
PERFORMANCE ANALYSIS OF SCALE-OUT WORKLOADS
ON PARALLEL AND DISTRIBUTED SYSTEMS

by

MINH QUANG NGUYEN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy at

The University of Texas at Arlington
Doctor of Philosophy

August, 2017

Arlington, Texas

Supervising Committee:

Prof. Hao Che, Supervising Professor
Prof. Ramez Elmasri
Prof. Jeff (Yu) Lei
Prof. Hong Jiang

ABSTRACT

PERFORMANCE ANALYSIS OF SCALE-OUT WORKLOADS

ON PARALLEL AND DISTRIBUTED SYSTEMS

Minh Quang Nguyen, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Hao Che

Scale-out applications have emerged to be the predominant datacenter workloads. The

request processing workflow for such a workload may consist of one or more stages with

massive numbers of compute nodes for parallel data-intensive processing. As a classic model

for the most essential building block of a workflow, the Fork-Join queuing network model is

found to be notoriously hard to solve due to the involvement of task partitioning and merging

with barrier synchronization. The work in this dissertation aims to develop approximation

methods for the prediction of tail and mean latency for Fork-Join queuing networks in a high

load region, where resource provisioning is desirable.

Specifically, this dissertation makes the following contributions. First, we propose a

simple prediction model for tail latency for a large class of Fork-Join queuing networks of

ii

practical importance in a high load region using only the mean and variance of response

times for tasks in the Fork phase as input. We also generalize the model for the cases where

each request processing includes only a partial number of processing units in the network.

The prediction errors for the 99th percentile request latency are found to be consistently

within 10% at the load of 90% for both model and measurement-based testing cases. This

work thus establishes a link between the system-level request tail latency constraint, a.k.a.

the tail-latency Service Level Objective (SLO), and the subsystem-level task performance

requirements, facilitating explicitly tail-constrained resource provisioning at scale. Second,

we propose an empirical approach for mean latency approximation for such systems based

on the developed tail latency prediction model. The experimental results show that the

approach gives accurate predictions for various testing cases when the system is at high

loads. Finally, we put forward a framework for scaling analysis of scale-out applications.

With the proposed solution for mean latency approximation, we are able to derive a closed-

form solution for this framework that can be used for the exploration of scaling properties. A

case study is given for the case where all the task service time distributions are exponential.

iii

c© Copyright by
Minh Quang Nguyen

2017

ACKNOWLEDGMENTS

I would like to thank my supervising professor, Dr. Hao Che, for motivating and encour-

aging me and also for his invaluable advice during the course of my doctoral studies. It has

been a great pleasure to work with him on research projects. I have learned a lot through

useful discussions with him during my research.

I would also like to express my gratitude to Dr. Ramez Elmasri, Dr. Jeff (Yu) Lei,

and Dr. Hong Jiang for their interest in my research and for taking time to serve on my

dissertation committee.

I owe a debt of gratitude to all of my friends for their help and advice during my studies

at UTA. In particular, I would like to thank Nha Nguyen for helping me when I first started

my doctoral program and sharing with me long discussions on various topics. I am grateful

to Zhongwei Li and Feng Duan for their support with experiments on cloud services. I wish

to thank Dongchul Kim, Shuo Li, Mingon Kang, Ashis Biswas for their friendship and helpful

discussions.

Finally, I would like to give special thanks to my wife, Phuong Pham, for all the support

and patience during my journey to the doctoral degree.

v

To my mother and my mother-in-law, who supported us during my studies

To my wife, Phuong Pham, and my lovely kids, Khoi and Clara, who inspired me to

complete this dissertation

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . v

LIST OF FIGURES . x

LIST OF TABLES . xiii

LIST OF ABBREVIATIONS . xv

1 INTRODUCTION . 1

2 PREDICTION MODEL FOR TAIL LATENCY AT SCALE 4

2.1 Introduction . 4

2.2 Tail Latency Prediction Model . 7

2.3 Experimental Results . 10

2.3.1 Scenario 1: Subsystems . 10

2.3.2 Scenario 2: Simulated Systems . 12

2.3.3 Scenario 3: Real Scale-out Systems in Cloud 13

2.4 A General Model for Tail Latency Prediction 17

2.4.1 Scenario 1: Fixed Number . 19

2.4.2 Scenario 2: Discrete Uniform Distribution 19

2.4.3 Scenario 3: Discrete Triangular Distribution 21

vii

2.5 Facilitating Resource Provisioning . 23

2.6 Conclusions . 25

3 TAIL AND MEAN LATENCY PREDICTION FOR FORK-JOIN QUEUING NET-

WORKS . 26

3.1 Introduction . 26

3.2 The Analytical Model for Tail Latency Prediction 28

3.3 Evaluation of the Tail Latency Prediction Model 31

3.3.1 Scenario 1: Exponential Distribution 32

3.3.2 Scenario 2: Gamma Distribution . 33

3.3.3 Scenario 3: Truncated Pareto Distribution 34

3.3.4 Scenario 4: Weibull Distribution . 35

3.3.5 Scenario 5: Empirical Distribution 36

3.4 Approximation for Mean Latency . 38

3.4.1 Scenario 1: M/M/1 Queues . 42

3.4.2 Scenario 2: M/G/1 Queues . 44

3.5 Conclusions . 46

4 PERFORMANCE SCALING ANALYSIS OF SCALE-OUT APPLICATIONS . . 47

4.1 Introduction . 47

4.2 The Workload Model . 50

4.2.1 Without Queuing . 50

4.2.2 With Queuing . 54

4.2.3 Simulation-based Verification of the Proposed Approximation 60

viii

4.2.4 Speedup . 62

4.3 Case Study: Exponential Service Time Distribution 63

4.4 Conclusions . 72

5 CONCLUSIONS AND FUTURE WORK . 75

A MORE RESULTS FOR TAIL LATENCY PREDICTION IN CHAPTER 3 77

BIBLIOGRAPHY . 80

ix

LIST OF FIGURES

2.1 The task partitioning and merging model. 5

2.2 A subsystem as a black box. 7

2.3 Prediction errors for both model-based and hybrid subsystems with Round-

Robin (upper three plots) and redundant-task-issue (lower three plots) policies. 13

2.4 Prediction errors for systems composed of both model-based and hybrid non-

replicated subsystems. 13

2.5 Prediction errors for systems composed of both model-based and hybrid repli-

cated subsystems with Round-Robin (upper three plots) and redundant-task-

issue (lower three plots) policies. 14

2.6 Predicted tail latencies for keyword occurrence counts in Amazon cloud with

32 (left) and 64 (right) nodes. 15

2.7 Prediction errors for cloud testbeds with 32 (left) and 64 (right) nodes. . . . 16

2.8 Errors in the 99th percentile prediction when the number of tasks per job is

fixed. 20

2.9 Errors in the 99th percentile prediction when the number of tasks per job is

uniformly distributed. 21

2.10 A discrete symmetrical triangular distribution. 22

2.11 Errors in the 99th percentile prediction when the number of tasks per job is

triangularly distributed. 23

3.1 A system with n subsytems each viewed as an M/G/1 queuing model. 28

x

3.2 Exponential distribution: Errors in the 99th and 99.9th percentiles. 33

3.3 Gamma distribution: Errors in the 99th and 99.9th percentiles. 34

3.4 Truncated Pareto distribution: Errors in the 99th and 99.9th percentiles. . . 35

3.5 Weibull distribution: Errors in the 99th and 99.9th percentiles. 36

3.6 Empirical distribution: Errors in the 99th and 99.9th percentiles. 37

3.7 Exponential distribution: Comparison of mean response time approximation

techniques. 43

3.8 Gamma distribution: Comparison of mean response time approximation tech-

niques. 45

3.9 Weibull distribution: Comparison of mean response time approximation tech-

niques. 45

3.10 Truncated Pareto distribution: Comparison of mean response time approxi-

mation techniques. 45

3.11 Empirical distribution: Comparison of mean response time approximation

techniques. 46

4.1 A system model with a scale-out-induced stage (F), a map stage (P), and a

reduce stage (J). All the tasks belonging to a job need to be completed in the

map stage before the job can be sent to the reduce stage. 51

4.2 An equivalent queuing model for the system model in Fig. 4.1. 55

4.3 A proposed sequential queuing model with its service center is a pipeline of n

parallelizable stages and a sequential stage. 56

4.4 The scaling properties. 67

xi

4.5 Scenario 1: h(n) = n, v(n) = 1, and q(n) = 0.001n. 73

4.6 Scenario 2: h(n) = n, v(n) = 1, and q(n) = 0.005n. 74

4.7 Scenario 3: h(n) = n, v(n) = 1, and q(n) = 0.005n1.2. 74

xii

LIST OF TABLES

2.1 Estimated loads for the testing cluster based on request arrival rates. 16

3.1 Exponential distribution: Differences in the 99th and mean latency ratios . . 39

3.2 Gamma distribution: Differences in the 99th and mean latency ratios 39

3.3 Weibull distribution: Differences in the 99th and mean latency ratios 39

3.4 Truncated Pareto distribution: Differences in the 99th and mean latency ratios 40

3.5 Empirical distribution: Differences in the 99th and mean latency ratios . . . 40

3.6 Truncated Pareto distribution: Differences in the 99th and mean latency ratios

for different CVs. 40

3.7 Truncated Pareto distribution: The 99th and mean latency ratios at CV = 3.5 41

3.8 Truncated Pareto distribution: The 99th and mean latency ratios at CV = 6.0 41

3.9 An example lookup table for differences in the 99th percentile and mean la-

tency ratios . 42

4.1 Relative errors of the proposed approximation for exponential distribution. . 61

4.2 Relative errors of the proposed approximation for Weibull distribution. . . . 61

4.3 Relative errors of the proposed approximation for truncated Pareto distribution. 62

4.4 Relative errors of the proposed approximation for the empirical distribution. 62

A.1 Exponential distribution: Errors in the 99th percentiles 77

A.2 Exponential distribution: Errors in the 99.9th percentiles 77

A.3 Gamma distribution: Errors in the 99th percentiles 77

xiii

A.4 Gamma distribution: Errors in the 99.9th percentiles 78

A.5 Weibull distribution: Errors in the 99th percentiles 78

A.6 Weibull distribution: Errors in the 99.9th percentiles 78

A.7 Truncated Pareto distribution: Errors in the 99th percentiles 78

A.8 Truncated Pareto distribution: Errors in the 99.9th percentiles 79

A.9 Empirical distribution: Errors in the 99th percentiles 79

A.10 Empirical distribution: Errors in the 99.9th percentiles 79

xiv

LIST OF ABBREVIATIONS

BCMP A theorem developed by Baskett, Chandy, Muntz, and Palacios

CDF Cumulative Distribution Function

CV Coefficient of Variation

DAG Directed Acyclic Graph

FCFS First Come First Served

FJQN Fork-Join Queuing Network

IS Infinite Server

LCFS-PR Last-Come-First-Served - Preemptive Resume

OLDI Online Data-Intensive

PDF Probability Density Function

PS Processor Sharing

QoS Quality of Service

RR Round Robin

SLO Service Level Objective

VM Virtual Machine

xv

Chapter 1

INTRODUCTION

Scale-out applications have emerged to be the predominant datacenter workloads. They

can be broadly classified into two categories: latency-sensitive applications, a.k.a. online

data-intensive (OLDI) applications, e.g., web search, social networking, or machine transla-

tion, and throughput-oriented background batch applications, e.g., web indexing or offline

image processing [42]. Background batch applications usually have no strict quality-of-service

(QoS) constraints [42]. Latency-sensitive applications, on the contrary, provide user-facing

services that often require strict service level objectives (SLOs), e.g., responsiveness in sub-

second time scale with a minimum throughput guarantee [40,44]. Failure to meet SLOs even

with a small margin for user-facing workloads can result in significant customer churn rate

and hence revenue loss [14]. Due to the lack of a good understanding of how to translate

request SLOs into task budgets, or equivalently resources for task processing, a common

practice is to overprovision resources and isolate services to meet tight SLOs, at the cost of

low resource utilization, e.g., less than 50% CPU and memory utilizations [12,22,50]. Hence

a link between request SLOs and task budgets is needed to facilitate resource provisioning

for OLDI workloads.

Request processing in user-facing workloads may consist of one or more stages and gen-

1

erally involves a massive numbers of compute nodes for parallel data-intensive processing. A

critical building block in the request processing workflow is the Fork-Join structure, which

can be modeled as a Fork-Join queuing network [51]. The Fork-Join queuing network model

is found to be notoriously difficult to solve due to the involvement of task partitioning and

merging with barrier synchronization and queuing [51,55]. In this dissertation, we aim to de-

velop approximation models for the prediction of tail and mean latency for Fork-Join queuing

networks in a high load region, where resource provisioning is desirable. In particular, the

aim is to establish a link between request SLOs and task performance budgets, which can be

used to facilitate highly scalable, distributed resource provisioning for scale-out applications.

In what follows, we highlight the contributions of the work in this dissertation:

First, we propose a simple model for the prediction of tail latency of Fork-Join queuing

networks in a high load region. The model requires only mean and variance of response times

on a task processing node, which are used to approximate the response time distribution using

the generalized exponential distribution [27]. The request tail latency then can be derived

in a closed-form solution. The results show that the model gives accurate predictions for a

wide range of experimental settings, which yields errors within 10% for the 99th percentile

prediction at the load of 90%. We also extend the model for a more general case when each

request is forked to only a partial number of nodes in the system. The extended model also

gives accurate predictions for different distributions of the numbers of tasks per request,

including fixed number, discrete uniform and triangular distributions.

Second, we propose an empirical approach to estimate the mean response time for Fork-

Join queuing network based on the predicted tail latency and the tail weight of service time

distribution. The experimental results show that the approach gives accurate predictions for

2

various testing cases when the system is at high loads.

The above approximations for the tail and mean latency set the foundation for devel-

opment of SLO-guaranteed job scheduling and resource provisioning algorithms for both

user-facing interactive and background batch applications.

Finally, we put forward a framework for scaling analysis of scale-out applications. With

the proposed solution for mean latency approximation, we are able to derive a closed-form

solution for this framework. Preliminary analysis of the solution reveals the richness of the

scaling properties of scale-out applications.

The remainder of this dissertation is organized as follows. Chapter 2 proposes the pre-

diction models and analyzes the performance of tail latency prediction. Chapter 3 presents

an alternative analytical model for tail latency prediction and an empirical approach for

mean latency prediction. Chapter 4 introduces a framework for scaling analysis of scale-out

applications. Finally, chapter 5 makes concluding remarks and discusses our future research

plan.

3

Chapter 2

PREDICTION MODEL FOR TAIL LATENCY AT SCALE

2.1 Introduction

Scale-out, online-data-intensive (OLDI) workloads, such as web searching and social net-

working, provide user-facing services that involve a large number of servers for parallel pro-

cessing, while requiring sub-second request responsiveness under high incoming request rates.

The system running these workloads usually operates under stringent SLOs, such as imposing

a tight tail constraint on high percentile request response time, e.g., 99th or 99.9th-percentile,

to satisfy as many user requests as possible [20,40].

However, imposing tight tail SLO for OLDI workloads makes resource provisioning in

datacenter a challenging task. Due to the lack of good understanding of request tail be-

haviors, the current practice is to overprovision datacenter resources to meet SLO, at the

cost of low resource utilization, e.g., less than 50% CPU and memory utilizations [12,22,50].

Although resource provisioning proposals with tail SLOs in mind exist, they generally do

not incorporate tail SLOs explicitly as design constraints and rely on empirical data to

verify whether the design meets tail SLOs or not. For example, the resource provisioning

problem is formulated as the minimization of the variance of data flow path latency, as a

4

way to indirectly curtail the tail latency [32]; the target tail latency SLOs are tracked using

online dynamic feedback-loop-control-based schedulers [24, 62]; and employing job priority

and a rate limiting technique based on the network calculus theory [65]. The root cause of

the status quo is due to the lack of a link between system-level request tail SLOs and the

subsystem-level task performance requirements. The key difficulty lies in the fact that a

scale-out workload may involve task partitioning and merging as well as task queuing. Each

request in the request flow with average request rate λ involves tasks to be queued at and

processed by up to several thousands of task subsystems in parallel and then all the task

results are merged and returned, as depicted in Fig. 2.1a. Here a task subsystem may involve

multiple replicated servers for task-level fault tolerance and load balancing, e.g., Fig. 2.1b,

where λr = λ/3 in the case of load balancing. Notable examples are Web search engines [11]

and social networking [47]. In this case, the request response time is determined by the slow-

est task [20]. As the system scales out, the probability that the request response time may hit

the tail task latency quickly increases [20]. To date, no general results are available that can

predict the tail request response time at scale. This lack of understanding of request tail

λ

1

λ
i

N

λ

λ

λ λ

λ

λ

(a) A system with subsystems as black
boxes.

Dispatcher

λ

λ r

λ r

λ r

µr

µr

µr

λ

(b) A subsystem with one dispatcher
and three replicated servers.

Figure 2.1: The task partitioning and merging model.

behaviors is further exacerbated by the various task scheduling and tail-cutting techniques

5

being used in task processing. In particular, as an effective tail-cutting technique, replicated

servers in each subsystem are being used to allow redundant task issues to more than one

replicated server to be processed, with the earliest result returned and rest removed [20,61].

