybridization often 

induces the formation of large-polaron carriers which in turn result relatively high charge 

carrier mobilities in those orbital comprising materials.
152

 However, the photocatalytic 

performance of this material is not very optimistic by far; one of the reasons is the 

presence of Sn
4+ 

defect in the synthesized sample. Therefore, a due attention should be 

paid in synthesizing α-SnWO4 so that the concentration of Sn
4+ 

can be minimized in the 

given growth conditions. A prediction of suitable growth conditions can guide the 

experimentalist in this regard, and it was attempted in the following discussion in terms of 

chemical potential landscape analysis with the defect calculations  

4.2.1.2 Computational Details 

For α-SnWO4, only DFT was employed. A 11 x 5 x 11 Monkhorst–Pack
77

 𝑘-point 

sampling was used for ion relaxation. For the defect calculations, we constructed a 

supercell that contains 96 atoms and the used k-mesh for all defects-induced calculations 

was 3×3×5. 

 

4.2.1.3 Single-Phase stability, Defects, and Effective Growth Conditions 

Figure 4.3(right) represents the chemical potential landscape of α – SnWO4, 

in which the yellow region (ABC) represents its single-phase formation growth 

conditions. From the figure, it is seen that it has higher single-phase stability than that of. 

CuBi2O4. Despite the fact, ∆Hf,α− SnWO4  ≤ ∆μO (eV) ≤ 0 (∆Hf,α− SnWO4= formation enthalpy 

of α – SnWO4), a reduced oxygen growth conditions (∆Hf,α− SnWO4 ≤ ∆μO (eV) ≤ 0) were 
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set in order to get better perspective of the single-phase zone. Moreover, ABC is the only 

growth region in which α – SnWO4 forms as a single-phase. Therefore, -2 ≤ ∆μO (eV) ≤ 0 

growth conditions are redundant to the present discussion. Because of reduced oxygen 

growth conditions, the cationic axes are also limited to -3.51 ≤ ∆μSn,W (eV) ≤ 0. The 

probability of forming various intrinsic defects in α – SnWO4 with respect to its single-

phase growth zone is depicted in Figure 4.3. In left figure , the defects have positive  

 

Figure 4.3 The defects formation energies and chemical potential landscape analysis of 

α-SnWO4. The left figure represents the probability of forming different intrinsic defects in 

α-SnWO4 with respect to its single-phase growth region (see yellow bounded region on 

the right figure). In the right figure, ∆μα (α = Sn, W, and O) axes correspond to growth 

conditions of respective species. 

 

formation energies and the most probable defect is O vacancy (VO); all other defects 

including cationic vacancies (Vcation) and antisites (AB = A replaces B) have formation 

energies > 2 eV. The presence of VO in the sample removes the degeneracy of 

lowermost conduction bands of the pristine α-SnWO4 (see Figure 3 in Appendix A), 
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splitting those into two separated bands- unoccupied and occupied. The occupied band 

behaves as donor level, giving rise to the observed n-type activity in α-SnWO4. Despite 

the fact that cationic vacancies are least probable in single-phase growth conditions, the 

presence of SnW in α – SnWO4 has been reported,
151

 and that defect was attributed to the 

origin of Sn
4+ 

in the sample. In Figure 4.3, SnW becomes favorable while pairing with VO. 

To avoid/minimize the formation of that defect as a single/composite formation, one has 

to select relatively poor and rich growth conditions of Sn and W, respectively in the 

single-phase growth zone. Such a growth conditions would be along AB and most 

preferably, on the periphery of point A in Figure 4.3.  

 

4.2.2.4 Conclusion 

In conclusion, the promises of α-SnWO4 can be extended if it can be grown with 

less detrimental defects such as SnW. A suitable growth condition in this regard would be 

∆μW >∆μSn and ∆μO << 0 (for example, point A in Figure 4.3). This would ensure the 

presence of least SnW in the synthesized α-SnWO4 samples and hence the better 

exhibition of photocatalytic activity. 

 

4.3. Quaternary Compound: Cu2ZnSnS4 (CZTS) 

4.3.1. Introduction 

Kesterite-Cu2ZnSnS4 (CZTS) satisfies most of the major criteria for an ideal 

photovoltaic (PV) material,
153,154

 however, its solar to electricity conversion efficiency is 

not very high; to date, the maximum conversion efficiency of CZTS based solar cell has 

been reported to be 10.1%,
155,156

 ( and 12.6% for CZTSSe
157

) which is far from the 

theoretical limit (~31%) for a single-junction PV cell.
158

 The lower conversion efficiency in 

CZTS is primarily due to frequent detrimental non-stoichiometric crystal structure during 
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synthesis process.
159–161

 As in any other multi-cations oxides or sulfides, the frequent 

non-stoichiometry of CZTS can be attributed to the presence of various defects (such as 

vacancies, interstitial, antisites etc.) and the co-existences of different secondary 

phases.
153,162,163

 These defects and secondary phases influence the generation, 

separation, and recombination of electron-hole pairs and overall, the solar-to-current 

conversion efficiency.
153,164

 

In the last ten years, incremental improvements in conversion efficiency of CZTS 

through different growth techniques have been reported.
155,156,161,165

 Nevertheless, 

satisfactory solar-to-current conversion efficiency as well as synthesis of stoichiometric 

CZTS has not been reported yet. Further improvement of CZTS as light absorber 

materials requires: (i) to determine proper growth condition under which the synthesis of 

CZTS, stoichiometric or non-stoichiometric, with higher light conversion efficiency is 

possible and (ii) to address the stability issues of CZTS under such growth condition. 

Theoretical investigations such as electronic structure calculation of defects or defect 

clusters, and chemical potential landscape analysis can help to address these 

challenges. For example, it has been reported that Zn-rich and Cu-poor conditions are 

the most effective growth conditions to synthesize CZTS with higher solar conversion 

efficiency.
165–172

 Recent theoretical calculation
162

 validates these experimental findings by 

performing an extensive intrinsic defect and defect clusters analysis of CZTS. However, 

to determine an effective growth condition to avoid unwanted secondary phases in CZTS, 

a comprehensive chemical potential landscape analysis is needed. A detailed 

thermodynamic investigation of chemical potential landscape in conjunction with defect 

calculations can provide information regarding the coexistence of secondary phases and 

intrinsic defects formations, as well as the underlying correlation between them. These 

pieces of information are necessary to guide the synthesis of CZTS as a better light 
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absorbing material. A theoretical investigation not only can predict the materials’ 

formation and stability, but also provide information on suitable pathways and growth 

conditions.  

In the present work, mainly, two issues of CZTS have been addressed. First, the 

non-stoichiometry (Cu2±x Zn1±y Sn1±z S4±ε) due to intrinsic lattice defects such as cationic 

and anionic vacancies (Vcation, Vanion, and Vcation+Vanion), cationic antisites (AB, BA, and AB + 

BA ; where, AB → cation A replaces cation B ), cationic antisite - vacancy pairs (AB +Vanion, 

BA +Vanion, AB +VA, BA +VB  and AB + BA +Vanion). Second, the influence of intrinsic defects 

on the formation of single-phase CZTS at various growth conditions. We have found 

through chemical potential (Gibbs free energy) landscape analysis that CZTS, at 

thermodynamic equilibrium, with an intrinsic defect always coexists with at least one 

sulfide phase; implying that the single-phase formation is unlikely under such conditions.  

 

4.3.2. Computational Details 

Acknowledging the fact that the correction to DFT calculations for systems with 

localized 𝑑 and 𝑓 electrons.
58–60

 is needed, we have employed Ueff = 6 eV, (Ueff = U-J=7-

1= 6 eV, J = Stoner exchange parameter) both Cu 3d and Zn 3d orbitals. This value of 

Ueff we have chosen here to be consistent with our previous work.
12

 Despite the fact that 

Cu in CZTS has filled 3d shell, we have used U to this element in this study, and the 

reasons are given below. 

It is expected that, like any other Cu 3d
10

 compounds, CZTS should have 

negligible Cu 3d contributions in the conduction band, revealing its filled shell character in 

the composition. DFT-GGA, as in figure 4.4, reproduces such Cu 3d contributions near 

the conduction band minimum quite well; those contributions, however, get even smaller 

with the treatment of U and HSE06-hybrid
133

 ( with 25% exact exchange) functional, 
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depicting 3d
10

 natures more accurately in CZTS. Similar Cu 3d contributions around the 

conduction band edge (see inset in Figure 4.4) in three different methods demonstrate  

 

Figure 4.4 Partial density of states of Cu 3d in CZTS with (green broken line; K-mesh: 

15x15x9) and without U (red solid line; K-mesh:15x15x9), and HSE06-hybrid (black line; 

K-mesh: 5x5x3). Due high computational demand, hybrid-DFT calculation was performed 

with less number of K-points, hence some features of DOS at the valence band are 

under-estimated; however, the small contribution of Cu 3d empty band at the conduction 

band minimum is still visible. The extra correlation (exchange) added through U (HSE06-

hybrid) lowers the contribution of Cu 3d in the bottom part of the conduction band that 

manifests the filled shell nature of Cu 3d band better than DFT-only calculations. Inset 

shows the magnified version of Cu 3d contributions at the bottom of the conduction band 

in three different methods. 

 
that those contributions are not merely computational artifacts, rather attribute to the 

limitations of parameterization of XC energy in three different methods. The different 

positions of the 3d peak at the conduction band are due to the different values of band 

gaps predicted by these three methods. Being post-DFT methods, both DFT-HSE06 and 

DFT+U improved band gaps by an amount 0.989 eV and 0.498 eV over DFT counterpart, 

respectively, whereas DFT-GGA gap was found to be 0.089eV. Although HSE06- hybrid 
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exhibits better improvement in CZTS band gap, fails to produce accurate description of 

the valence and conduction contributions to the band-edge corrections, demonstrating 

defect levels at wrong position in the corrected band gap.
173

 In contrast, DFT+U, despite 

the underestimation of band gap, produces more accurate description of band-edge 

shifts, as does scGW, however, would require a significant less computational cost. Apart 

from our calculation as shown in Figure 4.4, with the addition of U comprised compound 

named γ-CuI has been reported in reference.
174

Moreover, it is canonical parameter, the 

improvement of both band gap and defect formation energy in another Cu 3d
10

 to treat all 

the Cu 3d orbitals, both in CZTS and all Cu based secondary phases, on equal footing. 

For some of the secondary phases discussed in this paper DFT+U is necessary. For 

instance, Cu 3d has unfilled nature in Cu2S, and DFT not only underestimates the band 

gap but also determines wrong solid state description of that material.
175

 DFT+U, 

however, improves band gap by 0.689 eV and produces correct semiconductor solution 

of that secondary phase as well. For these reasons, we have used U to Cu 3d in Cu2S 

and kept all Cu 3d orbitals in different compounds under the same treatment. Like in 

Cu2S, DFT+U was also used to correct the band gap error in ZnS
176

 and ZnO,
177,178

 which 

motived us to employ the similar U contribution to Zn 3d. In the present work, the DFT+U 

formation energies of secondary phases (and CZTS) are consistent to HSE06-hybrid 

calculation,
179

and show even better agreement with the experimental counterparts.
180

 A 

2×2×1 supercell (64 atoms) was employed for the defect calculations with a k-point 

sampling of 5×5×5. 

 

4.3.3 Single-phase stability of CZTS 

To determine the single-phase stability of CZTS, we have considered all 

probable secondary sulfide phases formed by Cu, Zn, and Sn cations, which can co-exist 
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with it at any growth environment. The probable secondary phases are: three possible 

binary compounds of Sn-S (SnS, SnS2, and Sn2S3), two possible binary compounds of 

Cu-S (CuS and Cu2S), one possible binary compound of Zn-S (ZnS), and one ternary 

compound of Cu-Sn-S (Cu2SnS3).  

In equilibrium growth condition of CZTS, to avoid the occurrences of these 

secondary phases according to Eq. (2.87) following conditions have to be satisfied: 

Cu2S: 2∆μCu + ∆μS < ∆Hf,Cu2S  = -0.81 eV, 4.5  

CuS : ∆μCu + ∆μS < ∆Hf,CuS  = -0.51 eV, 4.6  

ZnS: ∆μZn + ∆μS < ∆Hf,ZnS  = -1.90 eV, 4.7  

SnS: ∆μSn + ∆μS < ∆Hf,SnS  = -1.05 eV, 4.8  

SnS2: ∆μSn + 2∆μS < ∆Hf,SnS2  = -1.33 eV, 4.9  

Sn2S3: 2∆μSn + 3∆μS < ∆Hf,Sn2S3  = -2.42 eV, 4.10  

Cu2SnS3: 2∆μCu + ∆μSn + 3∆μS < ∆Hf,Cu2SnS3  = -2.58 eV. 4.11  

 

In equilibrium, the necessary thermodynamics condition (see Eq. (2.86)) to form a stable 

stoichiometric Cu2ZnSnS4 (CZTS) is 

 

CZTS: 2∆μCu + ∆μSn + ∆μZn +4∆μS  = ∆Hf,CZTS = -4.59 eV 4.12  

 

The upper and lower bounds of chemical potentials satisfying equation (2.89) for 

each atomic species according to Eq. (2.84) are 

 -2.294 eV ≤ ∆μCu ≤ 0 eV, (4.13a)  

 -4.59 eV ≤ ∆μZn ≤ 0 eV, (4.13b)  

 -4.59 eV≤ ∆μSn ≤ 0 eV, (4.13c)  

 -1.15 eV ≤ ∆μS ≤ 0. (4.13d)  

 

Figure 4.5 shows the chemical potential landscapes of stoichiometric CZTS 

which are bounded by Eq. (2.89). These stability triangles for CZTS were drawn following 
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the approach explained in reference.
160

 Each triangle represents a plane cut at different 

values for ∆μCu; the abscissa, height, and diagonal of each triangle are bounded by 

∆Hf,CZTS/nα (α = Zn, Sn, and S), respectively. Each point in these triangles satisfies 

equation (4.12) implying the formation of CZTS is possible anywhere inside and on these 

triangles.  

Each line, Li (i = 1, 2, .., 7), on the chemical potential triangles shown in figures 

4.5, 4.7, and 4.8 represents a boundary of a secondary phase that may coexist during the 

synthesis process of CZTS depending on the growth condition. Therefore, any point on 

each line, which divides the triangles into two regions, equals to corresponding ∆Hf,s (see 

equations (2.87) and (4.5-4.11)). The co-existence of a secondary phase is evident in any 

region which does not satisfy any of equations (4.5-4.11). For example, if we cross the 

triangle parallel to the diagonal (constant ∆μS) to the left from any point on the red 

(Cu2SnS3) line or L7 (which holds equation (4.11) everywhere on it), ∆μSn will have higher 

value with respect to that point; similar statement is true for ∆μS if we move horizontally 

(fixed ∆μSn) towards left with respect to any point belonging to that line (L7). As a result, 

any point that belongs to the region on the left of the red line does not satisfy equation 

(4.11) and hence, co-existence of Cu2SnS3 with CZTS is possible over that region. On the 

contrary, the co-existence of ZnS is possible on the region that corresponds to the right of 

green (ZnS) line or L3 since equation (4.7) is not satisfied in that region (see Figure 4.5). 

All the Sn-S secondary phases are evident on the regions above lines (L4 - L6) 

representing those phases since equations 4.8-4.10 are not held over those regions. 

Conversely, the regions below the lines (L1- L2) representing Cu-S secondary phases do 

not satisfy equations 4.5-4.6 and therefore, these phases are always likely to occur there. 

As a result, although the formation of CZTS is possible everywhere inside the triangle, 

not a single bounded region at Cu-rich (∆μCu= 0) condition was found (see Figure 4.5a),  
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Figure 4.5 The triangles represent chemical potential landscapes for Cu2ZnSnS4 drawn at 

different Cu chemical potentials, ∆μCu. Point P (figure (a)) and point Q (figure (d)), 

correspond to starting and end point growth conditions, respectively for stoichiometric 

Cu2ZnSnS4. Point S (figure (f)) corresponds to minimum ∆μCu at which VCu becomes 

spontaneous. 
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except point P corresponds to a single-phase CZTS formation. Any little change of ∆μα (α 

= Zn, Sn, and S) at ∆μCu= 0 with respect to point P will cause CZTS to co-exist with 

secondary phases; no other suitable growth conditions (∆μα, α = Zn, Sn, and S) at Cu-

rich environment facilitate the single-phase formation of CZTS. 

