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Abstract 

 
HIGH ORDER DNS FOR VORTEX STRUCTURE IN LATE FLOW TRANSITION 

Yong Yang, PhD 

 

The University of Texas at Arlington, 2017 

 

Supervising Professor: Chaoqun Liu 

Turbulence is still a world puzzle after over one hundred years research, and the 

current and classical theories brim with self-contradictions. C. Liu proposed a new theory 

on turbulence generation and structure after 28 years research, which are consistent 

without self-contradictions and well explain turbulence generation and structure. 

Based on this new theory, this dissertation (1) gives some mathematical 

explanations for new vortex identify method – Ω method; (2) analyzes the instability of 

shear layer by applying Chebyshev spectrum method to solve Orr-Sommerfeld eigenvalue 

equation; (3) investigates the vortex structure development in late flow transition; (4) 

utilizes the proper orthogonal decomposition to find the principal components of the flow in 

late stage of transition because of the flow complexity caused by hairpin vortex packet 

intertwining and interacting with each other. 

It is found that (1) Ω method can capture low-pressure region very well; (2) the high 

shear layer induced by the counter-rotation of two legs of Λ vortex ejection is unstable and 

the Λ vortex develops to a hairpin vortex packet with vortex rings generates; (3) streamwise 

vortices are principal in late stage of transition. It confirms the consistency of Liu’s theory: 

a pair of streamwise vortices ejects the low speed zone up and high shear layer generates; 

because of the instability of the high shear layer in boundary layer, the vortex ring forms 

and hairpin vortex generates. 
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Chapter 1  

Introduction 

Vortices are ubiquitously seen in nature, which range from smoke rings to clouds, 

from bubble rings to hurricanes, from swirl in the washing pool to whirlpools in the sea. 

Human have developed an intuitional concept of vortices as fluid regions with rotational 

motions since very ancient time, however, a rational description of vortices was not 

established until 19th century. People’s understanding towards vortices was greatly 

deepened ever since and went through several historical stages. 

Helmholtz [1] firstly gave the mathematical definition of vorticity as the curl of 

velocity field and further derived the well-known three vorticity theorems, which along with 

Kelvin’s circulation theorem and others laid the foundation for this field. Since then 

vorticity and vortices dynamics has been a central topic in both fluid mechanics 

researches and textbooks. The classical monograph of Lamb [2] summarized this time’s 

theoretical achievements of incompressible, ideal fluid, dealing with mostly irrotational 

flow with only a small part of rotational flow. Prandlt’s ground-breaking boundary layer 

theory [3] and the invention of aircraft in the beginning of 20th century opened a new 

stage of vortical flow research. Prandlt’s work revealed the fundamental importance of 

viscosity in fluid motion and explained that the circulation around the wing is generated 

by the viscous shearing process within the thin boundary layer. The rapid development of 

aeronautical techniques in this time is largely due to people’s understanding, utilization 

and control of vortices, as summarized by Durand [4] and Goldstein [5]. 

At almost the same time, the important role of vortical structures in transitional 

and turbulent flow was recognized by researchers, as put by Küchemann’s [6] famous 

quote “vortices are the sinews and muscles of turbulence”. A few structure models are 

conjectured and proposed, such as “horseshoe” model and hairpin vortex. Theodorsen 
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[7] proposed the conceptual “horseshoe” vortex model (Figure 1-1) to describe 

generation and sustenance of turbulence. The model provided an instantaneous 

description of near wall dynamics and laid a foundation for study of “coherent structures”. 

Hairpin vortices have been recognized to be a typical vortical structure in transitional 

flows [8]–[12]. The difference between “horseshoe” vortex and “hairpin” vortex lies on the 

fact that the former is almost as wide as their normal height, while the latter is narrower 

with elongated legs [13] (Figure 1-2(a)). Thereafter, the subject received considerable 

attention from investigators. 

 
Figure 1-1 Horseshoe vortex 
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Figure 1-2 (a) Nomenclature for horseshoe or hairpin vortices; (b) Classical views on 

hairpin vortices. 

The development of experimental techniques provided researchers richer 

information about the turbulent field than ever. Hama and Nutant [14] observed the 

formation and development of Λ-shaped vortices in experiment. Kline et al [15] observed 

the streamwise narrow streaks of high and low momentum fluid in boundary layer using 

hydrogen bubbles, Corino and Brodkey [16] observed that the “ejection” and “sweep” are 

driven by streamwise vortices.  

After over a hundred year of study, researchers have figured out the linear and 

weakly non-linear stage of flow transition pretty well [17], [18]. However, it is the DNS and 

PIV emerged in the late 1980s that really enables researchers to directly observe the 

dynamical, detailed turbulent field and study the late non-linear transitional stage, 

especially DNS, which provided full information, 3D turbulence. Since the first DNS of 

channel [19] and turbulent boundary layer [20], many significant discoveries have been 
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made on the coherent structures in the transitional and turbulent flow based on DNS [21]. 

Smith et al. [22] acknowledged the hairpin vortex as the basic flow structures of turbulent 

boundary layer. It is argued the interaction of hairpin vortices with background shear, with 

each other, with the wall surface determines the central features of boundary layer flow. 

In Robinson’s [23] review paper, a summary on conceptual models, idealized description 

of mechanism behind turbulence generation, is given. The dominant theme is hairpin 

vortex and its variations. Robinson [24] also describes the “quasi-streamwise vortices” as 

“one-legged” hairpins. These quasi-streamwise vortices and associated buffer layer 

streaks drew considerable attention [25] and are believed to be very important. Liu et al 

[26], [27] reported the whole process of K- and H-type transition in 1995 and 1996 and 

Rist [10] gave a quantitative comparison of experiment and direct numerical simulation in 

2002. Adrian [28] gave a review about the hairpin vortex organization in boundary layer in 

2007. Wu and Moin [11] reported a new DNS for flow transition on a flat plate and 

confirmed the coherent structures found by previous researchers [8], [29]. T. Sayadi et al 

[30] studied the vortices evolution in H and K type controlled transition process using 

DNS. C. Liu [31] proposed a new theory of turbulence generation and sustenance from 

the aspect of flow structure based on DNS analysis recently. Parallel to the research 

frontier, vorticity and vortices dynamics is also a central topic in fluid mechanics 

textbooks from Batchlor’s classic [32] to more recent monographs by Saffman [33], Lugt 

[34], and Wu [35]. 

On the other hand, many studies have been focused on the stability analysis 

[36], [37]. Schoppa and Hussain [36] believes instability of ejected low-speed streaks 

directly generates new streamwise vortices near the wall. The vortex formation and 

turbulence production are assumed to be reliant on those low-speed streaks. 
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Bake et al. [10] experimentally and numerically investigated turbulence 

development in a boundary layer. The flow randomization is believed to be developed on 

the tip of the Λ-vortex, where the ring-like vortex with spikes induced locates. The role of 

ring-like vortices which is basically spanwise in inducing near-wall structures and 

generating pressure gradients is highlighted. 

It is also noted that hairpin vortices always appear in packets [28], [38], [39]. 

Adrian [28] addressed that hairpin vortex packets together with quasi-streamwise vortices 

are prevalent coherent structures in wall turbulence. He also believes hairpins can 

autogenerate to form packets. 

In Wallace’s [40] recent review paper, it is argued that in spite of numerous 

attempts to relate the essential properties of turbulent boundary flow to its vortical 

structure, the investigation has not been very successful. Wallace also pointed out study 

on transitional boundary layer flows at low-Reynolds numbers, in which the vortical 

structures are more organized, might be very helpful in understanding turbulence 

generation and sustenance. 

Vorticity is defined as the curl of velocity and interpreted as twice the local 

angular velocity of the fluid element. Because of the much simpler governing equations 

than velocity, vorticity received considerable attention from investigators. Classical fluid 

dynamics believes that vorticity cannot be generated nor destroyed within the interior of 

fluids, and it is transported inside the flow by advection and diffusion [41]. The physical 

meaning and properties of vorticity make itself of great value in investigating vortices 

dominant flows. Therefore, many researchers have tried to utilize vorticity magnitude to 

educe coherent structures and identify vortex cores in turbulent flows. As pointed out by 

Jeong and Hussain [42], however, this approach is not always successful, especially if 

the background shear is comparable to the vorticity magnitude within the vortex. It has 



 

6 

been recognized that vorticity does not represent global rotation, i.e. vortices. For 

example, a laminar boundary layer possesses vorticity, but there is clearly no rotational 

motion in the laminar boundary layer.  

In spite of the stated consensus about vorticity, several concepts are still rather 

confusing in fluid mechanics. A flow is called irrotational if ∇ × 𝑽 = 0 in all space, while a 

rotational flow simply indicates the vorticity is not zero somewhere [43]. The previous 

example of the laminar boundary layer can serve as a counterexample in which vorticity 

exists without any rotational motion or vortices. Evidently, there is a difference between 

vorticity (local quantity) and vortices (group rotation).  

On the other hand, vortex definition and identification have been a longstanding 

issue. Robinson et al. [44] proposed a rather accurate definition: a vortex exists when 

instantaneous streamlines mapped onto a plane normal to the vortex core exhibit a 

roughly circular or spiral pattern, when viewed from a reference frame moving with the 

center of the vortex core. The definition, however, suffers from a requirement to identify 

the vortex core as a priori. In the meantime, several vortex identification methods are 

introduced trying to fulfil the need to investigate the vortex structures in turbulent flows. 

Perry and Chong [45] suggested vortices exist where eigenvalues of velocity 

gradient tensor ∇𝑽 are complex, which implies the streamline pattern is spiral or closed 

viewed from a reference frame moving with the point. The method, named the ∆̃-method, 

was further developed by Zhou et al. [39]. They suggested employing iso-surfaces of 

imaginary part of the complex eigenvalue to capture vortices. Around the same time, the 

famous 𝑄-criterion was introduced by Hunt, Wray, and Moin [46], in which an eddy is 

defined as the region with positive second invariant 𝑄 of the velocity gradient tensor. The 

idea behind this method is 𝑄 represents the balance between shear strain rate and 

vorticity magnitude since it can be derived that 𝑄 =
1

2
(||𝛀||

2
− ||𝐒||2), where 𝑺 and 𝛀 are 
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the symmetric and antisymmetric components of ∇𝑽. Another well-known scheme is the 

𝜆2 method, introduced by Jeong and Hussain [42]. They suggested the usage of second 

eigenvalue of the symmetric tensor 𝑺2 + 𝛀2 trying to capture the pressure minimum in a 

plane normal to the vortex axis. Haller [47] and Shawn et al [48] used the concept of 

“finite time Lyapunov Exponent” to defined vortices boundary as the separatrix of stable 

and unstable manifolds, from a Lagrangian viewpoint.  

All these methods have achieved some success. As demonstrated by Pierce, 

Moin and Sayadi [49], the ∆̃, 𝑄, 𝜆2 criteria can produce the same images when applied to 

DNS data of a transitional boundary layer provided appropriately iso-surface thresholds 

are chosen respectively. These criteria, however, suffer from some common issues. First, 

a case related threshold is required; second, the physical meaning of ∆̃, 𝑄, and 𝜆2 is 

unclear; third, inappropriate thresholds may lead to strong vortices captured while weak 

ones are skipped.  

Opposite to current and classical theories brimming with self-contradictions, Liu 

[50] proposed a new theory on turbulence generation and structure after 28-years 

research, which are consistent without self-contradictions and well explain turbulence 

generation and structure: 

1) Turbulent flow has unique and deterministic solution. Turbulence is not 

generated by vortex “breakdown”, but vortex “buildup”.  

2) Vorticity and vortex are totally different concepts. A new vortex identification 

method has been given by Liu et al. [51], which has a unique threshold and physical 

meaning.  

3) The nature of turbulence generation is that fluid cannot tolerate high shear 

stress and vorticity must transfer to rotation when Reynolds number is large enough. 
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4) The vorticity is large near the wall surface where the shear is dominant. The 

role of linear unstable modes is to push the vorticity up from the wall (rollup). When 

leaving away from the wall, the streamwise vortex legs and spanwise vortex rings will 

form due to the trend from shear to rotation. The rotation is a stable state with minimized 

dissipation (deformation is very small).  

5) There is no such a process that the Λ-vortex self-deforms to hairpin vortex. 

The Λ-vortex root and ring head are formed separately by different mechanisms and ring 

is not part of Λ-vortex which is a pair of open rotation cores and is not a vortex tube.  

6) A momentum deficit zone (low speed zone) is formed above the Λ-vortex and 

further generates a high shear due to the vortex root ejection. The vortex rings are 

generated by the high shear layer (K-H type) instability.  

7) The second level vortices are generated by second level shear layer which is 

caused by first level vortex rings through sweeps, ejections, positive and negative spikes.  

8) Multiple vortex rings are all formed by shear layer instability which is 

generated by momentum deficit.  

9)The vortex structure is quite stable. The hairpin vortex is confirmed by both 

DNS [52] of Liu’s team and experiment with a fine resolution of 1 μm of Cai’s team [50].  

10) All small vortices are generated by shear layer instability without exception. 

In other words, “shear layer instability is the mother of turbulence.” There is no way that 

small vortices (turbulence) are generated by “large vortex breakdown”.  

11) The multiple level shear layers are generated by vortex sweeps and 

ejections. The sweep brings high-speed flow down (positive spike) to the lower boundary 

layer and the ejection brings the low-speed flow up (negative spike) to the upper 

boundary layer (momentum deficit). They form the multiple level shear layers and 

multiple vortex rings.  
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12) The energy transport channel is that the high energy is brought down to the 

lower boundary layer by multiple level sweeps. Without these sweeps, all small vortices 

(turbulence) would be dissipated quickly. Large vortex cannot pass energy to smaller 

vortices through “vortex breakdown” which was never observed by any experiment or 

DNS. 

13) The disordering of flow structure is mainly not caused by the background 

noise or non-symmetric spanwise boundary conditions, but internal property of the 

multiple level vortex structure. The non-symmetry starts in the middle of the vortex 

packages. 

14) Richardson eddy cascade revisit: it is not found.  

15) Kolmogorov hypothesis revisit: there is no proof that large vortex passes 

energy to small vortices through vortex breakdown. 

16) Turbulence bursting and intermittency: the term is generated by 

misunderstanding of turbulence package self-motion and relative motion. Turbulence 

cannot suddenly burst and suddenly disappear. 