Although some analytic results are available on redundant task issues [26,48,63], they either

address only a single replicated server subsystem with exponential task service time distri-

bution only [26] or parallel request load balancing without task partitioning [48, 63]. The

task partitioning-and-merging part of a scale-out workload generally lies in the critical path

for request processing and constitutes a major part of request processing time and hardware

cost, e.g., more than two-third of the total processing time and 90% hardware cost for a

Web search engine [33]. Hence, it is of paramount importance to establish a link between

the system-level request tail SLOs and the subsystem-level task performance requirements

to facilitate explicitly tail-constrained resource provisioning at scale.

This chapter aims at tackling the above challenge. This is an extension of the work pre-

sented in [46]. It makes the following major contributions. First, by treating each subsystem

as a black box, we find that the tail behavior of a task mapped to a subsystem can be cap-

tured by a generalized exponential distribution function in the high load region, which uses

the mean and variance of the task response time as input. This black-box solution allows the

request distribution function and thus any given request tail SLOs to be explicitly expressed

as a function of the means and variances of the individual task response times as the system

scales out. Hence, in the case of homogeneous subsystems for parallel task processing, the

request tail SLO is only dependent on the mean and variance of the task response time for

tasks mapped to any given subsystem. Second, we generalize the model for the cases where

each request processing includes only a partial number of processing units in the system.

6

Finally, we discuss how the proposed request tail prediction model may be used to facilitate

highly scalable, explicitly tail-constrained resource provisioning using homogeneous virtual

machines (VMs) in a cloud environment.

The remainder of the chapter is organized as follows. Section 2.2 presents the prediction

model for tail latency. Section 2.3 shows experimental results for both simulated and real

systems. Section 2.4 introduces a general model for tail latency prediction. Section 2.5 dis-

cusses how the proposed model may facilitate tail-constrained resource provisioning. Finally,

Section 2.6 concludes the chapter.

2.2 Tail Latency Prediction Model

A system serving scale-out, OLDI workloads commonly involves a large number of task

subsystems for parallel processing. The diversity in the actual implementation of subsystems

makes it extremely difficult to predict the task performance, let alone the request perfor-

mance, in general. However, since the ultimate goal of this research is to be able to design

request scheduling algorithms that can meet stringent tail SLOs by proof of design, while

achieving high resource utilization, we are interested in the peak-load resource provisioning

in a high load region, e.g., 90% or higher. In this region, it is possible to predict the task per-

formance for a task mapped to a wide range of subsystems using a simple prediction model,

as we now explain. There is a large body of research results in the context of queuing

E[X], V[X]
λ λ

Figure 2.2: A subsystem as a black box.

7

performance in high load regions (e.g., see [52] and the references therein). In particular, a

classic result, known as the central limit theorem for heavy traffic queuing systems [34, 37],

states that for a G/G/m (here m is the number of servers) queue under heavy traffic load,

the waiting time distribution could be approximated by an exponential distribution. Clearly,

this theorem applies to the response time distribution as well, since the response time distri-

bution converges to the waiting time distribution as the traffic load increases. The intuition

behind this approximation is that in the high load region, the long queuing effect helps ef-

fectively smooth out service time fluctuations (i.e., the law of large numbers), which causes

the waiting time or response time to converge to a distribution closely surrounding its mean

value, i.e., the short-tailed exponential distribution, regardless of the actual arrival process

and service time distribution. Inspired by this result, in this paper, we treat any task subsys-

tem, e.g., the one in Fig. 2.1b, as a black box, given in Fig. 2.2. We further postulate that for

a task mapped to a black box subsystem and in the high load region, the task response time

distribution FX(x) for any arrival process can be approximated as a generalized exponential

distribution function [27], as follows,

FX(x) =

(1− e−x/β)α x > 0,

0 otherwise,

(2.1)

where α and β are the shape and scale parameters, respectively. The mean and variance of

the task response time are given by [27]

E[X] = β[ψ(α + 1)− ψ(1)], (2.2)

V[X] = β2[ψ′(1)− ψ′(α + 1)], (2.3)

where ψ(.) and its derivatives are the digamma and polygamma functions.

8

From Eqs. (2.2) and (2.3), it is clear that the distribution in Eq. (2.1) is completely

determined by the mean and variance of the task response time. The rationale behind

the use of this distribution, instead of the exponential distribution, is that it can capture

both heavy-tailed and short-tailed task behaviors depending on the parameter settings and

meanwhile, it degenerates to the exponential distribution at α = 1 and E[X] = β. As we shall

see in the following subsection, this distribution significantly outperforms the exponential

distribution in terms of tail latency predictive power for all the cases studied.

The implication of the above black box approximation is significant. It allows not only

the task performance of a task mapped to a diverse range of subsystems to be captured by

a unified distribution function, but also the request response time distribution and hence

the tail SLO for the entire task-partitioning-merging system to be derived. To see why this

is the case, one notes that with all the task subsystems in Fig. 2.1a being viewed as black

boxes, one effectively transforms the task-partitioning-merging problem into a split-and-

merge model [38] whose distribution function can be expressed as follows, assuming the task

response times for tasks mapped to different subsystems are independent random variables,

F(N)(x) =

∏N

i=1(1− e−x/βi)αi x > 0,

0 otherwise,

(2.4)

Now assume that the parallel subsystems are homogeneous, the distribution function can be

further simplified as,

F(N)(x) =

(1− e−x/β)Nα x > 0,

0 otherwise,

(2.5)

With Eq. (2.5), it can be easily shown that the pth percentile request response time xp can

9

be written as,

xp = −β log

(
1−

(p

100

) 1
Nα

)
(2.6)

Since xp is a function of α and β, which in turn, are functions of E[X] and V[X] of the task

response time (according to Eqs. (2.2) and (2.3)), a link between any given tail SLO in terms

of xp and p, and E[X] and V[X] is established. The implication of this result is significant.

On one hand, with any given tail SLO, the resulting E[X] and V[X] can serve as the task

response time budgets for highly scalable, distributed task-level resource provisioning. On

the other hand, with given measured task response time statistics in terms of E[X] and V[X],

whether the system meets the target tail SLO or not can be accurately predicted. In the

following section, we test the performance of this prediction model at the subsystem and

system levels, separately.

2.3 Experimental Results

In what follows, we assess the accuracy of our proposed prediction model on different

experiment settings, including a single simulated subsystem, a simulated system with and

without replication, and a real cloud testbed. The accuracy is given in the form of relative

error between the predicted result, tpred, and the simulated one, tsim, i.e.,

error =
100(tpred − tsim)

tsim
.

2.3.1 Scenario 1: Subsystems

In this section, we test the accuracy of the proposed prediction model against a wide

range of subsystems including pure model-based and hybrid measurement-and-model-based

10

subsystems. We also compare the accuracy of the model using the generalized exponential

distribution against that of the exponential distribution.

Consider a typical subsystem setup given in Fig. 2.1b. It includes a dispatcher and three

replicated servers. A task arriving at the subsystem is distributed to server replicas by a

dispatcher based on a predetermined policy. Each server replica can be viewed as an M/G/1

queuing system. Namely, for all the cases studied, the task arrival process is modeled as a

Poisson process, which is considered a good model for scale-out workloads [44]. Both model-

based and measurement-based service time distribution functions are considered, including

the following,

– Empirical distribution measured from a Google search test leaf node provided in [43],

which has a mean service time of 4.22ms, a coefficient of variance (CV) of 1.12, and

the largest tail value of 276.6ms;

– A heavy-tailed truncated Pareto distribution [5] with the same mean service time,

i.e., 4.22ms, and a CV of 1.2, resulting in the corresponding parameters: the shape

α = 2.0119, the lower bound L = 2.14ms, and the upper bound H = 276.6ms, which

is set at the same maximum value of the empirical distribution above.

– Weibull distribution [13] also with the same mean service time and a CV of 1.5, resulting

in the corresponding parameters: the shape parameter α = 0.6848 < 1, i.e., a heavy-

tailed distribution [13], and the scale parameter β = 3.2630.

We consider two task dispatching policies. The first policy is a simple and popular one,

known as the Round-Robin (RR) policy. In this policy, the dispatcher will send tasks to

different server replicas in an RR fashion. The second policy is still RR, but it also allows

11

redundant-task issue, a well-known tail-cutting technique [20, 61]. This policy allows one

or more replications of a task to be sent to different server replicas in the subsystem. The

replications may be sent in predetermined intervals to avoid overloading the server replicas.

In our experiments, at most one task replication can be issued, provided that the original one

does not finish within 10ms, which is around the 95th percentile of the empirical distribution

above.

We compare the simulated tail task response time against the one predicted by the pro-

posed prediction model, i.e., Eq. (2.1), which uses the simulated mean and variance of the

task response time as input. Fig. 2.3 presents the prediction errors for both the exponential

and generalized exponential distributions at the load of 90%. First, we note that the gener-

alized exponential distribution significantly outperforms the exponential distribution for all

the cases studied. Second, the prediction errors for the generalized exponential distribution

are consistently within 10% across the entire 95-99.9th percentile response time range, even

for the RR case without tail cutting. These results confirm our postulation that the gener-

alized exponential distribution function could accurately predict the task tail performance

in the high load region.

2.3.2 Scenario 2: Simulated Systems

In this section, we evaluate the accuracy of our prediction model as the system scales out.

We consider the task-partitioning-merging system in Fig. 2.1a withN = 10, 100, 500, and 1000

subsystems for all the previously studied model-based and hybrid subsystems. We also con-

sider the case when each subsystem has only one processing node, i.e., without replication

12

���

���

���

���

�

��

��

��

��

��	
�� ��	
�� ���	
��

�

�

�

�

�

�

�

�

�

����������	

���������	
�������	
����
�
���

�������� ���������

���

���

���

���

�

��

��

��

��

��	
�� ��	
�� ���	
��

�

�

�

�

�

�

�

�

�

����������	

��������	
������
��������
���	
�
���

�������� ���������

���

���

���

���

�

��

��

��

��

��	
�� ��	
�� ���	
��

�

�

�

�

�

�

�

�

�

����������	

���������	
�����������������

�������� ���������

���

���

���

���

�

��

��

��

��

��	
�� ��	
�� ���	
��

�

�

�

�

�

�

�

�

�

����������	

���������	
�������	
����
�
���

��������������� ����������������

���

���

���

���

�

��

��

��

��

��	
�� ��	
�� ���	
��

�

�

�

�

�

�

�

�

�

����������	

��������	
������
��������
���	
�
���

��������������� ����������������

���

���

���

���

�

��

��

��

��

��	
�� ��	
�� ���	
��

�

�

�

�

�

�

�

�

�

����������	

���������	
�����������������

��������������� ����������������

Figure 2.3: Prediction errors for both model-based and hybrid subsystems with Round-Robin
(upper three plots) and redundant-task-issue (lower three plots) policies.

���

���

���

���

���

�

��

��

��

��

��

�� �� 	�
�

�

�

�

�

�

�

�

�

�

��������

Empirical, no replica

������� �������� �������� ���������

���

���

���

���

���

�

��

��

��

��

��

�� �� 	�
�

�

�

�

�

�

�

�

�

�

��������

Truncated Pareto, no replica

������� �������� �������� ���������

���

���

���

���

���

�

��

��

��

��

��

�� �� 	�
�

�

�

�

�

�

�

�

�

�

��������

Weibull, no replica

������� �������� �������� ���������

Figure 2.4: Prediction errors for systems composed of both model-based and hybrid non-replicated
subsystems.

and dispatching policy. Fig. 2.4 and 2.5 present the prediction errors at different load levels

for the 99th percentile request response times for a system with non-replicated subsystems

and 3-replica subsystems, respectively. Again, for all the cases studied, the errors are within

10% at the load of 90%. Even at the load of 80%, the prediction errors are with 10% and

20% for the cases with and without tail cutting, respectively.

2.3.3 Scenario 3: Real Scale-out Systems in Cloud

In this section, we assess the accuracy of our proposed prediction model on a real scale-

out system with Amazon EC2 instances. We implemented a simple grep-like program on

13

���

���

���

���

���

�

��

��

��

��

��

�� �� 	�
�

�

�

�

�

�

�

�

�

�

��������

Empirical, 3-replica, Round-Robin

������� �������� �������� ���������

���

���

���

���

���

�

��

��

��

��

��

�� �� 	�
�

�

�

�

�

�

�

�

�

�

��������

Truncated Pareto, 3-replica, Round-Robin

������� �������� �������� ���������

���

���

���

���

���

�

��

��

��

��

��

�� �� 	�
�

�

�

�

�

�

�

�

�

�

��������

Weibull, 3-replica, Round-Robin

������� �������� �������� ���������

���

���

���

���

���

�

��

��

��

��

��

�� �� 	�
�

�

�

�

�

�

�

�

�

�

��������

Empirical, 3-replica, Redundant

������� �������� �������� ���������

���

���

���

���

���

�

��

��

��

��

��

�� �� 	�
�

�

�

�

�

�

�

�

�

�

��������

Truncated Pareto, 3-replica, Redundant

������� �������� �������� ���������

���

���

���

���

���

�

��

��

��

��

��

�� �� 	�
�

�

�

�

�

�

�

�

�

�

��������

Weibull, 3-replica, Redundant

������� �������� �������� ���������

Figure 2.5: Prediction errors for systems composed of both model-based and hybrid replicated
subsystems with Round-Robin (upper three plots) and redundant-task-issue (lower three plots)
policies.

Apache Spark framework (version 2.1.0) [2] that looks up a keyword in a set of documents

and returns a total number of lines containing that keyword. The testing cluster includes one

master node using an EC2 c4.4xlarge instance and 32 or 64 worker nodes using EC2 c4.large

instances. We used a subset of the English version of Wikipedia as the document for lookup.

Each worker node holds a shard of the document whose size is 128MB, corresponding to the

default block size on HDFS (Hadoop Distributed File System) [1]. A client program sends

a flow of keywords, each randomly sampled from a pool of 50000 keywords, to the testing

cluster for lookup. Each worker searches through its corresponding data block to find the

required keyword and counts the number of lines containing the keyword. The line count is

then sent back to the client program to sum up. The time to merge partial counts at the

client program is negligible compared to the searching time. Therefore, this testing setup is

similar to the framework we are considering in this chapter.

We measured the request response time, i.e., the time to process each keyword, at the

client. We also collected the task response times at each worker. Note that the task response

14

3 3.5 4 4.5 5 5.5
0

5000

The 95.0th percentile - 32-c4large

Experiment Average CDF Individual CDF

3 3.5 4 4.5 5 5.5

La
te

nc
y

(m
s)

0

5000

The 99.0th percentile - 32-c4large

Arrival rate (requests/s)
3 3.5 4 4.5 5 5.5

0

5000

The 99.9th percentile - 32-c4large

3 3.5 4 4.5 5 5.5
0

5000

The 95.0th percentile - 64-c4large

Experiment Average CDF Individual CDF

3 3.5 4 4.5 5 5.5

La
te

nc
y

(m
s)

0

5000

The 99.0th percentile - 64-c4large

Arrival rate (requests/s)
3 3.5 4 4.5 5 5.5

0

5000

The 99.9th percentile - 64-c4large

Figure 2.6: Predicted tail latencies for keyword occurrence counts in Amazon cloud with 32 (left)
and 64 (right) nodes.

time is a summation of task waiting time and service time at each worker. The waiting time

for a task is counted from the time the task’s request is sent to the cluster to the time it is

sent to a given worker for processing. The task service time is the actual processing time

for the task at a given worker. From those collected samples, we computed the mean and

variance of task response time, which were in turn used to derive the task response time

distribution as in Eq. (2.1). The distributions from different workers might not be identical

due to, e.g., uneven documents in data blocks or a bit variations in hardware, even with the

same type of EC2 instances. Therefore, we calculated the request response time distribution

using the inhomogeneous case given in Eq. (2.4), i.e., a product of individual distributions

from the workers. We also compared the results with the assumption that the task response

time distributions from all the workers are identical by computing the distribution from

mean and variance of task response times across all the workers.

Figs. 2.6 shows a comparison of the latencies predicted from our proposed model against

those from the experiments. The inhomogeneous model (the blue lines) gives a quite accurate

15

Arrival rate (requests/s)
3.0 3.5 4.0 4.5 5.0 5.5

E
rr

or
 (

%
)

-10

-5

0

5

10

15

20

25

30
Errors in the 99.0th percentile - 32-c4large

Arrival rate (requests/s)
3.0 3.5 4.0 4.5 5.0 5.5

E
rr

or
 (

%
)

-10

-5

0

5

10

15

20

25

30
Errors in the 99.0th percentile - 64-c4large

Figure 2.7: Prediction errors for cloud testbeds with 32 (left) and 64 (right) nodes.

prediction for the 95th, 99th, and 99.9th percentiles in both cluster settings, 32 and 64 worker

nodes, while the homogeneous model (the green lines) only provides a good approximation

for the 95th percentile and becomes worse when the cluster is under high load condition. The

approximation errors for the 99th are within 10% when the system is at high loads as shown

in Fig. 2.7. Note that we used the arrival rates on the horizontal axis based on the rates we

sent requests to the testing cluster from the client program. We also measured the actual

task processing time, i.e., task service time, on each worker while running experiments. Since

the task service time distributions are likely not homogeneous, we estimated the equivalent

loads for those arrival rates based on the maximum value of mean task service times across

all the workers as given in Table. 2.1. One can see that, similar to the theoretical results,

the prediction is more accurate when the cluster is at high loads.

