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Abstract 

 
IMPROVING REGIONAL HYDROLOGY FORECASTING FOR THE NORTH CENTRAL 

TEXAS REGION UTILIZING CONDITIONAL ENSEMBLE STREAMFLOW  

AND HYDROMETEOROLOGICAL CONDITION PREDICTIONS  

WITH ARTIFICAIL NEURAL NETWORK MODELING 

 

Tyler Fincannon, MS 

 

The University of Texas at Arlington, 2017 

 

Supervising Professor: Arne Winguth 

The predictive skill of hydrologic variables such as streamflow and soil moisture, 

in North Central Texas, has improved substantially in the recent decades. However, 

substantial model-data biases are still present during extreme climate events, such as 

droughts and flash floods. In this study, we have optimized the Hydraulic Ensemble 

Forecasting System (HEFS) through development of a conditional ensemble streamflow 

system, as well as forecast reservoir hydrometeorological conditions (e.g. drought indices) 

with an artificial neural network (ANN) model. Improving prediction of these reservoir 

conditions enables more effective reservoir management in terms of water resource and 

energy efficiency during regional weather and climate anomalies. In order to improve 

HEFS, the strength of the regional climatology teleconnections to global climate indices 

(e.g. the Atlantic Multidecadal Oscillation, AMO, and the Bivariate El Niño Southern 

Oscillation, ENSO) was evaluated through Pearson product correlation, singular spectrum 

analysis, and the evaluation of the regional precipitation probability density and cumulative 

distributions functions in regards to changes in climate phases. These results showed the 

greatest change in regional precipitation base state occurred during changes in the AMO 
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phases, except in the case of an El Niño or La Niña event. This suggests that a conditional 

ensemble streamflow system could be constructed based on AMO phases to improve 

HEFS under regular conditions, and based on ENSO conditions (El Niño or La Niña 

events).  

In the pursuit of forecasting hydrometeorological conditions, multiple ANN models 

of different network architectures were trained and tested utilizing data from 1915-2012; 

70% of the available data, from 1915 to 1982, were used for model training and the 

remaining for validation. The network architecture that produced the smallest prediction 

error was applied further in this study. The input data comprised regional climate variability 

observations of minimum and maximum temperature, total precipitation, average wind 

speed, evapotranspiration, potential evapotranspiration, and the monthly drought index 

value. The global climate indices investigated included dominant interannual and decadal 

oscillations. These indices were used to evaluate their respective ability to improve 

predictive skill during climate anomaly extremes, e.g., El Niño and La Niña conditions. The 

choice of climate indices were varied as input into retrained ANN models of the same 

network architecture, so that the improvement due to each climate index could be ranked 

and less-influential climate indices could be excluded. The selected ANN model 

architecture and input data mentioned above were then applied to produce 6 month-ahead 

predictions of monthly drought indices in order to evaluate the overall predictive skill of the 

generated ANN models. The ANN model was able to skillfully forecast drought conditions 

with 2-3 months lead time, with the evaporation variables generating the greatest increase 

in forecasting skill. The use of global climate indices did not exhibit any increase in the 

ANN models’ forecasting skill of North Central Texas regional hydrometeorological 

conditions most likely because the local observations consist of a regional signal that is 

superimposed by the global variations.   
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Chapter 1 

Introduction 

 
1.1 Climate Anomalies and Extreme Weather Events in North Central Texas 

 
The North Central Texas region is affected by climate anomalies and extreme 

weather events such as prolonged droughts and short term flooding events. These events 

negatively impact local water resources and result in weather-related fatalities by flash 

floods, wildfires, increased air pollutants, and significant economic damages, e.g. on 

transportation infrastructure and the energy sector [Patricola et al., 2013; Stahle and 

Cleaveland, 1998; Winguth et al., 2015]. One example is the 1980 heat wave that 

generated 1.5 billion dollars in losses for Texas and 16 billion dollars in damages 

nationwide [Karl and Quayle, 1981]. Another example is the more recent 2011 drought that 

broke records from 1895 to present as the driest 12-month period in Texas from October 

2010 to September 2011 with a record minimum of -7.93 on the Palmer Drought Severity 

Index, a measurement of relative dryness in regards to a departure from average 

precipitation [Hoerling et al., 2013; Palmer, 1965]. The 2011 drought resulted in a state 

wide agricultural loss of $7.62 billion dollars [Fannin, 2012]. These periodic droughts have 

been shown to have regular occurrences over a period of multiple years. For example, the 

probability of a moderate to severe June drought occurring in Texas over a period of 10 

years is greater than 90 percent [Stahle and Cleaveland, 1998]. Droughts in the North 

Central Texas region reoccur with a low frequency that has attributes of a 30-year 

periodicity [Ortegren et al., 2011]. Improving the forecasting ability in predicting when 

extreme climate events will recur could prevent the economic damages linked to these 

events. For example, advance preparations can be made for a drought-related reservoir 

storage, and for improving the efficiency in estimates of water and energy resources. 
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This project focused on the Tarrant Regional Water District (TRWD), which 

services the water needs of 2 million people in the North Central Texas region and operates 

the flood control system of Tarrant County [Newby and Oliver, 2016]. The TRWD relies on 

4 major reservoirs in which surface water accounts for over 95% of the reservoir water 

input [Vaughan, 2012]. The reliance on surface water runoff to refill the reservoir system 

increases TRWD’s susceptibility to climate anomalies, such as periods of moderate to 

extreme droughts. The TRWD also experiences a west-to-east precipitation gradient 

across its reservoir system, with the west side of the Trinity River Basin receiving an annual 

average of 254 mm (10 in) less of rainfall than the east side, as shown in Figure 1.  

 

Figure 1: Annual average precipitation of Trinity River Basin reservoir catchments 

calculated from average rainfall from 1980-2010 in ArcGIS. Precipitation data provided by 

the PRISM Climate group (CITE). Reservoir catchment stations ID’s labeled in figure. 
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As the DFW metroplex lies on the west side, of the Trinity River Basin, pipelines 

were constructed, as seen in Figure 2, to connect the west and east reservoir systems so 

that water accumulation on the east side of the Trinity River Basin could be pumped up an 

elevation grade to the western side to cover the water shortfalls in the metroplex during 

drought conditions.  

 

The TRWD would noticeably benefit from increased forecasting skill resulting in 

greater energy conservation because a more accurate prediction of reservoir levels may 

reduce the amount of water that must be pumped to the DFW metroplex to cover the 

municipalities’ water demands. These savings could be significant as the TRWD estimates 

in 2017 23 million dollars will be spent on only the energy costs related to pumping for their 

pipeline system.  

Figure 2: Water supply network of the Tarrant Regional Water District as of January, 

2017. Adapted from [Sunghee et al., 2016]. 
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1.2 Tarrant Regional Water District (TRWD) 

 
The TRWD has recently incorporated a river and reservoir modeling software tool 

named Riverware [Blaylock et al., 2016] developed by the University of Colorado at 

Boulder, into their operational decision support network. The Riverware tool incorporates 

a Community Hydrologic Prediction System (CHPS) for forecasting future reservoir 

conditions. CHPS utilizes a Hydrologic Ensemble Forecast Service (HEFS, Figure 3), 

developed by the National Weather Service and their collaborators [Demargne et al., 2014], 

which employs ensemble forecasting to generate probability statements about the 

likelihood of extreme future weather events.  

Figure 3: Schematic of Hydraulic Ensemble Forecasting System incorporation in the Community 

Hydrologic Prediction System environment. Dark grey boxes represent ensemble-specific 

components while light gray boxes utilize single-valued forecasting. Adapted from [Demargne et al., 

2014]. 
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The forecasting ability for hydrological systems generally has limited predicative 

skill when uncertainties are not compensated for. The uncertainty in forecasting arises from 

two main factors: uncertainty of the input data, such as atmospheric forcing and 

hydrological condition uncertainty (e.g. initial conditions and model parameters); and HEFS 

model structure uncertainty, such as whether the model’s behavior accurately reflects the 

reality of hydrological conditions [Gupta et al., 2006]. The HEFS system works to enhance 

the confidence levels in the forecasts by accounting for major sources of uncertainty 

[Demargne et al., 2007] rather than previous models, which modelled total uncertainty to 

the output of the forecast [Montanari and Grossi, 2008]. These uncertainties are computed 

by the Hydrologic Ensemble Post-Processor system (EndPost) and subsequently 

corrected to form bias-corrected stream flow ensembles. The HEFS system also applies a 

meteorological ensemble forecast processor (MEFP), seen in Figure 3, to account for input 

uncertainties by producing bias-corrected forcing ensembles for the HEFS system. The 

MEFP improves in skill when utilizing reanalyzed data sets from frozen Numerical Weather 

Prediction Service (NWPS) models [Schaake et al., 2007]. It should be noted, however, 

that a lack of observation records of extreme weather events would limit the ability to 

properly implement hindcast training for the model.  

