
Extracting and Modeling Useful Information from Videos for Supporting

Continuous Queries

by

MANISH KUMAR ANNAPPA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2016

Copyright c© by MANISH KUMAR ANNAPPA 2016

All Rights Reserved

ACKNOWLEDGEMENTS

I would like to thank my supervising professor Dr. Sharma Chakravarthy for

providing me an opportunity to work on this project and constantly motivating me

and guiding me throughout this thesis work. I would like to thank Dr. Vassilis

Athitsos for his constant guidance throughout this research work and taking time

to serve in my thesis committee. Without their constant support and guidance this

research work would not have been successful. I would also like to thank Dr. Ramez

Elmasri for taking time to serve in my thesis committee.

I would like to extend my gratitude to all the people involved in this project,

IT - Lab present members and alumni Abhishek Santra, Soumyava Das, Jay Bodra,

Nandan Prakash, Damini Singh, Jasmine Varghese and Mayoor Arora for their con-

stant support and guidance. Also, I would like to thank my family and friends for

their constant support and encouragement throughout my academic career.

November 15, 2016

iii

ABSTRACT

Extracting and Modeling Useful Information from Videos for Supporting

Continuous Queries

MANISH KUMAR ANNAPPA, M.S.

The University of Texas at Arlington, 2016

Supervising Professor: Dr. Sharma Chakravarthy

Automating video stream processing for inferring situations of interest has been

an ongoing challenge. This problem is currently exacerbated by the volume of surveil-

lance/monitoring videos generated. Currently, manual or context-based customized

techniques are used for this purpose. To the best to our knowledge the attempted

work in this area use a custom query language to extract data and infer simple situa-

tions from the video streams, thus adding an additional overhead to learn their query

language. Objective of the work in this thesis is to develop a framework that extracts

data from video streams generating a data representation such that simple “what-if”

kind of situations can be evaluated from the extracted data by posing queries in a

Non-procedural manner (SQL or CQL without using any custom query languages).

This thesis proposes ways to pre-process videos so as to extract the needed infor-

mation from each frame. It elaborates on algorithms and experimental results for

extracting objects, their features (location, bounding box, and feature vectors), and

their identification across frames, along with converting all that information into an

expressive data model. Pre-processing of video streams to extract queryable represen-

iv

tation involves parameters and techniques that are context-based, that is, dependent

on the type of video streams and the type of objects present in them. And lot of tun-

ing of values or experiments is essential to choose right techniques or right values for

these parameters. This thesis additionally, proposes starting values for such tuning

or experiments, in order to reach the right values.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

LIST OF ILLUSTRATIONS . ix

LIST OF TABLES . xi

Chapter Page

1. INTRODUCTION . 1

2. Proposed Approach . 5

2.1 Contribution . 12

2.2 Thesis Organization . 13

3. RELATED WORK . 14

3.1 VIRAT (Video and Image Retrieval and Analysis Tool) . . . 14

3.2 Live Video Database Management System (LVDBMS) 16

3.3 MedSMan: A Streaming Data Management System over Live

Multimedia . 18

4. Object Identification and Background Subtraction 21

4.1 Definitions . 21

4.2 Moving Object Identification . 24

4.2.1 Background Subtraction 26

5. Feature Extraction . 30

5.1 Feature Extraction Algorithm Selection 31

5.1.1 Definitions . 31

vi

5.1.2 Details of the Feature Extraction Algorithm Used in

the Experiments . 32

5.1.3 Feature Vector Extraction Algorithm Selection Exper-

iments: . 35

5.1.4 Threshold Calculation for Object Comparison 37

5.1.5 Handling Induced Errors in Accuracy Calculation . . . 38

5.1.6 Description of Test Video Sets 38

5.1.7 Results of the Experiments on Feature Extraction Al-

gorithms . 39

5.1.8 Additional Feature Extraction 39

6. Object Labeling Algorithm and Modeling Extracted Data 43

6.1 Metric 1: Use equivalence classes for Similarity Comparison 44

6.2 Metric 2: Use closest frame first for Similarity Comparison . 45

6.3 Metric 3: Use of Object Displacement Across Frames 46

6.4 Expressing similarity in terms of probabilistic measure 47

6.5 Modeling Extracted Data . 49

7. Object Labeling Algorithm Optimization and Experimental Analysis 53

7.1 Optimization of Object Classification Algorithm 54

7.1.1 Frame History Length . 54

7.1.2 Selecting Group Representatives 55

7.1.3 Experimental Results and Analysis 55

7.2 Key Parameters for Video Pre-Processing Framework 57

7.2.1 Frame Difference Offset . 58

7.2.2 Frame Hop-size . 60

7.2.3 Upper and Lower Bound for Object Size 60

7.2.4 Object Match Threshold 62

vii

7.2.5 Object Displacement Threshold 64

8. Video Pre-Processing Framework Implementation 66

8.1 Details of the Data Structures used 67

8.2 Video pre-processing framework implementation workflow . . 68

9. Conclusion and Future Work . 78

REFERENCES . 79

BIOGRAPHICAL STATEMENT . 83

viii

LIST OF ILLUSTRATIONS

Figure Page

2.1 How many people entered the mall in the given video segment 8

2.2 Query 3. Retrieve all objects that appear in three consecutive frames 8

2.3 AQuery for Query 3 . 10

4.1 Figures from left to right represent various object representation (a)

centroid, (b) set of points, (c) geometric shape - rectangle and (d) geo-

metric shape - ellipse respectively . 23

4.2 Figures from left to right represent various object representation (e)

contour, (f) silhouette, (g) articulated and (h) medial axis respectively 24

4.3 Object’s position in frame 1030, 1010 and 1050, respectively from left

to right . 25

4.4 Figures from left to right represent the difference between frame 1030

and 1010, difference between frame 1030 and 1050 and motion of object

in frame 1030 respectively. 25

4.5 Figures from left to right represent the result of the filter for threshold

values 10,100 and 30 respectively. 28

5.1 Figures from left to right represent the (a) Grayscale image and its (b)

histogram respectively . 33

5.2 Figures from left to right represent (a) color image and its (b) histogram

respectively . 34

5.3 Illustration of SIFT key-points match between two images 36

ix

5.4 Test videos: Video-1, Video-2, Video-3 and Video-4 respectively from

left to right . 39

7.1 Object Labeling Algorithm Optimization Workflow. 56

7.2 Figures from left to right represent the frame 1024, motion of the object

in frame 1024 for offset 1, 20 and 124 respectively. 58

7.3 Figures from left to right represent the frame 303, motion of the object

in frame 303 for offset 1, 20 and 124 respectively. 58

7.4 Illustration of need for minimum object size 62

7.5 Illustration of need for maximum object size 62

7.6 Object match threshold sample-1 . 64

7.7 Object match threshold sample-2 . 64

7.8 Object match threshold sample-3 . 64

8.1 Video pre-processing framework as a blackbox 66

8.2 Video pre-processing framework directory structure organization . . . 67

8.3 Video Pre-processing Framework Workflow. 69

8.4 Video Pre-processing Framework configuration File. 70

8.5 Code snippet capturing extracting frames for frame differencing from

queues. 73

8.6 Code snippet capturing frame differencing for object identification. . . 73

8.7 Code snippet capturing moving object extraction from background. . 74

8.8 Code snippet capturing assigning group label to moving objects. . . . 75

8.9 Code snippet capturing applying improvements. 76

8.10 Code snippet capturing displaying bounding box for moving objects. . 77

x

LIST OF TABLES

Table Page

2.1 VS1:Relational Representation of the video stream in Query 1 7

2.2 Arrable Representation of VS1 . 9

5.1 VS1:Experimental results to determine which feature extraction algo-

rithm is suitable for what type of objects 42

6.1 VS1:Relational Representation of the video stream Video 1 50

6.2 LVQL Query . 50

6.3 CQL Query . 51

7.1 Effect of ‘selecting group representative’optimization object labeling

algorithm . 57

xi

CHAPTER 1

INTRODUCTION

Big data analytics is about the ability to process and automate not only struc-

tured data but also disparate data types and their combinations. One such data type

is a video stream. Significant progress has been made in our abilities to collect various

types of data. Sensors have allowed us to capture numerical (and structured) data

on a 24/7 basis. Now, thanks to the availability of mobile and inexpensive cameras

and unmanned aerial vehicles, it is possible to collect large amounts of video data

for security, surveillance, and other purposes [1]. However, automated processing (or

even semi-automated processing where a human is assumed to be in the loop) of video

data is still a long way to go notwithstanding the progress made in image processing

and pattern recognition. Querying of video contents (for situation analysis) without

a significant learning curve is critical for understanding/checking events in a video

stream (e.g., person enters/leaves a building), spatial and temporal activities that can

be inferred from a video (e.g., patterns of car movement from a house, duration of

stay by an individual in a facility), and complex activities such as exchange of objects

by people crossing each other, pickup of a person by a vehicle. This has given rise

to an emphasis on video stream analysis for situation monitoring and reduce man-

ual involvement in the processing of videos. Typically, video analysis surveillance is

done manually by watching the video frames continuously for identifying the above-

indicated kinds of events and anomalies. The manual approach is resource-intensive

(especially human resource) and is also prone to errors. Some applications, such

as security surveillance for home or commercial places like malls, parking lots etc.

1

may tolerate and can accept some degree of errors or approximations but mission-

critical applications expect higher accuracy. Clearly, there is a need to automate

video stream analysis to infer as many types of events as possible in an automated

or semi-automated manner that significantly reduces (if not eliminates) human inter-

vention. In order to accomplish this, we need an approach such as database querying

where different types of queries can be asked and evaluated on the same data once

the data is captured and represented in a desirable manner.

The long-term goal of our work is to be able to query situations continuously

on live video streams in real time and make it as easy as querying a database. The

work in this thesis is a preliminary step towards this goal. Video analysis automation

is achieved in our work by making use of the best practices available currently in

Computer Vision. It is beneficial to understand the present work in the field of

automating video stream analysis to appreciate what is being proposed and how it is

a major step towards complete automation as a long-term goal. Broadly, current body

of work in automating video stream analysis can be divided into three categories: i)

Video indexing and content-based retrieval: ([2], [3], [4]), ii) Human activity detection

in video sequence: ([5], [6], [7]) and iii) Live video querying ([8], [9]). Briefly,

Video indexing and content-based retrieval involves pre-processing the video content

to extract important features like actors (through face identification), peculiar scene,

colors etc. and indexing them for easy retrieval. Queries on these stored video data

will make use of the features (information) extracted. Examples of such queries are

“Return videos that contain scenes such as a man is walking on the meadow” [10]

and “Find me a segment of the video where a party occurs” [2]. In these mentioned

approaches, such query operations are accomplished by providing the query input as

a video clip that contains the action to be searched. Human activity detection in

video involves detection of predefined human actions by training detection models

2

with video content that contains similar actions (similar to the supervised approach

of machine learning). Live video querying involves real-time identification of objects

of interest, extracting important features from each of the video frames so that this

information can be converted to a queryable format.

The work in first two categories has extensive methods to pre-process video and

convert them to a queryable format. However, they either target a specific class of

queries (e.g. querying for human actions) or some of these frameworks expect the

input as video clips. Also, the work in the Live video querying category uses either a

custom query language or expects users to formulate queries pragmatically if some of

the required operators are not present to express a situation (details are mentioned

in Section 3). In contrast, the work in this thesis proposes video pre-processing

methods that generates output by extracting generic information from the video to

express simple “what-if” kind of situations (not specific actions, but related to generic

object tracking) in a non-procedural manner (that is, not having to write code but to

understand the semantics of the operator and use it meaningfully). As an example, in

a video which captures people entering a mall (or a checkpoint) and exiting a mall (or

a checkpoint), this thesis work focuses on evaluating queries such as Query 1: “How

many distinct people are entering the mall throughout the day in each hour?” or

Query 2: “Count average number of cars in a parking lot over an interval or calculate

when cars are absent in a driveway” to learn travel patterns.

Although the long-term goal of this work is to be able to ask arbitrary queries

(based on the expressiveness of the language supported) on live video streams in

real-time, the initial steps are to identify methods to extract important and relevant

information and generate a canonical queryable representation from available video

streams. The framework proposed in this thesis can be extended for the live context

once real-time processing requirements are clearly understood.

3

Details of the overall approach proposed in this work to query a Video Stream

is explained in the next chapter (Chapter 2).