Table 2.1: Estimated loads for the testing cluster based on request arrival rates.

Request arrival rates (requests/s)

#workers 3.0 3.5 4.0 4.5 5.0 5.5

32 48.33% 56.39% 64.44% 72.50% 80.56% 88.61%
64 50.04% 58.38% 66.72% 75.06% 83.40% 91.74%

16

2.4 A General Model for Tail Latency Prediction

In the above sections, we considered the cases where an incoming job is forked to all the

subsystems in the system. Here we look at a general case in which an incoming job is forked

to only k random subsystems (k ≤ n) out of n parallel subsystems in the system. This model

is suitable for modeling distributed key-value systems in which a key lookup may touch only

a partial number of servers, or web rendering which requires to receive web objects or data

from multiple servers in a cluster.

Let X and Y be random variables for job response time and number of forked tasks

per job with corresponding probability density functions fX(x) and fY (y), respectively. The

joint probability density function (PDF) of these two variables is given by

fXY (x, y) = fX|Y (x|y)fY (y) (2.7)

where fX|Y (x|y) is the conditional PDF of job response time given a number of forked tasks

per job, which is modeled as a generalized exponential distribution in this chapter.

In practice, one can assume that the number of forked tasks per job follows a discrete

distribution and is in an integer range. Therefore, we have,

fXY (x, y) = fX|Y (x|y)P (Y = y) (2.8)

It is easy to see that fXY (x, y) satisfies probability distribution properties, i.e., fXY (x, y) ≥

17

0 for all x, y and

∫
x

∫
y

fXY (x, y)dxdy =
∑
y

∫
x

fX|Y (x|y)P (Y = y)dx

=
∑
y

P (Y = y) (since

∫
x

fX|Y (x|y)dx = 1)

= 1

The marginal PDF with respect to X, i.e., job response time, is defined to be

fX(x) =
∑
y

fX|Y (x|y)P (Y = y) (2.9)

Similarly, the corresponding marginal cumulative distribution function (CDF) is given

by

FX(x) =
∑
y

FX|Y (x|y)P (Y = y) (2.10)

We further assume that the numbers of forked tasks per job are ki’s, i = 1, . . . ,m, in a

finite support [a, b] with corresponding probabilities Pi’s. Correspondingly, we have

FX(x) =
m∑
i=1

Pi · FX|Y (x|ki) (2.11)

In this general model, the effective arrival rate at each queuing subsystem reduces by a

factor of k/n. Therefore, to keep the same utilization at each subsystem as the above cases,

we increase the system arrival rate λ by a factor of n/k in the experiments.

In the following sections, we assess the accuracy of our general model for the scenar-

ios where the number of tasks is fixed, uniformly distributed, and triangularly distributed.

We show the experimental results for the non-replicated systems with 100 and 1000 nodes

with three different service time distributions, including exponential, truncated Pareto, and

empirical distribution.

18

2.4.1 Scenario 1: Fixed Number

In this case, we consider the cases when the number of forked tasks per job is a fixed

number k (k ≤ n), i.e., every incoming job is dispatched to k random nodes in an n-node

system.

From Eqs. (2.5) and (2.11), we have

FX(x) = (1− e−x/β)kα (2.12)

and its mean and the pth percentile are given by

E[X] = β[ψ(kα + 1)− ψ(1)] , (2.13)

xp = −β log

(
1−

(p

100

)1/kα)
(2.14)

Fig. 2.8 shows relative errors in the approximation of the 99th percentile for this scenario.

Again, the model provides an accurate prediction at high load conditions

2.4.2 Scenario 2: Discrete Uniform Distribution

Here we deal with the cases when an incoming job is forked to k random nodes in

the system where k is randomly sampled from an integer range [a, b], i.e., ki ∈ [a, b] with

probability Pi = P ∀i.

From Eqs. (2.5) and (2.11), we have

FX(x) = P ·
m∑
i=1

(1− e−x/β)kiα (2.15)

19

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Exponential distribution - 100 nodes - 99.0th percentile

10 tasks
50 tasks
90 tasks

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Exponential distribution - 1000 nodes - 99.0th percentile

100 tasks
500 tasks
900 tasks

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Truncated Pareto distribution - 100 nodes - 99.0th percentile

10 tasks
50 tasks
90 tasks

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Truncated Pareto distribution - 1000 nodes - 99.0th percentile

100 tasks
500 tasks
900 tasks

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Empirical distribution - 100 nodes - 99.0th percentile

10 tasks
50 tasks
90 tasks

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Empirical distribution - 1000 nodes - 99.0th percentile

100 tasks
500 tasks
900 tasks

Figure 2.8: Errors in the 99th percentile prediction when the number of tasks per job is fixed.

and its mean and the pth percentile are given by

E[X] = P ·
m∑
i=1

β[ψ(kiα + 1)− ψ(1)] , (2.16)

xp = F−1X (p/100) , (2.17)

where F−1X (.) is the inverse CDF of random variable X.

The experimental results provided in Fig. 2.9 again show the accuracy of the proposed

model for the system under heavy traffic, an interest region of resource provisioning.

20

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Exponential distribution - 100 nodes - 99.0th percentile

Uniform(10,30)
Uniform(40,60)
Uniform(80,100)

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Exponential distribution - 1000 nodes - 99.0th percentile

Uniform(80,120)
Uniform(400,600)
Uniform(800,1000)

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Truncated Pareto distribution - 100 nodes - 99.0th percentile

Uniform(10,30)
Uniform(40,60)
Uniform(80,100)

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Truncated Pareto distribution - 1000 nodes - 99.0th percentile

Uniform(80,120)
Uniform(400,600)
Uniform(800,1000)

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Empirical distribution - 100 nodes - 99.0th percentile

Uniform(10,30)
Uniform(40,60)
Uniform(80,100)

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Empirical distribution - 1000 nodes - 99.0th percentile

Uniform(80,120)
Uniform(400,600)
Uniform(800,1000)

Figure 2.9: Errors in the 99th percentile prediction when the number of tasks per job is uniformly
distributed.

2.4.3 Scenario 3: Discrete Triangular Distribution

In this scenario, we consider the case in which probability of number of forked tasks

per job may vary. In particular, we assume it follows a discrete symmetrical triangular

distribution [3] as in Fig. 2.10 with an integer support, i.e., ki ∈ [a, b] with probability

21

Pi = P (ki) for i = 1, . . . ,m,

P (ki) =

dl(ki − a+ 1) a ≤ ki ≤ c ,

dr(b− ki + 1) c < ki ≤ b ,

(2.18)

where c is the mode of the distribution, dl and dr are chosen so that

b∑
ki=a

P (ki) = 1 and dl(c− a+ 1) = dr(b− c+ 1) (2.19)

For the symmetrical triangular distribution, i.e., c− a = b− c, given a, b, and c we can

derive

dl = dr = d =
1

(c− a+ 1)2
(2.20)

d

a c b

P(ki)

ki

Figure 2.10: A discrete symmetrical triangular distribution.

From Eqs. (2.5) and (2.11), we have

FX(x) =
m∑
i=1

P (ki) · (1− e−x/β)kiα , (2.21)

where P (ki) is calculated from Eq. (2.18).

The mean and the pth percentile job response time are given by

E[X] =
m∑
i=1

P (ki) · β[ψ(kiα + 1)− ψ(1)] , (2.22)

xp = F−1X (p/100) (2.23)

In line with the previous case studies, the experimental results here show an accurate

prediction for the 99th percentile at high load regions.

22

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Exponential distribution - 100 nodes - 99.0th percentile

Triangular(10,20,30)
Triangular(40,50,60)
Triangular(80,90,100)

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Exponential distribution - 1000 nodes - 99.0th percentile

Triangular(80,100,120)
Triangular(400,500,600)
Triangular(800,900,1000)

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Truncated Pareto distribution - 100 nodes - 99.0th percentile

Triangular(10,20,30)
Triangular(40,50,60)
Triangular(80,90,100)

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Truncated Pareto distribution - 1000 nodes - 99.0th percentile

Triangular(80,100,120)
Triangular(400,500,600)
Triangular(800,900,1000)

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Empirical distribution - 100 nodes - 99.0th percentile

Triangular(10,20,30)
Triangular(40,50,60)
Triangular(80,90,100)

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Empirical distribution - 1000 nodes - 99.0th percentile

Triangular(80,100,120)
Triangular(400,500,600)
Triangular(800,900,1000)

Figure 2.11: Errors in the 99th percentile prediction when the number of tasks per job is trian-
gularly distributed.

2.5 Facilitating Resource Provisioning

In this section, we discuss how the above prediction models may be used to facilitate

highly scalable, explicitly tail-constrained resource provisioning. For ease of discussion, we

use the following example scenario as a guide throughout the discussion. Assume that a

content service provider wants to outsource its OLDI scale-out services to a cloud service

provider. With a given size of parallel searchable database D (e.g., an entire index as in

23

a Web search engine) and monetary budget C, the content service provider wants to know

whether or not the service to be deployed may sustain R requests per second, while meeting

the tail SLO, i.e., the pth-percentile request response time of L ms.

An ad hoc approach is to immediately deploy the service to a certain scale and at run-

time, scale out/up or down the system dynamically in a pay-as-you-go manner to meet the

performance targets or monetary budget. Without an initial estimation, however, such ap-

proaches run the risk of either over budgeting or failing to meet SLO and/or targeted request

throughput performance. Moreover, using the pay-as-you-go service for dynamic resource

provisioning is generally much more expensive than static resource reservation for resource

planning [10]. Given the sheer size of the system to be deployed, it is of paramount impor-

tance to develop an offline, highly scalable resource provisioning approach that can provide

a quick initial assessment of whether the performance targets and monetary budget can be

met or not.

The idea of our approach is sketched by the following tail-constrained resource provision-

ing procedure, in the context of the above example scenario:

– For a desired type of VMs with, e.g., given CPU speed, memory size, and pricing

model, build a replicated server cluster subsystem in the cloud using m (two to three)

VMs by replicating a portion of the total database, i.e., D/N , to all the VM replicas,

where N , an integer value, may be selected in such a way that D/N can fit comfortably

in the memory in each VM;

– Measure the mean and variance of task response time in the cluster running a task

scheduling policy, at desired task rate λ = R;

24

– Find the parameters of the generalized exponential distribution in Eq. (2.1) by plugging

in the measured mean and variance task latency into Eqs. (2.2) and (2.3), respectively;

– Estimate the pth-percentile request response time xp based on Eq. (2.6);

– Finally, xp is compared against L and the total cost for running N VM clusters with

m each is compared against the associated budget C, to see if both the tail SLO

and monetary budget are met. If both are met, a feasible tail-constrained resource

provisioning is found. Otherwise, the performance targets and/or budget are revised

and then rerun the procedure. Note that if xp is found well below L, one may consider

reducing N and/or m and see if it is still below L. This iterative testing can help

minimize the cost.

2.6 Conclusions

This chapter proposed elegant prediction models for the tail SLOs of scale-out appli-

cations involving task-partitioning-merging. The required inputs to the prediction models

are only the mean and variance of task response times for a task mapped to a subsystem.

The experimental results showed that the proposed models yield accurate predictions with

errors consistently within 10% at the server loads of 90% or higher, providing a much needed

prediction tool to facilitate tail-constrained resource provisioning for scale-out applications.

25

Chapter 3

TAIL AND MEAN LATENCY PREDICTION FOR FORK-JOIN

QUEUING NETWORKS

3.1 Introduction

The Fork-Join queuing networks have been studied extensively in the literature. To date,

the exact solution exists for a two-way network only [25, 45]. Most of work primarily focus

on the approximation of mean response time [6, 38, 45, 58] and its bounds [8, 18]. Several

works dealt with the approximation of response time distribution assuming a simple queuing

model for each forked node, e.g., M/M/1 [9] or M/M/k [36]. For networks with general service

time distribution, several works have introduced hybrid approaches that combine analysis

and simulation to derive the approximation for mean response time [17,45,56]. Please refer

to [55] and references therein for a detailed survey on Fork-Join queuing networks. In the

following, we highlight several analytical and hybrid approaches for mean response time

approximation.

Nelson and Tantawi [45] introduced a hybrid approach for the approximation of mean

response time, Rn, of the Fork-Join network with n M/M/1 queues (2 ≤ n ≤ 32) based on

26

the exact solution for the two-way network [25],

Rn ≈
[
Hn

H2

+

(
1− Hn

H2

)
4ρ

11

](
12− ρ

8

)
(µ− λ)−1 , n ≥ 2 , (3.1)

where µ is the mean service rate of each queue, λ is the arrival rate, ρ = λ/µ is the utilization

on each queue, and Hn is the nth harmonic number, Hn =
n∑
i=1

1

i
.

Another approximation for the Fork-Join network with M/M/1 queues was derived based

on light and heavy traffic condition [59],

Rn ≈

[
Hn +

((
n∑
i=1

(
n

i

)
(−1)i−1

i∑
m=1

(
i

m

)
(m− 1)!

im+1

)
−Hn

)
λ

µ

]
(µ− λ)−1 , (3.2)

In [4], the authors presented an approximation based on the response time optimistic

and pessimistic bounds,

Rn ≈

[
Hn +

ρ

2(1− ρ)

(
n∑
i=1

1

i− ρ
+ (1− 2ρ)

n∑
i=1

1

i(i− ρ)

)]
1

µ
. (3.3)

In a recent work [38], a simulation study has assessed the accuracy of the approximation

based on order statistic [57]. For M/M/1 queues, it showed that the approach is overestimat-

ing and worse than those from Eqs. (3.1)–(3.3). The approach works better for the queues

with general service time distribution, i.e., M/G/1 queues.

In this chapter, we present an analytical approach for prediction of tail and mean latency

for Fork-Join queuing networks with arbitrary service time distributions for the fork nodes.

We first formalize the prediction model for tail latency using M/G/1 queuing model for each

subsystem. We then propose an empirical method for the approximation of mean latency

based on the tail latency prediction and observations from the ratios between tail (e.g., the

99th percentile) and mean latency. These approximations will allow scaling properties of

scale-out data-intensive applications to be studied, as we shall show in the next chapter.

27

3.2 The Analytical Model for Tail Latency Prediction

Here we consider a Fork-Join queuing network as in the previous chapter but each sub-

system is now viewed as an M/G/1 queuing model as in Fig. 3.1. We assume that the job

arrival is a Poisson process with mean arrival rate λ and the service times follow a general

distribution to capture different underlying subsystems. Now our goal is to find the job

response time distribution for the Fork-Join queuing model in Fig. 3.1. Finding this distri-

bution will then allow tail and mean job response times to be calculated. To this end, we

first need to find the task response time distribution for each Fork node in Fig. 3.1, denoted

as FXi(xi) for i = 1, ..., n. Then assuming Xi’s are independent random variables, the job

response time distribution is given as

FY (y) =
n∏
i=1

FXi(xi) (3.4)

So now the key is to find FXi(xi).

λ

λ

λ

λ

λ

λ

λ

λ

1

i

n

Figure 3.1: A system with n subsytems each viewed as an M/G/1 queuing model.

Consider a single subsystem, modeled as an M/G/1 queuing model. Let W , S, and X

denote its waiting time, service time, and response time random variables, respectively. We

28

have,

X = W + S

since W and S are independent and mean and variance of the response time are thus given

as

E[X] = E[W] + E[S] ,

V[X] = V[W] + V[S] .

From Takács recurrence theorem [35], the kth moment of the waiting time can be com-

puted by

E[W k] =
λ

1− ρ

k∑
i=1

(
k

i

)
E[Si+1]

i+ 1
E[W k−i]

Using this theorem, the following relations can be derived

E[W] =
λE[S2]

2(1− ρ)
=
ρE[S]

1− ρ

(
1 + C2

S

2

)
,

E[W 2] = 2E[W]2 +
λE[S3]

3(1− ρ)
,

V[W] = E[W 2]− E[W]2 = E[W]2 +
λE[S3]

3(1− ρ)
,

E[X] = E[W] + E[S] = E[S]

(
1 +

ρ

1− ρ
· 1 + C2

S

2

)
, (3.5)

V[X] = V[W] + V[S] = E[W]2 +
λE[S3]

3(1− ρ)
+ E[S2]− E[S]2, (3.6)

where E[Sk] the kth moment of the service time and C2
S = V[S]/E[S]2 is the squared coeffi-

cient of variation of service times.

In principle, the response time distribution can be derived by using inverse Laplace

transform but it is generally difficult to find the exact closed-form solutions. We propose to

approximate the task response time distribution using a generalized exponential distribution

29

[27] similar to the approximation used in the previous chapter,

FX(x) = (1− e−x/β)α , (3.7)

where α and β are shape and scale parameters, respectively.

