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ABSTRACT

EVOKED AND SPONTANEOUS NEUROTRANSMITTER RELEASES FOR

INDEPENDENT SYNAPTIC CURRENTS:

MATHEMATICAL MODELING AND ANALYSIS

SAT BYUL SEO, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Jianzhong Su

Synapses play a major role in neuron communications in the brain. The synapses act

through a chemical process called synaptic fusion between pre-synaptic and post-synaptic

terminals. Presynaptic terminals release neurotransmitters either in response to action po-

tential or spontaneously independent of presynaptic activity. In the case of glutamate, re-

leased neurotransmitters acivate N-methyl-D-asparate (NMDA) and α-3-hydroxy-5-methyl-

4-isoxazolepropionicacid (AMPA) receptors within a single postsynaptic site and give rise to

miniature postsynaptic currents. In this dissertation, we develop a mathematical model in

3-D to emulate spontaneous and evoked neurotransmissions resulted from glutamate release

within a single synapse. We propose numerical methods for solving piecewise continuous

heat diffusion equation, estimate and verify its errors of second order accuracy. In order to

identify the spatial relation between spontaneous and evoked glutamate releases, we consider
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quantitative factors, such as the size of synapses, inhomogeneity of diffusion coefficients, the

geometry of synaptic cleft, and the release rate of neurotransmitter, that will affect post-

synaptic currents. We conclude quantitatively that as a synapse’s size is smaller and if the

synaptic cleft space is less diffusive in the peripheral area than the center area, then there

is high a possibility of having crosstalk between two signals from spontaneous and evoked

releases. On the other hand, when a synaptic size is larger, the cleft space is less diffusive in

the central area than the edge area, if the geometry synaptic cleft has a narrower gap in the

center and if glutamate release is slower, then there is a better chance for independence of

two modes of currents from spontaneous and evoked release. The computed results match

well with existing experimental findings and provide a quantitative map of boundaries of

physical constraints for having independent synaptic fusion events.
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CHAPTER 1

Introduction

My dissertation research is mainly divided into two integrated projects and reflects

two aspects of my mathematical work. One is to identify the relationship between two

neurotransmissions, spontaneous and evoked transmitter release, one of fascinating questions

for neuroscientists during the last half of 20th century, using mathematical modeling with

differential equations. The other is to develop numerical methods that can solve the modeling

equations with controllable errors, and thus enables to apply this model in neuroscience. We

will introduce them in sequential steps in this dissertation.

The structure of this dissertation is as follows. In chapter 2, we introduce concepts of

synapses, neurotransmission, and the mechanism how they work in our brains, to understand

current research questions. In chapter 3, we review some basic knowledge of mathematical

physiology that we should know for our mathematical modeling. In chapter 4, we propose

a mathematical model of this synaptic-dynamics. We discuss modeling factors that we will

consider including boundary conditions, the geometry of synapse, synaptic size, different

diffusion coefficients in the cleft, and the release rate of neurotransmitters from presynaptic

terminal. In chapter 5, we work on finite difference methods to approximate solutions to

heat equations in the process from presynaptic sites to the cleft. We first show the overview

of numerical solutions to the continuous heat equation using finite difference methods, then

discuss the situation with piecewise continuous coefficients. In chapter 6, we simulate the

process of glutamate release from presynaptic sites into the synaptic cleft to obtain glutamate

1



molecules concentration at each receptor. In chapter 7, we review numerical methods of

system of ordinary differential equations, especially Runge-Kutta methods, that we use to

solve our Ordinary Differential Equations(ODEs) system numerically. In chapter 8, we

simulate the kinetic process solving a system of ODEs numerically to obtain the opening

probability at NMDA receptor. We collect the data of the peak open probability at NMDA

receptors at locations opposing evoked release sites or spontaneous release sites when an

evoked or spontaneous release occurs. In chapter 9, we define a measurement of independence

and suggest two possibilities for small synapses to have less crosstalk from spontaneous and

evoked neurotransmitter currents on postsynaptic terminals. In chapter 10, we summarize

major findings of our research and discuss our future research plan.
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CHAPTER 2

Neuroscience Background

A human brain has over 100 billion neurons, and 90% of the neurons communicate

through synapse. A synapse consists of the three components, a presynaptic neuron or

terminal, a postsynaptic neuron or terminal, and a synaptic cleft. Networks of neurons and

synapse play a key role of communication of electric signals of brain, and are responsible for

most of brain functionality. However, there are still many unknown areas for research. In

this chapter, we will focus on understanding of synaptic communication, neurotransmission,

and their current research questionings.

2.1 What Are Synapses?

Synapses, also known as chemical synapses between neurons, are the main channels of

information flow and storage in the brain. Synaptic transmission between neurons is involved

in most of what the brain does. When a neuron is active, an electrical impulse travels down

its nerve fiber and causes the release of chemical neurotransmitters from its terminal on the

presynaptic neuron. The transmitters spread out to a narrow space between pre and post

synaptic neurons. The gap is about 20nm wide and is called synaptic cleft. The release

neurotransmitters may bind to receptors on the postsynaptic neuron[28]. These chemical

neurotransmitters then produce secondary currents in the postsynaptic neuron. We will

focus on the chemical synapses in this work. The synaptic cleft consists of fluids, proteins

and other molecular obstacles. Presynaptic terminals contain pools of synaptic vessels. They
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are small membrane bounded organelles. These vesicles are filled with neurotransmitters

mainly in the form of glutamate molecules. When glutamate molecules are released from

the presynaptic neuron, they diffuse into the cleft.

2.2 Neurotransmissions, Evoked and Spontaneous Releases

The synaptic fusion releases neurotransmitters into the synaptic cleft. The neurotrans-

mitters mainly consist of glutamate molecules and diffuse in the synaptic cleft, then either

bind to specific post-synaptic receptors or flow out of the cleft to extracellular space. Once

the neurotransmitters bind to a specific receptor in the postsynaptic membrane, then the

receptor channel will open to allow the flux of post-synaptic currents.

The fundamental mechanism for neural communication arises from neurotransmitter

releases at synapses. This mechanism originates from the laboratory of Bernard Kats and his

colleagues in 1950s[17]. Fast synaptic communication that involves synchronous vesicle fusion

evoked by action potential induced Ca2+ influx, called evoked release. Alternatively, there is

another release of neurotransmitters, called spontaneous release, independent of presynaptic

action potentials, and occuring in a random pattern[17]. A crucial observation of these

studies that spontaneous neurotransmitter release events tend to occur in discrete quantal

packets[17, 8]. Under most circumstances the two forms of release occur concurrently without

significant difference in their unitary properties[22, 60]. Spontaneous release typically occurs

with a rate of 1- 2 vesicles per minute per release site, whereas evoked release at individual

synapses can occur at an extremely high rate, over 100 vesicles per second [19, 40, 50,

51]. However, it was not fully understood if spontaneous neurotransmitter release serves

a well-defined purpose until recently[42, 63]. Many neuroscientists has begun to study in

spontaneous release and the relation with evoked release.
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2.3 More about Spontaneous Synaptic Release

The random synaptic release events typically activate receptors within a single post-

synaptic site and give rise to miniature postsynaptic currents, and therefore they have been

extremely instrumental in analysis of unitary properties of neurotransmission. In 1994, Mur-

phy and colleagues found that spontaneous miniature glutamate release modulates postsy-

naptic enzyme activity[27]. Sutton and colleagues showed that minis keep resting protein

synthesis in check and respond to stimuli that strengthen synapses by blocking minis and

increasing dendritic protein synthesis[57]. More recent works, spontaneous neurotransmis-

sion has been mentioned a homeostatic form of synaptic plasticity and induction of synaptic

scaling. Spontaneous neurotransmission has an independent role in neuronal communica-

tion that is distinct from that of evoked release[24] However, the process of spontaneous

neurotransmitter release is still unclear. It has been questioned whether spontaneous release

events and evoked release events originate from the same vesicular pathway in presynaptic

neurons[4].

2.4 Segregation of Spontaneous and Evoked Neurotransmissions

The relation of evoked and spontaneous neurotransmitter releases and how they are

distributed spatially have not been precisely studied due to the lack of direct experimental

measurement.

In 2008, David Zenisek found some evidence for the spatial segregation of spontaneous

and evoked neurotransmissions that evoked release occurs from ribbon and spontaneous

release happens from extraribbon locations in a ribbon-type synaptic terminal, in the goldfish

retinal bipolar[61].
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Kavalali and colleagues examined the evidence that spontaneous and evoked vesicles

originate from different pool of glutamate stores and after releasing, neurotransmitters acti-

vate non-overlapping postsynaptic NMDA receptors populations[50, 3, 25].

In 2013, Melom and colleagues showed that even though release probability is not

correlated between evoked and spontaneous release of fusion. Neuronal dynamics have two

spatially segregated and regulated information channels to induce evoked or spontaneous

fusion signals independently[38].

In 2014, Peled and colleagues suggested that although individual synapses can par-

ticipate in both evoked and spontaneous neurotransmitter release, there is a highly well

activated synapse with a preference for only one mode of transmission[46].

In 2015, Schneggenburger and colleagues found that separate functions for Ca2+ evoked

release and spontaneous transmissions are not necessarily from different origins of two vesic-

ular fusion[52].

From those studies, spontaneous and evoked process are segregated and regulated

independently. Many neuroscientist has long recognized the spatial relationship of neuro-

transmission. But it is unclear how this separation of synaptic currents in NMDA receptors is

distributed across individual synapses because of the limited resolution of optical microscopic

recording.

2.5 Questioning in Spatial Segregation

How do postsynaptic neurons distinguish evoked and spontaneous neurotransmission

and differentially activate postsynaptic signaling? Reese and Kavalali recently showed that

two signals from spontaneous and evoked release are not correlated significantly although
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spontaneous and evoked release driven NMDA receptor mediated Ca2+ transients often oc-

curs at the same synapse[49]. Tang and colleages found how distribution of presynaptic

vesicle sites corresponds to the receptors in the postsynaptic neuron. They supported that

action-potential -evoked fusion is guided by scaffolding proteins, called nanocolumn, which

were likely aligned near the centre of synapses than near the edge. Also this nanocolumn the-

ory proposed that the active zone for evoked vesicle fusion occurs at sites directly opposing

postsynaptic receptors[59].

These recent findings indicate that the segregation of sites for spontaneous and evoked

neurotransmission with nanoscale subdomains connecting presynaptic and postsynaptic ter-

minals. Therefore, it is possible even for small synapses to possess of this neural functional

dynamics.
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CHAPTER 3

Preliminaries

3.1 The Law of Mass Action

The fundamental theorem for a chemical reaction is the law of mass action. In this

point, ”law” means the rate, where chemicals interact to form different chemical combina-

tions. Let two chemicals, A and B, collide with each other to form C as following,

A+B
r
−−→ C. (3.1)

The rate of the reaction
d[C]

dt
, is the rate of accumulation of product. The rate is the product

of the number of collisions per unit time between two reactants and the probability that a

collision is sufficiently energetic to overcome the free energy of activation of the reaction.

The number of collisions per unit time is taken to be proportional to the product of the

concentrations of A and B with a factor of proportionality that depends on the geometrical

shapes and sizes of the reactant molecules and on the temperature of the mixture.

d[C]

dt
= r[A][B] (3.2)

The response 3.2 with the reaction 3.1 is called the law of mass action, and the constant k

is the rate constant for the reaction.

We also consider bidirectional reaction as following.

A+B
r+


r−
C, (3.3)
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where k− and k+ denote the forward and reverse rate constants of reaction, respectively.

The rate of change of [A] for the reaction 3.3 is

d[A]

dt
= r−[C]− r+[A][B]. (3.4)

The quantity A is consumed by the forward direction and generated by the reverse direction.

d[C]

dt
= r+[A][B]− r−[C]. (3.5)

At equilibrium, concentration [C]eq =
r+
r−

[A]eq[B]eq. If there are no other reaction involving

A and C, then [A] + [C] = C0 is constant.

[C] = C0
[B]

Keq + [B]
, (3.6)

where Keq =
r−
r+

is called the equilibrium constant.

3.2 Diffusion

In order to track of a chemical concentration in space, we must know the mass con-

servation law. Let u be the amount of chemical species, then the rate of change of u is the

sum of local production of u and accumulation of u due to transport.

3.2.1 Conservation Law

Let Ω is a finite region, then

d

dt

∫
Ω
u dV =

∫
Ω
fdV −

∫
∂Ω

J · n dA, (3.7)
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where ∂Ω is the boundary of Ω and n is the outward unit normal to the boundary of Ω, f is

the local production of u per unit volume, and J represents the flux of u. If J is sufficiently

smooth, we have this equation by the divergence theorem,∫
∂Ω

J · n dA =

∫
Ω
∇ · JdV. (3.8)

From the conservation law 3.7, we obtain

d

dt

∫
Ω
u dV =

∫
Ω
f −∇ · JdV. (3.9)

Then we derive the following from 3.9

du

dt
= f −∇ · J. (3.10)

3.2.2 Fick’s Law

There are many ways to determine the flux J. We will introduce the simplest description

the flux of one chemicall species called Fick’s law. The flux J is proportional to the gradient

∇u, but points in the opposite direction since the flow is from space of higher to lower

concentration.