 As ∆μCu becomes poorer (∆μCu < 0), point P emerges as a region (see yellow 

regions ABCD in Figure 4.5b-d). Any point belonging to area ABCD represents the 

necessary growth condition at which the formation of a single-phase CZTS, 

stoichiometric or non-stoichiometric (Cu2±x Zn1±y Sn1±z S4±ε), is possible. In the following 

subsection probability of defects formation will be examined in this single-phase region. 

The areas of ABCD regions in Figures 4.5b-d are not fixed, rather change with poorer 

∆μCu, and eventually vanish, converging into point Q in Figure 4.5e with ∆μCu = -0.68 eV. 

Any lower value beyond ∆μCu = -0.68 eV corresponds to the growth condition at which the 

formation of single-phase CZTS is no longer possible irrespective of ∆μα (α = Zn, Sn, and 

S) values. Therefore, only 0 eV < ∆μCu < -0.68 eV corresponds to suitable Cu-poor range 

for the synthesis of single-phase CZTS. In addition to that ∆μCu limit, further Cu poor 

(∆μCu = -1.33 eV) growth condition was considered to draw Figure 4.5f, intending for 

defect formation discussion in the following section. This Cu poorer condition 

corresponds to threshold of spontaneous formation of Cu vacancy (VCu) which is 

considered to be a major beneficial defect
160,162

 to CZTS solar performance,   

It is noted that the lines representing Cu2S or CuS phases are no longer seen in 

Figure 4.5d at ∆μCu = -0.52 eV. The disappearance of these lines infers the fact that the 

formation of those phases is no longer possible at ∆μCu ≤ -0.52 eV, the proof of which can 

be made using equations 4.5-4.11 and 4.12. For instance, the available chemical 

potential of S (-0.89 eV ≤ ∆μS ≤ 0 eV) according to equation 4.12 at ∆μCu = -0.52 eV can 

not provide CuS with necessary growth conditions to attain the value, ∆Hf,CuS = -0.51 eV. 
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As a result, the formation of CuS (L2) is impossible even at ∆μS =0 (S-rich) since there will 

not be enough Cu to form this secondary phase. The similar explanation is also 

applicable for Cu2S-line (L1) line disappearance at ∆μCu = -0.41 eV (not shown in the 

figure). 

 

4.3.4. Defects formation 

Defects formation energies in CZTS and their ionization energies pursuing DFT 

and post-DFT (HSE06-hybrid) methods have been discussed at length in 

references.
160,162,179

  However, for the completeness and consistency of the present 

discussions, here, we briefly present our defects formation calculations, which are 

consistent to results reported in those aforementioned references in the single-phase 

limit. Figure 4.6 represents the formation energies of various intrinsic defects. Our  

 

Figure 4.6 Various defect formation energies are shown. Point P, point Q, and point S 

correspond to three sets of ∆μα values in Figures 4.5a, 4.5d, and 4.5f, respectively. Point 

R is not shown in figure 4.5, chosen at ∆μCu = -0.78 eV. See table 4.2 for the values of 

∆μα at P, Q, R, and S. 
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calculation is mainly focused on three types of defects: (i) dominant cationic defects 

those are mentioned in the recent literature at different growth conditions, (ii) the anionic 

defect (VS), which were found to be most detrimental to CZTS solar performance,
160,162

 

and (iii) those defects in (i) with the presence of VS defect. In general, all the cationic 

defects with the presence of anionic defects were found to have higher formation 

energies as compared to the formation energies while forming independently. The 

defects in (iii) which have very high formation energies (> 4 eV) were not presented in 

Figure 4.6. 

 

Table 4.2 The values of chemical potentials for cations, ∆μα (α = Cu, Zn, Sn, and S), at 

points P, Q, R, and S with respect to figure 4.5. 

Figure Chemical Potential Points 

 ∆μCu 
eV 

∆μα 
 

P 
eV 

Q 
eV 

R 
eV 

S 

4.5a 0.0 ∆μZn -1.12 -   

∆μSn -0.24 -   

∆μS -0.81 -   

4.5e -0.68 ∆μZn - -1.89   

∆μSn - -1.33   

∆μS - 0.0   

Not 

Shown 

-0.78 ∆μZn - - -1.67  

∆μSn - - -1.33  

∆μS - - 0.0  

4.5f -1.325 ∆μZn - -  -0.61 

∆μSn - -  -1.33 

∆μS - -  0.0 

 

Four different points P, Q, R, and S in Figure 4.6 are chosen at different ∆μCu 

values: point P corresponds to Cu-rich and S-poor conditions while other points 

correspond to Cu-poor and S-rich condition; points R and S are chosen at ∆μS = 0 to see 

whether S-rich can avoid the detrimental VS defect while non-stoichiometry of CZTS is 
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evident beyond point Q. Moreover, point R corresponds to the least value of ∆μZn for 

which VCu dominates over CuZn antisite defects, both were found to be beneficial for p-

type activity,
160,162

  at Cu-poor (∆μCu = -0.78 eV) condition. On the other hand, point S, 

which corresponds to spontaneous formation of VCu, mimics the attributes of point K in 

Figure 4.8b at ∆μCu = -1.33 eV. The values of ∆μα (α = Cu, Zn, Sn, and S) at points P, Q, 

R, and S shown in Figures 4.5a, 4.5e, and 4.5f, respectively, are presented in Table 4.2. 

In Figure 4.6, ZnCu + CuZn antisite (both Cu and Zn replace each other) defect 

has the lowest formation energy between points P and Q, which is constant irrespective 

of Cu-value. Since ZnCu + CuZn antisite pair preserves the number of atoms of both Zn 

and Cu species, stoichiometry of CZTS due to a defect remains unaffected by this 

antisite pair. However, the antisite CuZn, which can cause non-stoichiometry in CZTS, has 

very low formation energy (ΔH(CuZn) = 0.37 eV ) and is almost equally probable as 

composite antisite of ZnCu + CuZn at ∆μCu = 0.0 eV (at point P). Moreover, compared to 

other defects, ΔH(CuZn) becomes slightly lower between points P and Q (see Figure 4.6) 

which implies that the presence of CuZn intrinsic defect is likely to occur for the growth 

conditions available in ABCD regions. This entails that ABCD regions correspond to only 

non-stoichiometric single-phase CZTS (Cu2±x Zn1±y Sn1±z S4±ε). However, ΔH(CuZn) starts 

increasing significantly after point Q and becomes higher than ΔH(VCu) at R.  On the 

contrary, ΔH(VCu), having a higher value at P, becomes lower as ∆μCu  decreases and 

reaches a negative value (-0.001 eV) at S. Another defect ZnCu , which has higher 

formation energy between P and Q, becomes more and more probable after Q.  Similar 

trend was observed for ZnCu+VCu which attained the lowest formation energy at S in 

Figure 4.6. Among all detrimental defects, only VS has lowest formation energy (ΔH(VS) = 

0.84 eV) at Cu-rich condition and S-poorer condition; ΔH (VS) increases as Cu-becomes 

poorer at S-rich condition. Hence, it is necessary to provide S-rich condition to avoid VS 
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defects in CZTS. From Figure 4.6 it can be concluded that intrinsic defects are almost 

inherent in CZTS at any value of ∆μCu. Hence, it is needed to investigate the chemical 

potential landscape of CZTS allowing intrinsic defects to be formed at different ∆μCu, 

which will be presented in the following subsection.  

 

4.3.5. Role of intrinsic defects on single-phase stability of CZTS  

It is clear from Figure 4.6 that even if the synthesis of single-phase CZTS is 

possible, stoichiometry is unlikely. Moreover, the reported
166–172

 synthesis of CZTS are 

indeed non-stoichiometric. Hence, it has been imperative to analyze the stability and 

growth condition of non-stoichiometric CZTS as well for high efficiency solar light 

absorption and conversion. Two attributes can lead to non-stoichiometry of CZTS: (i) 

defect or defect clusters and (ii) co-existence of secondary phases. So, the important 

question here, what is the probability of achieving single-phase CZTS where non-

stoichiometry is only due to defects? This question will be answered in the following 

discussions. To facilitate the discussions, when only defect causing non-stoichiometry 

takes place we term it here as single-phase non-stoichiometric CZTS. On the other hand, 

the term multi-phases non-stoichiometric CZTS will be used when both defects and 

secondary phases co-exists.  

It is shown in Figure 4.6 that two dominant beneficial defects, Cu-Zn antisite 

(CuZn) and Cu vacancy (VCu) at Cu-rich (point P in Figure 4.6) and Cu-poor (point S in 

Figure 4.6) conditions, respectively, have very low formation energies. On the contrary, 

all detrimental defects have relatively higher formation energies at any values of ∆μCu. 

Hence, for brevity only VCu and CuZn causing non-stoichiometric CZTS will be considered 

for the present discussion.  
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In the following discussion, ∆HCZTS in equations 4.15 and 4.17 were calculated 

following the equation (4) and have the form: 

CZTS(δ): ∆HCZTS = ECZTS,supercell(δ) − kα∑ Eα
bulk

α . (4.14)  

 

where Esupercell (δ) corresponds to the energy of a CZTS-supercell that contains a 

single defect δ (= CuZn or VCu). kα is the number of atoms of species α present in the 

supercell and Eα
bulk bears the same definition as in equation (2.85). Following this, the 

necessary thermodynamic conditions to form these two types of non-stoichiometric CZTS 

are: 

(i) CuZn : ∆μCu + ∆μSn + ∆μZn +4∆μS  = ∆HCZTS = -4.40 eV. (4.15)  

where, 

 -2.20 eV ≤ ∆μCu ≤ 0 eV, (4.16a)  

 -4.40 eV ≤ ∆μZn ≤ 0 eV, (4.16b)  

 -4.40 eV≤ ∆μSn ≤ 0 eV, (4.16c)  

 -1.10 eV ≤ ∆μS ≤ 0. (4.16d)  

 

and 

(ii) VCu : 2∆μCu + ∆μSn + ∆μZn +4∆μS  = ∆HCZTS = -4.42 eV. (4.17)  

 

where, 

 -2.21 eV ≤ ∆μCu ≤ 0 eV, (4.18a)  

 -4.42 eV ≤ ∆μZn ≤ 0 eV, (4.18b)  

 -4.42 eV≤ ∆μSn ≤ 0 eV, (4.18c)  

 -1.11 eV ≤ ∆μS ≤ 0. (4.18d)  

 

The chemical landscapes of non-stoichiometric CZTS caused by CuZn and VCu at 

different ∆μCu are presented in Figures 4.7 and 4.8, respectively. In these figures, Cu2S-

line (L1) and ZnS-line (L3) changed their positions with respect to Figure 4.5 leaving no  
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Figure 4.7Chemical potential landscapes of non-stoichiometric Cu2ZnSnS4 that contain 

one CuZn defect per supercell (64 atoms). Grey bounded regions (GBR1 and GBR2) in 

the figures represent the occurrence of one secondary phase (ZnS or Cu2SnS3) along 

with Cu2ZnSnS4. 
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bounded region where equations 4.5-4.11 are simultaneously satisfied. This implies that 

a single defect prohibits the formation of single-phase CZTS under these conditions and 

triggers the formation of multi-phases non-stoichiometric CZTS; at least one secondary 

phase co-exists with it. This finding was observed at irrespective of DFT or DFT+U level, 

which implies that the formation of multi-phases non-stoichiometric CZTS is independent 

of empirical treatment of Coulomb correlations through U. Since intrinsic defects are very 

likely to form at any value of ∆μCu irrespective of U value (see reference
80

 for ΔH (δ) at 

DFT level ), this justifies why secondary phases are frequently found experimentally to be 

co-existed with CZTS. Therefore, it can be concluded that the synthesis of single-phase 

stoichiometric CZTS would be unlikely at thermodynamic equilibrium condition.  

To the best of our knowledge, we find only one experimental evidence of single-

phase CZTS grown in traveling heater method (THM).
181

 This work, although, confirms 

the non-existence of SnSx and Sn phases with CZTS, information regarding the co/non-

existence of two other phases ZnS and Cu2SnS3 were absent. ZnS and Cu2SnS3, 

because of same zincblende framework as CZTS,
182

 are hard to be detected through 

only XRD analysis;
162

 alternative techniques such as energy dispersive X-ray 

spectroscopy (EDS),
183

 Raman scattering analysis,
184,185 

 and X-ray absorption near edge 

structure analysis
187

 are needed to be employed. ZnS sometimes coexists even in the 

CZTS samples with the stoichiometric Zn/Sn ratio.
187

 This implies that our 

aforementioned conclusion is more pertinent than the claim in reference.
181

  

 

4.3.6. High efficient CZTS  

4.3.6.1 Determination of an effective growth condition 

While the non-stoichiometry of a desired material is evident, it is then necessary 

to explore effective growth condition at which (i) the co-existence of secondary phases is 
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minimal, (ii) the benign/beneficial defects are dominant, and (iii) the contributions from 

detrimental defects will be absent or negligible. An optimal growth condition should 

satisfy these conditions. 

The grey bounded regions in Figures 4.7 and 4.8 represent the formation of 

multi-phases non-stoichiometric CZTS where only one secondary phase, either ZnS or 

Cu2SnS3, co-exists; ZnS-CZTS and Cu2SnS3-CZTS belong to GBR1 (Grey Bounded 

Region 1) and GBR2 (Grey Bounded Region 2), respectively. All other regions represent 

the co-existence of more than one secondary phase and most importantly, Sn-S and Cu-

S phases. These phases have different crystal structures (either orthorhombic or 

monoclinic or trigonal) than that of CZTS causing a lattice mismatch at the interface. It 

was reported that that incoherent heterointerfaces, failing to passivate grain boundaries, 

empower the electron-hole recombination process and consequently reduce the solar-to-

current conversion efficiency.
164

 Therefore, no region except GBR (1 or 2) does 

correspond to high efficiency growth conditions for CZTS. Hence, our non-stoichiometric 

analysis will be limited to these grey bounded regions only.  

Although each grey region corresponds to coexistence of one secondary phase 

with CZTS, may not contribute to solar – to – current conversion equally. The grey region 

with lower probability of forming detrimental (e.g. VS, SnCu, SnZn etc.) defects and higher 

probability of beneficial (VCu and CuZn) or benign defects (e.g. CuZn+ZnCu, ZnCu+ VCu etc.) 

corresponds to high efficiency growth condition for CZTS. To minimize the formation of 

VS, SnCu and SnZn defects it is necessary to have sufficiently S-rich, Zn-rich, and Sn-poor 

conditions. It was shown in Figure 4.6 that beneficial CuZn defects are probable when 

sufficient Cu-rich and Zn-poor growth conditions are available. Conversely, Cu-poor 

condition is necessary to promote more VCu defects which are primarily responsible for 

high efficiency of CZTS.
162

 In the following, all the grey regions will be examined one by 
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one to see which one satisfies most these high efficiency growth conditions 

simultaneously.  

In Figure 4.7a at Cu-rich condition, only one grey region (GBR1) is formed where 

ZnS coexists with CZTS (ZnS-CZTS). Although GBR1 has larger area i.e., better 

flexibility of tuning ∆μα (α = Zn, Sn, and S) values, does not correspond to high efficiency 

growth conditions due to two reasons. First, point O, which represents the lower bound 

value of ∆μS for GBR1, corresponds to extreme S-poor condition. On other hand, point L, 

representing the upper bound value of ∆μS (= -0.81 eV) for GBR1, still corresponds to 

same S-poor condition as at point P in Figure 4.5 a. ΔH (VS) was found to have lower 

value (0.84 eV) in Figure 4.6 under such S-poor (∆μS = -0.81 eV) condition, suggesting 

higher probability of forming detrimental VS defects. These defects may create a 

significant number of deep donor levels,
162

 and these donor levels may act as electron-

hole recombination centers which are detrimental to any semiconductor’s performance. 

Second, the most beneficial defect VCu towards enhanced p-type activity of CZTS is very 

unlikely for GBR1 in Figure 4.7a since it has higher formation energy (ΔH (VCu) = 1.32 

eV) at Cu-rich condition; further decrement of ∆μCu is necessary to have higher 

contributions from VCu defects. At ∆μCu = -0.16 eV both GBR1 and GBR2 appear on the 

plane but area of GBR2 is much smaller than that of GBR1 (see Figure 4.7b). The 

smaller area of GBR2 implies that the synthesis of Cu2SnS3-CZTS would be very 

challenging; any small deviation of ∆μα (α = Zn, Sn, and S) would bring in more 

secondary phases. On the contrary, the synthesis of ZnS-CZTS would be easier if the 

growth condition in GBR1 is pursued.  