4

CHAPTER 2

Proposed Approach

Our ultimate goal in this work is to be able to evaluate a large class of queries on

video streams. Querying video streams in real time requires handling additional re-

quirements once we have demonstrated that general-purpose queries can be processed

on the contents of videos represented in a suitable canonical form. Real-time pro-

cessing of live videos will entail efficiency issues, use of main memory effectively, and

the QoS (quality of service) requirements for a particular video in question. Stream

processing (SP) and Complex event Processing (CEP) (supported in a DSMS or Data

Stream Processing System in contrast to a DBMS or Data Base Management System)

are already well established techniques for sensor data processing including the avail-

ability of many commercial systems. QoS issues, such as latency have been addressed

through optimal scheduling and load shedding trade-offs. In general, Data Stream

Management System (DSMS) and Stream Processing (SP) frameworks are applica-

ble to process data streams from sensors in many applications (e.g., environmental

monitoring, battlefield monitoring). Other continuous data generators such as web

clicks, traffic data, network packets, mobile devices have also prompted processing

and analysis of these streams for applications such as traffic congestion/accidents, net-

work intrusion detection, and personalized marketing. Additionally, Complex event

Processing (CEP) has come a long way to process continuous, varying input rate data

and event streams from sensors and events generated by other applications.

Video can be viewed as a stream of frames generated as part of a video stream. It

can be viewed as unbounded if it is an application that requires continuous monitoring.

5

Otherwise, it can be viewed as a bounded (albeit large at 30 frames per second) and

queries can be processed on that portion of the video stream. Although the streaming

nature is the same and some of the real-time requirements are similar, the types of

queries and the kinds of processing required for querying video streams are very

different. Hence, we can use the framework, but need to develop new or extended

representations, new operators (including spatial and temporal ones) for querying and

their semantics, as well as what and how much of information to extract to facilitate

this. As we already have a stream processing system MavEStream developed at the

IT Laboratory, UT Arlington, we plan on extending it for querying videos as needed.

To elaborate, these frameworks cannot be used as is for video analysis due to the

type of data representation used by them. Typically, Stream Processing systems

consume the data streams for querying in the form of relational representation with

defined schema and data types as textual, numerical and categorical. The work in

this thesis proposes a video stream pre-processing framework to extract data from

video streams and convert them to a canonical representation (an extended relational

representation) so that it can be efficiently queried and evaluated by the Stream

Processing (SP) system.

As a result of this thesis work we aim to generate a representation similar to

Table 2.1 for the video stream (mall video) mentioned in Query 1 (“How many

distinct people are entering the mall throughout the day in each hour?”). Certain

aspects of the contents of a video, such as a bounding box, feature vector, object

location require vector representation.

In Table 2.1 ts represents the time-stamp associated with video frames. fid

represents the incremental id given for each frame of the video starting at 1. glabel

represents the unique label given to each moving object present in the video. b box

represents the bounding box (the minimum rectangle that confines the outline of an

6

ts fid glabel b box quadrant fv
6:40:10 1 1 [240, 556, 24, 32] top right [fv1]
6:40:10 1 2 [230, 700, 22, 31] top right [fv2]
6:40:10 2 1 [242, 566, 24, 32] top right [fv3]
6:40:10 2 2 [240, 708, 22, 31] top right [fv4]
6:40:10 3 1 [244, 585, 24, 32] top right [fv5]
6:40:10 3 2 [250, 726, 22, 31] top right [fv6]

Table 2.1: VS1:Relational Representation of the video stream in Query 1

object) of an object. quadrant represents the position of the object in one of the four

quadrants of the frame (assuming a static camera). fv is the feature vector (A vector

that represents the unique information in an image. Additional details are given in

the Chapter 5.). Note that this is an extended relational model as vectors are not

supported in the traditional data model.

A simple query like “How many people entered the mall in the given video

segment” can be answered by Structured Query Language (SQL) semantics as shown

in Figure 2.1. A query like Query 1 (“How many distinct people are entering the mall

throughout the day in each hour?”) that needs the expression “count the number of

people entering” to be evaluated for every 1 hour for the given video stream, cannot

be evaluated using SQL semantics. This data pertaining to every 1 hour can be

obtained by the usage of window semantics. Continuous Query Language (CQL)

is an expressive SQL-based declarative language for registering continuous queries

against streams and updatable relations [11]. It supports time based, tuple based

and partition based types of sliding window semantics. Thus, continuous queries like

Query 1 (the complete query is shown in the Chapter 6) can be expressed using CQL

(the complete query is shown in the Chapter 6) semantics.

MavEStream has well-defined relational stream operators, windows of different

types and supports standard SQL and CQL semantics. As mentioned above, the

7

SELECT COUNT(DISTINCT vs1.glabel)
FROM VS AS vs1

Figure 2.1: How many people entered the
mall in the given video segment

Query 1 (“How many people are entering the mall throughout the day in each hour?”)

can be easily expressed using the operators present in Stream Processing (SQL and

CQL) over the relational data model to be generated as a result of video stream pre-

processing (Table 2.1). However, the standard semantics present in SQL and CQL

may not be sufficient to express situations that are not as simple as Query 1. For

example, let us consider this query [12] (Query 3) “Retrieve everyone in the video

who has appeared in more than three consecutive frames”. The corresponding SQL

expression for Query 3 is given in Figure 2.2.

SELECT DISTINCT vs1.glabel vs1.fid,
vs2.fid, vs3.fid

FROM VS AS vs1, VS AS vs2, VS AS vs3
WHERE vs2.fid = vs1.fid + 1

AND vs3.fid = vs2.fid + 1
AND vs1.glabel = vs2.glabel
AND vs2.glabel = vs3.glabel

ORDER BY vs1.glabel ASC

Figure 2.2: Query 3. Retrieve all objects
that appear in three consecutive frames

The query in Figure 2.2 is not only difficult to understand but the time taken

to compute this query will be significantly more due to several SELF JOIN and

Cartesian products. The query gets more complex when more consecutive frames are

considered. Query 3 (“Retrieve everyone in the video who has appeared in more than

three consecutive frames”) is a continuous query that requires aggregation (counting)

8

on an order dependent data (consecutive property is defined on the order of time

stamp) with rolling window (every three consecutive frames) basis.

An extension to the SQL called AQuery has been proposed in [13], using which

queries on order dependent data can be expressed and efficiently evaluated using

the window semantics. AQuery supports order-dependent, size-preserving operators

(running aggregates) and size-non-preserving (standard SQL aggregate functions like

min,max,count etc.). The data model expected by AQuery is called an arrable. An

arrable is obtained by applying GROUP BY operation on one of the columns in the

target (on which query has to be run) relational representation and also specifying

an ordering of tuples based on one or more of the columns. Thus, arrable representa-

tion can be adopted into our work as well to answer continuous queries that involve

computation of moving aggregates. If we group by Table tab:data-representation on

glabel (unique object label) assuming order on ts (time stamp), the resulting arrable

representation would be as shown in Table 2.2.

ts fid glabel b box quadrant fv
[6:40:10:0001,
6:40:10:0003,
6:40:10:0005]

[1, 2, 3] 1 [[240, 556, 24,
32], [242, 566,
24, 32], [244,
585, 24, 32]

[top right,
top right,
top right]

[[fv1], [fv3],
[fv5]]

[6:40:10:0002,
6:40:10:0004,
6:40:10:0006]

[1, 2, 3] 2 [[230, 700, 22,
31], [240, 708,
22, 31], [250,
726, 22, 31]]

[top right,
top right,
top right]

[[fv2], [fv4],
[fv6]]

Table 2.2: Arrable Representation of VS1

Figure 2.3 shows the corresponding AQuery for Query 1 (“How many distinct

people are entering the mall throughout the day in each hour?”). We can extend the

AQuery operators by developing customized operators for our domain (AQuery was

9

primarily targeted for financial class of application). consecutive is a new operator

that operates on the frame-id (fid) vector (vector generated due to GROUP BY on

glabel) and selects tuples if the condition is satisfied. In Query 3 (“Retrieve everyone

in the video who has appeared in more than three consecutive frames”) the condition

is “more than three consecutive frames”. The consecutive operator returns a frame-

id (fid) vector if it finds three consecutive frames in it. Since the representation is

ordered on fid vector, consecutive function was able to select fid vectors that have 3

consecutive frame-id. It is evident that the query in Figure 2.3 is simpler compared

to the one in Figure 2.2 as they do not have any self-joins or Cartesian products.

Thus, we plan to use the arrable representation for video processing and extend it if

needed. Our first step is to incorporate the new representation and AQuery operators

into MavEStream.

SELECT glabel, fid
FROM VS1
ASSUMING ORDER fid
WHERE consecutive(3, [fid])
GROUP BY vs1.glabel ASC

Figure 2.3: AQuery for Query 3

As mentioned earlier, the work in this thesis focuses on extracting appropriate

data from video streams, represent them in an appropriate model, and evaluate use-

ful situational queries. Additionally, it identifies the types of data to be extracted

from a video stream and state-of-the-art image processing techniques relevant for this

extraction. The thesis also streamlines this extraction process by providing config-

urable parameters so end users need not worry about the extraction details or the

10

image processing aspects. Even though stored videos are used in the experimentation

of the thesis, the methods proposed are applicable to live video streams as well.

Let us consider Query 1 (“How many distinct people are entering the mall

throughout the day in each hour?”) and assume that the time interval during which

the query to be answered is from 8am to 8pm (mall open hours) for every hour.

Following are some of the relevant data that need to be gathered from the video

stream and processed to answer the query:

1. Identify each person/object in every frame and label them such that the same

person/object in different frames gets the same label.

2. The labeled people need to be filtered for frames between mall open hours for

each hour which can be done using a window scheme used in continuous query

processing.

3. The filtered result should be counted (aggregated) for the number of occurrences

of unique labels.

4. Finally the above computation is repeated for each window of interest.

There are several Computer Vision techniques available to extract information

indicated above from video streams. The intention of this work is to use the best

available Computer Vision techniques to extract objects and related information and

to output a relational representation for a given video streams. This thesis is not

about extending or proposing new image processing techniques or algorithms. The

first part of this thesis explains in detail the information to be extracted from the video

streams and methods to extract them, demonstration of how situations are expressed

using non-procedural query semantics and comparison of these expressions to some of

the related work. Pre-processing of video streams to extract queryable representation

involves parameters and techniques that are context-based, that is, dependent on the

type of video streams and the type of objects present in them. And lot of tuning of

11

values or experiments is essential to choose right techniques or right values for these

parameters. The second part of this thesis focuses on hiding implementation details

like object identification and object labeling and exposing these above mentioned

parameters as configurable settings in the video stream pre-processing framework.

This thesis additionally, proposes starting values for such tuning or experiments, in

order to reach the right values.

2.1 Contribution

Following are the contribution of this thesis:

1. Evaluation and identification of the types of information to be extracted from

a video.

2. Canonical representation of the information extracted to facilitate situation

analysis through querying.

3. Application of the current computer vision techniques to Identify Objects and

other information from video streams, Extract Objects from video frames using

Background Subtraction methods.

4. Experimental evaluation of dimensionality reduction algorithms (Feature Vector

Extraction) for different types of objects.

5. Formulation of Object Labeling (or Tracking) algorithm that will aid in answer-

ing situational queries related to object movement or presence.

6. Identification of limitations in the usage of these Computer Vision methods for

the above steps.

7. Demonstration of usage of the generated data representation by evaluating few

of the simple situational queries using SQL, CQL, and MavEStream semantics.

8. Comparison of the generated representation with few of the related work in this

field.

12

9. Extending the CQL window semantics to answer more complex situational

queries in video streams and their experimental evaluation.

2.2 Thesis Organization

Rest of the thesis is organized as follows. Chapter 3 discusses some of the related

work in this field. Chapters 4 and 5 elaborates on object extraction, feature extraction

and discusses experiments performed for identifying thresholds to compare human and

car object types. Chapters 6 and 7 describe the algorithm used for labeling similar

objects across frames and describes the proposed data model. Chapter 8 describes

the key-parameters used in video pre-processing and the starting values recommended

for these parameters. Section 9 includes conclusions and future work.

13

CHAPTER 3

RELATED WORK

The amount of work done in the literature on Querying/Processing Video

Stream data is overwhelming as it spans image processing, pattern recognition, and

storage, management, and processing of extracted video contents. Covering all of

that is not only unnecessary but is also distracting from the details of this thesis.

Hence, we have selected a few important and relevant work that is close to the work

proposed in the thesis.

3.1 VIRAT (Video and Image Retrieval and Analysis Tool)

VIRAT is a video surveillance project funded by the Information Process-

ing Technology Office (IPTO) of the Defense Advanced Research Projects Agency

(DARPA) [7]. The goal of this project is to develop a software that goes through

huge video datasets and alerts if a particular event of interest occurs thus reducing

the burden on military operators who either manually have to go through the video

contents using fast-forward approach or search using already assigned meta-data tags

(through offline processing). An example of such interesting event is ”find all of the

footage where three or more people are standing together in a group” [14].

