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Abstract 

 
STABILITY STUDY ON SHEAR FLOW AND DNS VORTICS GENERATION  

ON BOUNDARY LAYER TRANSITION 

 

JIE TANG, Ph.D. 

 

The University of Texas at Arlington, 2017 

 

Supervising Professor: Chaoqun Liu 

Turbulence is still an unsolved scientific problem, it has been regarded as “the 

most important unsolved problem of classical physics”.  Dr. Liu proposed a new mechanism 

about turbulence generation and sustenance after decades of research on turbulence and 

transition. His new idea challenged the classical theorem in many aspects. One of them is 

the flow stability of transition. Dr. Liu believes that inside the flow field, shear (dominant in 

laminar) is very unstable while rotation (dominant in turbulence) is relative stable. This 

inherent property of flow creates the trend that non-vertical vorticity must transfer to vertical 

vorticity, and causes the occurrence of transition.  

To verify this new idea, this dissertation analyses the linear stability on two-

dimensional shear flow and quasi-rotation flow. 1) Chebyshev collocation spectral method 

is discussed to solve Orr–Sommerfeld equation, the famous eigenvalue function describing 

the linear modes of disturbance. Several typical parallel shear flows are tested as the basic-

state flows in the equation. The instability of shear flow is demonstrated by the existence 

of positive eigenvalues associated with disturbance modes (eigenfunctions), i.e. the growth 

of these linear modes. 2) Quasi-rotation flow is considered under Cylindrical coordinate. 

An eigenvalue perturbation equation is derived to study the stability problem with 

symmetric flows. Shifted Chebyshev polynomial with Gauss collocation points is used to 
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solve the equation. To investigate the stability of vortices generation in real-world case, I 

tracked a ring-like vortex and a leg-like vortex over time from our Direct Numerical 

Simulation (DNS) data. The result shows that, with the generation over time, both ring-like 

vortex and leg-like vortex become more stable in the fact of decreasing positive 

eigenvalues.  
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Chapter 1  

INTRODUCTION 

1.1 Introduction to boundary layer transition 

In fluid dynamics, the process of a laminar flow becoming turbulent is a 

fundamental scientific problem, also known as laminar-turbulent transition. Laminar flow 

describes the fluid flows in parallel layers, with no disruption between the layers [1]. 

Turbulent flow is characterized by eddies or small packets of fluid particles which result in 

lateral mixing [2]. Laminar-turbulent transition is an extraordinarily complicated process 

which at present is still far from understood. Nevertheless, as the result of many decades 

of intensive research, classical comprehensive theories of physical mechanisms of the 

transition phenomenon have been established [3]–[5]. 

Boundary layer is a very important concept in transition theory. It is a thin layer of 

viscous fluid close to the solid surface of a wall in contact with a moving stream [6]. The 

flow velocity varies from zero at the wall up to approximate free stream velocity at the 

boundary. The fundamental concept of the boundary layer was suggested by L.Prandtl [7] 

in 1904. Modern research on fluid transition is most often studied in the context of boundary 

layers due to their ubiquity in real flows and their importance in many fluid-dynamic 

processes [8].  

In a thin boundary layer, the velocity gradient is significant, and consequently the 

viscous shear stresses defined by  

𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
(1. 1) 

is large, where 𝜇 is the dynamic viscosity, 𝑢 = 𝑢(𝑦) describes the profile of the boundary 

layer longitudinal velocity component, y is the normal-to-wall direction. In other words, in a 

thin boundary layer, laminar flow is dominant with shear layers.  
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Computation of the boundary layer parameters is based on the solution of 

equations obtained from the Navier–Stokes equations for viscous fluid motion.  Navier-

Stokes equation describes the conservation of mass, momentum, and of energy for the 

motion.  

For boundary-layer flows, two main classes of transition are known [9]–[11] depend 

on the character of environmental disturbances. The first of them is usually observed when 

environmental disturbances are rather small. It is regarded as natural transition and has 

fundamental and practical importance in problems involving moving vehicles in air and 

water. The second class of transition, usually called bypass, is observed when high enough 

levels of environmental perturbations are presents. 

Classical theory on natural transition can be described by four stages: receptivity, 

linear instability, non-linear growth and vortex breakdown as shown in Figure 1.1 [5]. 

 

 

Figure 1-1 Qualitative sketch of the process of turbulence onset in a boundary layer. δ is 

the thickness of the boundary layer, Re represents the Reynolds number and U∞ is the 

income free stream. 
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The initial stage of the natural transition process is known as the Receptivity phase 

and consists of the transformation of environmental disturbances into small perturbations 

(i.e. instability waves, usually called Tollmien-Schlichting waves) within the boundary layer. 

This aspect of the transition process was clearly formulated for the first time by Morkovin 

[10] in 1968. Many experimental and theoretical work of this process are appeared in the 

1970s [12]–[16]. Details of the subsequent rapid development of investigations on 

receptivity can be found in numbers of books and review papers [17]–[21]. 

The second stage of transition corresponds to the linearly propagation of small-

amplitude instability waves in the boundary. This stage is described by linear hydrodynamic 

stability theory, also called linear stability theory. Tollmien [22] started the research on 

linear stability theory in 1929. In the following century, it becomes the most developed 

branch of the transition problem with a lot of research achievements for two-dimensional 

and three-dimensional flows. For example, Schlichting [23], Lin [24], Herbert [25] and many 

others.  

When the growth of linear instability waves reaches considerable values, the flow 

enters a phase of three-dimensional nonlinear growth, then the turbulent flow formed (so-

called vortex breakdown). They are the last two stages. Although the region of nonlinear 

growth had been studied for more than half century, there are still many questions 

remaining [26]–[31]. For example, the mechanism of vortices generation and deformation, 

the formation of turbulence and turbulence coherent structure.  
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1.2 Liu’s new theory on Boundary Layer transition 

Dr. Liu proposed a new comprehensive mechanism about turbulence generation 

and sustenance in a boundary layer [32] after decades of research on turbulence and 

transition [33]–[49].  Many new observations are made and new mechanisms are revealed 

in late boundary layer transition [32] including: 

(1) Mechanism of spanwise vorticity rollup. 

(2) Mechanism of transfer from flow shear to rotation. 

(3) Mechanism of spanwise vortex tube formation and role of the linear unstable 

modes. 

(4) Mechanism of K -vortex root formation. 

(5) Mechanism of first ring-like vortex formation. 

(6) Mechanism of multiple vortex ring formation. 

(7) Mechanism of second sweep formation. 

(8) Mechanism of high share layer formation. 

(9) Mechanism of positive spike formation. 

(10) Mechanism of secondary and tertiary vortex formation. 

(11) Mechanism of U-shaped vortex formation. 

(12) Mechanism of small length vortices generation. 

(13) Mechanism of multiple level high shear layer formation. 

(14) Mechanism of energy transfer paths from the large length scale to the small 

ones. 

(15) Mechanism of symmetry loss and flow chaos. 

(16) Mechanism of thickening of turbulence boundary layer. 

(17) Mechanism of high surface friction of turbulent flow. 
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This dissertation focuses on Dr. Liu’s second proposal: Mechanism of transfer from 

flow shear to rotation. More precisely, the mechanism of transfer from non-vortical vorticity 

to vortical vorticity. 

In Section 1.1, we introduced the laminar flow and turbulent flow. In boundary 

layer, laminar flow is dominant by shear because of large velocity gradient. Turbulent flow, 

consisted of eddies or small packets of fluid particles, is dominant by rotation. In classical 

stability theory, laminar is regarded as a stable state while turbulence is an unstable state 

with disorder, chaotic and random fluid layers. However, Dr. Liu has an opposite opinion, 

he believes that “Shear layer Instability” is the “mother of turbulence”, rotation is more 

stable than shear when the Reynolds number is large enough. This inherent property of 

flow creates the trend that non-vertical vorticity must transfer to vertical vorticity, and 

causes the occurrence of transition.  

Dr. Liu also pointed out the very commonly confusion of vorticity and vortex in fluid 

dynamics in his new paper [50], [51]. Vorticity has rigorous mathematical definition (curl of 

velocity), but no clear physical meaning. On the other hand, vortex has clear physical 

meaning (rotation) but no rigorous mathematical definition. For a long time, many 

researchers treat them as a same thing. Dr. Liu [50] gave the detailed DNS observations 

on the difference between vorticity and vortex, including: 

(1) Vorticity tube is not vortex 

(2) Vortex is not the congregation of vorticity. 

(3) Vortex is never attached to the wall. 

The classical description of “vortex breakdown” is also not accurate since rotation 

cannot break to pieces. 

Based on Dr. Liu’s discovery, some current stability analysis of vortices base on 

velocity-vorticity equation and vorticity profiles of base flow are questionable. 
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1.3 Propose of the Dissertation 

To verify Dr. Liu’s new idea, this dissertation first uses linear stability theory and 

Orr-Sommerfeld equation to analyze the instability of shear. Second, quasi-rotation velocity 

profiles extracted from lambda vortex of our DNS case are used to analyze the stability of 

rotation on boundary layer transition. 

 

1.4 Organization of the Dissertation 

This dissertation contains 7 chapters. Chapter I is the Introduction. Chapter 2 

presents Navier-Stokes Equation and basic idea of linear stability theory. The numerical 

method: Chebyshev spectral method used in this dissertation is introduced in Chapter 3. 

Chapter 4 provides our DNS case set-up information and case validation. Chapter 5 studies 

the instability of 2D shear flow. Chapter 6 derives an eigenvalue perturbation equation with 

rotation flow under Cylindrical coordinate. Chapter 7 shows the numerical results of stability 

analysis on ring- and leg-like vortices.  
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Chapter 2  

NAVIER-STOKES EQUATIONS AND LINEAR STABILITY THEORY 

2.1 Conservation Laws and the Equations 

The motion of a fluid can be described by the conservation of mass, momentum, 

and of energy for an arbitrary small control volume. 

Consider a closed surface 𝑆 whose position is fixed with relation to the coordinate 

axes and encloses a volume 𝑉 completed filled with fluid. Given the density of the fluid 𝜌, 

the momentum 𝜌𝒖, the total energy 𝐸 at a position x and at time 𝑡, the Navier-Stokes 

equations can be derived as follows from the conservation laws of mass, momentum and 

energy: 

𝜕𝜌

𝜕𝑡
+ 𝛻 ∙ (𝜌𝒖) = 0, (2. 1) 

𝜕(𝜌𝒖)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝒖⨂𝒖) = 𝛻 ∙ 𝜎, (2. 2) 

𝜕(𝜌𝐸)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝐸)𝒖 − 𝛻 ∙ (𝑘𝛻𝑇) − 𝛻 ∙ (𝜎 ∙ 𝒖) = 0, (2. 3) 

with 

𝐸 = 𝑒 +
𝒖 ∙ 𝒖

2
, (2. 4) 

and 

𝜎 = − [𝜌 +
2

3
𝜇(𝛻 ∙ 𝒖)] 𝑰 + 𝜇[𝛻𝒖 + (𝛻𝒖)𝑇]. (2. 5) 

 

Here, 𝜎 is the internal shear stress, 𝑒 is the internal energy per unit mass of the 

fluid, 𝑝 denotes the pressure, 𝑇 represents the temperature, 𝑘 is the thermal conductivity 

and 𝜇 is the dynamic viscosity. Stokes [52] assumption, linear relation between the stress 

and the rate of strain of the fluid, is used in obtaining the Equation (2.5). 
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In three dimensions, the system above contains five equations (the conservation 

of momentum equation becomes three separate equations). Two extra equations are 

needed to solve the system for the unknown variable 𝜌, 𝒖, 𝑝, 𝐸 and T. These equations are 

the equation of state, for a thermally perfect gas, 

𝑝 = 𝜌𝑅𝑇, (2. 6) 

where 𝑅 is a gas constant, and the equation for internal energy, 

𝑒 = 𝑐𝑉𝑇. (2. 7) 

 

 

2.2 Non-Dimensional Form of the governing equation 

Equations (2.1) - (2.6) can be reduced to a non-dimensional form. This can be 

achieved by dividing each variable by an appropriate dimensional reference parameter. 

Those reference parameters are defined as follows, where ∞ indicates incoming or free 

stream values: 

 𝐿 is the characteristic length; 

 𝑉∞ is the speed; 

 𝜌∞ is the density; 

 𝑝∞ is the pressure; 

 𝑇 ∞  is the temperature;  

 𝜇 ∞ is the dynamic viscosity; 

 𝑘∞ is the thermal conductivity. 