One of this project’s focuses was to determine, if uncertainty of input data may be 

reduced and the meteorological ensemble forecasting optimized through the incorporation 

of a conditional Ensemble Streamflow Prediction (ESP) system. The system was 

constructed from the phase changes of teleconnected climate indices and their respective 

effect on regional precipitation [Hamlet and Lettenmaier, 2000]. The second objective of 

the project was to optimize the hydrometeorological conditions, such as whether persisting 

drought or wet conditions exist, for the reservoir catchment area by utilizing the Riverware 

decision support tool. Presently, TRWD utilizes a single drought index value supplied for 
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all of the North Central Texas region, outlined in Figure 4, for the hydrometeorological 

condition of all reservoir catchments within the TRWD system. 

 

 

 

 

 

 

  

Figure 4: Texas climate divisions utilized by the National Climate Data Center and 

National Weather Service when outputting regional drought indices [Gilbeaux, 2013]. 
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Chapter 2 

Objective 

 
2.1 Introduction 

 

 
The purpose of the study was to research and develop potential methods that 

utilize regional climatology and global climate indices to improve current regional 

hydrologic forecasting utilized by the Tarrant Regional Water District. The methodology 

developed in this study can be implemented across multiple regional water districts to 

increase hydraulic forecasting. This study focused on two main improvements to TRWD’s 

current hydraulic forecasting system: 

1.  The optimization of HEFS forecasting through determining which global 

climate indices are suitable to be developed into a conditional Ensemble 

Streamflow Prediction for HEFS, and  

2. The development of an Artificial Neural Network (ANN) forecasting model 

utilizing global climate indices and regional climatology to determine future 

hydrometeorological conditions for individual reservoir catchments.  

Detailed below are the steps that were taken to complete both improvements. 

 

2.2 Conditional Ensemble Streamflow Prediction 

 
As an initial step potential teleconnections were explored between the regional 

climatology of the DFW metropolis and the global climate indices of the Atlantic 

Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), North Atlantic 

Oscillation (NAO), Southern Oscillation Index (SOI), and the El Niño Southern Oscillation 
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(ENSO). The impact of the teleconnections on the regional climate was then determined 

by correlations, between regional climate anomalies and global climate indices, as well as 

singular spectrum analysis. Climate indices with potential regional teleconnections were 

then further analyzed by the construction of regional probability density functions and 

cumulative distribution functions in regard to the global climate phase effect on annual and 

seasonal precipitation.  

In a following step, the global climate indices which resulted in the largest precipitation 

discrimination on an annual and seasonal basis were determined by comparing differences 

in the precipitation probability density functions and cumulative distribution functions 

between respective climate phases. As such, climate indices were ranked based on their 

phase influence on regional precipitation. 

 

2.3 Hydrometeorological Forecasting 

 
The second main objective was the development of ANN forecast model to explore 

teleconnections between global and regional climate by predicting meteorological drought 

index values in relation to regional climatology and global climate indices. The ANN model 

utilized 4 main input categories as variables; climate indices (AMO, PDO, ENSO), 

evaporation variables (wind speed, potential evapotranspiration, and evaporation), 

minimum and maximum temperature, and precipitation. The ANN model’s input and hidden 

neuron architecture was then varied to determine which meteorological variables and 

model design resulted in the lowest overall forecasting error for drought index values. 

Finally, the ANN model’s forecasting skill against climatology was evaluated to determine 

the effectiveness in utilizing Artificial Neural Networks in the prediction of 

hydrometeorological conditions of our regional study area through drought index values.  
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Chapter 3 

Methodology 

 
3.1 Global Climate Indices 

 

Climate indices are indicators of changes in climatological trends and short term 

climatological events. This study evaluated the incorporation of climate indices into 

regional hydrological predictions. The introduction section of this chapter introduces the 

primary climate indices used in this study as well as current research regarding their 

respective effects on North America climatology, while the climate index datasets section 

provides information necessary to obtain the climate index data used in this study. 

 

3.1.1 Introduction 

 
The Earth’s climate system consists of the atmosphere, hydrosphere, cryosphere, 

biosphere, and lithosphere and variations between and within these components influence 

long-term fluctuations of temperature, precipitation, pressure, humidity, and wind. 

Indicators of climate variations are referred to as climate indices that can encompass e.g. 

changes in average sea surface temperature, pressure differences, wind, and precipitation 

rates. Through measurement of these changes over a time span exceeding 50 years, 

depending on the characteristic frequency of the fluctuations [Wyatt et al., 2011], phases 

of increased variability and average period length can be determined. The climate indices 

this study considered are the Atlantic Multidecadal Oscillation (AMO) [Bjerknes, 1964], 

Pacific Decadal Oscillation (PDO) [Mantua et al., 1997], North Atlantic Oscillation (NAO) 

[Hurrell and van Loon, 1997], Southern Oscillation Index (SOI) [Bjerknes, 1969], and the 

Bivariate El Niño Southern Oscillation (ENSO) [Schlesinger and Ramankutty, 1994].  
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The Atlantic Multidecadal Oscillation is the area weighted average sea surface 

temperature (SST) over the North Atlantic (0°N - 70°N) with a period oscillation of 65-70 

years [Enfield, 2001]. This variability in sea surface temperature has been attributed to 

fluctuation in the thermohaline circulation and has been shown to be self-sustaining and 

independent of external forcing [Delworth and Mann, 2000]. It has been also linked to the 

variability of Greenland sea ice and of sea level pressure [Venegas and Mysak, 2000]. The 

AMO phases are shown on Figure 5 with the positive phase showing above average sea 

surface temperatures (SST) and the negative phase below average SST. The AMO index 

has been correlated to rainfall rates and modulate precipitation patterns in the US with 

positive (negative) phases of the AMO reducing (increasing) the amount of precipitation in 

the US [Enfield, 2001]. During the negative AMO phase, the North Atlantic subtropical high 

pressure system is strengthend, and an enhanced high pressure system develops over the 

AMO Positive AMO Negative 

Sea Surface Temperature Anomaly (°C)  

Figure 5: Sea surface temperatures (SST) derived from January mean values with 

positive AMO phases on the left and negative AMO phases on the right. Adapted from 

[Yamamoto and Palter, 2016]. 
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western North American continent. These conditions develop into two anticyclonic cells, 

seperated by the Sierra Madre Mountains as seen in Figure 6. The Gulf of Mexico anti-

cyclonic cell brings moisture north and into the central United States region accounting for 

the increased precipitation durring AMO cold phases. In contrast, during AMO positive 

AMO Negative 

AMO Positive 

Figure 6: Atlantic Multidecadal Oscillation over North America. Gray shading 

represents negative precipitation anomaly, diagonal slashes positive precipitation 

anomaly. Adapted from [Hu et al., 2011]. 
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phase, the North Atlantic subtropical high pressure system contracts and is shifted 

eastward. This shift in the subtropical high pressure system generates cyclonic cells over 

the Gulf of Mexico and the West Pacific Ocean limiting the northward flow of moisture into 

the central United States resulting in lower precepitation during AMO warm phases.  

The North Atlantic Oscillation is defined as pressure fluctuations between the 

Icelandic low pressure and the Azores high pressure [van Loon and Rogers, 1978]. Its 

phases are associated with changes in the westerly winds, which travel over the Atlantic 

to Europe. This oscillation accounts for more than 30% of the variance of sea level pressure 

in the Northern Atlantic [Wallace and Gutzler, 1981]. The positive phase of NAO represents 

stronger than average westerlies at the mid-latitudes and an associated lower-than-normal 

Icelandic low with the most pronounced signal in winter months [Hurrell and van Loon, 

1997]. The pressure fluctuations are related to the changing strength of the Hadley cell in 

response to a positive SST anomaly. The NAO mainly influences winter precipitation 

patterns over Europe and the North America east coast [Dai et al., 1997]. 