J = −D∇u. (3.11)

The scalar D is the diffusion coefficient, and u represent the heat content of the volume.

When Fick’s law applies into the conservation equation 3.10, then we obtain the following

known as the reaction-diffusion equation.

du

dt
= ∇ · (D∇u) + f. (3.12)
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3.2.3 Diffusion Coefficients

In the theory of brownian motion from Einstein(1906)[14], a quantitative understand-

ing of diffusion was shown.

If a spherical solute molecule is compared to solvent molecule, then

D =
kT

6πµa
, (3.13)

where k is Boltzmann’s constant, T is the absolute temperature of the solution, µ represents

the viscosity for the solute, and a is the radius of the solute molecule.

For the non-spherical molecules, Einstein generalized to D =
kT

f
, where f is the Stokes

frictional coefficient of the particle.

The molecular weight of a spherical molecule is

M =
4

3
πa3ρ, (3.14)

where ρ represents the molecular density.

Therefore, we rewrite 3.13 in terms of molecular weight as following.

D =
kT

3µ

(
ρ

6π2M

)1/3

. (3.15)

For large molecules such as protein, the density is constant nearly 1.3-1.4 g/cm3, thus

DM1/3 is almost the same at a fixed temperature for a spherical molecules. The diffusion

equation is also known as the heat equation. Next we study the heat equation and its

analytic solution.
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3.3 Fundamental Solution of Heat Equation

Consider the homogeneous heat equation 3.16 and the nonhomogeneous equation 3.17.

ut −∆u = 0, (3.16)

ut −∆u = f. (3.17)

Let t > 0 and x ∈ Ω, where Ω ⊂ Rn is open. The function u is unknown such that

u : Ω× [0,∞) 7−→ R, u = u(x, t). Laplacian ∆ is taken with respect to the spatial variables

x = (x1, x2, · · · , xn) : ∆u = ∆ux =
n∑
i=1

uxixi . For the function f in 3.17, f : U× [0,∞) 7−→ R

is given.

Definition 1. The function

u(x, y, z, t) =


1

(4πt)n/2
e−
|x|2
4t (x ∈ Rn, t > 0)

0 (x ∈ Rn, t < 0)

is called the fundamental solution of the heat equation 3.16 for Ω = Rn.
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CHAPTER 4

Mathematical Modeling

4.1 Introduction

For the mathematical goal, we will be modeling of this synaptic-dynamics with the

properties in chapter 2. The geometry of synapse, due to small size, has not been described

clearly with the limitation of microscopy. We will simulate two modes of neurotransmis-

sion, spontaneous and evoked release with different factors and hypotheses including a size,

geometry of synaptic cleft, different glutamate diffusion rate in the cleft, and the release

rate of neurotransmitters from presynaptic terminals. This modeling may address to the

neuroscience question of distribution and separation for two independent spontaneous and

evoked release processes and their induced currents in NMDA receptors.

4.2 Geometric Domain

First, we need to set a domain of synaptic transmission. We assume that the cross-

section of synapse is 600nm by 600nm for the base model (a large synapse). The geometry

for a synapse is a three dimensional array, as shown Figure 4.1a. We define a cubic domain

Ω of 1000nm × 1000nm × 1000nm excluding synaptic terminals. Let S matrix define the

domain,

S = S(x, y, z) =


1, within Ω

0, otherwise

.
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The pre-synaptic and post-synaptic terminals are simplified as two squares of 600nm×

600nm surface areas facing each other inside Ω. A cleft of 20nm of height separates the

presynaptic and postsynaptic terminals in our base model.

(a) Computational Domain in 3-D (b) Side and Top View

Figure 4.1: Geometric configuration

4.3 Hypothesis of Release Sites on the Presynaptic Neurons

From the neuroscience findings[61, 59], we assume that evoked glutamate release is

near the center of presynaptic terminal (a typical location is represented over R6 receptor)

and the spontaneous release occurs near the edge(a typical location is represented over R16

receptor) as illustrated in Figure 4.2.
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(a) Center release at R6 (center) (b) Center release at R16 (edge)

(c) Edge release at R6 (center) (d) Edge release at R16 (edge)

Figure 4.2: Hypothesis of release sites

4.4 Diffusion Model: Support-Operators Model, and Continuous Velocity Model

We use the classical heat diffusion equation in the glutamate release process on the

presynaptic terminal. The heat diffusion model is reasonable because of the size of glutamate

molecules, and relatively large numbers of the molecules being release as one time. We assume

that 4000 glutamate molecules release out from a point source[41]. With an estimated current

dose-response profiles obtained from measurements[2, 45], it was widely believed that the

glutamate-binding sites become saturated after each synaptic vesicle released[18], and the

estimated high glutamate concentration in the cleft after the release of a single synaptic
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vesicle is about 1-5mM[10, 12]. This is consistent with simulated values using equation 4.1

with initial concentration of 4,000 molecules. The governing equation is

∂C

∂t
= Dglut

(
∂2C

∂2x
+
∂2C

∂2y
+
∂2C

∂2z

)
, (4.1)

where [G] = C(x, y, z, t) is a glutamate concentration as a function of time and location

in the vesicular space, the synaptic cleft, and the external space, whereas t ∈ [0,∞) and

(x, y, z) is in a open region Ω. The coefficient Dglut is the thermal diffusivity.

The diffusion coefficients Dglut can represent the inhomogeneity of media within the

cleft with varying Dglut. The larger diffusion coefficient value means for glutamate to flush

out to external space quickly. We take Dglut in different values depending on the location

within or outside the synapse. For a typical synapse, the value of 0.4µm2/ms is sufficient to

represent typical case of glutamate mobility[41]. However, this may or may not be the case

with small synapses, where the evoked and spontaneous releases occur in much closer space.

The exact value of Dglut is unknown, we used values ranging from 0.1 to 0.75µm2/ms as

feasible permeability values for synapse. Further we can create multiple zones where Dglut

could have various values in several zones.

4.4.1 Support-Operators Model

In current mathematical physiology, the classical heat diffusion equation is taken to

track of chemical concentrations. A size of vesicle pore containing glutamate molecules is

in nano scale, our problem for release process on a single synapse is laid on the border

of classical mechanics and quantum mechanics. We first focus on the property of classical

mechanics and introduce Support-Operators model. In this model, the number of molecules

is infinite. It may or may not be different for velocity of concentrations between two different
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materials although flux is continuous across the interface. However, this existing model may

or may not perfectly match with our problem because classical mechanics provides accurate

results if we consider large objects.

4.4.2 Continuous Velocity Model

We suggest the Continuous Velocity model, a supplementary model adopting both

properties of particle dynamics. We assumed that 4000 glutamate molecules diffuse out

from a single vesicle pore, and it will take a few moment (approximating 10ms) to clear out

of the cleft. Thus, we assume that velocity is continuous within the time flushing out even

if there are different materials in the cleft.

4.5 Kinetics Model in Reaction Diagram on the Postsynaptic Neuron

Under the glutamate mediation, receptors such as NMDA, AMPA or GABA activate

the channels for allowing ion currents. To determine the opening probability, Popen, of an

individual receptor, a state model is proposed based on the maximum likelihood method

using experimental data. The current model consisting of three closed and two open states

(3C2O) is used by Popescu data[47, 3]. Our calculation will be based on this 3C2O model.

We note that the glutamate concentrations at the receptor locations are included in the

reaction rates of two coupled states, CMand CU .

The experimental data indicated the populations of synapses are clustered around 3

groups of distinct characters named as high group, medium group and low group for higher,

medium and lower levels of opening probability. We primarily tested our hypotheses on the
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medium and low groups as the high group occurs very infrequently. The medium group

called M-mode is modeled by

CU
39[G]


58

CM
19[G]


116

C1

150


173

C2

902


2,412

C3

4,467


1,283

O1

4,630


526

O2, (4.2)

and the low group(called L-mode kinetics) is modeled as following,

CU
38[G]


60

CM
17[G]


120

C1

127


161

C2

580


2,610

C3

2,508


2,167

O1

3,449


662

O2. (4.3)

4.5.1 Systems of ODEs for Kinetic model

We build the ode systems using kinetic model for open probability at each receptor

when glutamate molecules releases occur. The open probability is obtained by Popen =

O1(t) + O2(t) [3]. The populations in M-mode and L-mode satisfy the following system of

ordinary differential equations respectively.

For M-mode kinetics, we have

dCU

dt
= 58CM − 39C(x, y, z, t)CU ,

dCM

dt
= (116C1 − 19C(x, y, z, t)CM)− (58CM − 39C(x, y, z, t)CU),

dC1

dt
= −(116C1 − 19C(x, y, z, t)CM) + (173C2 − 150C1),

dC2

dt
= (2412C3 − 902C2)− (173C2 − 150C1),

dC3

dt
= −(2412C3 − 902C2) + (1283O1 − 4467C3),

dO1

dt
= (526O2 − 4630O1)− (1283O1 − 4467C3),

dO2

dt
= −(526O2 − 4630O1).
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The following system of ordinary differential equations depicts L-mode kinetics:

dCU

dt
= 60CM − 38C(x, y, z, t)CU ,

dCM

dt
= (120C1 − 17C(x, y, z, t)CM)− (60CM − 38C(x, y, z, t)CU),

dC1

dt
= −(120C1 − 17C(x, y, z, t)CM) + (161C2 − 127C1),

dC2

dt
= (2610C3 − 580C2)− (161C2 − 127C1),

dC3

dt
= −(2610C3 − 580C2) + (2167O1 − 2508C3),

dO1

dt
= (662O2 − 3449O1)− (2167O1 − 2508C3),

dO2

dt
= −(662O2 − 3449O1).

4.5.2 Receptor Locations

For the base model (600nm by 600nm cross-section), we assume the NMDA receptor

density of 40 per µm2. On the postsynaptic cleft, there are evenly distributed 16 receptors,

arranged in a 4 by 4 array using row-major ordering, as shown in Figure 4.3. The concen-

tration time course and Popen are calculated at each receptor. Two representative locations

of receptors are used as release sites, R6 for central release and R16 for release at the edge.

4.5.3 Fusion Pore

The release of glutamate vesicle fusion is assumed to be instantaneous in the base

model. We also consider a release of the glutamate molecules through a vesicle by addition

of two compartments, one vesicle (40nm × 40nm × 40nm of a cube) and the other narrow
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Figure 4.3: Receptor locations for the base model: 16 NMDA receptors are evenly distributed
on the postsynaptic terminal surface.

cuboid represented the fusion pore(width of 2nm or 10nm’s) mimicking full fusion or partial

fusion events.
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Figure 4.4: Geometry of vesicle fusion pore is consist of a 40 × 40 × 40nm3 vesicle and a
10× 10× 10nm3 pore. The pore can also be 10× 2× 2nm3 for slower release.
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CHAPTER 5

Numerical Methods for Solving Heat Diffusion Equation

5.1 Introduction

In this chapter, we introduce finite difference methods to approximate solutions to heat

equations. There are three approaches to be developed, the forward time centered space

(FTCS) as an explicit method, the backward time, centered space (BTCS), and Crank-

Nicolson schemes, both as an implicit method. The schemes present that how truncation

errors depend on mesh spacing and time step. We first show an overview of numerical

solutions to the continuous heat equation using finite difference methods, then discuss about

the situation with piecewise continuous coefficients.

5.2 The Heat Equation in 1-D

Consider the one-dimensional heat equation,

∂C

∂t
= D

∂2C

∂x2
, t ≥ 0, x ∈ Ω (5.1)

for a region Ω ⊆ R2, where the diffusion coefficient D is the diffusivity. In order to obtain

the solution from a practical computational, the time should be limited to t ≤ tmax < ∞.

We also need to specify the boundary conditions at ∂Ω. Dirichlet conditions, Neumann
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conditions, or mixed conditions can be considered. To keep the presentation as simple and

applicable in our problem, only the homogeneous Neumann condition is specified as.

∂C

∂n

∣∣∣∣
∂Ω

= 0. (5.2)

5.3 Finite Difference Approximations in One Variable

The finite difference method is one numerical technique for obtaining approximate

solutions to Equation 5.1. The partial differential equation is approximated with the deriva-

tives replaced by the finite difference approximations. We can approximate the derivatives

of a known function by finite difference formulas based on values of the function itself at

discrete points[29]. From the way, we can solve a large algebraic system of linear equations

easily on a computer.

For a mesh P = {x1, x2, · · · , xn} of Ω ⊆ R1, denote Ci = C(xi). The finite difference

method involves using discrete approximations like

∂C

∂x
≈ Ci+1 − Ci

∆x
. (5.3)

The resulting formulas are then used to approximate derivatives with respect to either space

or time.

5.3.1 First Order Forward Difference

Consider a Taylor series expansion C(x) about the point xi

C(xi +∆x) = C(xi) +∆x
∂C

∂x

∣∣∣∣
xi

+
(∆x)2

2!

