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Abstract

Conditional Bias-Penalized Kalman Filter for Improved Estimation and Prediction of
Extremes

Miah Mohammad Saifuddin, MS
The University of Texas at Arlington, 2017

Supervising Professor: Dr. Yu Zhang

Kalman filter (KF) and its variants are widely used for real-time updating of model
states and prediction in environmental sciences and engineering. Whereas in many
applications the most important performance criteria may be the fraction of the times when
the filter performs satisfactorily under different conditions, in many other applications the
performance for estimation and prediction of extremes, such as floods, droughts, algal
blooms, etc., may be of primary importance. Because KF is essentially a least squares
solution, it is subject to conditional biases (CB) which arise from the error-in-variable,
attenuation, effects when the model dynamics are highly uncertain, the observations have
large errors and/or the system is not very predictable. In this work, conditional bias-penalized
Kalman filter is developed based on CB-penalized linear estimation which minimizes a
weighted sum of error covariance and expectation of Type-Il CB squared, and comparatively
evaluate with KF through a set of synthetic experiments for one-dimensional state estimation
under the idealized conditions of normality and linearity. The results show that CBPKF
reduces root mean square error (RMSE) over KF by 10 to 20% or more over the tails of the
distribution of the true state. For nonstationary cases, CBPKF performs comparably to KF in
the unconditional sense in that CBPKF increased RMSE over all ranges of the true state
only by 3% or less. With the ability to reduce CB explicitly, CBPKF provides a significant
addition to the existing suite of filtering techniques toward improving analysis and prediction

of extreme states of uncertain environmental systems.
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Chapter 1 Introduction

1.1 Background

Kalman filter (KF, Kalman 1960) and its variants are arguably the most popular class
of techniques for state estimation and prediction of dynamic systems. In environmental
sciences and engineering, they are widely used for real-time updating of model states via
data assimilation (DA), and prediction. Just to name a small subset, ensemble KF (EnKF,
Evensen 2003) was used for hydrologic forecasting (Clark et al. 2008, Komma et al. 2008,
Moradkhani et al. 2005, Neal et al. 2007, Rafieeinasab et al. 2014, Weerts and Serafy 2006,
Xie and Zhang 2010), extended KF (EKF, Jazwinski 1970) and EnKF were used for water
quality forecasting and ecological modeling (Cosby 1984, Ennola et al. 1998, Huang et al.
2013, Kim K et al. 2014, Kim S et al. 2014, Xue et al. 2012), and EnKF was used for marine
ecosystem and ocean modeling (Eknes and Evensen 2002, Evensen 2003, 2009) and for
weather forecasting (Houtekamer and Mitchell 1998, Zhang and Pu 2010). Whereas in most
applications the most important performance criterion may be the fraction of the times when
the filter performs satisfactorily under different conditions, in many applications the
performance for estimation and prediction of extreme may be of primary importance. For
example, in flood forecasting, accurate prediction of flood peaks or stages, which occur only
for a very small fraction of the times, is far more important than that of average flows. In
drought monitoring and prediction, accurate estimation of extremely dry soil moisture states
is much more important than estimation of those above the 10th or even lower percentile. In
water quality forecasting, being able to estimate accurately high concentrations of
Chlorophyll a and other state variables is critical to skillful prediction of algal blooms (Guo et
al. 2003, Mao et al. 2009, Pastres et al. 2003, Twigt et al. 2011, Whitehead and Hornberger
1984, Zingone and Enevoldsen 2000). Because KF is essentially a least squares solution

(Jazwinski 1970, Schweppe 1973), it is subject to conditional biases (CB) if the model



dynamics are highly uncertain, the observations have large errors and/or the system is not
very predictable. By “predictable”, it is meant that it is possible to make skillful predictions of
the future state of the system. By “skillful”, it is meant that the prediction in question is
superior to some clearly defined reference prediction such as climatological or simple
statistical forecast. To illustrate the adverse effect of CB, Figure 1.1 shows an example of
the KF estimates vs. the verifying observations from a synthetic experiment using a linear
Gaussian state-space model (Kitagawa and Gersch 1996, Durbin and Koopman 2001; see
the Evaluation Section for the model used). It is readily seen that, whereas the KF estimates
are unbiased over the near-median range of the truth, they are biased everywhere else. This
CB problem, where the larger and smaller values are systematically under- and
overestimated, respectively, is referred to in the statistical literature as the error-in-variable,
or attenuation, effects (Carroll et al. 1995, Fuller 1987, Seber 1989). These effects occur in
least squares regression when the predictors are observed with significant error. In modeling
and observation of environmental systems, such effects are the norm rather than the
exception (see, e.g., Ciach et al. 2000). As such, the solutions obtained from KF or its
variants often suffer from CB with potentially very large negative impact on estimation and
prediction of extremes.

Type-I and —Il CBs emerge from Type-l and Type-Il errors which occur when falsely
detecting an effect which does not exist, and when failing to detect an existing effect,
respectively (Joliffe and Stephenson 2003). Whereas Type-l CB can be reduced via
calibration, Type-ll CB cannot. Therefore, reducing Type-ll CB in optimal estimation
addresses an important gap in estimation and prediction of extremes. As the resolution of
environmental models continues to increase, it is expected that the model dynamics and
observations will be subject to larger uncertainties and variabilities, and hence to larger CBs.
As such, there is an increasingly large need for filtering techniques that can explicitly

address CB. Recently, Seo (2013) developed a Fisher-like solution for optimal linear



estimation by minimizing a weighted sum of error variance and expectation of Type-Il CB
squared. The technique has since been applied successfully to rain gauge-only precipitation
estimation in the form of conditional bias-penalized kriging (CBPK, Seo 2013, Seo et al.
2014), multi-sensor precipitation estimation using radar and rain gauge data in the form of
conditional bias-penalized co-kriging (CBPCK, Kim et al. 2016), bias correction of forecast
precipitation and streamflow in the form of conditional bias-penalized indicator co-kriging
(CBP-ICK, Brown and Seo 2010), and high-resolution fusion of multiple radar-based
quantitative precipitation estimation (QPE) products (Rafieeinasab et al. 2015).

In this work, CB-penalized optimal linear estimation is applied for dynamic filtering,
and formulate and evaluate conditional bias-penalized Kalman filter, or CBPKF, which
extends KF to explicitly minimize Type-ll CB in addition to error variance. While much
progress has been made since the introduction of KF in extending KF for nonlinear
predictions and ensemble forecasting as referenced above, to the best of my knowledge no
attempts have been reported to address CB explicitly until this paper. With the ability to
reduce CB explicitly, CBPKF provides a significant addition to the existing suite of filtering
techniques toward improving analysis and prediction of extreme states of uncertain

environmental systems.

1.2 Objective

The main objective of this study is to develop conditional bias-penalized Kalman
filter, or CBPKF, based on CB-penalized linear estimation which minimizes a weighted sum
of error covariance and expectation of Type-ll CB squared, and comparatively evaluate with
KF through a set of synthetic experiments for one-dimensional state estimation under the
idealized conditions of normality and linearity. It is expected that that CBPKF reduces root
mean square error (RMSE) over KF over the tails of the distribution of the true state. For

nonstationary cases, CBPKF performs comparably to KF in the unconditional sense in that



CBPKF increased RMSE over all ranges of the true state only by 3% or less. With the ability
to reduce CB explicitly, CBPKF provides a significant addition to the existing suite of filtering
techniques toward improving analysis and prediction of extreme states of uncertain

environmental systems.

1.3 Outline of the Thesis

Chapter 1 Presents the background of the study and the statement of the problem,
specific objectives of the study.

Chapter 2 Describes the CBPKF methodology and the algorithm.

Chapter 3 Describes comparative evaluation of CBPKF with KF.

Chapter 4 Presents the evaluation results.

Chapter 5 Presents the conclusion and suggested recommendations for further

improvement of the proposed technique.

GAMMA W =0.1

FILTERED ESTIMATE

-1.0 0.5 0.0 05 1.0 1.5

TRUTH

Figure 1.1 Example of the KF estimates vs. the truth from a synthetic experiment.



Chapter 2 Methodology

This chapter surveys the literature related to CB type and describes the algorithms
related to CBPKF.

Conditional Bias:

Unbiased estimates having minimum error variance in the unconditional sense
is produced by most of the conventional precipitation estimation techniques. But in the
conditional (on the magnitude of the truth being estimated) sense, heavy precipitation
is underestimated and light precipitation are overestimated by these techniques (Seo,
2012). There are two types of CB.