The Pacific Decadal Oscillation shown in Figure 7 is comprised of sea surface 

temperature variations in the Pacific above 20°N, quantifying extra-tropical variability in the 

Pacific [Mantua et al., 1997; Zhang et al., 1997]. The PDO is constrained by two dominant 

oscillations that consists of a 15-25 year cycle, controlling the transition between positive 

and negative phases [Minobe, 1997], and a 50-70 year cycle. The variability in the PDO is 

teleconnected to the occurrences of shorter term El Niño and La Niña events from the 

atmospheric bridge created during the events. The teleconnection between the two indices 

result in the increase of La Niña events during negative PDO phases and El Niño events 

during positive phases [Lapp et al., 2013].  
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The Southern Oscillation Index quantifies the pressure differences between the 

low over west central Pacific Ocean (Darwin, Australia) and the high over the southeastern 

Pacific Ocean (Tahiti, French Polynesia). The change in the westward pressure gradient 

between these locations occurs as the equatorial Pacific sea surface becomes warmer or 

colder than normal. The SOI pressure fluctuations, similar to the NAO, result from 

anomalous SST changes in the central Pacific that strengthen and weaken the southern 

Hadley cell and alters the westward pressure gradient [Bjerknes, 1969]. The Niño 3.4 index 

measures the SST changes that occur in the Pacific from 5°N-5°S and 170°W-120°W as 

outlined in Figure 8.  

 

Figure 7: Sea surface temperature deviation in color, sea level pressures represented 

with contours, and surface wind stress with arrows. Adapted from [Mantua et al., 1997]. 

Pacific Decadal Oscillation (PDO) 

Positive Phase Negative Phase 
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El Niño and La Niña conditions are determined by a departure of 0.5°C (Mar-Jun) 

and 1.5°C (Jun-Feb), are highly correlated to the SOI. These El Niño and La Niña events 

occur irregularly lasting typically several month with a period of 2-7 years [Hamlet and 

Lettenmaier, 2000]. Merging the Southern Oscillation and Niño 3.4 index creates the 

bivariate El Niño Southern Oscillation (ENSO) by having their respective climatological 

means removed and their respective monthly values averaged against each other [Smith 

and Sardeshmukh, 2000]. The strongest El Niño event on record has just completed in 

winter 2015, surpassing the past largest departure which occurred winter of 1997 [Jacox 

et al., 2016]. El Niño events result in a strengthened low-latitude westerly flow crossing 

North America which results in increases of frontal activity. A southward displacement of 

the westerly jet stream (Figure 9) also develops resulting in an increased moisture flux 

across the southern part of North America [Kahya and Dracup, 1994]. La Niña events 

Figure 8: Regions of averaged sea surface temperature to evaluate ENSO conditions. 

Provided from [NOAA, 2017]. 
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generate the opposite condition with a northward deflection of the westerly jet stream and 

a general decrease in winter moisture flux across southern North America and Texas. 

 

3.1.2 Climate Index Datasets  

 
All global climate indices utilized in this study were acquired from the National 

Oceanic and Atmospheric Administration (NOAA) data sets (see 

http://www.esrl.noaa.gov/psd/data/climateindices/list/). The AMO was created from the 

monthly updated SST dataset with an area weighted average over the North Atlantic from 

0° to 70° N and detrended to remove any global warming trend [Enfield, 2001]. The NAO 

was produced from the normalized pressure difference between a station on Azores and 

Iceland [Hurrell, 1995]. The PDO originated from the leading principle component of SST 

north of 20°N in the Pacific and detrended from the global average [Zhang et al., 1997]. 

The SOI data set utilized the standardized Tahiti pressure value minus the standardized 

Darwin value normalized by the monthly standard deviation. The Niño 3.4 index is 

Figure 9: North American climate patterns during La Niña and El Niño conditions. 

Provided from [NOAA, 2016].  

http://www.esrl.noaa.gov/psd/data/climateindices/list/
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computed as the area weighted average of the sea surface temperature of 5°N-5°S and 

170°W-120°W. The bivariate El Niño Southern Oscillation index (ENSO) is formed from 

averaging both the SOI and the Niño 3.4 values together after removing the global trend 

and standardizing the data [Smith and Sardeshmukh, 2000]. In the identification of El Niño 

and La Niña events a 20% threshold in regards to the strength of the bivariate El Niño 

Southern Oscillation was chosen, which is seen as a stringent definition of El/La Niño/a 

events. The AMO, PDO, and ENSO data sets range from 1915-2015 for the purpose of 

this study, while the NAO dataset was limited to 1960-2015 due to data collection starting 

in 1960.  

 

3.2 Conditional Ensemble Streamflow Prediction 

 
3.2.1 North Central Texas Regional Climate Anomalies 

 
The temperature and precipitation dataset from the Dallas-Fort Worth region was 

collected from the National Weather Service historical record [NWS, 2015]. It is noted that 

the collection location of Dallas-Fort Worth temperature and precipitation data changed 

over the time series of collection (Figure 10 and Table 1). Daily mean areal precipitation 

(MAP) records were analyzed from the following United States Geologic Survey (USGS) 

reservoir monitoring stations in the upper Trinity Basin: Jacksboro station (ID: JAKT2) and 

Dallas station (ID: DALT2) as seen in Table 1. MAP dataset was recorded at both stations 

4 times daily in accumulated inches (1 in = 25.4 mm) and ran from 1960-2015. Gaps in 

data collection for a time series resulted in the exclusion of that month’s data from all 

compared data sets. The daily MAP dataset was then converted to a monthly dataset 

through summation of the daily precipitation totals. 
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The regional temperature, precipitation, and reservoir MAP datasets were 

transformed into climate anomalies representing deviations of temperature, precipitation 

and reservoir MAP from their mean regional states. These regional climate anomalies were 

then utilized in correlations with the global climate indices, as well as deconstructed with 

singular spectrum analysis in exploration of potential teleconnections.  

Figure 10: Map of the locations of the KDWF stations operated by the National 

Weather Service from 1898 to present.  

1) Downtown Fort Worth 1898-1940, 2) Fort Worth Meacham Field: 1940-1953, 3) 

Greater Southwest International Airport: 1954-1974, 4) DFW International Airport: 

1974 – present. Obtained from [NWS, 2015]. 
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Table 1: Data collection stations provided and operated by the United States Geologic Survey and the National Weather Services for the 

Trinity River Basin. Station coordinates, area coverage, elevation, date of data collection, and type of data collection are provided in table. 

 



 

19 

 

The study also incorporated the gridded Livneh Contiguous United States 

(CONUS) near-surface meteorological dataset from 1915-2012 for reconstructing reservoir 

catchment meteorology [Livneh et al., 2013]. This dataset contained temperature 

(minimum and maximum), precipitation, and wind speed on a 1/16° by 1/16° resolution 

calculated from 20,000 National Climate Data Center (NCDC) station inputs across the US 

domain. In addition, hydrometeorological variables such as evaporation flux, generated 

from the original data meteorological dataset using the Variable Infiltration Capacity (VIC) 

hydrologic model (version 4.1.2.c), were included. These datasets were then applied to 

construct individual variable time series for each reservoir station hydraulic catchment by 

averaging the variable grid values contained in each hydraulic catchment. The reservoir 

MAP data only extended back to 1960, a time interval too short to be compared with global 

climate indices that have a periodicity of 50-70 years. Thus, it was necessary to artificially 

extend monthly reservoir precipitation, through the use of the Livneh datasets, to identify 

potential teleconnections between the global and regional climate pattern. 

The Livneh CONUS reservoir precipitation datasets were then utilized in the 

creation of cumulative distribution functions and probability density functions in regards to 

AMO phases, PDO phases, and El Niño and La Niña events in order to determine changes 

in regional precipitation distributions.  