∂2C

∂x2

∣∣∣∣
ξ

, xi ≤ ξ ≤ xi +∆x. (5.4)
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Solve the Equation 5.4 for
∂C

∂x

∣∣∣∣
xi

, we have

∂C

∂x

∣∣∣∣
xi

=
C(xi +∆x)− C(xi)

∆x
− ∆x

2!

∂2C

∂x2

∣∣∣∣
ξ

. (5.5)

Substitute the approximate solution for the exact solution. We use Ci ≈ C(xi) and

Ci+1 ≈ C(xi +∆x). Therefore

∂C

∂x

∣∣∣∣
xi

≈ Ci+1 − Ci
∆x

− ∆x

2!

∂2C

∂x2

∣∣∣∣
ξ

. (5.6)

Or we can rewrite this Expression 5.6 as

∂C

∂x

∣∣∣∣
xi

− Ci+1 − Ci
∆x

≈ ∆x

2!

∂2C

∂x2

∣∣∣∣
ξ

. (5.7)

From the expression 5.7, the term on the right hand side is called the truncation error

of the finite difference approximation. Since ξ is unknown, C(x, t) is undefined, and ∂2C/∂x2

cannot be computed, the exact amount of truncation error can not be evaluated. Instead,

we use the ”big O” notation defined as

∣∣∣∣O(∆x)

∆x

∣∣∣∣ ≤ M as ∆x → 0 for some M > 0. In

Equation 5.7, the mesh spacing term is ∆x, the truncation error can be written as

∆x

2!

∂2C

∂x2

∣∣∣∣
ξ

= O(∆x). (5.8)

24



The equality in the Expression 5.8 is not strictly equal, but it shows the order of

magnitude sense. Therefore, the first order forward difference formula is

∂C

∂x

∣∣∣∣
xi

=
Ci+1 − Ci

∆x
+O(∆x), (5.9)

and its truncation error is O(∆x).

5.3.2 First Order Backward Difference

There is an alternative first order finite difference formula that is obtained from the

Equation 5.4 replacing ∆x with −∆x. Then we obtain

Ci−1 = Ci −∆x
∂C

∂x

∣∣∣∣
xi

+
(∆x)2

2!

∂2C

∂x2

∣∣∣∣
ξ

, xi −∆x ≤ ξ ≤ xi. (5.10)

Solve the Equation 5.10 for
∂C

∂x

∣∣∣∣
xi

∂C

∂x

∣∣∣∣
xi

=
Ci − Ci−1

∆x
+
∆x

2!

∂2C

∂x2

∣∣∣∣
ξ

. (5.11)

Therefore, we can also write with big O notation as

∂C

∂x

∣∣∣∣
xi

=
Ci − Ci−1

∆x
+O(∆x). (5.12)

This is called the backward difference formula.
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5.3.3 First Order Central Difference

We can also find another approximation with a difference formula with a second order

truncation error. As similar to 5.4 and Equation 5.11, write the Taylor series expansions for

Ci+1 and Ci−1,

Ci+1 = Ci +∆x
∂C

∂x

∣∣∣∣
xi

+
(∆x)2

2!

∂2C

∂x2

∣∣∣∣
xi

+
(∆x)3

3!

∂3C

∂x3

∣∣∣∣
xi

+ · · · , (5.13)

Ci−1 = Ci −∆x
∂C

∂x

∣∣∣∣
xi

+
(∆x)2

2!

∂2C

∂x2

∣∣∣∣
xi

− (∆x)3

3!

∂3C

∂x3

∣∣∣∣
xi

+ · · · . (5.14)

Adding Equation 5.14 and Equation 5.13 gives

Ci+1 − Ci−1 = 2∆x
∂C

∂x

∣∣∣∣
xi

+
2(∆x)3

3!

∂3C

∂x3

∣∣∣∣
xi

+ · · · . (5.15)

Solve the Equation 5.15 for
∂C

∂x

∣∣∣∣
xi

and it provides

∂C

∂x

∣∣∣∣
xi

=
Ci+1 − Ci−1

2∆x
+O(∆x2). (5.16)

This is called the central difference approximation.

5.3.4 Second Order Central Difference

Adding Equation 5.14 and Equation 5.13 gives

Ci+1 + Ci−1 = 2Ci + (∆x)2
∂2C

∂x2

∣∣∣∣
xi

+
2(∆x)4

4!

∂4C

∂x4

∣∣∣∣
xi

+ · · · , (5.17)
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Solving for
∂2C

∂x2

∣∣∣∣
xi

yields to

∂2C

∂x2

∣∣∣∣
xi

=
Ci+1 − 2Ci + Ci+1

∆x2
+O(∆x2). (5.18)

5.4 Explicit Scheme for Heat Equation

We can develop now the finite difference approximations for Heat Equation. Both the

time and space derivatives are replaced by finite differences. In this case, we will have one

subscript n to designate the time step. The finite difference model can be implemented by

a software such as MATLAB.

ui,t+1'
!

Unknown Values 

Known Values 

!!!,!!!! !
!

!!!!!,!! !
!

!!!,!! !
!

!!!!!,!! !
!

Δ!!!
!
!

Δ!!!
!

Figure 5.1: A formula for the unknown ’Concentration’ Ci,t+1 at the (t+ 1)-th time in terms
of known ’Concentration’ along the t-th time row.
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5.4.1 Forward Time, Centered Space (FTCS)

First, we approximate the time derivative in Equation 5.1 with a forward difference,

C(xi, tn +∆t) = C(xi, tn) +∆t
∂C

∂t

∣∣∣∣
(xi,tn)

+
(∆t)2

2!

∂2C

∂t2

∣∣∣∣
(xi,tn)

+ · · · . (5.19)

Then solving Equation 5.19 for
∂C

∂t

∣∣∣∣
(xi,tn)

leads to

∂C

∂t

∣∣∣∣
(xi,tn)

=
C(xi, tn +∆t)− C(xi, tn)

∆t
− ∆t

2!

∂2C

∂t2

∣∣∣∣
(xi,tn)

− · · · . (5.20)

Denote tn+1 = tn +∆t. Substitute the approximate solution for the exact solution, we

use Cn
i ≈ C(xi, tn) and Cn+1

i ≈ C(xi, tn+1) = C(xi, tn +∆t). Using big O notation, then we

get

∂C

∂t

∣∣∣∣
(xi,tn)

=
Cn+1
i − Cn

i

∆t
+O(∆t). (5.21)

Next, we obtain
∂2C

∂x2

∣∣∣∣
(xi,tn)

which appears on the right hand side of Equation 5.1, and

evaluate all terms at time tn.

∂2C

∂x2

∣∣∣∣
(xi,tn)

=
Cn
i−1 − 2Cn

i + Cn
i+1

∆x2
+O(∆x2). (5.22)

Substituting Equation 5.21 and Equation 5.22 in Equation 5.1, we get

Cn+1
i − Cn

i

∆t
= D

Cn
i−1 − 2Cn

i + Cn
i+1

∆x2
+O(∆t) +O(∆x2). (5.23)
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Solving explicitly for Cn+1
i in terms of the other values of C yields

Cn+1
i = Cn

i +
D∆t

∆x2
(Cn

i+1 − 2Cn
i + Cn

i−1) (5.24)

The equation 5.24 is called Forward Time, Centered Space or FTCS approximation to

the heat equation. The FTCS can have unstable solutions if ∆t is too large. Therefore, we

can obtain stable solutions when α =
D∆t

∆x2
<

1

2
for CFL condition[31].

5.5 Implicit Scheme for Heat Equation

5.5.1 Backward Time, Centered Space (BTCS)

We use the backward difference to approximate the time derivative,

∂C

∂t

∣∣∣∣
(xi,tn)

=
Cn
i − Cn−1

i

∆t
+O(∆t). (5.25)

Then we have BTCS scheme for Heat Equation as following :

Cn
i − Cn−1

i

∆t
= D

Cn
i−1 − 2Cn

i + Cn
i+1

∆x2
+O(∆t) +O(∆x2). (5.26)

An advantage for solutions to the heat equation by BTCS scheme is unconditionally

stable, however, it has a higher computational cost at each time step[1, 48].
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5.5.2 Crank-Nicolson Scheme

The Crank-Nicolson scheme has a temporal truncation error O(∆t2), which compares

to that of FTCS and BTCS, O(∆t). The heat equation is approximated to

Cn
i − Cn−1

i

∆t
=
D

2

[
Cn
i−1 − 2Cn

i + Cn
i+1

∆x2
+
Cn−1
i−1 − 2Cn−1

i + Cn−1
i+1

∆x2

]
. (5.27)

The Crank-Nicolson scheme is implicit scheme that requires solving a system of equa-

tions at each time step. However, the truncation error is O(∆t2)+O(∆x2) and this is smaller

than the truncation error of the FTCS and BTCS schemes. The scheme is numerically im-

plemented in the our neuroscience problems.

5.6 Discontinuous Diffusion Coefficients

Several finite difference methods for solving the piecewise continuous heat equations

in three dimensional space have been seen in the literature. In 1999, Li and Shen provided

a finite difference method which allows to a different coefficient value for each sub-region

of interfaces in 2D and proved its second order accuracy[34]. We proposed this numerical

method in three dimensional space for a cubic domain, and prove its second order accuracy.

We further applied this method to a diffusion process for Glutamate release in a synapse,

and validated the method for second order accuracy numerically.

The heat diffusion equation,

∂C

∂t
= ∇ · (D∇C), t ≥ 0, (x, y, z) ∈ Ω, (5.28)

in a cubic shaped domain Ω = (a, b) × (a, b) × (c, d) in R3. Within the region, suppose

diffusion coefficient D is piecewise continuous. Heat diffusion with discontinuous coefficients
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arises when heat transfer occurs at an interface of two different materials. In our neuroscience

problems, we will use the model for glutamate diffusion in synapse clefts. We define two sub-

regions Ω+, Ω− separated by an interface Γ. We assume homegeneous Neumann boundary

conditions

∂C

∂n

∣∣∣∣
∂Ω

= 0. (5.29)

Define Ω+ = {(a1, b1)× (a1, b1)× (c, d)}, with a < a1 < b1 < b, and Ω− = Ω \Ω+.

Let D be a piecewise constant function in Ω as

D(x, y, z) =


D+, (x, y, z) ∈ Ω+,

D−, (x, y, z) ∈ Ω−.

Assume that the initial condition at t = 0 is smooth and the boundary conditions on ∂Ω are

known, the solution is uniquely determined in W 1,1(Ω) [6].

The theory for interfaces implies that the concentration C is continuous across the

interfaces Γ, and the normal flux is continuous across the interface Γ [32, 55]. Considering

the condition, we have

[C] = 0, (5.30)

[DCn] = 0. (5.31)

But the tangential flux may or may not be continuous across Γ.

5.6.1 Model 1: The Support-Operators Method (Harmonic-Averaging)

An approach for the numerical solution of the heat diffusion solution in heterogeneous

media is derived using the support-operator method, which constructs discrete analogs of
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divergence and flux operator [55]. For regular grids, the discrete operators for discontinuous

diffusion coefficients are equivalent to the harmonic-averaging procedure. Also the scheme

is second-order accurate.

First, we look at the flux vector J whose form of diffusion equation is commonly used in

the case of discontinuous D. The heat diffusion equation 5.28 can be written as a first-order

system:

∂C

∂t
= −∇J, J = −D∇u. (5.32)

The heat diffusion equation is semi-discretized implicitly as following:

Cn+1 − Cn

∆t
= ∇ ·D∇Cn+1 (5.33)

where tn = n∆t and Cn = C(tn, x, y, z).

The flux form of the equation 5.32 can be discretized in time as following.

Jn+1 = −D∇Cn+1,
(Cn+1 − Cn)

∆t
+∇ · Jn+1 = 0. (5.34)

The discretization of support-operators for the diffusion coefficients D at rectangular

grids leads to the harmonic average. To induce the discrete analog of ∇ ·D∇C, we denote

the diffusion coefficients on the interfaces using harmonic averaging,

Dξ(i,j,k) =
2D(i−1,j,k)D(i,j,k)

D(i−1,j,k) +D(i,j,k)

,

Dη(i,j,k) =
2D(i,j−1,k)D(i,j,k)

D(i,j−1,k) +D(i,j,k)

,

Dζ(i,j,k) =
2D(i,j,k−1)D((i,j,k)

D(i,j,k−1) +D(i,j,k)

.
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Denote C = C(xi, yj, zk, tn) ≡ C(i,j,k)(t). The discrete analog of∇·D∇C is as following:

Dξ(i+1,j,k)
C(i+1,j,k)−C(i,j,k)

∆x
−Dξ(i,j,k)

C(i,j,k)−C(i−1,j,k)

∆x

∆x

+
Dη(i,j+1,k)

C(i,j+1,k)−C(i,j,k)

∆y
−Dη(i,j,k)

C(i,j,k)−C(i,j−1,k)

∆y

∆y

+
Dζ(i,j,k+1)

C(i,j,k+1)−C(i,j,k)

∆z
−Dζ(i,j,k)

C(i,j,k)−C(i,j,k−1)

∆z

∆z
.

The scheme is second-order accurate in truncation errors for the numerical solution of

diffusion problems in heterogeneous and nonisotropic materials constructed in rectangular

grids[55].