With these reference parameters, the non-dimensional variables are given by 

𝑡 =
𝑡∗

𝐿/𝑉∞ 
, 𝒙 =

𝒙∗

𝐿
, 𝒖 =

𝒖∗

𝑉∞
, 𝑝 =

𝑝∗

𝜌∞𝑉∞
2
, 𝝈 =

𝝈∗

𝜌∞𝑉∞
2

(2. 8) 

where ∗ represents the dimensional variables. 
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Rewrite the equations in the section 2.1 in non-dimensional form, we can obtain: 

𝜕𝜌

𝜕𝑡
+ 𝛻 ∙ (𝜌𝒖) = 0 (2. 9) 

𝜕(𝜌𝑢)

𝜕𝑡
+ [𝛻 ∙ (𝜌𝒖⨂𝒖)] = 𝛻 ∙ 𝜎 (2. 10) 

𝜕(𝜌𝐸)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝐸)𝒖 −

𝛾

𝑅𝑒𝑃𝑟
𝛻 ∙ (𝛻𝑇) − 𝛾(𝛾 − 1)𝑀∞

2 𝛻 ∙ (𝜎 ∙ 𝒖) = 0 (2. 11) 

  

𝜎 = − [𝑝 +
2

3

1

𝑅𝑒
𝜇(𝑇)(𝛻 ∙ 𝒖)] 𝑰 +

1

𝑅𝑒
𝜇(𝑇)[𝛻𝒖 + (𝛻𝒖)𝑇] (2. 12) 

𝑝 =
1

𝛾𝑀∞
2

𝜌𝑇 (2. 13) 

The Reynolds number is defined as 

𝑅𝑒 =
𝜌∞𝑉∞𝐿

𝜇∞

(2. 14)  

while the Prandtl number evaluated at the reference conditions is given by 

𝑃𝑟 =
𝑐𝑝𝜇∞

𝑘∞

≈ 0.72 (2. 15) 

And the Mach number is defined as 

𝑀∞ =
𝑉∞

√𝛾𝑅𝑇∞

(2. 16) 

The dynamic viscosities coefficient is given by Sutherland’s equation: 

𝜇 = 𝑇
2
3
1 + 𝐶

𝑇 + 𝐶
 , 𝐶 =

110.4

𝑇∞

(2. 17)   
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2.3 Introduction to Linear stability theory 

The basic idea behind linear stability theory is to superpose small disturbances on 

the local, undisturbed flow state (termed the “basic state”) and determine whether these 

perturbations grow or decay. If all perturbations decay, then the flow is termed stable, vice-

versa. The analysis is performed locally by linearizing the complete unsteady Navier-

Stokes equations (see section 2.1 and 2.2) about the basic state.  

Designate ( 𝑥, 𝑦, 𝑧)  as the streamwise, normal-to-the-wall and spanwise 

coordinates. The stability equations, also called Orr-Sommerfeld equations are obtained 

by superposing small disturbances 𝑞′ onto the basic state, which gives total flow quantities 

q of the form 

𝑄(𝑥, 𝑦, 𝑧, 𝑡) = 𝑄(𝑦) + 𝑞′(𝑥, 𝑦, 𝑧, 𝑡) (2. 18) 

 The quantities q and Q separately satisfy the complete Navier-Stokes equations 

and therefore separately represent real flows, whereas the disturbance quantities 𝑞′ do not. 

When the basic-state solution is dropped from the equations describing 𝑞, the equations in 

terms of the disturbance quantities 𝑞′ result. These equations are further simplified by 

making the approximation that products of disturbance quantities are neglected, i.e. the 

disturbance equations are linearized.  

For example, the disturbance equations are linear and if the coefficients are 

functions of 𝑦 only. This suggests a solution for 𝑞′ in terms of separation of variables using 

normal modes (i.e. exponential solutions in terms of the independent variables 𝑥, 𝑧, and 𝑡) 

to reduce the disturbance equations to ordinary differential equations. Therefore, the 

normal-mode approach is generalized as:  

𝑞′ = 𝑞0(𝑦) 𝑒𝑥𝑝(𝑖𝛩) + 𝑐. 𝑐. (2. 19) 

where c.c. stands for complex conjugate and 𝛩(𝑥, 𝑦, 𝑡) is the phase function 
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𝜕𝛩

𝜕𝑥
= 𝛼,

𝜕𝛩

𝜕𝑧
= 𝛽,

𝜕𝛩

𝜕𝑡
= −𝜔 (2. 20) 

  

Here, 𝛼 is the streamwise wavenumber, 𝛽 is the spanwise wavenumber, and 𝜔 is 

the frequency. The amplitude function 𝑞(𝑦) is complex and 𝑞′ is real because the Navier-

Stokes equations are real.  

The system constitutes an eigenvalue problem for the eigenvector 𝑞(𝑦). For a well-

posed eigenvalue problem such as plane Poiseuille flow, there is an infinite set of discrete 

eigenvalues and a corresponding infinite discrete set of eigenfunctions. For boundary 

layers, there is a finite discrete set of eigenvalues as well as a continuous spectrum. The 

eigenfunctions are called modes and form a basis for an arbitrary disturbance profile. For 

incompressible streamwise instabilities, the least stable mode is called the first mode and 

because there is no more than one unstable mode, not much attention is paid to higher 

modes. For some flows (e.g. centrifugal instabilities), more than one mode can be unstable.  

Disturbances can be classified with respect to spatial amplification, temporal 

amplification, and spatial and temporal amplification. In spatial theory, 𝜔 is assumed to be 

real, while 𝛼 and 𝛽 are assumed to be complex. Their real parts, 𝛼𝑟 and 𝛽𝑟, represent the 

physical wavenumbers of the disturbances, while their imaginary parts, 𝛼𝑖  and 𝛽𝑖 , 

represent the growth (or decay) rates in the 𝑥 and 𝑦 directions, respectively. In temporal 

theory, 𝛼  and 𝛽  are assumed to be real and 𝜔  is assumed to be complex. For both 

temporal and spatial amplification, 𝜔, 𝛼 and 𝛽 are all assumed to be complex. 

For temporal stability, the dispersion relation: 

 

𝜔 = 𝑓(𝛽, 𝛼, 𝑅𝑒) (2. 21) 
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yields the unique pair (𝜔𝑟 , 𝜔𝑖) when 𝛽, 𝛼 and Reynolds number 𝑅𝑒 are specified. Because 

𝜔 appears linearly in the stability equations, much of the early work of transition focused 

on this case. Therefore, this thesis discusses the temporal stability analysis. 
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Chapter 3  

CHEBYSHEV SPECTRAL METHODS 

3.1 Introduction to Spectral Methods 

Spectral methods are an important development of the class of discretization 

schemes for differential equations, known generically as the method of weighted residuals 

(MWR) [53]. The key elements of MWR are the trial functions (also called the expansion 

or approximating functions) and the test functions (also known as weight functions). 

The general scheme of MWR is first to get a truncated series expansion of the 

solution by the trial functions. Then the residual can be produced by using the truncated 

expansion in the differential equation. Last, a desired truncated series expansion is 

achieved by minimizing the residual with respect to a suitable norm, defined as an 

orthogonality condition with respect to each of the test functions.  

The choice of trial functions is one of the features which distinguish spectral 

methods from finite-element and finite-difference method. The trial functions for spectral 

methods are infinitely differentiable global functions, while the trial functions for finite-

element method or finite-difference method are specified locally in each element or cell. 

The most frequently used trial functions are trigonometric polynomials, Chebyshev 

polynomials and Legendre polynomials. 

The choice of test functions leads to three most commonly used spectral methods 

schemes: Galerkin, collocation, and tau. In the Galerkin approach, the test functions are 

the same as the trial functions. It requires that the integral of the residual times each test 

function to be zero. In the collocation approach the test functions are translated Dirac Delta 

functions centered at special points, namely collocation points. This approach requires the 

residual to be zero at the collocation points. The tau approach is similar to the Galerkin 

approach with a supplementary set of equations is used to apply the boundary conditions. 
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3.2 Chebyshev polynomials of first kind 

The Fourier method is the most commonly used spectral method with trigonometric 

polynomials as trial functions. It is appropriate for periodic problems, but is not adapted to 

non-periodic problems because of the existence of the Gibbs phenomenon at the 

boundaries. In this dissertation, the cases are all non-periodic problems, so better-suited 

trial functions like Chebyshev polynomials constitute a proper alternative to the Fourier 

method. Especially in a bounded domain, the use of Chebyshev polynomials has been 

advantageous. The stability calculations shown in this dissertation have been obtained by 

Chebyshev discretization of the Cartesian and Cylindrical coordinates.  

Let us first consider the definition and some properties of the Chebyshev 

polynomials of the first kind [54]. 

Definition (Chebyshev polynomial of the first kind 𝑇𝑛(𝑥) ). The Chebyshev 

polynomial of the first kind of order 𝑛 is defined as follows: 

Tn(𝑥) = cos[𝑛𝑐𝑜𝑠−1(𝑥)] , 𝑥 ∈ [−1,1], 𝑛 = 0,1,2,⋯ (3. 1) 

From this definition, the following property is evident by setting x = cosθ: 

Tn(𝑐𝑜𝑠𝜃) = cos(𝑛𝜃) , 𝜃 ∈ [0, 𝜋], 𝑛 = 0,1,2,⋯ (3. 2) 

Properties of the Chebyshev polynomials Tn(𝑥) 

The polynomials Tn(𝑥), 𝑛 ≥ 1 , satisfy the following properties, which follow 

straightforwardly from (3.1): 

1) The Chebyshev polynomials Tn(𝑥)  satisfy the following three-term recurrence 

relations: 

Tn+1(𝑥) = 2𝑥𝑇𝑛(𝑥) − 𝑇𝑛−1(𝑥), 𝑛 = 1,2,3,⋯ , (3.3) 

with starting values T0(𝑥) = 1, T1(𝑥) = 𝑥. 

Explicit expressions for the first seven Chebyshev polynomials are 
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𝑇𝑜(𝑥) = 1, 

𝑇1(𝑥) = 𝑥, 

𝑇2(𝑥) = 2𝑥2 − 1, 

𝑇3(𝑥) = 4𝑥3 − 3𝑥, 

𝑇4(𝑥) = 8𝑥4 − 8𝑥2 + 1, 

𝑇5(𝑥) = 16𝑥5 − 20𝑥3 + 5𝑥, 

𝑇6(𝑥) = 32𝑥6 − 48𝑥4 + 18𝑥 − 1. (3.4) 

The graphs of these Chebyshev polynomials are plotted in Figure 3-1. 

 

Figure 3-1 Chebyshev polynomials 𝑇0(𝑥) through 𝑇6(𝑥) 
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2) The leading coefficient (of xn) in Tn(𝑥) is 2n−1 and Tn(−𝑥) = (−1)n𝑇𝑛(𝑥). 

3) Tn(𝑥) has n zeros which lie in the interval (−1,1). They are given by  

xk = cos (
2𝑘 + 1

2𝑛
𝜋) , 𝑘 = 0,1,⋯ , 𝑛 − 1. (3.5) 

These points are called Chebyshev nodes or Gauss points. 

Tn(𝑥) has n + 1 extrema in the interval [−1,1] and they are given by 

xk
′ = cos

𝑘𝜋

𝑛
, 𝑘 = 0,1,⋯ , 𝑛. (3.6) 

At these points, the values of the polynomials are Tn(𝑥𝑘
′ ) = (−1)𝑘. 

They are called Gauss-Lobatto points. 

4) The differentiation of Tn gives  

Tn
′(𝑥) =

𝑑

𝑑𝜃
(𝑐𝑜𝑠𝑛𝜃)

𝑑𝜃

𝑑𝑥
= 𝑛

𝑠𝑖𝑛𝑘𝜃

𝑠𝑖𝑛𝜃
, 𝑛 = 0,1,2,⋯ . (3.7) 

By the application of trigonometrical formulas, the recurrence relation on the 

derivative is: 

Tn+1
′ (𝑥)

𝑛 + 1
−

Tn−1
′ (𝑥)

𝑛 − 1
= 2𝑇𝑛(𝑥), 𝑛 = 1,2,3,⋯ , (3.8) 

with T0
′(𝑥) = 0, 𝑇1

′(𝑥) = 1. 

5) Orthogonality relation  

∫ 𝑇𝑟(𝑥)𝑇𝑠(𝑥)(1 − 𝑥2)−
1
2𝑑𝑥 = 𝑁𝑟δrs,

1

−1

(3.9) 

With N0 = 𝜋 and Nr =
1

2
𝜋 if r ≠ 0. 

This property means that the set of Chebyshev polynomials {Tn(x)}  is an 

orthogonal set with respect to the weight function 𝑤(𝑥) = (1 − 𝑥2)−1/2 in the interval (-1,1). 