1) Type-I conditional bias (Type-I CB)

2) Type-ll conditional bias (Type-Il CB)

There is a widespread confusion about CB in the literature and among the
practitioners of geo-statistics (Mclennan and Duestch, 2003). Isaak (2004) stated that
CB is poorly understood even though it is a well-recognized problem in geo-
statistics. Lack of distinction between Type-l and Type-ll CB in the literature may
be one of the main sources of such confusion (Seo, 2012).

Type-l CB:

Type-I CB is defined as:

E[X|X*] - X*
where X*and X the estimate and the truth, respectively. Type-I CB occurs whenthe
estimate is biased against the expected value of the true precipitation conditional on
the estimate. (Siddique, R. 2014)
Type-ll CB:

Type-ll CB is defined as:
E[X*|X]-X

Type-ll CB exists when the expected value of the estimate given the truth differs from the



truth.

This study is concerned with reducing Type-Il CB. Different scientists and geo-statisticians
discuss the problem of Type-Il CB in different contexts e.g. in those of mining and radar
rainfall estimation (Siddique, R. 2014).

Brown and Seo (2012) proposed a new non-parametric technique to minimize Type-Il CB
in streamflow prediction. This technique is analogous to indicator co-kriging (ICK) and
is called conditional bias-penalized indicator co-kriging (CBP-ICK). It is found that CBP-
ICK successfully reduce Type-Il CB and produce estimates that are more skillful than the
estimates from other post processors used in hydrologic prediction (Siddique, R. 2014).
Seo (2012) proposed and described a new estimation technique, CBPK, which is an
extension of SK. CBPK adds a penalty term for Type-Il CB in addition to error variance.
Seo (2012) evaluated CBPK using normal and lognormal synthetic experiments and
found that CBPK successfully reduces Type-Il CB for large precipitation amounts

(Siddique, R. 2014). Seo (2012) also described a Fisher-like solution of CBPK

Seo (2013) has shown that, by minimizing the weighted sum, J =X, +oX of the

CB’

error variance of the true states, 2, = E, X*[(X — X)X -X")"], and the expectation

X])T, where X, X'

of the Type-Il CB squared, 2.5 = E, [(X —EX*[X* | XD(X —EX*[X*
and a denote the true state of the system, optimal (in some sense of the word) estimate of

the state, and scaler weight given to X and the subscripts to expectation operation

CB’
signify that the expectation is with respect to the variables subscripted, one arrives at the
following Fisher-like solution for linear estimation (see Equations. A20 and A21 in Appendix

A for the derivation of Equations. (1) and (2)):



> =B[H'A'HT" 1)

X =WZ=[H'"N'HI""H'A'Z (2)

In the above, X denotes the (mxm) estimation error covariance matrix, B is the

(mxm) scaling matrix, HT is the (mx(n+m)) modified structure matrix, and A denotes the
((n+m)x(n+m)) modified observation error covariance matrix, X denotes the (mx1) vector of

the estimates, W denotes the (mx(n+m)) weight matrix, and Z denotes the ((n+m)x1)

observation vector. The matrices, H' and A, are analogous to the structure and

observation error covariance matrices, H and R, in Fisher estimation (see Appendix A) but

modified according to Egs.(3) and (4), respectively. The matrices, IEIT,A and B are given

by (see Egs.(A11), (A12) and (A18) in Appendix A):

A" =H" +a¥4¥,, (3)
A=R+a(l-a)¥, Yy ¥,, —aHY,, —a¥, H" (4)
B=a¥, H A'H+1 (5)

where the (mxm) and ((n+m)xm) matrices, Wxx and Wzx, denote Cov[X,XT] and
Cov[Z,XT], respectively, R denotes the ((n+m)x(n+m)) observation error covariance matrix,
R=E[VVT], and | denotes the (mxm) identity matrix. In this work, it is assumed for simplicity
that a is a scaler rather than a matrix so that the penalty given to CB is applied
proportionately across all state variables. It is possible to prescribe a, e.g., as a diagonal
matrix which would allow state variable-specific weights for the CB penalty term. Such

relaxation of a, however, is beyond the scope of this study and is left as a future endeavor.



For complete derivation, the reader is referred to Appendix A which provides the technical
context for CBPKF and also includes additional details omitted in Seo (2013) in notations
that are consistent with this thesis to avoid confusion. Note in Egs.(1) through (5) that, if a=0
(i.e., no penalty for Type-ll CB), Egs.(1) and (2) reduce to the Fisher solution. Because
Eqgs.(3) through (5) require a priori knowledge of Wyxx and Wzx, Egs.(1) and (2) do not
represent a Fisher solution but a hybrid solution that combines Bayesian and Fisher
estimation (see Appendix A). The CB-penalized formulation above may also be considered
as a form of regularization in which the a priori information of Wxx and W, is added to the

objective function through a quadratic penalty for Type-Il CB.

Noting strong resemblance of Egs.(1) and (2) to the Fisher solution of

Y =[H R'H]" and X,

Fisher

=[H'"R'H]I'H"R'Z, one may arrive at CBPKF by
analogy with KF. Appendix B provides the derivation which is largely of technical nature.
Appendix C provides an alternative expression for CBPKF based on factorization of A
which juxtaposes with KF for direct comparison and to obtain additional positive semidefinite
conditions for specific elements of the filter. In the following, is present the resulting CBPKF
algorithm in the context of the following state-space representation of the dynamical model

and observation equation in direct analogy with the standard KF algorithm (Schweppe 1973,

Bras and Rodriguez-lturbe 1985):

X, =0, X, ,+G W, (6)

Z=H/X,+V, (7)

where Xy and Xy, denote the (mx1) state vectors at time steps k and k-1,

respectively, @, denotes the (mxm) state transition matrix between time steps k-1 and k,



Gy.1 denotes the (mxm) scaling matrix for the (mx1) random error vector, w4 with the (mxm)
model error covariance matrix, Q, , = E[w, ,wi ], Z« denotes the (nx1) observation
vector, Hy denotes the (nxm) structure matrix and V denotes the (nx1) observation error
vector with the (nxn) observation error covariance matrix, R, = E[VkaT] . In the above, it is

assumed that X,.; and w1 as well as X, and V are independent. From Appendices B and C,
then have the following CBPKF algorithm for estimation of the state at time step k and its

error variance:

A

1) Atk=1, prescribe the initial conditions for the state and its error covariance, X, ; ,
and 2, .
2) Make one step-ahead predictions for the state and its error covariance:

Xk|k—1 = CDk—le—l|k—l (8)
2= q)k—lzk—uk—lq)z—l + Gk—le—leT—l (9)

3) Setinitial a, or a0, that satisfies 0 < ¢, < (\/g—l)/Z ~(0.618 (see (B7)).
4) Evaluate the (mxn), (nxn) and (mxm) modified covariance matrices, A,,, A,, and

A,,,andinvert A, :

Ay =—ala+D)Z H (10)
A, =R —ala+)H,X,, H (11)
Ay ={l-a(a+D}Z,, (12)



5) Check for positive semi-definiteness of A,,. If a does not satisfy Eq.(13) below,

6)

7)

8)

reduce o according to o, =ca,_, ,_,,5  where 0<c<1 and ¢, denotes the value

of a at the i-th iteration, and go back to Step 4. If a satisfies Eq.(13), proceed

TiR] 11
THZX, H[] 4 2

with Step 6.0SaS\/ (13)

Evaluate the (mxm), (nxm) and (nxn) matrices, Fz_zl , I, and T, and invert F{zl :

rgzl = Azz - A21A111A12 (14)

I, = _A_111A12r22 (15)

I, = A_lll + A_IIIAIZFZZAZIA_III (16)

Check for positive semi-definiteness of (H, I, +T,,)H, and T, H, +T,,. If
either constraint is violated, reduce a according to @; =ce,_; ,_,, 5 and go back

to Step 4. If both constraints are met, proceed to Step 8.

TAH[T, +T,)H,1>0 (17)
Trl,,+H/T,,]>0 (18)

Evaluate the (mxm) updated error covariance matrix, 2, :

e =1+, +H{(+a)(H T, +T,)H, +T,,H, +T,,1}"  (19)

10



9) Evaluate the (mxn) conditional bias-penalized Kalman (CBPK) gain matrix, K:

K, =[(H[T, +T,)H, +T,,H, +T,,1"'[H T}, +T,,] (20)

A

10) Evaluate the (mx1) updated state vector, X W

Xk|k = Xklk—l +K,[Z, _Hka|k—l]

(21)

11) Go to Step 2 for the next time step and repeat.