Based on Liu’s new theory, this dissertation (1) gives some mathematical 

explanations for new vortex identify method – Ω method; (2) analyzes the instability of 

shear layer by applying Chebyshev spectrum method to solve Orr-Sommerfeld 

eigenvalue equation; (3) investigates the vortex structure development in late flow 

transition; (4) utilizes the proper orthogonal decomposition to find the principal 

components of the flow in late stage of transition because of the flow complexity caused 

by hairpin vortex packet intertwining and interacting with each other. 
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Chapter 2  

Governing Equation System and Numerical Methods 

In this chapter, the governing equation system and numerical methods will be 

introduced in the following order: the dimensionless Navier-Stokes system and a form in 

curvilinear coordinates will be shown in section 2.1. The numerical methods in spatial and 

time discretization and boundary conditions will be given in section 2.2. Section 2.3 will 

give the set-up of DNS case and the code validation will be shown in section 2.4. 

2.1     Governing Equation System 

The flow field is governed by the Navier-Stokes system which is 

𝜕𝑸

𝜕𝑡
+
𝜕𝑭

𝜕𝑥
+
𝜕𝑮

𝜕𝑦
+
𝜕𝑯

𝜕𝑧
=
1

𝑅𝑒
(
𝜕𝑭𝒗
𝜕𝑥

+
𝜕𝑮𝑣
𝜕𝑦

+
𝜕𝑯𝑣
𝜕𝑧
) (2-1) 

Where the vector of conserved quantities 𝑸, inviscid flux vector 𝑬, 𝑭 and 𝑮, and 

viscous flux vector 𝑬𝑣 , 𝑭𝑣 and 𝑮𝑣 are 

𝑸 =

(

 
 

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝑒 )

 
 
,  𝑭 =

(

 
 

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣
𝜌𝑢𝑤

(𝑒 + 𝑝)𝑢)

 
 
,  𝑮 =

(

 
 

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝
𝜌𝑣𝑤

(𝑒 + 𝑝)𝑣)

 
 
,  𝑯 =

(

 
 

𝜌𝑤
𝜌𝑢𝑤
𝜌𝑣𝑤

𝜌𝑤2 + 𝑝

(𝑒 + 𝑝)𝑤)

 
 

(2-2) 

𝑭𝑣 =

(

 
 
 

0
𝜎𝑥𝑥
𝜎𝑥𝑦
𝜎𝑥𝑧

(𝑢𝜎𝑥𝑥 + 𝑣𝜎𝑥𝑦 +𝑤𝜎𝑥𝑧 +
1

(𝛾 − 1)𝑃𝑟𝑀∞
2
𝑘(𝑇)

𝜕𝑇

𝜕𝑥)

 
 
 

(2-3) 

𝑮𝑣 =

(

 
 
 
 

0
𝜎𝑥𝑦
𝜎𝑦𝑦
𝜎𝑦𝑧

(𝑢𝜎𝑥𝑦 + 𝑣𝜎𝑦𝑦 + 𝑤𝜎𝑦𝑧 +
1

(𝛾 − 1)𝑃𝑟𝑀∞
2
𝑘(𝑇)

𝜕𝑇

𝜕𝑦)

 
 
 
 

(2-4) 
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𝑯𝑣 =

(

 
 
 

0
𝜎𝑥𝑧
𝜎𝑦𝑧
𝜎𝑧𝑧

(𝑢𝜎𝑥𝑧 + 𝑣𝜎𝑦𝑧 + 𝑤𝜎𝑧𝑧 +
1

(𝛾 − 1)𝑃𝑟𝑀∞
2
𝑘(𝑇)

𝜕𝑇

𝜕𝑧)

 
 
 

(2-5) 

The components of viscous stress are 

𝜎𝑥𝑥 =
2

3
𝜇(𝑇) (2

𝜕𝑢

𝜕𝑥
−
𝜕𝑣

𝜕𝑦
−
𝜕𝑤

𝜕𝑧
) (2-6) 

𝜎𝑦𝑦 =
2

3
𝜇(𝑇) (−

𝜕𝑢

𝜕𝑥
+ 2

𝜕𝑣

𝜕𝑦
−
𝜕𝑤

𝜕𝑧
) (2-7) 

𝜎𝑥𝑥 =
2

3
𝜇(𝑇) (−

𝜕𝑢

𝜕𝑥
−
𝜕𝑣

𝜕𝑦
+ 2

𝜕𝑤

𝜕𝑧
) (2-8) 

𝜎𝑥𝑦 = 𝜇(𝑇) (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) (2-9) 

𝜎𝑥𝑧 = 𝜇(𝑇) (
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
) (2-10) 

𝜎𝑦𝑧 = 𝜇(𝑇) (
𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧
) (2-11) 

We can write the governing equations in curvilinear coordinates as 

𝜕�̂�

𝜕𝑡
+
𝜕�̂�

𝜕𝜉
+
𝜕�̂�

𝜕𝜂
+
𝜕�̂�

𝜕𝜁
=
1

𝑅𝑒
(
𝜕�̂�𝑣
𝜕𝜉

+
𝜕�̂�𝑣
𝜕𝜂

+
𝜕�̂�𝑣
𝜕𝜁
) (2-12) 

where  

�̂� =
𝑸

𝐽
 , (2-13) 

�̂� =
𝜉𝑥𝑭 + 𝜉𝑦𝑮 + 𝜉𝑧𝑯

𝐽
 , (2-14) 

�̂� =
𝜂𝑥𝑭 + 𝜂𝑦𝑮 + 𝜂𝑧𝑯

𝐽
 , (2-15) 

�̂� =
𝜁𝑥𝑭 + 𝜁𝑦𝑮 + 𝜁𝑧𝑯

𝐽
 , (2-16) 
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�̂�𝑣 =
𝜉𝑥𝑭𝑣 + 𝜉𝑦𝑮𝑣 + 𝜉𝑧𝑯𝑣

𝐽
 , (2-17) 

�̂�𝑣 =
𝜂𝑥𝑭𝑣 + 𝜂𝑦𝑮𝑣 + 𝜂𝑧𝑯𝑣

𝐽
 , (2-18) 

�̂�𝑣 =
𝜁𝑥𝑭𝑣 + 𝜁𝑦𝑮𝑣 + 𝜁𝑧𝑯𝑣

𝐽
 , (2-19) 

The Jacobian 𝐽 of the coordinate transformation between the curvilinear (𝜉, 𝜂, 𝜁) 

and Cartesian (𝑥, 𝑦, 𝑧) frames is 

𝐽 =
1

||

1 0
0 𝑥𝜉

0 0
𝑥𝜂 𝑥𝜁

0 𝑦𝜉
0 𝑧𝜉

𝑦𝜂 𝑦𝜁
𝑦𝜂 𝑧𝜁

||

 , (2-20)

 

and  

(

𝜉𝑥 𝜉𝑦 𝜉𝑧
𝜂𝑥 𝜂𝑦 𝜂𝑧
𝜁𝑥 𝜁𝑦 𝜁𝑧

) = 𝐽 (

𝑦𝜂𝑧𝜁 − 𝑦𝜁𝑧𝜂 𝑧𝜂𝑥𝜁 − 𝑧𝜁𝑥𝜂 𝑥𝜂𝑦𝜁 − 𝑥𝜁𝑦𝜂
𝑦𝜁𝑧𝜉 − 𝑦𝜉𝑧𝜁 𝑧𝜁𝑥𝜉 − 𝑧𝜉𝑥𝜁 𝑥𝜁𝑦𝜉 − 𝑥𝜉𝑦𝜁
𝑦𝜉𝑧𝜂 − 𝑦𝜂𝑧𝜁 𝑧𝜉𝑥𝜂 − 𝑧𝜂𝑥𝜁 𝑥𝜉𝑦𝜂 − 𝑥𝜂𝑦𝜁

) . (2-21) 

The reference values for length, density, velocity, temperature and pressure are 

𝛿𝑖𝑛, 𝜌∞, 𝑈∞, 𝑇∞ and 𝜌∞𝑈∞
2  respectively, where 𝛿𝑖𝑛 is the inflow displacement thickness. 

And the Mach number 𝑀∞ and Reynolds number 𝑅𝑒 are expressed as 

𝑀∞ =
𝑈∞

√𝛾𝑅𝑇∞
 , 𝑅𝑒 =

𝜌∞𝑈∞𝛿𝑖𝑛
𝜇∞

 , (2-22) 

where 𝑅 is the ideal gas constant, 𝛾 the ratio of specific heats and 𝜇∞ the viscosity. 

2.2     Numerical Methods 

Compact scheme has an implicit form and involves the derivative of neighboring 

grid point, which results in additional free parameters. These free parameters can be 

used to improve the accuracy and optimize other properties such as resolution, stability, 

and conservation. It also has been proved to have spectral-like resolution, and can 



 

13 

achieve higher order without increasing the stencil width which are necessary for 

studying instability problem by direct numerical simulation.  

A sixth order compact scheme [53] is used for the spatial discretization in the 

streamwise and wall normal directions. For internal points 𝑗 = 3,… , 𝑁 − 2, the sixth order 

compact scheme is 

1

3
𝑓𝑗−1
′ + 𝑓𝑗

′ +
1

3
𝑓𝑗+1
′ =

1

ℎ
(−

1

36
𝑓𝑗−2 −

7

9
𝑓𝑗−1 +

7

9
𝑓𝑗+1 +

1

36
𝑓𝑗+2) , (2-23) 

where 𝑓𝑗
′ is the derivative at point 𝑗. The fourth order compact scheme is used at points 

𝑗 = 2 and 𝑗 = 𝑁 − 1, and the third order one-sided compact scheme is used at the 

boundary points 𝑗 = 1 and 𝑗 = 𝑁. 

In the spanwise direction where periodical conditions are applied, the pseudo-

spectral method is used. To eliminate the spurious numerical oscillations caused by 

central difference schemes, a high-order spatial scheme is used instead of artificial 

dissipation. An implicit sixth-order compact scheme for space filtering is applied to the 

primitive variables 𝑢, 𝑣, 𝑤, 𝜌 and 𝑝 after a specified number of time steps. 

In time marching, a third order TVD Runge-Kutta scheme [54] is adopted: 

𝑄(0) = 𝑄(𝑛), 

𝑄(1) = 𝑄(0) + Δ𝑡𝑅(0), 

𝑄(2) =
3

4
𝑄(0) +

1

4
𝑄(1) +

1

4
Δ𝑡𝑅(1), 

𝑄(𝑛+1) =
1

3
𝑄(0) +

2

3
𝑄(2) +

2

3
Δ𝑡𝑅2. (2-24) 

The adiabatic and the non-slipping conditions are enforced at the wall boundary 

on the flat plate. On the far field and the outflow boundaries, the non-reflecting boundary 

conditions [55] are applied. The inflow is given in the form of 

𝑞 = 𝑞𝑙𝑎𝑚 + 𝐴2𝑑𝑞2𝑑
′ 𝑒𝑖(𝛼𝑥−𝜔𝑡) + 𝐴3𝑑𝑞3𝑑

′ 𝑒𝑖(𝛼𝑥±𝛽𝑦−𝜔𝑡), (2-25) 
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where 𝑞 represents 𝑢, 𝑣, 𝑤, 𝑝 and 𝑇, and 𝑞𝑙𝑎𝑚 represents the Blasius solution for a two-

dimensional laminar boundary layer. The T-S wave parameters are obtained by solving 

the compressible boundary layer stability equations [56]. The streamwise wavenumber, 

spanwise wavenumber, frequency and amplitude are listed in Table 2-1. 

Table 2-1 Parameters for inflow condition 

𝛼 𝛽 𝜔 𝐴2𝑑 𝐴3𝑑 

0.29919 − 𝑖5.0958
× 10−3 

±0.5712 0.114027 0.03 0.01 

 

2.3     Case Setup 

The physical domain is displayed in Figure 2-1, where 𝑥𝑖𝑛 represents the 

distance between leading edge and inlet, 𝐿𝑥 and 𝐿𝑦 are the lengths of the computational 

domain in 𝑥 and 𝑦 directions respectively, and 𝐿𝑧𝑖𝑛 is the length of the inlet  in 𝑧 direction. 

The details are listed in Table 2-2. The grid level is 1920 × 128 × 241, representing the 

number of grids in streamwise (𝑥), spanwise (𝑦), and wall normal (𝑧) directions. The grid 

is stretched in the normal direction and uniform in the streamwise and spanwise 

directions. The length of the first grid interval in the normal direction at the entrance is 

found to be 0.43 in wall units (𝑍+ = 0.43).  

The Jacobian coordinate transformation is employed from physical domain to 

computational domain, see Figure 2-2(a) and the Message Passing Interface (MPI), 

together with domain decomposition in the ξ-direction, is utilized to accomplish the 

parallel computation, see Figure 2-2(b). The flow parameters, including Mach number, 

Reynolds number, etc. are listed in Table 2-3. Here, 𝑇𝑤 = 273.15𝐾 is the wall 

temperature. 
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Figure 2-1 Physical domain 

Table 2-2 Geometry parameters 

𝑥𝑖𝑛 𝐿𝑥 𝐿𝑦 𝐿𝑧𝑖𝑛 

300.79𝛿𝑖𝑛 798.03𝛿𝑖𝑛 22𝛿𝑖𝑛 40𝛿𝑖𝑛 

 

 
(a) 
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(b) 

Figure 2-2 Schematics of (a) coordinate transformation and (b) domain decomposition. 

Table 2-3 Flow paramaters 

𝑀∞ 𝑅𝑒 𝑇𝑤 𝑇∞ 

0.5 1000 273.15K 273.15K 

2.4     Code validation 

 

The DNS code – ‘‘DNSUTA’’ has been validated by NASA Langley and UTA 

researchers [57]–[59] carefully to make sure that the DNS results are correct. Since the 

detailed code validation has been reported by Liu and Chen [60] we only give a short 

description here. 

2.4.1 Comparison with Log Law and grid convergence 

Time and spanwise-averaged streamwise velocity profiles for various streamwise 

locations in two different grid levels are shown in Figure 2-3. The inflow velocity profiles 

at 𝑥 =  300.79𝛿𝑖𝑛 is a typical laminar flow velocity profile. At 𝑥 =  632.33𝛿𝑖𝑛, the mean 

velocity profile approaches a turbulent flow velocity profile (Log law). This comparison 

shows that the velocity profile from the DNS results is turbulent flow velocity profile and 

the grid convergence has been realized. 