Nonetheless, Cu2SnS3-CZTS mixed phase corresponds to a better efficiency 

growth condition over ZnS-CZTS at ∆μCu ≥ -0.16 eV. This can be attributed to the fact that 

any point belonging to GBR2 has lower ∆μZn value than that of to GBR1, and beneficial 
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CuZn defect is more probable at ∆μZn poor values if ∆μCu remains same. Moreover, the 

contributions from VCu defects at ∆μCu = -0.16 eV, if formed, would be equal for each 

region since both lies on the same ∆μCu plane. In addition, contributions from detrimental 

VS defects in GBR2 would be equal or less than that of in GBR1 since the upper bound 

value of ∆μS  (see point L in Figure 4.7) is same for both regions while lower bound value 

of ∆μS  is significantly higher in GBR2 than that of in GBR1. In contrast, relatively much 

lower ∆μSn values are possible in GBR1 compared to GBR2, and it is beneficial since Sn-

poorer condition is desirable to avoid the formation of detrimental SnZn and SnCu defects. 

Hence, GBR1 will have less probability of forming those detrimental defects in 

comparison with GBR2 if Sn-poorer conditions are chosen; however, presence of those 

detrimental defects in GBR2 are very unlikely as well since they have very high formation 

energy even at Sn-rich condition (point P in Figure 4.6 which has higher ∆μSn values than 

that of in GBR2). Similar comparison between GBR1 and GBR2, can also be made for 

further Cu-poor condition such as in Figures 4.7c and 4.7d. It is to be noted that the area 

of GBR2 increases as ∆μCu decreases, becomes maximum while Cu2S-line (L1) merges 

with CuS-line (L2) at ∆μCu  = -0.30 eV, starts decreasing at ∆μCu  < -0.30 eV, and 

eventually, vanishes at ∆μCu  = -0.58 eV. However, GBR2 would not correspond to growth 

condition of high efficiency solar absorber as points belonging to this area do not facilitate 

the conditions for VCu being dominant over CuZn, which is necessary to extract maximum 

hole concentration. Hence, Cu2SnS3-CZTS will not exhibit maximum efficiency due to the 

lack of enough hole concentration. On other hand, GBR1 (ZnS-CZTS) still exists and 

occupies maximum area of triangle even at ∆μCu  = -0.58 eV. Therefore, only GBR1 will 

be investigated at further Cu-poor condition at which CZTS contains VCu defect. 

Figure 4.8 represents chemical potential landscape of VCu – CZTS where ∆μCu = 

−0.78 eV and ∆μCu = −1.33 eV were chosen in such a way that any point in GBR1  
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Figure 4.8 Chemical potential landscapes of non-stoichiometric Cu2ZnSnS4 that contain a 

Vcu defect per supercell (64 atoms). Grey bounded regions (GBR1) in the figures 

represent the occurrence of one secondary phase (ZnS) along with Cu2ZnSnS4. 

 

promotes formation of VCu. Since GBR1 at ∆μCu  = −0.78 eV shows VCu dominance, the 

hole concentration as well as p-type activity of CZTS will be enhanced significantly. 

Moreover, the larger area of GBR1 at ∆μCu  = −0.78 eV provides wider flexibility of tuning 

up the growth condition. For examples, if Zn-poor values of GBR1 are chosen, the 

contributions from CuZn defects alongside VCu defects are very likely since they will still 

have low formation energies (point R in Figure 4.6). On the other hand, if ∆μZn → 0 values 

are chosen, ∆μSn << 0 are obtainable which are beneficial to avoid the formation of 

detrimental SnZn and SnCu defects. Moreover, S-rich condition for GBR1 is always 

achievable at ∆μCu  ≤ -0.58 eV. Hence, far better efficiency is achievable from GBR1 at 



 

90 

∆μCu  = −0.78 eV if Zn- and Sn-poorer conditions are chosen; the maximum contributions 

from VCu defect, however, is yet to come until ∆μCu  = −1.33 eV at which ∆H (VCu) 

becomes negative (see point S in Figure 4.6).  

In addition to spontaneous formation of VCu, significant Sn-poor values will still be 

present in GBR1 at ∆μCu  = -1.33 eV. Moreover, like as before, maximum S-rich condition 

is also achievable in this case. As a result, the presence of detrimental VS defects would 

not be more than those as in previous GBR1s (Figures 4.7 and 4.8a). It is to be noted 

that in GBR1 at ∆μCu  = -1.33 eV, ∆μZn → 0.0 eV as ∆μS → 0.0 eV and ∆μSn << 0.0 eV. 

These growth conditions are required to maintain Cu/(Zn+Sn) <1 and Zn/Sn >1 ratios 

which reduce detrimental [2CuZn + SnZn] defects and  are conducive to have higher hole 

concentration contributed by VCu defects.
162

 In addition, both ∆H(ZnCu) and ∆H(ZnCu+VCu) 

were found to have negative values at ∆μCu  = -1.33 eV (see Figure 4.6), even much lower 

than ∆H (VCu). ZnCu defect creates shallow donor levels which do not act as 

recombination centers and hence, at least, are not detrimental for solar energy 

conversion efficiency.
162

 In contrast, the high population of ZnCu+VCu defects result in 

band bending that favors the separation of electron-hole pairs, which in turn boosts solar-

to-current conversion.
160,162,163

 However, the contribution from the beneficial CuZn defects 

in GBR1 at ∆μCu  = −1.33 eV would be very minimal since ∆H (CuZn) is very high  at point 

S (see Figure 4.6). It can be attributed to the fact that Zn becomes richer (∆μZn  ≥ - 0.44 

eV, see Figure 4.8b) in GBR1 at ∆μCu  = −1.33 eV compared to point R (∆μZn  = - 1.67 eV) 

in Figure 4.6, and ∆H (CuZn) increases as ∆μZn increases while ∆μCu remains same or 

becomes poorer. Despite the fact that the presence of CuZn defect would be less, it can 

be concluded that GBR1 at ∆μCu  = −1.33 eV is likely to be the preferable growth 

condition because it does guarantee not only the maximum p-type activity of CZTS 

through VCu defect but also promotes the formation of all benign defects and satisfies all 
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other criteria such Zn-rich, Sn-poor etc. growth conditions simultaneously to avoid 

detrimental defects. In other words, only ZnS-CZTS can exhibit maximum PV efficiency if 

suitable growth conditions are chosen during the synthesis. The lower recombination 

velocity at ZnS-CZTS interface as reported in a recent experimental study
164

 strengthens 

our conclusion as well.  

The area of GBR1 becomes smaller at ∆μCu < -1.33 eV which implies that the 

synthesis of CZTS would be very challenging at further Cu-poor values since GBR1 

tends to be a point at ∆μCu → -1.55 eV. At ∆μCu  ≤ -1.55 eV the formation of any grey 

bounded region is no longer possible. Therefore, -1.33 eV ≤ ∆μCu < -1.55 eV corresponds 

to the Cu-poor growth condition for CZTS as high efficiency solar absorber. The 

boundary values of other chemical potentials, ∆μα’s, at this Cu-range are tabulated in 

Table 4.3. It is important to note that at point S (equivalent to point K in Figure 4.8b) 

shown in Figure 4.6, ∆H (CuZn) and ∆H (VZn) were found to be very high while ∆H (ZnCu), 

∆H (VCu), and ∆H (ZnCu+VCu) achieves a negative value. These imply that the population 

of Zn and Cu atoms would be higher and lower, respectively, than that of in stoichiometric 

CZTS for the growth conditions of GBR1 at -1.33 eV ≤ ∆μCu  < -1.55 eV. Conversely, SnZn, 

SnCu, and VSn have very higher formation energies for the same point S as shown in 

Figure 4.6, which entails that the population of Sn atom would not be changed 

significantly with respect to its stoichiometric ratio for the points belonging to GBR1 on 

the same ∆μCu planes. Hence, these conclude that Cu/(Zn+Sn) <1 and Zn/Sn >1 ratios 

are evident for higher efficiency CZTS. This conclusion supports the experimental 

findings that the CZTS high solar conversion efficiency satisfy Cu/(Zn+Sn) ≈ 0.8 and 

Zn/Sn ≈ 1.2 ratios. At this end, it can be noted that DFT calculations were performed at T 

= 0 K. To include thermal effects on defect formation or concentration one might attempt 
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to incorporate vibrational energy contributions at finite temperatures with static (T = 0 K) 

results as outlined in reference.
188

  

Table 4.3 The values of ∆μα (α = Cu, Zn, Sn, and S) at different points shown in Figures 
4.7 and 4.8. 

Defects Figure Chemical 
Potential 

Points 

  ∆μCu 

eV 

∆μα 

 

O 

eV 

L 

eV 

K 

eV 

G 

eV 

CuZn 

 

 

 

4.7a 0.0 ∆μZn 0.0 0.0   

∆μSn 0.0 -1.17   

∆μS -1.1 -0.81   

4.7b -0.16 ∆μZn 0.0 0.0   

∆μSn -0.04 -2.13   

∆μS -1.01 -0.49   

4.7c -0.30 ∆μZn 0.0 0.0   

∆μSn -0.13 -2.94   

∆μS -0.92 -0.21   

4.7d -0.53 ∆μZn 0.0 0.0   

∆μSn -0.28 -3.35   

∆μS -0.76 0.0   

4.7e -0.58 ∆μZn 0.0 0.0   

∆μSn -0.32 -3.24   

∆μS -0.73 0.0   

VCu 4.8a -0.78 ∆μZn 0.0 0.0   

∆μSn -0.44 -2.86   

∆μS -0.60 0.0   

4.8b -1.33 ∆μZn 0.0 0.0 -0.44  

∆μSn -0.89 -1.77 -1.33  

∆μS -0.22 0.0 0.0  

4.8c -1.55 ∆μZn    0.0 

∆μSn    -1.33 

∆μS    0.0 

 

It is observed that ZnS-line (L3) and Cu2SnS3-line (L7) are absent on the ∆μCu = -

1.33 eV plane, and at ∆μCu = -1.7 eV (see Figure 4.8d) all the Sn-S lines (L4 – L6 ) 

disappear from the chemical potential landscape of CZTS. The disappearance of 

Cu2SnS3-line (L7) has similar physical aspect as explained for Cu-S-lines (L1 and L2) in 
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subsection 4.3.3 i.e., the formation of Cu2SnS3 is no longer possible for any values of 

∆μSn and ∆μS available on the ∆μCu ≤ −1.33 eV planes (see Figure 4.8b-d). However, 

disappearance of ZnS and Sn-S has extreme physical aspect which implies the co-

existence of ZnS and Sn-S phases are still obvious irrespective of the values available for 

∆μα (α = Zn, Sn, and S) on ∆μCu ≤ -1.7 eV planes given by equation (4.17). The 

explanation for the co-existence of ZnS and Sn-S phases at ∆μCu = -1.7 eV can also be 

explained from equations 4.5-4.11 and equation (4.17). At ∆μCu = −1.7 eV the 

corresponding ∆μα (α = Zn, Sn, and S) following equations (2.84) and (4.17) are 

 -1.02 eV ≤ ∆μZn ≤ 0 eV, (4.19a)  

 -1.02 eV≤ ∆μSn ≤ 0 eV, (4.19b)  

 -0.26 eV ≤ ∆μS ≤ 0. (4.19c)  

 

According to equation 4.7, the necessary values of ∆μS at Zn-rich (∆μZn= 0) and 

Zn-poor (∆μZn= −1.02 eV) conditions to avoid the co-existence of ZnS are −1.90 eV and 

−0.88 eV, respectively. However, equation 4.19c cannot provide such a poor condition of 

∆μS if equation (13) holds. As a result, the formation of ZnS is evident at ΔHf,CZTS ≤ ∆μCu ≤ 

−1.7 eV for any value of ∆μZn. Similar argument is also valid for the occurrence of Sn-S 

phases at ∆μCu ≤ −1.7 eV.  

 

4.3.6.2. Prediction of high efficiency pathway 

Among possible fragmentation pathways we have considered only three 

pathways (equations 4.20-4.22) through which ∆Hfrag.,CZTS < 0 can be achieved, 

manifesting the stable formation of the material itself.
12

The pathways which possess 

negative fragmentation energies for CZTS are 

 Cu2ZnSnS4 = Cu2SnS3+ZnS            ; ∆Hfrag.,CZTS   = -0.11 eV, (4.20)  

 Cu2ZnSnS4 = Cu2S+ZnS+SnS2      ;∆Hfrag.,CZTS   = -00.56 eV, (4.21)  
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 Cu2ZnSnS4 = 2CuS+ZnS+SnS     ;∆Hfrag.,CZTS   = -0.62 eV. (4.22)  

 

Since equations 4.20-4.22 possess negative fragmentation energies, synthesis of 

stable CZTS using either of these pathways is possible i.e., secondary phases present in 

those equations can be used as precursors to synthesize stable CZTS. However, the 

degree of stoichiometry, stability, and PV efficiency of CZTS might be varied depending 

on the pathway (or precursors) chosen to synthesize it. This aspect will be explored in 

this subsection.  

CZTS synthesized by the pathway given by equation 4.20 will have lowest 

stability as |∆Hfrag.,CZTS| has lowest value of among others. This lower stability issue is also 

seen from Figures 4.5, 4.7, and 4.8. A little change of ∆μZn will destabilize the region 

bounded by Cu2SnS3-line (L7) and ZnS-line (L3) on the chemical potential landscape of 

CZTS. Moreover, these two lines never bound a grey region in Figures 4.7 and 4.8, i.e., 

at least two secondary phases (Cu2SnS3 and ZnS) would co-exist simultaneously in 

CZTS. Hence, equation 4.20 will not correspond to high efficiency growth condition for 

CZTS. The other two pathways given by equation 4.21 and equation 4.22 possess much 

lower ∆Hfrag.,CZTS, implying better stability. This fact is commensurate with the areas of the 

regions bounded by Cu-S-lines (L1-L2),  ZnS-line (L3), and Sn-S-lines (L4-L5) at different 

∆μCu values (Figure 4.5). Since high efficiency region (see GBR1 in Figure 4.8b) can be 

achieved using both pathways given by equations 4.21 and 4.22, maximum efficiency of 

CZTS is extractable through these pathways if ∆μα (α = Cu, Zn, Sn, and S) are chosen 

appropriately (see Table 4.3 for high efficiency ∆μα). As GBR1 corresponds to co-

existence of ZnS with CZTS, the pathways those bound GBR1 can be written in the 

following way 

 Cu2S+2ZnS+SnS2 = Cu2ZnSnS4   + ZnS, (4.23)  
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 2CuS+2ZnS+SnS = Cu2ZnSnS4 + ZnS, (4.24)  

 

Although ZnS-CZTS interface exhibits least recombination velocity
164

 and their 

co-existence is favorable for preventing a shunt mechanism,
73

 they form higher 

conduction band offset (1.3 eV).
74

 Such higher band offset would form high energy barrier 

for the carriers, which will eventually reduce the photo-current potentially.
75

 As a result, 

PV efficiency from CZTS at a satisfactory level is unlikely to come unless its 

stoichiometric single-phase is achieved. To achieve the single-phase of CZTS one 

prescription could be the fixing the growth conditions of Cu and Sn such that corresponds 

to effective growth conditions e.g. GBR1 in Figure 4.8b i.e., no formation of Cu-S, Sn-S, 

and Cu-Sn-S phases are allowed. Then, one should let the Zn/S-growth conditions to be 

so rich so that ∆μZn, ∆μS >> 0 (where Zn and S atoms are more readily available than 

their standard solid phases e.g. gaseous phases of Zn and S), however, corresponds to 

non-equilibrium thermodynamic conditions. Under such conditions, Zn and S atoms will 

have higher kinetic energies, obstructing the stable formation of ZnS phase. On the 

contrary, higher energetics of Zn and S atoms are likely to be compensated by the atoms 

of other species pertaining to poor sources, allowing the stable formation of CZTS. 