Computationally, CBPKF can be significantly more expensive than KF if the size of the
state and/or the observation vector is large. Note that, in addition to solving an (mxn) linear

system for the gain matrix in Step 9 as in KF, it is also necessary in CBPKF to solve (nxn)
and (mxm) linear systems for inversion of A, in Step 4 and Fz_zl in Step 6, respectively. An

obvious strategy to minimize the number of iterations while satisfying the positive semi-
definiteness conditions is to start in Step 3 with a value of a near the upper bound of the
feasible region of [0, 0.618] and reduce a incrementally until all constraints are satisfied as
close to the equality conditions as possible. In this way, the resulting a represents the largest
possible weight for the CB penalty that yields a valid CBPKF solution. The above strategy is
guaranteed to succeed in that, if a has to be reduced all the way to zero, CBPKF simply
becomes KF. For incremental reduction of a, different strategies of varying complexity are

possible. In this work, it is employed that a very simple iterative procedure in which a is

reduced geometrically according to &; =cq;_ | ,_;,, where 0<c<1 and «, denotes the

value of a at the i-th iteration. A smaller ¢ would satisfy the constraints in fewer iterations but
at the expense of potentially over-reducing a. A larger ¢ would produce a larger a but at the

expense of increasing the number of iterations. Depending on the size of the DA problem,

11



some experimentation may be necessary to choose a satisfactory c. Development of a more

efficient scheme for iteration is left as a future endeavor.

For stationary processes, i.e., ® G,_,» Q1, Hc and Ry in Egs.(6) and (7) are time-

k-1°
invariant, there may exist a better ¢, than ~0.6 in Step 3. For example, if all iteratively-

reduced a which satisfies the inequality conditions of Egs.(13), (17) and (18) is smaller than

a, at all time steps, one should use the new smaller value of ¢, in Step 3 to avoid

unnecessary iterations in real-time implementation. If the combination of model prediction
and observation is very informative so that CB is not very large, a may have to be reduced to
a level well below ~0.6. In such cases, it is necessary to optimize a to avoid overcorrecting
CB. Numerical experiments with one-dimensional examples (see the Results Section)
suggest that one may chose a such that the quantile-quantile plot (qqplot) of the CBPKF
estimates vs. the verifying observations closely approaches the diagonal line, i.e., the
CBPKF estimates have a similar marginal probability distribution as the verifying
observations. If the qgplot lies above the diagonal line over the range of the truth greater
than its median, it is an indication that a is too large. Numerical experiments of this study
also indicate that an optimized a may range between 0.25 and 0.50 for a wide range of
conditions that may be encountered in real-world applications. If the KF estimates exhibit
only a very small CB but reduction of CB is still desired, it may be necessary to reduce a to
below 0.15. The information content of an observation and the number of observations
available, n, also impact the choice of a. If n is very small, the observational information
content may be too small for CBPKF to offer significant benefits. In such cases, the CBPKF
results will be very similar to the KF results. If the individual observations are informative and
the number of available observations increases, one may expect the performance of both KF

and CBPKF to improve. Numerical experiments of this study suggest that CBPKF in such

12



cases very often provides significant improvement over KF for estimation of extremes if the
processes modeled are not very predictable. Because the qqplots of the filtered estimates do
not in general form straight lines, it may not be readily possible to determine whether the
optimization of a is completely satisfactory or not based solely on the qqgplot. For this reason,
it may be necessary to examine additionally conditional error statistics such as the
conditional root mean square error (RMSE) as well as relative performance measures such
as the relative percent reduction in RMSE in optimizing a. In the Results Section, is provided

the examples of the above cases.

In this work, CBPKF is described in the context of state space estimation involving
linear dynamical and observation models only. In most real-world applications, the dynamical
model and possibly the observation model as well would be nonlinear. It is hence expected
that CBPKF would be applied in most applications in the form of an ensemble filter, or
ensemble CBPKF (EnCBPKF), to nonlinear dynamical and linear observation models
analogously to ensemble KF (EnKF). Description and evaluation of EnCBPKF, however, is
beyond the scope of this paper. This work focus on comparative evaluation of CBPKF under
idealized conditions via synthetic experiments. The motivation for such evaluation is two-
fold. The first is that real-world applications would reflect not only the comparative
performance between CBPKF and KF but also other factors such as the degree and extent
to which the assumptions of linearity and normality may be met, the performance of the
dynamical model and the quality of the uncertainty modeling involved. As such, with real-
time applications it would be very difficult to isolate the comparative performance due solely
to the filter formulations. The second is that, without applying to many diverse state
estimation and prediction problems, it would not be possible to identify easily from real-world
applications the conditions under which CBPKF may offer significant benefits over KF. The

evaluation carried out in this work, on the other hand, allows performance comparisons
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under the idealized conditions of linear dynamical and observation models, normally
distributed observation and model errors, and perfectly known uncertain parameters so that
we may attribute the difference in performance solely to that in the filters. Also, the wide-
ranging conditions considered in this work allow the user to assess the potential benefits of
CBPKF to diverse applications that may be encountered in environmental science and

engineering.

Chapter 3 Evaluation

To comparatively evaluate CBPKF with KF, the study carried out a set of one-
dimensional (1D) numerical experiments in which the dynamics of the true state is given by
the state space model in Eq.(22) and the states are observed via the linear observation

equation in Eq.(23):

X, =0 X+ 0, W (22)

Z, =UX, +V, (23)

where Xy and X, denote the true states at time steps k and k-1, respectively, @y

denotes the state transition coefficient at time step k-1, o, .1 denotes the input coefficient at

time step k-1 for the serially uncorrelated random error, w, , ~ N(0,1), Z denotes the (nx1)
observation vector, U denotes the (nx1) unit vector and V\ denotes the (nx1) observation
error vector, V, =[v,,V,, ..o, I, with v, ~N(0,57,), i=L...,n. Note that, if the
process in Eq.(22) is stationary, @,.1 denotes the constant lag-1 serial correlation of the state
variable and o1 denotes the constant standard deviation of the random error, &, , W, ;.

The number of observations, n, is assumed to be time-invariant for simplicity. The
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observation errors are assumed to be independent among themselves and of the true state.

A

Then is applied KF and CBPKF to obtain Xklk and Zklk, and verify them against the

assumed truth. Under the above experimental design, the impact of CB on filtering and
prediction depends on the choices of @y, Owx1, Ovx and n, where @4 represents the
predictability of the process, o, .1 represents the magnitude of the model error, and o, and

n represent the information content of the observations. The one-step prediction equations

A A

for Eq.(22) are given by X, ,=¢, X, ., and X, =(0k2712k71|k71+0'i’k71 where

Xk|k—1 and Zklk_l denote the predicted or estimated state and its error variance,

respectively, valid at time step k given all available information through time step k-1. To
assess comparative performance of CBPKF under widely varying conditions, two types of
experiments were carried out, stationary and nonstationary. In the stationary experiment,
different values of time-invariant ¢y.1 is used and n while time-invariant o,,x.1 and o, x remain
fixed. In the two nonstationary experiments, ¢y.1, Oyx.1 and o,k are randomly perturbed
according to Eqgs.(24) through (26) and used only those deviates that satisfy the bounds

imposed below:

Pl =P Y pE 0.5<¢/, <0095 (24)
Okt =0 st ¥ V60 Oy 20.01 (25)
ol =0, 7.8, o, 20.01 (26)

In the above, the superscript p signifies that the variable superscripted is a

perturbation, &, &, and &, denote the standard normal random deviates, and y,, 7, and
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7, denote the standard deviation of the normally-distributed random perturbations added to

@wy» O, @nd o, , respectively. Table 3.1 summarizes the parameter settings used in

all experiments. The ranges of values in Table 3.1 are chosen to encompass less
predictable (small @) to more predictable (large ¢..1) processes, certain (small oy .1) to
uncertain (large o, x.1) model dynamics, and informative (small o, ) to non-informative (large
O,x) observations. The above parameters may be explained in real-world terms using real-
time streamflow forecasting as an example, in which autoregressive-1 and state-space
models are used for stationary and nonstationary cases, respectively. A small/large @1
would represent the predictability of streamflow for a small/large catchment (and hence of
short/large system memory) or that for any catchment in high/low flow conditions. A
large/small o, x.1 would represent a large/small collective model error, or hydrologic
uncertainty (Krzysztofowicz 1999, Seo et al. 2006), associated with imperfect model
structures and parameters, initial conditions and input. The number of observations, n, would
represent the number of available real-time streamflow observations valid at the time of
filtering in which the observations are made repeatedly at the same location to reduce
sampling uncertainty. A large/small o,x would represent a large/small collective
measurement or estimation error in streamflow observation due to lack of precision in the

instrument, representativeness (e.g., point vs. cross-sectional area) errors, errors in the
rating curve if estimated from stage observations, etc. The bounds for ¢kp_1 in Eq. (24) is

based on the range of lag-1 serial correlation that represents moderate to high predictability
(25 to ~90% of variance explained) where CBPKF and KF are most likely to differ in
performance. Note that, if the process is not very predictable, no filter may be expected to

perform well, and that, if it is extremely predictable, any reasonable filter would perform well.