6) Discrete orthogonality relation 

a) With the zeros of Tn+1(𝑥) as nodes (Chebyshev nodes): Let n > 0, r, s ≤
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n, and xj = cos (
(𝑗+

1

2
)π

n+1
). Then, 

∑ 𝑇𝑟(𝑥𝑗)𝑇𝑠(𝑥𝑗) = 𝐾𝑟𝛿𝑟𝑠

𝑛

𝑗=0

, (3.10) 

where K0 = 𝑛 + 1 and Kr =
1

2
(𝑛 + 1) when 1 ≤ r ≤ n. 

b) With the extrema of Tn(𝑥)  as nodes (Gauss-Lobatto points): Let n > 0 , 

r, s ≤ n, and xj = cos (
𝑗π

n
). Then  

∑′′𝑇𝑟(𝑥𝑗)𝑇𝑠(𝑥𝑗) = 𝐾𝑟𝛿𝑟𝑠

𝑛

𝑗=0

, (3.11) 

where K0 = 𝐾𝑛 = 𝑛 and Kr =
1

2
𝑛 when 1 ≤ r ≤ n − 1. 

The double prime indicates that the terms with suffixes j = 0 and j = n are 

to be halved. 

 

3.3 Chebyshev collocation approach 

Chebyshev collocation (i.e. interpolation) is a useful technique to approximate a 

given function. The commonly used collocation points are the Gauss-Lobatto points. The 

advantage of Gauss-Lobatto points is that both the boundary points are included.  

Consider the Chebyshev approximation of the function u(x) defined for x ∈ [−1,1]: 

uN(𝑥) = ∑ 𝑎𝑛𝑇𝑛(𝑥)

𝑁

𝑛=0

. (3.12) 

The technique consists of setting to zero the residual RN = 𝑢 − 𝑢𝑁  at the 

collocation points xi =
𝑐𝑜𝑠𝜋𝑖

𝑁
, 𝑖 = 0,⋯ ,𝑁, let 

u(xi) = uN(𝑥𝑖) = ∑ 𝑎𝑛𝑇𝑛(𝑥𝑖)

𝑁

𝑛=0

, 𝑖 = 0⋯ ,𝑁. (3.13) 
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When discretizing ordinary or partial differential equations, derivatives of the 

solution are need as well. These derivatives have to be expressed in terms of Chebyshev 

polynomials and the following recurrence relation between Chebyshev polynomials are 

their derivatives is used. 

T0
(k)(𝑥𝑖) = 0, 

T1
(𝑘)(𝑥𝑖) = T0

(𝑘−1)(𝑥𝑖), 

T2
(𝑘)(𝑥𝑖) = 4T1

(𝑘−1)(𝑥𝑖), 

T𝑛
(𝑘)(𝑥𝑖) = 2𝑛𝑇𝑛−1

(𝑘−1)(𝑥𝑖) +
𝑛

𝑛 − 2
𝑇𝑛−2

(𝑘) (𝑥𝑖), 𝑛 = 3,4,⋯ . (3.14) 

with the superscript k ≥ 1 denoting the order of differentiation. 

 

3.4 Convergence of Chebyshev spectral method 

An important difference between finite-difference approximations to the 

eigenvalues and eigenfunctions equation like Orr-Sommerfeld equation and the 

Chebyshev approximations is their order of accuracy. Finite-difference approximations give 

only a finite order of accuracy in the sense that errors behave like (Δx)p for some finite p 

when the grid scale Δx approaches zero. On the other hand, if the basic-state velocity 

profile u̅(y) is infinitely differentiable, the Chebyshev polynomial approximations used here 

are of infinite order in the sense that error decrease more rapidly than any power of 1/N 

as N → ∞. 

The latter statement is verified by Orszag [55]. If u̅(y) is infinitely differentiable, all 

the eigenfunction v(y) of the Orr-Sommerfeld equation are infinitely differentiable for y ∈

[−1,1]  (with one-sided derivatives at the end-points). Tn(𝑦)  denotes the nth-degree 

Chebyshev polynomial of the first kind. Recall equation 3.2, defined y = cosθ: 

Tn(𝑐𝑜𝑠𝜃) = 𝑐𝑜𝑠𝑛𝜃 
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For all non-negative integers n. It is possible to expand v(y) in the interval y ∈

[−1,1] as 

v(y) = ∑ 𝑎𝑛𝑇𝑛(𝑦)

∞

𝑛=0

(3.15) 

where 

𝑎𝑛 =
2

𝜋𝑐𝑛

∫ 𝑣(𝑦)𝑇𝑛(𝑦)(1 − 𝑦2)−
1
2𝑑𝑦

1

−1

(3.16) 

with co = 2, 𝑐𝑛 = 1 . The rapidity of convergence of equation (3.3) for |y| ≤ 1  is easily 

demonstrated by observing that  

f(θ) = v(cosθ) (3.17) 

Is an infinitely differentiable, even, periodic function of θ.  

Consequently, the theory of Fourier series ensures that f(θ) possesses a Fourier 

cosine expansion 

f(θ) = ∑ 𝑎𝑛𝑐𝑜𝑠𝑛𝜃

∞

𝑛=0

(3.18) 

with the property that the error after N terms decreases more rapidly than any power of 

1/N as N → ∞. The expansion (3.6) is precisely equation (3.3) for y = cosθ.  

Moreover, the error associated with the Chebyshev approximation is O(1/Nm) 

where N refers to the truncation and m is connected to the number of continuous 

derivatives (if finite) of function under consideration. 

 

 

3.5 Advantages of Chebyshev nodes 

In polynomial interpolation, Chebyshev nodes provide the resulting interpolation 

polynomial minimizes the effect of Runge's phenomenon. 



20 

Given a function 𝑓 ∈ 𝒞𝑁[−1,1] and Chebyshev nodes 𝑦0 , … , 𝑦𝑁−1 , for each 𝑦 ∈

[−1,1], a number 𝜉(𝑦) exists in (−1,1) with  

𝑓(𝑦) − 𝑃𝑁−1(𝑦) =
𝑓(𝑁)(𝜉(𝑦))

𝑁!
∏(𝑦 − 𝑦𝑗)

𝑁−1

𝑗=0

(3.19) 

where 𝑃𝑁−1(𝑦) is the Lagrange interpolating polynomial. 

Notice that ∏ (𝑦 − 𝑦𝑗)
𝑁−1
𝑗=0  is the monic Chebyshev polynomial, that is,  

∏(𝑦 − 𝑦𝑗)

𝑁−1

𝑗=0

=
𝑇𝑁(𝑦)

2𝑁−1
. (3.20) 

 

Recall 𝑇𝑁(𝑦) = cos(𝑛 𝑐𝑜𝑠−1(𝑦)), we have 

|∏(𝑦 − 𝑦𝑗)

𝑁−1

𝑗=0

| ≤
1

2𝑁−1
(3.21) 

Then 

max
y∈[−1,1]

|𝑓(𝑦) − 𝑃𝑁−1(𝑦)| ≤
1

2𝑁−1𝑁!
 max
y∈[−1,1]

|𝑓(𝑁)(𝑦)| (3.22) 

From Equation (3.22), it is obviously that with high order polynomial interpolation, 

the error is very small. 
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Chapter 4  

DIRECT NUMERICAL SIMULATION (DNS) CASE SET UP AND CODE VALIDATION 

To investigate the linear stability problem of vortices in real-world case, our high 

order DNS with near 60 million grid points and about 400,000 time steps are used to 

visualize and track the generation of vortices on boundary layer flow transition. 

4.1 Case Set-up 

The computation domain of our DNS case is shown in Figure 4-1. The mesh 

includes 1920 × 128 × 241 points in streamwise (x), spanwise (y), and normal-to-wall (z) 

directions respectively. The grid is uniform in the streamwise and spanwise directions, 

while stretched in the normal direction. The first grid interval is carefully chosen to make 

sure the grid is fine enough to capture all the small scales (Z+ = 0.43). 

 

Figure 4-1 Computational Domain 

The parallel computation is accomplished through the Message Passing Interface 

(MPI) together with the streamwise direction domain decomposition (shown in Figure 4-2). 

The flow conditions, including Reynolds number, Mach number, etc. are listed in Table 1.  
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Figure 4-2 Domain decomposition for MPI 

 

Table 4-1 Flow parameters 

M∞ Re xin Lx 

0.5 1000 300.79δin 798.03δin 

Ly Lzin T𝑤 T∞ 

22δin 40δin 273.15K 273.15K 

 

where  

M∞ = Mach number 

Re = Reynolds number, define as 
ρ∞𝑈∞𝛿𝑖𝑛

𝜇∞
 

δin = inflow displacement thickness 

T𝑤 = wall temperature  

T∞ = free stream temperature  

Lzin  = height at inflow boundary  

Lzout = height at outflow boundary  

Lx= length of computational domain along x direction  

Ly= length of computational domain along y direction  

xin  = distance between leading edge of flat plate and upstream boundary of 

computational domain 
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4.2 Governing equation in generalized curvilinear coordinates 

The governing equations with three-dimensional compressible flow in Cartesian 

coordinates are shown in chapter 2. In this section, we give the expansion in Curvilinear 

Coordinates(ξ, η, ζ). 

Equations (2.9)-(2.11) can be rewritten by a vector form: 

∂Q

∂t
+

𝜕𝐸

𝜕𝑥
+

𝜕𝐹

𝜕𝑦
+

𝜕𝐺

𝜕𝑧
=

𝜕𝐸𝑣

𝜕𝑥
+

𝜕𝐹𝑣

𝜕𝑦
+

𝜕𝐺𝑣

𝜕𝑧
(4. 1) 

where  

Q =

[
 
 
 

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝑒 ]

 
 
 

  𝐸 =

[
 
 
 
 

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣
𝜌𝑢𝑤

(𝑒 + 𝑝)𝑢]
 
 
 
 

   𝐹 =

[
 
 
 
 

𝜌𝑣
𝜌𝑣𝑢

𝜌𝑣2 + 𝑝
𝜌𝑣𝑤

(𝑒 + 𝑝)𝑣]
 
 
 
 

   𝐺 =

[
 
 
 
 

𝜌𝑤
𝜌𝑤𝑢
𝜌𝑤𝑣

𝜌𝑤2 + 𝑝
(𝑒 + 𝑝)𝑤]

 
 
 
 

 (4. 2) 

Ev =
1

𝑅𝑒

[
 
 
 
 

0
𝜏𝑥𝑥
𝜏𝑥𝑦

𝜏𝑥𝑧

𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + 𝑤𝜏𝑥𝑧 + 𝑞𝑥]
 
 
 
 

 (4. 3) 

Fv =
1

𝑅𝑒

[
 
 
 
 

0
𝜏𝑦𝑥

𝜏𝑦𝑦

𝜏𝑦𝑧

𝑢𝜏𝑦𝑥 + 𝑣𝜏𝑦𝑦 + 𝑤𝜏𝑦𝑧 + 𝑞𝑦]
 
 
 
 

(4. 4) 

Gv =
1

𝑅𝑒

[
 
 
 
 

0
𝜏𝑧𝑥
𝜏𝑧𝑦

𝜏𝑧𝑧

𝑢𝜏𝑧𝑥 + 𝑣𝜏𝑧𝑦 + 𝑤𝜏𝑧𝑧 + 𝑞𝑧]
 
 
 
 

(4. 5) 

qx =
𝜇

(𝛾 − 1)𝑀∞
2 𝑃𝑟

𝜕𝑇

𝜕𝑥
(4. 6) 

qy =
𝜇

(𝛾 − 1)𝑀∞
2 𝑃𝑟

𝜕𝑇

𝜕𝑦
(4. 7) 

qz =
𝜇

(𝛾 − 1)𝑀∞
2 𝑃𝑟

𝜕𝑇

𝜕𝑧
(4. 8) 
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p =
1

γM∞
2

𝜌𝑇 (4. 9) 

 

τ = μ

[
 
 
 
 
 
 
4

3

𝜕𝑢

𝜕𝑥
−

2

3
(
𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥

4

3

𝜕𝑢

𝜕𝑥
−

2

3
(
𝜕𝑤

𝜕𝑧
+

𝜕𝑢

𝜕𝑥
)

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦

4

3

𝜕𝑢

𝜕𝑥
−

2

3
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
)
]
 
 
 
 
 
 

(4. 10) 

Assume that the position frame of reference is fixed in time, i.e. the generalized 

coordinates do not change with time. Then, we can define the curvilinear coordinates in 

relation to the Cartesian coordinates as 

{

𝜉 = 𝜉(𝑥, 𝑦, 𝑧)

𝜂 = 𝜂(𝑥, 𝑦, 𝑧)

𝜁 = 𝜁(𝑥, 𝑦, 𝑧)

(4. 11) 

Thus, The Navier-Stokes equations can be transformed to the system using 

generalized coordinates: 

 

∂Q̂

∂τ
+

𝜕𝐸̂

𝜕𝜉
+

𝜕𝐹̂

𝜕𝜂
+

𝜕𝐺̂

𝜕𝜁
=

𝜕𝐸̂𝑣

𝜕𝜉
+

𝜕𝐹̂𝑣

𝜕𝜂
+

𝜕𝐺̂𝑣

𝜕𝜁
(4. 12) 