 

17 

 
(a) Coarse Grids (960x64x121)                                (b) Fine Grids (1920x128x241) 

Figure 2-3 Log-linear plots of the time-and spanwise-averaged velocity profile in wall unit 

2.4.2 Comparison with experiment 

By using Ω criterion method, the vortex structures shaped by the nonlinear 

evolution of T-S waves in the transition process are shown in Figure 2-4. The formation of 

ring-like vortices chains is consistent with the experimental work, see Figure 2-5. 

 
(a) t=6.0T     (b) t=6.2T 
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(c) t=6.4T     (d) t=7.0T 

Figure 2-4 Evolution of vortex structure at the late-stage of transition (Where T is the 

period of T-S wave) 

 
Figure 2-5 Evolution of the ring-like vortex chain by experiment [61]. 

2.4.3 Comparison with Rist’s DNS data 

Figure 2-6 shows a comparison of our DNS results with the data set provided by 

Rist as his personal kindness. The comparison shows both DNS have same vortex 

structure. 



 

19 

         
(a) Our DNS                                                                (b) Rist’s DNS data 

Figure 2-6 Comparison of our DNS results with Rist’s DNS data. 

All these verifications and validations above show that our code is correct and 

our DNS results are reliable. 

2.5     Summary 

In this chapter, the governing equation system and numerical methods are 

introduced. A database is set up via direct numerical simulation for Navier-Stokes 

system. It is on the grid with dimensions 1920 × 128 × 241 in almost 20𝑇, where 𝑇 is TS 

wave period. Based on this database, the vortical structures analyses are carried out. 
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Chapter 3  

Tensor Analysis and Ω Vortex Identification Method 

In this chapter, an analysis on the tensor field 𝛻𝑽 will be shown in section 3.1 and 

section 3.2 will revisit the new vortex identification method, Ω-method. In section 3.3, 

some mathematical explanations for Ω-method will be given. 

3.1     Analysis on the tensor field 𝛻𝑽 

In this section, we will study the transformations of an infinitesimal body fluid 𝛿𝒱 

during its motion in an incompressible flow, over an infinitesimal time period. The local 

analysis in this section is based on the tensor field 𝛻𝑽 defined by 

𝛻𝑽 =

(

 
 
 
 

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧
𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧)

 
 
 
 

 . (3-1) 

𝛻𝑽 governs the first-order transformations of 𝛿𝒱 over an infinitesimal time 𝛿𝑇. 

What is the role of 𝛻𝑽? 

Suppose 𝒙 is the gravity center of 𝛿𝑉 at time 𝑡0 and 𝒚 ∈ 𝛿𝒱 is any other point. Let 

𝒙(𝑡) and 𝒚(𝑡) denote the position of two particles sitting on 𝒙 and 𝒚 at time 𝑡0. Define 

𝝃(𝑡) = 𝒚(𝑡) − 𝒙(𝑡). Assume that the particles move to 𝒙 + 𝛿𝒙 and 𝒚 + 𝛿𝒚 respectively at 

time 𝑡 + 𝛿𝑡 for some 𝛿𝑡 > 0. Then the change of 𝝃 will be 𝛿𝝃 = 𝛿𝒚 − 𝛿𝒙. By performing the 

asymptotic expansions, we have 

𝛿𝒙 = 𝑽(𝑡, 𝒙)𝛿𝑡 + 𝑜(𝛿𝑡) , (3-2) 

𝛿𝒚 = 𝑽(𝑡, 𝒚)𝛿𝑡 + 𝑜(𝛿𝑡) , (3-3) 

𝑽(𝑡, 𝒚) − 𝑽(𝑡, 𝒙) = 𝛻𝑽(𝑡, 𝒙) ∙ 𝝃 + 𝑜(‖𝝃‖) . (3-4) 
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Combining these  Equation (3-2)-(3-4) yields 

𝛿𝝃

𝛿𝑡
= 𝛻𝑽(𝑡, 𝒙) ∙ 𝝃 + 𝑜(𝛿𝑡 + ‖𝝃‖) . (3-5) 

Then we take the limit of 
𝛿𝝃

𝛿𝑡
 as 𝛿𝑡 → 0, which yields the following differential 

equation: 

𝝃′ = 𝛻𝑽(𝑡, 𝒙) ∙ 𝝃 + 𝑜(‖𝝃‖) . (3-6) 

This suggests the following local ODE, which corresponds to the first-order term 

in above equation, 

𝝃′ = 𝛻𝑽(𝑡, 𝒙) ∙ 𝝃 . (3-7) 

However, without any specific information about the matrix 𝛻𝑽(𝑡, 𝒙) it is difficult to  

picture the overall appearance of the solutions. Then we write 𝛻𝑽 = 𝐀 + 𝐁, where 𝑨 =

1

2
(𝛻𝑽 + 𝛻𝑽𝒕) is the symmetric part of ∇𝑽 and 𝐁 =

1

2
(𝛻𝑽 − 𝛻𝑽𝒕) is the antisymmetric part of 

𝛻𝑽. 𝑨 is also called deformation tensor. 

Next we study the effect of 𝑨 and 𝑩 on 𝝃 separately through two special 

conditions: 

1) 𝑩 = 𝟎,  then 𝝃′ = 𝑨 ∙ 𝝃. 

Write 𝑨 in the matrix form 

𝑨 =

(

 
 
 
 

𝜕𝑢

𝜕𝑥

1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)

1

2
(
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
)

1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)

𝜕𝑣

𝜕𝑦

1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
)

1

2
(
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
)
1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
)

𝜕𝑤

𝜕𝑧 )

 
 
 
 

 . (3-8) 

We take the inner product by 𝝃 with both side of  

𝝃′ = 𝑨 ∙ 𝝃 , (3-9) 

which yields 
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(𝝃′, 𝝃) = (𝑨 ∙ 𝝃, 𝝃) . (3-10) 

Therefore, 

1

2

𝑑‖𝝃‖2

𝑑𝑡
= (𝑨 ∙ 𝝃, 𝝃) . (3-11) 

Since 𝑨 is symmetric, all eigenvalue of 𝑨 are real, say 𝜆1,  𝜆2,  𝜆3. Notice that 

∑ 𝜆𝑖
3
𝑖=1 = 𝑡𝑟(𝑨) =

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0. So assume first that 𝑨 = 0, then the velocity is locally 

constant around 𝒙 and particles move along straight lines. 

Assume next that 𝑨 ≠ 0, then 𝑨 has at least one strictly negative eigenvalue, say 

𝜆1, and one strictly positive, say 𝜆2. In particular, let 𝝃 be an initial vector that is an 

eigenvector associated with 𝜆1, then 𝝃 goes to be shorter; let 𝝃 be an initial vector that is 

an eigenvector associated with 𝜆2, then 𝝃 goes to be longer. 

2) 𝑨 = 𝟎, then 𝝃′ = 𝑩 ∙ 𝝃. 

Write 𝑩 in the matrix form 

𝑩 =

(

 
 
 
 

0 −
1

2
(
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
)

1

2
(
𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
)

1

2
(
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
) 0 −

1

2
(
𝜕w

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
)

−
1

2
(
𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
)

1

2
(
𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
) 0

)

 
 
 
 

 . (3-12) 

Notice that the vorticity 𝝎 = 𝛻 × 𝑽, then it is easily found that 

𝑩 =
1

2
(

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

) , (3-13) 

where 𝜔𝑥, 𝜔𝑦 and 𝜔𝑧 are three components of 𝝎. 

Then it can be shown that 𝑩 ∙ 𝝃 =
1

2
𝝎× 𝝃. By plugging in, we have 

𝝃′ =
1

2
𝝎 × 𝝃 . (3-14) 
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If 𝝎 = 0, then 𝝃 will keep unchanged. Let us assume that 𝝎 ≠ 0 and consider 

𝒆𝟏 =
𝝎

‖𝝎‖
. Let 𝒆𝟐  and 𝒆𝟑 be such that (𝒆𝟏, 𝒆𝟐, 𝒆𝟑) is an orthogonal basis of ℝ3 that in 

particularly satisfies 

𝒆𝟏 × 𝒆𝟐 = 𝒆𝟑 , 

𝒆𝟐 × 𝒆𝟑 = 𝒆𝟏 , (3-15) 

𝒆𝟑 × 𝒆𝟏 = 𝒆𝟐 , 

We write 𝝃 = 𝜉1𝒆𝟏 + 𝜉2𝒆𝟐 + 𝜉3𝒆𝟑. Setting 𝑧 = 𝜉2 + 𝑖𝜉3, we get  

𝜉1
′ = 0,     𝑧′ = 𝑖

‖𝝎‖

2
𝑧 , (3-16) 

which yields 

𝜉1(𝑡) = 𝜉1(0),   𝑧(𝑡) = 𝑒
𝑖
‖𝝎‖
2
𝑡𝑧(0) . (3-17) 

Therefore, trajectories rotate around the axis spanned by 𝝎 with a frequency 

equal to ‖𝝎‖/2. 

When both 𝑨 and 𝑩 are nonzero, the infinitesimal body fluid 𝛿𝒱 has deformation 

as well as vorticity. To reveal the relation between 𝑨, 𝑩 and vortices, A new vortex 

identification method is proposed in next section. 

3.2     Ω Vortex Identification Method 

A new vortex identification method is proposed by Liu et al. [51], called Ω-

method.  

The new parameter is defined as 

Ω =
‖𝑩‖𝐹

2

‖𝑨‖𝐹
2 + ‖𝑩‖𝐹

2   , (3-18) 
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provided 𝛻𝑽 ≠ 𝟎, where ‖ ∙ ‖𝐹 is the Frobenius norm. In the case of 𝛻𝑽 = 𝟎, Ω is defined 

as a constant 0.5. A vortex is identified as the region where Ω > 0.5, which means 

vorticity overtakes deformation. 

We will evaluate this identification by several exact solutions and DNS data. 

1) At a wall 

The most general velocity gradient at the wall is given by 

𝛻𝑽 = (
0 0 𝑎
0 0 𝑏
0 0 0

) . (3-19) 

Then symmetric components 𝑨 and antisymmetric components 𝑩 of 𝛻𝑽 are 

𝑨 =

(

 
 
 

0 0
𝑎

2

0 0
𝑏

2
𝑎

2

𝑏

2
0)

 
 
 
, 𝑩 =

(

 
 
 

0 0
𝑎

2

0 0
𝑏

2

−
𝑎

2
−
𝑏

2
0)

 
 
 
, (3-20) 

which gives ‖𝑨‖𝐹
2 =

1

2
(𝑎2 + 𝑏2) and ‖𝑩‖𝐹

2 =
1

2
(𝑎2 + 𝑏2), hence Ω = 0.5. 

2) Blasius boundary layer 

The velocity gradient in Blasius boundary layer is given by 

𝛻𝑽 = (
0 0 𝑎
0 0 0
0 0 0

) . (3-21) 

Then symmetric components 𝑨 and antisymmetric components 𝑩 of 𝛻𝑽 are 

𝑨 =

(

 
 
0 0

𝑎

2
0 0 0
𝑎

2
0 0

)

 
 
, 𝑩 =

(

 
 
0 0

𝑎

2
0 0 0

−
𝑎

2
0 0

)

 
 
, (3-22) 

which gives ‖𝑨‖𝐹
2 =

𝑎2

2
 and ‖𝑩‖𝐹

2 =
𝑎2

2
, hence Ω = 0.5. 

3) Pure rotation 
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We consider here a spanwise pure rotation with angular velocity 𝛷, see Figure 

3-1. The velocity gradient in this flow is 

𝛻𝑽 = (
0 0 𝛷
0 0 0
−𝛷 0 0

) . (3-23) 

 
Figure 3-1 A spanwise pure rotation with angular velocity 𝛷. 

Then symmetric components 𝑨 and antisymmetric components 𝑩 of 𝛻𝑽 are 

𝑨 = (
0 0 0
0 0 0
0 0 0

) , 𝑩 = (
0 0 𝛷
0 0 0
−𝛷 0 0

) , (3-24) 

which gives ‖𝑨‖𝐹
2 = 0 and ‖𝑩‖𝐹

2 = 2𝛷2, hence Ω = 1. 

4) Pure shear 

We then consider a pure shear with 𝑢 = 𝑎𝑧, 𝑣 = 0 and 𝑤 = 𝑎𝑥, where 𝑎 is a 

constant, see Figure 3-2. The velocity gradient in this flow is 
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𝛻𝑽 = (
0 0 𝑎
0 0 0
𝑎 0 0

) . (3-25) 

Then symmetric components 𝑨 and antisymmetric components 𝑩 of 𝛻𝑽 are 

𝑨 = (
0 0 𝑎
0 0 0
𝑎 0 0

) , (3-26) 

𝑩 = (
0 0 0
0 0 0
0 0 0

) , (3-27) 

which gives ‖𝑨‖𝐹
2 = 2𝑎2 and ‖𝑩‖𝐹

2 = 0, hence Ω = 0. 

 
Figure 3-2 A pure shear with 𝑢 = 𝑎𝑧, 𝑣 = 0 and 𝑤 = 𝑎𝑥. 

5) Transitional boundary layer flow over flat-plate  
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The case setup has been given in Chapter 2. Figure 3-3 gives the vortical 

structures at 𝑡 = 8.16𝑇, where 𝑇 is the period of T-S wave, by 𝑄-, 𝜆2- and Ω-criteria 

respectively. It shows that Ω-criteria identifies vortical structure clearly. 

 
Figure 3-3 Iso-surface of (a) 𝑄 = 0.005 (b) 𝜆2 = −0.005 (c) Ω = 0.52 at 𝑡 = 8.16𝑇, where 

𝑇 is the period of T-S wave. 
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In these five cases, the new definition of vortex are evaluated well. Vortices 

vanish at the wall (Ω = 0.5), in the Blasius boundary layer (Ω = 0.5) and in the pure shear 

flow (Ω = 0), whereas vortices are identified in pure rotation flow (Ω = 1.0) and in 

transition boundary layer flow over flat-plate. 

Consequently, vortical structures can be identified by the iso-surface of Ω = 0.52. 

This is a relatively unique threshold, comparing to 𝑄- and 𝜆2-criteria which are both case-

related [51]. 