The mean and variance of this distribution are given by

E[X] = β[ψ(α + 1)− ψ(1)] , (3.8)

V[X] = β2[ψ′(1)− ψ′(α + 1)] , (3.9)

where ψ(.) and its derivative are digamma and polygamma functions.

The CDF of job response time Y of a homogeneous n-node network can then be written

as,

FY (y) = (FX(x))n = (1− e−y/β)nα (3.10)

and its mean and variance are given to be

E[Y] = β[ψ(nα + 1)− ψ(1)] , (3.11)

V[Y] = β2[ψ′(1)− ψ′(nα + 1)] , (3.12)

The pth percentile of the response time can be derived from Eq. (3.10) as

yp = −β log

(
1−

(p

100

)1/nα)
(3.13)

The approach taken here differs from the one used in the previous chapter in that it

requires to collect only service time samples. This can be done by sending jobs to a testing

subsystem one by one and collecting the processing time for each job. In this way, the

approach does not depend on the traffic pattern of the job flow coming to the system.

30

In summary, the steps to obtain the pth percentile of job response times for a system

with a given task service time distribution are as follows,

– Compute the mean, variance, and third moment for the given task service time distri-

bution or empirical data.

– Find the mean and variance of task response times from Eqs. (3.5) and (3.6)

– Substitute the above mean and variance into (3.8) and (3.9) and solve that system

of equations to find the scale and shape parameters of the generalized exponential

distribution used to approximate the task response time distribution.

– Calculate mean, variance, and the pth percentile of job response times from Eqs. (3.11),

(3.12), and (3.13), respectively.

3.3 Evaluation of the Tail Latency Prediction Model

In this section, we test the proposed approximation model for tail latency with different

service time distributions, including light-tailed, heavy-tailed, and empirical distributions,

as in chapter 2. The mean service time is set to 4.22ms, which is based on the empirical

distribution, for all the distributions under study. Specifically, the following distributions

are considered:

– A light-tailed exponential distribution (CV = 1.0) (scenario 1)

– A light-tailed Gamma distribution (CV = 0.8) (scenario 2)

– A heavy-tailed truncated Pareto distribution (CV = 1.20) (scenario 3)

– A heavy-tailed Weibull distribution (CV = 1.50) (scenario 4)

31

– A heavy-tailed Empirical distribution measured from a Google search test leaf node

(CV = 1.12) (scenario 5)

For all the cases, we show the relative error of the predicted result, tpred, against the

simulation one, tsim, i.e.,

error =
100(tpred − tsim)

tsim
.

3.3.1 Scenario 1: Exponential Distribution

The CDF is defined as [13]

FS(s) = 1− e−µs , (3.14)

where µ is the mean service rate (µ > 0).

The response time distribution is a closed form, which is given by [13]

FX(x) = (1− e−µ(1−ρ)x) , (3.15)

i.e., for this case, α = 1 and β = 1/µ(1− ρ) when compared with Eq. (3.7).

Substituting into Eqs. (3.11) and (3.13), we have,

E[Y] =
1

µ(1− ρ)
[ψ(n+ 1)− ψ(1)] =

1

µ(1− ρ)
Hn , (3.16)

yp = − 1

µ(1− ρ)
log

(
1−

(p

100

)1/n)
, (3.17)

where Hn is the nth harmonic number, Hn =
n∑
k=1

1

k
.

Fig. 3.2 shows the relative errors of the 99th and 99.9th percentiles calculated from the

prediction model to the ones from simulation. The model yields a very good approximation

for the tail latencies for all the cases under study, with all the errors being within 7%.

32

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Exponential distribution: Errors in the 99.0th percentiles

10-node
100-node
500-node
1000-node

(a) The 99th percentiles

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Exponential distribution: Errors in the 99.9th percentiles

10-node
100-node
500-node
1000-node

(b) The 99.9th percentiles

Figure 3.2: Exponential distribution: Errors in the 99th and 99.9th percentiles.

3.3.2 Scenario 2: Gamma Distribution

Here we consider another light-tailed case, Gamma distribution with mean service time

m = 1.0 and coefficient of variation CS = 0.8. The CDF and PDF of the Gamma distribution

are defined as

CDF: FS(s) =
1

Γ(a)
γ(a,

s

b
) , (3.18)

PDF: fS(s) =
1

bΓ(a)

(s
b

)a−1
e−s/b , (3.19)

where Γ(.) is a Gamma function and a and b are shape and scale parameters, respectively.

The kth moment is given by

E[Sk] = bk · Γ(a+ k)

Γ(a)
(3.20)

From Eq. (3.20), the following relations can be derived

E[S] = ba , (3.21)

V[S] = b2a , (3.22)

E[S3] = b3 · Γ(a+ 3)

Γ(a)
= b3(a+ 2)(a+ 1)a . (3.23)

33

The prediction model yields a good approximation for tail latencies, the 99th and 99.9th

percentiles, as shown in Fig. 3.3.

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Gamma distribution: Errors in the 99.0th percentiles

10-node
100-node
500-node
1000-node

(a) The 99th percentiles

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Gamma distribution: Errors in the 99.9th percentiles

10-node
100-node
500-node
1000-node

(b) The 99.9th percentiles

Figure 3.3: Gamma distribution: Errors in the 99th and 99.9th percentiles.

3.3.3 Scenario 3: Truncated Pareto Distribution

The CDF and PDF of this distribution are given by [5]

CDF: FS(s) =

1− (L/s)a

1− (L/H)a
L ≤ s ≤ H,

0 otherwise,

(3.24)

PDF: fS(s) =

aLas−a−1

1− (L/H)a
L ≤ s ≤ H,

0 otherwise,

(3.25)

where α is shape parameter, L and H are lower and upper bound, respectively.

The kth moment can be derived as

E[Sk] =

∫ ∞
−∞

skfS(s)ds =
aLa

1− (L/H)a

∫ H

L

sk−a−1ds ,

=
La

1− (L/H)a
· a

a− k

(
1

La−k
− 1

Ha−k

)
for a 6= k (3.26)

34

Therefore, we have,

E[S] =
La

1− (L/H)a
· a

a− 1

(
1

La−1
− 1

Ha−1

)
a 6= 1 , (3.27)

E[S2] =
La

1− (L/H)a
· a

a− 2

(
1

La−2
− 1

Ha−2

)
a 6= 2 , (3.28)

V[S] = E[S2]− (E[S])2 , (3.29)

E[S3] =
La

1− (L/H)a
· a

a− 3

(
1

La−3
− 1

Ha−3

)
a 6= 3 . (3.30)

Fig. 3.4 shows the relative errors of the 99th and 99.9th of the prediction model. Similar

to the case in chapter 2, the model gives a good approximation when the system is under

heavy traffic, i.e., at load of 75% or more.

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Truncated Pareto distribution: Errors in the 99.0th percentiles

10-node
100-node
500-node
1000-node

(a) The 99th percentiles

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Truncated Pareto distribution: Errors in the 99.9th percentiles

10-node
100-node
500-node
1000-node

(b) The 99.9th percentiles

Figure 3.4: Truncated Pareto distribution: Errors in the 99th and 99.9th percentiles.

3.3.4 Scenario 4: Weibull Distribution

The CDF of Weibull distribution is defined as

FS(s) = 1− exp[−(x/b)a] s ≥ 0 (3.31)

where a and b are shape and scale parameter, respectively.

35

The kth moment is given by

E[Sk] = bk · Γ
(

1 +
k

a

)
(3.32)

From Eq. (3.32), we can derive the following relations,

E[S] = b · Γ
(

1 +
1

a

)
, (3.33)

V[S] = E[S2]− (E[S])2 = b2 ·

[
Γ

(
1 +

2

a

)
−
(

Γ

(
1 +

1

a

))2
]
, (3.34)

E[S3] = b3 · Γ
(

1 +
3

a

)
. (3.35)

Fig. 3.5 shows the relative errors of the 99th and 99.9th percentiles of the prediction

model. As in the previous chapter, the model provides an accurate prediction for tail latencies

for the entire range of study.

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Weibull distribution: Errors in the 99.0th percentiles

10-node
100-node
500-node
1000-node

(a) The 99th percentiles

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Weibull distribution: Errors in the 99.9th percentiles

10-node
100-node
500-node
1000-node

(b) The 99.9th percentiles

Figure 3.5: Weibull distribution: Errors in the 99th and 99.9th percentiles.

3.3.5 Scenario 5: Empirical Distribution

In this scenario, we consider the cases when one has only the empirical data collected from

a test subsystem, i.e., the service time distribution is unknown. Here we approximate the

first three moments of the underlying distribution using the corresponding sample moments.

36

Assume that there is a sequence of random variables, S1, S2, . . . , Sn, corresponding to the

empirical data values, s1, s2, . . . , sn. The kth sample moment, i.e., the kth moment about

origin, can be drawn from those data as

E[Sk] =
1

n

n∑
i=1

ski (3.36)

Given collected data samples, one can easily compute E[S], V[S] = E[S2] − E[S]2, and

E[S3] from Eq. (3.36).

Fig. 3.6 shows the relative errors of the 99th and 99.9th percentiles calculated from the

prediction model to the ones from simulation. Similar to the prediction in chapter 2, the

model yields a good approximation when the system is under heavy load, e.g., 80% or 90%.

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Empirical distribution: Errors in the 99.0th percentiles

10-node
100-node
500-node
1000-node

(a) The 99th percentiles

Load (%)
50 75 80 90

E
rr

or
 (

%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50
Empirical distribution: Errors in the 99.9th percentiles

10-node
100-node
500-node
1000-node

(b) The 99.9th percentiles

Figure 3.6: Empirical distribution: Errors in the 99th and 99.9th percentiles.

In summary, this analytical model yields accurate predictions for tail latencies, e.g., the

99th and 99.9th percentiles, in all the cases under study when the system is at high loads.

This agrees with the results in chapter 2. More detailed results for this model are given in

Appendix. A.

37

3.4 Approximation for Mean Latency

In this section, we present an empirical method for finding the approximation of mean

response time or latency in Fork-Join queuing networks. The approach is based on the obser-

vation on ratios of tail and mean latency. From the experiments of the tail latency prediction,

we found that the differences in those ratios between the ones from the prediction model and

from the experiments are almost constant across all the number of nodes under study when

the system is at high loads as shown in Tables. 3.1–3.5. As a result, the approximation of

mean response time can be computed by utilizing the results from the prediction model for

tail latency, e.g., the 99th percentile.

Let xgep and mge
p are the pth percentile and mean response time calculated from Eqs. (3.13)

and (3.11), respectively, and xp and mp are the predicted values of the pth percentile and

mean response time, respectively. From the observations, we have,

xp
mp

−
xgep
mge
p

= ∆ . (3.37)

Let Rge = xgep /m
ge
p . The mean response time can be predicted as follows,

mp =
xp

Rge + ∆
, (3.38)

where xp ≈ xgep at high loads, ∆ is the 99th/mean ratio difference between the experiment

and the prediction model. So, if we know ∆, we have mp. In other words, the key is how to

find ∆.

From Tables. 3.1–3.5, we also observed that there is a clear connection between the

distribution tail heaviness and the ratio differences, ∆’s. The differences are larger for light-

tailed distributions, e.g., Exponential or Gamma distribution, and smaller for heavy-tailed

38

ones, e.g., truncated Pareto or empirical distribution. To put it differently, this suggests that

the ∆ value is more dependent on the heaviness of the tail of a service time distribution and

much less on the actual distribution itself. This observation inspires us to further explore a

possible universal relationship between ∆ and the heaviness of the distribution’s tail.

Table 3.1: Exponential distribution: Differences in the 99th and mean latency ratios

Number of nodes

Load 100 200 300 400 500 600 700 800 900 1000

75% 0.488 0.489 0.479 0.487 0.484 0.486 0.497 0.487 0.479 0.492
80% 0.512 0.501 0.524 0.515 0.504 0.536 0.515 0.517 0.513 0.515
90% 0.538 0.534 0.593 0.569 0.551 0.553 0.570 0.568 0.558 0.565

Table 3.2: Gamma distribution: Differences in the 99th and mean latency ratios

Number of nodes

Load 100 200 300 400 500 600 700 800 900 1000

75% 0.628 0.647 0.631 0.639 0.628 0.629 0.643 0.637 0.649 0.636
80% 0.660 0.670 0.674 0.676 0.657 0.685 0.670 0.685 0.668 0.665
90% 0.732 0.766 0.745 0.728 0.754 0.732 0.707 0.730 0.746 0.728

Table 3.3: Weibull distribution: Differences in the 99th and mean latency ratios

Number of nodes

Load 100 200 300 400 500 600 700 800 900 1000

75% 0.239 0.237 0.233 0.237 0.235 0.233 0.230 0.239 0.230 0.234
80% 0.247 0.238 0.254 0.248 0.253 0.256 0.253 0.263 0.251 0.255
90% 0.288 0.278 0.302 0.299 0.280 0.323 0.301 0.287 0.286 0.308

To explore the relation between the ratio differences and service time distribution’s tail

heaviness, we further perform experiments on the truncated Pareto distribution with different

coefficient of variations, i.e., different tail heavinesses as shown in Table. 3.6. The mean

service time is set to 1.0 in all the experiments. Tables. 3.7 and 3.8 present the example

39

Table 3.4: Truncated Pareto distribution: Differences in the 99th and mean latency ratios

Number of nodes

Load 100 200 300 400 500 600 700 800 900 1000

75% 0.162 0.110 0.091 0.080 0.085 0.078 0.078 0.084 0.080 0.077
80% 0.147 0.116 0.119 0.107 0.109 0.104 0.105 0.108 0.095 0.106
90% 0.193 0.187 0.185 0.185 0.206 0.175 0.186 0.180 0.179 0.199

Table 3.5: Empirical distribution: Differences in the 99th and mean latency ratios

Number of nodes

Load 100 200 300 400 500 600 700 800 900 1000

75% 0.192 0.129 0.094 0.067 0.074 0.083 0.062 0.076 0.087 0.073
80% 0.180 0.112 0.109 0.099 0.093 0.092 0.097 0.098 0.091 0.102
90% 0.208 0.152 0.175 0.157 0.156 0.173 0.149 0.162 0.193 0.151

ratios calculated from the experiments with CV = 3.5 and CV = 6.0. From those tables,

one can see that when the service time distribution becomes heavier, e.g., corresponding to

CV ≥ 3.5, the ratio differences becomes very small compared to the ratios themselves. This

means that starting from that threshold, the mean latency can be estimated directly using

the one from the tail latency prediction model given in Eq. (3.11), i.e., ∆ ≈ 0.

Table 3.6: Truncated Pareto distribution: Differences in the 99th and mean latency ratios for
different CVs.

Coefficient of Variation (CV)

Load 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.0

75% 0.045 0.001 -0.016 -0.006 -0.012 -0.013 -0.013 -0.011 -0.017
80% 0.047 0.019 0.010 0.005 -0.005 0.002 -0.004 -0.009 -0.003
90% 0.120 0.065 0.048 0.046 0.035 0.003 0.004 0.012 -0.008

From all those observations, we propose an empirical approach to mean latency approx-

imation based on the tail heaviness of a given service time distribution. To measure the

tail heaviness, or equivalently, tail weight, we use Right Quantile Weight [15] which mea-

40

Table 3.7: Truncated Pareto distribution: The 99th and mean latency ratios at CV = 3.5

Number of nodes

Load 100 200 400 600 800 1000

75% 1.905 1.799 1.712 1.664 1.639 1.600
80% 1.877 1.784 1.694 1.657 1.619 1.607
90% 1.900 1.770 1.688 1.653 1.629 1.587

Table 3.8: Truncated Pareto distribution: The 99th and mean latency ratios at CV = 6.0

Number of nodes

Load 100 200 400 600 800 1000

75% 1.807 1.733 1.681 1.622 1.606 1.559
80% 1.845 1.707 1.678 1.596 1.602 1.581
90% 1.783 1.694 1.652 1.617 1.509 1.575

sures the tail heaviness on the right side of a distribution, the region of interest in all of our

experiments. This tail weight measure is defined to be

τ(F) =
F−1((1 + q)/2) + F−1((1− q)/2)− 2F−1(0.75)

F−1((1 + q)/2)− F−1((1− q)/2)
, (3.39)

where 0.5 < q < 1 and F−1(q) is quantile q of distribution F .

There is no optimal choice for q. The tail weight measure is less robust to outliers if the

selected value of q is too large, i.e., close to 1. Since we are studying the Fork-Join model

where the slowest task response time determines its job response time, the extreme values of

the service time distribution has a significant effect on the results. To capture the tail effect

but still retain a reasonable robustness, we select q = 0.99.

We now can build a two-dimension lookup table whose coordinates are tail weights and

utilizations, which should put the subsystems under heavy traffic to achieve more accurate

approximation. The more entries we have in the table the better approximation we can

achieve. However, for the purpose of evaluating the approximation, we leave out the distri-

41

butions in the tail latency prediction above as testing cases. That is, we build the lookup

table whose entries include only measures from exponential and truncated Pareto distribu-

tions in Table. 3.6 to capture both light-tailed and heavy-tailed distributions. An example

of the lookup table is given in Table. 3.9. Theoretically, one can build the table at a finer

degree, i.e., with as many entries as possible, to achieve better approximation.