 

with Q̂ = 𝐽−1𝑄 and  

Ê = 𝐽−1 (𝜉𝑥𝐸 + 𝜉𝑦𝐹 + 𝜉𝑧𝐺) (4. 13) 

 

F̂ = 𝐽−1 (𝜂𝑥𝐸 + 𝜂𝑦𝐹 + 𝜂𝑧𝐺) (4. 14) 

 

𝐺̂ = 𝐽−1 (𝜁𝑥𝐸 + 𝜁𝑦𝐹 + 𝜁𝑧𝐺) (4. 15) 

 



25 

Ê𝑣 = 𝐽−1 (𝜉𝑥𝐸𝑣 + 𝜉𝑦𝐹𝑣 + 𝜉𝑧𝐺𝑣) (4. 16) 

 

F̂𝑣 = 𝐽−1 (𝜂𝑥𝐸𝑣 + 𝜂𝑦𝐹𝑣 + 𝜂𝑧𝐺𝑣) (4. 17) 

 

𝐺̂𝑣 = 𝐽−1 (𝜁𝑥𝐸𝑣 + 𝜁𝑦𝐹𝑣 + 𝜁𝑧𝐺𝑣) (4. 18) 

  

J−1 = det (
𝜕(𝑥, 𝑦, 𝑧)

𝜕(𝜉, 𝜂, 𝜁)
) (4. 19) 

4.3 Numerical Methods 

A sixth order compact scheme [56] is used for the spatial discretization in the 

streamwise and normal-to-wall directions. The scheme is used for internal points j =

3,⋯ , N − 2 as follows: 

 

1

3
𝑓𝑗−1

′ + fj
′ +

1

3
𝑓𝑗+1

′ =
1

h
(−

1

36
𝑓𝑗−2 −

7

9
𝑓𝑗−1 +

7

9
𝑓𝑗+1 +

1

36
𝑓𝑗+2) + 𝑂(ℎ6) (4. 20) 

 

where fj
′ is the first derivative at the internal point j. The fourth order compact scheme is 

used at point j = 2, N − 1, and the third order one-sided compact scheme is used at the 

boundary points j = 1, N. 

In the spanwise direction, the pseudo-spectral method is used for the periodical 

conditions. To eliminate the spurious numerical oscillations caused by central difference 

schemes, a high-order spatial scheme is used instead of artificial dissipation. An implicit 

sixth-order compact scheme for space filtering is applied to the primitive variables 

u, v, w, ρ, p after a specified number of time steps. 
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The governing equations are solved explicitly by a 3rd order TVD Runge-Kutta 

scheme for time marching: 

Q(0) = 𝑄𝑛 

Q(1) = 𝑄(0) + Δ𝑡𝑅(0) 

Q(2) =
3

4
𝑄(0) +

1

4
𝑄(1) +

1

4
Δ𝑡𝑅(1) 

Q𝑛+1 =
1

4
𝑄(0) +

2

3
𝑄(2) +

2

3
Δ𝑡𝑅(2) (4. 21) 

CFL ≤ 1 is required to ensure the stability. 

The adiabatic and the non-slipping conditions are enforced at the wall boundary 

on the flat plate. On the far field and the outflow boundaries, the non-reflecting boundary 

conditions are applied.  

Blasius solution with enforced disturbance is introduced into inlet as a laminar base 

inflow. The disturbance includes a two-dimensional T-S wave and a pair of conjugate three-

dimensional T-S waves. The inflow has a form: 

q = qlam + 𝐴2𝑑𝑞2𝑑
′ 𝑒𝑖(𝛼2𝑑𝑥−𝜔𝑡) + 𝐴3𝑑𝑞3𝑑

′ 𝑒𝑖(𝛼3𝑑𝑥±𝛽𝑦−𝜔𝑡) 

with q represents the vector (u,v,w,p,T), qlam is the Blasius solution for a two-dimensional 

laminar flat plat boundary layer. The streamwise wavenumber, spanwise wavenumber, 

frequency and amplitude are given respectively as follows: 

α2d = 0.29919 − 𝑖5.09586 × 10−3 

β = ±0.5712 

ω = 0.114027 

A2d = 0.03 

A3d = 0.01 

The T-S wave parameters are obtained by solving the compressible boundary 

layer stability equations. 
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4.4 Code Validation 

The code ”DNSUTA” was developed at the University of Texas at Arlington and 

carefully validated by NASA Langley and UTA researchers [40], [57]. Only a short 

description of the validation would be addressed here and readers are encouraged to refer 

to these papers for details. A more detailed comparison is also reported in [32]. 

4.4.1 Velocity profiles and grid convergence 

Time and spanwise-averaged streamwise velocity profiles for two different 

streamwise locations in two different grids levels 960 ×  64 ×  121  and 1920 ×  128 ×

 241 are shown respectively in Figure 4-3 (a) and Figure 4-3 (b). The inflow velocity profiles 

at x =  300.79δin is a typical laminar boundary layer velocity profile. And the mean velocity 

profile at x =  632.33δ𝑖𝑛  approaches a turbulent flow velocity profile (Log Law). This 

comparison shows that the grid convergence has been realized and the simulation from 

laminar flow to turbulence has also been achieved. 

 

Figure 4-3 Time- and spanwise-averaged velocity profile in two grid levels 
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4.4.2 Comparison with experiment 

Utilizing the λ2 -eigenvalue method proposed by Jeong and Hussain [58], the 

vortical structures during transition is shown in Figure 4-4. The formation of ring-like 

vortices chains is consistent with the experimental work by Lee and Li [59] as shown in 

Figure 4-5. 

 

Figure 4-4 Evolution of vortical structures during transition 
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Figure 4-5 Evolution of ring-like vortices by experiment 

 

 

Figure 4-6 Comparison of our DNS results with Rist’s DNS data 
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4.4.3 Comparison with Rist’s DNS data 

Figure 4-6 shows a comparison between our DNS results with Rist’s DNS data [29] 

provided as his personal kindness. The comparison shows both DNS results can capture 

the typical vortical structures during transition. 

All above verifications and validations show that the DNS results are reliable and 

accurate. 

 

4.5 DNS Visualization Method 

A new visualization method named “Ω criterion” proposed by Liu [60] is used in this 

thesis to identify the vortices. The “Ω” is defined as the proportion of vorticity and 

deformation in fluid element motion: 

∇V =
1

2
(∇𝑉 + ∇𝑉𝑇) +

1

2
(∇𝑉 − ∇𝑉𝑇) = 𝑆 + 𝑊 (4. 22) 

Where S is the symmetric while W is the anti-symmetric part of the velocity gradient 

tensor. S represents deformation and W is related to the whole vorticity.  

The square of Frobenius norms of S and W are a = trace(SST), b = trace(WWT), 

then: 

Ω =
b + ε

(𝑎 + 𝜀) + (𝑏 + 𝜀)
(4. 23) 

Ω =  0.52 is set as the threshold to identify the region where rotation plays a dominant role 

rather than deformation as a vortex.  

Compared with traditional Q or λ2  criteria, Ω  criteria doesn’t need to tune the 

threshold and have clear physical meaning. In addition, it successes to capture both strong 

and weak vortices simultaneously while both Q and λ2 criteria fails. When Ω =  1.0, the 

flow has pure rotation and has no deformation which means the fluid is stiff like solid, but 

vortex itself is also very stiff like solid. Although Ω is a measurement of fluid stiffness, but it 
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is a good measurement of flow rotation, i.e., vortex. Therefore, Ω  criteria is the best 

visualization method for us to detect and track the generation of vortices.  
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Chapter 5  

INSTABILITY OF TWO-DIMENSIONAL SHEAR FLOW 

5.1 Linear Stability Equation 

Consider the Non-dimensional Navier-Stokes equations for incompressible flow: 

{
𝜕𝑉

𝜕𝑡
+ 𝑉 ∙ ∇𝑉 = −∇𝑝 +

1

𝑅𝑒
∇2𝑉 

∇ ∙ 𝑉 = 0

(5.1) 

where V = (u, v, w) is the velocity vector with u denotes streamwise component, v denotes 

normal component, and w denotes spanwise component. 

Recall the linear stability theory on section 2.3, we have: 

q(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞0(𝑦) + 𝑞′(𝑥, 𝑦, 𝑧, 𝑡) (5.2) 

where q can be specified as (u,v,w,p) and q0 = (u0, v0, wo, p0) represents the value of base 

flow. q′ denotes the corresponding linear perturbation.  

By eliminating the second order perturbation terms, the linearized governing 

equation for small perturbations can be written as, 

{
𝜕𝑉′

𝜕𝑡
+ (𝑉0 ∙ ∇)𝑉′ + (𝑉′ ∙ ∇)𝑉0 + ∇𝑝′ =

1

𝑅𝑒
∇2𝑉′

∇ ∙ 𝑉′ = 0

(5.3) 

As a first step, a localized 2-D incompressible temporal stability for shear layer is 

studied. It relates to the distance among two neighboring vortices in the central streamwise 

plane. Assume the normal mode is 

V′ = V̂(𝑦)𝑒𝑖(𝛼𝑥+𝛽𝑧−𝜔𝑡) + 𝑐. 𝑐. = V̂(𝑦)𝑒
𝑖𝛼(𝑥+

𝛽
𝛼

𝑧−𝑐𝑡)
+ 𝑐. 𝑐. (5.4) 

p′ = p̂(𝑦)𝑒𝑖(𝛼𝑥+𝛽𝑧−𝜔𝑡) + 𝑐. 𝑐. = p̂(𝑦)𝑒
𝑖𝛼(𝑥+

𝛽
𝛼

𝑧−𝑐𝑡)
+ 𝑐. 𝑐. (5.5) 

with c =
ω

α
.  Here V̂ = (𝑢̂, 𝑣̂, 𝑤̂) , the wavenumber α  and β  are given real numbers. The 

parameter c should be a complex number. Plugging equations (5.4) and (5.5) into equation 

(5.3) yields: 
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Lû = 𝑅𝑒(𝐷𝑢0)𝑣̂ + 𝑖𝛼𝑅𝑒𝑝̂ 

Lv̂ = 𝑅𝑒(𝐷𝑝̂) 

Lŵ = 𝑖𝛽𝑅𝑒𝑝̂ 

i(αû + 𝛽𝑤̂) + 𝐷𝑣̂ = 0 (5.6) 

where L = [D2 − (𝛼2 + 𝛽2) − iRe(αu0 − ω)], and D =
d

dy
. 

By eliminatingû, 𝑤̂, 𝑝̂, we can obtain the Orr-Sommerfeld equation on v̂, 

(−Uk2 − U′′ −
k4

iαRe
) v̂ + (𝑈 +

2𝑘2

𝑖𝛼𝑅𝑒
) 𝑣̂′′ −

1

𝑖𝛼𝑅𝑒
𝑣̂′′′′ = 𝑐(𝑣̂′′ − 𝑘2𝑣̂) (5.7) 

 

where U = u0 and k2 = 𝛼2 + 𝛽2. 

With boundary conditions  

v̂(±1) = 𝑣̂′(±1) = 0, 

Equation (5.7) is an eigenvalue problem about 𝑣̂  with eigenvalue 𝑐 . The eigenvalue 𝑐 

determines the property of stability of the equation. Let 𝑐 = 𝑐𝑟 + 𝑖𝑐𝑖 , if 𝑐𝑖 > 0, then the 

disturbance will continuously grow and the flow would be instable. While if 𝑐𝑟 is greater, the 

disturbance will grow faster and the flow would be more unstable. But if 𝑐𝑖 < 0, the flow 

would be stable.  

Orr-Sommerfeld equation is named after William McFadden Orr and Arnold 

Sommerfled, who derived is at the beginning of the 20th century. It describes the 

perturbation of two-dimensional parallel flow, and is widely used in Boundary-layer linear 

stability theory. 
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5.2 Chebyshev Discretization of the Orr-Sommerfeld Equation 

In this section, a spectral collocation method based on Chebyshev polynomials is 

applied to the Orr-Sommerfeld equation. This method has advantages to compute the 

stability characteristics of shear flows as we discussed in Chapter 3.  

Recall Equation (5.7), the eigenfunction 𝑣̂ could be approximated by Chebyshev 

expansion, 

v̂(𝑦) = ∑ 𝑎𝑛𝑇𝑛(𝑦) ≈ ∑ 𝑎𝑛𝑇𝑛(𝑦)

𝑁

𝑛=0

∞

𝑛=0

(5.8) 

The derivatives of the eigenfunctions are obtained by differentiating the expansion 

above. For example, the approximation of the second derivative is, 

𝐷2𝑣̂(𝑦) = ∑ 𝑎𝑛𝑇𝑛
′′(𝑦)

𝑁

𝑛=0

(5.9) 

And similarly, for the fourth derivative.  