In this model, the number of molecules is assumed to be infinite. It may or may not

be a difference for velocity of concentrations between two different materials. However, this

existing model may or may not perfectly match with our problem because the number of

molecules is limited in our study.

5.6.2 Model 2: Continuous Velocity Model

In our problem, 4000 glutamate molecules diffuse out from a single vesicle pore, and it

will take a few moments (approximating 10ms) to clear out of the cleft. The particle velocity

may also be continuous within the time flushing out even if there are different materials in

the cleft. We assume the derivative is continuous at Γ to reflect the scenario of fewer particles

moving in a porous medium. Because the velocity is continuous on the interface, there is

no jump of the first derivative in normal direction. Thus, we do not treat a point on the

interface as a grid point, but is located in between two grids points(see in Figure 5.2).
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Given a new structured mesh in a cubic domain, we classify all grid points in Ω into

two sets. The set Preg consists ”regular points”, any point in one sub-region Ω+ or Ω− that

has no neighbor point in the other sub-region. The set Pirr contains ”irregular points”, any

point in one sub-region Ω+ or Ω− that has at least one neighbor point in the other sub-region.

First, we discretize the solution in the x-direction, y-direction, and z-direction with a

mesh of size h. Let Ci,j,k be a numerical solution,

Cxx ≈
1

h2
(Ci−1,j,k − 2Ci,j,k + Ci+1,j,k) ≡ δxCi,j,k, (5.35)

Cyy ≈
1

h2
(Ci,j−1,k − 2Ci,j,k + Ci,j+1,k) ≡ δyCi,j,k, (5.36)

Czz ≈
1

h2
(Ci,j,k−1 − 2Ci,j,k + Ci,j,k+1) ≡ δzCi,j,k. (5.37)

5.6.3 Regular Grid Point

For a regular grid point (x, y, z), assume the exact solution C(x, y, z) is smooth then

by Taylor expansions, δxCi,j,k can be denoted by

δxCi,j,k =

[
Cxx(xi, yj, zk) +

1

12
h2C(4)(xi, yj, zk) +O(h4)

]
(5.38)

Therefore,

τx = Cxx − δxCi,j,k = − 1

12
h2C(4)(xi, yj, zk) +O(h4). (5.39)

Also Cyy − δyCi,j,k, Czz − δzCi,j,k are similar. The local truncation error of 5.35, 5.36, and

5.37 from (DCx)x + (DCy)y + (DCz)z is O(h2).
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5.6.4 Irregular Grid Point

For an irregular grid point (x, y, z), we need additional correction terms in Equations

5.35, 5.36, and 5.37 and we prove the local truncation error is O(h).

In this paper, the interface Γ = ∂Ω+ is cubic shape and Γ consists of all points on

surfaces, edges, and corners of a cubic domain. Now we denote

Γ = S ∪ E ∪ C

where S is the set of all points on surfaces, E is the set of all points on edges, and C is the

set of all points on corners of Γ.

Let [C] denote the difference of the limits of C cross the discontinuity from exterior(Ω+)

to interior(Ω−) along the normal direction.

[C] ≡ C+ − C− = 0, (5.40)

[Cn] ≡ C+
n − C−n = 0. (5.41)

Equation 5.41 is a modeling constraint of interface, assuming no change of normal

velocity across the interface.

First, let (xi, yj, zk) an irregular grid point adjacent to a surface(S ⊂ Γ ). Without

loss of generality, we assume S is parallel to (y, z)-plane.
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Then from Equation 5.28

[Cxx] =

[
Ct
D

]
, and [Cyy] = [Czz] = 0 (5.42)

because there is no jump in y, z direction and C(x, y, z, t) is continuous across Γ. Now we

consider the 2nd derivative jump in x-direction. There are four cases to discuss:

(a) (xi, yj, zk) ∈ Ω+, (xi+1, yj, zk) ∈ Ω−,

(b) (xi, yj, zk) ∈ Ω−, (xi−1, yj, zk) ∈ Ω+,

(c) (xi, yj, zk) ∈ Ω−, (xi+1, yj, zk) ∈ Ω+,

(d) (xi, yj, zk) ∈ Ω+, (xi−1, yj, zk) ∈ Ω−.

!!!!,!! , !! !!!!!!!!! !! ,!! , !! !!!!!!!! !!!!,!! , !! !!!!

!!Ω!!
!

Ω!!
!

(!∗,!! , !!) ∈ Γ!
!

Figure 5.2: Mesh points used for solving the three dimensional heat equation. The grey area
indicates Ω+, and the white area indicates Ω−.
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For case (a), let the intersection point of the line segment connecting (xi, yj, zk),

(xi+1, yj, zk) and Γ be (x∗, yj, zk). Using Taylor’s series around x∗, we have

1

h2
(C(xi−1, yj, zk)− 2C(xi, yj, zk) + C(xi+1, yj, zk))

=
1

h2
{[C] + [Cx](xi+1 − x∗) +

[Cxx]

2!
(xi+1 − x∗)2}+ C−xx +O(h)

=
1

h2
{ [Cxx]

2!
(xi+1 − x∗)2}+ C−xx +O(h)

since [C] = [Cx] = 0 across Γ from our model assumption.

This implies

Cxx = δxCi,j,k −
[
Ct

D

]
(xi+1 − x∗)2

2h2
+O(h). (5.43)

Similarly, for case (b), we drive

Cxx = δxCi,j,k +

[
Ct

D

]
(xi−1 − x∗)2

2h2
+O(h). (5.44)

For case (c), we get

Cxx = δxCi,j,k +

[
Ct

D

]
(xi+1 − x∗)2

2h2
+O(h). (5.45)

For case (d), we have

Cxx = δxCi,j,k −
[
Ct

D

]
(xi−1 − x∗)2

2h2
+O(h) (5.46)

Analogously, the point is an irregular point near a surface in the y-direction and z-direction,

we have similar estimates. We add correction terms such that the local truncation is O(h).
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Now, consider (xi, yj, zk) be an irregular point adjacent to an edge (E ⊂ Γ). Assume

without loss of generality, E is parallel to z-axis at the intersection of x-plane and y-plane.

Then we have

[Cxx] = [Cyy] =

[
Ct
D

]
, and [Czz] = 0. (5.47)

Using correction terms in both x-direction, y-direction due to discontinuity, we obtain a

system of ordinary differential equations:

(Ci,j,k)t =D(δxCi,j,k + δyCi,j,k + δzCi,j,k)

+D

[
Ct
D

]
τx0(xi0 − x∗)2

2h2
+D

[
Ct
D

]
τy0(yj0 − y∗)2

2h2
+O(h)

where i0 = i− 1 or i+ 1, j0 = j − 1 or j + 1. τx0 , τy0 = 1 or -1.

Similarly, for (xi, yj, zk) be an irregular point adjacent to x, z-edge (E ⊂ Γ), we have

(Ci,j,k)t =D(δxCi,j,k + δyCi,j,k + δzCi,j,k)

+D

[
Ct
D

]
τx0(xi0 − x∗)2

2h2
+D

[
Ct
D

]
τz0(zk0 − z∗)2

2h2
+O(h),

where i0 = i− 1 or i+ 1 , k0 = k − 1 or k + 1. τx0 , τz0 = 1 or -1.

For (xi, yj, zk) be an irregular point adjacent to y, z-edge (E ⊂ Γ), we obtain

(Ci,j,k)t =D(δxCi,j,k + δyCi,j,k + δzCi,j,k)

+D

[
Ct
D

]
τy0(yj0 − y∗)2

2h2
+D

[
Ct
D

]
τz0(zk0 − z∗)2

2h2
+O(h)

where j0 = j − 1 or j + 1 and k0 = k − 1 or k + 1. τy0 , τz0 = 1 or -1.
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Finally, let (xi, yj, zk) be an irregular point adjacent to a corner (C ⊂ Γ). Then we use

similar analysis to obtain

[Cxx] = [Cyy] = [Czz] =

[
Ct
D

]
. (5.48)

We use correction terms in three directions, x-direction, y-direction, and z-direction. Let

(x∗, y∗, z∗) be the actual corner, then we have

(Ci,j,k)t =D(δxCi,j,k + δyCi,j,k + δzCi,j,k)

+D

[
Ct
D

]
τx0(xi0 − x∗)2

2h2
+D

[
Ct
D

]
τy0(yj0 − y∗)2

2h2
+D

[
Ct
D

]
τz0(zk0 − z∗)2

2h2
+O(h)

where i0 = i− 1 or i+ 1, j0 = j − 1 or j + 1, k0 = k− 1 or k+ 1, and τx0 , τy0 , τz0 = 1 or −1.

Now, we have [
Ct
D

]
= C−t

[
1

D

]
+

[Ct]

D+
= C+

t

[
1

D

]
+

[Ct]

D−
.

This implies [
Ct
D

]
= Ct

[
1

D

]
+

[Ct]

D̃
+O(h). (5.49)

where D̃ = D− if D = D+, D̃ = D+ if D = D−. Using 5.49, we have the following system

of ordinary differential equations

(Ci,j,k)t = F (Ci−1,j,k, Ci,j−1,k, Ci,j,k−1, Ci,j,k, Ci+1,j,k, Ci,j+1,k, Ci,j,k+1),

where F is equal to

D(δxCi,j,k + δyCi,j,k + δzCi,j,k + [Ct]

D̃
Ti,j,k)

1−D[ 1
D

] Ti,j,k
(5.50)

where

Ti,j,k =
τx0(xi0 − x∗)2

2h2
+
τy0(yj0 − y∗)2

2h2
+
τz0(zk0 − z∗)2

2h2
. (5.51)
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Finally, we discretize time t by choosing ∆t = A · h2 for CFL condition where A is a

constant[8]. We use explicit Finite Difference method,

Cn+1
i,j,k = Cn

i,j,k +∆t · F (Cn
i−1,j,k, C

n
i,j−1,k, C

n
i,j,k−1, C

n
i,j,k, C

n
i+1,j,k, C

n
i,j+1,k, C

n
i,j,k+1)

which implies the local truncation error for discretizing on t is O(∆t).

5.6.5 Accuracy Analysis

We show that 1−D[
1

D
] Ti,j,k, which is the denominator of the right-side of Equation

5.50 is bounded below by a positive constant.

Denote :

Ui,j,k ≡ 1−D
[

1

D

]
Ti,j,k, Li,j,k ≡ 1 +

∣∣∣∣D[ 1

D

]
Ti,j,k

∣∣∣∣.
Lemma 5.6.1. Let Ui,j,k and Li,j,k be as defined above. Then

Ui,j,k ≥ 1, and Li,j,k ≤ 1 + 3 ·max (D+, D−)

∣∣∣∣[ 1

D

]∣∣∣∣ (5.52)

Proof : We gave a lower bound of Ui,j,k. In x-direction, we have four cases:

(a) (xi, yj, zk) ∈ Ω+, (xi+1, yj, zk) ∈ Ω−. Then xi0 = xi+1, τxi0 = 1, D = D+, and

D

[
1

D

]
τxi0 = 1− D+

D−
.

(b) (xi, yj, zk) ∈ Ω+, (xi−1, yj, zk) ∈ Ω−. Then xi0 = xi−1, τxi0 = −1, D = D−, and

D

[
1

D

]
τxi0 = 1− D+

D−
.
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(c) (xi, yj, zk) ∈ Ω−, (xi+1, yj, zk) ∈ Ω+. Then xi0 = xi+1, τxi0 = −1, D = D−, and

D

[
1

D

]
τxi0 = 1− D−

D+
.

(d) (xi, yj, zk) ∈ Ω+, (xi−1, yj, zk) ∈ Ω−. Then xi0 = xi−1, τxi0 = 1, D = D+, and

D

[
1

D

]
τxi0 = 1− D−

D+
.

For all cases, D

[
1

D

]
τxi0 is equal to 1 − max{D+, D−}

min{D+, D−}
, if D = min{D+, D−}. Only

positive terms will reduce the lower bound of Ui,j,k. Since
max{D+, D−}
min{D+, D−}

> 1, then

Ui,j,k ≥ 1−
{

1− max (D+, D−)

min (D+, D−)

}
−
{

1− max(D+, D−)

min(D+, D−)

}
−
{

1− max(D+, D−)

min(D+, D−)

}
≥ 1

We can also provide an upper bound of Li,j,k

Li,j,k ≤ 1 +D

∣∣∣∣[ 1

D

]∣∣∣∣+D

∣∣∣∣[ 1

D

]∣∣∣∣+D

∣∣∣∣[ 1

D

]∣∣∣∣ ≤ 1 + 3 ·max(D+, D−)

∣∣∣∣[ 1

D

]∣∣∣∣
Now we have the following theorem.