However, at ∆μS >> 0, the formation of Cu-S, Sn-S, and Cu-Sn-S phases could be 

probable again. To avoid those phases, ∆μCu and ∆μSn should be tuned to poor values 

accordingly. The detail of non-thermodynamic approach is beyond the present scope and 

will be presented elsewhere. In contrast, at thermodynamic equilibrium, the co-existence 

of ZnS phase can be avoided employing suitable Zn-poor growth condition, however, that 

will prompt other phases to be co-existed with CZTS, namely CuS. This CZTS-CuS 

phase, although is unexpected for higher PV efficiency, with intrinsic defects poses to be 

an alternative promising potential candidate in near IR photodetectors.
76
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4.3.7. Conclusion 

It has been found by our theoretical analysis that synthesis of single-phase CZTS 

is not likely to occur under thermodynamic equilibrium condition. We have shown that, 

even though in principle single-phase “stoichiometric” CZTS is possible, the presence of 

a single non-stoichiometric causing defect (which may form spontaneously) can lead to 

mixed-phase CZTS. While non-stoichiometry is evident for CZTS, a suitable combination 

of chemical potentials, ∆μα (α = Cu, Zn, Sn, and S), is necessary to limit the occurrences 

of unwanted secondary phases to a minimum, prevent the formation of detrimental 

defects, and promote the benign defects to have higher efficiency CZTS for solar energy 

conversion. The values of chemical potentials of cations, ∆μCu, ∆μZn, and ∆μSn, can be 

chosen in such way so that both the maximum sulfurization and the maximum hole 

concentration through VCu defects can be reached. The suitable combination of ∆μα (α = 

Cu, Zn, Sn, and S) to synthesize the efficient CZTS are found to be −1.33 eV ≤ ∆μCu < 

−1.55 eV, −0.44 eV ≤ ∆μZn ≤ 0 eV, −1.77 eV < ∆μSn ≤ −0.89 eV, and −0.22 eV < ∆μS ≤ 0 

eV. These theoretical findings explain why Cu-poor and Zn-rich conditions in experiments 

are frequently found to be the effective growth conditions of high efficient CZTS. In 

addition to justifying these two experimentally found conditions, our newly determined 

ranges of chemical potentials also predict that, Sn-poor and S-rich growth conditions are 

required as well to synthesize higher efficient CZTS. Apart from that, it has been shown 

that synthesis of CZTS would be accompanied with at least one secondary phase, and in 

the above chemical potential ranges it is most likely to be ZnS. The two pathways: (i) 

2CuS+2ZnS+SnS = Cu2ZnSnS4 + ZnS and (ii) Cu2S+2ZnS+SnS2 = Cu2ZnSnS4 + ZnS, 

are found to be the most viable route for achieving CZTS with appropriate growth 

conditions. The above findings and methodology can be applied to further tune the 

growth conditions of CZTS or any other complex quaternary materials in general. 
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4.4. Pentarnary Compound: Cu2ZnSn(S1-xSex) (CZTSSe) 

4.4.1 Introduction 

The Cu2ZnSn(S1-xSex)4 (CZTSSe) alloy has also been emerged as a next 

generation commercialized photovoltaic cell because its power conversion (solar-to-

current) efficiency (PCE) has reached a benchmark 12.6%,
192

 higher than that of their 

parent compounds: CZTS (10.1%,
155,156

) and CZTSe (11.6%
193

). Further improvement of 

its PCE is necessary to be a perfect replacement of current costly commercialized solar 

cells, namely CIGS; this primarily requires the reduction of the large open-circuit voltage 

(Voc) deficit (~37%
155,192

) with respect to SQ limit
5
 by a considerable amount,

194
 which 

would improve
195

 device FF (fill factor) as well. In addition, further enhancement of short-

circuit current density (Jsc), although it reaches > 80%
192,196

 of SQ limit, would maximize 

PCE. However, the progression of Voc and Jsc in CZTSSe is opposite to each other in 

most of the samples as shown in Figure 4.9; for example, the maximum of Voc results 

minimum in Jsc. As a result, a CZTSSe sample exhibiting maximum Voc or Jsc does not 

have highest efficiency since the product Voc*Jsc in that case is even lower than that of 

sample wherein neither Voc nor Jsc is highest. This tells that further tuning of Voc and Jsc 

has to be done in such way that maximizes Voc*Jsc as well, as was done in 12.6% 

sample, to intensify the PCE of CZTSSe further. This warrants an effective optimization 

of those factors/parameters which govern Voc and Jsc in CZTSSe.  

Voc and Jsc primarily depend on several factors
162,190,197–202

 such as alloy 

composition, single-phase crystallinity, defects population, nature of back contact (Ohmic 

or non-Ohmic), interface with buffer layer. Among these factors, like any other materials, 

the first three are most fundamentals to CZTSSe’s intrinsic attributes and hence need to 

be optimized first before fixing the rest of the technical glitches. In CZTSSe, S-richer 

composition tends to increase band gap which in turn improves Voc; in fact, Voc is higher 



 

98 

in CZTSSe than that of in CZTSe.
192,193

 In contrast, higher content of S in CZTSSe

 

Figure 4.9 The measured Voc  and  Jsc  for different CZTSSe samples ( 9.1% -12.6%). 

This figure was produced using data of Voc  and  Jsc  available in Ref. 
116,192,196,203

 Jsc 

values have been multiplied by 100 for better visibility. It is obvious from the figure that 

the progression of Voc and Jsc in most of  CZTSSe samples is inverse to each other. 

 

reduces
199,204

 hole mobility and bulk conductivity, and introduces
205–207

 higher series 

resistance, which in principal lower Jsc. Therefore, it is obvious that neither higher (high 

Se-rich) nor lower (high S-rich) value of x would maximize Voc*Jsc or PCE in Cu2ZnSn(S1-

xSex)4. At this point, the burning question is what value of x would maximize Voc*Jsc in 

CZTSSe, thereby allowing it to exhibit PCE more than 12.6%. The answer of this 

question is not known precisely. In the present work, we determine an effective value of x 

with respect to single-phase stability and probability of forming defects. In this regard, we, 

at first, infer an effective range of x from recent theoretical and experimental evidences 

as discussed below.  
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The variations of Voc, µ (hole mobility), and σ (conductivity) with composition x (= 

Se/(S+Se)) in CZTSSe have been documented in different studies.
198,199

 Timmo
198

 et al. 

reported that Voc increases linearly as x decreases (increasing S concentration) until it 

falls off sharply at x < 0.15. The Voc (513.4 mV) for 12.6% efficient CZTSSe corresponds 

to x ≈ 0.48 value on Voc Vs. x plot in Ref.
198

 Like Voc, µ increases with decreasing x as 

well, however, drops off rapidly at x < 0.5. These imply that x ≤ 0.5 - ε (ε is any small 

number) be the range that may correspond to maximum Voc*Jsc in CZTSSe. On the 

contrary, it has been predicted based on n- and p-type doping flexibility
121

 that CZTSSe 

alloy with x > 0.5 (higher Se concentration) exhibits higher efficiency; 10.1 % efficient 

CZTSSe validates this prediction quite well
203

. In addition, CZTSSe with efficiencies > 

10.1 %, although x not known,
116,192,196,203

 possess band gaps in the ranges 1.13-1.17 eV 

which correspond to x = 0.5 + ε in the band gap (DFT-HSE) Vs. x plot in Ref..
121

Although 

the calculated gaps are typically underestimated, the aforementioned extrapolation of x 

with respect to those band gap values for CZTSSe should be fair enough. This is 

because theoretical band gaps of CZTSSe are in well agreement with their experimental 

counterparts for values at x= 0, 1 as well as x ≈ 0.6 (Eg = 1.15 eV (exp.
203

) and ≈1.17 

(cal.
121

)); furthermore, the change of Eg in CZTSSe is almost linear with x.
121,208,209

 At this 

point, taking two opposite scenarios of alloy composition into considerations, 0.5 - ε ≤ x ≤ 

0.5 + ε appears to be most suitable range to extract maximum efficiency from CZTSSe 

alloy. Unfortunately, no theoretical investigation effort has been made considering the 

closest values to x = 0.5 per unit cell of CZTSSe. For the purpose, we choose ε such a 

way that corresponds two closest possible compositions to x = 0.5 (4 S and 4 Se) per unit 

cell including, which are x = 0.5 – ε = 0.375 ( 5 S and 3 Se, S-rich) and x = 0.5 + ε = 

0.625 (3 S and 5 Se, Se-rich).  
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Apart from alloy composition, Voc and Jsc highly depend on band offset
190

 which is 

formed while a secondary phase co-exists with the primary phase. In the case of 12.6% 

CZTSSe, Zn(S, Se) co-exist with it, and the conduction band offset (CBO) can be of 1.3 

eV.
189

 Such a higher CBO and heterojuction reduce both Voc and Jsc, and eventually the 

PCE.
190

 In addition to band offset/heterojunction, the presence of interface/bulk defects 

controls carrier mobility, carrier lifetime, diffusion length, and so on, which in turn impact 

Voc and Jsc; beneficial defects improve those factors while detrimental ones do the other 

way. The large Voc deficit in CZTSSe in fact has been attributed to severe band tailing 

caused by intrinsic point defects.
201

 Therefore, further improvement of PCE requires to 

synthesis CZTSSe as a single-phase in conjunction with maximum beneficial and least 

detrimental defects, which in turn are contingent on growth conditions. The growth 

conditions
192

(Cu-poor and Zn-rich) which have been using for synthesizing high efficient 

CZTSSe promote co-existence of Zn(S, Se) phases and are based on the parent 

compounds. Despite having the same kesterite crystal structures as of parent 

compounds, the high efficient growth condition for CZTSSe could be different since 

mixing
121

 of S and Se in forming stable CZTSSe costs additional energy. This warrants a 

comprehensive investigation on growth conditions of CZTSSe. However, to the best of 

our knowledge, no effort has been made in this regard yet. This leads us to determine the 

high efficient growth conditions for CZTSSe in the present work.  

Determination of a high efficient growth condition at which a CZTSSe alloy would 

exhibit desired efficiency invokes chemical potential analysis in conjunction with defect 

calculations. The proceeding of the former requires solving the free energy equation of 

CZTSSe with that of each secondary phase. This leads to a mathematical impasse for 

CZTSSe because its free energy equation contains five variables including two anionic 

while a binary secondary phase has only two variables (a cationic and an anionic, S or 
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Se) in their free energy equations. A possible simple solution of that is to keep fixing at 

least two variables (growth conditions). However, determining a suitable choice of two 

constraints out of numerous degrees of freedom is a challenging task, which was not 

attempted for CZTSSe before. In the present work, we intend to provide pathways for 

proceeding chemical potential analysis of CZTSSe, determining its higher PCE growth 

conditions for three suitable alloy (x) compositions. 

 

4.4.2 Computational Details 

The results presented here are based on DFT+U calculations of three different 

alloy compositions, x = 0.375, 0.5, and 0.625. The choice of this over other post-DFT 

methods and in the case of Cu 3d
10

 compounds has been justified in Ref.
17

The used 

Monkhorst–Pack
77

 k-point sampling for ionic relaxation of CZTSSe was 13×13×7. A 

2×2×1 supercell (64 atoms) was used for the defect calculations with a k-point sampling 

of 5×5×5. 

 

4.4.3 Single-phase stability 

To determine the single-phase stability of CZTSSe it is necessary to invoke 

chemical potential or equilibrium growth conditions analysis. The common approach in 

this regard is to draw chemical potential landscapes upon solving free energy equations 

of secondary phases with that of the primary phase.
17,160

The growth conditions to form 

stable CZTSSe at thermodynamic equilibrium 

x=0.375: 2∆µCu + ∆µZn +∆µSn +1.5∆µSe +2.5∆µS  = -9.538  eV, (4.25a)  

x=0.5: 2∆µCu + ∆µZn +∆µSn +2.0∆µSe +2.0∆µS  = -11.210 eV, (4.25b)  

x=0.625: 2∆µCu + ∆µZn +∆µSn +2.5∆µSe +1.5∆µS  = -12.871  eV. (4.25c)  

 
To avoid the formation of secondary phases 

Cu2ZnSnS4: 2∆μCu + ∆μSn + ∆μZn +4∆μS  = ∆Hf,CZTS ≤ -4.587 eV, (4.26a)  
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Cu2ZnSnSe4: 2∆μCu + ∆μSn + ∆μZn +4∆μSe  = ∆Hf,CZTSe ≤ -3.935 eV, (4.26b)  

Cu2SnS3: 2∆μCu + ∆μSn + 3∆μS < ∆Hf,Cu2SnS3  = -2.58 eV, (4.26c)  

Cu2SnSe3: 2∆μCu + ∆μSn + 3∆μSe < ∆Hf,Cu2SnSe3  = -2.245 eV, (4.26d)  

Cu2S: 2∆μCu + ∆μS < ∆Hf,Cu2S  = -0.807 eV, (4.26e)  

Cu2Se: 2∆μCu + ∆μSe < ∆Hf,Cu2Se  = -0.558 eV, (4.26f)  

CuS: ∆μCu + ∆μS < ∆Hf,CuS  = -0.513 eV, (4.26g)  

CuSe: ∆μCu + ∆μSe < ∆Hf,CuSe  = -0.395 eV, (4.26h)  

ZnS: ∆μZn + ∆μS < ∆Hf,ZnS  = -1.895 eV, (4.26i)  

ZnSe: ∆μZn + ∆μS < ∆Hf,ZnSe  = -1.621 eV, (4.26j)  

SnS: ∆μSn + ∆μS < ∆Hf,SnS  = -1.048 eV, (4.26k)  

SnSe: ∆μSn + ∆μSe < ∆Hf,SnSe  = -1.007 eV, (4.26l)  

SnS2: ∆μSn + 2∆μS < ∆Hf,SnS2  = -1.328 eV, (4.26m)  

SnSe2: ∆μSn + 2∆μSe < ∆Hf,SnSe2  = -0.827 eV, (4.26n)  

Sn2S3: 2∆μSn + 3∆μS < ∆Hf,Sn2S3  = -2.416 eV. (4.26o)  

 

Drawing a chemical potential landscape of a compound can be done in two approaches: 

solving simultaneously the n-dimensional free energy equation of that primary phase 

either (i) with those of suitable n-1 secondary phases or (ii) with that of a secondary 

phase at a time. The approach (i) can be proceeded if and only if n-1 different secondary 

phases co-exist with the primary phase at a given growth condition. However, for a 

compound like CZTSSe, it is highly impossible that four different (must be different in 

atomic species as approach (i) requires) secondary phases would co-exist with it at a 

growth conditions e.g. Cu-/Sn-poor and Zn-rich (high efficient growth conditions) which 

favor the formation of Zn-S/Se phases only. As a result, although approach (i) provides 

mathematical convenience, is not well-suited to chemical potential analysis of a multi-

cations compound like CZTSSe. In contrast, approach (ii) considers the secondary 

phases are no longer coupled, thereby demonstrating the probability of co-existing each 

secondary phase independently with the primary phase at a given growth conditions. This 

approach, although ignores coupling between the secondary phases during the synthesis 

process, is good enough
17,160

 to reproduce experimental results. However, the latter 

approach experiences a mathematical impasse for CZTSSe while solving solving 
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Equations 4.25 and 4.26. Because the lowest order secondary phase in the present 

discussion is a binary phase; a free energy equation (see Equations (4.26e-o)) would 

span a two dimensional linear space (two variables: one cationic and one anionic, S or 

Se) whereas a CZTSSe has five variables, three cations and two anions (S and Se) (see 

Equations 4.25). Therefore, Equations 4.25 and Equations (4.26e-o) cannot be solved 

simultaneously unless two variables are allowed to be fixed. Since fixing two variables 

out of five can be done in many ways, an effective choice of that is needed to make the 

chemical potential analysis accessible without losing any meaningful details. For this, we 

choose two suitable constraints which are Cu-poor (∆µCu < 0) and S-rich (∆µS =0) in 

drawing the chemical potential landscapes of CZTSSe for three different alloy 

compositions shown in Figure 4.10. Constraining two variables further resolves the issue 

in projecting five dimensional single-phase stability of CZTSSe onto three dimensional 

chemical potential diagrams. The aforementioned two constraints were chosen based on 

following experimental facts. First of all, Cu-poor growth condition populates VCu (Cu-

vacancy) which in turn maximizes p-type activity in CZTS(e) based compounds.
162

 In fact, 

all high efficient CZTSSe (Cu/(Zn+Sn) ≈ 0.8-0.85)
168,194

were synthesized at this growth 

condition. Further, it is the preferable growth condition
197,210

 for avoiding detrimental 

defects such as CuZn + SnZn and CuSn, and eliminating unwanted Cu-S/Se secondary 

phases. The values at which VCu becomes spontaneous (∆H (VCu) < 0, ∆H (δ) = formation 

energy of a single defect δ) was chosen as poor value for the present work. On the other 

hand, the reason to choose ∆µS = 0 as another constraint is to avoid most detrimental 

anionic defect, VS (S-vacancy)
31

 as it introduces deeper donor level than that of VSe (Se-

vacancy); further, the formation of VS is more probable over VSe in their parent 

compounds. These Cu-poor and S-rich constraints define the plane of each right triangle 

in Figure 4.10 while two cationic growth conditions are allowed to vary along abscissa  
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Figure 4.10 Chemical potential landscapes of CZTSSe for three different alloys:  x = 