3.3     Some Mathematical Explanations for Ω Vortex Identification Method 

Recall Equation (3-8) and (3-12), we have 

‖𝑨‖𝐹
2 = (

𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

+ (
𝜕𝑤

𝜕𝑧
)
2

+
1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)
2

+
1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
)
2

+
1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
)
2

 

= (
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

+ (
𝜕𝑤

𝜕𝑧
)
2

+
1

2
(
𝜕𝑢

𝜕𝑦
)
2

+
1

2
(
𝜕𝑢

𝜕𝑧
)
2

+
1

2
(
𝜕𝑣

𝜕𝑥
)
2

+
1

2
(
𝜕𝑣

𝜕𝑧
)
2

+
1

2
(
𝜕𝑤

𝜕𝑥
)
2

+
1

2
(
𝜕𝑤

𝜕𝑦
)
2

+
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑥
+
𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦
(3-28)

 

‖𝑩‖𝐹
2 =

1

2
(
𝜕𝑢

𝜕𝑦
−
𝜕𝑣

𝜕𝑥
)
2

+
1

2
(
𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
)
2

+
1

2
(
𝜕𝑣

𝜕𝑧
−
𝜕𝑤

𝜕𝑦
)
2

 

=
1

2
(
𝜕𝑢

𝜕𝑦
)
2

+
1

2
(
𝜕𝑢

𝜕𝑧
)
2

+
1

2
(
𝜕𝑣

𝜕𝑥
)
2

+
1

2
(
𝜕𝑣

𝜕𝑧
)
2

+
1

2
(
𝜕𝑤

𝜕𝑥
)
2

+
1

2
(
𝜕𝑤

𝜕𝑦
)
2

−
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑥
−
𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦
(3-29)

 

We can rewrite ‖𝑨‖𝐹
2  as 

‖𝑨‖𝐹
2 = ‖𝑩‖𝐹

2 + (
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

+ (
𝜕𝑤

𝜕𝑧
)
2

+ 2
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
+ 2

𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑥
+ 2

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦
, (3-30) 

then Equation (3-18) can be rewritten as 

Ω =
‖𝑩‖𝐹

2

‖𝑨‖𝐹
2 + ‖𝑩‖𝐹

2 =
1

2 +
𝑔

‖𝑩‖𝐹
2

, (3-31) 
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where  

𝑔 = 𝑔0 + 𝑔𝑥 + 𝑔𝑦 + 𝑔𝑧 , 

𝑔0 = (
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

+ (
𝜕𝑤

𝜕𝑧
)
2

, 

𝑔𝑥 = 2
𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦
 , (3-32) 

𝑔𝑦 = 2
𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑥
 , 

𝑔𝑧 = 2
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
 . 

Note that 𝑔 = −𝑄 where 𝑄 = ‖𝑩‖𝐹
2 − ‖𝑨‖𝐹

2  defined by Hunt et al.[46]. 

So when 𝑔 < 0, Ω > 0.5. Since 𝑔0 is always nonnegative, 𝑔𝑥 + 𝑔𝑦 + 𝑔𝑧 is 

necessarily negative inside vortex region, which means, in vortex, the product of the 

cross-velocity derivatives in two directions must be negative. More analyses for 𝑔𝑥, 𝑔𝑦 

and 𝑔𝑧 will be given in Chapter 4. Now we try to figure out the physical meaning of 𝑔. 

Recall that the incompressible momentum NS equations are in the form 

𝜕𝑢

𝜕𝑡
= −𝑢

𝜕𝑢

𝜕𝑥
− 𝑣

𝜕𝑢

𝜕𝑦
− 𝑤

𝜕𝑢

𝜕𝑧
+
1

𝑅𝑒
(
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
) −

𝜕𝑝

𝜕𝑥
 , (3-33) 

𝜕𝑣

𝜕𝑡
= −𝑢

𝜕𝑣

𝜕𝑥
− 𝑣

𝜕𝑣

𝜕𝑦
− 𝑤

𝜕𝑣

𝜕𝑧
+
1

𝑅𝑒
(
𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
+
𝜕2𝑣

𝜕𝑧2
) −

𝜕𝑝

𝜕𝑦
 , (3-34) 

𝜕𝑤

𝜕𝑡
= −𝑢

𝜕𝑤

𝜕𝑥
− 𝑣

𝜕𝑤

𝜕𝑦
− 𝑤

𝜕𝑤

𝜕𝑧
+
1

𝑅𝑒
(
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
+
𝜕2𝑤

𝜕𝑧2
) −

𝜕𝑝

𝜕𝑧
 . (3-35) 

Then taking partial derivatives along x, y and z, respectively, yields 

𝜕2𝑢

𝜕𝑡𝜕𝑥
= −(

𝜕𝑢

𝜕𝑥
)
2

− 𝑢
𝜕2𝑢

𝜕𝑥2
−
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
− 𝑣

𝜕2𝑢

𝜕𝑥𝜕𝑦
−
𝜕𝑤

𝜕𝑥

𝜕𝑢

𝜕𝑧
− 𝑤

𝜕2𝑢

𝜕𝑥𝜕𝑧

+
1

𝑅𝑒
(
𝜕3𝑢

𝜕𝑥3
+

𝜕3𝑢

𝜕𝑥𝜕𝑦2
+
𝜕3𝑢

𝜕𝑥𝜕𝑧2
) −

𝜕2𝑝

𝜕𝑥2
 , (3-36)
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𝜕2𝑣

𝜕𝑡𝜕𝑦
= −

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
− 𝑢

𝜕2𝑣

𝜕𝑥𝜕𝑦
− (
𝜕𝑣

𝜕𝑦
)
2

− 𝑣
𝜕2𝑣

𝜕𝑦2
−
𝜕𝑤

𝜕𝑦

𝜕𝑣

𝜕𝑧
− 𝑤

𝜕2𝑣

𝜕𝑥𝜕𝑧

+
1

𝑅𝑒
(
𝜕3𝑣

𝜕𝑥2𝜕𝑦
+
𝜕3𝑣

𝜕𝑦3
+
𝜕3𝑣

𝜕𝑦𝜕𝑧2
) −

𝜕2𝑝

𝜕𝑦2
 , (3-37)

 

𝜕2𝑤

𝜕𝑡𝜕𝑧
= −

𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑥
− 𝑢

𝜕2𝑤

𝜕𝑥𝜕𝑧
−
𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦
− 𝑣

𝜕2𝑤

𝜕𝑦𝜕𝑧
− (
𝜕𝑤

𝜕𝑧
)
2

− 𝑤
𝜕2𝑤

𝜕𝑧2

+
1

𝑅𝑒
(
𝜕3𝑤

𝜕𝑥2𝜕𝑧
+
𝜕3𝑤

𝜕𝑦2𝜕𝑧
+
𝜕3𝑤

𝜕𝑧3
) −

𝜕2𝑝

𝜕𝑧2
 . (3-38)

 

By adding Equation (3-36) (3-37) and (3-38), we have 

𝜕 (
𝜕𝑢
𝜕𝑥
+
𝜕𝑣
𝜕𝑦
+
𝜕𝑤
𝜕𝑧
)

𝜕𝑡
 

= −((
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

+ (
𝜕𝑤

𝜕𝑧
)
2

+ 2
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
+ 2

𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑥
+ 2

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦
+
𝜕2𝑝

𝜕𝑥2
+
𝜕2𝑝

𝜕𝑦2
+
𝜕2𝑝

𝜕𝑧2
)

−𝑢
𝜕 (
𝜕𝑢
𝜕𝑥
+
𝜕𝑣
𝜕𝑦
+
𝜕𝑤
𝜕𝑧
)

𝜕𝑥
− 𝑣

𝜕 (
𝜕𝑢
𝜕𝑥
+
𝜕𝑣
𝜕𝑦
+
𝜕𝑤
𝜕𝑧
)

𝜕𝑦
− 𝑤

𝜕 (
𝜕𝑢
𝜕𝑥
+
𝜕𝑣
𝜕𝑦
+
𝜕𝑤
𝜕𝑧
)

𝜕𝑧

+
1

𝑅𝑒
(
𝜕2 (

𝜕𝑢
𝜕𝑥
+
𝜕𝑣
𝜕𝑦
+
𝜕𝑤
𝜕𝑧
)

𝜕𝑥2
+
𝜕2 (

𝜕𝑢
𝜕𝑥
+
𝜕𝑣
𝜕𝑦
+
𝜕𝑤
𝜕𝑧
)

𝜕𝑦2
+
𝜕2 (

𝜕𝑢
𝜕𝑥
+
𝜕𝑣
𝜕𝑦
+
𝜕𝑤
𝜕𝑧
)

𝜕𝑧2
) (3-39)

 

From mass equation, we have 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0, (3-40) 

so Equation (3-39) becomes 

△ 𝑝 + 𝑔 = 0 (3-41) 

This is a Poisson’s equation. Provided a low-pressure region, △ 𝑝 > 0, then 𝑔 <

0. By Equation (3-31), Ω > 0.5, which means Ω method can capture low-pressure region 

very well. This is consistent with our intuitive understanding that the pressure inside a 

vortex is lower. 
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3.4     Summary 

In this chapter, an analysis on the symmetric part (deformation) and 

antisymmetric part (vorticity) of tensor field 𝛻𝑽 is shown. And the new vortex identification 

method based on the idea that vorticity overtakes deformation in vortices, Ω-method, is 

revisited. The Ω-method has a relative uniform threshold to reveal the vortical structures 

and it is shown that Ω-method can capture the low-pressure zone very well. After 

equipping the vortex identification method, we can move on to next stage: how Λ vortex 

form. 
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Chapter 4  

Λ Vortex Formation 

In this chapter, the formation of Λ vortex will be revisited based on Liu’s Theory 

and Tian’s work [62] in detail by DNS data and Ω method. This is the first step of vortical 

structures build-up in transitional flow. The perturbation from TS wave develop stronger 

and twist, then Λ vortex forms. An observation of perturbation development to Λ vortex 

will be given in section 4.1 and an analysis on the velocity tensor about Λ vortex 

formation will be given in section 4.2. Section 4.3 will show the structure of Λ vortex and 

the high shear layer induced by Λ vortex. 

4.1     Observation of Perturbation Development to Λ Vortex  

Let’s recall the inflow condition: the inflow is given by Equation (2-25) in the form 

of  

𝑞 = 𝑞𝑙𝑎𝑚 + 𝐴2𝑑𝑞2𝑑
′ 𝑒𝑖(𝛼𝑥−𝜔𝑡) + 𝐴3𝑑𝑞3𝑑

′ 𝑒𝑖(𝛼𝑥±𝛽𝑦−𝜔𝑡) 

where 𝑞 represents 𝑢, 𝑣, 𝑤, 𝑝 and 𝑇, and 𝑞𝑙𝑎𝑚 represents the Blasius solution for a two-

dimensional laminar boundary layer. The 2D and 3D T-S waves are added into inflow as 

perturbation, as shown in Equation (2-25).  Figure 4-1 shows the process of vortical 

structure build-up in transitional flow, shown by iso-surfaces of Ω = 0.502. Here we use a 

relatively small Ω to capture the structures of perturbations. By Figure 4-1, we can 

observe the development of perturbations. They are originally spanwise vortices, and 

then become stronger and twisted, followed by the formation of Λ vortices.  



 

33 

 
Figure 4-1 The process of vortical structure build-up in transitional flow. 

To investigate the details of perturbation development and Λ vortex formation, 

two spanwise slices (Sy1, Sy2) and seven streamwise slices (Sx1-Sx7) are extracted, 

see Figure 4-2 and Figure 4-3. Figure 4-2 shows the velocity field distribution on two 

spanwise slices. From Figure 4-2, we can see the base flow: streamwise velocity 𝑢 is 

Blasius flow, while spanwise velocity 𝑣 and normal velocity 𝑤 are zeros. Also, we can find 

some obvious 𝑤 disturbance s and some inconspicuous 𝑣 disturbances on the very left of 

Sy1 and Sy2. These disturbances become gradually significant along 𝑥 direction, 

especially after the perturbations are twisted. A special attention should be given to 𝑣 

disturbances which have a more significant growth at where the perturbation twists, while 

there are 𝑤 disturbances even at where the perturbation has not been twisted. It seems 

like the twisting of perturbations and formation of Λ vortices have a strong relation only to 

the growth of 𝑣 disturbances. Figure 4-3 shows the velocity field distribution on seven 

streamwise slices along 𝑥 direction, where we can investigate 𝑣 disturbances and 𝑤 

disturbance in more comprehensive perspective. Focusing on Sx4, the disturbances of 

𝑢, 𝑣 and 𝑤 grow to strong enough and are comparable to the base flow. Note that the 
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slice Sx4 cuts through a twisted perturbation. The black circles on Sx4 are the contour 

lines of Ω = 0.52, which indicate the positions of vortices. The 𝑣 disturbances and 𝑤 

disturbances around these black circles shows the vortices has a trend of streamwise 

rotation. This kind of trend is more significant on Sx2 and Sx1. The observations hint that 

the twisting of perturbations and formation of Λ vortices are related to both the growth of 

𝑣 disturbances and 𝑤 disturbance.  
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Figure 4-2 Velocity field distribution on two spanwise slices. 
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Figure 4-3 Velocity field distribution on seven streamwise slices. 
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To investigate the change of the velocity field in details, the distributions of 

velocity tensor field ∇𝑉 on Sy1, Sy2 and Sx1-Sx7 are shown in Figure 4-4 to Figure 4-9. 

The white and black circles on Sy1, Sy2 and Sx1-Sx7 are the contour lines of Ω = 0.52, 

which indicate the region of vortices. From Figure 4-4, we find 
𝜕𝑢

𝜕𝑦
 has a significant change 

when perturbation is twisting. Note that 
𝜕𝑢

𝜕𝑦
 have different signs on Sy1 and Sy2 inside 

vortices (see blue color on Sy1 and red color on Sy2 of 
𝜕𝑢

𝜕𝑦
 at where the perturbation starts 

twisting). From Figure 4-5, we find 
𝜕𝑣

𝜕𝑥
 and 

𝜕𝑣

𝜕𝑧
 have significant change. Even 

𝜕𝑣

𝜕𝑦
 has a 

different distribution at where the perturbation is twisting, but the value inside vortices 

(white circles) almost keep unchanged. Figure 4-6 shows that 
𝜕𝑤

𝜕𝑦
 has a relatively 

significant change, comparing with 
𝜕𝑤

𝜕𝑥
 and 

𝜕𝑤

𝜕𝑧
, at where the perturbation is twisting. In a 

different view, Figure 4-7, Figure 4-8 and Figure 4-9 confirm the significant change of 
𝜕𝑢

𝜕𝑦
, 

𝜕𝑣

𝜕𝑥
, 
𝜕𝑣

𝜕𝑧
 and 

𝜕𝑤

𝜕𝑦
, comparing Sx4 with Sx6. 