Following are the major categories of the events detected by VIRAT [7]:

1. Single Person: Digging, loitering, picking up, throwing, exploding/burning,

carrying, shooting, launching, walking, limping, running, kicking, smoking, ges-

turing

14

2. Person-to-Person: Following, meeting, gathering, moving as a group, dispers-

ing, shaking hands, kissing, exchanging objects, kicking, carrying an object

together

3. Person-to-Vehicle: Driving, getting-in (out), loading (unloading), opening (clos-

ing) trunk, crawling under car, breaking window, shooting/launching, explod-

ing/burning, dropping off, picking up

4. Person-to-Facility: Entering (exiting), standing, waiting at checkpoint, evading

checkpoint, climbing atop, passing through gate, dropping off

5. Vehicle: Accelerating (decelerating), turning, stopping, overtaking/passing, ex-

ploding/burning, discharging, shooting, moving together, forming into convoys,

maintaining distance

6. Other: convoy, parade, receiving line, troop formation, speaking to crowds,

riding/leading animal, bicycling

VIRAT architecture is mainly based on indexed Data Store of video clips con-

taining the actions to be detected that are similar to the once indicated above. VIRAT

trains action detection modules with these archived video data and tries to detect ac-

tions listed above in the target video stream. In summary, VIRAT has focused on

customized software to detect a large set of pre-determined set of interest to the

project. It is not a general-purpose approach where the indexed information can be

used to process arbitrary queries. Finally, it is an off-line approach to understand the

contents of a video.

The work in this thesis contributes towards a larger goal which is different

from that of VIRAT. The goal is to pre-process video streams to generate a rich

canonical representation over which different types of queries can be posed. The

motivation for this work is to move towards generalization from the customized way

of processing videos. As will be shown in Section 6, the representation will allow

15

us to process arbitrary and what if queries and has the further potential of being

able to do this in real-time using the real-time aspects of continuous query processing

systems. Identifying new event types is possible by addition new operators to the

system rather than writing new customized code.

3.2 Live Video Database Management System (LVDBMS)

The components of LVDBMS can logically be grouped into four tiers, the lowest

consisting of physical hardware (camera layer). Next is the spatial processing layer,

then the stream processing layer and finally the client layer. Queries originate in

the client layer and are pushed down to the stream processing layer and then to the

spatial processing layer. Data originates in the camera layer and flows upwards. As

it moves upwards it is transformed; from a stream of imagery in the lower layer to

streams of sub-query evaluations to a stream of Boolean query evaluations [9].

The main intent of LVDMBS is to match objects in one video stream with ob-

jects in another stream using bipartite graph comparison. LVDBMS uses a query se-

mantics called Live Video Query Language (LVQL) to express complex events formed

by simple events connected by spatial or temporal operators. For example, a simple

event could be a person (or more generally some object) appearing in a scene or

moving in front of a desk (where the term scene refers to some portion of the real

world that is observed by a camera and rendered into a sequence of frames in a video

stream). For example, a complex event could be defined as a person first appearing

in a scene and then, within some threshold of time, moving in front of a desk [9].

LVQL supports spatial operators like “Appear()”, “North()”, “Inside()”, “Meet()”

etc., temporal operators like “Before()”, “Meets()” etc. and traditional Boolean op-

erators like “and”, “nor” etc. Additionally, LVDBMS supports the following three

types of objects:

16

1. Static Objects: These objects are not automatically detected, but marked in the

video streams by users using the LVDBMS GUI while forming LVQL queries.

They are typically denoted as Appear(s1.12, 50), where s1.12 is the ID assigned

to the marked static object and the Appear() operator will return true only if

the marked static object s1.12 has bounding box more than 200 pixels.

2. Dynamic Objects: These type of objects are programmed to be automatically

detected in LVDBMS and are denoted by an asterisk (* e.g. Appear(s1.*, 200)).

Appear() operator will return true if there are any dynamic objects in the video

stream that have bounding box more than 200 pixels.

3. Cross-Camera Dynamic Objects: These are the dynamic objects in one stream

that are matched with another stream. They are generally denoted by #. For

example, Before(Appear(c0.#),Appear(c1.#),60) returns true if an object in

stream1 matches an object in stream2 after a time gap of at least 60 seconds.

LVDBMS differs from the work in this thesis, in the type of queries targeted,

operators, type of data extracted etc. Following comparison highlights the differences

between LVDBMS and the work in this thesis.

1. LVDBMS uses low-level query language LVQL and expects the users to build

applications using LVQL to express situations in high-level query languages like

CQL,SQL etc. Whereas, the work in this thesis aims to extract a representation

from video streams using which users should be able to express situations using

common non-procedural languages like CQL,SQL, without needing to build any

application. We plan on adding appropriate operators for this domain to CQL

and provide clear semantics, and integrate it with the rest of the query language

so that they can be used in conjunction with others.

2. Most of the operators in LVQL like Appear(), North() etc return only the

Boolean values limiting to queries that result in Boolean values using such

17

operators. The work in this thesis aims at a query language that is closed with

respect to the representation allowing composition of any operator with any

other available operator and includes aggregation and ordering as well.

3. LVDBMS does not facilitate queries that require tracking of unique dynamic ob-

jects within a single stream. Currently proposed operators (Appear()) in LVQL

treat all the dynamic objects as same. In other words, the output of Appear()

for dynamic object related queries does not contain unique labels assigned to

each of the objects detected. Appear() translates to if any dynamic object has

satisfied the given threshold or not. If unique objects have to be tracked using

Appear(), the object to be tracked has to be marked manually using LVQL GUI

before the query is executed. Whereas the work in this thesis aims to answer

queries related to tracking unique objects within or across streams.

4. Finally, usage of custom operators introduces a significant learning curve for

users to learn the new semantics. Whereas, the work in this thesis uses the

standard semantics in CQL and/or SQL.

3.3 MedSMan: A Streaming Data Management System over Live Multi-

media

MedSMan [8] presents a system that enables direct capture of media streams

from various sensors and automatically generates meaningful feature streams that can

be queried by a data stream processor.

MedSMan aims to answer queries like “Display the speakers video when he is

answering the 4th question about multimedia” in a broadcast seminar event. MedS-

Man makes use of the multimedia streams from various devices such as presentation

projector, speaker’s microphone, video device capturing the podium, movement sen-

sors etc. MedSMan uses the information from these Media Streams to inform users

18

(who have subscribed to this broadcast event) when an event such as the above query

occurs.

MedSMan lets the users create definitions of Media Streams at the Stream

Processing layer via Media Stream Description Language (MSDL). A Media Stream

is usually the output of a sensor device such as a video, audio, or motion sensor

that produces a continuous or discrete signal, but typically cannot be directly used

by a data stream processor. MedsMan continuously extracts the content-based data

descriptors called features using Feature Generation Functions (FGFs) (defined in

Feature Stream Description Language or FSDL from the Media Streams to create

Feature Streams. These Feature Streams are used by the stream processors to query

and return the corresponding segment from the Media Stream as the result. MedSMan

uses custom query language called Media and Feature Stream Continuous Query

Language (MF-CQL) to continuously query over live media. MF-CQL is CQL [11]

extended with additional syntax and shortcuts to express the extended semantics

beyond DSMS.

Although MedSMan is focused on answering situational queries with the aid

of various sensor data, it can be used to answer queries on live video streams using

MF-CQL query language. Following comparison highlights the difference between

MedSMan and the work in this thesis.

1. MedSMan expects the user to define (schema) media streams by specifying vari-

ous attributes that need to be extracted from sensors (including video capturing

device). The work in this thesis automatically generates data representation or

schema that is appropriate to express simple situational queries on live video

streams.

2. MedSMan expects the users to use FSDL to process the media streams to gener-

ate Feature Streams. If a particular method to accomplish a task (for example,

19

track unique moving objects in a video stream) that processes Media Stream

is not available in MedSMan, then it expects the user to define a new Feature

Generation Function (FGF) to achieve this task pragmatically. Whereas, the

work in thesis hides the processing of the video streams (object tracking algo-

rithm) from users and users do not need to develop any new methods to express

simple situations.

In summary, the proposed work, of which this thesis is a part of , is different

from the relevant work in the literature. Our goal is to make querying of videos as

general-purpose as possible and remove the learning curve present in most other ap-

proaches. This approach not only makes it easy to automate, also has the potential

of adding real-time functionality to the framework (as has been done for sensor appli-

cations using stream processing). Furthermore, the use of CQL-like language affords

optimizations by the system that are typically not possible or has to be done by the

developed which is not ideal.

20

CHAPTER 4

Object Identification and Background Subtraction

Object Identification involves identifying the pixels in a frame that contributes

to the object of interest. The object of interest in a video frame can be either a static

object or a moving object. There are several methods available in Computer Vision

to detect the pixels related to the object of interest in a video stream frame. Still

object identification is mostly done by training a model using similar images of the

object that needs to be identified [15]. As our current focus is on video streams for

tracking objects that are moving, we have concentrated only on the identification of

moving objects 1. Before we delve into the details of Object Identification, following

are the definitions of important fundamental components in Object Identification.

4.1 Definitions

Definition 4.1.1. Frame Representation: A video stream consists of continuous

frames. Each frame is represented as an image in general. In our work, each frame is

represented by the notion Fi, where ‘i’denotes the sequence number (temporal order)

of the frame in the video stream. Mathematically each of these frames (images) are

represented by a matrix [m x n] where m, n represent the image dimension (or

resolution) as width and height respectively. Every frame of a video stream will have

the same dimension as the video stream. The matrix values represent the bit-depth

(color-depth or intensity) of each of the pixels in the image. The possible range of

1For parking lot and other kinds of surveillance, it may be necessary to identify objects that do

not move. This does not change the modeling and querying aspects of our work.

21

the bit-depth is from 1 to 48. For simplicity, we have used 8-bit depth in our work to

represent image pixels.

The color images are represented by 3 dimension matrix with each planes corre-

sponding to pixel intensity in the colors Red, Green and Blue. In contrast Grayscale

images are 2 dimensional matrices whose pixel intensity varies between 0-255 (for

8-bit depth) with 0 representing a black pixel and 255 white. In general color images

are process intensive to deal with so they are converted to Grayscale before perform-

ing any operations on them. Following is the formula to convert a color image to

Grayscale.

G = 0.30 ∗ IR + 0.59 ∗ IG + 0.11 ∗ IB (4.1)

G is the Grayscale converted image, IR is the intensity of a pixel in the image

for channel Red, IG is the intensity of the same pixel for channel Green and IB is

the intensity of the same pixel for channel Blue. For further details about the image

representation, please refer to [16].

Definition 4.1.2. Object Representation: Object of interest in a video frame

can be anything like people, cars, animals, couch, door, fish etc. Once the object of

interest is identified, it needs to be represented in a form such that it can be separated

from the background using the information present in this representation. Following

are the few available representation for representing objects as per the survey present

in [17].

1. Points: Object can be represented by a point, which is the centroid of the

object (Figure 4.1 (a)) or a set of points (Figure 4.1 (b)). This representation

is more suitable when the object occupies a small region in the frame.

22

Figure 4.1: Figures from left to right represent various object representation (a)
centroid, (b) set of points, (c) geometric shape - rectangle and (d) geometric shape -

ellipse respectively

2. Primitive geometric shapes: Object is represented as a geometric shape that

covers the skeleton of the object. Generally used shapes are rectangle (Figure

4.1 (c)), eclipse (Figure 4.1 (d)).

3. Object silhouette and contour: Contour representation is drawing the exact

outline of an object (Figure 4.2 (e)). Silhouette is the area to be filled inside

the outline of an object (Figure 4.2 (f)).

4. Articulated shape models: Articulated objects representation is represent-

ing each parts of the object as connected components (Figure 4.2 (g)).

5. Skeletal models: Object skeleton can be extracted by applying medial axis

(Figure 4.2 (g)) transform to the object silhouette [Ballard and Brown 1982,

Chap. 8].

Points representation can be used to track objects in video streams but they

are not suitable if the object represented by a point has to be compared with another

object for similarity (as the entire object pixels are needed for comparison). Similar-

ity comparison is part of the work-flow in our algorithm (explained in the Chapter

23

Figure 4.2: Figures from left to right represent various object representation (e)
contour, (f) silhouette, (g) articulated and (h) medial axis respectively

6). We have chosen the Primitive geometric shapes representation with rectangle as

the shape to denote an object of interest in our work. This representation is the

simplest representation amongst all the available representations and is suitable to

our requirements.

4.2 Moving Object Identification

A straightforward and most widely used method to identify moving objects in

video streams is to calculate frame differences [16]. In frame differencing method, pix-

els related to moving objects in a video frame are obtained by selecting the minimum

difference between the following two components. The first component is generated

as a result of subtracting a frame Fi wherein the objects need to be identified with

the frame Fi1 that has lesser video time stamp compared to Fi. (need not necessarily

be the previous frame.) Similarly, a second component is generated as a result of

subtracting Fi from a frame Fi+1 that has a greater video time stamp value. The dif-

ference calculated here is the absolute difference between grey scale converted images

24

Figure 4.3: Object’s position in frame 1030, 1010 and 1050, respectively from left to
right

Figure 4.4: Figures from left to right represent the difference between frame 1030
and 1010, difference between frame 1030 and 1050 and motion of object in frame

1030 respectively.

of the frames to be subtracted. Equation 4.2 is the mathematical expression of the

above mentioned method.

diff1 = |Fi − Fi−1|

diff2 = |Fi − Fi+1|

motion = min(diff1, diff2)

(4.2)

Figure 4.3 and 4.4 illustrate the moving object identification through frame

differencing wherein a man is moving from left to right in the video. In Figure 4.3

first figure from left is the frame where the object need to be identified (Fi=1030),

second figure from left is a frame that has lesser video time stamp (Fi−1=1010) com-

pared to first and third figure from left is a frame that has greater video time stamp

(Fi−1=1050) compared to first. In Figure 4.4 first figure from left is the pixels cor-

responding to the movements of the object in frame 1030 and 1020 (diff1), second

figure from left is the pixels corresponding to the movements of the object in frame

25

1030 and 1040 (diff2) and third figure (motion) from left represents only the pixels

corresponding to the moving object in frame 1030.