Theorem 5.6.2. Let F be defined as in Equation 5.50. At any irregular grid point (xi, yj, zk)

in Ω,

F (Ci−1,j,k, Ci,j−1,k, Ci,j,k−1, Ci,j,k, Ci+1,j,k, Ci,j+1,k, Ci,j,k+1)

−[(DCx)x + (DCy)y + (DCz)z](xi, yj, zk) = O(h).
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Proof : From 5.50, we have

F (Ci−1,j,k, Ci,j−1,k, Ci,j,k−1, Ci,j,k, Ci+1,j,k, Ci,j+1,k, Ci,j,k+1) = (Ci,j,k)t

= D(δxCi,j,k + δyCi,j,k + δzCi,j,k)

+

{
D

[
1

D

]
τx0(xi0 − x∗)2

2h2
+D

[
1

D

]
τy0(yj0 − x∗)2

2h2
+D

[
1

D

]
τz0(zk0 − z∗)2

2h2

}
= D(δxCi,j,k + δyCi,j,k + δzCi,j,k)

+D

[
Ct
D

]
τx0(xi0 − x∗)2

2h2
+D

[
Ct
D

]
τy0(yi0 − y∗)2

2h2
+D

[
Ct
D

]
τz0(zk0 − z∗)2

2h2
+O(h)

= (DCxx +DCyy +DCzz)(xi, yj, zk) +O(h)

as desired.

Since the interface is one dimension lower than the solution domain, we will need the

local truncation error at irregular grid points to be O(h) to obtain second order accuracy

globally because interface is two dimensions which is lower than the solution domain, the

number of irregular points will be O(n2) compared to the total number of grid points,

O(n3). Thus, it is enough for the difference scheme at irregular points to be O(h) without

affecting second order accuracy globally[33, 34]. At a regular grid point, we achieve the local

truncation error is O(h2). At an irregular grid point, the local truncation error is O(h) by

Theorem 5.6.2. The local truncation error from the discretization of time is O(∆t) = O(h2).

All these imply that the numerical solution has global error O(h2).
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CHAPTER 6

Simulations for Diffusion Process of Glutamate Release

6.1 Introduction

In this chapter, we simulate the process of glutamate release from presynaptic sites

into the synaptic cleft. We obtain the total concentration of released glutamate with the

limited time, and the glutamate concentration at each receptor. We used the problem-solving

environment MATLAB, which provide tools for solving linear systems in a numerical way.

MATLAB is efficient to display results visually through graph in its post-processing.

6.2 MATLAB Implementation

In order to solve the heat equation numerically to achieve glutamate concentration,

we use on explicit difference method (forward time, centered space) that is implemented in

MATLAB codes.

Cn+1
i,j,k = Cn

i,j,k + α[Si+1,j,kC
n
i+1,j,k + Si−1j,kC

n
i−1j,k + Si,j+1,kC

n
i,j+1,k + Si,j−1,kC

n
i,j−1,k

+ Si,j,k−1C
n
i,k,j,k−1 − (Si,j,kC

n
i,j,k + Si−1,j,kC

n
i,j,k + Si,j+1,kC

n
i,j,k + Si,j−1,kC

n
i,j,k

+ Si,j,k+1C
n
i,j,k + Si,j,k−1C

n
i,j,k)],

where Cn
i,j,k = C(xi, yj, zk, tn) and α = Dglut

∆t

(∆x)2
. For our simulation, we satisfy a condition

of α < (1/2)3 known as CFL condition to ensure the scheme is numerically stable[31]. We

take the space step ∆x = 0.01µm and the time step ∆t = C · (∆x)2, where C is a constant.
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Although the glutamate diffusion coefficients are not measured directly, we use those

values from 0.1 to 0.7µm2/ms. Whereas, the diffusion constant is larger, it indicates that

neurotransmitters flush out quickly, in other words, there are less barriers for glutamates to

move away from the release sites. Independent signaling of two transmissions is influenced

by the time duration of glutamate diffusion.

We take various diffusion coefficients Dglut depending on the location within or out-

side the synapses. In base model, we have a value of Dglut = 0.4µm2/ms within the cleft

and Dglut = 0.75µm2/ms in the external space. When simulating the vesicular diffusion,

Dglut = 0.15µm2/ms and Dglut = 0.0375µm2/ms are taken for 10nm and 2nm fusion pore

respectively.

6.3 Main Results

As shown in Figure 4.2, we assume the situation where evoked glutamate release ac-

tivates evoked receptor kinetics at center and spontaneous receptor kinetics at edge. Spon-

taneous glutamate release at the cleft edge activates evoked receptor kinetics at center and

spontaneous receptor kinetics at edge.

First, we simulate the base model with an instantaneous release of 4000 glutamate

molecules. Figure 6.1 shows the total number of molecules within the cleft decreases accord-

ing to the time when center release and edge release occur. It takes about 0.08ms to clear a

half of the molecules out of the cleft and the population decays in exponential trends with

decay constants 8.808× 10−5 and 4.526× 10−4 respectively, as shown Figure 6.1a and 6.1b.

It implies that a edge release makes glutamate molecules flushed out much quicker than that

of center release.
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(a) Glutamates release near the center
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(b) Glutamates release near the edge

Figure 6.1: Total numbers of glutamate molecules within the cleft for 0.1 ms after an in-
stantaneous release of 4000 glutamate molecules.

45



(a) Glutamates release near the center

(b) Glutamates release near the edge

Figure 6.2: Glutamate concentration time series in [0, 0.1] (unit: ms) for each location after
4000 glutamates are released.
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Figure 6.2 shows concentrations of glutamate at each receptor location when 4000

glutamate molecules are released instantaneously at R6 near the center of the presynaptic

terminal and released at R16 near the edge of the presynaptic terminal respectively (Figure

6.2a and 6.2b). Clearly, we can verify that the location over R6 has the highest glutamate

concentration among 16 locations when center release occurs (Figure 6.2b). Analogously,

the peak glutamate concentration appears at R16 receptor when an edge release occurs.

6.4 Piecewise Continuous Diffusion Coefficients

We consider an assumption that the background medium for glutamate diffusion might

be different, depending on the location inside the cleft. We created an interior zone and an

exterior zone where Dglut could vary zone to zone, it represents the inhomogeneity of material

components in the cleft. Numerically, we verified that explicit finite difference scheme with

piecewise continuous coefficients has accuracy of second order O(h2) for the synaptic diffusion

problems.

6.4.1 Computation of Accuracy

The following data validates that the finite difference approximation is still applicable

for our model with piecewise continuous coefficients across the boundaries of clefts and two

zones.

We simulate three different models for releasing glutamate molecules. In the base

model, we take D = 0.4 uniformly. In high affinity center model, we take D+ = 0.1 in Ω+

and D− = 0.4 in Ω−. Also in high affinity edge model, D+ = 0.4 in Ω+ and D− = 0.1 in Ω−

are taken.
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! (Inside) Ω!!

! (Outside) 

(a) Synaptic Cleft in 3-D
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! (Inside) 
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! (Outside) 
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(b) Top View of Synaptic Cleft

Figure 6.3: The synaptic cleft space is divided into two zones. The diffusion coefficients takes
two values in two regions(Ω+ and Ω−) respectively, which represent slow and fast motion of
neurotransmitters in different material composition of the cleft space.
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Figure 6.4: Front view of diffusion process with two different zones when center release(left)
or edge release(right) occur at the cleft sites.

Since there is no exact solution with proper boundary conditions in our setting, we

find the exponent of the error for our code by computation in our application problem.

We assume that ∆x = ∆y = ∆z, and denote it h = ∆x. We define

||E(n)||∞ = max
i,j,k
|Ci,j,k − C ′i,j,k|, (6.1)

where n is a number of nodes determined by h(= ∆x), and Ci,j,k, C
′
i,j,k are computed solutions

with mesh size h and
h

2
respectively.

Let ||E(n)||∞ = O(hp) and we estimate p based on errors in this problem. Let L is a the

length of cubic domain, then

h =
L

n− 1
.

We have

||E(n)||∞ = (hp) = O

(
Lp

(n− 1)p

)
≈ O

(
1

np

)
.

We calculate ||E(n)||∞ on different meshes(h,
h

2
,
h

22
). Then we denote n1, n2, and n3

be the numbers of points on one side, and estimate the ratio

||E(n2)||∞
||E(n1)||∞

=
np1
np2
≈
(
n1

n2

)p
, (6.2)
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and then solve for the order p by

p =
log(||E(n2)||∞/||E(n1)||∞)

log(n1/n2)
. (6.3)

D+ D− h(= ∆x) ∆t(= A · h2) D+ ∆t

(∆x)2
D−

∆t

(∆x)2
||E(n)||∞ p

0.1 0.4 0.02 8.00E-05 0.02 0.08 · ·
0.1 0.4 0.01 2.00E-05 0.02 0.08 2.5885816 ·
0.1 0.4 0.005 5.00E-06 0.02 0.08 0.4199153 2.624

0.4 0.1 0.02 8.00E-05 0.08 0.02 · ·
0.4 0.1 0.01 2.00E-05 0.08 0.02 2.4116828 ·
0.4 0.1 0.005 5.00E-06 0.08 0.02 0.4521747 2.451

0.4 0.75 0.02 8.00E-05 0.08 0.15 · ·
0.4 0.75 0.01 2.00E-05 0.08 0.15 1.7342439 ·
0.4 0.75 0.005 5.00E-06 0.08 0.15 0.3581524 2.276

Table 6.1: Errors of solution and the order of accuracy p at diffusion mesh, time step, and
diffusion coefficient

Where ∆t = A · h2, A is a constant, in our case, we take A = 0.2. The CFL stability

condition is D
∆x

(∆x2
<

1

8
in three dimensions[31]. Table 6.1 shows that when h is divided by

2, the error orders approximate to 2.4-2.6. This indicates that our numerical method is of

second order accuracy.

6.5 Comparison of Two Models

We compare our model(Continuous Velocity Model) with the existing Support-Operator

model (Harmonic Averaging). The relative discrepency for the total concentration is 0.2%,

which indicates that there is no significantly difference between two models for total con-

centration. However, two models are taken different modelings on the interfaces, thus we
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expect that concentrations depending upon locations might be different. We track glutamate

concentrations at the specific locations beyond 16 NMDA receptors (R1-R16) and estimate

the relative errors between two models as shown in Figure 6.6.

Figure 6.5: 16 NMDA receptors are evenly distributed on the postsynaptic terminal surface.

We simulate the glutamate release around R6 (Figure 6.5), then the glutamate molecules

diffuse out and cross the interface to flush out of the cleft. R4, R13, and R16 produce the er-

rors large than others. Nevertheless, the maximum relative error of 16 location is 2.9×10−2,

which is not significant for our problem as we are interested in relative ratio of opening

probability. Figure 6.6 presents the comparative discrepancy of two models.
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Figure 6.6: Relative discrepancy between Support-Operator and Continuous Velocity models
of glutamate concentration over 16 NMDA receptors.
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CHAPTER 7

Numerical Methods for Solving A System of Ordinary Differential Equations(ODEs)

7.1 Introduction

In this chapter, we study numerical methods for solving the Ordinary Differential

Equation systems(ODEs). The differential equations are generally used to model time vary-

ing phenomena in science and engineering. To approach these complicated problems, we use

numerical methods for approximating the solution of the original problem[7]. We first look

at preliminaries of numerical methods and then study the Runge-Kutta method that we use

to simulate our synaptic receptor model.

7.2 Runge-Kutta Methods

Definition 2. If there exists a constant L > 0 such that

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2|,

the function f(t, y) is said to satisfy Libschitz Condition when (t, y1) and (t, y2) are in

D ⊂ R2. The constant L is called a Libschitz Constant for f .

Definition 3. A set D ⊂ R2 is convex if (t, y1), (t, y2) ∈ D, then

((1− λ)t1 + λt2, (1− λ)y1 + λy2) ∈ D for every λ ∈ [0, 1]
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Theorem 1. Suppose f(t, y) is defined on a convex set D ⊂ R2. If a constant L > 0 exists

with ∣∣∣∣∂f∂y (t, y)

∣∣∣∣ ≤ L, for all (t, y) ∈ D,

then f satisfies a Lipschitz condition on D in the variable y with a Lipschitz constant L.

The following theorem is the fundamental existence and uniqueness for the first order

ordinary differential equations.

Theorem 2. Suppose that D = {(t, y)|a < t < b, −Y < y < Y }, Y > 0 is fixed and that

f(t, y) is continuous on D. If f satisfies Lipschitz condition in D, then the initial value

problem

y′(t) = f(t, y), a ≤ t ≤ b, y(a) = y0, |a0| < Y.

has a unique solution y(t) for a ≤ t ≤ b.

7.2.1 Euler’s Method

This method is the most elementary numerical approach for solving initial value prob-

lems:

dy

dt
= φ(t, y), a ≤ t ≤ b, y(a) = y0 ,−Y < y0 < Y. (7.1)

Approximations to y(t) are generated at finitely many points called mesh points in the

interval [a, b]. When the approximation values are obtained at each point, the approximate

solution at other points in the interval can be determined by interpolation.

Assume that the mesh points are equally distributed through the interval [a, b] as

following.

ti = a+ ih, for each i = 0, 1, 2, · · · , N − 1.
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Here the distance between each pair of adjacent points h =
(b− a)

N
= ti+1 − ti is called the

step size.

Using Taylor’s Theorem, we derive Euler’s method. Let y(t) be the unique solution to

7.1, has continuous second-order derivatives on [a, b], so that for each i = 0, 1, 2, · · · , N − 1,

y(ti+1) = y(ti) + hy′(ti) +
h2

2
y′′(ξi), for ξ ∈ (ti, ti+1).