Upon substitution into the Orr-Sommerfeld equation we get 

∑ [(−𝑈𝑘2 − 𝑈′′ −
𝑘4

𝑖𝛼𝑅𝑒
)𝑇𝑛 + (𝑈 +

2𝑘2

𝑖𝛼𝑅𝑒
)𝑇𝑛

′′ −
1

𝑖𝛼𝑅𝑒
𝑇𝑛

′′′′] 𝑎𝑛

𝑁

𝑛=0

= 𝑐 ∑ 𝑎𝑛(𝑇𝑛
′′ − 𝑘2𝑇𝑛)

𝑁

𝑛=0

(5.10) 

Chebyshev collocation method is then used, require this equation to be satisfied 

at the Gauss point (Chebyshev nodes): 

yj = cos (
2𝑗 + 1

2𝑁
𝜋) , 𝑗 = 0,1,⋯ ,𝑁 − 1 (5.11) 

The recurrence relations in Chapter 3 () are used to evaluate the derivatives of the 

Chebyshev polynomials. 

The discretized boundary conditions read 

∑ 𝑎𝑛𝑇𝑛(1)

𝑁

𝑛=0

= 0                  ∑ 𝑎𝑛𝑇𝑛(−1)

𝑁

𝑛=0

= 0 
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∑ 𝑎𝑛𝑇𝑛
′(1)

𝑁

𝑛=0

= 0                  ∑ 𝑎𝑛𝑇𝑛
′(−1)

𝑁

𝑛=0

= 0 (5.12) 

Applying equation (5.10) on the collocation points grid with boundary conditions 

above, a matrix form of generalized eigenvalue problem is given by the form 

𝑨𝒂 = 𝑐𝑩𝒂 (5.13) 

With the right-hand side 

𝑐𝑩𝒂 = 

𝑐

(

 
 
 
 
 

𝑇0(1)

𝑇0
′(1)

𝑇0
′′(𝑦1) − 𝑘2𝑇0(𝑦1)

𝑇1(1)

𝑇1
′(1)

𝑇1
′′(𝑦1) − 𝑘2𝑇1(𝑦1)

…
…
…

⋮ ⋮ ⋮
𝑇0

′′(𝑦𝑁) − 𝑘2𝑇0(𝑦𝑀)

𝑇0
′(−1)

𝑇0(−1)

𝑇1
′′(𝑦𝑁) − 𝑘2𝑇1(𝑦𝑀)

𝑇1
′(−1)

𝑇1(−1)

…
…
…)

 
 
 
 
 

(

 
 
 
 

𝑎0

𝑎1

𝑎2

⋮
𝑎𝑁−3

𝑎𝑁−2

𝑎𝑁−1)

 
 
 
 

 

  

 

and similar for the left-hand side 𝑨𝒂. We have chosen to use the first, second, last and 

next-to-Iast row of 𝑩 to implement the four boundary conditions. The same rows in the 

matrix 𝑨 can be chosen as a complex multiple of the corresponding rows in 𝑩. By carefully 

selecting this complex multiple, the spurious modes associated with the boundary 

conditions can be mapped to an arbitrary location in the complex plane. 
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5.3 Numerical results for typical shear flows 

Typical shear flow (Figure 5-): 

𝑈(𝑦) = tanh(𝑏𝑦) ,  𝑦 ∈ [−1,1] 

Computational conditions: 

The number of O-S nodes is 𝑁 = 100, streamwise wave number is 𝛼 = 1 and 

spanwise wave number is 𝛽 =0. 

 

Figure 5-1 Sketch of typical shear flow velocity profile 

 

First, set 𝑏 = 2, Figure 5-2 provides the comparison of spectrums upon base flow 

𝑈(𝑦) = tanh(2𝑦) with Reynolds number 𝑅𝑒 = 10, 100,1000. 
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(a) 𝑅𝑒 = 10; (b)𝑅𝑒 = 100; (c)𝑅𝑒 = 1000 

Figure 5-2 graphs of spectrum on shear flow 𝑈(𝑦) = tanh(2𝑦)  
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 Unstable mode (𝑐𝑖=0.1643) only obtained at 𝑅𝑒 = 1000, the associated 

eigenfunction 𝑣̂ is as Figure 5-3: 

 

 
Figure 5-3 Eigenfunction 𝑣̂ on [-1,1]: red-imag(𝑣̂); green-real(𝑣̂); blue-|𝑣|̂ 

 
 

Next, set b = 8, with base flow U(y) = tanh (8y), Figure 5-4 provides the 

comparison of spectrums with Reynolds number Re = 10, 100,1000. 
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(a) 𝑅𝑒 = 10; (b)𝑅𝑒 = 100; (c)𝑅𝑒 = 1000 

Figure 5-4 graphs of spectrum on shear flow 𝑈(𝑦) = tanh(8𝑦) 
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Figure 5-5 Graph of 𝑅𝑒 and least stable 𝑐𝑖 on 𝑏 = 2,4,8. 

 

Consider Figure 5-5, the graph shows that: 

(a) For 1-D typical shear flow, it is unstable when Reynolds number is large enough. 

(b) The flow is more unstable with the larger Reynolds number and stronger shear 

stress. 
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Chapter 6  

LINEAR STABILITY EQUATION FOR QUASI-ROTATION FLOW IN CYLINDRICAL 

COORDINATE 

6.1 Derivation of linear perturbation system 

The dimensionless NS equations of 2D imcompressible flow can be written in 

cylindrical coordinates as: 

Continuity: 

1

𝑟

𝜕(𝑟𝑢𝑟)

𝜕𝑟
+

1

𝑟

𝜕𝑢𝜃

𝜕𝜃
= 0 (6. 1) 

Radial conservation of momentum: 

𝐷𝑢𝑟

𝐷𝑡
−

𝑢𝜃
2

𝑟
= −

𝜕𝑝

𝜕𝑟
+

1

𝑅𝑒
[𝛻2𝑢𝑟 −

𝑢𝑟

𝑟2
−

2

𝑟2

𝜕𝑢𝜃

𝜕𝜃
   ]  (6. 2) 

Azimuthal conservation of momentum: 

𝐷𝑢𝜃

𝐷𝑡
+

𝑢𝑟𝑢𝜃

𝑟
= −

𝜕𝑝

𝜕𝜃
+

1

𝑅𝑒
[𝛻2𝑢𝜃 −

𝑢𝜃

𝑟2
+

2

𝑟2

𝜕𝑢𝑟

𝜕𝜃
   ] (6. 3) 

Here, 

𝐷

𝐷𝑡
≡

𝜕

𝜕𝑡
+ 𝑢𝑟

𝜕

𝜕𝑟
+

𝑢𝜃

𝑟

𝜕

𝜕𝜃
(6. 4) 

and 

∇2≡
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2
(6. 5) 

with 𝑢𝑟 , 𝑢𝜃 representing the radial, azimuthal velocity components, p is the pressure, Re is 

the Reynolds number.  

Given the class of steady-state solutions to this system of equations where 𝑢𝑟 =

𝑈0, 𝑢𝜃 = 𝑉0, with 𝑝 = 𝑃0, these velocities and pressure must then be solutions to: 

1

𝑟

𝜕(𝑟𝑈0)

𝑟
+

1

𝑟

𝜕𝑉0

𝜕𝜃
= 0 (6. 6) 



42 

𝐷𝑈0

𝐷𝑡
−

𝑉0
2

𝑟
= −

𝜕𝑃0

𝜕𝑟
+

1

𝑅𝑒
[𝛻2𝑈0 −

𝑈0

𝑟2
−

2

𝑟2

𝜕𝑉0

𝜕𝜃
   ] (6. 7) 

𝐷𝑈0

𝐷𝑡
+

𝑈0𝑉0

𝑟
= −

𝜕𝑃0

𝜕𝜃
+

1

𝑅𝑒
[𝛻2𝑉0 −

𝑉0

𝑟2
+

2

𝑟2

𝜕𝑈0

𝜕𝜃
   ] (6. 8) 

while satisfying appropriate boundary conditions.  

Suppose that the steady-state solution (𝑈0, 𝑉0, 𝑃0) is subjected to a set of small 

fluctuations, where 

𝑢𝑟 = 𝑈0 + 𝑢′(𝑟, 𝜃, 𝑡) (6. 9) 

𝑢𝜃 = 𝑉0 + 𝑣′(𝑟, 𝜃, 𝑡) (6. 10) 

𝑝 = 𝑃0 + 𝑝′(𝑟, 𝜃, 𝑡) (6. 11) 

Those fluctuation variables, incorporated with their steady-state components are 

solutions to the governing equation. According to equations (6.6) -(6.8), the original steady-

state part can be removed, leaving: 

 

1

𝑟

𝜕(𝑟𝑢′)

𝑟
+

1

𝑟

𝜕𝑣′

𝜕𝜃
= 0 (6. 12) 

 

𝐷𝑢′

𝐷𝑡
+ 𝑢′

𝜕𝑈0

𝜕𝑟
− 2

𝑣′𝑉0

𝑟
+

𝜕𝑢′2

𝜕𝑟
+

1

𝑟

𝜕𝑢′𝑣′

𝜕𝜃
+

𝑢′2 − 𝑣′2

𝑟
 

= −
𝜕𝑝′

𝜕𝑟
+

1

𝑅𝑒
[𝛻2𝑢′ −

𝑢′

𝑟2
−

2

𝑟2

𝜕𝑣′

𝜕𝜃
   ]  (6. 13)

 

 

𝐷𝑣′

𝐷𝑡
+ 𝑢′

𝜕𝑉0

𝜕𝑟
+

𝑣′𝑈0 + 𝑢′𝑉0

𝑟
+

𝜕𝑢′𝑣′

𝜕𝑟
+

1

𝑟

𝜕𝑣′2

𝜕𝜃
+ 2

𝑢′𝑣′

𝑟
 

= −
1

𝑟

𝜕𝑝′

𝜕𝜃
+

1

𝑅𝑒
[𝛻2𝑣′ −

𝑣′

𝑟2
+

2

𝑟2

𝜕𝑢′

𝜕𝜃
   ] (6. 14)

 

where 
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𝐷

𝐷𝑡
≡

𝜕

𝜕𝑡
+ 𝑈0

𝜕

𝜕𝑟
+

𝑉0

𝑟

𝜕

𝜕𝜃
(6. 15) 

 

The linear stability equations for rotational flow evolve from these fluctuation 

equations by assuming that quadratic fluctuation terms are negligibly small.  Furthermore, 

we would like to work these equations on cylindrical base flow, hence the general base 

flow for a vortex in 2D coordinates can be approximated by   

𝑈0 ≈ 0, 𝑉0 = 𝑉0(𝑟) (6. 16) 

Therefore, the dimensionless, linearized perturbation equations in 2D cylindrical 

coordinates can be written as: 

Continuity: 

𝑟
𝜕𝑢′

𝜕𝑟
+ 𝑢′ +

𝜕𝑣′

𝜕𝜃
= 0 (6. 17) 

𝑟-Momentum: 

𝜕𝑢′

𝜕𝑡
+

𝑉0

𝑟

𝜕𝑢′

𝜕𝜃
− 2

𝑣′𝑉0

𝑟
+

𝜕𝑢′2

𝜕𝑟
 = −

𝜕𝑝′

𝜕𝑟
+

1

𝑅𝑒
[𝛻2𝑢′ −

𝑢′

𝑟2
−

2

𝑟2

𝜕𝑣′

𝜕𝜃
   ]  (6. 18) 

𝜃-Momentum: 

𝜕𝑣′

𝜕𝑡
+ 𝑢′

𝜕𝑉0

𝜕𝑟
+

𝑉0

𝑟

𝜕𝑣′

𝜕𝜃
+

𝑢′𝑉0

𝑟
+ = −

1

𝑟

𝜕𝑝′

𝜕𝜃
+

1

𝑅𝑒
[𝛻2𝑣′ −

𝑣′

𝑟2
+

2

𝑟2

𝜕𝑢′

𝜕𝜃
   ] (6. 19) 

and  

∇2≡
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2
(6. 20) 
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6.2 Eigenvalue function 

To solve the equations system (6.17) – (6.20), we first subject that system to a 

normal mode representation of the disturbance field, where 

{𝑢′, 𝑣′ , 𝑝′} = {𝑢̂(𝑟), 𝑣̂(𝑟), 𝑝̂(𝑟)}𝑒𝑖(𝛼𝜃−𝜔𝑡) (6. 21) 

Here, 𝑢, 𝑣  and 𝑝  are amplitude functions which are dependent on the radial 

coordinate only. For the temporal solution 𝛼 is the given real and constant wavenumbers 

in the tangential direction. The angular frequency, 𝜔, is complex and must be computed. 