0.375, 0.5 (a), and 0.625(c). Cu (poor) and S (rich) growth conditions are fixed on each 

plane in the triangles. Each yellow bounded region on those Cu-poor/Se-rich planes 

corresponds to single-phase growth zone of respective CZTSSe; area of which is 

commensurate with the respective CZTSSe’s single-phase stability; the more Se in the 

composition, higher the stability. Figure (d)  was drawn considering a single defect (VCu) 

in CZTSSe (x = 0.375) supercell (64 atoms). Unlike CZTS, the single-phase stability of 

CZTSSe remains intact even with the presence of a single-defect; other alloys exhibit 

similar feats which, however, were omitted here to avoid redundancy of figures. 

 
and height of those triangles. Se growth condition is fixed along any line parallel to 

diagonal which represents its rich value, and becomes poorer and poorer towards the 

origin. composition or x increases in the samples. Since cationic stoichiometry and 
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ordering remain same in the crystal structures of CZTSSe and its parent compounds, the 

larger yellow regions in Figure 4.10 can be solely attributed to non-zero values of x in 

CZTSSe i.e., due to alloy of S 

The yellow regions in Figure 4.10 represent single-phase growth zones of 

CZTSSe. The areas of those regions are commensurate with their single-phase stabilities 

as well; larger the areas, higher the stabilities. Compared to those for stoichiometric 

CZTS(e), the areas of these regions are significantly larger, manifesting higher single-

phase the stabilities of CZTSSe than their parent structures.
17,162

 The areas of these 

regions get bigger and bigger as Se  

 

and Se; such larger single-phase growth zones are usually rare for multi-cations-anions 

compound. As a result, unlike CZTS,
17

 the single-phase stability is too robust to be lost 

even with a presence of a spontaneous single defect (see Figure 4.10d). This higher 

single-phase stability would ensure two desirable aspects of solar-to-current conversion 

process in CZTSSe: (i) no unwanted mid-gap states due to hetero-junction interface, 

thereby preventing recombination of carriers and (ii) no inherent band-offset like in CZTS 

i.e., no energy barrier for photo-generated electrons across the conduction band. The 

probability of forming various intrinsic defects in those single-phase regions is shown in 

Figure 4.10. 

Note that no CZTSe phase was shown in Figure 4.10 because the solutions of 

Equation (4.25) and Equation (4.26b) yields ∆µSe > 0 with respect to the aforementioned 

constraints taken for each x. CZTSe line satisfying these values lies outside the triangle 

i.e., belongs to non-equilibrium region and hence beyond the scope of present 

discussion.  
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4.4.4 Defect calculation 

Figure 4.11 represent the probability of forming the intrinsic defects with respect 

to single-phase growth condition (yellow regions) in Figure 4.10. Point A has the same 

growth conditions ((∆µZn, ∆µSn) = (-1.895, -1.328)) for all three compositions. At point A, 

most of the defects have ∆H (δ) > 0 except VCu and VSe. Although VCu is a desirable 

defect for enhanced p-type activity, the presence of VSe could introduce numerous deep 

donor levels which in turn could act as recombination centers. Further, VSe population 

would be the most dominant as it possesses lowest negative formation energy at this 

point. Therefore, formation of VSe needs to be avoided or minimized, which requires Se-

rich growth conditions. Points B and C correspond to Se-rich growth conditions as well as 

the same Sn-growth (∆µSn = -1.328 eV) and Zn-growth (∆µZn = -1.895 eV) conditions, 

respectively for all compositions. Despite having ∆H (VSe/S) > 1 eV due to 

 

Figure 4.11 Defects formation energies of various defects in CZTSSe for its different 

alloys. The probability of forming defects in the figure was determined with respect to 

single-phase growth zones in Figure 4.4.2(a-c). The defects which have formation 

energies higher than 3 eV were not shown. From the figure, it is obvious that defects are 

evident in the single-phase CZTSSe, no matter the growth condition is. 
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both anions-rich conditions at point B, cations-poor conditions let few cationic defects 

(SnZn, CuZn, and VZn) becoming spontaneous including detrimental defect CuZn + SnZn 

which has the lowest formation energy (∆H (CuZn + SnZn) < -7.17 eV) in all x. This 

detrimental defect becomes more and more probable with increasing Se since ∆µZn 

extends to poor conditions farther in Figure 4.10a and 4.10b with increasing x. In 

contrast, growth conditions at point C raises ∆H (CuZn + SnZn) to more than 6 eV, 

however, makes the formation of another harmful defect (CuSn) spontaneous. Therefore it 

is obvious that, at least one unwanted highly populated defect will be present inside the 

yellow regions (single-phase growth zone) in Figure 4.10 irrespective of compositions 

and growth conditions. Hence, growth conditions in Figure 4.10 or 4.11, although allow 

the single-phase to be formed, are not optimized enough for CZTSSe for exhibiting high 

efficiency.  Nevertheless, Figures 4.11 provide a qualitative idea in conjecturing a high 

efficient growth conditions for CZTSSe which are as follows. At points B and C, all 

anionic growth conditions are rich; however, cationic growth conditions are ∆µZn << ∆µSn < 

0 and ∆µSn << ∆µZn < 0, respectively. As a result, although ∆H (VSe/S) are highest at those 

points, at least one detrimental cationic defect (CuZn + SnZn or CuSn) is spontaneous. In 

contrast, neither CuZn + SnZn nor CuSn is spontaneous at point A because cationic growth 

conditions ∆µα (α = Cu, Zn, and Sn) are poor but comparable (at least one is not 

significantly lower than the other) to each other. This tells that, richer anion growth 

conditions and equally poor (or comparable each other) cations growth conditions would 

be required to minimize the probability of forming unwanted defects. However, a natural 

question arises at this point: is the single-phase of CZTSSe achievable under those 

growth conditions? The answer of this question requires redrawing Figure 4.10 keeping 

∆µα (α = Cu, Zn, and Sn) fixed which is, however, is not physically possible. Hence, a 
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different approach is required to answer the above question which will be pursued in the 

following. 

 

4.4.5 High efficient growth conditions and alloy composition 

Figure 4.12 represents a different approach of chemical potential diagram of 

CZTSSe keeping all the cationic growth conditions fixed. This reduces Equations (4.25) 

to two dimensional linear space and removes solving issues with binary phases. In this 

case, formation enthalpy equations of primary and secondary phases (Equations 4.25 

and 4.26) take the following forms.  

CZTSSe (x=0.375): ∆µSe ≥ -6.359 eV -1.667 ∆µS -ε/1.5, (4.27a)  

CZTSSe (x=0.5): ∆µSe ≥ -5.605 eV -∆µS - ε/2, (4.27b)  

CZTSSe (x=0.625): ∆µSe ≥ -5.148 eV -0.6∆µS - ε/2.5, (4.27c)  

Cu2ZnSnSe4: ∆µSe ≥ -0.984 eV - ε/4, (4.27d)  
Cu2SnSe3: ∆µSe ≥ -0.748 eV - 0.667 ∆µCu - 0.333 ∆µSn, (4.27e)  
ZnSe: ∆µSe  ≥ -1.621 - ∆µZn, (4.27f)  
SnSe2: ∆µSe  ≥  -0.414 eV - 0.5 ∆µSn, (4.27g)  
SnSe: ∆µSe  ≥  -1.007 eV - ∆µSn, (4.27h)  
Cu2ZnSnS4: ∆µS  ≥ -1.147 eV -∆/4, (4.27i)  
Cu2SnS3: ∆µS   ≥  -0.861 eV - 0.667 ∆µCu - 0.333 ∆µSn, (4.27j)  
ZnS: ∆µS    ≥ -1.895 - ∆µZn, (4.27k)  
SnS2: ∆µS   ≥  -0.664 eV - 0.5 ∆µSn, (4.27l)  
SnS: ∆µS   ≥  -1.048 eV - ∆µSn, (4.27m)  
Sn2S3: ∆µS   ≥  -0.805 eV - 0.667 ∆µSn. (4.27n)  
 

Where ε = 2∆µCu + ∆µZn +∆µSn. The equality sign in the above equations corresponds to 

stable formation while non-equality sign involves abundance in growth conditions which 

may lead to spontaneous formation and dissociation of the corresponding phases. As a 

result, unlike in Figure 4.10, the stable formation of the phases is represented only by the 

respective lines in Figure 4.12, and the region that satisfies inequality conditions of 

Equation 4.27 corresponds to  
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Figure 4.12 The formation of CZTSSe and its different secondary phases with respect to 

S (∆µS) and Se (∆µSe) growth conditions while keeping cationic growth conditions fixed: 

(a) all cations-rich and (b) all cations-poor. The diagonal line represents stable formation 

of CZTSSe while all other arrow ended lines in (a) indicate the formation of secondary 

phases. Each arrow corresponding to inequality sign in Equation (4.27) indicates 

unbound ∆µS/Se poor value of respective phase. The unbounded values were chosen to 

extrapolate the co-existence of secondary phases (intersecting points with diagonal) with 

CZTSSe at given growth conditions for the primary phase. The single-phase of CZTSSe 

was indicated by the broken line. Figure (b) represents a high efficient growth conditions 

at which no secondary phases form. 

 

unstable formation of that respective phase. In Figure 4.12, thermodynamically stable 

multi-phases CZTSSe (CZTSSe + Secondary phase(s)) will be formed only at the 

intersecting points with CZTSSe line (e.g., points).  

To avoid the redundancy of figures, only x =0.375 was chosen as for Figure 4.12 

since other compositions (x = 0.5 and 0.625) will have similar figures except extended 

poor cations/anions-growth conditions due to lower ∆Hf,CZTSSe than that of x=0.375. In 

Figure 4.12, two different growth conditions: all-cations-rich (see (a)) and all-cations-
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equally-poor (see (b)) were used. The later growth conditions were parameterized in such 

a way so that Equation (4.27a-c) yield enough anions richer growth conditions (∆µS/Se) for 

which ∆H (VS/Se) ≥ 1 eV in Figure 4.13. This gives ∆µZn = ∆µSn = ∆µCu = - 2.25 eV, -2.60 

eV and -2.99 eV for x = 0.375, 0.5, and 0.625, respectively; Equations (4.26) are satisfied 

at these conditions i.e., no secondary phases survive at these cationic-poor growth 

conditions. Further, these ∆µα (α = Cu, Zn, Sn, S, and Se) values satisfy equality 

conditions of Equations (4.27a-c) and hence correspond to stable formation of single-

phase CZTSSe as well. For example, ∆µZn = ∆µSn = ∆µCu = - 2.25 eV conditions in 

Equation (4.27a) generate Figure 4.12b wherein no secondary phases representing lines 

exist; the only available line (broken) represents the stable single-phase CZTSSe at 

thermodynamic equilibrium. ∆H (VS/Se) and ∆H (VS + VSe) in Figure 4.13 were calculated 

using S/Se-growth conditions along this single-phase line. The defect formation energies 

with respect to these anionic and cationic growth conditions are presented in Table 4.4.  

In Table 4.4, all the defects except VCu, ZnCu, and VZn (x = 0.625) have positive 

formation energies. VCu is desirable defect for enhanced p-type activity, and ZnCu is not 

detrimental, all it causes n-type activity in the parent compounds. Since VCu dominates 

over ZnCu, p-type activity would prevail in CZTSSe. Other probable defects CuZn + ZnCu, 

ZnSn and VZn  in Table 4.4 were not termed as detrimental ones in the case of parent 

structures. In addition, all anionic defects, while forming independently or as a pair, have 

higher formation energies >1 (see Figure 4.13).Therefore, growth conditions in Table 4.4 

can be termed as effective growth conditions for synthesizing high efficient CZTSSe (x = 

0.375, 0.5, and 0.625). Since the minimum values of ∆H (VS/Se) are not high enough, 

anionic defects could be formed introducing  
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Table 4.4 Defect formation energies at all cations-equally-poor and anions rich/richer 

growth conditions. 

Defects ∆H (δ) 
eV 

Growth Conditions 
eV 

Alloy Composition Alloy Composition 

0.375 0.5 0.625 0.375 0.5 0.625 

VCu -1.2 -1.21 -2.02 ∆µCations = 
 
 
 
 
 

-2.25 

 
 
 
 
 
 

-2.60 
 
 
 

 
 
 
 
 
 

-2.99 

CuSn 2.04 2.03 1.98 

CuZn 1.29 1.29 1.23 

VSn 1.82 1.80 1.79 

SnCu 1.38 1.38 1.28 

SnZn 1.68 1.66 1.63 

VZn 0.47 0.46 -0.30 

ZnCu -0.27 -0.29 -0.32 

ZnSn 0.51 0.53 0.48 

ZnCu  + CuZn 0.2 0.21 0.21 

CuZn  + SnZn 2.63 2.59 2.55 

VS 1.65 1.63 1.67 ∆µS = 0.0 0.0 0.0 

1.37 1.22 1.06 ∆µS = - 0.22 - 0.41 - 0.61 

VSe 1.40 1.40 1.37 ∆µSe = 0.0 0.0 0.0 

1.04 1.00 1.01 ∆µSe = - 0.36 - 0.41 - 0.36 

VS + VSe 2.64 2.76 2.71 ∆µS = 0.0 
∆µS = - 0.22 

0.0 
- 0.41 

0.0 
- 0.61 

2.78 2.76 2.46 ∆µS = -0.36 
∆µSe = 0.0 

-0.41 
0.0 

-0.36 
0.0 

 

deep donor levels. Further optimization of anion growth conditions could reduce the 

probability of forming detrimental anionic defects even further; this can be realized from 

Figure 4.13 and will be discussed here. In CZTSSe, the most probable anionic defect is 

VSe which has formation energy minimum (∆H (VSe) ≈1) at ∆µSe = -0.41 eV for x=0.5. ∆µSe 

→0 raises ∆H (VSe ), however, makes ∆H (VS)x=0.625 lower as ∆µS decreases with 

increasing ∆µSe (See Equations 4.4.3a-c)). Therefore, ∆µS/Se should be chosen such a 

way that raises both ∆H (VS/Se) from their minimum values for all compositions. This 

corresponds to ∆µSe richer conditions over ∆µS. For example, both have higher values 

from their minimum and equal to each other at point P, Q, and R for x = 0.375, 0.5, and 



 

112 

0.625, respectively. In these conditions, ∆H (VS/Se) are highest and lowest for x = 0.375 

and x = 0.625, respectively. In contrast to Figure 4.13a, ∆µS →0 conditions would be 

preferable for pair formation (VS + VSe) since ∆H (VS + VSe) > 2.62 eV for all compositions 

at that growth condition as shown in Figure 4.13b. Under this circumstance, one has to 

choose either S-rich or S-rich conditions. Since ∆H (VS + VSe)min > 2*∆H (VS/Se)min and is 

more than 2.44 eV, the probability of forming anionic defects as a pair is very low. As a 

result, a due consideration should be given in case of independent formation of VS/Se in 

which ∆µSe →0 and corresponding ∆µS would be effective anionic growth conditions.  