 

3.2.2 Computation of Climate Anomalies and Normalization 

 
The monthly averaged and standardized areal anomalies (𝑥𝑖

′) for temperature and 

precipitation for the stations (section 3.1) were calculated by subtracting the mean (𝑥̅) over 
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the period 1900-2015 (for decadal variations) and 1960-2015 (for inter-annual variations) 

from the observed values (𝑥𝑖 ) (Eq. 1) :  

     𝑥𝑖
′ =  𝑥𝑖 − 𝑥̅            (1) 

with  

𝑥̅ = ( 
1

𝑛
∗ ∑ 𝑥𝑗

𝑛
𝑗=1 )            (2) 

The monthly averaged observed temperature and precipitation anomalies 𝑥𝑖
′  were 

then used to compute the normalized distribution 𝜙(𝑥) with a standard deviation of 1 and 

a mean of 0 for statistical analysis (Eq. 3): 

     𝜙(𝑥) =  √
∑(𝑥𝑖

′)2

𝑛−1
           (3) 

The distribution analysis (Eq. 3) was preformed to accurately compute trends when 

implementing higher order statistical analysis such as singular spectrum analysis.  

 

3.2.3 Moving Average Filter 

 
A moving average filter was applied to the regional climate anomaly and global 

climate indices before correlations were taken. The moving average filter (Eq. 4) is shown 

with the weighted value (Eq. 5) for the filtered data. In equation 4, mt denotes the filtered 

data, k is the length of filter, aj is the filter weight, and xt denotes the input data at time t. A 

value of k was chosen to be 2 for the monthly average filter [Booth et al., 2006].  

     𝑚𝑡 = (∑ 𝑎𝑗𝑥𝑡−𝑗
𝑘
𝑗=−𝑘 )           (4) 

with 

     𝑎𝑗 =
1

2𝑘+1
              (5) 

  



 

21 

3.2.4 Blackman-Turkey Spectrum Analysis 

 
A spectrum analysis was performed on the datasets to determine at which 

period(s) the most prominent oscillation components were present. This process involves 

the use of a Fast Fourier Transform (FFT; Eq. 6) to transform the data from a time domain 

into a frequency domain with Xk representing the FFT output. The Blackman-Turkey 

method utilizes an autocorrelation function (𝑟𝑘) to smooth the wave, as well as a windowing 

effect (𝑤𝑘). Combining these elements creates the structure of the Blackman-Turkey 

Algorithm (Eq. 7), where 𝑘 equals lag and 𝑁 is maximum lag [Blackman and Tukey, 1958; 

Percival and Walden., 1993].   

𝑋𝑘 =  ∑ 𝑥𝑛𝑒−𝑖2𝜋𝑘
𝑛

𝑁𝑁−1
𝑛=0   ;   𝑘 = 0, … , 𝑁 − 1         (6) 

𝑋𝑘(𝑓) =  ∑ 𝑤𝑘𝑟𝑘𝑒−𝑖2𝜋𝑘𝑓𝑁−1
𝑘=0             (7) 

 

3.2.5 Correlations and Cross-Correlations 

 
Linear correlation coefficient (R) between two datasets was obtained by using the 

Pearson product-moment linear correlation method (Eq. 8) with 𝑥̅ and 𝑦̅ representing the 

mean value of the datasets. The Pearson coefficient of determination (R2) was also 

calculated through squaring the Pearson product linear correlation coefficient. 

 𝑅 =
∑ (𝑥𝑖−𝑥̅)(𝑛

𝑖=1 𝑦𝑖−𝑦̅)

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1  √∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

           (8) 

The cross-correlation function (CCF) equation (Eq. 9) introduces a lag time 𝜏 into 

the Pearson equation (Eq. 8) so that the change in the Pearson product is determined in 

response to the offset of data points enabling the determination of delayed forcing in the 
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climate system in reference to our regional parameters, such as temperature and 

precipitation anomalies [Zwiers and Storch, 1999]. 

𝐶𝐶𝐹𝑥𝑦 =
∑ (𝑥𝑖−𝑥̅)(𝑛

𝑖=1 𝑦𝑖−𝜏−𝑦̅)

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1  √∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

        (9) 

 

3.2.6 Empirical Cumulative Distribution and Probability Density Function 

 
The empirical cumulative distribution function for the regional precipitation was 

generated by taking each reservoir’s monthly precipitation value for all months within the 

selected climate phase and inputting them into an empirical cumulative distribution function 

(Eq. 10). The discrete probability density function (Eq. 11) is generated based on the 

probability of an observed outcome occurring. Its integral generates the cumulative 

distribution function. 

 

𝐹𝑋(𝑥) = ∫ 𝑓(𝑥)𝑑𝑡
𝑥

−∞
           (10) 

𝑓(𝑥) =
1

𝑛
∑ 𝐾ℎ(𝑥 − 𝑥𝑖)

𝑛
𝑖=1           (11) 

 

3.3 Hydrometeorological Forecasting 

 
The Livneh CONUS near surface meteorological conditions, introduced in section 

3.2.1, dataset from 1915-2012 that was reconstructed into TRWD individual reservoir 

catchment datasets was employed in this half of the study. It was utilized in the calculation 

of the Potential Evapotranspiration (PET) and the Standardized Precipitation 

Evapotranspiration Index (SPEI). In addition, the Livneh CONUS reconstructed dataset 

was provided as regional climatology inputs for the artificial neural network model.    
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3.3.1 Potential Evapotranspiration 

 
Calculating potential evapotranspiration is necessary for the construction of 

regional drought indices, which rely on the calculated flux of regional soil moisture. 

Potential evapotranspiration (PET), also referred to as reference evapotranspiration, is the 

maximum potential amount of evapotranspiration that would occur with ample amounts of 

water present. PET values can be derived from the application of Penman’s equation (Eq. 

12) which involves computation of the atmospheric (Eaero) and radiative (Erad) components 

of radiation by 

 

𝐸𝑃𝑒𝑛 = 𝐸𝑟𝑎𝑑 + 𝐸𝑎𝑒𝑟𝑜 =
∆

∆+𝛾
∗

(𝑅𝑛)

𝛾
+

𝛾

∆+𝛾
∗

6.43(𝑓𝑈)𝐷

𝜆
        (12) 

 

Equation (12) is parameterized by the slope of saturation vapor pressure curve (∆) 

in (kPa/°C), the net surface radiation (Rn ) in (MJ/m2/d), the psychrometric coefficient (𝛾) 

in (kPa/°C), the Penman wind function(𝑓𝑈), the vapor pressure deficit (𝐷), and the latent 

heat of vaporization (𝜆) in (MJ/kg) [Penman, 1948].  

It should be noted that Eq. (12) requires an intensive dataset including 

temperature, relative humidity, wind speed, extra-terrestrial radiative forcing, and surface 

radiative forcing. These variables are not present across this study’s 97-year time series, 

so a modified approximation of the Penman equation is necessary. The modified 

Hargreaves method, developed for use with limited datasets, is described by   

 

𝑃𝐸𝑇 ≈ 0.0013 ∗ 0.408𝑅𝑎 ∗ (𝑇𝑎𝑣𝑔 + 17) ∗ (𝑇𝐷 − 0.0123𝑃)0.76        (13) 
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and is computed from incoming downward solar radiation Ra in (MJ m-2d-1 or 86.4 10-3 W 

m-2), average temperature (Tavg) in (°C), temperature range (TD) in (°C), and precipitation 

(P) in (mm/month) [Droogers and Allen, 2002]. The Hargreaves method while requiring 

less data atmospheric data still computes PET within 97-101% of a measured lysimeter, a 

measuring device that can measure evapotranspiration [Beguería et al., 2014]. 