In the first figure from left in 4.4, pixels related to only the moving objects

in frame 1020 and 1030 are visible as the background is static. In other words, as

mentioned above the frames Fi and Fi−1 are the gray scale converted images of the

original frame and the pixel values in their image matrix will be between 0 and 255.

Since the pixels corresponding to background in both these frames do not change, the

resulting difference between these frames will have intensity value of 0 for the pixels

related to the background and a value between 0-255 for the pixels corresponding

to the moving objects . Thus the background will appear as black in the difference

image diff1. Similarly, the background in the resulting image diff2 is black due to

the same reasoning.

Third figure from left in Figure 4.4 shows only the pixels related to the move-

ment of the object in frame 1030 due to the following reasons. In diff1 the area

occupied by object in frame 1020 and frame 1030 will have pixel intensity greater

than 0. Similarly, in diff1 the area occupied by object in frame 1040 and frame

1030 will have pixel intensity greater than 0. The common area amongst diff1 and

diff2 that has pixel intensity greater than 0 belongs to just the object in frame 1030.

Thus, the resultant image (motion) of minimum operation between diff1 and diff2

has intensity greater than 0 for only pixels related to movement of object in frame

1030 as the pixels related to the movement of objects in frame 1020 and 1040 are 0

in either of the images diff1 or diff2.

4.2.1 Background Subtraction

In order to separate the identified object from its background, it is essential

to know the position coordinates of the object relative to the frame (considering left

26

bottom corner of the frame as (0,0)) and the area occupied by the object in the

frame. As discussed in the Section 4.1.2 we would be representing an object by a

minimum rectangle that confines the outline of the object. This rectangle is called

bounding box. A bounding box is represented as a vector of four values [x-coordinate,

y-coordinate, length,width]. (x,y)-coordinates represent the position co-ordinates of

the object, length and width represent the dimensions of the rectangle.

There are several algorithms to determine the area occupied by the object in

the frame. One of the most used algorithm is Connected Component Analysis [15].

Connected Component Analysis2 uniquely labels the connected regions. In the case

of images, regions are denoted by collection of pixels. The resultant image (motion)

of frame differencing contains only the pixels related to the object movement thus

forming a region (connected component) that denotes the area occupied by the mov-

ing object in the frame. Thus, Connected Component Analysis can be applied on

motion image to identify the region occupied by the moving object. But Connected

Component Analysis cannot be directly applied on motion as it expects the elements

forming a region to have similar values (same pixel intensity) whereas, motion is a

Grayscale image and has the pixel intensity values between 0-255. Thus, in order to

apply the Connected Component Analysis algorithm on motion to identify the region

occupied by the moving object, all the pixels corresponding to the object movement

have to be converted to the same intensity value.

2Connected Component Analysis algorithm can be either 4-connected or 8-connected. In 4-

connected all the pixels on the 4 edges of the target pixel are neighbours. In 8-connected all the

pixels on the 4 edges as well as the diagonal pixels are neighbours. Please refer to the book [16] for

more details on it.

27

Figure 4.5: Figures from left to right represent the result of the filter for threshold
values 10,100 and 30 respectively.

The result in the Equation 4.2 (motion) can be further filtered based on a

threshold 3 to convert all the pixels related to moving object to the same intensity

value. During the filtering process, all the pixels that have intensity value above the

threshold are assigned an intensity value of 1 and rest as 0. Thus, the threshold value

has to be chosen carefully so that almost all the pixels related to the moving objects

get an intensity value as 1 and rest (background) of the pixels as 0. Additionally,

this filtering process reduces background noise (minute background changes) present

in motion. The threshold value is chosen through trial and error experiments. A low

value of threshold may result in too much background noise (first figure from left in

Figure 4.5 for threshold = 5) or a high value may remove some part of the region

occupied by the object (second figure from left in Figure 4.5 for threshold = 80).

The ideal threshold would be the one which reduces the background noise but retains

all the area corresponding to the object movement (third figure from left in Figure

4.5 for threshold = 25). Additional details about choosing an appropriate value and

recommended starting range of value for tuning the threshold for a given video is

explained in the Section 7.2.1.

3The methods proposed in this thesis use several threshold values. These threshold values are

calculated based on a random sample of the target video stream (the one on which the queries are

run) or a video stream that is similar to the target video.

28

subsectionBounding Box Calculation The minimum rectangle ([x-coordinate,

y-coordinate, length, width]) can be easily deduced for the labeled connected region

(subset of pixels from the original frame) returned by Connected Component Analysis

algorithm, by calculating the following components.

• x-coordinate: Lowest column index of the connected region.

• y-coordinate: Highest row index of the connected region.

• length: Difference between Highest row index and Lowest row index of the

connected region.

• width: Difference between Highest column index and Lowest column index of

the connected region.

The list of connected areas returned by Connected Component Analysis algo-

rithm may have components corresponding to background noise (few of the noise

remains even after filtering.) in addition to the components representing moving ob-

jects. But the connected area corresponding to the noise will be a lot smaller or bigger

compared to that of the moving object. Our work eliminates the areas detected as

noise through a min and max threshold value for the size (bounding box size) of the

connected component detected. This threshold value should be calculated through

experiments by observing the average size of the objects of interest in the video stream

(or sample). This value varies for different video streams. Details on how to choose

the min and max threshold for object size is given in the Section 7.2.3.

Once the bounding box of moving objects in a frame is calculated and most

of the noise is eliminated, the detected moving objects can be extracted from the

frame to separate from the background by superimposing (cropping) the bounding

box coordinates on the original color image of the frame. The next chapter explains

in detail about how to extract important features from these extracted object images

for their comparison.

29

CHAPTER 5

Feature Extraction

To answer most of queries about object tracking in videos, it is necessary to

classify (or group) identified moving objects in each frame as either a new object or an

object that has appeared in the past frames. In other words, the same moving object

in different frames must be given the same group label. This can be achieved by

finding similarity between the object image (the cropped moving object image from

a frame) to be labeled with the already labeled object images appeared in the past

frames. Original color image data of the objects will be a three dimensional matrix.

During labeling, all the object images appeared in the past frames may be required

to be loaded into main memory for the comparison. This may result in huge amount

of data in the main memory as each of these images are three dimensional matrices.

In general, classification algorithms tend to give out less accurate results in case the

amount of data is huge or is of high dimensionality. Such phenomenon is knows as

“curse of dimensionality” [18]. There are several dimensionality reduction techniques

to overcome this problem [19]. The dimensionality reduction techniques available for

image data are called feature extraction algorithms. Feature extraction algorithms

extract abstract data from the original image data by applying transformation on

them. The resulting data has dimensionality reduced compared to original data by

retaining only the important information that is sufficient enough to represent the

object information. These important information are called features.

Features can be anything like peaks in a mountain image, doorway, corners,

color of the objects in image etc. These features are called key-point features or

30

interest points. Another class of important features are edges. Edges can be grouped

into longer curves and straight line segments [16]. Once the important points (or

information) are detected in an object image, each of these points are represented

using descriptors. Collectively, all the descriptors extracted from an image are called

feature vectors. There are several feature extraction algorithms available in Computer

Vision that detect important features and extract descriptors from them. Few of such

algorithms are Histogram of an Image, Scale Invariant Feature Transform (SIFT)

/ Speeded Up Robust Features (SURF), Hough Transform, Histogram of Oriented

Gradients (HOG) etc. These algorithms are applied based on the type of objects in

the image. In this thesis, we deal with videos that contain moving objects of type

humans or cars. A feature extraction algorithm that can be used to compare human

images is not likely to be suitable for car images. The appropriate feature extraction

algorithm for a given type of object need to be determined through experiments.

Following are the experimental details conducted for identifying feature extraction

algorithms suitable for each kind of object.

5.1 Feature Extraction Algorithm Selection

Following are the definition and details of few of the important components

used in the experimentation. These definitions will be referred in rest of this report.

5.1.1 Definitions

Definition 5.1.1. Object Notation: Methods described in the Chapter 4 are

used to identify and extract (crop) moving object images in every frame of the target

video stream. Once the object images are extracted from frames, they are denoted as

Obj<i,j>. Where ‘j’is the incremental id given to every moving object detected (the

first moving object detected in the video stream will have id as 1). ‘i’is the frame

31

number in which this object was identified. Extracted (cropped) object image from its

frame is a color image which is mathematically represented as three dimension matrix

with each dimension corresponding to either red, green or blue color planes (Refer

Definition 4.1.1 for more details on the color image mathematical representation)

Definition 5.1.2. Object Instances: The extracted object images of the same

object in different frames are called Object Instances. All the object instances of an

object belong to the same group/class (Each group denotes a unique moving object

in the video stream.).

5.1.2 Details of the Feature Extraction Algorithm Used in the Experi-

ments

5.1.2.1 Histogram:

Histogram of image is an example of statistical feature. Histogram of a Grayscale

image (Assuming image has 8-bit depth intensity values.) will contain 256 bins with

each bin corresponding to one of the possible intensity values between 0-255. Each

bin in the histogram represents the count of the pixels in the image with that intensity

value. Example of a Grayscale image and its corresponding histogram plot is given

in the Figure 5.1 (x-axis represents the different bins (or intensity values) and the

y-axis is the count of pixels with that intensity value in the image.). On the other

hand color histogram consists of three histogram of 256 bins, for each of the color

channel red, green and blue. An example of color image and its combined histogram

of all the color channels is given in the Figure 5.2.

A straightforward method to calculate similarity between the color histograms

of two different images is to calculate the distance between them. If H1 is the his-

togram matrix of an image image1 and H2 is the histogram matrix of an image

32

Figure 5.1: Figures from left to right represent the (a) Grayscale image and its (b)
histogram respectively

image2 then the distance between them can be calculated as mentioned in Algorithm

1. HistRed1, HistGreen1 and HistBlue1 are the normalized histogram of the channel

red, green and blue respectively in H1. Similarly, HistRed2, HistGreen2 and Hist-

Blue2 are the normalized histogram of the channels green and Blue respectively in

H2. HRed, HGreen and HBlue are the sum of squared difference between the each

bin values in red, green and blue channel histogram of H1 and H2. And the final

distance H is calculated using the Luminance color to Grayscale conversion formula

in [20].

33

Figure 5.2: Figures from left to right represent (a) color image and its (b) histogram
respectively

5.1.2.2 Scale Invariant Feature Transform (SIFT):

SIFT [21] algorithm is a Feature Extraction algorithms that detects important

key-points (features) in the given image and provides the descriptors for each of these

detected points (collectively all the descriptors extracted from an image are referred

as feature vectors). The key-points detected can be edges, illumination points etc in

the image. SIFT can detect image of an object varied in scale, illumination etc. by

using the descriptors extracted from them. For example, SIFT can be used to detect

a given object in a cluttered scene (the given object image is present in the target

(cluttered) image in reduced scale.).

34

The feature vector (cumulative feature descriptors) extracted from the images

is a matrix of dimension [MxN] where M is the number of key points detected and

N is the size of the each feature descriptor extracted. The number of key-points

detected varies from image to image. In most of the implementations of SIFT, feature

descriptor size (N) is 128. Each of these feature descriptor is orientation histogram

created for 4x4 neighbour pixels of the key-point with 8 bins each. Which makes the

each descriptor a vector of size 4x4x8 = 128 [22]

If two images are said to be similar if the the ratio between the number of

SIFT feature descriptors that matched amongst the images to the total number of

descriptors obtained from one of the above two images is greater than or equal to

a threshold (Refer to the Section 5.1.4 for details on choosing threshold value.).

If M1 is the number of feature descriptors in the first image, M2 is the number of

feature descriptors in the second image and K is the number of feature descriptors

that matched between the images, then the similarity value can be expressed as in

the Equation 5.1. A feature descriptor D1 in first image matches with descriptor D2

in second image, if the distance between them multiplied by 1.5 is not greater than

distance of D1 to all other descriptors in the second image (Please refer to [21] and

[22] for additional details about SIFT descriptor comparison.). Figure 5.3 illustrates

the matching of key-points between two images using SIFT.

Similarity =
K

M1
(5.1)

5.1.3 Feature Vector Extraction Algorithm Selection Experiments:

The experiment involves the following steps.

1. Extracting moving objects from every frame of the video using the techniques

mentioned in Chapter 4.