 

Figure 4.13 Anionic defect formation energies of CZTSSe for three different composition 

alloys (x = 0.375, 0.5, and 0.625) at fixed cationic growth conditions. All three cationic 

growth conditions ∆µα (α = Cu, Zn, and Sn) were fixed as equally poor as to produce ∆H 

(VS/Se) ≥ 1 eV in Equation 4.27a-c. The poor values of ∆µSe and ∆µS at S-rich and Se-rich 

growth conditions respectively are presented in Table 4.4. P, Q, and R the optimal values 

to avoid anionic defects for each x 
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In addition to growth conditions, the probability of independent formation of VS/Se 

varies with alloy composition as shown in Figure 4.13, and further optimization of x would 

minimize the number of VS/Se, eventually enhancing the PCE of CZTSSe. x = 0.625 (Se-

rich), which exhibits highest single-phase stability, is prone to experiencing VS defect; in 

fact, ∆H (VS) is minimum for x =0.625 at Se-rich growth conditions. Further, higher vapor 

pressure of S than that of Se makes the formation of detrimental VS more facile over 

VSe.
197

 Therefore, although Se-rich composition exhibits few better electronic attributes 

such as shallower donor levels, lower effective mass, higher dielectric constant, and 

smaller series resistance over S-rich counterpart, the population of VS could be high 

which is not desirable at all. In contrast, defects are less probable in S-rich composition 

even in Se-rich growth conditions. Further, band gap increases with the increment of S 

content in CZTSSe which tends to Voc and FF as well. However, series resistance 

increases with increasing band gap in CZTSSe that reduces FF which is not desirable as 

well for higher PCE. Under these circumstances, x = 0.5 CZTSSe appears as an effective 

composition for CZTSSe because (i) ∆H (δ) including ∆H (VS/Se) are higher in x = 0.5 (Se-

rich) even at Se-rich growth conditions, (ii) the hole conductivity is maximum for x = 

0.5,
199

 and (iii) x = 0.5 corresponds to band gap ~1.20 eV in HSE band gap Vs x, which is 

close to the band gap (~1.15 eV) that leads to observed empirical optimal efficiency on 

band-gap-dependent FF profile.  Further, areas of single-phase growth zones in those 

compositions, although smaller than that in x =0.625, is larger enough to retain the 

single-phase stability. 

From Figure 4.13, it is obvious that the t formation of anionic defects as 

independently (VS and VSe) rather than as a pair (VS + VSe) is more probable. In the case 

of independent formation, unlike the case as in parent compounds, VSe has lower 

formation energy than that of VS in CZTSSe, and hence VSe will dominate over VS at all 
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anions-rich conditions. Since a donor level introduced by VSe is shallower than that by VS, 

CZTSSe would experience lesser recombination centers over CZTS.  Apart from higher 

single-phase stability, it is the alloy of S and Se which improves the anionic defects 

formation scenario with respect to the parent compounds, and this is probably the 

another reason why CZTSSe exhibits better performance than CZTS.  

4.4.6. Conclusion 

We, for the first time, present a pathway to determine high efficient growth 

conditions for a material comprising five atomic species (three cations and two anions 

e.g. CZTSSe). It is found that all cations equally poor (∆µCu ≈ ∆µZn ≈ ∆µSn) and anionic 

(S/Se)-richer) growth conditions, different from the conditions as in higher efficient parent 

compounds, are  needed for achieving higher PCE of CZTSSe. These growth conditions 

allow CZTSSe to be formed as a single-phase in conjunction with promoting and 

prohibiting beneficial and detrimental defects, respectively. It is found that the alloy of S 

and Se makes CZTSSe better solar absorber over parent compounds. Because not only 

does this provide higher single-phase stability, but also make the most unwanted anionic 

defect (VS as in CZTS
17

) less probable, thereby ensuring better Jsc. Further, the presence 

of S, providing higher band gap, secures higher Voc in CZTSSe
192,193

 over CZTSe. In 

addition, the probability of forming all anionic defects including other intrinsic defects can 

be minimized by tuning the alloy composition. Based on defect calculations in conjunction 

with recent theoretical and experimental evidences, it was predicted that x = 0.5 would be 

effective alloy composition for a high efficient CZTSSe. 
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Chapter 5  

New PV Material (CuSnW2O8) 

5.1 Introduction 

 In the present work, we propose, for the first time, a quaternary oxide, 

CuSnW2O8 (CTTO), that may be a new solar absorber material with great promise for 

affordable PV application. The reason for CTTO’s promise is due to its electronic 

properties and stability, as determined by density functional theory (DFT) and post-DFT 

methods. 

 We chose two inexpensive and non-toxic cations, Cu and Sn, to add to 

WO3, due to their contributions in reducing the band gap in CuWO4 (2.30 eV
211

) and α-

SnWO4 (1.64 eV
151

). In addition, the optimal band gap in CZTS for PV application can be 

attributed to the simultaneous contributions of Cu 3d and Sn 5s at valence band 

maximum (VBM) and conduction band minimum (CBM), respectively. A similar 

contribution from Cu and Sn is therefore expected when added to WO3, resulting in an 

anticipated reduction in band gap in CTTO. In addition to band gap engineering, as in 

CZTS, higher p-type activity (such as in any other Cu-based compounds through Cu 

vacancies) and higher electron mobility (due to the spherical nature of the Sn 5s orbital at 

CBM) could be likely outcomes in synthesized CTTO.  Finally, as in other W-based 

oxides, e.g., CuBiW2O8,
12

 enhanced light absorption is expected in CTTO, as well. 

Therefore, CTTO promises to be the sought-after ideal solar absorber material. As a new 

material, the success in predicting PV characteristics of CTTO lies in upon the 

successfully determination of its crystal structure. 

5.2 Computational Details 

 
 In addition to DFT, DFT+U

39,43,58
 and Hybrid functional (HSE06

133
) (µ=0.2, α=0.25 

EXCHF) were employed to overcome the shortcoming of DFT—i.e., the underestimation 
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of electron localization for systems with localized 𝑑 and 𝑓 electrons.
58–60

 DFT-HSE06 was 

employed to calculate electronic band structure and density-of-states (DOS) calculations 

of the pristine unit cell. However, DFT+U was used for optical absorption calculation of 

pristine CTTO. The reason for that was having an absorption spectrum of pristine CTTO 

with detailed features, which requires a very high K-sampling as well as enough empty 

bands. Such requirements could not be achieved with HSE06 for a multi-cations material 

like CTTO within our computation resource. In contrast, DFT+U is computationally 

convenient and hence, generating a desirable absorption spectrum was possible. 

Further, a comparison between DFT+U and HSE06 band structures and p-dos were 

made, which exhibited negligible dissimilarity between those (see Figure 5.4) except the 

difference in band gaps. So, it was expected that DFT-HSE06 optical absorption will have 

the same features as does DFT+U except delayed onset. Considering this fact in 

conjunction with computational convenience, we were convinced to employ DFT+U for 

optical absorption calculations for pristine to all supercells (1x2x2) of CTTO. The unit cell 

of CTTO was converged with DFT (or DFT+U) at 7x11x13 k-mesh, and the converged 

unit cell was later used for all HSE06 calculations. Although it is better to use a higher K-

mesh for DOS calculation, we had to restrict ourselves to a smaller 3×5×5 Monkhorst–

Pack
77

 K-sampling, in order to make DFT-HSE06 DOS calculation compatible with our 

available computational efficiency. For DFT+U calculations, we used Ueff = 6 eV to the Cu 

3d orbital. We chose this value of Ueff to be consistent with our previous work.
12

 For the 

defect calculations, we constructed a supercell containing 96 atoms. The k-point 

sampling for all defect-induced calculations was 5×5×5.  
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5.3 Crystal Structure Prediction 

 In the present work, the most stable structure was determined from different 

existing structures through a comprehensive mineral database search by means of an in-

house algorithm.
12,212

 In addition, StructurePredictor
1,213

 software generated structures 

were considered for the DFT total-energy calculation as well to obtain lowest-energy 

structures. This method leverages our successful predictions of similar W-based oxides 

(AgBiW2O8 and CuBiW2O8) in our previous work.
12,212

 Figure 5.1 shows the evolution of 

different motif (possible) structures of CuSnW2O8 (more than 250) from existing 

structures. Based on the lowest-energy structure, we then determined the electronic 

properties and stability of CTTO, as well as probable intrinsic defects, which will be 

discussed in the rest of this chapter. 

 

 
 

Figure 5.1 Evolution of motif structures from existing structures. “nx” (n=2 and 4) 

indicates that original structures were doubled and quadrupled to form motif structures. 

"⨂” corresponds to all possible different arrangements among the cations in a unit cell. 
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5.4 Results 

5.4.1 Structural Properties 

After optimization of all motif structures, DFT+U determine NaInW2O8- or 

CuBiW2O8- derived structure as the ground state geometry of CuSnW2O8. The LeFiW2O8- 

derived structure could also be a probable one as it has formation energy higher by 0.002 

eV per unit formula compared to lowest energy structure (See Table 5.1). Further, all 

these three motif structures boil down to similar structure for a particular arrangement of 

Cu and Sn differing merely in per unit formula (Z). The similarities between structures are 

also reflected in XRDs of them shown in Figure 5.2. Any structures of those can be 

considered as ground state structure attributing the difference in formation energies as a 

computational artifact. Since NaInW2O8 or CuBiW2O8–derived structure has the lowest Z 

and exhibits lowest energy in DFT+U case, we keep one them for all our following 

discussion.  

 

Figure 5.2 Theoretical XRDs of three DFT+U possible structures of CuSnW2O8. 
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Table 5.1 DFT+U formation enthalpies (∆Hf) and volumes of few most probable 

structures for CuSnW2O8. The value of ∆Hf presented here for StructurePredictor (SP) 

structure is the lowest among all SP generated structures. All ∆Hf were calculated 

following the reference.
12

 

 Origin Unit 
Cell 

Formula 
(Z) 

Monkhorst–
Pack

77
 K- 

mesh 

Formation 
Enthalpy/Z 

(eV) 

Volume/Z 

(Å3) 

Existing 
Structures 

CuBiW2O8
12

 2 7x11x13 -21.445 142.82 

NaInW2O8 2 7x11x13 -21.445 142.83 

LiFeW2O8 4 9x7x15 -21.443 143.80 

CuSbM2O8 4 13x3x11 -21.349 151.96 

Structure 
Predictor 

sp1483_cry
stal35257 

2 7x11x13 -21.164 140.485 

 

The following discussion is based on NaInW2O8-derived structure
214

 which was 

determined as the ground-state geometry of CTTO. It belongs to a monoclinic crystal 

structure with a=9.81 Å, b=5.81 Å, c=5.01 Å, and 𝛽=91.74° (Z=2), as shown in Figure 5.3. 

All cations in CTTO form AO6 octahedra; WO6 forms layers along the “b” direction leaving 

an empty space between them, and a similar feature was found for two other octahedra.  

Each WO6 is connected with CuO6 and SnO6 through corner-sharing oxygen atoms. In 

addition, these Cu-Sn octahedra form zigzag layers along the “c” direction, and they 

alternate their positions periodically in a layer along the “a” direction; this alternating trend 

in a layer requires a unit cell of CTTO to have Z>1. 
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(a) 

 

 
(b) 

 

Figure 5.3 Crystal structure of CuSnW2O8: (top) ball-and-stick model and (bottom) 

polyhedral model. 

 

5.4.2. Electronic Properties 

Figure 5.4 shows the HSE06-hybrid electronic band structure and projected density of 

states (p-DOS) for CTTO. The indirect fundamental band gap (1.25 eV) was found along 

the BE0 symmetry region, whereas the direct band gap (1.37 eV) occurs at symmetry 

point B in the Brillouin zone.
215–218

 Both of these hybrid-DFT band gap values belong to 

the optical range for PV applications established by the classic SQ limit. However, it is 

not necessary that a material satisfy the SQ predicted band gap to be a better PV  
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(a) 

 

 
(b) 

 

Figure 5.4 The DFT+U and DFT-HSE06: a) electronic band structures and b) 

projector density of states (p-DOS). The Fermi level was set to 0 eV. The overall features 

of band structures and p-DOS in both methods were found to be similar except band 

gaps which can be attributed to the difference in adopted empirical corrections in two 

different post-DFT methods. 
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absorber.
219 

For instance, SQ limits the band gap to 1.45 eV to exhibit maximum 

efficiency for a solar-absorbing material whereas highest-efficiency CuInxGa1-xSe2 (CIGS) 

has a bandgap of 1.14 eV.
220

 It is noted that, like hybrid-DFT, both DFT and DFT+U 

schemes produce similar features (not shown) of bandstructures except for smaller band 

gaps. 

In addition to band gap, good PV material must have higher carrier mobility. The 

conductivity effective mass of holes (mh,c
∗ /m0), which determines hole mobility, was found 

to be 0.322, which is lower than that of Si (0.36/0.386),
221

 indicating higher hole mobility 

in CTTO. This can be attributed to contributions from O 2p orbital at the VBM or nearby 

(see p-DOS in Figure 5.3), having the best correspondence with curve-like features 

around the valence band edge in the band structure. Like hole mobility, a higher value of 

electron mobility is also expected because the conduction band edge, as in CZTS, 

exhibits a parabolic curve-like feature along the BГ region, indicating lower effective mass 

of electrons. The Sn 5s orbital, which contributes (see p-DOS in Figure 5.4b) to the 

parabolic band feature, justifies its selection as a cation in predicting next-generation PV 

material. Nonetheless, electron mobility comes into play once an electron moves to the 

conduction band, overcoming the band gap barrier through solar excitation. Contributions 

of both O 2p and W 5d orbitals at VBM and CBM, respectively, should ensure the 

favorable p → d electron transition in CTTO upon excitation, promising a higher solar 

absorption rate than that of CZTS and CIGS. This feature in CTTO is clear when the 

optical absorption coefficient of those materials are compared side by side in Figure 5.5. 

 

5.4.3. Optical Absorption 

 In Figure 5.5, the DFT+U absorption spectra of CTTO, CZTS, and CIGS 

were compared; the reason to use rather DFT+U than hybrid-DFT here as a post-DFT 
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method is explained in sections 5.2. We observed that the light absorption in CTTO and 

CZTS starts at almost the same time; however, in CuInxGa1-xSe2 (CIGS, x=0.5), it occurs 

quite early. Nevertheless, the steepness of the CTTO absorption spectrum is the highest 

among all at the onset, attributed to the presence of a W 5d orbital around the conduction 

band edge. This distinction indicates that CTTO, although it possesses an indirect  

 

Figure 5.5 DFT+U optical absorption spectrum: red, green, and blue lines represent the 

absorption of CTTO, CZTS, and CIGS, respectively the used K-meshes for those were 

7×13×15, 9×9×5, and 13×13×7, respectively. 

 
fundamental gap, will be a better solar absorber than CIGS and CZTS. The DFT+U 

optical band gap of CTTO is ~0.97 eV, which corresponds to DFT+U direct band gap of 

0.96 eV (see Figure 5.4a). Since DFT+U and DFT-HSE06 band features were found to 

be similar, DFT-HSE06 photo-onset should also correspond to its direct band gap which 

would be ~1.37 eV. The fast rise in CTTO absorption spectrum can primarily be 

attributed to an electronic transition from occupied O 2p states at the top of the valence 

band to unoccupied W 5d states near the conduction band edge. Like O 2p → W 5d, 

another favorable Cu 3d → Sn 5s/O 2p could occur because Sn 5s and O 2p states carry 
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non-negligible weight around the band edges. The results presented here so far based 

on their electronic and optical properties indicate that CTTO would be superior solar 

absorber materials to CZTS and CIGS. However, the thermodynamic stability of this 

newly predicted material needs to be examined. 

 

5.4.4. Thermodynamic Stability  

5.4.4.1. Bonding Rigidity and Stability against Phase Segregation 

One of the first indicators of material stability is to determine its cohesive energy 

calculated with respect to the infinitely separated atomic limit: the lower its value, the 

stronger the bonding between the atoms of that material. The cohesive energy per atom 

of CTTO was found to be -5.94 eV with the DFT+U scheme, which is significantly smaller 

than that of CZTS (DFT+U: -4.11 eV) and comparable to highly stable WO3 (DFT: -6.77 

eV). Hence, binding between atoms in CTTO would be stronger than that in CZTS, and 

this rigidity in atomic binding is comparable to WO3, which justifies the selection of W 

oxide as a PV material.  