 

3.3.2 Standardized Precipitation Evapotranspiration Index  

 
The standardized precipitation evapotranspiration index (SPEI) was developed as 

a combination of the standard precipitation (SPI) and Palmer drought severity index (PDSI) 

[Vicente-Serrano et al., 2010]. The SPI was a multi-scalar precipitation index that lacked 

the incorporation of evapotranspiration data while the PDSI was a measure of soil moisture 

evapotranspiration that could only be viewed in one timescale, which varies but is typically 

on the annual scale. The SPEI merged these two concepts to generate a drought index 

utilizing evapotranspiration that functions in a multi-scalar nature so that different drought 

types could be characterized [Vicente-Serrano et al., 2010]. The SPEI is constructed by 

calculating the difference between precipitation (P) and reference evapotranspiration 

(PET), or 

𝑆𝑃𝐸𝐼 = 𝑃 − 𝑃𝐸𝑇            (14) 

Computation of SPEI can be obtained by a standardized (mean=0 and standard deviation 

SD = 1) probability distribution function F(D), given by   

 

𝐹(𝐷) =  [1 + (
𝛼

𝐷−𝛾
)

𝛽

]−1          (15) 
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as a function of a log-logistic distribution of the difference of P minus PET (D) with scale 

(𝛼), shape (𝛽), and location parameter (𝛾) [Beguería et al., 2014]. 

Figure 11 shows the calculated SPEI values on the reservoir SGET2 surface for a 

3 month, 6 month, and 12 month time step. As can be seen, the 12 month SPEI has the 

least noise and most closely resembles the PDSI while the 3 month SPEI more closely 

resembles a precipitation anomaly time series. For the purpose of this study, a 6 month 

SPEI was chosen in determining the hydrometeorological conditions as it has been shown 

to correlate with soil moisture, precipitation, and streamflow [Vicente-Serrano et al., 2010; 

Wolf, 2012; Wu et al., 2016]. 
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Figure 11: Time series of the standardized precipitation evapotranspiration index (SPEI) for reservoir catchment 

SGET2 and for time steps 3, 6, and 12 months. 
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3.4 Artificial Neural Network (ANN) Model 

 
Artificial Neural Network modeling was utilized in this study as a means of 

forecasting future reservoir hydrometeorological conditions through a machine learning 

algorithm. The introduction section of this chapter explains the development, benefits, 

and limitations of Artificial Neural Network modeling, while the model description section 

explains the exact configuration and parameters of the model used in this study. 

 
3.4.1 Introduction 

 
Artificial Neural Networks (ANN) were first developed by replicating the structure and 

process of how the mammal neurologic brain functions [Basheer and Hajmeer, 2000]. As 

seen in Figure 12, a mammal’s neuron receives data from multiple inputs through dendrites 

where the information is subsequently processed through the soma and an output is sent 

through the corresponding axon to synapses connected to other neurons. On a much 

smaller scale this is the basic structure of an ANN model and how it processes input and 

output data. An ANN model must at least consist of three layers: an input, hidden neuron, 

and output layer. Input data is processed through a hidden neuron layer that utilizes a 

chosen training algorithm and back propagating error to adjust the hidden neuron’s weights 

to match the training output sequence [Flood and Kartam, 1994]. By training the model 

based on output error, relationships are derived between the input variables and the output 

variable, and reflected in the training of the hidden neuron weights, as inputs shown to give 

better predictions of the output increase the hidden neuron weights. 
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ANN models are proven to be robust at extracting patterns from noisy data as well as 

being capable of deriving non-linear relationships between data inputs and outputs. Making 

ANN models ideal for drought forecasting, which exhibits non-linear relationships between 

meteorological parameters that contain a low signal to noise ratio. ANN models also only 

require knowledge of the central factors that influence the studied process, not a derived 

relationship of the process being examined [Baawain et al., 2005]. An important 

qualification, as determination of future drought patterns based on present day 

meteorological parameters has not yet been dynamically quantified by climate modelling. 

 

3.4.2 Model Description 

 
The ANN model utilized in this study is classified as a feed-forward multi-

perceptron model with back propagating error [Hornik et al., 1989]. As shown in Figure 14, 

up to 10 data inputs were used with the model and separated into the following groups for 

this study; climate indices (AMO, PDO, ENSO), evaporation variables (evaporation, 

Figure 12: The structure of a mammalian neuron. Adapted from 

[Furber and Temple, 2007]. 
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potential evapotranspiration, wind speed), precipitation, temperature extremes, and the 

SPEI value. Climate indices, like AMO, PDO, and ENSO, were selected as they showed 

signs of potential teleconnections during earlier correlations and contained the necessary 

data values for the length of the modeling (1915-2012). 

An architecture of four hidden neurons was chosen after varying the number of 

hidden neurons showed four hidden neurons providing the lowest amount of error, as seen 

in Figure 13. The ANN model was then trained with 70% (or 68 years) of the dataset range 

from (1915-1983) and tested against 30 percent (29 years) of the data range (1983-2012). 

The data output was varied depending on forecast length, e.g. to generate a model forecast 

for 2 months lead time the data output would be trained utilizing SPEI values 2 months 

ahead of the data input. Utilizing the above process reduces the overall forecasting error 

with longer lead times as the error generated from previous predictions does not cumulate 

since different models are implemented for separate lead times. This methodology differs 

from the alternative classical approach which would incorporate the use of the SPEI 

drought indices natural autocorrelation to determine future SPEI values based on multiple 

previous SPEI values [Özger et al., 2012]. This study does not utilize the SPEI 

autocorrelation relationship in forecast prediction as it would disrupt the ranking of the 

regional climatology and global climate indices in terms of forecast importance in predicting 

SPEI values, and it would propagate forecast error across forecasted months, for example 

a 2 month ahead prediction would contain the error from the 1 month prediction.  

The overall forecasting ability of the ANN model was quantified with the Brier skill 

score against climatology (Eq. 16) [Hamill and Juras, 2006]. The Brier skill score is 

computed as the ability of the forecast model to better determine predicted values than the 

general variability of the forecasted system. As the model’s mean square error approaches 

that of the SPEI variability the model skill score falls to 0 representing no forecasting ability 



 

30 

Figure 13: Artificial neural model forecasting skill in relation to the variation of the 

number of hidden neurons. Optimum architecture identified as 4 hidden neurons. 

in reference against the natural climatology of the regional SPEI values. The regional 

climatology for this study was determined from the testing data range of 1983-2012. Model 

skill would be expected to increase if the regional climatology was taken from the total 

dataset 1915-2012. Therefore, it can be considered that this model’s skill scores are a 

conservative estimation.  

𝐵𝑟𝑖𝑒𝑟 𝑆𝑘𝑖𝑙𝑙 𝑆𝑐𝑜𝑟𝑒 = 1 −  
𝑀𝑆𝐸

𝑉𝑎𝑟(𝑆𝑃𝐸𝐼)
         (16) 
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Figure 14: Artificial neural network model architecture with a gaussian symmetric activation function. Model inputs were varied to determine input 

importance in forecasting for climate indices, evaporation variables, temperature, and precipitation. 
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Chapter 4 

Conditional Ensemble Streamflow Prediction 

 
4.1 Results 

 
4.1.1 Regional Climate Anomalies and Global Climate Indices Correlations  

 
A Pearson-correlation test was implemented in matrix form on the climate indices’ 

datasets for months indicative of La Niña or El Niño conditions. El Niño conditions are 

classified with the number 1 and La Niña defined with number -1 when the monthly bivariate 

El Niño Southern Oscillation Index is above the 20th percentile, whereas all other months 

are classified with the number 0. All datasets used in these linear correlations (Eq. 8) were 

smoothed with a 5-month moving average filter (Eq. 4). A significance test was also 

performed with correlation coefficient results passing a 95% (p-value < 0.05) confidence 

level highlighted in red. The correlation matrix in Figure 15 and Table 2 show the relation 

between climate indices and months pertaining to El Niño conditions. During El Niño 

events, the mean areal precipitation from Station JAKT2 does correlate moderately with 

the index PDO index (R= 0.57) and has a low correlation with the other climate indices 

(NAO (R=0.31), AMO (R=-0.31), and SOI (R=-0.35)). However, the Pearson correlation 

coefficient between Dallas Fort Worth (DFW) Airport precipitation values and climate 

indices appears to be negligible. In contrast during La Niña events, the correlation 

coefficient between the regional precipitation anomaly from the DFW Airport and climate 

indices is higher (e.g. for the AMO and SOI indices (R=0.31 and R=-0.52 respectively)) 

(Figure 16, Table 2). There is a low correlation for the PDO index (R=-0.31) climate, in 

regards to the JAKT2 station precipitation data. The correlations that pass the significance 

test range from negative moderate (R=-0.52) to positive low (R=0.31). The low values 
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above may be linked to noise or higher frequency oscillations in the signal which limit the 

precision of the Pearson linear correlation coefficient.  