From the Equation 7.1, we obtain

y(ti+1) = y(ti) + hφ(ti, y(ti)) +
h2

2
y′′(ξi), for ξ ∈ (ti, ti+1). (7.2)

Let ui is an approximation of the solution y(ti), we substitute ui for y(ti) in Equation 7.2.

The Euler’s method is as follows,

u0 = a0,

ui+1 = ui + hφ(ti, ui), for each i = 0, 1, 2, · · · , N − 1.

7.2.2 Local Truncation Error

Numerical methods determine the accuracy of approximations. For this case, we con-

sider the local truncation error.

For the initial value problem 7.1, the Euler method has local truncation error as

following.

τi+1(h) =
yi+1 − (yi + hφ(ti, yi))

h
=
yi+1 − yi

h
− φ(ti, yi) (7.3)

for each i = 0, 1, 2, · · · , N − 1.
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This error is a local truncation error because it measures the accuracy of the method

at a specific step. Euler’s method has

τi+1(h) =
h

2
y′′(ξi), for some ξi ∈ (ti, ti+1).

If there exist a constant M such that |y′′(t)| ≤M on [a, b], then this implies

|τi+1(h)| ≤ h

2
M,

so the local truncation error in Euler’s method is O(h).

7.2.3 Taylor Method of Order n

First, we express the solution y(ti+1) to the initial value problem in Theorem 2 by its

n-th Taylor polynomial centered at ti,

y(ti+1) = y(ti) + hy′(ti) +
h2

2!
y”(ti) + · · ·+ hn

n!
y(n)(tn) +

hn+1

(n+ 1)!
y(n)(ξ),where ti ≤ ξi ≤ ti+1

= y(ti) + hf(ti, y(ti)) +
h2

2!
f ′(ti, y(ti)) + · · ·+ hn

n!
f (n−1)(ti, y(ti)) +

hn+1

(n+ 1)!
f (n)(ξi, y(ξi))

= y(ti) + h

(
f(ti, y(ti)) +

h

2!
f ′(ti, y(ti)) + · · ·+ h(n−1)

n!
f (n−1)(ti, y(ti)) +

hn

(n+ 1)!
f (n)(ξi, y(ξi))

)
.

Define

T (n)(t, y(ti)) = f(ti, y(ti)) +
h

2!
f ′(ti, y(ti)) + · · ·+ h(n−1)

n!
f (n−1)(ti, y(ti)), (7.4)

Rn(ti) =
hn

(n+ 1)!
f (n)(ξi, y(ξi)). (7.5)

Let ui be an approximation of the solution y(ti), we substitute ui for y(ti). In general, for

n ≥ 1, and n ∈ N, the Taylor method defines:

u0 = y0,

ui+1 = ui + hT (n)(ti, ui), for each i = 0, 1, 2, · · · , N − 1
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where

T (n)(ti, ui) = f(ti, ui) +
h

2
f ′(ti, ui) + · · ·+ hn−1

n!
f (n−1)(ti, ui).

Therefore, Euler’s method is Taylor’s method of order one, i.e. n = 1.

7.2.4 Taylor Theorem in 2-dimensions

The Runge-Kutta method is a high-order method based on Taylor’s method, but it

does not require computing the derivative of f(t, y).

Theorem 3 (Taylor’s Theorem in Two Variables). Suppose that f(t, y) and all its partial

derivatives up to n + 1 order are continuous on D = {(t, y)|a ≤ t ≤ b, c ≤ y ≤ d}, and let

(t0, y0) ∈ D. For every (t, y) ∈ D, there exists (ξ, µ), t0 < ξ < t, and µ is between y and y0,

such that

f(t, y) = Pn(t, y) +Rn(t, y),

where

Pn(t, y) = f(t0, y0) +

[
(t− t0)

∂f

∂t
(t0, y0) + (y − y0)

∂f

∂y
(t0, y0)

]
+

[
(t− t0)2

2

∂2f

∂t2
(t0, y0) + (t− t0)(y − y0)

∂2f

∂t∂y
(t0, y0) +

(y − y0)2

2

∂2f

∂y2
(t0, y0)

]
+ · · ·

+

[
1

n!

n∑
k=0

(
n

k

)
(t− t0)n−k(y − y0)k

∂nf

∂tn−k∂yk
(t0, y0)

]
and

Rn(t, y) =
1

(n+ 1)!

n+1∑
k=0

(
n+ 1

k

)
(t− t0)n+1−k(y − y0)k

∂n+1f

∂tn+1−k∂yk
(ξ, µ).

Pn(t, y) is called the nth Taylor polynomial of two variables for the function f at (t0, y0)

and Rn(t, y) is the remainder term.
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7.2.5 Runge-Kutta Method of Order Two

First, we need to determine a1,α1, and β1 with the property that a1f(t + α1, y + β1)

approximates

T (2)(t, y) = f(t, y) +
h

2

df

dt
(t, y). (7.6)

The error does not exceed O(h2) because

f ′(t, y) =
df

dt
(t, y) =

∂f

∂t
(t, y) +

∂f

∂y
(t, y) · y′(t) and y′(t) = f(t, y).

Then, we can write Equation 7.6 as

T (2)(t, y) = f(t, y) +
h

2

∂f

∂t
(t, y) +

h

2

∂f

∂y
(t, y) · f(t, y). (7.7)

Now, we expand f(t+ α1, y + β1) in its Taylor polynomial of degree 1 about (t, y).

a1f(t+ α1, y + β1) = a1f(t, y) + a1α1
∂f

∂t
(t, y) + α1β1

∂f

∂y
(t, y) + a1 ·R1(t+ α1, y + β1), (7.8)

where

R1(t+ α1, y + β1) =
α2

2

∂2f

∂t2
(ξ, µ) + α1β1

∂2f

∂t∂y
(ξ, µ) +

β2

2

∂2f

∂y2
(ξ, µ),

and ξ is between t and t+ α and µ is between y and y + β.

We match the coefficients of f and its derivatives in Equations 7.6 and 7.8, then it

gives

a1 = 1;

a1α1 =
h

2
;

a1β1 =
h

2
f(t, y)
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We obtain the parameters

a1 = 1, α1 =
h

2
, and β1 =

h

2
f(t, y),

T (2)(t, y) = f

(
t+

h

2
, y +

h

2
f(t, y

)
−R1

(
t+

h

2
, y +

h

2
f(t, y)

)
,

R1

(
t+

h

2
, y +

h

2
f(t, y

)
=
h2

8

∂2f

∂t2
(ξ, µ) +

h2

4
f(t, y)

∂2f

∂t∂y
(ξ, µ) +

h2

8
(f(t, y))2

∂2f

∂y2
(ξ, µ).

Therefore, if the second order partial derivatives of f is bounded, then R1

(
t+

h

2
, y+

h

2
f(t, y

)
is O(h2).

7.2.6 Third-Order Runge-Kutta Methods

Similarly, we can approximate T (3) with error O(h3) by

f(t+ α1, y + δ1f(t+ α2, y + δ2f(t, y))).

Four parameters are involved and we can use a method called Heun’s method with O(h3).

u0 = a0,

ui+1 = ui +
h

4
(f(ti, ui) + 3f(ti +

2h

3
, ui +

2h

3
f(ti +

h

3
, ui +

h

3
f(ti, ui)))),

for i = 0, 1, 2, · · · , N − 1.

7.2.7 A 3(2) Pair of Runge-Kutta Formuli

Low order explicit Runge-Kutta methods are popular for solving initial value problems

for a system of ordinary difference equations(ODEs). The key for low order formula is

the availability of ”free” interpolants that preserve monotonicity and convexity. Bogacki

and Shampine proposed low order pairs of explicit Runge Kutta formulas that are either

efficient, reliable, or more stable[5]. In order to obtain the numerical solution of our system
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of ordinary differential equations, we take MATLAB solver ode23s that is effective with crude

errors tolerance and relatively fast than other solvers[54].

60



CHAPTER 8

Simulations for NMDA Receptors on Postsynaptic Neuron

8.1 Introduction

In this chapter, we simulate the synaptic transmitter/receptor kinetic process by solv-

ing for a system of ODEs numerically, to obtain opening probabilities at NMDA receptors

located in the post-synaptic terminal. We collect the data of open probabilities at NMDA

receptors near the center release site or the edge release site, when evoked or spontaneous

release occurs. We also consider additional factors such as size of synapse, geometric con-

striction, diffusion coefficient(different diffusivity inside cleft), and fusion pore to determine if

any factor affects independent signaling between two modes of neurotransmission on NMDA

receptors.

8.2 MATLAB Implementation

The glutamate concentration C(x, y, z, t) simulating in chapter 6 was averaged over

10µs intervals (10 time steps) to reduce computational cost. MATLAB solver ode23s is

effective at crude errors and relatively fast then other solvers[54]. Later, we also achieve

the maximal open probability at select locations of a diagonal direction and vertical (or

horizontal) direction in Figure 9.1, then define a function as the ratio of the maximum

open probability of distal receptor over the maximum open probability of the release site

(RC or RE). In this process the Piecewise Hermite Cubic Interpolation (PHCI) is used to
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approximate the probable values for the function defined at discrete points so that we can

preserve monotone or convex curve of the function[21].

8.3 Opening Probability at NMDA Receptor

We first simulate the glutamate release around the center site (R6), and obtain the

opening probabilities at center (R6) and edge (R16) on the postsynaptic terminal. In chapter

6, we evaluated glutamate concentrations numerically by the Support-Operator model and

the Continuous Velocity model, thus we have opening probabilities of NMDA receptor using

the concentrations from the models.
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(a) Popen at R6 near center
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(b) Popen at R16 near edge

Figure 8.1: NMDA receptor opening probability for center release

As shown in Figure 8.1, when glutamate molecules release near the center, then the

maximum opening probability of NMDA receptor (R6) is 0.4880. The range of maximum

opening probability of NMDA receptor (R16) near edge is 0.2557-0.2632. For errors of
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opening probabilities between two methods do not make any significantly different outcomes,

thus we will use only our new model (Continuous Velocity model) for following steps.

In Figure 8.1, this implies that glutamate release occurring at center site induces the

higher opening probabilities at NMDA receptor(R6) directly opposing the center site than

that of NMDA receptor(R16) near edge.

8.4 Effect of Synaptic Size

For large synapse(600nm by 600nm), the results in Figure 8.2 and 8.3 support recent

experimental evidence that spontaneous and evoked currents are originated from released

glutamate in different pools, accumulated at synapse center and edge respectively. As shown

Table 8.1, we can verify that opening probability of NMDA receptor opposing the site of

evoked release (center) is 0.4688 that is higher that that of spontaneous release(edge, 0.095)

during evoked release at large synapse. This supports recent experimental result[49, 59] that

two signals from spontaneous and evoked releases do not have crosstalk significantly.

As the size of synapse is smaller, the maximum open probability of the NMDA receptor

opposing the corresponding site(either evoked release or spontaneous release) is decreasing.

On the other hand, as the size of synapse is smaller, the maximum open probability of the

NMDA receptor over the evoked site(spontaneous) around R6 is increasing when spontaneous

release(evoked release) occurs because their distance in the same terminal postsynaptic is

closer. This implies that the crosstalk of two modes of signals is increasing. This happens

because in a small synapse, the glutamates are flushed out to external space quickly, so

the opening probability would be lower at opposing locations. At this observation, for small

synapse, we do not expect that spontaneous and evoked currents are originated from different

pools in a single synapse since the degree of two modes of independency is very low.
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Figure 8.2: Center release: Max(Popen) of the NMDA receptor opposing the evoked release
site (Red line) is higher than that of the NMDA receptor opposing spontaneous release site
(Blue Line).
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Figure 8.3: Edge release: Max(Popen) of the NMDA receptor opposing the spontaneous
release site (Blue line) is higher than that of the NMDA receptor opposing evoked release
site (Red Line).
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Synaptic Size Max(Popen) at Center Max(Popen) near Edge Ratio

200 0.4227 0.2726 1.5506
300 0.4333 0.2328 1.8612
400 0.4437 0.1631 2.7204
500 0.4593 0.1608 2.8563
600 0.4688 0.095 4.9347

Table 8.1: Center release: Maximal opening probability at center receptor and edge receptor
when evoked release occurs at synapses of different size.

Synaptic Size Max(Popen) at Center Max(Popen) near Edge Ratio

200 0.2726 0.4174 1.5311
300 0.2318 0.4201 1.8123
400 0.1631 0.4231 2.5941
500 0.1608 0.4267 2.6536
600 0.1062 0.4281 4.0310

Table 8.2: Edge release: Maximal opening probability at center receptor and edge receptor
when spontaneous release occurs at synapses of different size.

8.5 Effect of Geometric Constriction

The space cleft between presynaptic terminal and postsynaptic terminal might not be

void, nor uniform. The exact structure and composition of material vary from synapse to

synapse. We test our model numerical simulating in two different geometries. In this case,

we set the synaptic size as 600nm by 600nm. Illustrations in Figure 8.4 show how four

situations are simulated. In narrow center geometry, the height is 10nm in center zone Ω+,

and height of the edge is 20nm in outside cleft Ω−. The narrow edge geometry has 20nm in

center and 10nm in edge(See Figure 6.3). Other conditions are same as the base model.