35

Figure 5.3: Illustration of SIFT key-points match between two images

2. Applying a feature extraction algorithm on each of these identified objects,

3. Comparing these feature vectors (instead of the original image data) to group

object instances (object instances are images of the same object in different

frames) together, and

4. Calculating the accuracy of matching.

For a given video with a specific type of objects (humans or cars) in it, suitable

feature vector extraction algorithm is the one that gives better accuracy. Accuracy

is calculated as shown in the Equation 5.2.

36

Number of objects grouped correctly using the feature vector comparison

Total number of objects identified

(5.2)

If Obj<i,j> is an object in frame Fj, Obj1 is its group, FVi is its feature vector

and S is a set that represents different instance images of Obj1 extracted from various

frames. SFV is a set that contains feature vectors corresponding to every object

instance in set S. Then, in order to add Obj<k,l> found in frame Fl (l¿i) to set S, the

distance between any one of the instances in SFV and feature vector FVk of object

instance Obj<k,l> should be less than the threshold value.

Object Obj<k,l> in frame Fl is said to be correctly classified if the group label

assigned to it is the same as the label in ground truth. In other words if the ground

truth also says that the object instance Obj<k,l> belongs to the group Obj1. Ground

truth for the experiment is formed by scanning every frame in the video and assigning

the same label to different instances of an object that are present in different frames.

5.1.4 Threshold Calculation for Object Comparison

As mentioned in the Section 5.1.3, threshold distance value decides if given

two object images belong to the same group or not. Threshold value may vary based

on the type of objects being compared or feature extraction algorithm being applied.

Threshold value is calculated by experimenting with the range of possible distances

(or ratio (0-1) in case of SIFT). Initially a random threshold distance is chosen and the

experimentation steps under the Section 5.1.3 are followed to calculate the accuracy

(Equation 5.2) of grouping (or classification) using this threshold. Similarly, exper-

imentation steps are repeated for various values of threshold to see if the accuracy

is improving. Final threshold value will be the value which gives the best accuracy.

37

Details of how to choose an appropriate initial range of values for threshold to reduce

exhaustive experiments is mentioned in the Section 7.2.4.

5.1.5 Handling Induced Errors in Accuracy Calculation

In the process of accuracy calculation of the object classification as per Equation

5.2, if an object instance is mislabeled in a frame, that may lead to an incorrect

assignment of labels to the instances of the same object in future consecutive frames.

This is due to the fact that consecutive object instances of an object are most likely

to have similar feature vector. For example, if object instance Obj<k,l> found in frame

Fl was assigned an incorrect label, then the object instances that match Obj<k,l> in

the consecutive future frames will also be assigned incorrect group labels. For such

cases consecutive errors are ignored and considered as correct classification and only

one error at frame Fl is counted towards accuracy calculation.

5.1.6 Description of Test Video Sets

Following are the descriptions of video sets used for experiments:

1. Video 1 : Aerial view of people walking in an atrium (Video-1 in Figure 5.4).

This is a sample video bundled with MATLAB installation. The human images

extracted in this video will have low resolution as the video is captured from

far.

2. Video 2 : Ground view of people entering inside a room (Video-2 in Figure 5.4).

This is a video recorded at our lab. The human images extracted in this video

will have higher resolution as compared to Video-1.

3. Video 3 : Ground view of cars moving on the road with camera placed far

away from the road (Video-3 in Figure 5.4) [23]. The car images will have low

resolution due to the far placement of the camera.

38

Figure 5.4: Test videos: Video-1, Video-2, Video-3 and Video-4 respectively from
left to right

4. Video 4 : Ground view of cars entering and leaving the parking lot (Video-4

in Figure 5.4) [24]. The car images in this video have higher resolution as

compared to Video-3.

5.1.7 Results of the Experiments on Feature Extraction Algorithms

Various feature vectors were applied on the test videos to compare objects using

threshold values and following are some of the conclusions of our experiments:

1. From Table 5.1, it is clear that SWIFT did not fare well for objects which

do not have edges or pointy structure (like humans). The algorithm was not

able to extract enough important feature points to perform object comparison

of human objects. However SWIFT was able to successfully classify instances

of cars.

2. SWIFT/SURF failed for objects which are smaller than 60x60 pixels (low res-

olution moving object images)

3. Color Histogram was able to successfully classify human object instances.

5.1.8 Additional Feature Extraction

Since our goal is to answer large class of queries, it is useful to extract additional

information for the objects identified so that they can be used as needed. Additional

information we have extracted are color of the object, size of the object (bounding

39

box), location of the object relative to the video frame, direction of movement of the

object etc.

40

Algorithm 1 Histogram Comparison

HistRed1 =
H1[1][1] + H1[1][2] + + H1[1][256]

256

HistGreen1 =
H1[2][1] + H1[2][2] + + H1[2][256]

256

HistBlue1 =
H1[3][1] + H1[3][2] + + H1[3][256]

256

HistRed2 =
H2[1][1] + H2[1][2] + + H2[1][256]

256

HistGreen2 =
H2[2][1] + H2[2][2] + + H2[2][256]

256

HistBlue2 =
H2[3][1] + H2[3][2] + + H2[3][256]

256

HRed =
256∑
i=1

|HistRed1[i]−HistRed2[i]|2

HGreen =
256∑
i=1

|HistGreen1[i]−HistGreen2[i]|2

HBlue =
256∑
i=1

|HistBlue1[i]−HistBlue2[i]|2

H = 0.2989 ∗HRed + 0.5870 ∗HGreen + 0.1140 ∗HBlue

41

Video Histogram SIFT Conclusion
Video-1: Low res-
olution people ob-
jects

98.07 N/A SIFT was unable
to extract enough
points due to small
image size of mov-
ing objects

Video-2: High res-
olution people ob-
jects

90.1 82.2 Histogram gave
better accuracy
for human type of
objects comapred
to SIFT. Thus,
for human type of
objects Histogram
is better

Video-3: Low res-
olution car objects

skip (most of
the cars have
similar color and
histogram cannot
detect differences
in shapes)

N/A SIFT was unable
to extract enough
points due to small
image size of mov-
ing objects

Video-4: High res-
olution car objects

skip (most of
the cars have
similar color and
histogram cannot
detect differences
in shapes)

70.6 SIFT gave better
accuracy for car
type of objects as
compared to his-
togram. Thus, for
car type of objects
SIFT is better

Table 5.1: VS1:Experimental results to determine which feature extraction
algorithm is suitable for what type of objects

42

CHAPTER 6

Object Labeling Algorithm and Modeling Extracted Data

Labeling (or classification or grouping) techniques are applied for object track-

ing. In order to track an object throughout the video stream, every instance of this

object must be identified and labeled same in the upcoming frames. Several algo-

rithms, such as Bayesian classifier or k-NN classifier [25], are available for classifying

a set of data (e.g. images, text etc.) into equivalent groups. This thesis has used a

variation of the 1-NN classifier [25] to label object instances of a given object.

k-NN classifier in general is a non parametric classifier. k-NN is used to classify

a given data item to one of the known classes. k-NN requires training data (which

is essentially a set of data of which class labels are known) to build a classification

model. Whenever k-NN has to assign a class label to a given item, it compares the

similarity of the given item with the items present in the training data and assigns

class label of the given item as the majority class label amongst the k items from

training data that are similar to the given item. In 1-NN classifier, k is equal to

one. The labeling algorithm used in this thesis is different from the standard 1-NN

algorithm in the training data used. The labeling algorithm used in this thesis does

not require any training data beforehand. The first moving object instance identified

in the given video stream is given group label 1 and this becomes the training data to

start with. This object instance will be added to the first group formed above. The

second moving object instance, found after labeling the first instance, is compared

with the first instance. If the second object instance is similar to the first one, then

it is assigned the same group label as the first one. Else it is given a new incremental

43

(if previous was 1 then the next will be 2) group label. This process is repeated for

every moving object instances found thereafter. Thus, the classes (or groups) are

determined on the fly unlike in 1-NN.

Tracking algorithm developed in this thesis uses a set of metrics to check the

simialrity between object instances. The order followed by these metrics are illus-

trated in Algorithm 2 for the classification of object instance Obj<i,j> found in frame

Fj. We first apply Metric 3 to label an object instance and if it fails (returns no group

label), Metric 2 is used. Similarly, if Metric 2 fails, Metric 1 (exhaustive approach) is

used. This order improves the efficiency of pre-processing of video frames.

Algorithm 2 Object Classification Algorithm

1: if metric3(Obj<i,j>) 6= NULL then

2: group(Obj<i,j>) = metric3(Obj<i,j>)

3: else

4: if metric2(Obj<i,j>) 6= NULL then

5: group(Obj<i,j>) = metric2(Obj<i,j>)

6: else

7: group(Obj<i,j>) = metric1(Obj<i,j>)

8: end if

9: end if

6.1 Metric 1: Use equivalence classes for Similarity Comparison

This mtric states that an object instance identified in the current frame can

be labeled by calculating the similarity between it and every object instance from

the past frames that are already classified and assigned group labels. If any of the

44

instances in past frames satisfies the threshold (Refer to the Section 5.1 for more

details on threshold.) with the object instance being compared, then the object

instance in the current frame is given the same group (or class) label as the instance

that satisfied the threshold. Similarity measure used in this thesis to compare object

instances is the Euclidean distance between the feature vectors extracted from object

instances(Refer to the chapter 5 for more details on feature extraction and their

comparison.).

Metric 1 is exhaustive; it compares a new object instance with all instances in

the previously formed groups until a similar instance is found. Metric 2 improves

efficiency by reducing the number of comparisons.

Let us assume Obj<i,a>, Obj<i,b> and Obj<i,c> are the object instances identified

in frame Fi and are already classified and given groups labels as Obj1, Obj2 and Obj3

respectively. Obj<j,d>, Obj<j,e> and Obj<j,f> are the object instances identified in

frame Fj. If we assume S is a set of object instances that are already assigned with

group labels, then the group label of Obj<j,d> is obtained by comparing it with with

the object instances in S. If the object instance Obj<j,d> does not satisfy the threshold

with any of the instances in the set S, then a new incremental group label will be

assigned to the object. Algorithm representation of Metric 1 is shown in Algorithm

3.

6.2 Metric 2: Use closest frame first for Similarity Comparison

In most of the cases, consecutive instances of an object will have similar feature

vectors. This metric uses this information to reduce the number of comparisons

needed to label an object in the current frame by restricting the comparisons to just

the object instances in the previous frame. This metric will fail if the object instance

45

Algorithm 3 Metric-1

1: for group in all group do

2: for instance in List Of Instances(group) do

3: if Euclidean distance(instance,Obj<j,d>) < threshold then

4: group(Obj<j,d>) = group(instance)

5: break;

6: end if

7: end for

8: end for

9: if group(Obj<j,d>) = NULL then

10: group(Obj<j,d>) = last group label + 1

11: end if

to be compared is an instance of the object that has appeared newly in the video. If

this metric fails, then Metric 1 can be used to label.

The algorithm in listing 4 illustrates assignment of group label for object in-

stance Obj<i+1,d> found in frame Fi+1 by comparing the similarity with the object

instances of the previous frame Fi.

6.3 Metric 3: Use of Object Displacement Across Frames

This suggests an alternative to label an object instance by calculating the dis-

placement of the object instance from the instances in previous frame. This eliminates

the calculation of the Euclidean distance between the object instance feature vectors.

Displacement of an object across continuous frames can be measured with the help

of the bounding box. Bounding box is expressed as a group of four values (rectangle

coordinates: x, y, width,height). x, y represent the position pixels of the object (left-

46

Algorithm 4 Metric-2

1: for instance in List Of Instances(frame− Fi) do

2: if Euclidean distance(instance,Obj<i+1,d>) < threshold then

3: group(Obj<i+1,d>) = group(instance)

4: break;

5: end if

6: end for

7: if group(Obj<j,d>) = NULL then

8: group(Obj<j,d>) = metric1()

9: end if

bottom corner of the rectangle) with respect to the frame. Displacement is calculated

as the x-coordinate and y-coordinate difference between the object instances to be

compared. The object instance to be compared is assigned the same group label as

the object instance that is being compared with if both of the difference values are

less than the threshold value.

In Metric 3 the threshold value is determined through experiments. Refer to

the Section 7.2.5 for more details on the displacement threshold.

The algorithm- 5 explains how to determine the group label of Obj<i+1,d> by

calculating bounding box displacement with object instances in the previous frame

Fi. If Obj<i+1,d> does not satisfy the threshold value with any of the object instances

in the previous frame, then Metric-2 is used.