Table 3.9: An example lookup table for differences in the 99th percentile and mean latency ratios

Tail weight

Load 0.703 0.918 0.935 0.949 0.960 0.969 0.977 0.983 0.989 0.997

75% 0.486 0.045 0.001 -0.016 -0.006 -0.012 -0.013 -0.013 -0.011 -0.017
80% 0.510 0.047 0.019 0.010 0.005 -0.005 0.002 -0.004 -0.009 -0.003
90% 0.575 0.120 0.065 0.048 0.046 0.035 0.003 0.004 0.012 -0.008

Steps to find the mean response time can be summarized as follows,

– Compute the 99th percentile and the ratio of the 99th percentile and mean latency

based on the approximation from the generalized exponential distribution in Eqs. (3.13)

and (3.11).

– With a given service time distribution and a desired load, calculate the distribution tail

weight from Eq. (3.39) and then select the closest entry or interpolate the 99th/mean

ratio difference from the lookup table.

– Approximate the mean response time using Eq. (3.38).

3.4.1 Scenario 1: M/M/1 Queues

The M/M/1 queuing model for each subsystem is often considered in analytical methods

for the approximation of mean response time of Fork-Join queuing networks [4, 25, 45, 59].

42

In this section, we compare our proposed approximation with the ones from Eq. (3.1) [45]

(named NT) and Eq. (3.3) [4] (named VMC). We also assess the accuracy of the direct

approximation based on the order statistic (named OS), i.e., as in Eq. (3.11). Due to

numerical issues with large n’s, we did not include the approximation from Eq. (3.2) in the

comparison. With small n’s, it is a little better than the one in Eq. (3.3) but not as good as

the approximation in Eq. (3.1).

Number of nodes
10 100 1000

E
rr

or
 (

%
)

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

Exponential distribution: Errors in mean latency prediction

Proposed
OS
NT
VMC

(a) Load of 80%

Number of nodes
10 100 1000

E
rr

or
 (

%
)

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

Exponential distribution: Errors in mean latency prediction

Proposed
OS
NT
VMC

(b) Load of 90%

Figure 3.7: Exponential distribution: Comparison of mean response time approximation tech-
niques.

Fig. 3.7 shows the comparison with n = 10, 100, 1000 at utilizations of 80% and 90%.

The approximation in Eq. (3.1) gives the best accuracy in this case study. The proposed

approach yield errors within 6.3% for all the cases studied and its accuracy is close to

that in Eq. (3.1). However, as we shall see, the approximation in Eq. (3.1) could not be

applied to general service time distributions other than exponential distribution. The direct

approximation based on the order statistic, i.e., without ratio offsets as in the proposed

approach, has the worst accuracy among all the cases under study. In this case, it is the

upper bound for the mean response time [55].

43

3.4.2 Scenario 2: M/G/1 Queues

In this case study, we consider non-exponential service time distribution for each queue.

In particular, we evaluate the accuracy of the proposed approach against the direct approxi-

mation based on the order statistic for Gamma, Weibull, truncated Pareto (with CV = 1.2,

which is not in the lookup table), and empirical distributions. We also include the ap-

proximations from Eqs. (3.1) and (3.3), which are tailored to the M/M/1 queues, just for

references to show that they are worse when applied to the queues with non-exponential

service time distributions.

The comparative results are shown in Fig. 3.8–3.11. From all those figures, one can

see that the approximations in Eqs. (3.1) and (3.3) cannot be applied to general service

time distributions. For truncated Pareto and empirical distributions, i.e., heavy-tailed, in

some cases, e.g., at the load of 80%, the direct approximation from order statistic yields

better accuracy than the proposed approach with ratio offset using the 99th percentile and

mean latency ratios. However, at the load of 90%, where the tail latency prediction is

more accurate, the proposed approach always gives better results. For less heavy-tailed

distributions, i.e, Gamma and Weibull, the proposed approximation yields the best results

for all the cases under study. Fortunately, the tail effect is a well-aware issue in datacenter

applications, so tail-cutting techniques are often utilized in datacenters to curb the tail

effects [20, 29, 33, 54, 61]. As a result, the effective service time distributions tend to be

less heavy-tailed. Therefore, the proposed approach shows a great potential to be applied

to the approximation of mean latency in datacenter applications, especially for resource

provisioning and scaling performance study, which are of our interest.

44

Number of nodes
10 100 1000

E
rr

or
 (

%
)

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

Gamma distribution: Errors in mean latency prediction

Proposed
OS
NT
VMC

(a) Load of 80%

Number of nodes
10 100 1000

E
rr

or
 (

%
)

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

Gamma distribution: Errors in mean latency prediction

Proposed
OS
NT
VMC

(b) Load of 90%

Figure 3.8: Gamma distribution: Comparison of mean response time approximation techniques.

Number of nodes
10 100 1000

E
rr

or
 (

%
)

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

Weibull distribution: Errors in mean latency prediction

Proposed
OS
NT
VMC

(a) Load of 80%

Number of nodes
10 100 1000

E
rr

or
 (

%
)

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

Weibull distribution: Errors in mean latency prediction

Proposed
OS
NT
VMC

(b) Load of 90%

Figure 3.9: Weibull distribution: Comparison of mean response time approximation techniques.

Number of nodes
10 100 1000

E
rr

or
 (

%
)

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

Truncated Pareto distribution: Errors in mean latency prediction

Proposed
OS
NT
VMC

(a) Load of 80%

Number of nodes
10 100 1000

E
rr

or
 (

%
)

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

Truncated Pareto distribution: Errors in mean latency prediction

Proposed
OS
NT
VMC

(b) Load of 90%

Figure 3.10: Truncated Pareto distribution: Comparison of mean response time approximation
techniques.

45

Number of nodes
10 100 1000

E
rr

or
 (

%
)

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

Empirical distribution: Errors in mean latency prediction

Proposed
OS
NT
VMC

(a) Load of 80%

Number of nodes
10 100 1000

E
rr

or
 (

%
)

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

Empirical distribution: Errors in mean latency prediction

Proposed
OS
NT
VMC

(b) Load of 90%

Figure 3.11: Empirical distribution: Comparison of mean response time approximation tech-
niques.

3.5 Conclusions

In this chapter, we proposed the analytical approaches for tail and mean latency pre-

diction. The tail latency prediction model is an alternate to the approach in chapter 2. It

models each subsystem in the system as an M/G/1 queue and provides an analytical solution

for the prediction. This approach requires a known service time distribution whose first three

moments exist or empirical data from a test subsystem for the calculation of the required

sample moments. The approach is highly suitable for offline resource provisioning as it is

independent of job flow traffic patterns. The mean latency prediction model is an empirical

approach based on the predicted tail latency. It also provides an accurate prediction for

mean latency when the system is under heavy traffic, especially for less heavy-tailed service

time distributions. This shows a great potential to be applied to datacenter applications,

which usually utilize tail-cutting techniques to reduce the tail effect.

46

Chapter 4

PERFORMANCE SCALING ANALYSIS OF SCALE-OUT

APPLICATIONS

4.1 Introduction

Today’s datacenter applications, such as search engine, social networking, data serving,

and media streaming, have to process big data sets and provide fast responses to user re-

quests. Therefore, they are scale out by design based on programming models, e.g., MapRe-

duce [21], Spark [2], or Dryad [31], to utilize resources at the scale of datacenters. Having

good understanding of scaling properties of such applications thus help users as well as

datacenter providers make use of resources more efficiently.

Unfortunately, traditional scaling laws for parallel computing, Amdahl’s law [7] and its

variants, e.g., Gustafson’s law [28] and Sun and Ni’s law [53], are no longer adequate to

characterize the scaling properties of datacenter applications. They primarily focus on the

workload space exploration. For instance, Amdahl’s law [7] captures the limitation of perfor-

mance scaling for fixed-size workload. It states that with given percentage of parallelizable

part of a fixed-size program, η, even with unlimited number of parallel processing units,

the speedup is fundamentally limited by 1/(1 − η). On the contrary, Gustafson’s law [28]

47

characterizes performance scaling for fixed-time workloads. That is, assuming that the par-

allelizable part of the program grows linearly with the number of parallel processing units,

the speedup grows unboundedly with the increasing number of parallel processing units. The

rationale behind Gustafson’s law is the observation that in practice, the problem size can be

expanded to make use of the increased resources. Sun and Ni’s law [53] on memory-bounded

speedup again predicts unbounded speedup, which applies to the problem whose size scales

to the total memory capacity. All of these laws consider only the scaling of the parallelizable

portion of the workload, which is called external scaling in this chapter, and assume the

serial portion unchanged. This assumption is inadequate for the scaling analysis of scale-out

applications since the serial portion, which corresponds to the merging of partial results from

the parallel tasks, may scale with the number of tasks or processing units, which is referred

to as internal scaling.

Also, the existing scaling laws did not consider overhead due to scaling out workload,

which is usually the case in scale-out applications due to task scheduling [30, 49, 60], data

block dispatching or update [19]. These overheads significantly limit the scalability of dis-

tributed programming frameworks, such as Hadoop [1] or Spark [2], which slow down the

speedup or even make it “negative” if the overhead dominates the speedup gain from work-

load parallelization. Several relevant works in the context of parallel computing have pointed

out the effective serial workload introduced by external scaling due to reduction operation [41]

or critical sections [23]. In [16], we generalized these effects using a queuing-network-based

analysis and showed that any resource access contention, whether it is a shared resource or

critical section, is guaranteed to induce an effective serial workload.

Moreover, the scaling models in the existing laws consider parallel tasks of the workload

48

as deterministic ones, assuming they are completed at the same time. In other words, they

did not take probabilistic nature, i.e., variations in task completion times, into account.

Datacenter applications usually need to be processed by multiple stages where the next

stage may not start until all the tasks from the previous stage finish. As a result, the job

response time at a given stage is determined by its slowest task, which is known as barrier

synchronization. A relevant work [64] showed that the accuracy of the speedup evaluation

is improved when incorporating this synchronization effect.

The above scaling factors were modeled without queuing effect and tested in [39]. It

showed that the proposed model is able to capture the scaling properties of various real scale-

out applications. However, this model only applies to workloads with a single job. In practice,

jobs or requests may be sent to a system for processing in a continuous flow with average

arrival rate λ. Therefore, jobs and their tasks need to be queued at corresponding nodes in

the system. The work in this chapter generalizes the model in [39] to incorporate all the

above scaling factors, i.e., the external scaling, internal scaling, and barrier synchronization

as well as the queuing effect at each processing node in the system. With the approximate

solution developed in chapter 3, we are able to derive a closed-form solution for this model.

This solution becomes more accurate as the load increases for heavy-tailed task service

time distributions and is accurate in the entire load range for light-tailed task service time

distributions. A case study is also given for the case where all the task service times are

exponentially distributed, i.e., light-tailed.

The remainder of this chapter is organized as follows. Section 4.2 proposes the workload

model for the scaling analysis. Section 4.3 presents an analytical model for a case study

with exponential service time distributions. Finally, Section 4.4 concludes the chapter and

49

discusses the future work.

4.2 The Workload Model

In this chapter, we consider a system modeling scale-out [21] applications as in Fig. 4.1.

The map stage is modeled as a n-node Fork-Join queuing network as in chapter 3 in which

each processing node can generally be modeled as a -/G/1 queuing model, i.e., an arbitrary

arrival process and general service time distribution with one service center. A job coming

to the system with an arrival rate of λ is forked into n map tasks. All the tasks belonging

to a job need to be completed in the map stage before the job can be sent to the reduce

stage, a.k.a barrier synchronization. We assume Dp,i(n) and Tp,i(n) are random variables

corresponding to the response time and service time of map task i, respectively. The reduce

stage, which merges partial results from the map stage, is modeled as a -/G/1 queuing

system with service time Ts(n), i.e., an arbitrary arrival process, general service times with

mean E[Ts(n)], and one service center. The additional queue, i.e., the first stage, represents

the effective workload corresponding to the scale-out overhead. It is modeled as an M/M/1

queuing system with mean service time E[To(n)] being proportional to the incurred overhead.

We assume the arrival of jobs at this node is a Poisson process, which was found to be

adequate for scale-out applications [44].

4.2.1 Without Queuing

Here we consider a special case when there is no queuing at each node in the system,

i.e., Dp,i(n) = Tp,i(n) ∀i in Fig. 4.1. This workload model and its scaling properties were

50

λ

λ

λ

λ

λ

λ

λ

λ λ

Dp,1(n)

Dp,i(n)

Dp,n(n)

DF(n) DP(n) DJ(n)

Barrier
sync.

1

i

n

Tp,1(n)

Tp,i(n)

Tp,n(n)

Ts(n)

JF

To(n)

Figure 4.1: A system model with a scale-out-induced stage (F), a map stage (P), and a reduce

stage (J). All the tasks belonging to a job need to be completed in the map stage before the job

can be sent to the reduce stage.

proposed and studied in [39], which are summarized in the following.

Assume that the map portion are homogeneous, i.e., all the map tasks have the same mean

processing time, E[Tp,i(n)] = E[Tp(n)] ∀i. The total procesing time for the parallelizable

portion of the workload,

Wp(n) = E

[
n∑
i=1

Tp,i(n)

]
= nE[Tp(n)] = E[Tp(1)]h(n)

Therefore, we have,

E[Tp(n)] =
E[Tp(1)]h(n)

n
, (4.1)

where E[Tp(1)] is the mean processing time for the parallelizable portion of the workload

when the system has only one processing node and h(n) is a scaling factor, which is called

external scaling factor [39]. In general, this scaling factor is linearly proportional to the

number of parallel nodes n.

51

Similarly, the total procesing time for the serial portion of the workload,

Ws(n) = E[Ts(n)] = E[Ts(1)]v(n), (4.2)

where E[Ts(1)] is the mean processing time for the serial portion of the workload when the

system has only one processing node and v(n) is a in-proportion scaling factor or internal

scaling factor [39]. This scaling factor is generally proportional to n due to the merging

process of partial results from the parallel stage.

The in-proportion scaling ratio is defined as,

ε(n) =
h(n)

v(n)
. (4.3)

When n becomes large, one can approximate ε(n) as follows,

ε(n) = αnδ, (4.4)

where α > 0. In general, one can assume δ ≤ 1 since h(n) is not scaled more than a linear

order of n and v(n) is not scaled down.

Moreover, when the system is scaled out, it may be induced an overhead due to task

scheduling [30, 60], data-block dispatching [49], data broadcast or parameter update [19].

This introduces an effective workload, Wo(n), to the overall workload, which is called scale-

out-induced workload. It should be proportional to the block size of the parallelizable work-

load and is defined as

Wo(n) = E[To(n)] =
Wp(n)

n
q(n) =

E[Tp(1)]h(n)

n
q(n) , (4.5)

where q(n) is called scale-out-induced scaling factor, which is a non-decreasing function of n

and equal to zero when n = 1.

52

Finally, due to the barrier synchronization and the randomness of task processing time,

the mean job response time is determined by the slowest task processing time, i.e., E[max{Tp,i(n)}].

The speedup with respect to processing time can be define as

Sd(n) =
Wp(n) +Ws(n)

E[max{Tp,i(n)}] +Ws(n) +Wo(n)

=
E[Tp(1)]h(n) + E[Ts(1)]v(n)

E[max{Tp,i(n)}] + E[Ts(1)]v(n) +
E[Tp(1)]h(n)

n
q(n)

=
ηh(n) + (1− η)v(n)

E[max{Tp,i(n)}]
E[Tp(1)] + E[Ts(1)]

+ (1− η)v(n) +
ηh(n)

n
q(n)

, (4.6)

where η is the percentage of the parallelizable portion of the job workload at n = 1, i.e.,

η =
Wp(1)

Wp(1) +Ws(1)
≡ E[Tp(1)]

E[Tp(1)] + E[Ts(1)]
. (4.7)

Consider a special case when all the parallel tasks are homogeneous and deterministic,

i.e.,

E[max{Tp,i(n)}] = E[Tp(n)] =
E[Tp(1)]h(n)

n
. (4.8)

Substituting Eqs. (4.8) and (4.7) into Eq. (4.6), we have,

Sd(n) =
ηh(n) + (1− η)v(n)

ηh(n)

n
+ (1− η)v(n) +

ηh(n)

n
q(n)

=
ηh(n) + (1− η)v(n)

ηh(n)

n
(1 + q(n)) + (1− η)v(n)

. (4.9)

Let v(n) = 1 and q(n) = 0, i.e., without considering the possible in-proportion and

scale-out-induced scaling, and,

h(n) =

1, for fixed-size workload,

n, for fixed-time workload,

g(n), for memory-bounded workload,

53

where g(n) is a scaling factor that is constrained by the total memory size.

The well-known scaling laws can be derived from the speedup in Eq. (4.9),

Sd(n) =

1
η

n
+ (1− η)

, Amdahl’s law,

ηn+ (1− η), Gustafson’s law,

ηg(n) + (1− η)

ηg(n)

n
+ (1− η)

, Sun-Ni’s law.