The disturbances will grow if the imaginary part of the frequency,𝜔𝑖, is positive, and if it is 

negative the disturbances decay with time. Substituting (6.21) into the governing equation 

(6.17) – (6.19), we obtain: 

Continuity: 

𝑢̂ + 𝑟𝐷𝑢̂ + 𝑖𝛼𝑣̂ = 0 (6. 22) 

𝑟-Momentum: 

(−𝑖𝜔)𝑢̂ +
𝑖𝛼𝑉0

𝑟
𝑢̂ −

2𝑉0

𝑟
𝑣̂ = −𝐷𝑝̂ +

1

𝑅𝑒
[
1

𝑟
𝐷𝑢̂ + 𝐷2𝑢̂ −

𝛼2

𝑟2
 𝑢̂ −

2𝑖𝛼

𝑟2
𝑣̂ −

𝑢̂

𝑟2
  ]  (6. 23) 

𝜃-Momentum: 

(−𝑖𝜔)𝑣̂ + 𝐷𝑉0𝑢̂ +
𝑖𝛼𝑉0

𝑟
𝑣̂ +

𝑉0

𝑟
𝑢̂ = −

𝑖𝛼

𝑟
𝑝̂ +

1

𝑅𝑒
[
1

𝑟
𝐷𝑣̂ + 𝐷2𝑣̂ −

𝛼2

𝑟2
𝑣̂ +

2𝑖𝛼

𝑟2
𝑢̂ −

𝑣̂

𝑟2
   ] (6. 24) 

where 𝐷 =
𝜕

𝜕𝑟
. 

Equations (6.22) – (6.24) represent the most general form for this normal model solution 

to the vortex stability equations for the 2D quasi-cylindrical approximation. 

According to the three linear equations system with three variables, it is possible 

to eliminate two variables 𝑣̂, 𝑝̂ and get a fourth-order ordinary differential equation with 

respect to 𝑢̂. 
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From equation (6.24), the pressure 𝑝̂ can be expressed in terms of 𝑢̂ and 𝑣̂ as 

follows: 

(
𝑖𝛼

𝑟
) 𝑝̂ = − [(−𝑖𝑐)𝑣̂ + 𝐷𝑉0𝑢̂ +

𝑖𝛼𝑉0

𝑟
𝑣̂ +

𝑉0

𝑟
𝑢̂] +

1

𝑅𝑒
[
1

𝑟
𝐷𝑣̂ + 𝐷2𝑣̂ −

𝛼2

𝑟2
𝑣̂ +

2𝑖𝛼

𝑟2
𝑢̂ −

𝑣̂

𝑟2
   ]  (6. 25) 

𝑝̂ =
𝑐𝑟

𝛼
𝑣̂ +

𝑖𝑟

𝛼
𝐷𝑉0 ∙ 𝑢̂ − 𝑉0𝑣̂ +

𝑖

𝛼
𝑉0𝑢̂ −

1

𝛼𝑅𝑒
(𝑖𝐷𝑣̂ + 𝑖𝑟𝐷2𝑣̂ −

𝑖𝛼2

𝑟
𝑣̂ −

2𝛼

𝑟
𝑢̂ −

𝑖

𝑟
𝑣̂) (6.26) 

Take the derivatives of 𝑝, we can get the expression of 𝐷𝑝: 

𝐷𝑝 =
𝜕𝑝

𝜕𝑟
=

𝑐

𝛼
(𝑣 + 𝑟𝐷𝑣) +

𝑖

𝛼
𝐷𝑉0 ∙ 𝑢 +

𝑖𝑟

𝛼
(𝐷2𝑉0 ∙ 𝑢 + 𝐷𝑉0 ∙ 𝐷𝑢) − 𝐷𝑉0 ∙ 𝑣 − 𝑉0𝐷𝑣

+
𝑖

𝛼
(𝐷𝑉0 ∙ 𝑢 + 𝑉0 ∙ 𝐷𝑢) 

−
𝑖

𝛼𝑅𝑒
[2𝐷2𝑣 + 𝑟𝐷3𝑣 − 𝛼2 (−

1

𝑟2
𝑣 +

𝐷𝑣

𝑟
) − (−

1

𝑟2
𝑣 +

𝐷𝑣

𝑟
)] +

2

𝑅𝑒
(−

1

𝑟2
𝑢 +

𝐷𝑢

𝑟
) (6.27) 

Rearrange the equation, get: 

𝐷𝑝 = [(
𝑐

𝛼
− 𝐷𝑉0) + (−

𝑖

𝛼𝑅𝑒
) (

𝛼2 + 1

𝑟2
)] 𝑣 + [(

𝑐𝑟

𝛼
− 𝑉0) + (

𝑖

𝛼𝑅𝑒
) (

𝛼2 + 1

𝑟
)]𝐷𝑣 

+(−
2𝑖

𝛼𝑅𝑒
)𝐷2𝑣 + (−

𝑖𝑟

𝛼𝑅𝑒
)𝐷3𝑣 + [

2

𝑅𝑒
(−

1

𝑟2
) +

𝑖

𝛼
(2𝐷𝑉0 + 𝑟𝐷2𝑉0)] 𝑢 + [

2

𝑟𝑅𝑒
+

𝑖

𝛼(𝑟 ∙ 𝐷𝑉0 + 𝑉0)
]𝐷𝑢 (6.28) 
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Combine Equation (6.23) and (6.28), get an equation LS=0. Terms with respect to 

each velocity component on LS is as following individually: 

𝑢:             − 𝑖𝑐 +
𝑖𝛼𝑉0

𝑟
+

1

𝑅𝑒
(
𝛼2 + 1

𝑟2
) +

2

𝑅𝑒
(−

1

𝑟2
) +

𝑖

𝛼
(2𝐷𝑉0 + 𝑟𝐷2𝑉0) 

𝐷𝑢:         +
1

𝑟𝑅𝑒
+

𝑖

𝛼
(𝑟 ∙ 𝐷𝑉0 + 𝑉0) 

𝐷2𝑢:       −
1

𝑅𝑒
 

𝑣:             −
2𝑉0

𝑟
+

1

𝑅𝑒
(
2𝑖𝛼

𝑟2
) + (

𝑐

𝛼
− 𝐷𝑉0) + (−

𝑖

𝛼𝑅𝑒
) (

 𝛼2 + 1

𝑟2
) 

𝐷𝑣:         +
𝑐𝑟

𝛼
− 𝑉0 +

𝑖

𝛼𝑅𝑒
(
𝛼2 + 1

𝑟
) 

𝐷2𝑣:       −
2𝑖

𝛼𝑅𝑒
 

𝐷3𝑣:       −
𝑖

𝛼𝑟𝑅𝑒
 

(6.29) 

Consider Equation (6.22), all 𝑣-velocity components can be replaced by 𝑢-velocity 

components since they have the relations as below: 

𝑣 =
𝑖

 𝛼
(𝑢 + 𝑟 ∙ 𝐷𝑢) 

𝐷𝑣 =
𝑖

𝛼
(2𝐷𝑢 + 𝑟 ∙ 𝐷2𝑢) 

𝐷2𝑣 =
𝑖

𝛼
(3𝐷2𝑢 + 𝑟 ∙ 𝐷3𝑢) 

𝐷3𝑣 =
𝑖

𝛼
(4𝐷3𝑢 + 𝑟 ∙ 𝐷4𝑢) (6.30) 
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Consider Equation (6.29) and (6.30), a new equation 𝐿𝑆∗ = 0 can be obtained with 

only u-velocity components on 𝐿𝑆∗: 

 

𝑢:       
1

𝑟2𝑅𝑒
(𝛼 −

1

𝛼
 )

2

+ 𝑖 [
𝑉0

𝑟
(𝛼 −

2

𝛼
) +

1

𝛼
(𝐷𝑉0 + 𝑟 ∙ 𝐷2𝑉0)] + 𝑖𝑐 (

1

𝛼
− 𝛼) 

𝐷𝑢:   −
1

𝑟𝑅𝑒
(2 +

1

𝛼2
) − 𝑖 (

3𝑉0

𝛼
) + 𝑖𝑐 (

3𝑟

𝛼
) 

𝐷2𝑢:  
1

𝑅𝑒
(

5

𝛼2
− 2) + 𝑖 (−

𝑉0𝑟

𝛼
) + 𝑖𝑐(

𝑟2

𝛼
) 

𝐷3𝑢:  
1

𝑅𝑒
(
6𝑟

𝛼2
) 

𝐷4𝑢:  
1

𝑅𝑒
(
𝑟2

𝛼2
) 

(6.31) 

 

Multiply 𝐿𝑆∗ by α2𝑅𝑒, we get: 

 

𝑢:        
1

𝑟2
(𝛼2 − 1 )2 + 𝑖𝑅𝑒 [

𝛼𝑉0

𝑟
(𝛼2 − 2) + 𝛼(𝐷𝑉0 + 𝑟 ∙ 𝐷2𝑉0)] + 𝑖𝑐𝑅𝑒(1 − 𝛼2) 

𝐷𝑢:     −
1

𝑟
(2𝛼2 + 1) − 𝑖𝑅𝑒(3𝑉0𝛼) + 𝑖𝑐𝑅𝑒(3𝑟) 

𝐷2𝑢:    (5 − 2𝛼2) − 𝑖𝑅𝑒(2𝑉0𝑟) + 𝑖𝑐𝑅𝑒𝑟2 

𝐷3𝑢:    6𝑟 

𝐷4𝑢:     𝑟2 

(6.32) 
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Rearrange equation (6.32), we obtain an ordinary differential equation with respect 

to the u-velocity components, it is also an eigenvalue function describing the linear modes 

of disturbance to a quasi-rotation flow. Similar with Orr-Sommerfeld equation, this equation 

determines what the conditions for flow stability are: 

 

𝐷4𝑢 ∙ 𝑟4 + 𝐷3𝑢 ∙ 6𝑟3 + 𝐷2𝑢 ∙ 𝑟2[(5 − 2𝛼2) − 𝑖𝛼𝑅𝑒𝑉0𝑟] 

+𝐷𝑢 ∙ 𝑟[−(2𝛼2 + 1) − 3𝑖𝛼𝑅𝑒𝑉0𝑟] + 𝑢{(𝛼2 − 1)2 + 𝑖𝛼𝑅𝑒𝑟[𝑉0(𝛼
2 − 2) + 𝑟𝐷𝑉0 + 𝑟2𝐷2𝑉0]} 

= −𝑐 ∙ 𝑖𝑅𝑒𝑟[𝐷2𝑢 ∙ 𝑟3 + 𝐷𝑢 ∙ 3𝑟2 + 𝑢 ∙ (1 − 𝛼2)𝑟] (6. 26) 

 

with the boundary conditions: 

 

𝑢(0) = 0, 𝑢(1) = 0 

𝑢′(0) = 0, 𝑢′(1) = 0 (6. 27) 

 

𝑐  represents the angular frequency. Let c = cr + 𝑐𝑖 . The imaginary part, 𝑐𝑖 , 

determines the stability of the perturbation. It is stable if 𝑐𝑖 is negative and unstable if 𝑐𝑖 is 

positive. 
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6.3 Shifted Chebyshev polynomials and discretization 

Since equation (6.25) is based on cylindrical coordinate on a finite domain in 

radius, the domain is always being normalized to r ∈  [0,1], Chebyshev polynomials are no 

longer available for this problem. A common way to solve it is Shifted Chebyshev 

polynomials by a linear change-of-coordinate.  

6.3.1 Shifted Chebyshev polynomials with linear argument 

Define 𝑛 orthogonal polynomials satisfying 

𝑇𝑛
∗(𝑟) = 𝑇𝑛(2𝑟 − 1) = 𝑐𝑜𝑠(𝑛 𝑐𝑜𝑠−1(2𝑟 − 1)) , n = 0,1,2,⋯ (6. 28) 

for 𝑟 ∈ [0,1] with 𝑛 is the order of polynomials. 

Therefore, |𝑇𝑛
∗(𝑟)| also bounded by 1.  

By setting 2𝑟 − 1 = 𝑐𝑜𝑠𝜃, we have: 

𝑇𝑛
∗ = 𝑐𝑜𝑠𝑛𝜃 (6. 29) 

Shifted Chebyshev polynomials keep most characters of Chebyshev polynomials. 

First few polynomials of shifted Chebyshev of linear argument are: 

 

𝑇0
∗ = 1

𝑇1
∗ = 2𝑟 − 1

𝑇2
∗ = 8𝑟2 − 8𝑟 + 1

𝑇3
∗ = 32𝑟3 − 48𝑟2 + 18𝑟 − 1

𝑇4
∗ = 128𝑟4 − 256𝑟3 + 160𝑟2 − 32𝑟 + 1 (6. 30)

 

 

Similar with Chebyshev polynomials, shifted Chebyshev polynomials also have the 

recurrence relationship for polynomials: 

𝑇𝑛+1
∗ (𝑟) = (4𝑟 − 2)𝑇𝑛

∗(𝑟) − 𝑇𝑛−1
∗ (𝑟) (6. 31) 

 



50 

A recurrence relation on the derivative also can easily be obtained. First, the 

differentiation of T𝑛
∗(𝑟) gives: 

𝑇𝑛
∗′(𝑟)

=
𝑑

𝑑𝜃
(𝑐𝑜𝑠𝑛𝜃)

𝑑𝜃

𝑑𝑟

             =
𝑑

𝑑𝜃
(𝑐𝑜𝑠𝑛𝜃)

1

𝑑𝑟
𝑑𝜃

 

                             = −𝑛𝑠𝑖𝑛(𝑛𝜃)
1

(−1)𝑠𝑖𝑛𝜃
2

  

        = 2𝑛
𝑠𝑖𝑛(𝑛𝜃)

sinθ
. (6. 32)

 

Then, by the application of trigonometrical formulas, we get the relation: 

 

𝑇𝑛+1
∗′ (𝑟)

𝑛 + 1
−

𝑇𝑛−1
∗′ (𝑟)

𝑛 − 1
= 4𝑇𝑛

∗(𝑟) (6. 33) 

 

with  𝑇0
∗′(𝑟) = 0 and 𝑇1

∗′(𝑟) = 2. 