The purpose of bounding the perturbed values 05,{71 and G‘fk in Egs. (25) and (26),
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respectively, in the nonstationary experiments is to avoid the observational or model

prediction uncertainty becoming near zero which is not possible in reality. An unrealistically
small o), and o, would render the information content in the model prediction, 2k|k—l’

and the observations, Z,, respectively, extremely large which would keep the filters operating

in extremely favorable conditions for extended periods of time, thereby inflating performance.

To provide additional context for the range of parameter values used in this work, is
used below the KF solution under stationarity to relate the parameter settings to the weight

given to the observations in the KF process of optimally combining the observations, Z,, with

~

the model prediction, Xk|k—1' Under stationarity, the KF solution for Eqs.(22) and (23) is
given by (Schweppe 1973, Bras and Rodriguez-lturbe 1985):

1

T -1l
Zk|k_[U R U+2k|k,1] _n/O'2+1/( 2/(1_¢,2)+o-2)

(27)

Xk|k = Z:k|1< (UTR_IZk + z;|lk—1‘)2vk|k—1) = wobs(l/n)z:l:l z,; + (1= Wobs))%ﬂk—l
(28)

wo - nlo, (29)
" nia? +1/e2 (1-9*) +02)

where the time indices have been dropped from the time-invariant parameters and
Z;,; denotes the i-th observation, i=1,...,n, in Z. In Eq.(27), the first and second terms in the
denominator represent the information content in the observations, Z,, and the model

A A

prediction, X, . Note that the uncertainty in X, , Zklk, decreases as the number of

observations, n, increases, the observation uncertainty, (73 decreases, the predictability of
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the process, @, increases, or the model uncertainty, O'i, decreases. The rightmost column

of Table 3.1 shows the range of values for w , for all cases considered based on the

parameter settings in Table 3.1 under the assumption of stationarity and the bounds in

Egs.(24) through (26). One may interpret w , in Eq.(29) as the contribution of the

observations relative to the model prediction in reducing the uncertainty in the filtered

estimate. Table 3.1 shows that the stationary experiment allows variations of w_, up to

s

about 0.60, and that the first nonstationary experiment with only ¢, perturbed allows only a

rather limited range of w , whereas all other nonstationary cases encompass effectively all

possible ranges of w , . Because not all cases encompass all possible ranges of w it

obs’?

might seem that the above experiments may not be sufficiently realistic. It is easy to see in

Eq.(29), however, that the reduced ranges of w ,  arise from the realistic ranges of the

parameter settings employed. Note that (p=1,0'v2 =0 or Ji =0 would yield w,,. =1 but

none of them is achievable in reality. For all cases, the simulation horizon was set at
1,000,000 time steps which produced 1,000,000 data points for each case. For the scatter-
and qqplots in the Results Section, it is only displayed the first 100,000 to limit the size of the
plots. To evaluate the relative performance between CBPKF and KF, then is calculated the
RMSE conditional on the true state exceeding some threshold between 0 and the largest
truth, and percent reduction in conditional RMSE by CBPKF over KF. To identify the specific
attributes that CBPKF improves or does not improve over KF, also was carried out mean
square error (MSE) decomposition (Murphy and Winkler 1987, Nelson et al. 2010). Lastly,
the accuracy of uncertainty estimates was assessed by comparing the CBPKF and KF error

variances with the observed error squared in the mean sense.
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Table 3.1 Parameter settings used in the synthetic experiments

Experiment Pk-1 Gw.k-1 Gv,k n Yo Yw Yy w, b‘l
type obs
Stationary 0.5, 0.1 1.5 1, 10, 0 0 0 [0.01,0.60]

0.7, 20, 30
0.8,
0.9,
0.95
Non- 0.1, 0 0 [0.09,0.33]
stationary 1 0.2,
0.4,
0.7 0.1 1.5 10 0.8
0 0.05, 0 [0.00,1.00]
0.1,
0.15
0 0 0.4, [0.00,1.00]
0.8,
1.2,
1.6
Non- 0.1, 0.01, 4, [0.00,1.00]
stationary 2 0.8 0.1,0.2 1.2
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Chapter 4 Results

In this section, is presented the results from the three experiments listed in Table 4.1.
here is presented only a limited number of figures due to space limitations, but are
summarized the results for all cases considered so that the reader may gauge performance
under the full range of the parameter settings shown in Table 4.1. Figure 4.1 shows the KF
(in black) vs. CBPKF (in red) results for the stationary cases of ¢, of 0.8 and 0.9,
respectively, while all other parameters are kept constant as indicated in the plots. Being
stationary, the initial conditions have an impact only until steady-state error variance is

reached. The optimized values of a are 0.54, 0.54, 0.50 and 0.44 for ¢,.4 of 0.7, 0.8, 0.9 and
0.95 which represent predictability levels (i.e., 100 qo,il) of 49, 64, 81 and 90% of the

variance explained, respectively. Note that, as ¢ increases, the optimized a tends to
decrease, a reflection of the fact that CB in the KF estimates decreases as predictability
increases. At @4 of 0.7 (or ~50% of variance explained), the CBPKF estimates are not very
much different from the KF estimates, suggesting that, at this level of predictability, CBPKF
is not able to reduce CB very significantly. For larger ¢4, it is readily seen in Figure 4.1
Scatter plots of the KF (in black) and CBPK (in red) estimates vs. the truth for the stationary
cases of a) pk-1=0.8 and b) ¢k-1=0.9, while all other parameters are kept constant (see
Table 4.1). that CBPKF significantly reduces CB, particularly over the tail ends of the
distribution of the truth. For ¢, of 0.7 and 0.8, a was found to be 0.54 as obtained by
running CBPKF initially with a~0.6 and identifying the lower bound above which all
iteratively-reduced a values lie at all time steps as described in the Methodology Section.
For @4 of 0.9 and 0.95, the lower bound for iteratively-reduced a was zero, which meant
that a had to be optimized by matching the qgplot of the CBPKF estimates with the diagonal

line (see Figure 4.3 QQ plots of the KF (in black) and CBPK (in red) estimates vs. the truth

for the stationary case of $k-1=0.9, while all other parameters are kept constant (see Table
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4.1). for @4 of 0.9). The optimal a values obtained in this way for ¢ of 0.9 and 0.95 were
0.5 and 0.44, respectively. At ¢4 of 0.95, the KF solutions are of very high quality and
exhibit rather small CB. Accordingly, the optimal a for CBPKF is smaller than that at ¢, of
0.9. Figure 4.2 QQ plots of the KF (in black) and CBPK (in red) estimates vs. the truth for the
stationary case of $k-1=0.8, while all other parameters are kept constant (see Table 4.1). and
Figure 4.3 QQ plots of the KF (in black) and CBPK (in red) estimates vs. the truth for the
stationary case of $k-1=0.9, while all other parameters are kept constant (see Table 4.1).
show the qqgplots corresponding to Figure 4.1 Scatter plots of the KF (in black) and CBPK (in
red) estimates vs. the truth for the stationary cases of a) ¢k-1=0.8 and b) ¢k-1=0.9, while all
other parameters are kept constant (see Table 4.1)., respectively. For ¢, of 0.7, CBPK is
not able to reduce CB very significantly. With increased predictability in Figure 4.2 QQ plots

of the KF (in black) and CBPK (in red) estimates vs. the truth for the stationary case of ®«-