 

4.1.2 Spectral Analysis 

A Fourier spectrum analysis (Eq. 6) was implemented on the climate indices 

datasets from 1900-2015 to determine the frequencies and periods with the largest 

oscillation power. The Blackman-Turkey method (Eq. 7) was utilized with a 650-bin discrete 

Fourier transform window for all climate datasets except the ENSO dataset, for which a 

126-bin discrete Fourier transform window was applied. Figure 17(A) shows the AMO 

power spectrum peak at a value in the range of 0.0012-0.0016, this coincides with a period 

of 52- 70 years, which is supported by the literature for the AMO [Enfield, 2001]. The PDO, 

Figure 17(B), power spectrum peak ranges from 49 years to 55.5 years and 5.5 years and 

6 years respectively. The DFW precipitation anomaly, Figure 17(C), has multiple low 

frequency peaks at 2.9 years, 4.1 years, 8.3 years, and 13.8 years; an indication that 

multiple signals with differing periods are likely attributing to the variability in the DFW 

precipitation anomaly. The ENSO index, Figure 17(D), has two main peaks one at 5.2 years 

and the other at 2.31 years. The largest power spectrum for the DFW temperature 

anomaly, Figure 17(E), has a period of 52 years and coincides with the period of the AMO. 

The interpretation of spectral analysis utilizing the fast Fourier function is limited to a 

maximum period length of 57.5 years, as the function can only represent periods up to half 

the length of available data used, which is 115 years for this study. As the AMO, PDO, and 

DFW temperature anomaly contain periodicities close to the maximum lower frequencies 

visible, our datasets may contain lower frequency oscillations that we are currently unable 

to properly quantify yet.  



 

 

3
4

 

Figure 15: Pearson correlation between temperature anomaly (T) and precipitation anomaly (P) of stations in North Central Texas (Dallas Fort Worth 

Airport, DFW, and WF Trinity R NR Jacksboro station, JAKT2) and major climate indices (AMO, PDO, SOI, NAO) during El Niño climate conditions, 

along with a representative histogram of each correlated variable.  
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Figure 16: Pearson correlation between temperature anomaly (T) and precipitation anomaly (P) of stations in North Central Texas (Dallas Fort Worth 

Airport, DFW, and WF Trinity R NR Jacksboro station, JAKT2) and major climate indices (AMO, PDO, SOI, NAO) during La Niña climate conditions, 

along with a representative histogram of each correlated variable.  
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Table 2: Pearson correlation coefficient (R) and significance test (p-value) between temperature anomaly (T) and precipitation anomaly (P) of 

stations in North Central Texas (Dallas Fort Worth Airport, DFW, and WF Trinity R NR Jacksboro station, JAKT2) and major climate indices 

(AMO, PDO, SOI, NAO) during El Niño and La Niña climate conditions. Note that p < 0.05 (red) denotes statistical significance. 
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Figure 17: Singular spectrum analysis of global climate 

indices and regional climate anomalies: A) AMO power 

spectrum with a 650 discrete Fourier transform (DFT) bin 

window, B) PDO power spectrum with a 650 DFT bin 

window, C) DFW precipitation anomaly power spectrum with 

a 650 DFT bin window and annual moving average filter, D) 

ENSO power spectrum with a 126 DFT bin window, E) DFW 

temperature anomaly power spectrum with a 650 DFT bin 

window and annual moving average filter. 

 

 

 

 

  



 

38 

4.1.3 Empirical Cumulative Distribution Function and Probability Density Function 

Analysis 

Monthly and seasonal precipitation data for each of the reservoir catchment areas 

was analyzed in respect to positive and negative AMO and PDO phases as well as El Niño 

and La Niña events and separated in respective phases. These two datasets with positive 

and negative phases were then analyzed by reconstructing the cumulative distribution 

function and the probability density function to evaluate whether the different climatic 

phases generated discrimination between the two states, or whether there was an overall 

mean change in the precipitation probability distribution. This method was applied for 

annual and seasonal (with focus on winter, and spring) values of total precipitation for the 

Trinity River basin. 

The annual total precipitation probability density and cumulative distributions for 

the different climate phases for our study area can be seen in Figures 18, 19, and 20. Both 

AMO phase’s (Figure 18) and El Niño and La Niña (Figure 19) event’s effect on regional 

annual precipitation show a discernable discrimination between phases in regards to 

annual precipitation, with the AMO phase having a more consistent uniform discrimination 

of roughly 127 mm (5 in) of annual precipitation. El Niño and La Niña events exhibit a 

comparable annual discrimination on regional precipitation though it is not uniform, as the 

La Niña probability density function (pdf) exhibits a bimodal peak. It is important to note 

that ENSO events are not necessarily represented by a change in annual mean 

precipitation as these are probabilistic plots which establish the likelihood of an ENSO 

event deviating from typical annual precipitation. The PDO phases (Figure 20) exhibited 

little to no precipitation discrimination on an annual basis with the PDO probability density 

phases closely matching except for a muted bimodal peak in regards to the negative PDO 

phase. The seasonal winter probability density and cumulative distribution functions 
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(Figures 21-23) display El Niño and La Niña events (Figure 22) as the prominent means of 

winter precipitation discrimination when compared to the AMO (Figure 21) and PDO 

(Figure 23). The seasonal spring probability density and cumulative distribution functions 

for precipitation (Figures 24-26) were also compared, as seasonal spring precipitation 

generates the majority of the seasonal precipitation that affects our study area’s annual 

precipitation. The AMO phase discrimination (Figure 24) shows a consistent small 

discrimination of 25 mm - 50 mm (or 1 in - 2 in) for a total accumulated precipitation of 200 

mm (or 8 in). El Niño and La Niña events (Figure 25) exhibit a greater discrimination of 63 

mm (2.5 in), though it is not uniform and mostly generated from La Niña events exhibiting 

a bimodal peak. The PDO probability density and cumulative distribution (Figure 26) 

showed the lowest levels of precipitation discrimination, consistent with the annual and 

winter discrimination results. 

 

4.2 Discussion 

In summary, the Pearson correlations produced weak to moderate correlations 

between the AMO, ENSO, and PDO global climate indices and regional climatology, with 

statistical significance within the 95% confidence level. This null hypothesis significance 

level test is an unreliable significance metric because the global and regional climate 

variations are related to global external forcing, such as variations in greenhouse, solar, 

and aerosol forcing, and internal climate variation of the climate system [Donges et al., 

2009]. Accordingly, the significance test, which determines whether no relationship is 

present in the case of the null hypothesis should be skewed to positive results. The 

significance test bias is also accentuated by the large dataset correlations which would 

increase the likelihood of the data falling into the 95% confidence interval [Nicholls, 2001]. 

Thus, our analysis suggests that the Pearson correlation (Table 2) is limited to identify 
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climate teleconnections between the global and regional climate due to the non-linear 

nature of these teleconnections [Donges et al., 2009; Hlinka et al., 2014]. The limitations 

in the Pearson correlation methodology in accounting for the relationship between multi-

variable, non-linear systems also reduces the ability of generating positive correlation 

matches between regional changes of temperature and precipitation and climate 

teleconnections. While overall a positive AMO phase is indicative of increased temperature 

and lower precipitation, this does not remain consistent when considering the additional 

complexity of other climatological events simultaneously occurring such as an El Niño or 

La Niña event.  

The singular spectrum analysis was employed in determination of the overall 

oscillation pattern of the global climate indices and the regional climatology in terms of 

temperature and precipitation changes. The above approach exploits the unique oscillatory 

period property of global climate indices. If similar oscillatory patterns appear in the regional 

climatology of our study area that mimic global climate index oscillations, then a case could 

be made that a forcing pattern from the global climate index is also present in the regional 

climatology. The regional temperature anomaly’s periodicity was proven to be on the same 

oscillation pattern of the AMO, as seen in Figure 17. The data supports the premise that 

the AMO plays a role, or is incorporated with, regional temperature decadal changes in the 

North Central Texas region. The precipitation anomaly data showed numerous oscillatory 

peaks on a shorter decadal trend ranging from 2 years - 13 years. While the precipitation 

power spectrum does show similarities with the ENSO oscillatory period, the overall 

spectrum power is too low, with a maximum value around 20 PSD, to prove conclusive on 

any single forcing oscillation, as observed in Figure 17. The overall low values in the power 

spectrum also exhibits the large amount of noise that is present in precipitation data.  
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In order to quantify whether changes in regional precipitation occurred during 

changes in climate index phases, precipitation distributions were plotted and compared. 