6.4 Expressing similarity in terms of probabilistic measure

The above metrics can also be used to answer queries that involve comparing

object instances in one video stream with another. But to answer some specific

47

Algorithm 5 Metric-3

1: for instance in List Of Instances(frame− Fi) do

2: if min(absolute(BoundingBox x− coordinate(Obj<i + 1, d >)

3: BoundingBox x− coordinate(instance)),

4: absolute(BoundingBoxy−coordinate(Obj<i + 1, d >)−

5: BoundingBoxy−coordinate(instance))) < threshold then

6: group(Obj<i+1,d>) = group(instance)

7: break;

8: end if

9: end for

queries, similarity needs to be determined as a percentage. For example, to “Find

everyone in video stream-2 who is dressed almost similar to person-1 (present in video

stream-1)” an 80% confidence can be used. For these types of queries, expressing the

similarity in terms of matched or not is not sufficient as it is expecting match in terms

of percentage accuracy. This can be addressed by expressing similarity in terms of

probability (or percentage).

One way to calculate the probability percentage is through Bayesian classifier.

If score is the Euclidean distance between the feature vectors of the object instances

being compared, then the probability model can be expressed as:

P (correct/score) = [P (score/correct) ∗ P (correct)]/P (score) (6.1)

P(correct/score) is the probability of the instances being compared are same (i.e. they

belong to the same object), given the score. P(score/correct) is the ratio of number

of times the comparison resulted in this score and was also classified as match, to the

total number of times this score has occurred throughout the video segment as result of

object comparison. P(correct) is the ratio between the number times the comparison

48

resulted in a match to the total number of comparisons in the video segment. P(score)

is the ratio of the total number of times the comparison has resulted in this score to

total comparisons in the video segment. The video segment can be any sample in the

video streams being compared and the match is determined as the comparison that

results in a Euclidean distance lower than threshold. The values obtained for above

probabilistic parameters using the video sample can be extrapolated to process rest

of the video stream, as well as any video with similar background and object setup.

6.5 Modeling Extracted Data

Table 6.1 is the snapshot of the pre-processing output for the Video 1 in Figure

5.4. fid represents the incremental id given for each frame of the video starting at

1. oid is the unique object instance id given to every object instance detected in

the video stream. If a given instance does not match with any instances in the past

frames in Metric 1, then this object instance generates a new group and the group

label given same as the object instance id. glabel represents the group label given for

object instances after classification. b box represents the bounding box of an object.

fv is either a 3-by-256 vector (256 bins correspond to the pixel intensity range of 0-

255, with one row for each channel of RGB) representing color histogram or a M-by-N

vector corresponding to the feature vector of M important points identified, with each

feature vector of length N representing SIFT. Note that this is an extended relational

model as vectors are not supported in the traditional data model. The feature vectors

are stored as object files for each of the tuples in the relational representation. A

map between the an object instance id (every tuple has an object instance in it)

and its corresponding feature vector. While processing a tuple, the feature vector

corresponding to the object instance present in the tuple can be obtained by indexing

(oid) on the map.

49

fid oid glabel b box fv
79 73 1 [386 ,139 ,250 ,311] [fv1]
80 74 1 [386 ,137 ,249 ,313] [fv2]
81 75 1 [393 ,136 ,247 ,314] [fv3]
82 76 76 [394 ,280 ,128 ,22] [fv4]
83 77 76 [487 ,384 ,148 ,66] [fv5]
84 78 76 [500 ,136 ,135 ,314] [fv6]
85 79 76 [521 ,135 ,124 ,315] [fv7]
86 80 76 [529 ,135 ,109 ,315] [fv8]
87 81 76 [542 ,135 ,120 ,315] [fv9]
88 82 76 [560 ,135 ,112 ,315] [fv10]

Table 6.1: VS1:Relational Representation of the video stream Video 1

Action ‘q1′ on
Appear(c0.*,250)

Table 6.2: LVQL Query

The Video 1 in in Figure 5.4 captures side-view of people entering through

the door one by one. It can be compared to the video stream which captures people

entering a mall. Thus, Query 1(“How many distinct people are entering the mall

throughout the day in each hour?”) can be evaluated on the data extracted from

video stream Video 1 in Figure 5.4.

The Table 6.2 shows a partial LVQL query for expressing Query 1(“How many

distinct people are entering the mall throughout the day in each hour?”). LVQL

detects (using Appear() operator) all the dynamic objects in the video stream (c0)

that are above 250 (assuming each human object is at least 250 pixels in size) and

since all the humans in the video will have similar size, it does not identify different

people uniquely. In order to identify and track people uniquely in LVQL, they need

to be marked and each of the marked objects needs to be mentioned explicitly in the

query using unique labels (like c2.s565b46). This entails manual intervention by users

50

SELECT COUNT(DISTINCT glabel)
AS Total No Of People
FROM vs1 [Range 12 hours Slide 1 hour]

Table 6.3: CQL Query

to identify objects. Alternatively, unique object tracking in LVQL can be achieved by

writing code/program and developing new operators (certainly not non-procedural.)

On the other hand, Table 6.3 shows the complete CQL query for expressing

Query 1 (“How many distinct people are entering the mall throughout the day in each

hour?”). The rolling window specification used in the query ([Range 12 hours slide 1 hour])

goes over the rows in the Table 6.1 and groups them based on the glabel and outputs

the aggregated count of unique glabel every one hour over the specified interval 8

AM - 8PM. Note that, the representation in the Table 6.1 has the time-stamp in

terms of frame number, as the video stream used to extract this representation did

not contain the meta-data related to the original time-stamp of the video stream.

If such meta-data information is available, it can be included in the extracted data.

However for the representation in Table 6.1, window definition in CQL will use the

frame numbers for measuring time. Each second of frame has 29 frames, thus an hour

long of window will have data corresponding to 104400 frames.

The query in Table 6.3 is not only simpler and easy to understand as compared

to the one in Table 6.2, but grouping, counting, and aggregation are part of the

language and no additional code is needed. The output of the query in Table 6.3 for

the snapshot window shown in Table 6.1 will be 2 as there are only two unique labels

in the glabel column. This computation will be done for each window. The query

is answered based on the semantics of operators available in CQL and the users do

not need to learn any new operators and do not require manual intervention to mark

moving objects. Other queries can be expressed similarly.

51

Thus, it is clear from the above details that the representation created from

the pre-processing techniques in this thesis can be used to evaluate simple situations

using standard Non-procedural query languages like SQL and CQL.

52

CHAPTER 7

Object Labeling Algorithm Optimization and Experimental Analysis

in the case of failure of Metric 3 and 2, in order to assign group label to an object

in the current frame, the object classification algorithm explained in the Chapter 6

compares the object instance to be labeled with every object instances from the past

frames till a similar instance is found. Although this may not affect the processing

time of the algorithm for a short video stream, it will increase the overall processing

time of the algorithm for long videos. This chapter explains few of the methods

proposed in this thesis to reduce the number of comparisons for Metric 1. The details

of the methods are decsribed in the Section 7.1. Additionlly, previous chapters

explained in detail about the various steps involved in pre-processing video streams to

extract queryable representation from them. Lot of the parameters involved in these

steps (like threshold value for object matching, what feature extraction algorithm

to use for a type of object, minimum / maximum object size etc.) are determined

through experiments. These parameters are referred as key parameters in this thesis.

Varying the value of these parameters will have direct impact on the accuracy of the

object classification algorithm. Goal of video pre-processing is to arrive at (tune)

ideal values to these parameters so that maximum accuracy for object classification

and tracking is achieved. But it is not feasible to try all possible ranges of values for

these parameters to arrive at an ideal value. Section 7.2 in this chapter lists such

essential parameters and proposes techniques to determine range of near ideal values

for these parameters. Thus, reducing the effort in experimenting to find arrive at the

53

ideal values. The details about choosing starting range of values for experiments of

tuning key-parameters are explained in the Section 7.2.

7.1 Optimization of Object Classification Algorithm

This thesis has proposed two methods Frame History Length and Selecting

Group Representatives for reducing the number of object instances in the object

label groups. These methods are explained in the detail in the Sections 7.1.1 and

7.1.2.

7.1.1 Frame History Length

This method restricts the number of object instances to be compared to in

Metric 3 to the ones from just K past frames instead of all the past frames. These K

past frames are defined as frame history length. For example, if an object in frame

N has to be classified and K is the frame history length, then for Metric 3 the object

instance to be labeled should be compared with only the object instances in every

group that belong to the frames from N-K to N.

If the video stream being pre-processed has objects going out of the video bound-

ary and comping back later in time and when the object returns back if the previous

object instances are removed due to them falling beyond frame history length range,

the returned object will be labeled as a new object, reducing the object classification

algorithm accuracy. Thus, a larger value of frame history length should be chosen

such that it can retain the object instances of the previous appearance of an object

that has returned. Thus this method to reduce number of instances in the object

label group is not feasible.

54

7.1.2 Selecting Group Representatives

During the exhaustive comparison in Metric 3, if the object instance (let us

assume it is found in frame Fi) being compared does not match with an object

instance of a group Objk , then it may not match with any instances of group Objk

that are derived from few immediate consecutive frames after or before Fi. Object

instances derived from immediate consecutive frames after or before Fi and the object

instance in Fi will have similar feature vector. Thus, it is not necessary to retain every

object instance in a group. Only a few object instances can be retained per group

throughout the course of the video stream as representatives. This will reduce the

number of comparison involved in Metric 3. The method to choose representative

instances is explained below.

Every time a group label is to be assigned to an object instance in the current

frame, this object instance is compared (in the descending order of frame number

or video time stamp) with the object instances already present in the group. If it

matches with one of the already present object instances then it will be dropped. Else

it will be retained in the group. The overall workflow of the object labeling algorithm

after integrating ‘selecting group representative’optimization is shown in the Figure

7.1.

7.1.3 Experimental Results and Analysis

The results and the analysis of the experiments conducted to quantify the im-

provements in number of similarity comparison involved in object labeling after in-

troducing selecting group representative optimization are given in the Table 7.1

These experiments are run with object labeling work flow such that whenever

an object instance need to be labeled, metric 3 is initially applied to be determine

its group label. If the metric 3 fails, then metric 2 is used to determine the label. If

55

Figure 7.1: Object Labeling Algorithm Optimization Workflow.

metric 2 fails, then metric 1 is used to determine the object group label. Whenever an

object instance is assigned a label, it is either added to the group label it belongs or

it is discarded. The decision is based on the methods explained in Section 7.1.2. The

videos used in theses experiments are Video 2 and 4 in Figure 5.4 that captures the

people entering a room and cars entering parking lot respectively. The OFF value in

Optimization column represents the execution of object labeling without the selecting

group representative optimization. Similarly the ON value represents the execution

of object labeling with the selecting group representative optimization.

56

Video Stream Improvement Number
of Com-
parisons

Improvement
in number
of compar-
isons

Accuracy

Video 1 (People enter a room) OFF 27044 N/A 96.99
Video 1 (People enter a room) ON 6970 74.22% 96.8
Video 2 (Parking lot) OFF 313 N/A 99.82
Video 2 (Parking lot) ON 139 55.59% 99.82

Table 7.1: Effect of ‘selecting group representative’optimization object labeling
algorithm

7.2 Key Parameters for Video Pre-Processing Framework

Previous chapters explained in detail about the various steps involved in pre-

processing video streams to extract queryable representation from them. Lot of the

parameters involved in these steps (like threshold value for object matching, what

feature extraction algorithm to use for a type of object, minimum / maximum object

size etc.) are determined through experiments. These parameters are referred as key

parameters in this thesis. Variation of these parameters will have direct impact on

the accuracy of the object classification algorithm. Goal of video pre-processing is

to arrive at (tune) ideal values to these parameters so that maximum accuracy for

object classification and tracking is achieved. But it is not feasible to try all possible

ranges of values for these parameters to arrive at an ideal value. Section 7.2 in this

chapter lists such essential parameters and proposes techniques to determine range of

possible values for these parameters that are near to the ideal value. Thus, reducing

the effort in experimenting to find arrive at the ideal values.

Following are the key parameters in video stream pre-processing work-flow that

need experimentation to determine ideal values for them. These parameters are iden-

tified and parametrized as input configurations (Refer the Chapter 8 for more details.)

57

Figure 7.2: Figures from left to right represent the frame 1024, motion of the object
in frame 1024 for offset 1, 20 and 124 respectively.

Figure 7.3: Figures from left to right represent the frame 303, motion of the object
in frame 303 for offset 1, 20 and 124 respectively.

in the video pre-processing framework built as part of this thesis, so that effect of

varying (tuning) values can be easily observed.