1=0.8, while all other parameters are kept constant (see Table 4.1)., CBPKF significantly
reduces CB. For ¢, of 0.9 and 0.95, CBPKF is able to effectively eliminate CB. Figure 4.4
Percent reduction in RMSE by CBPK over KF conditioned on the truth exceeding the value
on the x-axis for the stationary cases of ¢k-1 of 0.7, 0.8 (Figs 4.1a, 4.2), 0.9 (Fig 4.1b, 4.3)
and 0.95. shows the percent reduction in RMSE by CBPKF over KF conditioned on the truth
exceeding the value shown on the x-axis. All results for percent reduction in RMSE
presented in this paper is for truth > 0 only. The minimum number of pairs of the estimates
and the verifying observations used for calculation of percent reduction in RMSE presented
in this paper is 10. At x=0 where x denotes the verifying truth, the y-axis in Figure 4.4
Percent reduction in RMSE by CBPK over KF conditioned on the truth exceeding the value
on the x-axis for the stationary cases of @k-1 of 0.7, 0.8 (Figs 4.1a, 4.2), 0.9 (Fig 4.1b, 4.3)
and 0.95.represents the unconditional RMSE. That the percent reduction at x=0 is negative

for all cases, i.e., the KF estimates have smaller unconditional RMSE than the CBPKF
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estimates, is fully expected given that KF provides the minimum error variance solution. For
x > 0.2, however, CBPKF improves over KF substantially for ¢,.1=0.8 or larger with a

maximum reduction approaching 40%.

Performance for stationary cases, however, is not a good indicator of how CBPKF may
perform as a dynamic filter when the predictability of the processes modeled, accuracy of the
model and/or the information content of the observations varies in time. Figure 4.5 Example
scatter plot of the KF (in black) and CBPKEF (in red) estimates vs. the truth when only oy, 1 1
is assumed to vary in time., Figure 4.6 Example scatter plot of the KF (in black) and CBPKF
(in red) estimates vs. the truth when only o, | is assumed to vary in time. and Figure 4.7
Example scatter plot of the KF (in black) and CBPKF (in red) estimates vs. the truth when
only ¢k _1 is assumed to vary in time show examples of the scatter plots of the KF (in black)
and CBPKEF (in red) estimates vs. the verifying observations when only one of the three

parameters, o, , ,, 0,, and ¢, _,, respectively, is assumed to vary in time. The figures
show that the impact of the variations in o, , ,, o,, and ¢, | to the CBPKF estimates
varies from one parameter to another. Examination of similar figures for all ranges of the
parameter settings in Table 4.1 indicates that the variations in o, , and o, , have a larger

impact than those in ¢, , (see Table 4.1). The figures also suggest that both KF and CBPKF

benefit greatly from the filtering results at the preceding time steps when the model error
and/or the observation error is very small; they produce highly accurate filtered estimates
with very small error variances which effectively reinitialize the filter with very accurate initial

conditions. It is interesting to see in the figures, in particular in Figure 4.6 Example scatter

plot of the KF (in black) and CBPKF (in red) estimates vs. the truth when only oy f is

assumed to vary in time., how the CBPKF estimates differ from the KF estimates; CBPKF
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estimates are progressively larger and smaller than the KF estimates as the truth increases
and decreases, respectively, while tipping the cluster of the estimates to align more closely
with the diagonal. The resulting CBPKF estimates above and below the diagonal line show
much stronger tendencies to cancel each other out than the KF estimates regardless of the

magnitude of the truth, thereby reducing CB. Figure 4.8 Percent reduction in RMSE by

CBPKEF over KF for y, =0.05, 0.10 (Figure 4.5 Example scatter plot of the KF (in black) and
CBPKF (in red) estimates vs. the truth when only oy, ; _1 is assumed to vary in time.), 0.15

and 0.20, Figure 4.9 Percent reduction in RMSE by CBPKF over KF for y,=0.4 (Figure 4.6

Example scatter plot of the KF (in black) and CBPKF (in red) estimates vs. the truth when

only oy k is assumed to vary in time.), 0.8, 1.2 and 2.4. and Figure 4.10 Percent reduction in
RMSE by CBPKF over KF for y,=0.1, 0.2, 0.4 and 0.8 (Figure 4.7 Example scatter plot of

the KF (in black) and CBPKF (in red) estimates vs. the truth when only ¢y _1 is assumed to
vary in time). show the percent reduction in RMSE by CBPKF over KF for the scatter plots
for all parameters settings of o, ,, 0,, and ¢, _, in Table 4.1, respectively. The figures
indicate that CBPKF reduces significantly to substantially conditional RMSE over KF whether
the time-varying changes occur in predictability, model uncertainty or observational
uncertainty, and that the percent improvement by CBPKF is the largest under the time-
varying model uncertainty and the smallest under the time-varying observational uncertainty.

Note also that, whereas CBPKF increases unconditional RMSE by up to about 3% under

varying observational uncertainty (Figure 4.9 Percent reduction in RMSE by CBPKF over KF

for y, =0.4 (Figure 4.6 Example scatter plot of the KF (in black) and CBPKF (in red)

estimates vs. the truth when only oy,  is assumed to vary in time.), 0.8, 1.2 and 2.4.), the

increase is less than 1.5% under varying model uncertainty or predictability, and that CBPKF
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is inferior to KF only over an extremely small region around the median of the true state. The
above indicates that, for the filtering problems for which performance over non-median

regions in the state space is important, CBPKF is clearly superior to KF.

Figure 4.11 Scatter plots of the CBPKF and KF estimates vs. the verifying truth for three
selected cases from the 2nd nonstationary experiment (this is for first case)., Figure 4.12
Scatter plots of the CBPKF and KF estimates vs. the verifying truth for three selected cases
from the 2nd nonstationary experiment (this is for second case). and Figure 4.13 Scatter
plots of the CBPKF and KF estimates vs. the verifying truth for three selected cases from the
2nd nonstationary experiment (this is for third case). show selected results from the 2™
nonstationary experiment. The parameter values used are shown in the respective figures.
The positive impact of CBPKEF is readily seen particularly for estimation of extreme values. It
is revealed here that Figure 4.1 Scatter plots of the KF (in black) and CBPK (in red)
estimates vs. the truth for the stationary cases of a) pk-1=0.8 and b) ¢k-1=0.9, while all other
parameters are kept constant (see Table 4.1)., shown in the Introduction Section to illustrate
CB, are the KF estimates shown in Figure 4.12 Scatter plots of the CBPKF and KF estimates
vs. the verifying truth for three selected cases from the 2nd nonstationary experiment (this is
for second case).. For Figure 4.12 Scatter plots of the CBPKF and KF estimates vs. the
verifying truth for three selected cases from the 2nd nonstationary experiment (this is for
second case). and Figure 4.13 Scatter plots of the CBPKF and KF estimates vs. the verifying
truth for three selected cases from the 2nd nonstationary experiment (this is for third case).,
it was necessary to optimize a. Optimization was carried out by visually matching the qqplots
closely to the diagonal as described above. Figure 4.14 QQ plots of the CBPKF and KF
estimates vs. the verifying truth for three selected cases from the 2nd nonstationary
experiment (this is for first case)., Figure 4.15 QQ plots of the CBPKF and KF estimates vs.

the verifying truth for three selected cases from the 2nd nonstationary experiment (this is for
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second case). and Figure 4.16 QQ plots of the CBPKF and KF estimates vs. the verifying
truth for three selected cases from the 2nd nonstationary experiment (this is for third case).
show the ggplots associated with Fig 4.11, fig 4.12 and fig 4.13 respectively. In practice, the
qgplots may be too irregularly shaped to readily assess closeness to the diagonal line.
Various synthetic and real-world experiments carried out thus far for the CBPK family of
algorithms (Brown and Seo 2010, Seo 2013, Seo et al. 2014, Kim et al. 2016) suggests that
a reasonable match, in which the main body of the qqgplot of the CBPKF estimates lies close
to the diagonal line, generally suffices, and elaborate optimization is usually not necessary.
The above strategy, however, may not work well if the state variables are highly skewed. In
such cases, a somewhat smaller a may be necessary to avoid over-correcting CB which
may produce excessively large variability in the CBPKF estimates (see Seo 2013 for
examples for stationary cases). If computational requirements are not an issue, one may
choose to explicitly optimize a under the user-chosen performance criteria. Such an effort,
however, is beyond the scope of this work and is left as a future endeavor. Figure 4.17
Percent reduction in RMSE by CBPKF over KF conditional on the true state exceeding the
value on the x-axis for all 12 cases in the 2nd nonstationary experiment. shows the percent
reduction in RMSE by CBPKF over KF conditional on the truth exceeding the value on the x-
axis for all 12 cases in the 2™ nonstationary experiment (see Table 4.1). In the figure, one
may divide the 12 cases into Groups 1 (Cases 1 to 4), 2 (Cases 5 to 8) and 3 (Cases 9 to

12), from the nearest to the origin (least skillful) to the farthest (most skillful). Groups 1

through 3 are associated with y, =0.01, 0.1, 0.2, respectively. It might seem counter-

intuitive that adding largest perturbations to &, , (Group 3) is associated with the largest

skill. This is because, with large perturbations, o, often hits the lower bound (see

Eq.(25)) which reinitializes the filter with very accurate state and error covariance. Note in

Figure 4.17 Percent reduction in RMSE by CBPKF over KF conditional on the true state
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exceeding the value on the x-axis for all 12 cases in the 2nd nonstationary experiment. that,
for most cases, CBPKF is able to reduce conditional RMSE over KF by 10% or more, that,
for the majority of the cases, the reduction is 20% or larger, and that the increase in

unconditional RMSE by CBPKF is only about 3% or less.