The precipitation probability density functions and cumulative distribution functions 

confirmed deviations of precipitation mean states when controlling for global climate 

indices phases. The AMO and ENSO events produced the largest discriminations in base 

states while the PDO exhibited little to no changes except for its seasonal relationship to 

ENSO events (Figures 19-21). Regional winter precipitation in North Central Texas is 

influenced by ENSO events (Figure 22), whereas spring precipitation is affected by a 

combination of both AMO and ENSO variability (Figures 24 and 25). In particular, AMO 

phases have the highest correlation to the changes in regional precipitation states, except 

for the case that a strong ENSO event occurs. In this case, the winter and spring time 

precipitation are determined by the type of ENSO event occurring. La Niña events 

generated a bimodal peak (Figures 19 and 25) in the precipitation probability density 

function, while El Niño events created a single peak. Thus, the North Central Texas 

regional precipitation is affected by La Niña events characterized by two separate non-

Gaussian distributions, whereas El Niño events are typically normal Gaussian distributed. 

While there is a larger chance that below average winter precipitation are linked to La Niña 

events, there appears to be a similar chance that above-normal spring precipitation is 

controlled by either a La Niña or El Niño event. Thus, La Niña events influences the annual 

precipitation probability density with a bimodal peaking.  

The statistical analyses suggest that a conditional streamflow ensemble be created 

in reference to AMO phase changes (e.g. streamflow and precipitation forecasts limited to 

similar AMO phase years) except in the case of El Niño or La Niña events, which will require 

a separate conditional streamflow ensemble created in reference to ENSO events. 

However, the separate conditional streamflow ensemble for ENSO events may prove 
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currently unfeasible as a streamflow ensemble requires a minimum of 20 years of data for 

accurate results, and the TRWD only has streamflow data from 1960-2016, which contain 

only 11 years of La Niña events and 17 years of El Niño events. The only option to 

circumvent this obstacle, without waiting for future data collection, would be to generate 

additional ensemble members within currently observed El Niño La Niña precipitation 

patterns, though applying that methodology would have the drawback of assuming future 

El Niño and La Niña events would fall within past parameters.  
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Figure 18: Probability density function (left) and cumulative distribution function (right) of total annual precipitation (in) from 1915-

2012 for Trinity River Basin reservoirs during positive (red) and negative (blue) AMO phase years without La Niña and El Niño 

events. Note that 1 in = 25 mm. 
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Figure 19: Probability density function (left) and cumulative distribution function (right) of total annual precipitation (in) from 1915-

2012 for Trinity River Basin reservoirs during positive (red) and negative (blue) La Niña and El Niño event years. Note that 1 in = 

25 mm. 
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Figure 20: Probability density function (left) and cumulative distribution function (right) of total annual precipitation (in) from 1915-

2012 for Trinity River Basin reservoirs during positive (blue) and negative (red) PDO phase years. Note that 1 in = 25 mm. 
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Figure 21: Probability density function (left) and cumulative distribution function (right) of total winter (Dec-Feb) precipitation (in) 

from 1915-2012 for Trinity River Basin reservoirs during positive (red) and negative (blue) AMO phase years without La Niña and 

El Niño events. Note that 1 in = 25 mm. 
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Figure 22: Probability density function (left) and cumulative distribution function (right) of total winter (Dec-Feb) precipitation (in) 

from 1915-2012 for Trinity River Basin reservoirs during positive (red) and negative (blue) La Niña and El Niño event years. Note 

that 1 in = 25 mm. 
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Figure 23: Probability density function (left) and cumulative distribution function (right) of total winter (Dec-Feb) precipitation (in) 

from 1915-2012 for Trinity River Basin reservoirs during positive (blue) and negative (red) PDO phase years. Note that 1 in = 25 

mm. 
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Figure 24: Probability density function (left) and cumulative distribution function (right) of total spring (Mar-May) precipitation (in) 

from 1915-2012 for Trinity River Basin reservoirs during positive (red) and negative (blue) AMO phase years without La Niña and 

El Niño events. Note that 1 in = 25 mm. 
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Figure 25: Probability density function (left) and cumulative distribution function (right) of total spring (Mar-May) precipitation (in) 

from 1915-2012 for Trinity River Basin reservoirs during positive (red) and negative (blue) La Niña and El Niño event years. Note 

that 1 in = 25 mm. 
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Figure 26 Probability density function (left) and cumulative distribution function (right) of total spring (Mar-May) precipitation (in) 

from 1915-2012 for Trinity River Basin reservoirs during positive (blue) and negative (red) PDO phase years. Note that 1 in = 25 

mm. 
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Chapter 5 

Hydrometeorological Forecasting 

 
5.1 Artificial Neural Network (ANN) Model Results 

The ANN model was run on a total of 9 out of the 18 reservoir catchment areas in 

the Tarrant Regional Water District, indicated in Figure 27 with a red triangle. The selected 

stations cover most parts of the Trinity River basin considered in this study. The averaged 

hydrometeorological data for these selected stations are comparable to the corresponding 

average of all stations and thus give an accurate estimation of the overall ANN model 

effectiveness. Note, that the ANN forecast skill is dependent on how well the chosen 

stations reflect the regional climate variability. The overall forecasting error and brier skill 

score (Eq. 16) was then calculated by averaging all of the reservoir catchment modeling 

results. These results were then related to other ANN model runs involving limited data 

inputs (e.g. removing climate indices, evaporation variables, temperature data, and 

precipitation data). From this, the amount of forecasting skill imparted by the data inputs 

on the ANN model by lead month was quantified (Figure 28), which shows the ANN model 

forecasting skill imparted by each data input on forecasting the SPEI 6-month drought 

index by lead time in months.  

The incorporation of evaporation variables into the ANN model generated the 

greatest increase in forecasting skill starting at 58% at 1-month lead time. The model’s skill 

utilizing the evaporation variables diminishes quickly with a skill of 0.0% at 4.5 months lead 

time. Until 5 months lead time, a positive forecast skill score around 20% is achieved for 

both precipitation and temperature values, with a slightly greater skill if only precipitation 

values. ANN models utilizing climate indices consistently produced a negative skill score 

throughout all forecasts and did not improve regional SPEI forecasting. Utilizing all positive 
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skill forecasting variables, an optimal ANN model forecasting skill score was achieved 

(Figure 28). 
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Figure 27: Tarrant Regional Water District reservoir catchment stations. Stations used in ANN modeling marked in red. 
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The total forecasting skill score (Figure 28) starts at 80% for a 1 month lead time 

before its decline below 20% after 4 months. To visualize the deteriorating forecast skill 

with lead time, model testing data for reservoir station SGET2 was plotted for 1-6 months 

lead time with the model forecasted SPEI (Figure 29-34). The ANN model begins with a 

Figure 28: Brier's forecast skill score against climatology in regards to input variables such 

as temperature (red), precipitation (blue), and evaporation variables (brown). Also shown 

is the skill score using global climate indices only (green; AMO, PDO, ENSO) and total 

forecast using positive skill variables (black). 
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relatively high forecast skill because it starts with a fit to the observed data and slowly 

deteriorates over time to the SPEI’s natural variability. There also appears to be a 

discrepancy in curve fitting and forecast skill when comparing SPEI values outside a -1 to 

1 range, as seen in Figure 29. In order to quantify how much this might decrease predictive 

forecasting of droughts, the modeling error shown in Table 3 was generated while 

controlling for forecasting only moderate-extreme drought conditions. There was an overall 

increase in model mean absolute error and a decrease in the Pearson correlation (R2) 

coefficient of determination when compared to the model predictions for all conditions 

resulting in a decreased forecasting lead time from 3-4 months for all conditions, to only 2-

3 months for moderate – extreme drought forecasting. Thus, the ANN model has greater 

difficulty in the prediction of moderate-extreme drought conditions.   