(4.10)

4.2.2 With Queuing

We now consider a case in which a flow of jobs comes into the system with average arrival

rate λ as in Fig. 4.1. Each node in the system thus needs a queue for jobs/tasks waiting for

processing. All the queuing disciplines are assumed to be First-Come-First-Served (FCFS).

In the following, we summarize the BCMP queuing networks [13] and its solution for an

open queuing network that is used to approximate the scale-out model for scaling analysis

later.

4.2.2.1 BCMP Queuing Networks

It was proven that for a large class of queuing networks known as the BCMP queuing

networks, closed-form solutions exist. This class of queuing networks permits arbitrary

network topologies, i.e., open, closed, and mixed networks, several job classes, different

queuing disciplines, and general service time distributions [13]. The following four types of

queuing nodes fulfill conditions for the BCMP networks:

– Type 1: -/M/m/FCFS (First-Come-First-Served),

54

– Type 2: -/G/1/PS (Processor Sharing),

– Type 3: -/G/∞ (IS - Infinite Server),

– Type 4: -/G/1/LCFS-PR (Last-Come-First-Served - Preemptive Resume).

For all four types, the hyphen symbols at the beginning simply mean that in a BCMP

queuing network, the arrival process to any queuing node may not be Poisson. Type 1

nodes have exponential service times, denoted as M , with m servers and First-Come-First-

Served queuing discipline. Symbol G in Types 2–4 means that the service time may follow

any distribution function. Type 3 nodes have infinite number of servers (IS) equivalent to

delay nodes. Type 2 and 4 nodes have Processor Sharing (PS) and Last-Come-First-Served

Preemptive Resume (LCFS-PR) queuing disciplines, respectively.

Consider an open queuing network with a single job class in Fig. 4.2. All the nodes in

this network satisfy the assumptions of the BCMP networks: -/M/1/FCFS for node 1 (F),

-/G/∞ for node 2 (P), and -/G/∞ for node 3 (J).

λ λλ

DF(n) DP(n) DJ(n)

PF J
λ

Figure 4.2: An equivalent queuing model for the system model in Fig. 4.1.

According to BCMP theorem [13], with a single job class, the mean number of jobs at

node i, for i = 1, 2, 3, is given by

Ki =
ρi

1− ρi
, (4.11)

55

where ρi is server utilization at node i,

ρi =
λ

µi
, (4.12)

where λ is the mean arrival rate to the network and µi is the mean service rate of node i.

The overall mean response time of the network can be derived using Little’s law as follows,

E[D(n)] =
K

λ
=

1

λ

3∑
i=1

Ki =
1

λ

3∑
i=1

ρi
1− ρi

. (4.13)

4.2.2.2 Sequential Model

For the speedup calculation, we need a sequential model as a reference. To build the

model, we assume that there is only one processing unit to handle the entire workload. This

is equivalent to the fact that all the tasks in the parallelizable portion are flattened out along

with the serial portion as described in Fig. 4.3.

1 2 n s

d(n)

E[Tp(n)] E[Tp(n)] E[Tp(n)] E[Ts(n)]λs λs

µ s
-1

Figure 4.3: A proposed sequential queuing model with its service center is a pipeline of n paral-
lelizable stages and a sequential stage.

One can view the service time for this queuing model as a sum of service times of in-

dividual tasks. According to Central Limit Theorem [57], as n becomes large, the service

time distribution can be approximated as a Normal distribution with mean and variance as

56

follows,

µ−1s = nE[Tp(n)] + E[Ts(n)] , (4.14)

σ2
s = nσ2

P + σ2
J , (4.15)

where µs is the mean service rate, σ2
P and σ2

J are variances of service times of the map and

reduce nodes, respectively.

Here we also assume that the arrival process is Poisson, the model thus can be viewed as

an M/G/1 queuing model with mean response time being given by [13]

E[d(n)] = µ−1s

(
1 +

ρs
1− ρs

· 1 + C2
s

2

)
= f(λs;µ

−1
s , σs), (4.16)

which is a function of the arrival rate or throughput λs and parameterized by µ−1s and σs,

where ρs = λsµ
−1
s is server utilization and C2

s = σ2
s/(µ

−1
s)2 is coefficient of variation of service

times.

4.2.2.3 Scale-out Model

We observe that the overall mean response time in Eq. (4.13) of the open queuing network

above can be viewed as a sum of mean response times from all the stages, i.e.,

E[D(n)] = E[DF (n)] + E[DP (n)] + E[DJ(n)] (4.17)

This observation suggest that the workload model in Fig. 4.1 can be simplified and approx-

imated by the open queuing network in Fig. 4.2 as explained below.

The first stage: M/M/1 queuing model

With the assumption that the arrival of jobs at the system is a Poisson process, the first

stage F in Fig. 4.1, representing the overhead due to scaling out the workload can be modeled

57

as an M/M/1 queuing model with its mean service time, i.e., E[To(n)], being proportional

to the incurred overhead. This correctly matches stage F in Fig. 4.2.

The mean response time of this stage is given as

E[DF (n)] =
µ−1F

1− ρF
, (4.18)

where µ−1F is the mean service time,

µ−1F = E[To(n)] =
E[Tp(1)]h(n)

n
q(n) . (4.19)

The second stage: -/G/∞ queuing model

Since scale-out-induced stage F is an M/M/1 queuing model, according to Burke’s the-

orem [57], its departure process is a Poisson process. Therefore, the arrival process at the

second stage is also a Poisson process. Accordingly, each node in this stage can be considered

an M/G/1 queuing system, i.e., Poisson arrival process with average rate λ and general ser-

vice times. This queuing network is equivalent to the Fork-Join queuing network considered

in chapter 3. We thus can utilize the approximation technique developed in chapter 3 to find

the mean response time of this stage. As a result, the whole map stage in Fig. 4.1 can be

simplified as a delay node, which can be approximated by a -/G/∞ queuing model as stage

P in Fig. 4.2. Note that the mean response time of this stage is calculated at given average

arrival rate λ. In other words, it is a function of λ.

Assume that the response time CDF of each node in this stage is approximated by a

generalized exponential distribution at given λ,

F P
X (x) = (1− e−x/β1)α1 , (4.20)

where α1 and β1 are shape and scale parameter, respectively. These two parameters can be

58

computed given the first three moments of Tp,i(n).

The mean response time of this stage can be approximated using the approach proposed

in chapter 3,

E[DP (n)] ≈ xp
Rge
P (n) + ∆

, (4.21)

where ∆ is the 99th/mean ratio difference between the experiment result and the prediction

model, which is looked up from a pre-built table based on the server utilization at each node

and the tail weight of service time distribution, and

xp ≈ xgep = −β1 log
(

1− q
1

nα1

)
with q = p/100 , (4.22)

Rge
P (n) =

xgep
E[Dge

P (n)]
=
− log

(
1− q 1

nα

)
ψ(nα1 + 1)− ψ(1)

. (4.23)

The third stage: -/G/∞ queuing model

The queuing model of stage J is similar to that of a node in stage P, which is a -/G/1

with the mean service time given as,

µ−1J = E[Ts(n)] = E[Ts(1)]v(n) . (4.24)

In general, the arrival process of this stage, which is the departure process from the second

stage, is not a Poisson one. However, here it is approximated as a Poisson process, i.e.,

becoming an M/G/1 queuing model. As one shall see from the extensive simulation-based

verification, the approximation is adequate to be used for performance scaling analysis.

We again approximate the response time distribution of this queue, i.e., M/G/1, using

the generalized exponential distribution as in chapter 3, assuming the first three moments

of Ts(n) exist,

F J
X(x) = (1− e−x/β2)α2 , (4.25)

59

Given this distribution, one can find its mean response time,

E[DJ(n)] = β2[ψ(α2 + 1)− ψ(1)] (4.26)

A special case when service time distribution G is exponential, we have,

F J
X(x) = 1− e−µJ (1−ρJ)x ,

E[DJ(n)] =
µ−1J

1− ρJ
.

With this approximation, similar to the map stage, this stage can be approximated as a

delay node, i.e., a -/G/∞ queuing model, where G is F J
X(x).

4.2.3 Simulation-based Verification of the Proposed Approximation

In this section, we evaluate the accuracy of the proposed approximation model through

simulation with different experimental settings. We run simulations for the system in Fig. 4.1

and compare the overall response times against the approximation using Eq. (4.17). For sim-

plicity, we assume both scale-out-induced and reduce stages are M/M/1 queuing models. We

run simulations with different service time distributions for the map stage’s nodes, including

– Exponential distribution: CV = 1.0,

– Weibull distribution: CV = 1.5,

– Truncated Pareto distribution: CV = 2.0,

– Empirical distribution: CV = 1.12.

Tables. 4.1–4.4 show the relative errors of the proposed approximation versus the sim-

ulated values. For all the cases, the mean service time of each node in the map stage is

60

considered to be one. The mean service times of scale-out-induced and reduce stages are

presented as factors relative to the one from the map stage. As one can see from these tables,

most cases have errors within 10%, especially at high loads since this mean latency approx-

imation is based on the tail latency prediction model which is more accurate at high loads.

This approximation model is adequate for performance scaling analysis, which is studied in

the next section.

Table 4.1: Relative errors of the proposed approximation for exponential distribution.

Mean service time

µF = 1.0 µF = 2.0 µF = 1.0 µF = 2.0 µF = 0.8 µF = 1.0 µF = 0.8
#nodes Load µJ = 1.0 µJ = 1.0 µJ = 2.0 µJ = 2.0 µJ = 1.0 µJ = 0.8 µJ = 0.8

100

50% 2.899 3.262 1.961 2.111 1.964 2.506 2.440
75% 4.418 4.810 3.274 3.182 3.055 4.319 4.050
80% 4.701 5.310 3.003 3.857 3.212 4.647 4.149
90% 5.367 5.625 2.466 3.684 3.077 4.466 3.389

1000

50% 4.209 4.672 3.313 3.666 2.877 3.608 3.462
75% 6.335 6.689 5.002 5.537 4.686 5.675 5.423
80% 6.641 7.190 5.119 5.786 4.326 6.269 5.582
90% 6.264 7.059 5.229 5.993 3.757 6.924 5.175

Table 4.2: Relative errors of the proposed approximation for Weibull distribution.

Mean service time

µF = 1.0 µF = 2.0 µF = 1.0 µF = 2.0 µF = 0.8 µF = 1.0 µF = 0.8
#nodes Load µJ = 1.0 µJ = 1.0 µJ = 2.0 µJ = 2.0 µJ = 1.0 µJ = 0.8 µJ = 0.8

100

50% -3.154 -3.333 -1.939 -2.222 -3.919 -4.664 -4.362
75% -1.132 -1.122 1.318 1.128 -2.069 -3.271 -3.232
80% -0.762 -0.493 1.550 1.733 -1.558 -3.019 -2.957
90% -0.477 -1.223 2.057 2.623 -0.961 -2.739 -2.358

1000

50% -5.179 -5.472 -4.357 -4.687 -7.236 -7.770 -7.616
75% -0.010 -0.399 1.786 1.571 -2.671 -3.624 -3.301
80% 0.689 0.480 2.613 2.653 -1.846 -2.832 -2.860
90% 1.254 1.326 2.912 3.254 -0.212 -1.348 -0.618

61

Table 4.3: Relative errors of the proposed approximation for truncated Pareto distribution.

Mean service time

µF = 1.0 µF = 2.0 µF = 1.0 µF = 2.0 µF = 0.8 µF = 1.0 µF = 0.8
#nodes Load µJ = 1.0 µJ = 1.0 µJ = 2.0 µJ = 2.0 µJ = 1.0 µJ = 0.8 µJ = 0.8

100

50% -10.016 -10.217 -5.909 -6.066 -9.847 -13.413 -13.192
75% -5.599 -5.805 -0.596 -0.487 -8.409 -14.476 -14.034
80% -4.169 -4.691 0.886 1.331 -7.760 -14.433 -13.932
90% -1.133 -2.541 4.867 4.586 -5.741 -15.213 -13.701

1000

50% -8.089 -8.412 -6.225 -6.403 -12.897 -14.201 -14.115
75% -0.940 -0.780 2.672 2.961 -4.301 -7.929 -7.578
80% -0.257 -0.159 3.809 4.223 -3.316 -7.436 -7.305
90% 1.630 2.010 6.254 7.418 -1.269 -8.495 -8.241

Table 4.4: Relative errors of the proposed approximation for the empirical distribution.

Mean service time

µF = 1.0 µF = 2.0 µF = 1.0 µF = 2.0 µF = 0.8 µF = 1.0 µF = 0.8
#nodes Load µJ = 1.0 µJ = 1.0 µJ = 2.0 µJ = 2.0 µJ = 1.0 µJ = 0.8 µJ = 0.8

100

50% -17.762 -18.764 -14.333 -15.356 -14.855 -18.501 -17.833
75% -16.816 -17.725 -12.706 -14.056 -17.527 -24.421 -22.942
80% -13.934 -14.809 -10.371 -11.273 -17.415 -25.038 -22.970
90% -0.761 -0.611 2.573 3.032 -15.173 -23.722 -20.488

1000

50% -37.472 -38.371 -36.848 -37.858 -40.467 -41.769 -41.088
75% -21.540 -22.446 -20.782 -21.615 -31.213 -33.301 -32.055
80% -16.284 -17.221 -15.215 -16.110 -28.517 -30.793 -29.417
90% -0.972 -1.266 1.987 2.274 -21.854 -24.861 -22.640

4.2.4 Speedup

The response time speedup can be defined as a ratio between the response time of the

sequential model and that of the scale-out model at a given arrival rate λ0 for both models,

i.e.,

Sd(n) =
E[d(n)]

E[D(n)]

∣∣∣∣
λ=λs=λ0

=
E[d(n)]

E[DF (n)] + E[DP (n)] + E[DJ(n)]

∣∣∣∣
λ=λs=λ0

, (4.27)

62

where E[d(n)], E[DF (n)], E[DP (n)], and E[DJ(n)] are given in Eqs. (4.16), (4.18), (4.21), and

(4.26), respectively. Note that for the stability of queuing model, the arrival rate is limited

by the service rate, i.e., the utilization ρ0 must be less than one (0 ≤ ρ0 < 1). Also, the

arrival rate for the sequential model is usually much less than that for the scale-out model.

Therefore, the response time speedup in Eq. (4.27) is calculated with λ0 ranging from zero

to maximum possible value for the sequential model λmax
0 (λmax

0 < µs). The response time

for the sequential model is not defined beyond λmax
0 . It means that, to achieve a system

throughput beyond the service rate limit of the sequential model, scaling out the workload

is the only way to go.

The throughput speedup is defined as a ratio of the throughput of the scale-out model

and that of the sequential model at a given response time or latency constraint d0 ,

Sλ(n) =
λ

λs

∣∣∣∣
d=D=d0

=
g−1(E[D(n)])

f−1(E[d(n)])

∣∣∣∣
d=D=d0

, (4.28)

where f−1(.) and g−1(.) are the inverse functions of the mean response times of the sequential

and scale-out models, respectively. Since the mean response time of the sequential model is

usually larger than that of the scale-out model, we use it as a reference in the throughput

speedup calculation. Note that its value is at least the mean service time, i.e., d0 ≥ µ−1s .

4.3 Case Study: Exponential Service Time Distribution

Consider the case in which all the service times at the queuing nodes are exponentially

distributed.

The latency speedup is calculated at the same arrival rate, λ0, for both sequential and

63

scale-out model,

Sd(n) =
E[d(n)]

E[D(n)]

∣∣∣∣
λ=λs=λ0

=
E[d(n)]

E[DF (n)] + E[DP (n)] + E[DJ(n)]

∣∣∣∣
λ=λS=λ0

(4.29)

The sequential model

From Eq. (4.14) and (4.16), the response time for the sequential model is given by

E[d(n)] = µ−1s

(
1 +

ρ0
1− ρ0

· 1 + C2
s

2

)
= (nE[Tp(n)] + E[Ts(n)])

(
1 +

ρ0
1− ρ0

· 1 + C2
s

2

)
, (4.30)

where ρ0 = λ0µ
−1
s is the server utilization (0 ≤ ρ0 < 1).

The corresponding arrival rate λ0 can be written as,

λ0 =
ρ0
µ−1s

=
ρ0

nE[Tp(n)] + E[Ts(n)]
, (4.31)

which is a function of n and depends on the workload type under study, e.g., fixed-size

or fixed-time workload. In what follows, we use this arrival rate for the calculation of the

response time of the scale-out model as well as the response time speedup.