From the results presented in Figure 8.5, we find that there is no significant difference in

conclusion. However, narrow center model produces slightly higher ratio for both evoked and

spontaneous release. This is an indication favoring independency of two modes. Therefore,
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(a) Center release with narrow center (b) Center release with narrow edge

(c) Edge release with narrow center (d) Edge release with narrow edge

Figure 8.4: Illustration: Non-uniform space in the cleft

we conclude that the geometric constriction has no significant impact on the ratio of the

maximum opening probability, and geometric constrict is not a significant factor.

Geometric Constriction Max(Popen) at Center Max(Popen) near Edge Ratio

Flat(Base Model) 0.4688 0.1062 4.4143
Narrow Center 0.4657 0.0909 5.1232
Narrow Edge 0.4817 0.1082 4.4519

Table 8.3: Center release: Maximum opening probability at center receptor and edge receptor
when the evoked release occurs for different synapse geometries.

66



Flat Narrow Edge Narrow Center
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
a
x
(P

o
p
e
n
)

Maximum Open Probability for Center(R6) Release

Receptor 6 (Center)

Receptor 16 (Edge)

(a) Center release(R6)

Flat Narrow Edge Narrow Center
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
a
x
(P

o
p
e
n
)

Maximum Open Probability for Edge(R16) Release

Receptor 6 (Center)

Receptor 16 (Edge)

(b) Edge release(R16)

Figure 8.5: The maximal NMDA receptor opening probability Max(Popen) for geometric
constriction in flat, narrow edge and narrow center cleft space.
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Geometric Constriction Max(Popen) at Center Max(Popen) near Edge Ratio

Flat(Base Model) 0.0950 0.4281 4.5063
Narrow Center 0.0821 0.4278 5.2107
Narrow Edge 0.1082 0.4769 4.4075

Table 8.4: Edge release: Maximum opening probability at center receptor and edge receptor
when spontaneous release occurs for different synapse geometries.

8.6 Effect of Diffusion Inhomogeneity

The exact composition of materials in the cleft is not known. However, it is generally

accepted the permeation of glutamate molecules can be described by a classical heat diffusion

equation 4.1. We simulate three diffusion different models. In the base model, we take

D = 0.4 uniformly. In high affinity center model, we take D+ = 0.1 in Ω+ and D− = 0.4

in Ω−. Also in high affinity edge model, D+ = 0.4 in Ω+ and D− = 0.1 in Ω− are taken as

shown in Figure 6.4.

Diffusion Coefficients Max(Popen) at Center Max(Popen) near Edge Ratio

Flat(Base Model) 0.4688 0.1062 4.4143
High Affinity Center 0.4845 0.0257 18.852
High Affinity Edge 0.488 0.2632 1.8541

Table 8.5: Center release: Maximum opening probability at center receptor and edge receptor
when evoked release occurs for different zone diffusion models.

Diffusion Coefficients Max(Popen) at Center Max(Popen) near Edge Ratio

Flat(Base Model) 0.0950 0.4281 4.5063
High Affinity Center 0.0244 0.4291 17.586
High Affinity Edge 0.2314 0.457 1.9749

Table 8.6: Edge release: Maximum opening probability at center receptor and edge receptor
when spontaneous release occurs for different zone diffusion models.
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When evoked and spontaneous releases occur, we find the ratio of two peak opening

probabilities have 17-18 folds ratio, which is over three times than that of base model. We

expect the situation that from entering zone to another zone, there might be a barrier, so

that it is hard for glutamates to swim and move to another zone thus it favors independency

of two modes of neurotransmission. This is compatible with the experimental results that

the action potential evoked fusion is guided by the protein gradient called nanoclusters,

which were more likely to active local NMDA receptors only, a fact noted in a recent paper

published in Nature[59].

8.7 Effect of Narrow Fusion Pore

The instantaneous release of 4000 glutamate molecules is an approximation for the

actual situation. The release of glutamate from vesicles in presynaptic terminals is a complex

process that includes elevation of Ca2+, binding of SNARE protein to the membrane and a

sequence of events guided by biochemical reactions[56].

We model the limited rate release with additional components of a vesicle and a fusion

pore inside the presynaptic terminal. The vesicle size is 40nm× 40nm× 40nm. We test the

glutamates release from 10nm diameter fusion pore (dimension 10nm× 10nm× 10nm) for a

regular fusion pore model, and the other narrower 2nm diameter fusion pore ( 2nm×2nm×

10nm) as a slower release (See Figure 4.4). We then calculate receptor kinetics and find

the maximal opening probability at each receptor. Figure 8.7 illustrates the results with a

center release for evoked transmission and for spontaneous release at the edge. We compare

the peak open probability ratio at center receptor and edge receptor respectively.

The results from the narrow fusion pore model, have a very big ratio of the peak

opening probability of NMDA receptor directly opposing evoked site and spontaneous site.
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Figure 8.6: The maximal NMDA receptor opening probability Max(Popen) in various diffusion
coefficients depending on locations in Ω+, Ω−.
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(a) Center release (b) Edge release

Figure 8.7: Diffusion process with 2nm or 10nm fusion pore.

For 10nm width of fusion pore, 77.6 folds difference of two modes, which agrees also the

recent experimental evidence that two signals from spontaneous and evoked release are not

correlated significantly. For 2nm fusion pore model drives 2238.9 folds as shown Table 8.7

for evoked release similar ratios observed for spontaneous release. We conclude that narrow

fusion pore virtually assures the independency of two signals from spontaneous and evoked

release.

Fusion Pores Max(Popen) at Center Max(Popen) near Edge Ratio

Instantaneous(Base Model) 0.4688 0.1062 4.4143
10nm Fusion Pore 0.4422 0.0057 77.578
2nm Fusion Pore 0.1471 6.57E-05 2238.9

Table 8.7: Center release: Maximum opening probability at center receptor and edge receptor
when evoked release occurs for different fusion pore.

Fusion Pores Max(Popen) at Center Max(Popen) near Edge Ratio

Instantaneous(Base Model) 0.0950 0.4281 4.5063
10nm Fusion Pore 0.0057 0.4154 72.877
2nm Fusion Pore 6.57E-05 0.0833 1267.88

Table 8.8: Edge release: Maximum opening probability at center receptor and edge receptor
when evoked release occurs for different fusion pore.
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Figure 8.8: The maximal NMDA receptor opening probability Max(Popen) in different fu-
sion pores, under (a) center release of glutamate molecules, (b) edge release of glutamate
molecules.

72



CHAPTER 9

Results

In chapter 7, we simulated neurotransmission models considering factors as a synap-

tic size, geometric constriction, diffusion inhomogeneity, and a narrow fusion pore. We

concluded that as a synapse size is smaller and if the cleft space is more cohesive in the

peripheral area than the centre area, then there is a high possibility of having crosstalk of

signals of spontaneous and evoked releases. On the other hand, when a synapse size is larger,

the cleft space has more affinity in the central area than the edge area, and if the geometry

of fusion has a narrower space, then it produces a better chance for independence of two

currents.

The maximum open probability is most sensitive to the distance from the release sites.

Using this property, we create a measurement of independency with combining factors that

help to induce two independent signals from spontaneous and evoked transmissions in a single

synapse. We can also estimate the distance between presynaptic release site and postsynaptic

NMDA receptor based on presynaptic vesicle distribution and postsynaptic receptor density.

9.1 Measurement of Independency

We denote the relative ratio function as the ratio of the maximum open probability of

distal receptor over the maximum opening probability of the receptor directly opposing the

release site (center or edge). Respectively, we call a receptor as RC , which is directly opposing
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the evoked release site, and also represents a receptor located the center of postsynaptic

terminal. A receptor RE, directly opposing the spontaneous release site, is located around

the edge of the postsynaptic terminal. The measurement 9.1 is showing the points where

ratio functions are taken for comparison:

Figure 9.1: Two directions Popen at each location when center release (left) or edge release
(right) occur their sites, and the NMDA maximal opening probability is calculated to test
independency.

Measure :=
Max(Popen) at distal receptor

Max(Popen) at release site (RC or RE)
. (9.1)

When we simulate our model, we fix the denominator as one receptor either RC and

RE. Then we measure Max(Popen) at a receptor along the two directions as shown in Figure

9.1. The Max(Popen) in other locations will be valued between the values obtained in these

two directions. If the steepness of function for ratio is relatively large, it implies that the

evoked and spontaneous currents have a less chance of having crosstalk.

We use our measurement (9.1) to estimate the independency with considering effective

conditions for independency such as a synaptic size, diffusion inhomogeneity, and fusion

74



pore. When glutamate vesicle releases over the center receptor in Figure 9.1 (left), for the

receptors of equal distance to release, the diagonal direction shows the largest Popen and

vertical (or horizontal) direction shows the smallest given the same distance.

9.2 Simulation Results

We use the model to calculate and compare three sizes of synapses as large synapse,

medium synapse, and small synapse. Then we set areas of synapse as 600nm x 600nm for

large synapse, 400nm × 400nm for medium size, and 200nm × 200nm for small synapse

respectively. We estimate the minimum distance between two sets of NMDA receptors to

have possible less crosstalk. The ratios of maximum opening probabilities are plotted in

Figure 9.2a and 9.2b.

Based on the criteria from previous research [3, 49], we assume 5-fold is the threshold

ratio as a good indicator for independent currents. We cannot assure independency with

the structure evoked at center and spontaneous at edge for medium (0.16µm2) and small

synapses (0.04µm2) in our current base model. For medium synapse (400nm × 400nm), if

two forms of release locate towards opposite corners of the synaptic cleft, we might achieve

sufficient low level of crosstalk and possibly obtain the independence of spontaneous and

evoked neurotransmissions [3]. For small synapse (200nm × 200nm), there are apparently

have more crosstalk between evoked and spontaneous releases.

We consider other constraints to find favorable conditions where the signals can be

independent. One way is to assume the components in the cleft to be different compositions.

We make the center area to be less diffusive for glutamate molecules than the peripheral

region inside cleft. Another possibility is to reduce the amount of glutamate molecules
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Figure 9.2: Ratio of Max(Popen) as a function of receptor distance for three synapse sizes.
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released per vesicle in the partial release (called kiss-and-go) scenarios, and/or the glutamate

is released in slower release rate due to partial opening of vesicles in the membrane.

9.2.1 Possible Scenario 1 : High Affinity Center in the Cleft

In Figure 9.3, among three lines for both evoked and spontaneous release, the high

affinity center model has the sharper downward slope when the distance is apart. This is

compatible with the recent experimental results that the evoked release is guided by the

protein gradient and prefer to occur in confined area with in high local density of Rab3-

interacting molecule(RIM)[59] in center area. However, from 0 to 150nm range of distance,

all three lines are virtually constants as shown in Figure 9.3a, and this implies that this high

affinity center is not enough for a small synapse to house the independent currents from two

modes transmissions.

9.2.2 Possible Scenario 2 : Narrow Fusion Pores on the Presynaptic Sites

As shown in Figure 9.4, the limited vesicle fusion rate has impact on reducing the

crosstalk of two currents from spontaneous and evoked releases. They did not impact as

much to perturb the independent signaling of synapse on large synapses, although slower

releases did promote more independence. They benefit small size synapses substantially more

in achieving independent signaling. Figure 9.4e and 9.4f show that small synapse (200nm

by 200nm) might not have independent signaling when evoked glutamate release occurs

instantaneously because evoked and spontaneous release sites are not far away from each

other and thus they have high probability of having crosstalk between each other. In fact,

there is not much difference between the peak opening probabilities at a receptor for evoked

release and the one for spontaneous release. This can be verified in the graph of Figure 9.4e,
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Figure 9.3: Ratio of Max(Popen) as a function of receptor distance for diffusion inhomogene-
ity(base, high affinity center, and high affinity edge)
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the ratio of two maximum open probabilities is close to 1. The peak open probability in

receptors is consistent up to 90nm far from the receptor molecules opposing evoked release

site. However for small synapses, as glutamate release through 10nm and 2nm vesicle fusion

pore, the open probability ratio decreases more drastically and becomes close to zero, and

in 2 nm pore, the ratio achieves 10-fold reduction at 90nm distance, giving plausibility for

independent currents from two transmissions.

9.3 Comparison with Biological Results

Most recent experiments in Dr. Kavalali’s lab showed in mammalian synapses, spon-

taneous and evoked glutamate release driven NMDA receptor mediated Ca2+ transients

often occur at the same synapse, but these two signals do not show significant correlation or

crosstalk[49]. Also, Tang and colleagues proposed an alignment of presynaptic and postsy-

naptic nanoscale subdomains, called nanocolumn[59].