Recalling Equation (3-31) and Equation (3-32) 

Ω =
‖𝑩‖𝐹

2

‖𝑨‖𝐹
2 + ‖𝑩‖𝐹

2 =
1

2 +
𝑔

‖𝑩‖𝐹
2

, (3-31) 

where  

𝑔 = 𝑔0 + 𝑔𝑥 + 𝑔𝑦 + 𝑔𝑧 , 

𝑔0 = (
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

+ (
𝜕𝑤

𝜕𝑧
)
2

, 

𝑔𝑥 = 2
𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦
 , (3-32) 

𝑔𝑦 = 2
𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑥
 , 
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𝑔𝑧 = 2
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
 , 

we find that 
𝜕𝑢

𝜕𝑦
, 
𝜕𝑣

𝜕𝑥
, 
𝜕𝑣

𝜕𝑧
 and 

𝜕𝑤

𝜕𝑦
 are related to 𝑔𝑧 and 𝑔𝑥. Hence, 𝑔𝑧 and 𝑔𝑥 may play 

important role in the perturbation development and Λ vortices formation. A detailed 

investigation will be given in section 4.2. 
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Figure 4-4 Streamwise velocity derivatives (
𝜕𝑢

𝜕𝑥
,
𝜕𝑢

𝜕𝑦
  and 

𝜕𝑢

𝜕𝑧
) distribution on two spanwise 

slices. 
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Figure 4-5 Spanwise velocity derivatives (
𝜕𝑣

𝜕𝑥
,
𝜕𝑣

𝜕𝑦
  and 

𝜕𝑣

𝜕𝑧
) distribution on two spanwise 

slices. 
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Figure 4-6 Normal velocity derivatives (
𝜕𝑤

𝜕𝑥
,
𝜕𝑤

𝜕𝑦
  and 

𝜕𝑤

𝜕𝑧
) distribution on two spanwise 

slices. 
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Figure 4-7 Streamwise velocity derivatives (
𝜕𝑢

𝜕𝑥
,
𝜕𝑢

𝜕𝑦
  and 

𝜕𝑢

𝜕𝑧
) distribution on seven 

streamwise slices. 
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Figure 4-8 Spanwise velocity derivatives (
𝜕𝑣

𝜕𝑥
,
𝜕𝑣

𝜕𝑦
  and 

𝜕𝑣

𝜕𝑧
) distribution on seven streamwise 

slices. 
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Figure 4-9 Normal velocity derivatives (
𝜕𝑤

𝜕𝑥
,
𝜕𝑤

𝜕𝑦
  and 

𝜕𝑤

𝜕𝑧
) distribution on seven streamwise 

slices. 
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4.2     Tensor Analyses on Λ Vortex Formation 

To investigate the change of velocity tensor field ∇𝑉 when Λ vortex forms, the 

maximal Ω at every 𝑥 is found and the position is recorded. Note all data in this section 

are recorded on these positions, basically, the positions where maximal Ω for every 𝑥 

locate. 

 Figure 4-10 gives the change of maximal Ω along 𝑥. It shows that maximal Ω 

becomes larger and larger in the process of perturbation development. When 

perturbation is twisted, Ω has a remarkable increase, see Ω at 𝑥 = 413. And after Λ vortex 

forms, Ω has a huge jump, from 0.5 to 0.78. It indicates Λ vortex has a pretty strong 

rotation, comparing with the former perturbation.  

 
Figure 4-10 The change of maximal Ω along X. 

 
The changes of 𝑔, 𝑔0, 𝑔𝑥 , 𝑔𝑦 and 𝑔𝑧 along 𝑥 are shown in Figure 4-11. Recall 

Equation (3-31) and Equation (3-32),  
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Ω =
‖𝑩‖𝐹

2

‖𝑨‖𝐹
2 + ‖𝑩‖𝐹

2 =
1

2 +
𝑔

‖𝑩‖𝐹
2

, 

𝑔 = 𝑔0 + 𝑔𝑥 + 𝑔𝑦 + 𝑔𝑧 

𝑔0 = (
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

+ (
𝜕𝑤

𝜕𝑧
)
2

, 

𝑔𝑥 = 2
𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦
 , 

𝑔𝑦 = 2
𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑥
 , 

𝑔𝑧 = 2
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
 . 

From Figure 4-11, we can see 𝑔𝑦 is the principal component of 𝑔 for 

perturbations. Figure 4-12 gives the change of 
𝜕𝑢

𝜕𝑧
 and 

𝜕𝑤

𝜕𝑥
 along 𝑥. And 𝑔𝑦 is the double 

product of 
𝜕𝑢

𝜕𝑧
 and 

𝜕𝑤

𝜕𝑥
. We find 

𝜕𝑢

𝜕𝑧
 is far greater than 

𝜕𝑤

𝜕𝑥
 (Note that the scales of 

𝜕𝑢

𝜕𝑧
 and 

𝜕𝑤

𝜕𝑥
 

are different in Figure 4-12). The greater 
𝜕𝑢

𝜕𝑧
 is the result of Blasius flow and 

𝜕𝑤

𝜕𝑥
 is from TS 

wave. Now we focus on the position 𝑥 = 410. The remarkable changes of 𝑔𝑥 and 𝑔𝑧 

arise. As a result, 𝑔 becomes greater in amplitude with a negative sign. This is consistent 

with remarkable increase of Ω in Figure 4-10. Figure 4-13 shows the changes of the 

components of 𝑔𝑥, 
𝜕𝑣

𝜕𝑧
 and 

𝜕𝑤

𝜕𝑦
, along 𝑥. By Figure 4-13, we can see both 

𝜕𝑣

𝜕𝑧
 and 

𝜕𝑤

𝜕𝑦
 are 

increasing in amplitude around 𝑥 = 410 and the change of 
𝜕𝑣

𝜕𝑧
 is more significant. Hence 

𝜕𝑣

𝜕𝑧
 is the most important reason of 𝑔𝑥 changing when perturbation is twisted. Figure 4-14 

gives the changes of the components of 𝑔𝑧, 
𝜕𝑢

𝜕𝑦
 and 

𝜕𝑣

𝜕𝑥
, along 𝑥. By Figure 4-14, we find 

that 
𝜕𝑢

𝜕𝑦
 plays a more important role at 𝑥 = 410, where the perturbation is twisted. Figure 

4-15 shows the changes of 
𝜕𝑢

𝜕𝑥
,
𝜕𝑣

𝜕𝑦
 and 

𝜕𝑤

𝜕𝑧
 along 𝑥, which are the components of 𝑔0. 

𝜕𝑢

𝜕𝑥
 and 
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𝜕𝑤

𝜕𝑧
 change in an opposite pattern at the beginning, as a result of TS wave. A notice 

should be given to 
𝜕𝑣

𝜕𝑦
. It is almost zero before perturbation distortion and become 

negative at 𝑥 = 410 where perturbation is twisted. Noting that 
𝜕𝑢

𝜕𝑦
,
𝜕𝑣

𝜕𝑦
 and 

𝜕𝑤

𝜕𝑦
 play some 

roles in perturbation twisting, it gives us an inspiration about the inlet condition: The 3D 

TS wave 𝑞3𝑑
′  in Equation (2-25) is very important in perturbation development and Λ 

formation. 

 
Figure 4-11 The changes of 𝑔, 𝑔0, 𝑔𝑥, 𝑔𝑦 and 𝑔𝑧 along X. 
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Figure 4-12 The change of 
𝜕𝑢

𝜕𝑧
 and 

𝜕𝑤

𝜕𝑥
 along X. 

 

Figure 4-13 The change of 
𝜕𝑣

𝜕𝑧
 and 

𝜕𝑤

𝜕𝑦
 along X. 
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Figure 4-14 The change of 
𝜕𝑢

𝜕𝑦
 and 

𝜕𝑣

𝜕𝑥
 along X. 

 

Figure 4-15 The change of 
𝜕𝑢

𝜕𝑥
,
𝜕𝑣

𝜕𝑦
 and 

𝜕𝑤

𝜕𝑧
 along X. 
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4.3     Λ-Vortex Structure and High Shear Layer 

Figure 4-16 gives the structures of Λ-vortex and strain rate in different views at 

𝑡 = 6.0𝑇, where 𝑇 is T-S wave period. The green surface is the iso-surface of Ω = 0.52 

which indicates the structure of Λ-vortex while the yellow surface is the iso-surface of 

‖𝑨‖𝐹 = 0.6 which show the position of shear layer. According to Figure 4-16, the shear 

layer concentrates beyond the head of the Λ-vortex. 

 

 
(a) Glabal view 

 

(b) Y-Z view 
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(c) X-Z view 

 

(d) X-Y view 

Figure 4-16 The iso-surfaces of Ω = 0.52 (green) and ‖𝑨‖𝐹 = 0.6 (yellow) at 𝑡 = 6.0𝑇, 

where 𝑇 is the period of T-S wave. 

When we increase the iso-value of Ω, see Figure 4-17, the shear layer places at 

the same position along streamwise direction with the iso-surface of Ω = 0.65. It indicates 

the shear layer is high near the strong vortex. Figure 4-18 gives a more clear explanation. 

The distributions of 𝜔𝑥 and 𝑢 on the slice 𝑥 = 443 are given in Figure 4-18(b) and (c). We 

can find a strong rotation exist at this position and the low speed zone is swept to higher 
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position, then 
𝜕𝑢

𝜕𝑧
 becomes greater around the position 𝑦 = 5.5, 𝑧 = 2, where the shear 

layer places. 

 

 

Figure 4-17. The iso-surfaces of Ω = 0.65 (green) and ‖𝑨‖𝐹 = 0.6 (yellow) at 𝑡 = 6.0𝑇, 

where 𝑇 is the period of T-S wave. 



 

53 

 

(a) Position of the slice of 𝑥 = 443. 

 

(b) 𝜔𝑥 with stream traces. 

 

(c) 𝑢 with stream traces 

Figure 4-18. The distribution of 𝜔𝑥 and 𝑢 on the slice of 𝑥 = 443. 
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4.4     Summary 

In this chapter, the development of perturbation and formation of Λ vortex are 

observed and analyzed. The partial derivative of velocity along spanwise plays an 

significant role in perturbation twisting and Λ vortex formation. The Λ vortices are in pair 

with counter-rotation, resulting in an ejection effect that take the low speed near wall up. 

A high shear layer generates above the head of Λ vortices because of the ejection effect 

of Λ vortices. An analysis of shear instability will be given in next chapter.  
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Chapter 5  

Shear Instability Analysis 

In this chapter, an analysis about shear instability will be given. The stability 

analysis is on the Orr-Sommerfeld equation and the derivation of Orr-Sommerfeld 

equation will be given in section 5.1. The Chebyshev polynomials and nodes will be 

revisited in section 5.2 and the Chebyshev spectral method for linear stability analysis will 

be shown in section 5.3. In section 5.4, we will validate the code of Chebyshev spectral 

method and give the numerical results of shear instability. 

5.1     Derivation of Orr-Sommerfeld equation 

The Orr-Sommerfeld equation, in fluid dynamics, is an eigenvalue equation 

describing the linear modes of disturbance to a viscous parallel flow. It is derived from 

incompressible and non-dimensional Navier-Stokes equations. Equation (5-1) denotes 

the incompressible and non-dimensional Navier-Stokes equations in which, 𝑽 = (𝑢, 𝑣, 𝑤) 

is the velocity vector.  

{
𝜕𝑽

𝜕𝑡
+ 𝑽 ⋅ ∇𝑽 = −∇𝑝 +

1

𝑅𝑒
∇2𝑽

∇ ⋅ 𝑽 = 0

(5-1) 

Considering that  

𝑞(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞0(𝑦) + 𝑞
′(𝑥, 𝑦, 𝑧, 𝑡) , (5-2) 

where 𝑞 can be specified as (𝑢, 𝑣,𝑤, 𝑝) , and 𝑞0 = (𝑢0, 𝑣0, 𝑤0, 𝑝0) which represents the 

value of mean flow, and 𝑞′ denotes the corresponding linear perturbation. By eliminating 

the second order perturbation terms, the linearized governing equation for small 

perturbations can be written as, 

{
𝜕𝑽′

𝜕𝑡
+ (𝑽𝟎 ⋅ ∇)𝑽

′ + (𝑽′ ⋅ ∇)𝑽𝟎 + ∇𝑝
′ =

∇2𝑽′

𝑅𝑒
∇ ⋅ 𝑽′ = 0

 . (5-3) 
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To simplify the problem, a localized 2-D incompressible temporal stability for 

shear layer is studied. Assume the normal mode is 

𝑽′ = �̂�(𝑦)𝑒𝑖(𝛼𝑥+𝛽𝑧−𝜔𝑡) + 𝑐. 𝑐. = �̂�(𝑦)𝑒
𝑖𝛼(𝑥+

𝛽
𝛼
𝑧−𝑐𝑡)

+ 𝑐. 𝑐. 

𝑝′ = �̂�(𝑦)𝑒𝑖(𝛼𝑥+𝛽𝑧−𝜔𝑡) + 𝑐. 𝑐. = �̂�(𝑦)𝑒
𝑖𝛼(𝑥+

𝛽
𝛼
𝑧−𝑐𝑡)

+ 𝑐. 𝑐.   , (5-4) 

𝑐 =
𝜔

𝛼
 

where �̂� = (�̂�, �̂�, �̂�) and 𝛼, 𝛽 ∈ ℝ are the streamwise and spanwise wave numbers, 𝜔 ∈ ℂ      

is the frequency and 𝑐 =
𝜔

𝛼
∈ ℂ is the phase speed. The choice of a complex frequency 𝜔 

and real wave numbers is known as the temporal problem where the spatial structure of 

the wavelike perturbation is unchanged and the amplitude of the wave grows or decays 

as time progresses. 