7.2.1 Frame Difference Offset

As mentioned in the Section 4.2 moving objects in a frame Fi is identified

by frame differencing with a frame (Fi−1) that has lesser video time-stamp value

compared to Fi, as well as differencing with a frame (Fi+1) that has greater video

time-stamp value compared to Fi. Frame difference offset is defined (Mathematically

represented as in the Equation 7.1.) as the number of frames between Fi−1 and Fi

or Fi+1 and Fi.

offset = abs(Fi − Fi−1) ∨ abs(Fi − Fi+1) (7.1)

Figure second, third and fourth from left to right in Figure 7.2 show the effect

of offset value in detecting moving objects (using the method mentioned in Section

4.2.1) in frame 1024 of a video where a person is walking from left to right (Video

1 in Figure 5.4). It can be observed that the movement pixels detected when offset

58

is 1 does not cover all the pixels related the person’s body skeleton. This is due to

minimal movement of the whole body part across a single frame (from frame 1023 to

1024 or frame 1024 to 1025). Thus, a very low value of offset may not capture the

complete skeleton of the moving object. Even though there is not much difference

between the movement pixels captured by offset value 20 and 124, a very high offset

value like 124 may not be suitable. A high value of offset will result in more waiting

period in the starting of object detection for a video stream. In other words, for

an offset value of 124, the video pre-processor has to wait till first 123 frames are

captured to start detecting moving objects. So an intermediate value like 20 would

be ideal.

Similarly, figures second, third and fourth from left to right in Figure 7.3 show

the effect of offset value in detecting objects in frame 303 of a video where a car is

entering the parking lot (Video 2 in Figure 5.4). However, in case of this video a

very low offset is still able to capture the complete skeleton (motion pixels sufficient

enough to draw skeleton). This is due to the adequate movement of the car across

a single frame. Thus, if an object is moving fast, lower value of offset will still give

good results.

Following are the conclusions drawn from the above experiments. The below

mentioned values can be proposed to the users (attempting video pre-processing) as

recommended values to start with for experimenting with offset value to reach an

ideal value.

1. The near ideal value for difference offset depends on the speed of the object in

the video stream. For a slow moving object like human walking, a good starting

range of values for the offset would be 20 to 30. For fast moving objects like

cars, a good starting range of values for the offset would be 3 to 10.

59

2. A high offset value will give good results but may increase the waiting period

in the starting of object detection for a video stream.

7.2.2 Frame Hop-size

By default during video pre-processing every frame in the video stream is pro-

cessed to check for any moving objects in them. For a video stream that captures a

scene that has same moving objects staying for long time in the camera view, it is

not necessary to process every frame as the same object will be repeated from many

number of frames. For example, aerial view of a parking lot that has cars coming in

or going out, but any car that starts moving will be in the vicinity of the camera for

at least three minutes (assuming a parking lot that has long entry or exit road). So,

skipping every two minutes worth of frames may not lead to loosing any new objects

as the cars will be moving for at least three minutes. The number of frames that can

be skipped without processing is called hop size. Hop size depends on the type of the

video and objects and the users are expected to come up with appropriate values by

observing small segment of the video stream to be pre-processed.

7.2.3 Upper and Lower Bound for Object Size

The output of the methods mentioned in the Section 4.2 may detect some

of the noise as moving objects even after refining the results based on a threshold

value. The object detection output for one of the frames in Video 1 in Figure 5.4 is

illustrated at Figure 7.4. It can be observed from the output that there are many

other tiny bounding boxes (black rectangles) apart from the bounding box of the

object of interest (person). Similarly, due to the movement of the camera a large

portion background may be detected as part of the object of interest as shown by the

60

huge rectangle surrounding the object of interest (person) in the Figure 7.51. These

additionally detected objects need to be eliminated before the object labeling as they

will result in new object group (labeled as new groups), thus decreasing the object

labeling algorithm accuracy.

Unwanted object instances in frames can be eliminated by discarding all moving

objects detected that have bounding boxes with size below a minimum threshold and

above a maximum threshold. Minimum threshold will filter all the small noises that

are detected as moving objects. Similarly maximum threshold will discard objects

with large portion of background (created due to background movement). These

threshold values for a video stream can be determined as follows.

1. Select a small segment in the video stream (to be pre-processed) that contains

an object of interest (person or car) moving from one end of the video to the

other in the path followed by all (or most) objects of interest. In case of Video

1 in Figure 5.4, it would be a video segment that captures a person appearing

from left border (entering from door) and walking till the right border of the

video and disappearing. Similarly, in case of Video 2 in Figure 5.4 a car moving

from top border of video (entering the parking lot) to bottom border (till the

car disappears from the camera vicinity). This will cover the variation of size

of an object in the most common path in the video stream.

2. Apply the methods in Section 4.2.1 and crop moving objects in every frame in

the video segment. Note down the size of the object of interest in every frame.

1Ignoring these instances with large portion as background may not result in loosing out any

objects of interest as the instance of this object without large portion of background will appear in

future frame and it will be labelled correctly.

61

Figure 7.4: Illustration of need for
minimum object size

Figure 7.5: Illustration of need for
maximum object size

3. Minimum threshold will be the minimum size of the object in the whole of this

video segment. Similarly, maximum threshold will be the maximum size of the

object.

4. In our experiments, observed minimum size of the human object for videos like

Video 1 in Figure 5.4 is 60x100 pixels and the maximum size is 115x280 pixels.

Similarly, for parking lot videos like Video 2 in Figure 5.4, the minimum object

size is 30x60 and maximum size is 110x80.

7.2.4 Object Match Threshold

Object match threshold values decide if two given object instances belong to

same object or not. Details of the application of object match threshold is explained

in the Section 5.1.4. Threshold value depends on a lot of factors like type of video,

type of objects present in the video streams, feature extraction algorithm being used

etc. Following are the proposed guideline to choose a starting range of threshold value

to arrive at a near ideal value.

1. Choose a short segment in the video stream being preprocessed such that it has

the movement of two different objects. For example, if the video is similar to

62

Video 1 in Figure 5.4, select the video segment such that it contains at least

two people walking from left end of the video to right end completely.

2. Apply the algorithms mentioned in the Chapter 4 and 5 on whole of this video

segment to extract moving object instances (cropped images of objects) and

their feature vectors in every frame.

3. Choose a random object instance (instance 1) of the first object, then choose

an object instance (instance 2) of the second object such that position of the

second object in the video in instance 2 is same as the position of the first

object in the instance 1. This will assure that both the instances have same (or

similar) background and the change is only in the actual object. For example,

Figure 7.6 is the random object instance of the first object in Video 1 in Figure

5.4 and Figure 7.7 is the object instance of another object in the same video

in same location (same background).

4. Apply the appropriate feature extraction algorithm on the object instances Fig-

ure 7.6 and Figure 7.7. And calculate the distance between the feature vectors.

Refer the Section 5.1 for details on applying feature vector algorithm and cal-

culating distance on them.

5. The distance obtained in the above step will be the object match threshold for

the given video stream. All the object instances that have similarity distances

between them fall below this threshold will belong to same object. The distance

between Figure 7.6 and Figure 7.7 came out to be 0.0036. Thus 0.0036 is the

starting value for object match threshold value for Video 1 in Figure 5.4.

In order to verify this value, we calculated the distance between the object

instances of the first object (Figure 7.7 and Figure 7.8). We received a value

of 0.0013, which is less than threshold. Thus, it can be said that the object

instances Figure 7.7 and Figure 7.8 belong to the same object group.

63

Figure 7.6: Object match
threshold sample-1

Figure 7.7: Object match
threshold sample-2

Figure 7.8: Object match
threshold sample-3

6. If there are more than 2 moving objects in the video segment, then repeat steps

2-4 for each pair of objects and choose the minimum distance as the threshold.

7.2.5 Object Displacement Threshold

Object displacement threshold is the maximum number of pixels by which an

object can move from its previous frame. This is used in Metric 3 of the object

classification algorithm used in the Chapter 6. Displacement of an object can be

measured using bounding box. Refer Chapter 6 for more details on measuring the

displacement. Near ideal value for this threshold can be determined by applying the

method in Section 4.2.1 to extract bounding boxes of object instances of an object

on at least 10 continuous sample frames of given video stream. The displacement (x-

coordinate and y-coordinate) of this object across every two subsequent continuous

64

frames are calculated for the sample number of frames. And these values are averaged

for each of x-coordinate and y-coordinate separately. This average value is chosen as

the object displacement threshold. For example, the Algorithm 6 shows the calcula-

tion of x-coordinate (thresholdx) and y-coordinate (thresholdy) object displacement

threshold for a sample of 15 frames in Video 1 in Figure 5.4. Obj<2,j> (j¿=1000

and j¡=1014) represents object instances of group label Object2 in Video 1 in Figure

5.4. bb<2, j, x− cooridinate > is the x-coordinate of bounding box of object instance

Obj<2,j>. Similarly, bb<2, j, y− cooridinate > is the y-coordinate of bounding box of

object instance Obj<2,j>

Algorithm 6 Object Displacement Threshold

thresohldx =

∑1014
j=1000 |bb<2, j, x− cooridinate > −bb<2, j + 1, x− cooridinate >|

15

thresohldy =

∑1014
j=1000 |bb<2, j, y − cooridinate > −bb<2, j + 1, y − cooridinate >|

15

While testing this threshold on different video sets mentioned earlier, it was

found that the displacement (x or y) of objects is generally within 50 pixels for

consecutive frames. Hence the displacement threshold is fixed to the value 50.

This chapter has explained in detail about the key-parameters available in video

stream pre-processing that used in video pre-processing framework. The details of

the implementation of this framework is given in the Chapter 8.

65

CHAPTER 8

Video Pre-Processing Framework Implementation

The end-to-end pre-processing workflow (object identification, object labeling,

output data model etc.) is implemented as a ‘video stream pre-processing framework’.

The implementation details like object identification, object extraction, feature ex-

traction and object labeling is hidden from the user who attempts pre-process video

stream using this framework. The framework can be visualized (Figure 8.1) as a

blackbox that hides the implementation from the user but exposes the key-parameters

mentioned in the Section 7.2 as configurations. The overall file directory organization

of the framework is shown in the Figure 8.2. The main directory contains sub di-

rectories ‘input’which contains input video files and configuration file, ‘output’which

contains the directories that store the frame image, the cropped object images and

the output file containing relational model and ‘source’contains the source code files.

The framework is implemented using MATLAB 2015b. The following section explain

in detail about the various data structures used and the overall work-flow of the

framework.

Figure 8.1: Video pre-processing framework as a blackbox

66

Figure 8.2: Video pre-processing framework directory structure organization

8.1 Details of the Data Structures used

The implementation uses the following data structures to store the data that

are carried across different functions and read/edited by these functions.

1. frame properties map: This is a map with key frame id (each frame in the

video stream is given an incremental id with starting id as 1) and value is a

67

structure that contains members i) path of this frame image stored on the disk

and ii) list of object id of the moving objects detected in this frame.

2. objects properties map: This is a map with key object id (each object in-

stance in the video stream is given an incremental id with starting id as 1) and

value is a structure that contains the members i) path of this moving object

image (cropped) stored on disk and ii) bounding box of this object (rectangle

co-ordinates).

3. group objects map: This is a map with key group id (output as glabel in

Table 6.1) and value is a map that has key as object id of the moving object

instance that belong to this group label and the value as the frame id that they

appear in.

4. universal struct: This is a structure that contains the above mentioned data

structures as members along with few others members. The members in this

structures are: i) frame properties map, ii) objects properties map, iii) group objects map,

iv) group count (total number of moving object instances detected so far in the

video stream), v) comparison count (total number of feature vector comparison

done so far in the video stream for object instance labeling).

5. config: This structure is used to hold the various configuration values set by

the user.

8.2 Video pre-processing framework implementation workflow

Figure 8.3 shows the overall workflow of the implementation of video pre-

processing framework. This section goes through each of the steps in detail.

68

Figure 8.3: Video Pre-processing Framework Workflow.

8.2.0.1 Step-1: Read user defined configurations

User defined configurations are recorded in a text file called ‘config.txt’present

inside the directory ‘input’. The content of the configuration files are shown in the

Figure 8.4. Following are the list of configurations available and the description of

each of these parameters.

1. video file path: The complete (absolute path or relative path with respect to

the ‘source’directory) file path of the input video file.

2. frames storage dir: Directory where the complete frame images are stored. It

should be a sub-directory inside ‘output’directory.

3. objects storage dir: Directory where the cropped object images are stored so

that they can be referred in various steps of the pre-processing workflow.

4. result file name: Complete path (absolute path or relative path with respect to

the ‘source’directory) of the output file where the relational data model will be

written to.

69

Figure 8.4: Video Pre-processing Framework configuration File.

5. log file name: Complete path (absolute path or relative path with respect to

the ‘source’directory) of the logger file that contains details of every step the

framework goes through, statistics like number of comparisons, time taken,

memory consumed etc.

6. start frame: Frame number in the video from where the pre-processing should

start with.

70

7. end frame: The end frame number in the video where the pre-processing should

stop.

8. frame diff offset: Value for frame offset size (Section 7.2.1).

9. min object width, min object length, max object width and max object length: Min-

imum and maximum object sizes used to filter noises in moving object detection

(Section 7.2.3).

10. background subtraction threshold: Threshold value used to convert the grey-

scale image containing moving object pixels to binary (Section 4.2.1).

11. classification window size: Frame history length value (Section 7.1.1)

12. classification window hop size: Frame hop-size value (Section 7.2.2)

13. feature extractor: Feature extraction algorithm to be used for object labeling

(Chapter 5).