 

6.3.2 Shifted Chebyshev polynomials with quadratic argument 

In cylindrical or polar coordinates, the shifted Chebyshev polynomials with linear 

argument is usual a bad option. The reason is that the Shifted-Chebyshev grid has points 

clustered near both 𝑟 = 0 and 𝑟 = 1. However, the disk bounded by 𝑟 = 𝜌 has an area 

which is only the fraction 𝜌2  of the area of the unit disk. Near the origin, points are 

separated by 𝑂(1/𝑁2). It follows that the high density of points near the origin is giving high 

resolution of only a tiny, 𝑂(1/𝑁4) in the area portion of the disk.  
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The Shifted Chebyshev polynomials of quadratic argument is a good alternate of 

the linear argument. It is defined as: 

𝑇𝑛
∗∗(𝑟) = 𝑇𝑛(2𝑟2 − 1) = 𝑐𝑜𝑠(𝑛 𝑐𝑜𝑠−1(2𝑟2 − 1)) , n = 0,1,2,⋯ (6. 34) 

for 𝑟 ∈ [0,1] with 𝑛 is the order of polynomials. 

Figure 6-1 shows the points of two different Shifted Chebyshev series on [0,1]. 

 

Figure 6-1 Chebyshev nodes distribution of two Shifted-Chebyshev series on 

[0,1] with N=20.  
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By setting 2𝑟2 − 1 = 𝑐𝑜𝑠𝜃, we have: 

 

𝑇𝑛
∗∗ = 𝑐𝑜𝑠𝑛𝜃 (6. 35) 

 

First few polynomials of shifted Chebyshev of quadratic argument are: 

 

𝑇0
∗∗ = 1

𝑇1
∗∗ = 2𝑟2 − 1

𝑇2
∗∗ = 8𝑟4 − 8𝑟2 + 1

𝑇3
∗∗ = 32𝑟6 − 48𝑟4 + 24𝑟2 − 3𝑟 − 4

(6. 36)

 

 

The recurrence relationship for Shifted Chebyshev polynomials of quadratic is: 

 

𝑇𝑛+1
∗∗ (𝑟) = (4𝑟2 − 2)𝑇𝑛

∗∗(𝑟) − 𝑇𝑛−1
∗∗ (𝑟) (6. 37) 

 

A recurrence relation on the derivative also can easily be obtained. First, the 

differentiation of T𝑛
∗(𝑟) gives: 
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𝑇𝑛
∗′(𝑟)

=
𝑑

𝑑𝜃
(𝑐𝑜𝑠𝑛𝜃)

𝑑𝜃

𝑑𝑟

             =
𝑑

𝑑𝜃
(𝑐𝑜𝑠𝑛𝜃)

1

𝑑𝑟
𝑑𝜃

 

                             = −𝑛𝑠𝑖𝑛(𝑛𝜃)
1

(−1)𝑠𝑖𝑛𝜃
4𝑟

  

            = 4𝑛𝑟
𝑠𝑖𝑛(𝑛𝜃)

sinθ
. (6. 38)

 

Then, by the application of trigonometrical formulas, we get the relation: 

 

𝑇𝑛+1
∗∗′ (𝑟)

𝑛 + 1
−

𝑇𝑛−1
∗∗′ (𝑟)

𝑛 − 1
= 4𝑟𝑇𝑛

∗∗(𝑟) (6. 39) 

 

with  𝑇0
∗′(𝑟) = 0 and 𝑇1

∗′(𝑟) = 4𝑟. 

 

6.3.3 Equation discretization 

Recall equation (6.25), the independent variable of this ordinary differential 

equation is 𝑢(𝑟). In linear stability analysis, the function 𝑢(𝑟) could be approximated by 

  

𝑢(𝑟) = ∑ 𝑎𝑛𝑇𝑛
∗(𝑟)

∞

𝑛=0

≈ ∑ 𝑎𝑛𝑇𝑛
∗(𝑟)

𝑁−1

𝑛=0

, (6. 40) 

or 

𝑢(𝑟) = ∑ 𝑎𝑛𝑇𝑛
∗∗(𝑟)

∞

𝑛=0

≈ ∑ 𝑎𝑛𝑇𝑛
∗∗(𝑟)

𝑁−1

𝑛=0

, (6. 41) 
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where 𝑁 is the number of Chebyshev polynomials used to approximate the velocity profile, 

𝑇𝑛
∗ is Shifted Cheybshev polynomials of linear argument and 𝑇𝑛

∗∗ is of quadratic argument. 

𝑎𝑛 are the coefficients.  

Equations (6.25) and (6.33) give 

∑{𝑟4 ∙ 𝑇𝑛
′′′′ + 6𝑟3 ∙ 𝑇𝑛

′′′ + 𝑟2[(5 − 2𝛼2) − 𝑖𝛼𝑅𝑒𝑉0𝑟] ∙ 𝑇𝑛
′′ + 𝑟[−(2𝛼2 + 1) − 3𝑖𝛼𝑅𝑒𝑉0𝑟] ∙ 𝑇𝑛

′

𝑁−1

𝑛=0

+ {(𝛼2 − 1)2 + 𝑖𝛼𝑅𝑒𝑟[𝑉0(𝛼
2 − 2) + 𝑟𝐷𝑉0 + 𝑟2𝐷2𝑉0]} ∙ 𝑇𝑛}𝑎𝑛

=𝑐 ∑{𝑖𝑅𝑒𝑟[𝑟3 ∙ 𝑇𝑛
′′ + 3𝑟2 ∙ 𝑇𝑛

′ + (1 − 𝛼2)𝑟 ∙ 𝑇𝑛]}𝑎𝑛

𝑁−1

𝑛=0

 

(6. 42) 

For convenience, here 𝑇𝑛 represents 𝑇𝑛
∗ or 𝑇𝑛

∗∗. 

Use Chebyshev nodes in the interval (0,1) to determine 𝑟𝑗: 

 

𝑟𝑗 =
1

2
[𝑐𝑜𝑠 (

2𝑗 + 1

2𝑀
𝜋) + 1] , 𝑗 = 0,1, … ,𝑀 − 1 (6. 43) 

𝑟𝑗 =
1

2
[cos (

2𝑗 + 1

2𝑀
𝜋) + 1]

1
2
, 𝑗 = 0,1, … ,𝑀 − 1 (6. 44) 

  

The boundary conditions are 𝑢(0) = 𝑢′(0) = 0 and 𝑢(1) = 𝑢′(1) = 0: 

∑ 𝑎𝑛𝑇𝑛(0)

𝑁−1

𝑛=0

= 0, ∑ 𝑎𝑛𝑇𝑛
′(0)

𝑁−1

𝑛=0

= 0, 

∑ 𝑎𝑛𝑇𝑛(1)

𝑁−1

𝑛=0

= 0, ∑ 𝑎𝑛𝑇𝑛
′(1)

𝑁−1

𝑛=0

= 0. (6. 45) 

 

The derivatives have the following recurrence relation for linear argument: 
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T𝑛
(𝑘)

(𝑟𝑗) = 4𝑛𝑇𝑛−1
(𝑘−1)

(𝑟𝑗) +
𝑛

𝑛 − 2
𝑇𝑛−2

(𝑘)
(𝑟𝑗), 𝑛 = 3,4,⋯ (6. 46) 

The first three terms from the first derivative to the forth derivative are: 

 

T0
′(𝑟𝑗) = 0, T1

′(𝑟𝑗) = 2, T2
′(𝑟𝑗) = 8𝑟 − 16, 

T0
′′(𝑟𝑗) = 0, T1

′′(𝑟𝑗) = 0, T2
′′(𝑟𝑗) = 16, 

T0
′′′(𝑟𝑗) = 0, T1

′′′(𝑟𝑗) = 0, T2
′′′(𝑟𝑗) = 0, 

T0′′′′(𝑟𝑗) = 0, T1′′′′(𝑟𝑗) = 0, T2′′′′(𝑟𝑗) = 0. (6. 47) 

 

Apply equation (6.34) on the whole Chebyshev nodes with boundary conditions 

(6.43), a matrix form of generalized eigenvalue problem is given by the form 

 

𝑨𝒂 = 𝒄𝑩𝒂. (6. 48)  

 

Matrix 𝑨 and 𝑩 have (𝑀 + 4) ∗ 𝑁 dimension. The size of row is 𝑀 + 4 not 𝑀, the 

reason is that the Chebyshev Nodes do not conclude two boundary points, four rows of 

boundary conditions are thus added to Matrix 𝐴. 

The right hand side 𝑐𝑩𝒂 = 

 

𝑐

(

 
 
 
 
 

𝑇0(1)

𝑇0
′(1)

𝑇0
′′(𝑦1) − 𝑘2𝑇0(𝑦1)

𝑇1(1)

𝑇1
′(1)

𝑇1
′′(𝑦1) − 𝑘2𝑇1(𝑦1)

…
…
…

⋮ ⋮ ⋮
𝑇0

′′(𝑦𝑀) − 𝑘2𝑇0(𝑦𝑀)

𝑇0
′(0)

𝑇0(0)

𝑇1
′′(𝑦𝑀) − 𝑘2𝑇1(𝑦𝑀)

𝑇1
′(0)

𝑇1(0)

…
…
…)

 
 
 
 
 

(

 
 
 
 

𝑎0

𝑎1

𝑎2

⋮
𝑎𝑁−3

𝑎𝑁−2

𝑎𝑁−1)

 
 
 
 

(6. 49) 
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The matrix form of this system can be written as 

 

𝑩𝑔𝑨𝒂 = 𝑐𝒂. (6. 50) 

 

𝑩𝑔 represents the generalized inverse matrix of 𝑩 with (𝑀 + 4) ∗ 𝑁, it can be obtained by 

using least squares. 𝑐  appears as eigenvalue of matrix 𝑩𝑔𝑨  with the associated 

eigenfunction 𝑢̂(𝑟) = ∑ 𝑎𝑛𝑇𝑛(𝑟)𝑁−1
𝑛=0 . 

Then we have a set of flow modes, denoted as {𝑢𝑛, 𝑐𝑛}𝑛=0
𝑁−1. Note that if 𝑐𝑛  has 

greatest imaginary part, then associated 𝑢𝑛 is most unstable. 

For quadratic argument, the derivatives have the following recurrence relation: 

 

T𝑛
(𝑘)

(𝑟𝑗) = 4𝑛𝑟𝑇𝑛−1
(𝑘−1)

(𝑟𝑗) +
𝑛

𝑛 − 2
𝑇𝑛−2

(𝑘)
(𝑟𝑗), 𝑛 = 3,4,⋯ (6. 51) 

 

The first three terms from the first derivative to the forth derivative are: 

 

T0
′(𝑟𝑗) = 0, T1

′(𝑟𝑗) = 4𝑟, T2
′(𝑟𝑗) = 16𝑟(2𝑟2 − 1), 

T0
′′(𝑟𝑗) = 0, T1

′′(𝑟𝑗) = 4, T2
′′(𝑟𝑗) = 96𝑟2 − 16, 

T0
′′′(𝑟𝑗) = 0, T1

′′′(𝑟𝑗) = 0, T2
′′′(𝑟𝑗) = 192𝑟, 

T0′′′′(𝑟𝑗) = 0, T1′′′′(𝑟𝑗) = 0, T2′′′′(𝑟𝑗) = 192. (6. 52) 

 

Recall equations (6.46) and (6.47), for quadratic case, the dimension of 𝑨, 𝑩 and 

𝑩𝑔 is (𝑀 + 3) ∗ 𝑁, the reason is that the derivative of 𝑇𝑛(0) is always be zero since every 

term contains 𝑟: 
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𝑇𝑛
′(0) = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 = 0,1,⋯ ,𝑁 − 1. 