Another manifestation of the material’s stability is the negative fragmentation 

energies with respect to competitive binary and/or ternary oxides.
12

 This determines the 

material’s averseness to being decomposed into different competitive secondary phases: 

the lower its value, the higher the withstanding capability and the more robust the stability 

of that material. The pathways with fragmentation energies for CTTO are presented 

below:  

 CuSnW2O8 = SnO + CuO+ 2WO3;                                          ∆Hfrag.,CTTO  = -

0.05 eV 

(5.1)  

 
 3CuSnW2O8 = Cu2O + 3SnO+ CuWO4 + 5WO3+ 1/2O2;        ∆Hfrag.,CTTO  = -

1.46 eV 
(5.2)  

 
 3CuSnW2O8 = Cu2O + CuO + 3SnO + 6WO3+ 1/2O2;          ∆Hfrag.,CTTO  = -1.57 (5.3)  
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eV 

 
 2CuSnW2O8 = Cu2WO4 + 3WO3+ 2SnO + 1/2O2;                 ∆Hfrag.,CTTO  = -2.68 

eV 
(5.4)  

 
 3CuSnW2O8 = CuO + 3SnO+ Cu2WO4 + 5WO3 + 1/2O2 ;      ∆Hfrag.,CTTO  = -

2.69 eV 
(5.5)  

 

The negative fragmentation energies in different pathways indicate that CTTO 

will be stable enough to withstand different fragmentation processes. Compared to 

fragmentation energies of CZTS (see Ref.
160

), CTTO will have greater stability than CZTS 

but also be a robust material. 

 

5.4.4.2. Single-Phase Stability 

The single-phase stability, which determines the probability of forming the material in 

question as a single phase or multi-phases (e.g. CTTO + secondary phases), can be 

mapped through chemical potential landscape analysis. Figure 5.6 portrays chemical 

potential landscapes of CTTO at two different growth conditions. Each chemical potential 

landscape, satisfying equation (5.6), represents a set of growth conditions at which the 

stable formation of CTTO is possible at thermodynamic equilibrium. 

 ∆μCu + ∆μSn + 2∆μW +8∆μO  = ∆Hf,CTTO = -21.445 eV (5.6)  

 

The upper and lower bounds of chemical potentials satisfying equation (6.1) for each 

atomic species are 

 -21.445 eV ≤ ∆μCu ≤ 0 eV (5.7a)  

 -21.445 eV ≤ ∆μSn ≤ 0 eV (5.7b)  

 -10.723 eV≤ ∆μW ≤ 0 eV (5.7c)  

 -2.681 eV ≤ ∆μO ≤ 0 (5.7d)  
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The set of growth conditions in equations (5.7) could facilitate the formation of secondary 

phases as well. To avoid the occurrence of secondary phases at thermodynamic 

equilibrium,  

α-
SnWO4: 

∆μSn +∆μW +4∆μO < ∆Hf,SnWO4 = -11.506 eV (5.8a)  

CuWO4: ∆μCu +∆μW +4∆μO < ∆Hf,Cu2WO4  = -10.203 eV (5.8b)  

Cu2WO4: 2∆μCu +∆μW +4∆μO < ∆Hf,Cu2WO4 = -9.03 eV (5.8c)  

WO3: ∆μW +3∆μO  < ∆Hf,WO3 = -8.560 eV (5.8d)  

SnO: ∆μSn + ∆μS < ∆Hf,SnO  = -2.762 eV (5.8e)  

SnO2: ∆μSn + 2∆μS < ∆Hf,SnO2  = -5.179 eV (5.8f)  

CuO: ∆μCu + ∆μS < ∆Hf,Cu2O  = -1.527 eV (5.8g)  

Cu2O: 2∆μCu + ∆μS < ∆Hf,Cu2O  = -1.595 eV (5.8h)  

 
Each line, Li (i = 1, 2, .., 8), across the chemical potential triangles shown in Figure 5.6, 

satisfying equation (5.8), represents a boundary of a secondary phase that may coexist 

during the synthesis process. The co-existence of a secondary phase is evident in one of 

two regions, divided by a line Li, which does not satisfy corresponding equation. The only 

exception of previous statement is to α-SnWO4 presenting line (L1). Neither side of the 

line except points on it corresponds to growth condition suitable for the formation of α-

SnWO4. This can be attributed to the fact that two equations will be solvable if and only if 

the RHS of the following equations equal to each other 

α-SnWO4: ∆μW +4∆μO  = ∆Hf,SnWO4- ∆μSn (5.9a)  

CuSnW2O8 : ∆μW +4∆μO  = (∆Hf,CTTO - ∆μSn-∆μCu)/2 (5.9b)  

 
Which yields,  
 ∆μSn = (2*∆Hf,SnWO4 -∆Hf,CTTO +∆μCu ) (5.9c)  

 
Equations (5.9c) generates a set of Cu and Sn growth conditions {∆μCu , ∆μSn } 

which have one to one correspondence. As a result, only a point of ∆μSn rather than 

distribution satisfies equations (5.9a) and (5.9b) simultaneously on each Cu-plane or 

plane of a 
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(a) 

 
(b) 

 
Figure 5.6 Chemical potential landscape of CTTO in two different Cu growth conditions: 

(a) Cu-rich and (b) Cu-poor. Yellow-bounded regions represent the range of growth 

conditions of all chemical species to form CTTO-WO3, as well as the stability of this 

mixed phase: the larger the spread, the higher the stability. 

 

triangle in Figure 5.6. This constraint limits α-SnWO4 phase to be co-existed on either 

side of the line presenting it in CTTO chemical potential landscape. 

Any region bounded by different lines Li in Figure 5.6 that satisfies the above 

equations simultaneously corresponds to single phase of CTTO. No such region in Figure 
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5.6 was found, implying the fact that formation of single phase CTTO would be highly 

unlikely during the growth process like any other multi-cations compounds; however, 

minimization of co-existence of unwanted secondary phases would not be a harder task. 

For example, the synthesis of CuSnW2O8-WO3 multi-phases can be preferable since both 

have monoclinic structures and hence, are likely to introduce least lattice mismatch i.e., 

recombination velocity at heterojuction interface. The formation of those multi-phases are 

possible at flexible growth conditions (see yellow bounded regions ABCD and PQRS in 

Figures 5.6a and 5.6b, respectively) of all chemical species (Cu, Sn, W, and O). 

Moreover, the larger spreads of yellow bounded regions in Figure 5.6, especially in Cu-

poor growth conditions implies higher stability of those multi-phases even with a wide 

variation of growth conditions.  

 

5.4.5. Defects 

The frequent formation of Cu-vacancy (VCu) in Cu based compounds is expected. 

The lower formation energy (∆H (VCu) = 0.233 eV at ∆µCu = 0) (see Figure 5.7 for Cu-rich 

condition) tells that VCu is indeed highly probable defect in CTTO, even at Cu-rich growth 

condition; VCu becomes spontaneous at ∆µCu = -0.233 eV. In fact, different intrinsic 

defects in CTTO are probable at certain conditions like in any other multi-cations 

compounds. However, apart from Cu-vacancy, we present here only two other defects, 

SnCu and SnCu + VCu , which are relevant for our following discussion. The details of 

defects calculation will be presented somewhere else.  
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Figure 5.7 The DFT+U defects formation energy in CTTO at two different growth 

conditions: Cu-rich and Cu-poor. 

 
5.4.5.1 p-type activity 

One of the factors, which determines the higher PV efficiency is p-type conductivity. 

Typically, the frequent formation of Cu-vacancy (VCu) in Cu based compounds make 

them p-type semiconductor i.e., better PV materials e.g. Cu2S, CZTS, CIGS etc. Hence, 

like other Cu-based PV materials, p-type activity through facile formation of VCu is also 

expected in CTTO. Unoccupied hole states the top of VB (along Г-Z and at Y in spin up 

channel; and along Г-Z, C- 
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Figure 5.8 Band structures of three defects: (a) VCu, (b) SnCu, and (c) SnCu+VCu-induced 

CTTO. 

 

Y in spin down channel), in Figure 5.8 confirms that a single VCu defect induces p-type 

activity in CTTO. The degree of p-type activities can be determined from VCu 

concentration at equilibrium. The equilibrium VCu concentration in CZTS and CTTO are   

3x10
3
 cm

-3
  and  1x10

16
 cm

-3
, respectively at 298 K temperature and at Cu-rich (∆µCu = 0) 

growth condition. The 10
13

 times higher concentration of VCu in CTTO clearly indicates 

that it will have more enhanced p-type activity than that of CZTS. As ∆µCu decreases, VCu 

concentration also increases. However, SnCu defect could be spontaneous at Cu-

poor/Sn-rich growth conditions that introduces n-type activity (see unoccupied bands 

around the VB edge in Figure 5.8b). When these two different defects are formed 

simultaneously as SnCu + VCu pair, both p-type and n-type conductivity counterbalances 

each other, leaving CTTO a neutral type PV material; no more hole or unoccupied states 
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around VB edge in figure 5.8c. Only way to have the p-type attribute in CTTO is to bar 

the formation of SnCu defects. This can be done by limiting growth conditions to any Cu-

rich/Sn-poor values or between A and B (see figures 5.6a and 5.7) if one prefers only 

WO3 to be co-existed with it. 

 

5.4.5.2 Optical absorption with defects induced CTTO 

 

 

Figure 5.9 The DFT+U optical absorption spectra of pristine and defect-induced CTTO. It 

is seen that the absorption spectra of pristine and defects-induced CTTO have similar 

features except the very early absorption in SnCu-CTTO. The first two early rises in the 

SnCu absorption spectrum correspond to the transition between occupied and unoccupied 

states around the conduction band edge, which do not contribute to PV efficiency. A 

7×11×13 K- point sampling was used to produce the absorption spectrum of pristine 

CTTO, while it was 5×5×5 for those of defect-induced CTTO. 

 



 

132 

Figure 5.9 represents a comparison between optical absorption spectra of 

pristine and different defects induced CTTO. It is quite obvious from the figure that 

defects in CTTO do not deteriorate absorption rate compared to pristine counterpart. In 

fact, VCu and SnCu enhance absorptions rate in CTTO. However, SnCu is itself not as 

probable defect as VCu. Moreover, the first two rises in SnCu absorption spectrum 

correspond to transition between occupied sates in  

VB and unoccupied states around VB edge, which do not contribute PV efficiency. 

Furthermore, the third rise of that spectrum which contributes to PV efficiency requires 

more energy than other defects at onset. In contrast, absorption rate of highly probable 

SnCu + VCu defect induced CTTO remains similar to pristine counterpart upto ~2.1 eV and 

increases afterwards. This tells that if CTTO even can’t be synthesized as p-type 

material, the absorption rate will still be superior to that of CZTS and CIGS (see figures 

5.5 and 5.9).  

 

5.5. Conclusion 

In summary, we present a new quaternary oxide, CTTO that is suitable for 

affordable PV application. This material was found to possess a NaInW2O8-derived 

monoclinic ground-state structure determined by a comprehensive mineral database 

search in conjunction with DFT total-energy calculations. This structure exhibits an 

indirect fundamental band gap of 1.25 eV with the HSE06-DFT scheme. The mobility of 

holes was greater than that of Si. The DOS calculations confirm that the combined effects 

of Cu 3d and Sn 5s at VBM and CBM, respectively, as in CZTS, significantly reduced the 

band gap compared to that of WO3. Moreover, the optical absorption rate of CTTO was 

higher than that of CZTS and CIGS (x=0.5) at onset. This material displays higher 

stability and can be synthesized at flexible experimentally convenient growth conditions, 
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although the co-existence of at least one secondary phase is likely. Like any other Cu-

based oxide, Cu vacancy is highly probable at any Cu growth condition, making this 

material a p-type semiconductor. In fact, the population of this vacancy is significantly 

higher than that of CZTS at room temperature. Based on the previously mentioned 

electronic properties and stability features, we conclude that CTTO, if synthesized, could 

be an excellent alternative to current commercialized PV materials.  
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Chapter 6  

New PEC Material (ZnSnW2O8) 

6.1 Introduction 

 In Chapter 1 the need to predict an affordable photocatalysts was demonstrated. 

Further, it was explained the reasons behind in designing a solar absorber new material 

in the form of ABW2O8. We have chosen Zn and Sn as our A and B cations, respectively 

for predicting a photocatalysts,. The reasons are i) both Zn and Sn are non-toxic and 

abundant on earth-crust, ii) Sn 5s has higher energy than O 2p, thereby expecting band 

gap reduction, as in α-SnWO4, and iii) the presence of Zn 3d at lower energy, as in 

ZnWO4,
6
 would push VBM and CBM upward further, placing the conduction band edge 

above H2/H
+
 redox potentials. Note that, from CuSnW2O8 (see Figure 5.4b) and CZTS, 

the presence of Cu 3d and Sn 5s at VBM and CBM, respectively potentially reduces band 

gap in those compounds; such a lower band gap is needed for PV application, however, 

in practice, a relatively larger band gap (2eV < Eg < 2.4 eV) is essential for an efficient 

solar-to-hydrogen conversion process. For this reason, we didn’t select two cations which 

would have had simultaneous role in band gap reduction, resulting a lower band gap 

material like CTTO and CZTS. Rather, we have selectively chosen two cations so that 

two would satisfy two different purposes, one (Sn) for band gap reduction while the other 

one (Zn) for pushing the band edges upward sufficiently. Note that the addition of only Sn 

to WO3 results a satisfactory band gap reduction in α-SnWO4, while the presence of Zn 

3d lifts the conduction band edge in ZnWO4 above H2/H
+
 redox potentials.  

6.2 Computational Details 

 
In addition to DFT, DFT+U

39,43,58
 and Hybrid functional (HSE06

133
) (µ=0.2, α=0.25 EXCHF) 

were also employed to overcome the shortcoming of DFT—i.e., the underestimation of 

electron localization for systems with localized 𝑑 and 𝑓 electrons.
58–60

 DFT-HSE06 was 
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employed to calculate electronic band structure and density-of-states (DOS) calculations 

of the pristine unit cell. However, DFT+U was used for optical absorption calculation of 

pristine ZnSnW2O8. The reason for that has been explained in Section. The energy was 

converged up to four decimal places at 9x5x19 k-mesh, and the converged unit cell was 

later used for all HSE06 calculations. However, smaller 5×3×5 K-sampling was used in 

order to make DFT-HSE06 DOS calculation compatible with our available computational 

efficiency. For DFT+U calculations, we used Ueff = 6 eV to the Cu 3d orbital. We chose 

this value of Ueff to be consistent with our previous work.
12

 For the defect calculations, we 

constructed a supercell containing 96 atoms. The k-point sampling for all defect-induced 

calculations was 3×3×3.  

6.3 Crystal Structure Prediction 

 
Once the new material is designed, the success in predicting the opto-electronic 

properties and stability feats depends on the precise crystal structure prediction. To 

accomplish this task quite successfully, we employed our crystal structure prediction 

method to ZnSnW2O8. Our method predicts the α-SnWO4- derived crystal structure as the 

most probable structure of ZnSnW2O8. Therefore, our following discussions would be 

based on this structure. 

 
6.4 Results 

 
6.4.1 Structural Properties 

The crystal structure of belongs monoclinic symmetry (P 2/c; S.G. 13; Z=2) with a = 5.678 

Å, b =11.785 Å, c = 5.180 Å, and γ = 84.11°. Like other tungstates, W forms WO6 

octahedra while Zn and Sn form ZnO4 and SnO4 (as in SnO) tetrahedra, respectively as 

shown in Figure 6.1a. WO6, being connected with each other through corner sharing O, 
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forms a zigzag network along ‘c’ axis (see Figure 6.1b). Between each two layers of 

WO6, ZnO4 and SnO4 are alternatively inserted, extending along ‘b’axis. Each AO4 (A = 

Zn and Sn) is connected with a similar tetrahedra only along ‘a’ axis through edge 

sharing O and leaves a huge void between them in ‘c’ direction see (Figure 6.2a). 

However, these two tetrahedral do not make a direct network between them in any 

directions. 

 
(a) 

 
(b) 

 
Figure 6.1 The DFT+U optimized crystal structure of ZnSnW2O8. Figure a represents two 

different models of the unit cell of 24 atoms: (left) ball-and-stick and (right) polyhedra. A 

2x1x2 supercell of 96 atoms in the polyhedra model is shown in figure b, which contains 

hollows in the long-ranged periodicity. 
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6.4.2 Electronic Properties 

The electronic band structure and projected density of states (p-DOS) of pristine-

ZnSnW2O8 are presented in Figure 6.2. It possesses almost a direct band gap of 2.34 eV 

(DFT-HSE06) and 1.66 eV (DFT+U), which occurs along C-Z-D region in the Brillouin 

zone. Both post-DFT methods produce similar band feats except the difference in band 

gaps. The band gap values are within the range of PEC requirement for efficient 

hydrogen evolution. The reduction of band gap compared to its binary parent compound 

(WO3) is the presence of Sn 5s at VBM (see Figure 6.2b). This justifies our choice of Sn 

in band gap reduction. Despite the significant presence of Sn 5s, VBM is mostly O 2p 

contributed which is due to strong hybridization between Sn and O. The contributions of 

Zn 3d are seen only at lower energies as in ZnWO4 and hence Zn does not play role in 

band gap reduction. However, lower energy Zn 3d should provide an uplift of conduction 

band which will be investigated in Section 6.3.4. In the case of conduction band region, 

like other tungstates, CBM is primarily W 5d contributed and degenerated as in α-

SnWO4. Conduction bands are mostly dispersive, a good indication of higher electron 

mobility.  