Plugging Equation (5-4) and 𝑽𝟎 = (𝑢0, 0,0) in Equation (5-3) yields 

ℒ�̂� = 𝑅𝑒(𝒟𝑢0)�̂� + 𝑖𝛼𝑅𝑒�̂�

ℒ�̂� = 𝑅𝑒(𝒟�̂�)

ℒ�̂� = 𝑖𝛽𝑅𝑒 �̂�

𝑖(𝛼�̂� + 𝛽�̂�) + 𝒟�̂� = 0

, (5-5) 

where ℒ = [𝒟2 − (𝛼2 + 𝛽2) − 𝑖𝑅𝑒(𝛼𝑢0 − 𝜔)], and 𝒟 =
𝑑

𝑑𝑦
. 

By eliminating �̂�, �̂�, �̂� and denote 𝑢0 = 𝑈(𝑦), we can obtain the O-S equation on 

�̂�, 

(−𝑈𝑘2 − 𝑈′′ −
𝑘4

𝑖𝛼𝑅𝑒
) �̂� + (𝑈 +

2𝑘2

𝑖𝛼𝑅𝑒
) �̂�′′ −

1

𝑖𝛼𝑅𝑒
�̂�′′′′ = 𝑐(�̂�′′ − 𝑘2�̂�), (5-6) 

where 𝑘2 = 𝛼2 + 𝛽2. The equation is named after William McFadden Orr and Arnold 

Sommerfeld, who derived it at the beginning of the 20th century. 

Consider O-S equation on the interval [−1,1], the boundary conditions yield 

�̂�(±1) = �̂�′(±1) = 0 (5-7) 
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Equation (5-6) is an eigenvalue problem about �̂� with eigenvalue 𝑐.  The 

eigenvalue 𝑐 determines the property of stability of the flow. Let 𝑐 = 𝑐𝑟 + 𝑖𝑐𝑖, Equation 

(5-4) yields 

𝑽′(𝑥, 𝑦, 𝑧, 𝑡) = �̂�(𝑦)𝑒
𝛼𝑐𝑖𝑡+𝑖𝛼(𝑥+

𝛽
𝛼
𝑧−𝑐𝑟𝑡), 

𝑝′(𝑥, 𝑦, 𝑧, 𝑡) = �̂�(𝑦)𝑒
𝛼𝑐𝑖𝑡+𝑖𝛼(𝑥+

𝛽
𝛼
𝑧−𝑐𝑟𝑡). 

if 𝑐𝑖 > 0, then the disturbance will continuously grow and the flow would be 

unstable. While if 𝑐𝑟 is greater, the disturbance will grow faster and the flow would be 

more unstable. But if 𝑐𝑖 < 0, the flow would be stable. This chapter will use Chebyshev 

spectral method to solve this eigenvalue equation. Let’s revisit Chebyshev polynomials 

and nodes at first. 

5.2     Chebyshev Polynomials and Nodes 

Chebyshev polynomials, named after Pafnuty Chebyshev, are a sequence of 

orthogonal polynomials. In this paper, we use Chebyshev polynomials of the first kind 

which can be defined as the unique polynomials satisfying 

𝑇𝑛(𝑦) = cos(𝑛 𝑐𝑜𝑠
−1(𝑦)) , (5-8) 

where 𝑛 is the order of polynomials. 

For example, 

𝑇0(𝑦) = 1 

𝑇1(𝑦) = 𝑦 

𝑇2(𝑦) = 2𝑦
2 − 1 

𝑇3(𝑦) = 4𝑦
3 − 3𝑦 

⋮ 

 The derivatives of Chebyshev polynomials have the following recurrence relation 
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𝑇0
(𝑘)(𝑦𝑗) = 0, 

𝑇1
(𝑘)(𝑦𝑗) = 𝑇0

(𝑘−1)(𝑦𝑗), (5-9) 

𝑇2
(𝑘)(𝑦𝑗) = 4𝑇1

(𝑘−1)(𝑦𝑗), 

𝑇𝑛
(𝑘)(𝑦𝑗) = 2𝑛𝑇𝑛−1

(𝑘−1)(𝑦𝑗) +
𝑛

𝑛 − 2
𝑇𝑛−2
(𝑘) (𝑦𝑗),    𝑛 = 3,4, … 

with the superscript 𝑘 ≥ 1 denoting the order of differentiation. 

Chebyshev nodes are the roots of the Chebyshev polynomial of the first kind, 

which are algebraic numbers. For a given natural number 𝑁, Chebyshev nodes in the 

interval (−1,  1) are 

𝑦𝑗 = cos (
2𝑗 + 1

2𝑁
𝜋) ,   𝑗 = 0,1, … , 𝑁 − 1 (5-10) 

They are often used as nodes in polynomial interpolation because the resulting 

interpolation polynomial minimizes the effect of Runge's phenomenon. A brief deduction 

is given as follows. 

Given a function 𝑓 ∈ 𝒞𝑁[−1,1] and Chebyshev nodes 𝑦0 , … , 𝑦𝑁−1, for each 𝑦 ∈

[−1,1], a number 𝜉(𝑦) exists in (−1,1) with  

𝑓(𝑦) − 𝑃𝑁−1(𝑦) =
𝑓(𝑁)(𝜉(𝑦))

𝑁!
∏(𝑦 − 𝑦𝑗)

𝑁−1

𝑗=0

(5-11) 

where 𝑃𝑁−1(𝑦) is the Lagrange interpolating polynomial. 

Notice that ∏ (𝑦 − 𝑦𝑗)
𝑁−1
𝑗=0  is the monic Chebyshev polynomial, that is, 

∏ (𝑦 − 𝑦𝑗)
𝑁−1
𝑗=0 =

𝑇𝑁(𝑦)

2𝑁−1
. 

Recall 𝑇𝑁(𝑦) = cos(𝑛 𝑐𝑜𝑠
−1(𝑦)), we have 

|∏(𝑦 − 𝑦𝑗)

𝑁−1

𝑗=0

| ≤
1

2𝑁−1
  

Then 
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max
y∈[−1,1]

|𝑓(𝑦) − 𝑃𝑁−1(𝑦)| ≤
1

2𝑁−1𝑁!
 max
y∈[−1,1]

|𝑓(𝑁)(𝑦)| 

As N increases, effect of Runge's phenomenon will be minimized. 

5.3     Chebyshev Spectral Method for Linear Stability Analysis 

Spectral methods have a significant impact on the accurate discretization of both 

initial value problems and eigenvalue problems. And spectral method with Chebyshev 

polynomials has been advantageous, especially in stability analysis of fluid mechanics. 

In this stability analysis, the function �̂� could be approximated by Chebyshev 

expansion, 

�̂�(𝑦) = ∑𝑎𝑛𝑇𝑛(𝑦)

∞

𝑛=0

≈ ∑𝑎𝑛𝑇𝑛(𝑦)

𝑁−1

𝑛=0

, (5-12) 

where 𝑁 is the number of Chebyshev polynomials, 𝑇𝑛 are the Chebyshev polynomials 

which are used to approximate the velocity profile and 𝑎𝑛 are the coefficients. 

By approximating �̂� with a certain Chebyshev expansion, Equation (5-6) gives 

∑[(−𝑈𝑘2 − 𝑈′′ −
𝑘4

𝑖𝛼𝑅𝑒
)𝑇𝑛 + (𝑈 +

2𝑘2

𝑖𝛼𝑅𝑒
)𝑇𝑛

′′ −
1

𝑖𝛼𝑅𝑒
𝑇𝑛
′′′′] 𝑎𝑛

𝑁−1

𝑛=0

= 𝑐∑𝑎𝑛(𝑇𝑛
′′ − 𝑘2𝑇𝑛)

𝑁

𝑛=0

 (5-13)

 

The discretized boundary conditions read 

∑𝑎𝑛𝑇𝑛(1)

𝑁−1

𝑛=0

= 0                  ∑ 𝑎𝑛𝑇𝑛(−1)

𝑁−1

𝑛=0

= 0 

∑𝑎𝑛𝑇𝑛′(1)

𝑁−1

𝑛=0

= 0                  ∑ 𝑎𝑛𝑇𝑛′(−1)

𝑁−1

𝑛=0

= 0 

Applying Equation (5-14) on the whole grids with boundary conditions above, a 

matrix form of generalized eigenvalue problem is given by the form 
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𝑨𝒂 = 𝑐𝑩𝒂 (5-14) 

with the right-hand side 

𝑐𝑩𝒂 = 

𝑐

(

 
 
 
 
 

𝑇0(1)

𝑇0
′(1)

𝑇0
′′(𝑦2) − 𝑘

2𝑇0(𝑦2)

𝑇1(1)

𝑇1
′(1)

𝑇1
′′(𝑦2) − 𝑘

2𝑇1(𝑦2)

…
…
…

⋮ ⋮ ⋮
𝑇0
′′(𝑦𝑁−3) − 𝑘

2𝑇0(𝑦𝑁−3)

𝑇0
′(−1)

𝑇0(−1)

𝑇1
′′(𝑦𝑁−3) − 𝑘

2𝑇1(𝑦𝑁−3)

𝑇1
′(−1)

𝑇1(−1)

…
…
…)

 
 
 
 
 

(

 
 
 
 

𝑎0
𝑎1
𝑎2
⋮

𝑎𝑁−3
𝑎𝑁−2
𝑎𝑁−1)

 
 
 
 

 

and similarly for the left-hand side 𝑨𝒂. We have chosen to use the first, second, last and 

next-to-Iast row of 𝑩 to implement the four boundary conditions. The same rows in the 

matrix 𝑨 can be chosen as a complex multiple of the corresponding rows in 𝑩. By 

carefully selecting this complex multiple, the spurious modes associated with the 

boundary conditions can be mapped to an arbitrary location in the complex plane. 

The matrix form of this system can be rewritten as 

𝑩−𝟏𝑨𝒂 = 𝑐𝒂 , 

where 𝑐 appears as eigenvalue of matrix 𝑩−𝟏𝑨 with the associated eigenfunction �̂�(𝑦) =

∑ 𝑎𝑛𝑇𝑛(𝑦)
𝑁−1
𝑛=0 . 

Then we have a set of Orr-Sommerfeld modes, denoted as {�̂�𝑛, 𝑐𝑛}𝑛=0
𝑁−1. Note that 

if 𝑐𝑛 has greatest imaginary part, then associated �̂�𝑛 is most unstable. 

5.4     Code Validation and Numerical Results 

In this section, we validate the code by the numerical results of two specific flow, 

which are plane Poiseuille flow and Couette flow. Then a typical shear and a shear from 

DNS database are analyzed according to the numerical results. 



 

61 

5.4.1 Plane Poiseuille flow 

Poiseuille flow is pressure-induced flow ( Channel Flow) in a long duct. 

Specifically, it is assumed that there is Laminar Flow of an incompressible Newtonian 

Fluid of viscosity induced by a constant positive pressure difference or pressure drop in a 

long duct. The schematic diagram of plane Poiseuille flow is given in Figure 5-1. 

 
Figure 5-1 Illustration of plane Poiseuille flow. 

A typical velocity profile of plane Poiseuille flow is given by Equation (5-15). 

𝑈(𝑦) = 1 − 𝑦2,              𝑦 ∈ [−1,1] (5-15) 

To apply Chebyshev Spectral Method, the computing parameters are given as 

following: 

 number of O-S nodes is 𝑁 = 100,  

 streamwise wave number is 𝛼 = 1, 

 spanwise wave number is 𝛽 = 0. 

We run two cases here, which are low Reynolds number and high Reynolds 

number, respectively. 

a) Reynolds number is 𝑅𝑒 = 1000. 
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This case has a low Reynolds number. After running, we obtain the spectrum of 

plane Poiseuille flow that is shown in Figure 5-2. We can observe that all phase speed 

𝑐 have negative imaginary part. So the flow is stable when 𝑅𝑒 = 1000. 

 
(a) Global view                                          (b) Zoom in view 

Figure 5-2 Spectrum of plane Poiseuille flow (𝑅𝑒 = 1000). 

b) Reynolds number is 𝑅𝑒 = 10000. 

This case has a high Reynolds number. The spectrum is shown in Figure 5-3. 

From the spectrum, we find one unstable mode whose phase speed is 𝑐 = 0.2377 +

0.0037𝑖. Because of positive imaginary part, the flow is unstable. And the eigenfunction �̂� 

associated with this unstable mode is shown in Figure 5-4. 
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(a) Global view                                          (b) Zoom-in view 

Figure 5-3 Spectrum of plane Poiseuille flow (𝑅𝑒 = 10000). 

 
Figure 5-4 Eigenfunction �̂� associated with 𝑐 = 0.2377 + 0.0037𝑖. 

Therefore, the plane Poiseuille flow is conditional stable, which is consistent with 

theoretical results. 

5.4.2 Couette flow 

Couette flow is the flow of a viscous fluid in the space between two surfaces, one 

of which is moving tangentially relative to the other. The flow is driven by virtue of viscous 

drag force acting on the fluid, but may additionally be motivated by an applied pressure 

gradient in the flow direction. The schematic diagram of Couette flow is given in Figure 

5-5. 
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Figure 5-5 Illustration of Couette flow. 

A typical velocity profile of Couette flow is given by Equation (5-16) 

𝑈(𝑦) = 𝑦,              𝑦 ∈ [−1,1] (5-16) 

We give the same computing parameters as in plane Poiseuille flow: 𝑁 = 100, 

𝛼 = 1 and 𝛽 =0. We run several cases for different Reynolds number (10~10000), and 

this kind of flow is always stable. Figure 5-6 shows spectrum of the case with low 

Reynolds number 𝑅𝑒 = 1000. All modes has a negeative imaginary part, so this kind flow 

is stable when 𝑅𝑒 = 1000. For other cases, the distributions of spectrum are similar. And 

the numerical results are consistent with theoretical results. 
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(a) Global view                                          (b) Zoom-in view 

Figure 5-6 Spectrum of plane Couette flow (𝑅𝑒 = 1000). 

 

 

5.4.3 Typical shear 

The velocity profile of a typical shear is shown in Figure 5-7. It is simulated by the 

hyperbolic tangent function, 

𝑈(𝑦) = tanh(4𝑦) ,  𝑦 ∈ [−1,1] (5-17) 

We give the same computing parameters as in two previous flows: 𝑁 = 100, 𝛼 =

1 and 𝛽 =0. We run two cases with low Reynolds number 𝑅𝑒 = 1000 and even lower 

Reynolds number 𝑅𝑒 = 10. 
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Figure 5-7 Illustration of a typical shear. 

a) Reynolds number is 𝑅𝑒 = 1000. 