The right hand side 𝑐𝑩𝒂 = 

𝑐

(

 
 
 
 

𝑇0(1)

𝑇0
′(1)

𝑇0
′′(𝑦1) − 𝑘2𝑇0(𝑦1)

𝑇1(1)

𝑇1
′(1)

𝑇1
′′(𝑦1) − 𝑘2𝑇1(𝑦1)

…
…
…

⋮ ⋮ ⋮
𝑇0

′′(𝑦𝑀) − 𝑘2𝑇0(𝑦𝑀)

𝑇0(0)
𝑇1

′′(𝑦𝑀) − 𝑘2𝑇1(𝑦𝑀)

𝑇1(0)

…
…

)

 
 
 
 

(

 
 
 
 

𝑎0

𝑎1

𝑎2

⋮
𝑎𝑁−3

𝑎𝑁−2

𝑎𝑁−1)

 
 
 
 

(6. 53) 
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Chapter 7  

DNS OBSERVATIONS AND NUMERICAL RESULTS 

7.1 Comparison of two shifted Chebyshev polynomials in a hyperbolic case 

To test the convergence property of two shifted Chebyshev polynomials, a 

hyperbolic function 𝑉0 = 𝑡𝑎𝑛ℎ(5𝑟) is used as the velocity of base flow to solve the linear 

system (6.48). 

Figure 7-1 shows the velocity profile of the base flow, the first derivative term 𝐷𝑉0 

and the second derivative term 𝐷𝐷𝑉0 can be easily obtained by the hyperbolic function. For 

this base flow, the gradient of velocity is large near 𝑟 = 0 and is almost zero near 𝑟 = 1. 

 

 

Figure 7-1 Illustration of hyperbolic function 𝑣 = 𝑡𝑎𝑛ℎ(5𝑟) on 𝑟 ∈ [0,1] 
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Recall Equation (6.41) The problem is solved by using MATLAB, given 𝑅𝑒 = 1000, 

𝛼 = 1, and 𝑁 = 𝑀 = 100. Figure 7-2 gives the results of using Shifted Chebyshev of linear 

transformation, the distribution of imaginary part of eigenvalues 𝑐 (i.e. 𝑐𝑖). In Figure 7-2(b), 

one positive 𝑐𝑖 is presented, it represents one unstable mode with ci = 0.2004. The graph 

of this unstable mode is shown in Figure 7-3. The eigenfunction 𝑣 = ∑ 𝑎𝑛𝑇𝑛
𝑁−1
0  is complex, 

thus Figure 7-3 provides the real part, imaginary part and modulus of it.  

The distribution of imaginary eigenvalues 𝑐𝑖  and graph of unstable mode (ci =

 0.2213) under Shifted Chebyshev polynomials of quadratic transformation are presented 

in Figure 7-4 and Figure 7-5.  

Recall the previous section, the different basis functions present different 

collocation points. Upon linear Shifted Chebyshev polynomials,  points clustered near both 

𝑟 = 0 and 𝑟 = 1; while upon quadratic Shifted Chebyshev polynomials, they only clustered 

near 𝑟 = 1. 
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(a) Global view    (b) Zoom-in view 

Figure 7-2 spectrum distribution of using Tn(2𝑟 − 1) 

 

 

 

Figure 7-3 Eigenfunction û associated with c =  −0.0102 +  0.2004i on Tn(2𝑟 − 1) 
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(a) Global view    (b) Zoom-in view 

Figure 7-4 spectrum distribution of using Tn(2𝑟2 − 1) 

 

 

 

Figure 7-5 Eigenfunction û associated with c =  0.1709 +  0.22146i on Tn(2𝑟2 − 1) 
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The Convergence property of the Chebyshev Collocation Method upon two Shifted 

Chebyshev polynomials is listed in Table 7-1. 𝑀 is the number of grid points (Chebyshev 

nodes). In Table 7-1, with 𝑀 increased gradually, the convergence of the eigenvalues on 

quadratic Shifted Chebyshev polynomials is observed, while eigenvalues on linear Shifted 

Chebyshev polynomials are not convergent. The results by using linear transformation are 

not reliable. 

In quadratic case, four-digit accuracy is obtained. 

Table 7-1 The Convergence property of 𝑐𝑖 on two Shifted Chebyshev Polynomials 

M 𝑇𝑛(2𝑟 − 1) 𝑇𝑛(2𝑟2 − 1) 

100 0.20044245 0.22127542 

120 0.20780676 0.22145990 

140 0.21363761 0.22146397 

160 0.21835979 0.22145546 

180 0.22225536 0.22147179 

200 0.22552000 0.22146576 

400 0.24190921 0.22145805 

800 0.25114780 0.22146244 
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7.2 DNS leg-like vortices cases 

Section 7.1 shows the convergence property of Chebyshev collocation method 

with different basis functions (linear and quadratic transformation) with base flow as a 

mathematical hyperbolic function. In this and next section, quasi-rotation flow in our DNS 

data are carefully discussed in this and next section. Quasi-rotation flow locates on the 

core of vortex structure, it can be well captured with Ω vortex identification method. 

Hairpin vortices are widely recognized as a fundamental coherent structure since 

their appearance in every significant process during transition. The hairpin vortex usually 

consists of three parts: (1) Two counter-rotating quasi-streamwise vortices, known as two 

legs; (2) A ring-like vortex named as the vortex head, where the spanwise vorticity is 

dominant, sitting on top farther from the wall, (3) Necks connect the head and legs. 

In this section, the DNS observation and numerical results of stability based on 

leg-like vortex are discussed. The other typical vortex, ring-like vortex, is discussed in next 

section. 

7.2.1 DNS observations  

Figure 7-6 provides the structure of transition flow at 𝑡 = 6.87𝑇, 𝑇 is the period. 

The spanwise tubes and hairpin vortices are captured at 𝛺 = 0.5, the spanwise tubes 

cannot represent rotation. With stretch and distortion, the tubes become Hairpin vortices 

gradually. Leg-like vortices are generated within this process.  
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Figure 7-6 X-Z view of the transition flow at 𝛺 = 0.5 on 𝑡 = 6.87𝑇 

 

Figure 7-7 give the distribution of shear on three directions on certain sections of 

spanwise tubes. Figure 7-8 shows the generation of leg-like vortices with 𝛺 = 0.52, the 

isosurface describes rotation with the reason 𝛺 > 0.5 based on the 𝛺 vortex identification 

method. 
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Figure 7-7 distribution of 𝑢-velocity and correlated shear stress on certain six slices 
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Figure 7-8 Generation of one leg-like vortex at 𝛺 = 0.52 on  

(a) t=5.87T; (b) t=6.01T; (c) t=6.16T; (d) t=6.30T 
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 To investigate the quasi-rotation flow with leg-like vortex, a fully developed leg is 

shown in Figure 7-9. Figure 7-10 depicts three 𝑦-section located in 𝑥 = 430.6, 434.7 and 

439.8.  

 

 
Figure 7-9 Fully developed leg-like vortices (𝑥 = 427 to 440) at 𝛺 = 0.52 on 𝑡 = 6.60𝑇 
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Figure 7-10 x-z view of leg-like vortex with three y-sections 

S1 S3 S2 
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Figure 7-11 y-section slice at 𝑥 = 439.8 with 𝛺 value contour 

 

A certain y-section slice located at 𝑥 = 439.8 with Ω value and spanwise velocity 𝑣 

contours are shown in Figure 7-11, 12 and 13.  Figure 7-11 gives the distribution of 𝛺 value 

on this slice, highest 𝛺 values at about 0.65 are obtained inside the leg-like vortices. Figure 

7-12 verifies Liu’s theory that high 𝛺 value region presents the core of rotation. The reason 

is the existence of the rotational streamline on high 𝛺 region. In Figure 7-13, distribution of 

𝑣 velocity provides a typical rotation flow profile. 
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Figure 7-12 y-section slice at 𝑥 = 439.8, 𝛺 value contour with a streamline 

 

Figure 7-13 y-section slice at 𝑥 = 439.8, 𝑣 value contour with a streamline  
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7.2.2 Numerical results 

Extracted spanwise 𝑣 velocity profiles from slices S1, S2 and S3 shown in Figure 

7-10, apply them as the quasi-rotational base flow to solve Equation (6.41) by using 

Quadratic Shifted Chebyshev polynomials associated with collocation points (Chebyshev 

nodes). 

The Reynolds number 𝑅𝑒=1000 in DNS case, given 𝛼 = 1, 𝑁 = 100 and 𝑀 = 200. 

𝑁 is the order of Shifted Chebyshev polynomials, 𝑀 is the number of collocation points. 

Three base flow velocity profiles related to S1, S2 and S3 are shown in Figure 7-

14. The least stable imaginary eigenvalues 𝑐𝑖  for three cases are given in Table 7-2. 

Spectrum distributions are depicted in Figure 7-15. Figure 7-16 shows the eigenfunction 𝑢̂ 

of these unstable modes.  

Table 7-2 also provides the 𝛺  values of each core of vortex, largest 𝛺  value 

connected with smallest positive imaginary eigenvalue, and smallest 𝛺 with the largest 

positive. However, three cases are not enough to show the relationship between 𝛺 value 

and stability. To study the stability of leg-like vortex deeply, Figure 7-17 is presented, the 

𝛺 values and least stable 𝑐𝑖 are obtained by tracking a vortex over time. The result shows 

that with the 𝛺 increasing over time, the vortex trends to be more stable with the decrement 

of the positive imaginary part of eigenvalues. 
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Figure 7-14 velocity profiles from (a) s1; (b) s2; (c) s3  
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 (a)  global view     (b) zoom-in view 

Figure 7-15 Distribution of spectrums on three base flows 
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Figure 7-16 Eigenfunction 𝑢̂ on three base flows  



75 

Table 7-2 Most unstable eigenvalues related with Omega value 

Slices 𝑐𝑖 𝛺 

1 0.0303338 0.632872 

2 0.0161457 0.662620 

3 0.0148870 0.668555 

 
 

 

 

 

 

Figure 7-17 least stable ci vs Ω value on leg-like vortex 
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7.3 DNS ring-like vortices cases 

7.3.1 DNS observations 

Ring-like vortices are generated at the head of the leg-like vortices (see Figure 7-

17). Similar with leg-like vortices, high shear stress locates the same region before ring-

like vortices appear. Figure 7-18,19 provides some illustrations of u velocity and shear 

layers in certain regions.  

 

Figure 7-18 Generation of ring-like vortex at  (a) t=6.30T; (b) t= 6.52T; (c) t=6.66T; (d) 

t=6.87T  
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Figure 7-19 Illustrations of Slice-x and y locations on DNS flow field 
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Figure 7-20 Distribution of u velocity and gradient in z direction 
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7.3.2 Numerical results 

The technique used to solve ring-like vortices problems is same with leg-like 

vortices. Figure 7-21 gives the section of ring-like vortices along with streamwise direction 

at 𝑡 = 10.914. Figure 7-22 shows the 𝛺 distribution on the certain slice. The velocity profile 

of the given slice is shown in Figure 7-23. The numerical results under this base flow, is 

provide in Figure 7-24 and 7-25, showing the eigenvalues and eigenfunctions respectively.

 

Figure 7-21 Section of ring-like vortices at 𝑦 = 10.914 on 𝑡 = 6.66𝑇  
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Figure 7-22 Distribution of 𝛺 value with three rings 

  
 

 
Figure 7-23 Velocity Profile on the certain slice at 𝑡 = 6.66𝑇 
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(a)  global view     (b) zoom-in view 

Figure 7-24 Eigenvalues distribution with unstable 𝑐𝑖 = 0.0095 

 

 

 

 

 

 
Figure 7-25 Eigenfunction 𝑢̂ with 𝑐𝑖 = 0.0095 
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 By tracking a fixed streamwise ring-like vortex from t = 6.59T  to 6.87T , the 

relationship between imaginary part of the eigenvalue with respect to the least stable mode 

and the Ω value on the core of vortex over time is shown on Figure 7-26. It clearly describes 

that the vortex trends to be more stable as the Ω increased over time.  

 

Figure 7-26 least stable ci vs Ω value on ring-like vortex 
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7.4 Conclusion 

1. Chebyshev collocation method associated with Quadratic Shifted Chebyshev 

polynomials performs well in solving the fourth order ODE, the linear stability 

equation for symmetric flow we derived in Chapter 7.  

2. Linear Shifted Chebyshev polynomials are invalid in interpolating certain equation. 

The clustering points near the singular point r = 0 in Cylindrical Coordinate might 

be dangerous in convergence. 

3. The linear stability equation for symmetric flow can be used to analyze the stability 

of real-case quasi-rotation flow obtained from our DNS data. The result shows that, 

in the flow transition process, new vortices including vortex legs and vortex rings, 

the Omega becomes larger and the vortex become less unstable in the fact of 

decreasing positive eigenvalues. When the Omega of vortex becomes larger, the 

flow become more stable (or less unstable). 

4. Dr. Liu's theory that turbulent flow which is dominated by rotations is more stable 

than laminar flow which is dominated by shears has been numerically checked  

and verified to be correct. 
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