The scale-out model

From Eqs. (4.17), (4.18), (4.19), (4.21), (4.24), (4.26), and (4.31), we can derive the

64

following relations,

E[D(n)] = E[DF (n)] + E[DP (n)] + E[DJ(n)] (4.32)

E[DF (n)] =
µ−1F

1− ρF
=

µ−1F
1− λ0µ−1F

=
E[Tp(n)]q(n)

1− ρ0E[Tp(n)]q(n)

nE[Tp(n)] + E[Ts(n)]

=
E[Tp(n)]q(n) · (nE[Tp(n)] + E[Ts(n)])

nE[Tp(n)]

(
1− ρ0

q(n)

n

)
+ E[Ts(n)]

(4.33)

E[DJ(n)] =
µ−1J

1− ρJ
=

µ−1J
1− λ0µ−1J

=
E[Ts(n)]

1− ρ0E[Ts(n)]

nE[Tp(n)] + E[Ts(n)]

=
E[Ts(n)] · (nE[Tp(n)] + E[Ts(n)])

nE[Tp(n)] + E[Ts(n)](1− ρ0)
(4.34)

E[DP (n)] =
xp

Rge
P (n) + ∆

which can be calculated using the proposed approximation method in chapter 3,

xp ≈ xgep = − 1

µP − λ0
log
(
1− q1/n

)
with q = p/100 ,

E[Dge
P (n)] =

1

µP − λ0
Hn ,

Rge
P (n) =

xgep
E[Dge

P (n)]
=
− log(1− q1/n)

Hn

,

E[DP (n)] =
xp

Rge
P (n) + ∆

=
µ−1P · Cpar
1− λ0µ−1P

=
E[Tp(n)] · Cpar

1− ρ0E[Tp(n)]

nE[Tp(n)] + E[Ts(n)]

=
E[Tp(n)] · Cpar · (nE[Tp(n)] + E[Ts(n)])

nE[Tp(n)]
(

1− ρ0
n

)
+ E[Ts(n)]

(4.35)

where

Cpar =
− log

(
1− q1/n

)
− log

(
1− q1/n

)
Hn

+ ∆

, (4.36)

where ∆ is the 99th/mean ratio difference between the experiment result and the prediction

model which is looked up from a pre-built table and Hn is the nth harmonic number, Hn =

65

n∑
k=1

1

k
. Note that when n becomes large, Cpar is proportional to Hn, which slowly increases

with n.

Substituting Eqs. (4.30)–(4.36) into (4.29), we have,

Sd(n) =

(
1 +

ρ0
1− ρ0

· 1 + C2
s

2

)/
(

E[Tp(n)]q(n)

nE[Tp(n)]

(
1− ρ0

q(n)

n

)
+ E[Ts(n)]

+
E[Tp(n)] · Cpar

nE[Tp(n)]
(

1− ρ0
n

)
+ E[Ts(n)]

+
E[Ts(n)]

nE[Tp(n)] + E[Ts(n)](1− ρ0)

)
(4.37)

Note that

E[Tp(n)] =
E[Tp(1)]h(n)

n

E[Ts(n)] = E[Ts(1)]v(n)

η =
E[Tp(1)]

E[Tp(1)] + E[Ts(1)]

ε(n) =
h(n)

v(n)
= αnδ with α > 0 and δ ≤ 1

Substituting into Eq. (4.37) and divide both numerator and denominator of each term in

the denominator of Eq. (4.37) by (E[Tp(1)] + E[Ts(1)])v(n), the response time speedup can

be rewritten as follows,

Sd(n) =

(
1 +

ρ0
1− ρ0

· 1 + C2
s

2

)/
(

ηαnδ · q(n)

n

ηαnδ
(

1− ρ0
q(n)

n

)
+ (1− η)

+
ηαnδ · Cpar

n

ηαnδ
(

1− ρ0
n

)
+ (1− η)

+
(1− η)

ηαnδ + (1− η)(1− ρ0)

)
(4.38)

66

With this general speedup, one can explore the scaling properties of a system on its entire

design space. Here we present insights of several limiting cases from this general speedup.

Case 1: ρ0 = 0

This corresponds to the case when there is no queuing at all the nodes in the system.

One can easily see that Eq. (4.38) degenerates to

Sd(n) =
ηαnδ + (1− η)

ηαnδ · q(n)

n
+ ηαnδ · Cpar

n
+ (1− η)

=
ηαnδ + (1− η)

ηαnδ
(
q(n)

n
+
Hn

n

)
+ (1− η)

(4.39)

whose scaling properties has been studied in [39].

We now study the effect of the in-proportion or internal scaling without the scale-out-

induced scaling, i.e., q(n) = 0. The scaling properties of these cases are shown as three solid

curves in Fig. 4.4 as explained below.

�

� �
�
�

�
�

������

���� � �� � � � � �	
�������������

���� � �� � � � � �	
�������������

���� � �� � � �	 ������������� �	
� � � �

�
�

��� � �
�

��
�
�

�

�

� � �	
� � � � �
�

�

��������� �� � ��

���� � �� � � ��

��

�
�

�� �

Figure 4.4: The scaling properties.

67

Case 2: q(n) = 0; 0 < δ ≤ 1

The response time speedup can be rewritten as,

Sd(n) =

(
1 +

ρ0
1− ρ0

· 1 + C2
s

2

)/
(

ηαnδ · Cpar
n

ηαnδ
(

1− ρ0
n

)
+ (1− η)

+
(1− η)

ηαnδ + (1− η)(1− ρ0)

)
. (4.40)

Due to the barrier synchronization, i.e., the scaling factor Cpar, this speedup scales with n

slower than the one stated out in the Gustafson’s law but still sublinearly fast and unbounded

since Cpar grows “slower” than n and

lim
n→∞

Sd(n) =

(
1 +

ρ0
1− ρ0

· 1

2

)
· n

Cpar
=∞ .

One can see that when n is large, the effect of ρ0 on the two terms in the denominator of

Eq. (4.40) is very small, i.e., not much different from the case without queuing, while factor

ρ0
1−ρ0 in the nominator has a larger impact when ρ0 becomes large, e.g., when ρ0 = 0.99,

ρ0
1−ρ0 = 99. This mean that the speedup with queuing effect grows faster than that without

queuing effect when ρ0, equivalently the throughput, becomes large.

Result 1: Without scale-out-induced scaling, the speedup is unbounded for in-proportion

scaling with 0 < δ ≤ 1 and grows faster than that for the case without queuing effect when

the throughput becomes large.

68

Case 3: q(n) = 0; δ = 0

This represents the case where the external and internal scaling, i.e., h(n) and v(n), grow

at the same order of “rate”. The response time speedup can be rewritten as,

Sd(n) =

(
1 +

ρ0
1− ρ0

· 1 + C2
s

2

)/
(

ηα · Cpar
n

ηα
(

1− ρ0
n

)
+ (1− η)

+
(1− η)

ηα + (1− η)(1− ρ0)

)
. (4.41)

We have,

lim
n→∞

Sd(n) =

(
1 +

ρ0
1− ρ0

· 1

2

)
(1− η)

ηα + (1− η)(1− ρ0)

=

(
1 +

ρ0
2(1− ρ0)

)
ηα

1− η
+
(

1− ρ0
2

)
=

(
ηα

1− η
+ 1

)
+

(
ηα

1− η
· ρ0

2(1− ρ0)
− ρ0

2

)
. (4.42)

The speedup grows with increasing n but is eventually upper bounded by the term on

the right-hand side of Eq. (4.42) as the case of Amdahl’s law [7] but now depends not only

on the serial portion but also the system throughput. The first term in the upper bound in

Eq. (4.42) corresponds to the case without queuing, which degenerates to the Amdahl’s law

when α = 1. With queuing, this upper bound may increase or decrease depending on ρ0,

equivalently the throughput. When ρ0 >
1−η(1+α)

1−η , the bound increases and vice versa. For

example, when η = 0.9, α = 0.1, and ρ0 = 0.99, the second term in Eq. (4.42) approximates

44.

Result 2: Without scale-out-induced scaling, the speedup is upper-unbounded for in-proportion

69

scaling at δ = 0 and the upper bound is greater than that for the case without queuing effect

when the throughput becomes large.

Case 4: q(n) = 0; δ < 0

We have,

lim
n→∞

Sd(n) =

(
1 +

ρ0
1− ρ0

· 1

2

)
1

1− ρ0

= 1− ρ0
2
< 1 (4.43)

For this case, the speedup increases with n but eventually will drop back to a value less

than one, depending on the system throughput. This differs from the case without queuing

effect where this bound is one.

Result 3: Without scale-out-induced scaling and for in-proportion scaling with δ < 0 there

exists a scale-out degree threshold, beyond which the speedup decreases and approaches a value

less than one, which is the lower bound for the case without queuing effect.

We now consider the effect of the scale-out-induced scaling on the speedup, i.e., when

q(n) > 0. For the stability of the queuing model corresponding to the scale-out-induced

70

stage, the utilization on this stage must be less than one, i.e.,

ρ0E[Tp(n)]q(n)

nE[Tp(n)] + E[Ts(n)]
< 1

ρ0ηαn
δ · q(n)

n
< ηαnδ + (1− η)

q(n) <
n

ρ0
+

(1− η)

ρ0ηα
· n1−δ (4.44)

This suggests that q(n) should not scale faster than n when δ ≥ 0 or faster than n1−δ

when δ < 0. Not complying with this condition makes the scale-out-induced stage become

a bottleneck, meaning that the overhead due to scaling out dominates the scaling gain and

pulls the speedup down to zero quickly.

Case 5: q(n) > 0; δ > 0

If q(n) scales at the order of “rate” smaller than n, symbolized by q(n) ≺ n, we have,

lim
n→∞

Sd(n) =

(
1 +

ρ0
1− ρ0

· 1

2

)
· n

q(n) + Cpar
=∞ (4.45)

With the effect of the scale-out-induced stage, the speedup is pulled down a bit but still

grows unboundedly with increasing n, as shown in the linear dashed line in Fig. 4.4.

If q(n) scales at the same order of “rate” as n, symbolized by q(n) ∼ n, the scale-out-

induced scaling has an effect similar to a sequential portion, which places an upper bound

on the speedup. This case is similar to case 3 above and is not shown in Fig. 4.4.

Case 6: q(n) > 0; δ < 0

If q(n) scales at the order of “rate” less than n1−δ, symbolized by q(n) ≺ n1−δ, from

Eq. (4.38), the effect of q(n) is the same as that of Cpar. As a result, the speedup is upper

71

bounded by the serial portion as case 3 above.

If q(n) scales at the same order of “rate” as n1−δ, symbolized by q(n) ∼ n1−δ, the speedup

grows with n but beyond a certain point, it decreases and approaches a lower bound when

n becomes large. This bound is even less than
(

1− ρ0
2

)
as in case 4. This speedup is

illustrated as the dashed curve in Fig. 4.4.

Result 4: With δ < 0 and q(n) ∼ n1−δ, there exists a scale-out degree threshold, beyond

which the speedup decreases and approaches zero.

The derivation of the throughput speedup in Eq. (4.28) is much more involved. We leave

it for our future work. Figs. 4.5–4.7 show the throughput speedup numerically with several

different experimental settings. Scenario 1’s settings are similar to the case of Gustafson’s

law plus a small effect of the scale-out-induced stage. As with Gustafson’s law, we obtain a

linear speedup for the throughput in this case. Scenario 2 has the same setting as scenario

1 but with more effect on the scale-out-induced scaling. One can see that the throughput

speedup is upper bounded when n becomes large. In scenario 3, we assume the scale-out-

induced scaling grows with a rate greater than n. As a result, there exist certain thresholds

beyond which the speedup starts dropping.

4.4 Conclusions

In this chapter, we put forward a framework for scaling performance analysis of datacenter

applications. It took into account the effect of overhead due to scaling out, referred to as the

72

100
80

60

Latency

40

Throughput speedup

20
00Number of nodes

500

600

1200

400

0

200

1000

800

1000

S
pe

ed
up

Figure 4.5: Scenario 1: h(n) = n, v(n) = 1, and q(n) = 0.001n.

scale-out-induced scaling and the scaling of the serial portion of the workload, referred to as

the in-proportion scaling. The framework generalized the work in [39] to deal with the case

when there is queuing effect at each node in the system. We showed the effect of queuing

on scaling factors as well as the bounds of the speedup through several limiting case studies.

This is a work in progress. We presented here an analytical solution for the response time

speedup for a special case when all the queues have exponential service times. In our future

work, we plan to explore the framework with other types of service time distribution and

test it numerically through simulation-based and measurement-based systems. We also plan

to derive an analytical solution for the throughput speedup.

73

100
80

60

Latency

40

Throughput speedup

20
00Number of nodes

500

0

150

50

100

200

250

1000

S
pe

ed
up

Figure 4.6: Scenario 2: h(n) = n, v(n) = 1, and q(n) = 0.005n.

100

Latency

50

Throughput speedup

00
200

400

Number of nodes

600
800

1000

80

60

100

20

0

120

40

S
pe

ed
up

Figure 4.7: Scenario 3: h(n) = n, v(n) = 1, and q(n) = 0.005n1.2.

74

Chapter 5

CONCLUSIONS AND FUTURE WORK

This dissertation developed approximation solutions for prediction of the tail and mean

latency of the Fork-Join queuing network, a critical structure in the workflow of scale-out

applications. The Fork-Join models are known to be hard to analyze due to the involvement

of task partitioning and merging with barrier synchronization. The proposed models specif-

ically targeted at high load region, where resource provisioning is desirable. The accuracy

of the tail and mean latency predictions were shown through extensive experiments with

different settings, which yields errors consistently within 10% at the load of 90%. Hence the

proposed approximations provide viable tools for resource provisioning of scale-out applica-

tions with multiple constraints, i.e., multiple SLOs.

The dissertation also introduced a framework for scaling analysis of scale-out applica-

tions. With the proposed models, closed-form solutions were found, upon which rich scaling

properties for scale-out applications can be explored. A case study with exponential task

service times is also presented.

Our future work will focus on further testing and perfecting the proposed solutions in-

cluding,

– Testing the tail and mean latency prediction models in a testbed for various scale-out

75

applications.

– Developing SLO-guaranteed job scheduling and resource provisioning algorithms based

on the proposed solutions.

– Deriving an analytical solution for the throughput speedup for scaling analysis as well

as carrying out simulation-based and measurement-based testing for the framework.

76

Appendix A

MORE RESULTS FOR TAIL LATENCY PREDICTION IN CHAPTER 3

Table A.1: Exponential distribution: Errors in the 99th percentiles

Number of nodes

Load 100 200 300 400 500 600 700 800 900 1000

50% 2.156 2.466 2.432 2.951 3.087 3.275 3.213 3.184 3.390 3.542
75% 3.240 3.973 4.900 4.849 5.174 5.283 4.466 5.095 5.883 5.365
80% 3.647 5.226 4.182 5.149 5.893 4.485 5.637 5.472 6.053 5.430
90% 6.214 6.927 4.247 5.948 6.766 6.569 5.860 5.828 6.746 6.799

Table A.2: Exponential distribution: Errors in the 99.9th percentiles

Number of nodes

Load 100 200 300 400 500 600 700 800 900 1000

50% 0.781 0.303 0.462 1.072 1.176 1.283 1.098 0.747 1.141 1.341
75% 1.108 1.319 1.960 1.298 1.316 1.442 0.644 2.654 2.571 1.593
80% 1.975 2.912 1.103 2.513 3.801 0.509 2.598 1.608 3.416 2.171
90% 3.412 3.168 1.411 2.624 4.111 3.583 2.110 2.924 3.029 3.802

Table A.3: Gamma distribution: Errors in the 99th percentiles

Number of nodes

Load 100 200 300 400 500 600 700 800 900 1000

50% 2.373 2.873 3.231 3.703 4.042 3.975 3.911 4.052 4.443 4.395
75% 4.977 4.893 6.797 6.309 7.295 7.539 7.084 7.476 6.899 7.925
80% 6.182 6.333 6.756 7.435 8.363 6.982 8.340 7.972 8.500 9.338
90% 7.318 7.352 8.695 9.565 9.090 10.301 11.704 10.672 9.421 10.722

77

Table A.4: Gamma distribution: Errors in the 99.9th percentiles

Number of nodes

Load 100 200 300 400 500 600 700 800 900 1000

50% -0.062 -0.444 0.325 0.643 0.886 0.749 0.353 0.090 1.220 1.025
75% 2.720 0.565 2.247 1.973 2.204 3.313 0.384 1.926 1.124 3.258
80% 2.494 0.546 2.358 3.450 3.432 1.831 4.476 2.034 3.971 4.686
90% 2.833 -2.801 3.869 1.715 3.496 3.852 6.938 5.529 1.393 2.649

Table A.5: Weibull distribution: Errors in the 99th percentiles

Number of nodes

Load 100 200 300 400 500 600 700 800 900 1000

50% -2.920 -3.181 -3.401 -3.640 -3.811 -3.854 -3.809 -3.906 -3.915 -3.831
75% 2.458 2.759 3.161 2.874 2.959 3.397 3.203 2.995 3.356 3.188
80% 3.138 3.968 3.315 3.581 3.456 3.000 3.334 2.532 4.024 3.597
90% 2.411 4.155 2.806 3.528 3.906 1.731 2.946 4.062 4.501 3.168

Table A.6: Weibull distribution: Errors in the 99.9th percentiles

Number of nodes

Load 100 200 300 400 500 600 700 800 900 1000

50% -4.202 -4.372 -5.131 -4.876 -5.011 -5.252 -5.237 -5.459 -4.750 -5.291
75% 2.199 2.835 2.162 0.665 3.003 3.351 1.938 2.396 2.382 1.560
80% 2.337 4.374 2.050 2.124 2.899 2.103 1.483 1.711 3.386 2.020
90% 2.790 5.735 3.927 0.734 2.412 -1.028 3.799 4.796 5.333 0.591