This case has a low Reynolds number. The spectrum is shown in Figure 5-8. 

From the spectrum, we find one unstable mode whose phase speed is 𝑐 = 0.5114𝑖. 

Because of positive imaginary part, the flow is unstable. In addition, the eigenfunction �̂� 

associated with this unstable mode is shown in Figure 5-9. 
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(a) Global view                                          (b) Zoom-in view 

Figure 5-8 Spectrum of shear flow (𝑅𝑒 = 1000). 

 
Figure 5-9 Eigenfunction �̂� associated with 𝑐 = 0.5114𝑖. 

b) Reynolds number is 𝑅𝑒 = 10. 
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This case has a lower Reynolds number. After running, we obtain the spectrum 

that is shown in Figure 5-10. We can observe that all phase speed 𝑐 have negative 

imaginary part. So the shear flow is stable when 𝑅𝑒 = 10. 

 
(a) Global view                                          (b) Zoom-in view 

Figure 5-10 Spectrum of shear flow (𝑅𝑒 = 10). 

Therefore, this typical shear flow is conditional stable. 

5.4.4 Shear from DNS data 

Recall Figure 4-18, a high shear layer generates above the head of Λ vortices 

because of the ejection effect of Λ vortices. Now we extract a velocity profile from DNS 

data at the position 𝑥 = 443.5 and 𝑦 = 5.5 at 𝑡 = 6.00𝑇, as shown in Figure 5-11. This 

velocity profile represents a real shear in transitional flow and we will analyze the stability 

by Chebyshev spectrum method. 

  
(a)                                                           b) 
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(c) 

Figure 5-11 A shear profile extracted from DNS data. (a) shows a global view of vortex 

structures by iso-surface Ω = 0.52 and the position of x-z plane where we do data 

extraction; (b) shows the velocity profile we extract and (c) gives an aesthetic description 

of velocity profile. 

The same computing parameters are given as in previous flows: 𝑁 = 100, 𝛼 = 1 

and 𝛽 =0. We run the case with Reynolds number 𝑅𝑒 = 1000 which is consistent with 

DNS computation condition, see Table 2-3. The spectrum of this flow is shown in Figure 

5-12. We find one unstable mode with associated phase speed 𝑐 = 0.626 + 0.0053𝑖. 

Hence this shear flow is unstable. And the eigenfunction �̂� associated with this unstable 

mode is shown in Figure 5-13. 
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(a) Global view                                          (b) Zoom-in view 

Figure 5-12 Spectrum of shear flow from DNS data (𝑅𝑒 = 1000). 

 
Figure 5-13 Eigenfunction �̂� associated with 𝑐 = 0.626 + 0.0053𝑖. 
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5.5     Summary 

In this chapter, Orr-Sommerfeld equation is derived and the Chebyshev spectral 

method is introduced to solve the stability problem. By Chebyshev spectral method, we 

find the shear induced by Λ vortex ejection is unstable. Then question is: if the shear is 

unstable, what is it going to be? The development of Λ vortex to hairpin vortex packets 

will be given in next chapter. 
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Chapter 6  

Development of Λ Vortex to Hairpin Vortex Packet 

After showing the instability of high shear layer induced by Λ vortex ejection, a 

detailed observation is carried out to figure out the process of a Λ vortex developing to a 

vortex packet, based on the DNS data and Ω vortex identification method. A sketch of a 

hairpin vortex will be given in section 6.1 and the details of development of Λ vortex to 

hairpin vortex packet will be shown in section 6.2. Section 6.3 will reveal an interesting 

phenomenon about the speed around the hairpin vortices. 

6.1     Hairpin Vortex Structure 

Hairpin vortices are widely recognized as a fundamental coherent structure since 

their appearance in every significant process during transition. Figure 6-1 depicts the 

sketch of a typical symmetric hairpin vortex [52]. The hairpin vortex usually consists of 

three parts: (1) Two counter-rotating quasi-streamwise vortices, known as two legs; (2) A 

ring-like vortex named as the vortex head, where the spanwise vorticity is dominant, 

sitting on top farther from the wall, (3) Necks connect the head and legs. The head is 

always Ω-shaped and the term “vortex ring” is often used alternatively to describe the 

combination of head and necks.  

“Sweeps” and “ejections” refer to (𝑢’𝑣’)4 and (𝑢’𝑣’)2 from quadrant analysis. 

Events associated with 𝛬 vortex or hairpin legs are called “first ejection” and “first sweep” 

while “second ejection” and “second sweep” are used to describe events related to the 

vortex rings, see Figure 6-1. 
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Figure 6-1 The sketch of a typical symmetric hairpin vortex.[52] 

6.2     Hainpin vortex generation and development 

A series of snapshots are obtained from DNS database to investigate the 

development of Λ vortex to hairpin vortex packets. Figure 6-2 shows the iso-surface of 

Ω = 0.52 and ‖𝑨‖𝐹 = 0.6 at 𝑡 = 6.16𝑇, where 𝑇 is the period of T-S wave. From Figure 

6-2(b), we find the first ring generates at the top of the high strain rate region. Comparing 

Figure 6-2(b) with Figure 4-16(c), the high strain rate region moves up. This also can be 

checked by Figure 6-3, which shows the iso-surface of Ω = 0.52 and ‖𝑨‖𝐹 = 0.6 at 𝑡 =

6.30𝑇. Comparing Figure 6-3 with Figure 6-2(b), the second high strain rate region moves 

upper at 𝑡 = 6.30𝑇. Then the second ring generates following as a result. 
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(a) Global view 

 
(b) X-Z view 

Figure 6-2. The iso-surface of Ω = 0.52 and ‖𝑨‖𝐹 = 0.6 at 𝑡 = 6.16𝑇,  where 𝑇 is the 

period of T-S wave. 

 
Figure 6-3 The iso-surface of Ω = 0.52 and ‖𝑨‖𝐹 = 0.6 at 𝑡 = 6.30𝑇,  where 𝑇 is the 

period of T-S wave. 
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Note that in Figure 6-3, there is a protuberance at the “mandible” of the second 

ring. This protuberance grows along lower front direction to enfold the legs of the first 

vortex ring. It is more clear in Figure 6-4. Figure 6-4 gives the vortex structures at 𝑡 =

6.43𝑇 in global, X-Z and X-Y view. The red arrows indicate the direction of the 

protuberance developing.  

 

 

 
(a) Global view 

 
(b) X-Z view 
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(c) X-Y view 

Figure 6-4 The iso-surface of Ω = 0.52 at 𝑡 = 6.43𝑇,  where 𝑇 is the period of T-S wave. 

Figure 6-5 shows the the vortex structures at 𝑡 = 6.43𝑇 in X-Z view, X-Y top view 

and bottom view. The protuberance extends to the bottom and is parallel to the leg of the 

first hairpin vortex, see Figure 6-5(a). And the first hairpin vortex has been separated 

from the Λ-vortex, see Figure 6-5(c).  

 
(a) X-Z view 
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(b) X-Y view (Top) 

 
(c) X-Y view (Bottom) 

Figure 6-5 The iso-surface of Ω = 0.52 at 𝑡 = 6.60𝑇,  where 𝑇 is the period of T-S wave. 

The distribution of 𝜔𝑥 on the slice of 𝑥 = 475 with stream traces (black lines) at 

𝑡 = 6.60𝑇 is shown in Figure 6-6. We can find the protuberance and the leg of the first 

hairpin are counter-rotating, see Figure 6-6(b). This is the possible reason that the first 

hairpin vortex separate from the Λ-vortex. Also from Figure 6-6(a), we can find the 

separations of the first three hairpin vortex from Λ-vortex have the similar process, that is, 

the separations are all with the extension of the protuberance of latter one. 
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(a) The position of slice of 𝑥 = 475 

 
(b) 

Figure 6-6 The distribution of 𝜔𝑥 on the slice of 𝑥 = 475 with stream traces (black lines) at 

𝑡 = 6.90𝑇,  where 𝑇 is the period of T-S wave. 

The process of the generation of the fourth and fifth hairpin vortices is different 

from the first three hairpins, see Figure 6-7. The generation of the fourth and fifth hairpin 
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vortices is accompanying with the development of inverted Λ-vortex. And these inverted 

Λ-vortices rotate opposite to Λ-vortex, see Figure 6-8. 

 
(a) 𝑡 = 7.20𝑇 

 
(b) 𝑡 = 7.40𝑇 

 
(c) 𝑡 = 7.60𝑇 

Figure 6-7 The process of the fourth and fifth hairpin vortices generation in top view. 
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Figure 6-8 The distribution of 𝜔𝑥 on the slice of 𝑥 = 462 with stream traces (black lines) at 

𝑡 = 7.20𝑇,  where 𝑇 is the period of T-S wave. The red dashed circles are the contour of 

Ω = 0.52. 

The Λ vortex develops into a hairpin vortex packet containing five hairpin 

vortices, according to our observation from DNS data. There are no more hairpin vortices 

generate in one packets and it maybe because the original Λ vortex structure has ceased 

to exist, see Figure 6-7(c). And there are no enough energy to eject the low speed near 

the wall up to generate new high shear layers. 

6.3     High Speed Zone around Hairpin Vortex 

In the process of investigating hairpin vortex packets generation, our group found 

an interesting phenomenon [63] : the maximum velocity around some vortex rings in 

boundary layer flows locates near the neck of hairpin vortex, and this maximum velocity 

is greater than 1, namely, the initial velocity. Furthermore, the high-speed region comes 

into sight when the vortex ring becomes perpendicular.  

Figure 6-9 shows three consecutive vortex rings and their streamwise velocity 

distribution. Figure 6-9(c) shows the maximum streamwise velocity of this vortex ring is at 
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top of it while the first vortex ring in Figure 6-9(a) is more perpendicular with maximum 

velocity around the neck region shown in Figure 6-9(b). For the third vortex ring, which is 

oblique more obviously, the maximum velocity also locates at the top as illustrated in 

Figure 6-9(d). 

From Figure 6-9(c) and Figure 6-9(d), we can see that even when the maximum 

velocity locates at the top of vortex ring, the maximum streamwise velocity reaches 1.05, 

or even 1.06. This maximum speed is higher than the incoming velocity, and cannot be 

caused by inflow disturbance since the disturbance is much smaller. 

Figure 6-10 shows the iso-surface of streamwise velocity u=1.045. It can be 

found that the maximum velocity around some vortex rings locates around the neck 

region while the maxima around some rings are on the top. Figure 6-10 also verified the 

assumption that, when the ring is more perpendicular, the maxima tend to locate at the 

neck region rather than on the top.  
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Figure 6-9  Three consecutive vortex rings and their streamwise velocity distribution. 

 
Figure 6-10 Iso-surface of streamwise velocity 𝑢 = 1.045. 
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6.4     Summary 

In this chapter, the development of Λ vortex to hairpin vortex packet is shown in 

detail. The generation of vortex ring is accompanied by a move-up of shear, and the 

former hairpin vortex separating from Λ vortex is always accompanied by the “mandible” 

development of latter hairpin vortex. The inverted Λ vortex generates before the fourth 

and fifth hairpin vortices form and the inverted Λ vortex rotate in an opposite direction to 

the main Λ vortex. The high-speed zone around hairpin vortex is not always at the top of 

the head of vortex ring. When vortex ring is more perpendicular, the high-speed zone 

locates around neck region of the hairpin vortex.  

This development is in very early stage of transition, so the vortical structures are 

organized and sparse. With the advance of time, the hairpin vortex packets will intertwine 

and interact with each other. So, the vortical structures in late stage of transition will be 

more complicated and chaotic. To investigate the vortical structures in late stage of 

transition, the proper orthogonal decomposition will be utilized in next chapter. 

 

 

  



 

84 

Chapter 7  

Late-stage Transitional Boundary Layer Structures POD analysis 

In this chapter, we will use the proper orthogonal decomposition (POD) method 

[64] in the Euclidean space ℝ𝑚 to analyze the boundary layer structures in late-stage 

transition. In section 7.1, we will revisit POD and apply POD on late stage of transitional 

boundary layer in section 7.2 to investigate the principal component of the flow field.  

7.1     Proper Orthogonal Decomposition 

The goal of POD is to find a proper orthonormal basis, the POD basis {𝜓𝑖}𝑖=1
𝑑  of 

rank 𝑑, for the snapshot set spanned by 𝑛 given vectors (the so-called snapshots) 

𝑦1, … , 𝑦𝑛 ∈ ℝ
𝑚. We assume that 𝑑 ≤ min{𝑚, 𝑛} holds true. 

Let 𝑌 = (𝑦1, … , 𝑦𝑛) be a real-valued 𝑚 × 𝑛 matrix of rank 𝑑 ≤ min{𝑚, 𝑛} with 

columns 𝑦𝑗 ∈ ℝ
𝑚, 1 ≤ 𝑗 ≤ 𝑛. Singular value decomposition (SVD) [65] guarantees the 

existence of real numbers 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑑 > 0 and orthogonal matrices Ψ ∈ ℝ𝑚×𝑚 with 

columns {𝜓𝑖}𝑖=1
𝑚  and Φ ∈ ℝ𝑛×𝑛 with columns {𝜙𝑖}𝑖=1

𝑛  such that  

Ψ𝑡𝑌Φ = (
𝐷 0
0 0

) , (7-1) 

where 𝐷 = 𝑑𝑖𝑎𝑔(𝜎1, … , 𝜎𝑑) ∈ ℝ
𝑑×𝑑 and ‘𝑡’ stands for the transpose of a matrix. Moreover, 

the vectors {𝜓𝑖}𝑖=1
𝑑  and {𝜙𝑖}𝑖=1

𝑑  satisfy 

𝑌𝜙𝑖 = 𝜎𝑖𝜓𝑖   and 𝑌
𝑡𝜓𝑖 = 𝜎𝑖𝜙𝑖    for 𝑖 = 1,… , 𝑑. (7-2) 

They are eigenvectors of 𝑌𝑌𝑡 and 𝑌𝑡𝑌, respectively, with eigenvalues 𝜆𝑖 = 𝜎𝑖
2 >

0, 𝑖 = 1,… , 𝑑. The vectors {𝜓𝑖}𝑖=𝑑+1
𝑚  and {𝜙𝑖}𝑖=𝑑+1

𝑛  are eigenvectors of 𝑌𝑌𝑡 and 𝑌𝑡𝑌 with 

eigenvalue 0. 