Figure 4.18 MSE and MSE decomposition of the errors in the CBPK and KF estimates for
a selected case (see text) in the 2nd nonstationary experiment shows the MSE and MSE
decomposition of the CBPKF and KF estimates for the cases shown in Figure 4.13 Scatter
plots of the CBPKF and KF estimates vs. the verifying truth for three selected cases from the
2nd nonstationary experiment (this is for third case). and Figure 4.16 QQ plots of the CBPKF
and KF estimates vs. the verifying truth for three selected cases from the 2nd nonstationary
experiment (this is for third case).. MSE decomposition is based on the following identity

(Murphy and Winkler, 1987, Nelson et al. 2010):

1 N
MSE=—>"(f,—-0,)’
Nj:l

(30a)

=(m; —mo)2 +(o; — 00)2 +20,0,(1-p)

(30b)

where N denotes the total number of pairs of the estimates and verifying
observations, f; and o; denote the j-th estimate and truth, respectively, m; and m, denote the
mean of the estimate and truth, respectively, (; and (, denote the standard deviation of the
estimate and truth, respectively, and p denotes the correlation between the estimate and the
truth. In Eq.(30b), the first and second terms measure biases in the mean and in the

univariate variability of the estimate, respectively, and the third term measures the strength
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of covariation between the estimate and the truth (the smaller, the stronger). Figure 4.18
MSE and MSE decomposition of the errors in the CBPK and KF estimates for a selected
case (see text) in the 2nd nonstationary experiment. indicates that CBPKF significantly
reduces conditional RMSE, that the reduction in RMSE is due mostly to the reduction in
conditional bias in the mean, but that the CBPKF estimates are slightly more conditionally
biased in standard deviation and have a slightly smaller strength of covariation. The slightly
increased conditional bias in standard deviation may seem odd in that in general the CBPKF
estimates represent the variability of the truth significantly better than the KF estimates in the
unconditional sense. If the system is uncertain and/or the observations are not very
informative, however, the filtered estimates often cannot capture the peaks and valleys in the
variations of the true state. The CBPKF estimates, which generally have larger variability,
hence may make excursions well below the conditioning threshold for the true state, thereby
introducing additional biases in the standard deviation conditional on the threshold. The
above picture, however, varies among different cases and may not be generalized. Figure
4.19 Filtered variance from CBPKF vs. that from KF for the nonstationary case shown in
Figure 4.12 Scatter plots of the CBPKF and KF estimates vs. the verifying truth for three
selected cases from the 2nd nonstationary experiment (this is for second case).. shows the
filtered variance from CBPKEF vs. that from KF for the nonstationary case shown in Figure
4.11 Scatter plots of the CBPKF and KF estimates vs. the verifying truth for three selected
cases from the 2nd nonstationary experiment (this is for first case).. Also, shown for
reference is the one-to-one line. Note that the CBPKF error variance is very close to the KF
error variance when the latter is small, but is progressively larger than the KF error variance
as the latter increases. To assess the accuracy of the error variance estimates, is shown in
Fig 4.20, fig 4.21 and fig 4.22 the box-and-whisker plots, from left to right in each figure, of
the absolute error of the KF estimate, the KF error standard deviation, the absolute error of

the CBPKF estimate, and the CBPKF error standard deviation conditional on the true state

27



exceeding the 99" percentile (i.e., the largest 1%) for the three nonstationary cases shown
in Figure 4.11 Scatter plots of the CBPKF and KF estimates vs. the verifying truth for three
selected cases from the 2nd nonstationary experiment (this is for first case)., Figure 4.12
Scatter plots of the CBPKF and KF estimates vs. the verifying truth for three selected cases
from the 2nd nonstationary experiment (this is for second case). and Figure 4.13 Scatter
plots of the CBPKF and KF estimates vs. the verifying truth for three selected cases from the
2nd nonstationary experiment (this is for third case)., respectively. Similar plots for all ranges
of the true state show little difference between KF and CBPKF and are not shown. If the
error variance estimates are unbiased, one should see in Fig 4.20, fig 4.21 and fig 4.22 the
mean of the absolute error of the filtered estimate match the mean of the estimated error
standard deviation. Fig 4.20, fig 4.21 and fig 4.22 indicates that, for the filtering results for
the largest 1% of truth, the CBPKF error variances are more accurate than the KF error
variances for all three cases of Fig 4.20, fig 4.21 and fig 4.22, but that, for the less than very
skillful cases of Fig 4.20, fig 4.21, both KF and CBPKF significantly underestimate error

variance for the largest 1% of the events.
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Table 4.1 Parameter settings used in the synthetic experiments

Experiment Pk-1 Ow k-1 Ovk n Yo Yw Yy Wi, !
type
Stationary 0.5, 0.1 1.5 1, 10, 0 0 0 [0.01,0.60]
0.7, 20, 30
0.8,
0.9,
0.95
Non- 0.1, 0 0 [0.09,0.33]
stationary 1 0.2,
0.4,
0.7 0.1 1.5 10 08
0 0.05, 0 [0.00,1.00]
0.1,
0.15
0 0 0.4, [0.00,1.00]
0.8,
1.2,
1.6
Non- 0.1, 0.01, 0.4, [0.00,1.00]
stationary 2 0.8 0.1,0.2 1.2
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Figure 4.1 Scatter plots of the KF (in black) and CBPK (in red) estimates vs. the
truth for the stationary cases of a) pk-1=0.8 and b) @k-1=0.9, while all other parameters are

kept constant (see Table 4.1).
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Figure 4.2 QQ plots of the KF (in black) and CBPK (in red) estimates vs. the truth for the

stationary case of $k-1=0.8, while all other parameters are kept constant (see Table 4.1).
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Figure 4.3 QQ plots of the KF (in black) and CBPK (in red) estimates vs. the truth for the

stationary case of ®k-1=0.9, while all other parameters are kept constant (see Table 4.1).
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Figure 4.4 Percent reduction in RMSE by CBPK over KF conditioned on the truth exceeding
the value on the x-axis for the stationary cases of k-1 of 0.7, 0.8 (Figs 5.1a, 5.2), 0.9 (Fig 5.1b, 5.3)

and 0.95.
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Figure 4.5 Example scatter plot of the KF (in black) and CBPKF (in red) estimates vs. the truth

when only oy, 1 is assumed to vary in time.
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Figure 4.6 Example scatter plot of the KF (in black) and CBPKF (in red) estimates vs. the truth

when only oy, k is assumed to vary in time.
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Figure 4.7 Example scatter plot of the KF (in black) and CBPKF (in red) estimates vs. the truth

when only ¢y _1 is assumed to vary in time
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Figure 4.8 Percent reduction in RMSE by CBPKF over KF for ¥, =0.05, 0.10 (Figure 5.5),

0.15and 0.20
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Figure 4.9 Percent reduction in RMSE by CBPKF over KF for ¥, =0.4 (Figure 5.6), 0.8, 1.2

and 2.4.
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Figure 4.10 Percent reduction in RMSE by CBPKF over KF for y,=0.1, 0.2, 0.4 and

0.8 (Figure 5.7).
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Figure 4.11 Scatter plots of the CBPKF and KF estimates vs. the verifying truth for three

selected cases from the 2nd nonstationary experiment (this is for first case).
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Figure 4.12 Scatter plots of the CBPKF and KF estimates vs. the verifying truth for three

selected cases from the 2nd nonstationary experiment (this is for second case).