Table A.7: Truncated Pareto distribution: Errors in the 99th percentiles

Number of nodes

Load 100 200 300 400 500 600 700 800 900 1000

50% -34.300 -32.360 -31.420 -31.359 -31.308 -31.654 -31.199 -31.718 -31.687 -32.008
75% -14.476 -14.842 -14.768 -14.732 -15.205 -14.936 -15.057 -15.236 -15.083 -14.916
80% -10.078 -10.377 -11.229 -10.677 -11.008 -10.558 -10.689 -10.842 -10.131 -10.754
90% -1.157 -0.974 -1.263 -1.025 -1.888 -0.047 -1.010 -0.553 -0.765 -1.769

78

Table A.8: Truncated Pareto distribution: Errors in the 99.9th percentiles

Number of nodes

Load 100 200 300 400 500 600 700 800 900 1000

50% -32.559 -33.060 -33.806 -33.995 -34.230 -34.772 -33.508 -34.759 -34.314 -34.500
75% -14.714 -15.475 -15.453 -15.278 -16.604 -14.997 -14.242 -15.442 -14.750 -15.324
80% -9.770 -9.785 -11.562 -11.243 -11.025 -10.159 -10.485 -10.696 -10.769 -11.668
90% -1.586 -1.912 -2.847 -0.941 -1.808 -0.869 0.915 -0.961 -2.063 -3.171

Table A.9: Empirical distribution: Errors in the 99th percentiles

Number of nodes

Load 100 200 300 400 500 600 700 800 900 1000

50% -42.100 -38.937 -37.564 -37.087 -36.759 -36.854 -36.763 -37.375 -37.034 -37.391
75% -18.368 -20.436 -20.826 -20.112 -20.914 -21.482 -20.422 -21.120 -21.825 -21.024
80% -14.037 -14.294 -15.501 -15.381 -15.179 -15.232 -15.444 -15.587 -15.121 -15.775
90% 1.614 2.874 1.104 2.121 2.288 1.733 3.165 2.739 0.107 2.425

Table A.10: Empirical distribution: Errors in the 99.9th percentiles

Number of nodes

Load 100 200 300 400 500 600 700 800 900 1000

50% -38.811 -39.394 -39.774 -40.732 -41.038 -40.679 -40.912 -41.990 -41.485 -41.599
75% -21.456 -22.925 -22.007 -21.142 -20.406 -22.810 -20.056 -21.733 -21.966 -19.812
80% -15.888 -13.744 -16.148 -13.995 -14.253 -15.315 -14.393 -15.417 -14.999 -14.788
90% 1.053 4.234 1.766 4.207 1.673 1.615 6.465 0.649 0.598 1.925

79

BIBLIOGRAPHY

[1] Apache Hadoop. https://hadoop.apache.org.

[2] Apache Spark. https://spark.apache.org.

[3] Discrete Triangular Distribution. https://www.me.utexas.edu/~jensen/ORMM/

computation/unit/rvadd/discrete_dist/triangular.html.

[4] The M/M/1 Fork-Join Queue with Variable Sub-Tasks. http://www.cs.unh.edu/

~varki/publication/2002-nov-open.pdf.

[5] I. B. Aban, M. M. Meerschaert, and A. K. Panorska. Parameter Estimation for
the Truncated Pareto Distribution. Journal of the American Statistical Association,
101(473):270–277, Mar. 2006.

[6] F. Alomari and D. A. Menasce. Efficient Response Time Approximations for Multiclass
Fork and Join Queues in Open and Closed Queuing Networks. IEEE Transactions on
Parallel and Distributed Systems, 25(6):1437–1446, 2014.

[7] G. M. Amdahl. Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities. In Proceedings of American Federation of Infomation Process-
ing Societies Conference, pages 483–485, 1967.

[8] S. Balsamo, L. Donatiello, and N. Van Dijk. Bound Performance Models of Hetero-
geneous Parallel Processing Systems. IEEE Transactions on Parallel and Distributed
Systems, 9(10):1041–1056, 1998.

[9] S. Balsamo and I. Mura. Approximate Response Time Distribution in Fork and Join
Systems. In Proceedings of the 1995 ACM SIGMETRICS Joint International Confer-
ence on Measurement and Modeling of Computer Systems, SIGMETRICS ’95/PER-
FORMANCE ’95, pages 305–306, 1995.

[10] L. A. Barroso, J. Clidaras, and U. Hölzle. The Datacenter as a Computer: An Intro-
duction to the Design of Warehouse-Scale Machines, Second Edition. Synthesis Lectures
on Computer Architecture, 8(3):1–154, July 2013.

[11] L. A. Barroso, J. Dean, and U. Hölzle. Web Search for a Planet: The Google Cluster
Architecture. IEEE Micro, 23(2):22–28, Mar. 2003.

[12] L. A. Barroso and U. Hölzle. The Case for Energy-proportional Computing. Computer,
40(12):33–37, 2007.

[13] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applications.
Wiley-Interscience, 2006.

80

https://hadoop.apache.org
https://spark.apache.org
https://www.me.utexas.edu/~jensen/ORMM/computation/unit/rvadd/discrete_dist/triangular.html
https://www.me.utexas.edu/~jensen/ORMM/computation/unit/rvadd/discrete_dist/triangular.html
http://www.cs.unh.edu/~varki/publication/2002-nov-open.pdf
http://www.cs.unh.edu/~varki/publication/2002-nov-open.pdf

[14] J. Brutlag. Speed Matters for Google Web Search. https://services.google.com/

fh/files/blogs/google_delayexp.pdf, 2009.

[15] G. Brys, M. Hubert, and A. Struyf. Robust Measures of Tail Weight. Computational
Statistics & Data Analysis, 50(3):733–759, feb 2006.

[16] H. Che and M. Nguyen. Amdahl’s Law for Multithreaded Multicore Processors. Journal
of Parallel and Distributed Computing, 74(10):3056–3069, Oct. 2014.

[17] R. Chen. A Hybrid Solution of Fork/Join Synchronization in Parallel Queues. IEEE
Transactions on Parallel and Distributed Systems, 12(8):829–845, 2001.

[18] R. J. Chen. An Upper Bound Solution for Homogeneous Fork/Join Queuing Systems.
IEEE Transactions on Parallel and Distributed Systems, 22(5):874–878, May 2011.

[19] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica. Managing Data Transfers
in Computer Clusters with Orchestra. In Proceedings of the ACM SIGCOMM 2011
Conference, SIGCOMM ’11, pages 98–109, 2011.

[20] J. Dean and L. A. Barroso. The Tail at Scale. Communications of the ACM, 56(2):74–80,
Feb. 2013.

[21] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.
In Proceedings of the 6th Symposium on Operating Systems Design and Implementation,
OSDI ’04, pages 137–150, 2004.

[22] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and QoS-aware Cluster
Management. ACM SIGARCH Computer Architecture News, 42(1):127–144, Apr. 2014.

[23] S. Eyerman and L. Eeckhout. Modeling Critical Sections in Amdahl’s Law and Its
Implications for Multicore Design. In Proceedings of the 37th Annual International
Symposium on Computer Architecture, ISCA ’10, pages 362–370, 2010.

[24] A. D. Ferguson, P. Bodik, E. Boutin, and R. Fonseca. Jockey : Guaranteed Job Latency
in Data Parallel Clusters. In Proceedings of the 7th ACM European Conference on
Computer Systems, pages 99–112, 2012.

[25] L. Flatto and S. Hahn. Two Parallel Queues Created by Arrivals with Two Demands
I. SIAM Journal on Applied Mathematics, 44(5):1041–1053, Oct. 1984.

[26] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytiä, and A. Scheller-
wolf. Reducing Latency via Redundant Requests: Exact Analysis. In Proceedings of the
2015 ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’15, pages 347–360, 2015.

[27] R. D. Gupta and D. Kundu. Generalized Exponential Distributions. Australian & New
Zealand Journal of Statistics, 41(2):173–188, 1999.

[28] J. L. Gustafson. Reevaluating Amdahl’s Law. Communications of the ACM, 31(5):532–
533, 1988.

81

https://services.google.com/fh/files/blogs/google_delayexp.pdf
https://services.google.com/fh/files/blogs/google_delayexp.pdf

[29] M. E. Haque, Y. hun Eom, Y. He, S. Elnikety, R. Bianchini, and K. S. McKinley.
Few-to-Many: Incremental Parallelism for Reducing Tail Latency in Interactive Ser-
vices. In Proceedings of the 20th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’15, pages 161–175, 2015.

[30] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker,
and I. Stoica. Mesos: A Platform for Fine-grained Resource Sharing in the Data Cen-
ter. In Proceedings of the 8th USENIX Conference on Networked Systems Design and
Implementation, NSDI ’11, pages 295–308, 2011.

[31] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed Data-
parallel Programs from Sequential Building Blocks. In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007, EuroSys ’07, pages
59–72, 2007.

[32] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and C. Yan. Speeding
Up Distributed Request-Response Workflows. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, pages 219–230, 2013.

[33] M. Jeon, S. Kim, S.-w. Hwang, Y. He, S. Elnikety, A. L. Cox, and S. Rixner. Predic-
tive Parallelization: Taming Tail Latencies in Web Search. In Proceedings of the 37th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’14, pages 253–262, 2014.

[34] J. F. C. Kingman and M. F. Atiyah. The Single Server Queue in Heavy Traffic. Pro-
ceedings of the Cambridge Philosophical Society, 57:902–904, 1961.

[35] L. Kleinrock. Queueing Systems, Vol. 1: Theory. Wiley-Interscience, 1975.

[36] S.-S. Ko and R. F. Serfozo. Response Times in M/M/s Fork-Join Networks. Advances
in Applied Probability, 36(3):854–871, 2004.

[37] J. Köllerström. Heavy Traffic Theory for Queues with Several Servers. I. Journal of
Applied Probability, 11(3):544–552, 1974.

[38] A. Lebrecht and W. J. Knottenbelt. Response Time Approximations in Fork-Join
Queues. In 23rd Annual UK Performance Engineering Workshop (UKPEW), June
2007.

[39] Z. Li, F. Duan, M. Nguyen, H. Che, Y. Lei, and H. Jiang. IPSO: A New Scaling Model
for Data-Intensive Applications, (In submission).

[40] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis. Towards Energy
Proportionality for Large-scale Latency-critical Workloads. In Proceeding of the 41st
Annual International Symposium on Computer Architecuture, ISCA ’14, pages 301–312,
2014.

82

[41] M. Manivannan, B. Juurlink, and P. Stenstrom. Implications of Merging Phases on Scal-
ability of Multi-core Architectures. In International Conference on Parallel Processing
(ICPP), pages 622–631, 2011.

[42] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-Up: Increasing
Utilization in Modern Warehouse Scale Computers via Sensible Co-locations. In Pro-
ceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 248–259, Dec. 2011.

[43] D. Meisner, W. Junjie, and T. F. Wenisch. BigHouse: A Simulation Infrastructure for
Data Center Systems. In Proceedings of the 2012 IEEE International Symposium on
Performance Analysis of Systems & Software, ISPASS ’12, pages 35–45, 2012.

[44] D. Meisner, C. M. Sadler, L. B. Andre, W.-D. Weber, and T. F. Wenisch. Power Manage-
ment of Online Data-Intensive Services. In Proceedings of the 38th annual International
Symposium on Computer Architecture, ISCA ’11, pages 319–330, 2011.

[45] R. Nelson and A. Tantawi. Approximate Analysis of Fork/Join Synchronization in
Parallel Queues. IEEE Transactions on Computers, 37(6):739–743, June 1988.

[46] M. Nguyen, Z. Li, F. Duan, H. Che, Y. Lei, and H. Jiang. The Tail at Scale: How to
Predict It? In USENIX HotCloud’16, 2016.

[47] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy,
M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and V. Venkataramani. Scaling
Memcache at Facebook. In Proceedings of the 10th USENIX conference on Networked
Systems Design and Implementation, NSDI ’13, pages 385–398, Apr. 2013.

[48] Z. Qiu and J. F. Perez. Evaluating the Effectiveness of Replication for Tail-Tolerance.
In 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), pages 443–452, May 2015.

[49] H. Qu, O. Mashayekhi, D. Terei, and P. Levis. Canary: A Scheduling Architecture for
High Performance Cloud Computing. In arXiv:1602.01412v1 [cs.DC], 2016.

[50] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch. Heterogeneity and
Dynamicity of Clouds at Scale. In Proceedings of the 3rd ACM Symposium on Cloud
Computing, SoCC ’12, pages 1–13, Oct. 2012.

[51] A. Rizk, F. Poloczek, and F. Ciucu. Computable Bounds in Fork-Join Queueing Sys-
tems. In Proceedings of the 2015 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS ’15, pages 335–346,
2015.

[52] S. Sani and O. A. Daman. Mathematical Modeling in Heavy Traffic Queuing Systems.
American Journal of Operations Research, 4:340–350, 2014.

[53] X. H. Sun and Y. Chen. Reevaluating Amdahl’s Law in the Multicore Era. Journal of
Parallel and Distributed Computing, 70(2):183–188, 2010.

83

[54] L. Suresh, M. Canini, S. Schmid, and A. Feldmann. C3: Cutting Tail Latency in
Cloud Data Stores via Adaptive Replica Selection. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation, pages 513–527, May
2015.

[55] A. Thomasian. Analysis of Fork/Join and Related Queueing Systems. ACM Computing
Surveys, 47(2):1–71, Aug. 2014.

[56] A. Thomasian and A. N. Tantawi. Approximate Solutions for M/G/1 Fork/Join Syn-
chronization. In Proceedings of the 26th Conference on Winter Simulation, WSC ’94,
pages 361–368, 1994.

[57] K. S. Trivedi. Probability and Statistics with Reliability, Queuing, and Computer Science
Applications. 2nd ed. Wiley, 2002.

[58] E. Varki. Response Time Analysis of Parallel Computer and Storage Systems. IEEE
Transactions on Parallel and Distributed Systems, 12(11):1146–1161, 2001.

[59] S. Varma and A. M. Makowski. Interpolation Approximations for Symmetric Fork-Join
Queues. Performance Evaluation, 20(1-3):245–265, May 1994.

[60] V. K. Vavilapalli, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, E. Balde-
schwieler, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, and H. Shah. Apache Hadoop YARN: Yet Another Resource Negotiator. In
Proceedings of the 4th annual Symposium on Cloud Computing, SoCC ’13, pages 1–16,
2013.

[61] A. Vulimiri, J. Sherry, U. C. Berkeley, P. B. Godfrey, S. Ratnasamy, and S. Shenker. Low
Latency via Redundancy. In The 9th International Conference on emerging Networking
EXperiments and Technologies, CoNEXT ’13, pages 283–294, 2013.

[62] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica. Cake: Enabling High-
level SLOs on Shared Storage Systems. In Proceedings of the Third ACM Symposium
on Cloud Computing, SoCC ’12, pages 14:1–14:14, 2012.

[63] D. Wang, G. Joshi, and G. Wornell. Efficient Task Replication for Fast Response Times
in Parallel Computation. arXiv:1404.1328, pages 1–20, Apr. 2014.

[64] T. Zhang, S. Kang, and L. Lipsky. On The Performance of Parallel Computers: Order
Statistics and Amdahl’s Law. International Journal of Computers and Their Applica-
tions, 3(2), 1996.

[65] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and G. R. Ganger. Priori-
tyMeister: Tail Latency QoS for Shared Networked Storage. In Proceedings of the ACM
Symposium on Cloud Computing, SoCC ’14, pages 1–14, 2014.

84

	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	PREDICTION MODEL FOR TAIL LATENCY AT SCALE
	Introduction
	Tail Latency Prediction Model
	Experimental Results
	Scenario 1: Subsystems
	Scenario 2: Simulated Systems
	Scenario 3: Real Scale-out Systems in Cloud

	A General Model for Tail Latency Prediction
	Scenario 1: Fixed Number
	Scenario 2: Discrete Uniform Distribution
	Scenario 3: Discrete Triangular Distribution

	Facilitating Resource Provisioning
	Conclusions

	TAIL AND MEAN LATENCY PREDICTION FOR FORK-JOIN QUEUING NETWORKS
	Introduction
	The Analytical Model for Tail Latency Prediction
	Evaluation of the Tail Latency Prediction Model
	Scenario 1: Exponential Distribution
	Scenario 2: Gamma Distribution
	Scenario 3: Truncated Pareto Distribution
	Scenario 4: Weibull Distribution
	Scenario 5: Empirical Distribution

	Approximation for Mean Latency
	Scenario 1: M/M/1 Queues
	Scenario 2: M/G/1 Queues

	Conclusions

	PERFORMANCE SCALING ANALYSIS OF SCALE-OUT APPLICATIONS
	Introduction
	The Workload Model
	Without Queuing
	With Queuing
	Simulation-based Verification of the Proposed Approximation
	Speedup

	Case Study: Exponential Service Time Distribution
	Conclusions

	CONCLUSIONS AND FUTURE WORK
	MORE RESULTS FOR TAIL LATENCY PREDICTION IN CHAPTER 3
	BIBLIOGRAPHY