 

6.4.3 Optical Absorption 

Figure 6.3 demonstrates the DFT+U optical absorption spectrum of pristine-

ZnSnW2O8. Like other tungstates, a strong absorption is observed, which validates our 

selection of W-based compound as a suitable solar absorber material. The optical band 

gap was found to be ~1.70 eV which corresponds to its electronic counterpart (see 

Figure 6.2a).The photo-onset can be attributed to electron transition from occupied O 2p 

to unoccupied W 5d orbitals. Since Sn 5s has a strong presence at VBM (see Figure 

6.2b), next absorption could be due to transition s→d/p.  
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(a) 

 
(b) 

Figure 6.2 The DFT+U and DFT-HSE06: a) electronic band structures and b) projector 

density of states (p-DOS). The Fermi level was set to 0 eV. The overall features of band 

structures and p-DOS in both methods were found to be similar except band gaps which 

can be attributed to the difference in adopted empirical corrections in two different post-

DFT methods. 
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Figure 6.3 The DFT+U optical absorption spectrum of pristine-ZnSnW2O8. 

 
 

6.4.4 Band Edge Positions 

 Since the band edges of a semiconductor must be positioned at right energies for 

hydrogen evolution through water splitting, their positions need to be checked before 

predicting the designed material as a suitable photocatalyst. To do this, as in Figure 

6.4(left), we have compared the VBM/CBM position of ZnSnW2O8 with respect to those of 

Zn/Sn-tungstates and WO3. The VB heights were calculated taking the relative energy 

difference between O 1s and VBM of the corresponding phases. On other hand, CBMs 

were positioned using ECBM = EVBM + Eg; where Eg is the experimental/DFT-HSE06 band 

gaps for the existing/predicted materials. The depicted vertical heights of the VBs of 

ZnSnW2O8 and Zn/Sn-tungstates in Figure 6.4 were normalized to WO3 counterpart. 

Therefore, Figure 6.4(left) visualizes the relative positions of the band edges of the 

considered compounds with respect to each other.  
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Figure 6.4 The relative band edges positions of ZnSnW2O8 and different metal-tungstates 

with respect to WO3. 

 
The reasons behind the approach mentioned above were (i) O is the common 

element in the considered compounds and (ii) O 1s lies very deep in the cores and is 

expected not be hybridized with other orbitals. As a result, it would not be very unrealistic 

considering O 1s as a reference level to determine the relative position of VBM. Note that 

a precise description of the band edges position may not be possible through this 

simplistic approach; however, a quick estimation on the relative band edge positions can 

be made which should be good enough in predicting a photocatalyst in time- and cost-

effective manner.  

In Figure 6.4(left), the CBMs of both ZnWO4 and ZnSnW2O8 are positioned at the 

same height. Therefore, it is also expected that like ZnWO4, the CB edge of ZnSnW2O8 

would straddle H2/H
+ 

redox potential as well. The relative higher positions of CBMs in 

those compounds with respect to that of WO3 can be attributed to the upward push 

generated by Zn 3d. This justifies the selection Zn 3d in designing new semiconductor for 
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efficient hydrogen evolution process. Note that the VBM of ZnSnW2O8 has a higher 

position that that of WO3/ ZnSnW2O8. It is due to the presence of Sn in our predicted 

material, causing a band gap reduction compared to WO3/ ZnSnW2O8. See Reference for 

a comparison between experimentally measured band edges of WO3, β-SnWO4 and 

ZnWO4 with respect to O2 and H2/H+ redox potentials was presented on the right of 

Figure 6.4  

 

6.4.5 Stability 

6.4.5.1. Bonding Rigidity and Stability against Phase Segregation 

As a first test of the predicted material’s stability we determine its cohesive 

energy calculated with respect to the infinitely separated atomic limit; because the lower 

its value, the stronger the bonding between the atoms of that material. The cohesive 

energy per atom of ZnSnW2O8 was found to be -5.94 eV with the DFT, which is 

comparable to highly stable WO3 (DFT: -6.77 eV). Hence, binding between atoms in 

ZnSnW2O8 would be stronger than that in CZTS, and this rigidity in atomic binding is 

comparable to WO3, which justifies the selection of W oxide as a photocatalyst.  

The stability of ZnSnW2O8 against phase segregation can be gauged form the 

negative fragmentation energy with respect to competitive binary and/or ternary oxides.
12

 

This determines the material’s averseness to being decomposed into different 

competitive secondary phases: the lower its value, the higher the withstanding capability 

and the more robust the stability of that material. One pathway that possesses negative 

fragmentation energy for ZnSnW2O8 is presented below:  

 ZnSnW2O8 = SnO + ZnO+ 2WO3;                         ∆Hfrag,ZnSnW2O8 .  = -0.08 eV (6.1)  
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The negative fragmentation energy in the above pathway indicates that 

ZnSnW2O8 will be stable enough to withstand at least one fragmentation processes. 

Since the above pathway results negative ∆Hfrag, the binary phases can be used as 

precursors to form stable ZnSnW2O8. 

 
6.4.5.2. Single-phase Stability and Effective Growth Conditions 

To determine the single-phase stability of ZnSnW2O8 the chemical potential 

landscape analysis (CPLA) was employed. The details of CPLA have been discussed at 

a length in Section 2.4.4. The triangles in Figure 6.5 are the CPL of ZnSnW2O8 drawn at 

two different set of chemical potentials (∆μα, α = Zn, Sn, W, and O) which represent the 

growth of conditions of a species α. The triangles further satisfy the following growth 

condition (Equation (6.2)) required to form stable ZnSnW2O8 at thermodynamic 

equilibrium. Within this condition may be formed as a single phase or multi-phases 

compound. To avoid the presence of secondary phases, the growth conditions (∆μα) 

within the triangles should be chosen such way that would prohibit the formation of 

secondary phases. However, not a single set of ∆μα in the following triangles can be set 

for that. This means that the formation of multi-phases ZnSnW2O8 (at least two 

secondary phases co-exist) would be highly probable. The role of those secondary 

phases on photocatalytic performance of ZnSnW2O8 needs to be investigated, which will 

be done in future works. 

 ∆μCu + ∆μSn + 2∆μW +8∆μO  = ∆Hf,CTTO = -21.445 eV (6.2)  
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(a) 

 

 
(b) 

 
Figure 6.5 Chemical potential landscape of ZnSnW2O8 in two different W growth 

conditions: (a) W-rich and (b) W-poor. Yellow-bounded region represents a growth region 

which can be suitable for synthesizing ZnSnW2O8 with least detrimental defects. 

However, ZnWO4 and ZnO are highly probable to be co-existed with the primary phase in 

this region. 
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Not only can the single-phase stability of a material be predicted from CPLA, but 

also an effective growth conditions, with the help of defect calculation, for that material 

can be deduced. An attempt was made for ZnSnW2O8 in this regard. An effective growth 

conditions should be one that would minimize unwanted defects or secondary phase. 

Since the role of those secondary phases in ZnSnW2O8 is not investigated yet, we would 

focus only on defects which may be harmful for photocatalytic performance. In this case, 

we consider those defects which are responsible for poor performance in existing parent 

compounds. One such a defect is SnW which lowers photocatalytic activity in α-SnWO4. 

Since the similar defect may also be present in ZnSnW2O8, we need to employ a set of 

growth conditions that would prohibit the formation of that defect. Such a growth 

conditions be the yellow region in which SnW has formation energy of > 2.6 eV. In this 

growth region, all the cationic defects are also least probable; however, the formation of 

two other single defects Vo and WSn are probable, which give rise to n-type activity in 

ZnSnW2O8. In such a growth region, the probable co-existing secondary phases would 

be ZnO and ZnWO4. 

 

6.5 Conclusion 

A new semiconductor ZnSnW2O8 was predicted based on materials design. Sn and Zn 

were here to modify the electronic properties of WO3 while adding with it; two different 

cations were selected for two different reasons, one (Sn) reduce to band gap while other 

one (Zn) to place conduction band edge above H2/H
+
 potentials through an upward push. 

Our DFT derived results show that Sn and Zn indeed play their roles in ZnSnW2O8. It 

possess an almost direct band gap of 1.66 eV (2.34 eV) in DFT+U (DFT-HSE06). 

Further, like other tungstates, it exhibits a strong absorption. The bonding rigidity was 

also found be comparable with WO3. As a result, this new material shows an intense 
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promise for PEC process. However, the chemical potential landscape analysis reveals 

that the formation of multi-phases-ZnSnW2O8 is highly possible. Note that all opto-

electroic properties and stability were determined with respect to a crystal structure that 

was predicted through comprehensive mineral data base search by means of DFT+U 

global optimization. 

  



 

146 

Chapter 7  

Conclusion 

In the dissertation work, a systematic method to predict new functional materials 

has been developed. The method includes rational materials design and crystal structure 

predicting; prediction of single-phase stability and optimized solar-to-current/fuel 

efficiency growth conditions, in conjunction with opto-electronic properties calculations 

using DFT and post-DFT methods. Among all, the method to predict single-phase 

stability in the presence of a single defect as well as the optimized growth conditions has 

been developed for the first time. An extended and more generalized version of existing 

approach to predict crystal structure was presented. In addition, it was shown that a 

rational material design can accelerate the discovery of the desired material. The 

successful examples of the method are the predictions of two new quaternary oxides, 

CuSnW2O8 and ZnSnW2O8, respectively for PV and PEC applications; these successes 

are extensible to any other applications as well.  

The first critical step in our method was to designing a new material. To 

accomplish this task successfully for PV and PEC processes, oxides are chosen as new 

materials because of their well-known stability. The cations Cu, Sn, Zn, and W were 

selected considering their orbitals’ contributions in different compounds, mainly oxides. 

W-oxides were chosen because of proven demonstration of higher stability and strong 

absorption in its binary form (WO3). The reason to add Cu and Sn to WO3 to form 

CuSnW2O8 was to reduce the band gap significantly as in CZTS; dispersive conduction 

band feats were also expected from Sn. In case of ZnSnW2O8, Sn was selected to have 

contributions at VBM, expecting a band gap reduction as in α-SnWO4 while Zn was 

chosen to provide an upward push, as in like ZnWO4, placing the conduction band edge 

above H2/H
+
 redox potentials. Our DFT-derived results show that the expected feats were 
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indeed exhibited by the predicted materials. This concludes that if material is designed 

wisely based on quantum mechanical description, finding a suitable material in near 

future would no longer seem a distant hope.  

The next critical step was to predict crystal structure precisely. Since there is no 

method that can predict the crystal structure with certainty, our research was mostly 

devoted to make the crystal structure prediction as precise as possible. In doing so, we 

initially predicted crystal structures of existing W-O materials of similar stoichiometry. This 

was done upon global optimization of ~300 possible structures using DFT, and the 

possible candidates were generated by means of different manipulation of existing 

structures in mineral database. In chapter 3, we have shown that, our approach not only 

can produce the crystal structure of ABW2O8 compound quite accurately, but also for 

other stoichiometric material. The success in crystal structure prediction for existing 

materials lead us to claim that the predicted structures for the new materials should be 

accurate enough to be relied on the predicted opto-electronic properties. 

The final critical step was to develop a method that can predict the phase stability 

during the synthesis process and high efficiency growth conditions. Initially, the existing 

materials were used to verify the newly developed method which was later employed to 

the predicted materials. This method predicts that at thermodynamic equilibrium, the 

formation of multi-phases-CuSnW2O8 and ZnSnW2O8 is highly probable. The role of 

presences of other phases may have beneficial/detrimental effects on 

photovoltaic/photocatalytic performances, and hence needs to be investigated, which we 

intend to pursue in our future works. However, in the present work, we have attempted to 

predict optimized growth conditions with help of defect calculation, expecting that would 

minimize and maximize (prohibit) the co-existence of secondary phases and formation of 

benign (detrimental) defects in the predicted materials. For CuSnW2O8, we have 
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presented two optimized growth conditions at which preferable p-type activity through Cu-

vacancy (VCu) formation and minimization of the co-existence of unwanted secondary 

phases are easily achievable. It was further shown that the presence of VCu in fact 

enhances the absorption rate in CuSnW2O8. In the case of ZnSnW2O8, we found that at 

least two secondary phases are probable to be co-existed with it at thermodynamic 

equilibrium growth conditions. If we intend to minimize the detrimental defects such as 

SnW, the growth conditions those have to be chosen would facilitate the co-existence of 

ZnO and ZnWO8 formation. Under such conditions the formation of VO and WSn would be 

probable as well, giving rise to n-type activity in ZnSnW2O8. These defects do not 

deteriorate optical absorption performance compared to pristine one; however, further 

investigation is needed to have deeper insight on the defects influencing photocatalytic 

performance of ZnSnW2O8.   
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Chapter 8  

Future Research 

At present, my current research has been devoted in predicting an affordable 

solar absorber material. The success of my current method can be extended to fill the 

void in other technological aspects e.g. spintronics. A novel prospect of the spintronics 

technology is the use of the orientation of the spin of an electron to encode information, 

for which spin polarized materials are needed. The topological insulators (TI) are the 

attractive candidates for spintronics as they at the nanoscale host a spin state of an 

electron on the surfaces. However, the lack of an affordable TI is prolonging the 

spintronics technology from being a reality. Therefore, I intend to extend my expertise on 

prediction of sustainable solar materials to that of an affordable topological insulator in 

future.  

Once the new affordable material is predicted, the next challenge is to synthesize 

it. During the synthesis process, defects are inherent in a material. Further, unwanted 

phases may co-exist with primary material if the growth conditions are not well chosen. 

These defects/mixed-phases enhance or degrade the materials' properties. A suitable 

choice of growth conditions during the synthesis process can maximize the efficiency of 

the material of interest; however, determining such a high efficient growth conditions 

often involves trial-and-error. An effective prediction in this regard would not only do 

ensure the higher efficiency of the desired material, but also save time and cost. The 

method I have developed to predict high efficient growth conditions in dissertation 

research, intend to implement to the predicted TI. 

Apart from the synthesis process, defects are also induced on the heterojunction 

interfaces while integrating nano materials with bulk counterparts in creating a material 

platform for an electronic device. These defects modify the materials electronic properties 
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as well. Understanding the formation and nature of those defects at the interfaces are 

prerequisite for better engineering and hence the better controlling of the electronic 

properties of a device. An ab-initio calculation of defects formation can shed light in this 

regard. However, it’s a very challenging to predict the energetics of defects at hetero-

interfaces precisely. This is often done through some computational modeling whose 

successes are very limited. In future, I am interested to devise an effective and universal 

approach of computational modeling to calculate defects energetics or other electronic 

properties such as band offset at the interfaces. 
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Appendix A 

Electronic Properties of CuBi2O4 and α-SnWO4 
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Figure 1 The DFT+U electronic band structures of a) pristine-CuBi2O4 b)VCu - CuBi2O4 and c) 

CuBi - CuBi2O4. 

 

 
 

Figure 2 The DFT+U projected density of states (p-DOS) of VCu - CuBi2O4. 
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Figure 3 The DFT+U electronic band structures of (left) pristine-α-SnWO4 and (right) VCu – α-

SnWO4. 

 

 

 

Figure 4 The DFT+U electronic band structures of (left) pristine-α-SnWO4 and (right) VCu – α-

SnWO4. 
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Appendix B 

A Brief Study of ANbxOy (A = Cu and Zn) 
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Figure 1 The DFT+U electronic band structures of (a) ZnNb2O6, (b) CuNbO3, and (c) CuNb2O6. 

 

 

Figure 2 The DFT+U projected density of states (p-DOS) of (a) ZnNb2O6, (b) CuNbO3, and (c) 

CuNb2O6. 
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Figure 3 The DFT+U optical absorption of ZnNb2O6, CuNbO3, and ZnNb2O6. 
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