<)

FILTERED ESTIMATE
0

Figure 4.13 Scatter plots of the CBPKF and KF estimates vs. the verifying truth for three

selected cases from the 2nd nonstationary experiment (this is for third case).
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Figure 4.14 QQ plots of the CBPKF and KF estimates vs. the verifying truth for three selected

cases from the 2nd nonstationary experiment (this is for first case).
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Figure 4.15 QQ plots of the CBPKF and KF estimates vs. the verifying truth for three selected

cases from the 2nd nonstationary experiment (this is for second case).
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Figure 4.16 QQ plots of the CBPKF and KF estimates vs. the verifying truth for three selected

cases from the 2nd nonstationary experiment (this is for third case).
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Figure 4.17 Percent reduction in RMSE by CBPKF over KF conditional on the true state

exceeding the value on the x-axis for all 12 cases in the 2nd nonstationary experiment.
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Figure 4.18 MSE and MSE decomposition of the errors in the CBPK and KF estimates for a

selected case (see text) in the 2nd nonstationary experiment.
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Figure 4.19 Filtered variance from CBPKF vs. that from KF for the nonstationary case shown in

Figure 5.12.
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Figure 4.20 Box-and-whisker plots of the absolute error of the KF estimate (black left), KF
error standard deviation (black right), absolute error of the CBPKF estimate (red left) and CBPKF error

standard deviation (red right) for the case in Fig 5.11.
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Figure 4.21 Box-and-whisker plots of the absolute error of the KF estimate (black left), KF
error standard deviation (black right), absolute error of the CBPKF estimate (red left) and CBPKF error

standard deviation (red right) for the case in Fig 5.12.
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Figure 4.22 Box-and-whisker plots of the absolute error of the KF estimate (black left), KF
error standard deviation (black right), absolute error of the CBPKF estimate (red left) and CBPKF error

standard deviation (red right) for the case in Fig 5.13.
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Chapter 5 Conclusion and Future Recommendation

Being a least squares solution, Kalman filter (KF) is subject to conditional biases (CB)
that arise from the error-in-variable, or attenuation, effects. These effects occur if the model
dynamics are highly uncertain, the observations have large errors and/or the system is not
very predictable. In modeling and observation of environmental systems, the above effects
are the norm rather than the exception. As such, KF or its variants often suffer from CB with
potentially very large negative impact on estimation and prediction of extremes. In this work,
CB-penalized Kalman filter is introduced, or CBPKF, for improved state estimation and
prediction of extremes. CBPKF results from CB-penalized linear estimation which minimizes

a weighted sum of error covariance and expectation of Type-ll CB squared,

J=2,, +taX.,, where X 2. and a denote the error covariance, the quadratic

EV > CB

penalty for Type-ll CB, and the weight for the latter, respectively (Seo 2013). One may

consider CB-penalized linear estimation as an extension of classical Fisher estimation

(Schweppe 1973) from which KF results in that for minimization of X the a priori

EV >
covariance of the state vector is assumed non-informative as in Fisher estimation, but for

minimization of X the prior is assumed informative. To comparatively evaluate CBPKF

CB’
with KF, we designed and carried out a set of synthetic experiments for one-dimensional

(1D) state estimation under the idealized conditions of normality and linearity.

The results show that CBPKF reduces root mean square error (RMSE) over KF by
10 to 20% or more over the tails of the distribution of the true state, and that, as expected,
the improvement comes from reduced CB. For dynamical cases, it was found that CBPKF
performs comparably to KF in the unconditional sense; CBPKF increases RMSE over all
ranges of the true state only by 3% or less. The results indicate that CBPKF may be

expected to significantly improve analysis and prediction of extreme states in uncertain
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systems with little deterioration in unconditional performance, and should be favored over KF
if improved performance over the tails of the distribution of the true state is desired. CBPKF
are not without disadvantages, however. In its current form, CBPKF additionally requires
inversion of (mxm) and (nxn) matrices, which KF does not, where m and n denote the
number of state variables and observations, respectively. Additional research is needed to
explore computationally more efficient reformulation or approximation. For maximum
performance, it is necessary in CBPKF to optimize the weight, a, which requires hindcasting.
If computational requirements are not an issue, one may optimize a explicitly under the
performance criteria desired by the user. In this work, is used a very simple procedure for
iterative reduction of a. Additional research is needed to develop efficient procedures for
iterative reduction and optimization of a. It may also be possible to avoid hindcasting and
optimization by specifying a based on (near) real-time assessment of CB using real-time
observations for which additional research is needed. In the current formulation of CBPKF, a
is assumed to be a scaler. Additional work is needed to generalize the formulation to allow a
in a matrix form. The evaluation of CBPKF in this work was limited only to 1D synthetic
experiments under the idealized conditions of linearity and normality. Multi-dimensional
synthetic and real-world experiments are needed to assess performance for a wide range of
higher-dimensional problems and under real-world conditions. Lastly, as with KF, CBPKF

may be cast into extended and ensemble formulations.
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APPENDIX A

Derivation of Conditional Bias-Penalized Fisher-Like Linear Estimator

Here is derived the Fisher-like CB-penalized linear estimator in the context of

CBPKF (see Appendix B) with additional details that were not presented in Seo (2013). The

estimator sought is of the form, X =WZyhere X denotes the (mx1) vector of the
estimated states, W denotes the (mx(n+m)) weight matrix and Z denotes the ((n+m)x1)
observation vector. The particular choice of the dimensionality of Z is to relate to CBPKF.

Here we assumed the following linear observation equation:
Z=HX+V (A1)

where X denotes the (mx1) vector of the true state with E[X]=My and Cov[X,XT]=‘~IJxx,
H denotes the ((n+m)xm) linear observation equation matrix, and V denotes the ((n+m)x1)

zero-mean measurement error vector with Cov[V,V]=R. Assuming Cov[X,V]=0, the Bayesian

estimator for X, or X , is given by (Schweppe 1973):

X'=M,+W(Z-M,) (A2)

where W denotes the (mx(n+m)) weight matrix that minimizes the error covariance.

Sy =E, JX-X)X-X)"]

The error covariance matrix for X , ’ , Where the
variables subscripted denote the random variables on which the expectations operate, is

given by:
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r ol 1wl

T
)y =¥, , -WHY_  -¥Y ,  H W
XX (A3)

EV - 'xx Xx T Txx +W(HY

X-E_[X|X]

The quadratic penalty due to Type-II CB, , is given by:

T = Ex[(X —E [X | XDX ~E [X"|X])']

Using (A2), we may rewrite the CB in (A4) as:

X-E[X"|X]=(X-M,)-WE[(Z-HM )| X] (AS)

We model E(Z-HM )| X] in (A5) using the Bayesian estimator again as:

E[(Z-HM )| X)=VY, Yy (X -M,) (A6)

where ¥ =Cov(Z,X) . With the above, we may now write Zcp as:

s =w_ —wa-ATwT ywewT

CB XX (A7)
_ -1 _
where C=\PZXIPXX\PXZ and AZLPZX. In CB-penalized estimation, we minimize
2=%,, +02

CB where a is some positive weighting coefficient:

_ B _ T, T.T T T
S=(+a)¥y, ~WEA+HY )= (¥, H' +oA W' +WHY H' +R+aCW

(A8)

The weighting coefficient, a, may be made into an (mxm) matrix if it is necessary to

give different weights to the CB penalty for different state variables. In this work, it is
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assumed for simplicity that the weights are the same for all state variables. Differentiating

with respect to W and setting it to 0, we have:

W=yH +cA")[HY H' +R+aC]” (A9)

Replacing W in (A8) with (A9), we have for the estimation variance for the CB-

penalized estimate:

S=(+a)¥y — Vo H [HY,  H + A" HY,,

(A10)
where

H =H" +a¥, ¥, (A11)
A=R+a(l-a)¥, VYo ¥, —aHY,, —a¥, H' (A12)

Using the matrix inversion lemma, we may rewrite 2 in (A10) as:

S=c¥y +HH N'H+Ygy | (A13)

Replacing W in (A2) with (A9) and after some matrix manipulations, we have for

X =[H'N'H+Yo T {H A'Z+ P M, )+ A (A1)

where
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A=Y H'[HY H +A"'¥Y, ¥, 'M, (A15)

-1

To render the Bayesian solution to a Fisher solution, we let Fix vanish in (A12)
and (A14) in the brackets only, which are associated exclusively with the penalty for error
covariance in (A3), and arrive at the following intermediate solution for CB-penalized Fisher-

like linear estimation:

>=BH"A'H]"

(A16)
ey T A-17y1-1 03T A1
X =[HANH  HAN Z+A (A17)
where
_ T A-1717
B=aWH A'H+1 (A18)

To obtain the estimator of the form, X :WZ, we impose the unbiasedness

E[X 1=X

condition, , or equivalently:

WH =1 (A19)

It is readily seen in (A17) that the above unbiasedness condition is satisfied by

7T A-1 7711 7T A1 -1
replacing [H A H] with [H A H] and dropping A. The Fisher-like solution for CB-

penalized linear estimation is hence given by:

_ 7T A1 -1
X=B[H A H] (A20)
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* T A-1z71-1 [3T A-L

The development above indicates that CB-penalized Fisher-like linear estimation is
analogous to Fisher estimation in which the observation matrix, H, and the measurement
error covariance matrix, R, are modified by the a priori knowledge of Wyyx and Wyz, and the
estimation variance is scaled by a factor of B. Because (A20) and (A21) are not based on
explicit constrained minimization, they may not represent the optimal solution in the least
squares sense. It can be shown, however, that for m=1 and a=0.5 with perfect observations
(A21) is identical to the conditional bias-penalized kriging (CBPK) estimate which is based

on explicit constrained minimization (Seo 2013, Seo et al. 2014, Kim et al. 2016), and that

(A20) converges to the CBPK estimation variance as 2 = .

APPENDIX B

Derivation of Conditional Bias-Penalized Kalman filter (CBPKF)

Here we derive CBPKF from the Fisher-like solution of Appendix A for estimation of

the (mx1) true state, Xk, using the (nx1) observation, Z,, and (mx1) model prediction,

A

_ T
k=1 and their (nxn) and (mxm) error covariances, R, =EIV.V, ], and E"V"l,
respectively. The observation equation is given by Zy =H X +V, where it is assumed

that the true state, X , is independent of the measurement error, Vi, or the model prediction

A

Xk|k—1 _Xk

=HY
ZeX k= XX | Decomposing the

error, , so that we may write, e.g.,
structure matrix H in (A1) into the first submatrix that relates the observations to the true

states, Hy=Hy, and the second submatrix that relates the model-predicted states to the true
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T g7 YT
states, H,=I, we have for the mx(n+m) modified structure matrix, H" =[H] H,] in

(A11):

H =H] +a¥,'y ¥y, =(1+a)H, 61)

H) =I+a¥,'y ¥y . =1+

X i

(B2)

: : \PX Z \PX X
where the (mxn) and (mxm) covariance matrices, *k and el denote

ColX,,Z{1 g COMX,. X 1] Y.,

, respectively. An obvious choice for in practice is
z >
k=1 obtained from propagating ~“~'*-! using the dynamical model with model errors as
Y, =X
appropriate. With %X k=1 the (nxn), (nxm), (mxn) and (mxm) submatrices, A1, Aq,

Ns1 and Ay, of the (n+m)x(n+m) revised error covariance matrix, A in (A12), are given by:

A, =R, —ala+ 1)Hk2k|k_1HkT

(B3)
A, =—ala+DH X, (B4)
A, =—a(a+DZ,, H] (B5)
Ay, ={l-a(a+D}Z, (B6)

CBPKEF requires that A1y and /A\,, to be positive semidefinite (see Appendix C) which

yields the following constraint for a from (B3) and (B6):
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0<a<min TR, ] . +l_l,ﬁ
TrlH2, H,1 4 2 2

(B7)

where Tr[ ] denotes the trace of the symmetric matrix bracketed and the second

term in the upper bound is ~0.618. Note in (B7) that, if the states are perfectly observed so

THR,1=0

that we have , a is reduced to zero and hence CBPKF becomes KF. Similarly, if

L > ®©

the model forecast is diffuse so that we have , CBPKF is again reduced to KF.

_ T A-l
The (mx(n+m)) non-normalized weight matrix, w=lo, @,|=H A in (A21), where @,

A

and @2 are the (mxn) and (mxm) non-normalized weight submatrices for Z, and X""H,

respectively, may be evaluated by:

@, =H/T,,+HIT, =(+a)[HT, +T,,] (B8)

@, = I:IITF12 +1:12TF22 = (1+a)[HkTr12 +15,1 (B9)

In the above, the inverse of the (n+m)x(n+m) modified error covariance matrix I is

A—l — r — |:Fll 1_‘12 :| — |:A111 + A111A12r22A21A7111 - AI]1A12F22

given by: L ~ToaAu A T (B10)

where

Fz_zl =Ay— AZlA_lllAlz (B11)

A

The (mxm) matrix, H A"'H in (A20) and (A21), is given by:
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H'N'H=aH, +@,=(+a)[(HT, +T,)H, +T,H, +T,,] (B12)

Positive semidefiniteness of H'AN'H and nonnegativity of the CBPK gain (see

B20) require:

TrA(H]T, +T,)H, >0 (B13)

THT,, +H,T},120 (B14)

From (A20), we then have for the filtered variance:

Zklk = B[I:ITAle]fl =1+ 05)052,4,(_1 +{(d+ 0{)[(H,(TI“11 +I,)H, +1, H, +1,,] }7]
(B15)

where

B=oZ, H' N'H+I1=0% (1+a)[(HT, +T,)H, +T,,H, +T,,]+1
(B16)

21<|1<—1 -

In (B15), kk is positive semidefinite if the following holds:

(I+a)a’ +a-)<Tr((H]T, +T,)H, +T,,H, +T,, ]“)/Tr(zﬂk,l)

(B17)

Noting that the minimum for the right-hand side of (B20) is zero, we may reduce

2
(B20) to (@"+a-1)=0 which is identical to the positive semidefiniteness conditions for

(B6). As such, (B7) suffices.
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From (A21), we have for the filtered estimate:

iklk =[H"A'H]'[@,Z, +w2}2k|k71]

[(HZFII +F2I)Hk +r21Hk +r22]71{[HkTr11 +r21]Zk +[HZFI2 +r22])2k|k—1}
(B18)

It can be easily shown using the matrix inversion lemma that (B18) can be rewritten

in the more familiar form:

X = X + K2y —H Xy (B19)

In the above, the CBPK gain, X is given by:

K, :[(HkTrll +0,)H, +T,H, +F22]_1[HkTF11 +15] (B20)

APPENDIX C

Alternative Form of Conditional Bias-Penalized Kalman filter (CBPKF)

Here we express CBPKF in an alternative form for direct comparison with KF by

factorizing A in (A20) and (A21) as follows:
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_ -1
A :(A” Aﬂ] 1 _ {I 0 J(A” 0 J[l AlllAlzJ
A21 Azz AZIA;]I I )0 A22_A21A_111A12 01

_(1 _AIIIAIZ][A_III 0 j(l 0 J
01 0 (A,—A, A AL —A, AT

(C1)

In the above, we could have factorized A such that the first and third matrices are
lower and upper matrices, respectively, which would have yielded an alternative but

equivalent expression. With (C1), it can be easily shown that the CBPKF error covariance

A

2k|1<

X
and estimate, and ¥k respectively, are given by:

1 ~
I+a

(C2)

Xk|k = Xk|k - 2k|k2k|k:11A12AIIIZk

(C3)

2k|k Xk|k

z
In the above, and ~**-1 denote the “pseudo” updated error covariance,

updated states and forecast error covariance, respectively, defined solely to render the

CBPKEF solution to look like the familiar KF solution below:

§k|k = [HkTA_lllHk-'-ich:} B

(C4)
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Xk|k = Xk|k—1 +K,[Z, _HkTXk|k—1]

(C9)

K, = zk|k—1HkT (A, + szk|k—1HkT]_1

(C6)

In the above, the forecast error covariance is given by:

i;ﬂk—l = - chTAqllAIZ)(Azz - A21AI11A12)71 =(I- Hl(TAillAlz)rzz =1+ HkTru
(C7)

Positivity of the CBPK gain in (C6) requires that Ay in (B3), A22(from the
< -1

alternative expression for (C1)) in (B6) and ~**-' in (C7), respectively, are positive
semidefinite. The third condition is already identified in (B14). The first two conditions are
used in (B7). The alternative development described above indicates that CBPKF is a
combination of KF with modified measurement and model forecast error covariances as
shown in (C4), (C6) and (C7), and adjustment to the resulting KF solution according to (C2)

and (C3).
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