14. match threshold: Threshold value that decides if two given object instances

(cropped object images) are similar or not (Section 7.2.4).

15. bounding box movement threshold: Value by which an object can move from

one frame to other (Section 7.2.5).

16. metrics: Various metrics used in object labeling algorithm (Chapter 6) and the

order to use them. In the Figure 8.4 ‘metric2’will be applied first, if that fails

then metric1 is applied. Metric mentioned in Section 6.1 which is exhaustive

need not be specified explicitly. If the specified metric in this configuration fail,

framework will fall back to the metric1 (Section 6.1).

17. imporvements: Improvements are the optimization done on the object label-

ing algorithm as mentioned in the Section 7.1. In Figure 8.4 ‘improve-

ment1’corresponds to the improvement ‘selecting group representatives’(Section

7.1.2).

71

8.2.0.2 Step-2: Load Video Into MATLAB

MATLAB Computer Vision Toolbox API vision.VideoFileReader() and prop-

erty vision.VideoPlayer is used to load the video file and process it frame by frame.

Each frame is extracted from the object created by vision.VideoFileReader() using

the step() function.

8.2.0.3 Step-3: Retrieve frames according to the frame difference offset

value

In order to achieve frame differencing for a frame Fi, a frame (frame diff offset -

Fi) and (Fi + frame diff offset) need to be selected. Thus frames from (frame diff offset

- Fi) to (Fi + frame diff offset) need to be collected before finding moving object in

Fi. This is achieved using the queue definition (CQueue.m - copy this file to the

‘source’dirctory) in [26]. Whenever a frame is extracted it is pushed to the queue

‘window’(a queue of size frame difference offset value) and whenever (frame differ-

ence offset value)/2 frames are collected the subsequent frames are pushed to ‘win-

dow mid’(a queue of half of frame difference offset value) as well as ‘window’. While

processing Fi, the frame from beginning of the queue ‘window’(Fi−1), frame from

beginning of ‘window mid’(Fi) and frame from end of ‘window’(Fi+1) are extracted.

Code snippet corresponding to retrieving frames from queues for frame differencing

is captured in Figure 8.5.

8.2.0.4 Step-4: Extract moving objects from background

The moving object image identified can be cropped calculating the bounding

box co-ordinates as explained in the Section 4.2.1. MATLAB provides an API

regionprops() that identifies connected areas and returns bounding boxes of these

72

Figure 8.5: Code snippet capturing extracting frames for frame differencing from
queues.

Figure 8.6: Code snippet capturing frame differencing for object identification.

areas in the resultant difference image (motion) in the Equation 4.2. The file

‘get bounding box.m’captures the implementation details mentioned above (Figure

8.6).

File ‘process objects.m’contains the implementation of filtering the noise based

on the minimum and maximum size (Section 7.2.3) of the detected areas. Also it

73

Figure 8.7: Code snippet capturing moving object extraction from background.

contains the implementation of imposing the bounding box of moving objects on the

original image to crop and save the object image on disk. Figure 8.7 contains the

code snippet from the file ‘process objects.m’.

8.2.0.5 Step-5: Object labeling

For every moving object identified in step-4, object labeling subroutine is called

to determine its group label. ‘get group.m’file contains the implementation details

74

Figure 8.8: Code snippet capturing assigning group label to moving objects.

of the determining group label. It calls every metric mentioned in the configuration

‘metrics’one by one in the order to determine the group label and if the group label is

not determined by the mentioned metrics, it falls back to the exhaustive metric (Sec-

tion 6.1). Code snippet in the Figure 8.8 shows the implementation of the assigning

group label. ‘available groups’is the list of available group labels, ‘heuristic list’is the

list of metrics and ‘ehaustive classification.m’contains the implementation of Section

6.1.

75

Figure 8.9: Code snippet capturing applying improvements.

8.2.0.6 Step-6: Apply optimizations for object labeling algorithm

Once the object label is determined for a moving object instance in a frame,

it can be either added to its group or it is discarded (Section 7.1). File ‘ap-

ply improvements.m’reads the improvements list from the ‘improvements’configuration

and applies them one by one. Code snippet in Figure 8.9 shows the implementation

of applying improvements.

8.2.0.7 Step-7: Display bounding box

Every-time bounding box is determined for a moving object, it has to be dis-

played in the video player of MATLAB. File ‘display bounding box.m’contains the

implementation of inserting rectangle shape around the moving object in the video

player. Figure shows the code snippet corresponding to inserting shape.

76

Figure 8.10: Code snippet capturing displaying bounding box for moving objects.

77

CHAPTER 9

Conclusion and Future Work

This thesis was able to successfully demonstrate that generic information re-

lated to moving objects can be extracted from video streams and scenarios related

to object tracking can be evaluated using SQL and CQL semantics on the extracted

data (modeled in relational representation). This thesis has developed a video stream

pre-processing framework using which a given video stream containing either human

or car type of objects can be pre-processed to extract relational data model. As part

of this framework, key-parameters involved in video pre-processing are identified and

these key-parameters are implemented as tunable configuration in the framework im-

plementation. Additionally, this thesis has recommended starting value ranges for

these key parameters so that the users using this framework does not have to run

exhaustive experiments to arrive at ideal values for these key parameters.

This thesis has identified few limitations in the methods used for video pre-

processing. Some of the limitations identified are i) histogram cannot differentiate

people wearing similar colored clothing, ii) frame differencing cannot identify two

separate objects if they are too close to each other and iii) frame differencing cannot

identify static objects in the video stream. As future work we would like to address

these limitations by adapting alternative Computer Vision methods. Additionally,

we would like to extend (arrable) the data model and extend the query language to

express more situational queries.

78

REFERENCES

[1] A. Cordova, L. D. Millard, L. Menthe, R. A. Guffey, and C. Rhodes,

“Motion Imagery Processing and Exploitation (MIPE),” Santa Monica, CA:

Rand Corporation, 2013. [Online]. Available: http://www.rand.org/pubs/

research reports/RR154.html

[2] E. Hwang and V. S. Subrahmanian, “Querying video libraries,” J. Visual

Communication and Image Representation, vol. 7, no. 1, pp. 44–60, 1996.

[Online]. Available: http://dx.doi.org/10.1006/jvci.1996.0005

[3] I. Ide, Video Querying. Boston, MA: Springer US, 2009, pp. 3292–3296.

[Online]. Available: http://dx.doi.org/10.1007/978-0-387-39940-9 1030

[4] M. Flickner, H. S. Sawhney, J. Ashley, Q. Huang, B. Dom, M. Gorkani,

J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker, “Query by image and

video content: The QBIC system,” IEEE Computer, vol. 28, no. 9, pp. 23–32,

1995. [Online]. Available: http://dx.doi.org/10.1109/2.410146

[5] F. Pla, P. C. Ribeiro, J. Santos-Victor, and A. Bernardino, “Extracting motion

features for visual human activity representation,” in Pattern Recognition and

Image Analysis, Second Iberian Conference, IbPRIA 2005, Estoril, Portugal,

June 7-9, 2005, Proceedings, Part I, 2005, pp. 537–544. [Online]. Available:

http://dx.doi.org/10.1007/11492429 65

[6] W. Niu, J. Long, D. Han, and Y. Wang, “Human activity detection and recogni-

tion for video surveillance,” in Proceedings of the 2004 IEEE International Con-

ference on Multimedia and Expo, ICME 2004, 27-30 June 2004, Taipei, Taiwan,

2004, pp. 719–722.

79

[7] (2008) Virat. [Online]. Available: https://en.wikipedia.org/wiki/VIRAT

[8] B. Liu, A. Gupta, and R. C. Jain, “Medsman: a streaming data management

system over live multimedia,” in Proceedings of the 13th ACM International

Conference on Multimedia, Singapore, November 6-11, 2005, 2005, pp. 171–180.

[Online]. Available: http://doi.acm.org/10.1145/1101149.1101174

[9] A. J. Aved, “Scene Understanding For Real Time Processing Of Queries Over

Big Data Streaming Video,” Ph.D. Dissertation, UCF Orlando, Florida, 2013.

[10] X. Liu, Y. Zhuang, and Y. Pan, “A new approach to retrieve video by

example video clip,” in Proceedings of the 7th ACM International Conference

on Multimedia ’99, Orlando, FL, USA, October 30 - November 5, 1999, Part 2.,

1999, pp. 41–44. [Online]. Available: http://doi.acm.org/10.1145/319878.319889

[11] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query language:

semantic foundations and query execution,” VLDB J., vol. 15, no. 2, pp. 121–142,

2006. [Online]. Available: http://dx.doi.org/10.1007/s00778-004-0147-z

[12] S. Chakravarthy, A. Aved, S. Shirvani, M. Annappa, and E. Blasch,

“Adapting stream processing framework for video analysis,” in Proceedings

of the International Conference on Computational Science, ICCS 2015,

Computational Science at the Gates of Nature, Reykjav́ık, Iceland, 1-

3 June, 2015, 2014, 2015, pp. 2648–2657. [Online]. Available: http:

//dx.doi.org/10.1016/j.procs.2015.05.372

[13] A. Lerner and D. E. Shasha, “Aquery: Query language for ordered data,

optimization techniques, and experiments,” in VLDB, 2003, pp. 345–356.

[Online]. Available: http://www.vldb.org/conf/2003/papers/S11P03.pdf

[14] “Broad agency announcement, video and image retrieval and analysis tool

(virat),” DARPA INFORMATION PROCESSING TECHNIQUES OFFICE

80

(IPTO), Tech. Rep. BAA 08-20, 03 March 2008. [Online]. Available:

https://www.fbo.gov/utils/view?id=32f2382440cfb57d2695171885acab57

[15] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual cate-

gorization with bags of keypoints,” in In Workshop on Statistical Learning in

Computer Vision, ECCV, 2004, pp. 1–22.

[16] R. Szeliski, Computer Vision - Algorithms and Applications, ser. Texts in

Computer Science. Springer, 2011. [Online]. Available: http://dx.doi.org/10.

1007/978-1-84882-935-0

[17] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,”

ACM Comput. Surv., vol. 38, no. 4, 2006. [Online]. Available: http:

//doi.acm.org/10.1145/1177352.1177355

[18] R. E. Bellman, The Bellman Continuum: A Collection of the Works of Richard

E. Bellman. World Scientific Publishing Company Incorporated, 1986.

[19] C. O. S. Sorzano, J. Vargas, and A. D. Pascual-Montano, “A survey of

dimensionality reduction techniques,” CoRR, vol. abs/1403.2877, 2014. [Online].

Available: http://arxiv.org/abs/1403.2877

[20] C. Kanan and G. W. Cottrell, “Color-to-grayscale: Does the method matter

in image recognition?” PLoS ONE, vol. 7, no. 1, pp. 1–7, 01 2012. [Online].

Available: http://dx.doi.org/10.1371/journal.pone.0029740

[21] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”

International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[Online]. Available: http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

[22] G. Bradski, Dr. Dobb’s Journal of Software Tools, 2000.

[23] S. Oh, A. Hoogs, A. G. A. Perera, N. P. Cuntoor, C. Chen, J. T. Lee,

S. Mukherjee, J. K. Aggarwal, H. Lee, L. S. Davis, E. Swears, X. Wang, Q. Ji,

K. K. Reddy, M. Shah, C. Vondrick, H. Pirsiavash, D. Ramanan, J. Yuen,

81

A. Torralba, B. Song, A. Fong, A. K. Roy-Chowdhury, and M. Desai, “A

large-scale benchmark dataset for event recognition in surveillance video,” in

The 24th IEEE Conference on Computer Vision and Pattern Recognition, CVPR

2011, Colorado Springs, CO, USA, 20-25 June 2011, 2011, pp. 3153–3160.

[Online]. Available: http://dx.doi.org/10.1109/CVPR.2011.5995586

[24] MathWorks, Image Processing Toolbox MATLAB R2016a Sample Video -

atrium.avi. MathWorks, 2016. [Online]. Available: http://www.mathworks.

com/help/vision/examples/motion-based-multiple-object-tracking.html

[25] J. Han, Data Mining: Concepts and Techniques. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 2005.

[26] Z. Zhang. (2011) list,queue,stack. [Online]. Available: https://www.mathworks.

com/matlabcentral/fileexchange/28922-list--queue--stack

82

BIOGRAPHICAL STATEMENT

Manish Kumar Annappa was born in Kundapura, Karnataka, India. He re-

ceived his Bachelor of Engineering degree in Information Science and Engineering

from PES Institute of Technology, Bangalore, India in May 2010. There after he

worked as a Software Engineer with Adobe Systems India Pvt Ltd, Bangalore from

July 2010 till July 2014. In the Fall of 2014, he started his graduate studies in Com-

puter Science and Engineering at The University of Texas, Arlington. He worked

as an ASE intern at MathWorks Inc, Natick, MA during Fall - 2015. He received

his Master of Science in Computer Science and Engineering from The University of

Texas at Arlington, in December 2016. His research interests include computer vision,

stream processing and data mining.

83