Since Ψ is orthogonal, we find that 
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𝑦𝑗 =∑〈𝜓𝑖 , 𝑦𝑗〉ℝ𝑚  𝜓𝑖

𝑑

𝑖=1

 for 𝑗 = 1,… , 𝑛, (7-3) 

where 〈 ∙ , ∙ 〉ℝ𝑚 denotes the canonical inner product in ℝ𝑚. We denote 𝑀𝑖,𝑗 =

〈𝜓𝑖 , 𝑦𝑗〉ℝ𝑚  𝜓𝑖 as the i-th mode of snapshot 𝑦𝑗. Note that 𝑦𝑗 = ∑ 𝑀𝑖,𝑗
𝑑
𝑖=1  and we use, in 

practical application, the first ℓ (ℓ ≤  𝑑) modes to reconstruct the snapshot, say 𝑦𝑟𝑒𝑐𝑗. And 

the error of reconstruction is defined as 𝑒𝑟𝑟𝑗 = ‖𝑦𝑗 − 𝑦𝑟𝑒𝑐𝑗‖. 

Next we turn to the practical computation of a POD-basis of rank ℓ. If 𝑛 < 𝑚 then 

one can determine the POD basis of rank ℓ as follows: Compute the eigenvectors 

𝜙1, … , 𝜙ℓ ∈ ℝ
𝑛 by solving the symmetric 𝑛 × 𝑛 eigenvalue problem 

𝑌𝑡𝑌𝜙𝑖 = 𝜆𝑖𝜙𝑖       for 𝑖 = 1,… , ℓ, (7-4) 

and set, by Eq (7-2), 

𝜓𝑖 =
1

√𝜆𝑖
𝑌𝜙𝑖        for  𝑖 = 1, … , ℓ. (7-5) 

For historical reasons this method of for determine the POD-basis is sometimes 

called the method of snapshots. On the other hand, if 𝑚 < 𝑛 holds, we can obtain the 

POD basis by solving the 𝑚 ×𝑚 eigenvalue problem 

𝑌𝑌𝑡𝜓𝑖 = 𝜆𝑖𝜓𝑖        for 𝑖 = 1,… , ℓ. (7-6) 

For the application of POD to concrete problems the choice of ℓ is certainly of 

central importance for applying POD. It appears that no general a-priori rules are 

available. Rather the choice of ℓ is based on heuristic considerations combined with 

observing the ratio of the modeled to the total energy contained in the system 𝑌, which is 

expressed by 

ℰ(ℓ) =
∑ 𝜆𝑖
ℓ
𝑖=1

∑ 𝜆𝑖
𝑑
𝑖=1

. (7-7) 
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7.2     POD on Late-stage Transitional Boundary Layer 

In late-stage transitional boundary layer, the vortices develop into more 

complicated structures, see Figure 7-1. To investigate the principal components of these 

vortical structures, I apply POD over 100 snapshots of late transitional flow. A subzone is 

extracted to reduce the computation complexity. The parameters of the subzone are 

given in Table 7-1. 

 
Figure 7-1 Vortical structures in late-stage transitional boundary layer. 

Table 7-1 Parameters of subzone 

 Start Index End Index 

I (in 𝜉 direction) 161 260 

J (in 𝜂 direction) 1 128 

K (in 𝜁 direction) 1 200 

 
The snapshot 𝑦𝑗 is defined as 
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𝑦𝑗 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑢161,1,1
(𝑗)

 

⋮

𝑢260,1,1
(𝑗)

𝑢161,2,1
(𝑗)

⋮

𝑢260,2,1
(𝑗)

⋮

𝑢𝐼,𝐽,𝐾
(𝑗)

⋮

𝑢260,128,200
(𝑗)

⋮

𝑣𝐼,𝐽,𝐾
(𝑗)

⋮

𝑤𝐼,𝐽,𝐾
(𝑗)

⋮

𝑤260,128,200
(𝑗)

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  for 𝑗 = 1,… ,100, (7-8) 

where 𝑢(𝑗), 𝑣(𝑗) and 𝑤(𝑗) are velocity fields at 𝑡 = (17.5 + 0.01𝑗)𝑇. So 𝑦𝑗 ∈ ℝ
𝑚 with 𝑚 =

7,680,000 and 𝑌 = (𝑦1, … , 𝑦100) is a matrix with dimension 7,680,000 × 100. After 

computing, the eigenvalues 𝜆𝑖 of matrix 𝑌𝑡𝑌 are given in descent order in Figure 7-2.  

 
Figure 7-2 Eigenvalues 𝜆𝑖 of matrix 𝑌𝑡𝑌. 
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To choose the suitable number ℓ modes to reconstruct the snapshot, the ratio 

ℰ(ℓ) is shown in Figure 7-3. By the distribution of ℰ(ℓ), only first 20 modes will recover 

the snapshot very well. An intuitive comparison is given in Figure 7-4. Figure 7-4(a) 

shows the vortical structures at 𝑡 = 17.51𝑇 by iso-surface Ω = 0.52 while Figure 7-4(b) 

shows the vortical structures based on the reconstructed data by first 20 modes. We can 

figure out, by comparison, the reconstruction performs very good. 

 
Figure 7-3 Distribution of ℰ(ℓ). 

 
(a)                                                               (b) 

Figure 7-4 Iso-surface of Ω = 0.52 at 𝑡 = 17.51𝑇. (a) original data; (b) reconstructed data 

by first 20 modes. 
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More rigorously, a statistical result is given in Figure 7-5, which shows that the 

error of reconstruction with respect to modes amount. The black dots indicate the mean 

values of 100 snapshots and gray bars indicate the standard deviations. 

 
Figure 7-5 Error of reconstruction ‖𝑦 − 𝑦𝑟𝑒𝑐‖ with respect to modes amount used. Black 

dot indicates the mean of 100 snapshots and gray bar indicates the correlated standard 

deviation. 

 
Figure 7-6 shows the vortical structures in first 30 modes at 𝑡 = 17.51𝑇. The 

vortical structures are indicated by iso-surfaces of Ω = 0.52. We can find that some 

modes contribute to streamwise vortical structures, such as the first one. Some modes 

contribute to spanwise vortical structures, such as No.13. Some modes contribute to 

small scale vortical structures, such as No.14. And some modes even do not have 

vortical structures, like No.30, which means this mode contributes deformation. In fact, all 

modes after No.30 do not have vortical structures, which means the maximum Ω in these 

modes are all less than 0.5, see Figure 7-7. 
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Figure 7-6 Vortical structures (iso-surfaces of Ω = 0.52) of first 30 modes at 𝑡 = 17.51𝑇. 
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Figure 7-7 max(𝛺) in first 50 modes. 

The first mode should obtain more attentions, because it is the most principal 

component with ℰ(1) ≈ 99%, see Figure 7-3. The vortical structures of the first mode at 

𝑡 = 17.51𝑇 are given in Figure 7-8 in details. It tells us that the vortices in the first mode 

are streamwise vortices and they are in pair. It indicates that the mechanism of vortex 

rings generation in late-stage is the same as the first vortex packets: paired streamwise 

vortices eject the low speed zone at the bottom to the higher position, and high shear 

layers generate and develop into spanwise vortices which are vortex rings. Figure 7-9 

gives the distribution of streamwise velocity 𝑢 on a streamwise plane in the first mode. 

Figure 7-9(a) shows the position of the streamwise plane. The green surfaces are iso-

surfaces of Ω = 0.52, which indicate the vortices. Figure 7-9(b) gives the 𝑢 distribution on 

the plane. The white circles are contour lines of Ω = 0.52, which indicate the positions of 
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the vortices, and the black spirals are stream traces of particles. It clearly shows a pair of 

counter-rotating vortices eject the low speed zone up, which is similar with Figure 4-18(c). 

 
(a) Global view 

 
(b) X-Z view 
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(c) X-Y view 

 
(d) Y-Z view 

Figure 7-8 The vortical structures of the first mode at 𝑡 = 17.51𝑇. 
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(a)                                                               (b) 

Figure 7-9 The distribution of streamwise velocity 𝑢 in first mode. 

7.3     Summary 

In this chapter, the proper orthogonal decomposition is applied to study the 

vortical structure in late stage of transitional boundary layer. By investigating the most 

principal component of the flow field, I find streamwise vortices play significant role in late 

stage of transition. It reveals the consistency of Liu’s theory: a pair of streamwise vortices 

ejects the low speed zone up and high shear layer generates; because of the instability of 

the high shear layer in boundary layer, the vortex ring forms and vortex packet develops. 
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Chapter 8  

Concluding Remarks 

The tensor field 𝛻𝑽 can be split into two parts: symmetric part (deformation) and 

antisymmetric part (vorticity). And based on the idea that vorticity overtakes deformation 

in vortices, a new vortex identification method, Ω-method, is posted. The Ω-method has a 

relative uniform threshold to reveal the vortical structures and it is proved that Ω-method 

can capture the low-pressure zone very well. 

In the development of perturbation and formation of Λ vortex, the spanwise 

partial derivative of velocity plays a significant role. The Λ vortices are in pair with 

counter-rotation, resulting in an ejection effect that take the low speed near wall up. A 

high shear layer generates above the head of Λ vortices because of the ejection effect of 

Λ vortices. This high shear layer is unstable after Chebyshev spectral method is applied 

to solve the Orr-Sommerfeld eigenvalue equation. 

The Λ vortex gradually develops into hairpin vortex packet. In the process of 

development, the generation of vortex ring is accompanied by a move-up of shear, and 

the former hairpin vortex separating from Λ vortex is always accompanied by the 

“mandible” development of latter hairpin vortex. The inverted Λ-vortex generates before 

the fourth and fifth hairpin vortices form and the inverted Λ-vortex rotate in an opposite 

direction to the main Λ vortex. The high-speed zone around hairpin vortex is not always 

at the top of the head of vortex ring. When vortex ring is more perpendicular, the high-

speed zone locates around neck region of the hairpin vortex. 

By proper orthogonal decomposition, the vortical structures in late stage of 

transition is studied. After investigating the most principal component of the flow field, the 

streamwise vortices are believed to play significant role in late stage of transition. 
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Appendix A 

MATLAB Code of Chebyshev Spectral Method for Linear Stability 
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% main.m 
% INPUT 
% 
% nosmod = number of Orr-Sommerfeld modes 
% R      = Reynolds number 
% alp    = alpha (streamwise wave number) 
% beta   = beta (spanwise wave number) 

  
    close all; 
    clear all; 

  
zi=sqrt(-1); 

 
% input data 
    iflow=input('Poiseuille (1); Couette flow (2);Shear (3): '); 
    nosmod=input('Enter N the number of OS modes: '); 
    R=input('Enter the Reynolds number: '); 
    alp=input('Enter alpha: '); 
    beta=input('Enter beta: '); 

     
% generate Chebyshev differentiation matrices 
    [D0,D1,D2,D4]=Dmat(nosmod); 

  

     
% mean velocity 
    ak2=alp^2+beta^2; 
    Nos=nosmod+1; 
    yj=cos(pi*(0:1:Nos-1)'/(Nos-1)); 
    if iflow==1, 
        u=ones(length(yj),1)-yj.^2; 
        ddu=-2*ones(length(u),1); 
    elseif iflow==2, 
        u=yj; 
        ddu=0*ones(length(u),1); 

    elseif iflow==3, 
        a=1; 
        b=4; 
        u=a*tanh(b*yj); 
        ddu=-2*b^2*u.*(sech(b*yj)).^2; 

 
    end; 

  
% set up Orr-Sommerfeld matrices A and B 
    B11=D2-ak2*D0; 
    A11=-(D4-2*ak2*D2+(ak2^2)*D0)/(zi*alp*R); 
    A11=A11+u*ones(1,length(u)).*B11-(ddu*ones(1,length(u))).*D0; 
    er=-200*zi; 
    A=[er*D0(1,:); er*D1(1,:); A11(3:Nos-2,:); ... 
        er*D1(Nos,:); er*D0(Nos,:) ]; 
    B=[D0(1,:); D1(1,:); B11(3:Nos-2,:); ... 
        D1(Nos,:); D0(Nos,:)]; 
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% compute the Orr-Sommerfeld matrix (by inverting B) 
    d=B\A; 

     
    [xs,es]=iord2(d); 

  
    k=find(imag(es)>0); 
    if k 
        disp(imag(es(k))); 
        figure(1); 
        vp=D0*xs(:,k); 
        plot(sqrt(vp.*conj(vp)),yj); 
    else 
        disp('stable!!!'); 
    end 
 

 

 

 
function [D0,D1,D2,D4]=Dmat(N) 
% 
% Function to create differentiation matrices 

  
% N  = number of modes 
% D0 = zero'th derivative matrix 
% D1 = first derivative matrix 
% D2 = second derivative matrix 
% D4 = fourth derivative matrix 

  
% initialize 
    num=round(abs(N)); 

  
% create DO 
    D0= [] ; 
    vec=(0:1:num)' ; 
    for j=0:1:num 
        D0=[D0 cos(j*pi*vec/num)]; 
    end; 

  
% create higher derivative matrices 
    lv=length(vec); 
    D1=[zeros(lv,1) D0(:,1) 4*D0(:,2)]; 
    D2=[zeros(lv,1) zeros(lv,1) 4*D0(:,1)]; 
    D3=[zeros(lv,1) zeros(lv,1) zeros(lv,1)]; 
    D4=[zeros(lv,1) zeros(lv,1) zeros(lv,1)]; 
    for j=3:num 
        D1=[D1 2*j*D0(:,j)+j*D1(:,j-1)/(j-2)]; 
        D2=[D2 2*j*D1(:,j)+j*D2(:,j-1)/(j-2)]; 
        D3=[D3 2*j*D2(:,j)+j*D3(:,j-1)/(j-2)]; 
        D4=[D4 2*j*D3(:,j)+j*D4(:,j-1)/(j-2)]; 
    end; 
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function [xs,es]=iord2(d) 

  
% This function computes the eigenvalues of a matrix d and 
% orders the eigenvalues so that the imaginary parts are 
% decreasing. 
% 
% INPUT 
% d = input matrix 
% 
% OUTPUT 
% es = ordered eigenvalues 
% xs = eigenvectors 

  
    [v,e]=eig(d) ; 
    e=diag(e); 
    [eimag,is]=sort(-imag(e)); 
    xs=v(: ,is); 

    es=e(is); 
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