Evoked fusion occurs in confined areas by protein gradient with higher local density of

Rab3-interacting molecules (RIM) within the presynaptic active zone. These RIM nanoclus-

ters align with concentrated postsynaptic receptors. Evoked neurotransmitter release prefer

to occur at sites directly opposing postsynaptic receptor guided by the nanoachitecture of

the active zones. They estimated that majority(72-82%) of evoked signals arose from single

vesicle fusion. The concentration of vesicle priming proteins in nanoclusters prefers to evoked

fusion in the subregion of the active zone.

They showed three RIM 1/2 nanoclustes and three PSD-95(Post Synaptic Density)

nanoclusters are well aligned for two pairs and not aligned for one pair. They used two

independent approaches to estimate the relationship between active zone and postsynaptic

density(PSD) protein distributions. In order to figure out of the trend, they measured
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(c) Center Release for Medium Synapse
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Figure 9.4: Ratios of maximal NMDA receptor opening probabilities as functions of receptor
distance for different release speed of glutamate vesicle release. The open probabilities were
calculated by the kinetic equation for three types of size of synapse, when glutamate are
released above the center and the edge respectively.
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RIM 1/2 localization densities as a function of radial distance from the centres of PSD-

95 nanoclusters as translated across the synaptic cleft. Similarly, they estimated PSD-95

protein enrichment densities as a function of the center of RIM 1/2 nanoclusters. Through

this results, they defined an enrichment index as the average molecular density of the opposed

protein (n=265-272) within a 60nm radius from the nanocluster center. They verified from

this results if synapses are trans-synaptically aligned on the nanoscale level, the distribution

of protein on side of the synapse may predict protein density in the opposing neuron.

Figure 9.5: PSD-95 enrichment as a function of distance from translated RIM 1/2[59].

Their experimental findings are significantly relevant to our mathematical results.

Thus, we compare their measured data with the result from our mathematical measure-

ment for small synapse(200nm by 200nm).

We search out and approximate the data from Tan’s team [?] and fitted with the

exponential model using MATLAB. Figure 9.6a has trends of exponentially decreasing. Let

fPSD−95(x) = a · exp(b · x) (9.2)
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Figure 9.6: PSD-95 enrichment as a function of distance from translated RIM 1/2[59] (left(a))
and searching out the measured data and plotting by MATLAB. Fitted the data with a
general exponential model fPSD−95(x) = 104 · exp(−0.02038x)(right (b)).

Then, we estimate the coefficients with 95 % confidence bounds of a is 104 (87.06,

121) and b is to -0.02038 (-0.02518, -0.01558). Therefore, this measured data of PSD-95

enrichment on the postsynaptic neuron as a function of distance relative to the center of

RIM 1/2 nanocluster on presynaptic terminal is approximating to the exponential function

as below:

fPSD−95(x) = 104 · exp(−0.02038 · x). (9.3)

Now, let us remind possibility 2. We tested our simulation and suggested that we may

obtain the independency of two currents from evoked and spontaneous neurotransmitter

release when if small synapses have a geometry of a narrow fusion pore (2nm)(Figure 9.4f).

The ratio achieves 10-fold reduction at 90nm distance, giving plausibility for independent

currents from two modes of transmissions. This corresponds to the result of an enrichment
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index within a 60nm radius from the nanocluster centre. Thus, we also consider the graph of

ratio function of peak opening probability as a function of distance from the center synapse

for small synapse and evoked narrow fusion pore release in Figure 9.7. Then we fit the graph

to the exponential model similarly. The coefficients with 95 % confidence bounds of a is

1.044 (0.9322, 1.156) and b is approximating to -0.02791 (-0.03409, -0.02171). We obtain one

exponential function for our simulation,

fsimulation(x) = 1.044 · exp(−0.02791 · x). (9.4)

The results are incredibly well-matched to each other, thus we rescale the coefficients

of fPSD−95 and plot those two functions together(Figure 9.8). Also this indicates that small

synapses might be conducted of dynamic functional modules and possibly hold the segre-

gation of sites for spontaneous versus evoked neurotransmission within individual synapses.

These results show our mathematical modeling is valuable and has capability to deal with

the neuroscience challenging.
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Figure 9.7: Our simulation: Ratio of Max(Popen) as a function of distance from the receptor
opposing the evoked glutamate fusion pore (2nm) release site for small synapses (200nm
by 200nm). Fitted the calculated data with a general exponential model fsimulation(x) =
1.044 · exp(−0.02791x).
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CHAPTER 10

Conclusions and Future Work

10.1 Summary

In chapter 2, we introduced basics of neuroscience and how synapses work in order to

understand current questions that we need to consider. In chapter 3, we reviewed some pre-

liminaries, such as low of mass action, enzyme kinetics process, and heat(diffusion) equation

and its fundamental solution. In chapter 4, we developed a mathematical modeling of this

synaptic-dynamics, and discussed some factors as our parameters that we will consider to

solve the questions, such as boundary conditions, geometry of synapse, synaptic size, different

glutamate diffusive rate in the cleft, and release rate of neurotransmitters from presynaptic

terminal. In chapters 5 and 6, we studied finite difference methods to approximate solu-

tions to heat equations in the process from presynaptic sites to the cleft. We also developed

two numerical methods for solving the piecewise continuous heat diffusion equation in three

dimensional space for a cubic domain, and proved its second order accuracy theoretically.

Then we derived the MATLAB implementation of our presynaptic release model and simu-

lated the process of glutamate release from presynaptic sites into the synaptic cleft to obtain

glutamate molecules concentration at each receptor. We also applied our numerical method

with piecewise continuous diffusion coefficients to the diffusion process and validated the

method for second order truncation error. In chapters 7 and 8, we studied numerical meth-

ods of system of ordinary differential equations, especially Runge-Kutta methods, that we

use to solve our system of 7 odes numerically. Then we simulated the kinetic process by
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solving a system of ODEs numerically to obtain the opening probability at NMDA receptor.

We considered factors as synaptic size, geometric constriction, diffusion inhomogeneity, and

fusion pore size. We concluded that as a synaptic size is smaller and if the cleft space is less

diffusive in the edge area than the centre area, then there is a higher possibility of having

crosstalk of two signals from spontaneous and evoked release. On the other hand, when

a synaptic size is larger, the cleft space is less diffusive in the central area than the edge

area, or if the geometry of fusion has a narrower center, then those produce a better chances

of independence of two modes of currents from spontaneous and evoked release. In chap-

ter 9, we defined a measurement of independency and suggested two possible scenarios for

small synapses to be less crosstalk from spontaneous and evoked neurotransmitter currents

on postsynaptic terminals. In addition, we compared the recent experimental findings with

our mathematical results for small synapse (200nm by 200nm). The results were incredibly

well-matched to each other and this indicates that small synapses might be conducted of

dynamic functional modules and possibly hold the segregation of sites for spontaneous ver-

sus evoked neurotransmission within an individual synapse. These results suggest that our

mathematical modeling is valuable to solve neuroscience challenging.

10.2 Conclusion

In this dissertation, we developed a three dimensional mathematical model of a synapse

to identify the spatial relationship between spontaneous and evoked neurotransmitter release

for their segregation of currents. This research continues collaborative work of my advisor

Dr. Su and Dr. Kavalali’s group[3]. The major contribution of this research is following.

1. We developed a three dimensional mathematical model, so that we are able to analyze

those results for independent signaling of spontaneous and evoked glutamate releases in
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a synapse, comparing with the experimental and theoretical prediction of Dr. Kavalali

lab. We defined a measurement of independency and set a criterion of subjectively

a 5 fold ratio as a reasonable boundary for the independence. From those results we

suggested two possibilities for small synapses to be less crosstalk from spontaneous

and evoked neurotransmitter currents on postsynaptic terminals. It validated through

comparisons with the recent experimental findings. The results were incredibly well-

matched to each other and this implies that small synapses might be conducted of

dynamic functional modules and possibly hold the segregation of sites for spontaneous

versus evoked neurotransmission within individual synapses.

2. We derived a finite difference approximation for solving the piecewise continuous heat

equation in three dimensional space for a cubic domain, and proved its order of accuracy

by numerical analysis. Then we also applied to the diffusion process and validated

the method for the order of accuracy numerically. We concluded that for two finite

difference schemes including consideration of the second order derivative correction

across the interface by different diffusion constants, the overall error of the numerical

methods should be second order.

10.3 Future Plan

We plan to continue our work refining our model how separation of NMDA receptors

is distributed across individual synapses through more recent experimental findings. We

consider electric field of synaptic currents that affect diffusion charged glutamate in synaptic

cleft and improve of modeling by adopting earlier approach incorporating electric interaction

between charged glutamate and receptor generated currents[58]. We apply our finite differ-

ence scheme in three dimensional for other elliptic equations with piecewise coefficients and

compare with other works[30]. In addition, we study numerical methods such as Alternat-
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ing Direction Implicit(ADI) method and find out if it is well suited for modeling of neural

synapse[62].

From my perspective, I intend to continue my research in modeling for biological

phenomena and developing numerical methods for biological modeling. I am fully ready

for interdisciplinary research topics in other areas in science and engineering. Based on

my solid mathematics and computation ability such as numerical differential equations, and

statistical modeling, I look forward to new challenges in applied mathematics and work with

other scientists in the frontier of science.
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APPENDIX A

Polynomial Approximation and Interpolation
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A.1 Piecewise-Polynomial Approximations

A piecewise-polynomial approximation is an alternative approximation to a single high

order polynomial that may induce large fluctuations. This method is to divide the approx-

imation interval into a collection of subinterval and construct a different approximating

polynomial on each subinterval[7].

If we have a finite date set,

{(x0, f(x0)), (x1, f(x1)), · · · , (xn, f(xn))}.

The simplest piecewise-polynomial approximation is piecewise-linear interpolation, which

consists of joining a set of points by a series of straight line as shown black line with ∇ in

Figure A.1. However, the function is not differentiable at the end of the subintervals, so the

interpolating function is not smooth.

In order to compensate the weakness, we use another approximation that is a piece-

wise of Hermite type. If we know the values of f and f ′ are known at each of the points

x0 < x1 < · · · < xn, a cubic Hermite polynomial can be used on each of the subintervals

[x0, x1], [x1, x2], · · · , [xn−1, xn] to obtain a function that has a continuous derivative on the

interval [x0, xn]. To use Hermite piecewise polynomials, it is required to obtain the derivative

of the function being approximated, however, it is no easily availble.

The simplest differentiable piecewise-polynomial function on an entire interval is the

functions by fitting one quadratic polynomial between each pair of nodes. However, we also

need to specify the boundary condition at the end points x0 and xn.

The most common piecewise-polynomial approximation is to use cubic polynomial be-

tween a pair of points, this called cubic spline interpolation. A cubic polynomial involves

four constants generally, so the function is smooth enough and the interpolant has a con-
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tinuous second derivatives as well as continuously differentiable on the interval. The cubic

spline interpolation satisfies the following.

Definition 4. Given a function f defined on [a, b] and a set of data points a = x0 < x1 <

· · · < xn = b, a cubic spline interpolant R for f is a function that satisfies the following

conditions.

1. R(x) is a cubic polynomial, denoted Ri(x), on the subinterval [xi, xi+1] for each i =

0, 1, · · · , n− 1;

2. Ri(xi) = f(xi) and Ri(xi+1) = f(xi+1) for each i = 0, 1, · · · , n− 1;

3. Ri+1(xi+1) = Ri(xi+1) for each i = 0, 1, · · · , n− 2;

4. R′i+1(xi+1) = R′i(xi+1) for each i = 0, 1, · · · , n− 2;

5. R′′i+1(xi+1) = R′′i (xi+1) for each i = 0, 1, · · · , n− 2;

6. One of the following sets of boundary condition is satisfied:

(a) R′′(x0) = R′′(xn) = 0 (free boundary)

(b) R′(x0) = f ′(x0) and R′(xn) = f ′(xn)(clamped boundary).

Since our simulation cost is expensive when we achieve the peak opening probability

as a function of distant point on the postsynaptic terminal, we use cubic spline to find a

smooth curve for the calculated data points as shown in Figure A.1.
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Figure A.1: This figure shows two ways to approximate a function based on known data
points. Piecewise-linear approximation is simple but cubic spline interpolation is more
smooth and continuously differentiable in the entire interval.
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bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Annalen der physik,

322(8):549–560, 1905.

[15] L. C. Evans. Partial Differential Equations. American Mathematical Society, 2nd edi-

tion, 2010.

[16] R. Ewing, O. Iliev, and R. Lazarov. A modified finite volume approximation of second-

order elliptic equations with discontinuous coefficients. SIAM Journal on Scientific

Computing, 23(4):1335–1351, 2001.

[17] P. Fatt and B. Katz. Spontaneous subthreshold activity at motor nerve endings. Journal

of Physiology, 117:109–128, 1951.

[18] M. Frerking and M. Wilson. Saturation of postsynaptic receptors at central synapses ?

Current Opinion in Neurobiology, 6:395–403, 1995.

[19] M. Geppert, Y. Goda, R. E. Hammer, C. Li, T.W. Rosahl, C. F. Stevens, and T. C.
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[43] D. Paré, E. Lebel, and E. J. Lang. Differential impact of miniature synaptic potentials

on the soma and dendrites of pyramidal neurons in vivo. Journal of Neurophysiology,

78(3):1735–1739, 1997.
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