  

Table 3: Model forecasting mean absolute error (MAE) and Pearson R2 coefficient of 

determination for all SPEI conditions and moderate to extreme drought conditions (SPEI 

< -1.0). 
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5.2 Discussion 

The ANN model was successful in forecasting drought conditions up to 2-3 months 

in advance of their occurrence through the use of the following regional climatology 

variables: minimum and maximum temperature, precipitation, and evaporation variables 

such as wind speed, evaporation, and potential evapotranspiration. The most important 

forecasting input for the model were the monthly potential evapotranspiration (PET) and 

wind speed. The importance of these variables are supported by other studies showing 

how regional PET fluctuations over time are easier to plot and predict than precipitation 

anomalies and how PET proves useful in forecasting drought indices [Trajkovic et al., 

2003]. The model forecasting skill of PET, however, decreased linearly with monthly lead 

time demonstrating that evaporation variables are temporally constrained and fluctuate the 

farther out from the month of collection [Torres et al., 2011]. As such, while incorporating 

PET in ANN models may greatly increase the forecast skill at one-month lead time by 58%, 

it marginally rises the model forecasting capabilities by 2% at four-months lead time. In 

contrast to PET and wind speed, both temperature and precipitation variables give a near 

constant increase in model forecasting skill out to a five-month lead time. The ANN model 

utilizes the current monthly temperature and precipitation values in order to determine the 

most likely temperature or precipitation regime and generate a constant improvement of 

SPEI forecasting. For example, if precipitation monthly values are lower than average, the 

model will increase forecasting skill by weighting forecasted drought index values to 

drought conditions. In contrast to generating a large skill increase, it would generate a 

consistent skill increase that would approach zero at the end of the time step for the drought 

index, due to the fact that the previous drought condition leads to a retention of the state. 
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When the global climate indices were incorporated into the ANN model, forecasting 

skill decreased across all stations and climate indices creating an inconsistency with the 

previous chapter’s research, as it was shown that both the AMO and ENSO events 

contribute to an overall deviation in the precipitation probability distribution mean state. 

Raising the question of why the model did not improve with this proven teleconnection into 

the drought forecasting. Due to the black box nature of ANN models, the only statistical 

information the ANN model can give us is the fact that global climate indices did not 

improve regional drought predictions, leaving the reasoning as to why this occurred open 

to interpretation. It is our conjecture that the ANN model did not incorporate the multi-

decadal climate indices as the shifts in precipitation probability density would be 

unnecessary with precipitation values as model inputs. The model would use a current 

month’s precipitation data to determine the precipitation regime, which is unlikely to change 

in a 5-month time step from decadal variability. Therefore, multi-decadal global climate 

indices with influences on precipitation patterns would be redundant in this context. In the 

case of shorter term ENSO events, the lack of forecasting skill could be derived from the 

forecasting model being trained on a long time series and fitted to normal climatological 

conditions. The infrequency of ENSO events would lower the average drought model 

forecasting skill and result in a decrease in average model performance, as the ENSO 

index becomes only significant during ENSO events. There is also the possibility that the 

spatial distance of the North Central Texas region from these global climate indices 

reduced the variables’ ability to improve forecasting skill. ANN drought modeling of coastal 

Australia and the Pacific Northwest often incorporates the use of the Nino 3.4 index, as 

climate conditions in these regions are affected to a greater extent by the Pacific’s climate 

conditions [Deo and Şahin, 2015; Silverman and Dracup, 2000]. These studies did not 

include data on varying their ANN model inputs, so it is impossible to determine the overall 
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model forecasting skill improvements from the incorporation of the Nino 3.4 index in related 

studies. 

 Finally, this ANN modeling scheme was able to accurately predict 2-3 months in 

advance by incorporated only the SPEI with a 6-month time step. These findings are 

reflected in other ANN modeling studies which generated predictions of 2-3 months in 

advance, though those studies used the SPEI with an annual time step. If this study’s ANN 

model was retrained on the SPEI with an annual time step, an increase in forecasting lead 

time would be expected due to the nature of drought indices serial correlation to previous 

values.  
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Figure 29: SPEI 6 month drought index values for reservoir catchment SGET2 from 

1983-2012 with black representing actual values and red the ANN model 1 month in 

advance predicted values. 
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Figure 30: SPEI 6 month drought index values for reservoir catchment SGET2 from 

1983-2012 with black representing actual values and red the ANN model 2 month in 

advance predicted values. 
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Figure 31: SPEI 6 month drought index values for reservoir catchment SGET2 from 

1983-2012 with black representing actual values and red the ANN model 3 month in 

advance predicted values. 
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Figure 32: SPEI 6 month drought index values for reservoir catchment SGET2 from 

1983-2012 with black representing actual values and red the ANN model 4 month in 

advance predicted values. 
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Figure 33: SPEI 6 month drought index values for reservoir catchment SGET2 from 

1983-2012 with black representing actual values and red the ANN model 5 month in 

advance predicted values. 
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Figure 34: SPEI 6 month drought index values for reservoir catchment SGET2 from 

1983-2012 with black representing actual values and red the ANN model 6 month in 

advance predicted values. 
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Chapter 6 

Conclusion 

 
 The Tarrant Regional Water District is increasingly vulnerable to weather anomaly 

events, such as prolonged droughts and flash floods, with an increasing population and 

growing water demand. In order to prevent and limit the amount of damage that these 

weather anomaly events can cause, this study evaluates and increases the forecasting 

ability of the Hydraulic Ensemble Forecasting System and predict reservoir 

hydrometeorological conditions with Artificial Neural Network modeling. Analysis of 

teleconnections of global climate indices with North Central Texas precipitation 

distributions suggested that an implementation of a conditional ensemble streamflow 

prediction, with focus on AMO phases and ENSO events, into HEFS should generate an 

increase in forecasting skill. As of this publication, the implementation of the conditional 

ensemble streamflow prediction into HEFS is still undergoing statistical testing in the 

Tarrant Regional Water District. Further research is needed to explore how the AMO 

climate phases and ENSO events interact with each other under global climate change 

and affect the North Central Texas region. Also, further investigations are required to 

evaluate the cause of the bimodal La Niña precipitation probability density function. This 

could result in a better understanding of dominant processes that may contribute to 

regional drought conditions.  

 The study presented here demonstrated that the use Artificial Neural Network 

(ANN) modeling should be incorporated into reservoir management as an additional tool 

to estimate future reservoir hydrometeorological conditions up to 2-3 months ahead. 

Through the collection of mean areal precipitation, mean areal temperature, wind speed, 

and potential evapotranspiration, ANN modeling requires further development in regards 
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to being trained on the SPEI 3 month and 12 month time steps and the addition of spatial 

variability inputs. Adding spatial variability would allow multiple reservoir forecast off one 

model and with the inclusion of the SPEI 3 and 12-month time steps drought indices could 

be forecasted on the seasonal, semi-annual, and annual level. Hybrid ANN models, which 

incorporate fuzzy logic components or wavelet signal deconstruction analysis, also require 

further research as they have shown promise in generating better drought forecasting 

results than models with only an ANN structure [Özger et al., 2012]. Presently, hybrid ANN 

models have only been used in statewide drought forecasting and require testing on a 

regional basis. An implementation of this model into a drought forecast would require a 

consistent sampling of regional hydrological data at reservoir stations (such as in the 

TRWD district) and archiving of the data into a database. Temperature data collection is 

particularly important as it is primarily utilized in the derivation of potential 

evapotranspiration, a key component of meteorological droughts as shown in this research. 

In contrast, only mean areal precipitation data is currently collected for the TRWD reservoir 

catchment areas.  

The regional water management agencies, such as the Tarrant Regional Water 

District, would be better prepared to assess future water resources in response to severe 

weather and climate events by incorporating the above listed improvements and 

recommendations in existing hydraulic and drought forecasting tools. Continued research 

in improvements to current forecasting systems, by using high-resolution state of the art 

weather and climate models as well as hybrid ANN models is required to improve long-

term forecast of droughts and flooding. 
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