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Abstract 

 

VIRTUAL SURVEYOR BASED OBJECT EXTRACTION FROM AIRBORNE 

LIDAR DATA 

Md. Ahsan Habib, PhD 

The University of Texas at Arlington, 2017 

 

Supervising Professor: Venkat Devarajan 

Topographic feature detection of land cover from LiDAR data is important 

in various fields - city planning, disaster response and prevention, soil 

conservation, infrastructure or forestry. In recent years, feature classification, 

compliant with Object-Based Image Analysis (OBIA) methodology has been 

gaining traction in remote sensing and geographic information science (GIS). In 

OBIA, the LiDAR image is first divided into meaningful segments called object 

candidates. This results, in addition to spectral values, in a plethora of new 

information such as aggregated spectral pixel values, morphology, texture, context 

as well as topology. Traditional nonparametric segmentation methods rely on 

segmentations at different scales to produce a hierarchy of semantically significant 

objects. Properly tuned scale parameters are, therefore, imperative in these 

methods for successful subsequent classification. Recently, some progress has 

been made in the development of methods for tuning the parameters for automatic 

segmentation. However, researchers found that it is very difficult to automatically 

refine the tuning with respect to each object class present in the scene. Moreover, 
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due to the relative complexity of real-world objects, the intra-class heterogeneity is 

very high, which leads to over-segmentation. Therefore, the method fails to deliver 

correctly many of the new segment features.  

In this dissertation, a new hierarchical 3D object segmentation algorithm 

called Automatic Virtual Surveyor based Object Extracted (AVSOE) is presented. 

AVSOE segments objects based on their distinct geometric concavity/convexity. 

This is achieved by strategically mapping the sloping surface, which connects the 

object to its background. Further analysis produces hierarchical decomposition of 

objects to its sub-objects at a single scale level. Extensive qualitative and 

qualitative results are presented to demonstrate the efficacy of this hierarchical 

segmentation approach. 
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1. Problem Statement and Motivation 

 

The availability of a massive amount of high-quality LiDAR data gives us an 

unprecedented opportunity to extract useful and accurate information for a wide 

variety of applications. The only practical method of analyzing such a huge dataset 

is through automated algorithms. Feature engineering, i.e. finding a good data 

representation, is the key to success in interpreting image data by computer 

(Domingos, 2012). Hierarchical object representation offers new possibilities to 

gain insight into the content of a given digital image. This enables the image 

classifier to exploit a number of new features. Unlike object detection, which 

detects objects of a certain class (such as buildings, or trees) in a given digital 

image, hierarchical object representation based image analysis aims to address 

the whole scene (Lang and Blaschke, 2003). Here, the entire image is first 

segmented in several levels of aggregation to produce its constituent image-

objects and sub-objects. Next, an object recognition algorithm is employed to 

analyze the hierarchical object representation to detect specific objects or a certain 

object type. Partitioning the given scene into objects is much like the way humans 

conceptually organize the topographic surface for interpretation (Hay and Castilla, 

2008). The section of the brain responsible for analyzing visual information is the 

visual cortex. There is strong evidence that the visual cortex encodes an object 

based on a hierarchical model (Riesenhuber and Poggio, 1999). The cortex 

organizes visual information about a target object into a hierarchy of an 

increasingly complex object representation. The ability of the human brain to 
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interpret visual data in an effortless manner and with unparalleled accuracy has 

inspired designs in automated vision system that model the hierarchical object 

representation in the visual cortex (Rodríguez-Sánchez et al, 2015).   

Automatic separation of the topographic surface and its overlying 3D objects 

is a challenging problem, especially in complex environments and rough terrain. 

Arefi, in his 2005 paper, pointed to automated segmentation as one of the major 

and unsolved problems for interpreting LiDAR data. A decade later, a generic 

solution to this problem has not been developed yet, as pointed out in a recent 

survey paper (Cheng, 2016). Nevertheless, extensive research has been 

conducted in this direction. One classical approach is segmentation through object 

recognition. However, the presence of a large variety of objects in a scene renders 

classical segmentation through object recognition ineffective. This is because 

object-recognition based approaches find image objects using object models, 

which are known a priori and are therefore restricted to a fixed number of objects 

(whose models were previously stored or learned). Object segmentation of 

unknown objects with arbitrary shapes in a complex environment poses an 

important but formidable challenge. Nonparametric segmentation methods can be 

a solution to this problem. Traditional nonparametric segmentation methods rely 

on segmentations at different scales to produce a hierarchy of semantically 

significant objects. Properly tuned scale parameters are, therefore, imperative in 

these methods for successful subsequent classification. Recently, some progress 

has been made in the development of methods for the automatic tuning of 

segmentation scale parameter. However, researchers found that it is very difficult 
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to automatically refine the tuning with respect to each object class present in the 

scene. Therefore, the methods fail to correctly deliver the result. 

LiDAR-based object detection and extraction work mainly concentrate on 

protruding man-made features and few very distinguishable natural features such 

as trees. The most object extraction methods assume that the ground surfaces are 

usually the lowest feature in a local neighborhood. In some cases, this assumption 

is wrong. For example, swimming pools, mines, an irrigation channel, construction 

pit etc. are all man-made objects. Thus, intruding objects are largely left out in the 

extraction process.  

Most natural objects, commonly referred to as landforms, are also ignored. 

Examples of landform types include hills, mountains, watersheds, dunes, cirques, 

drumlins, crater, lakes, rivers etc. Maps representing landform distribution in a 

given terrain is in high demand and is referred to as a geomorphological map. 

Geomorphological maps are fundamental to many geological quantitative 

analyses (involving landscape ecology, forestry, and soil science) and to 

management tools for land use and geomorphological risk (Smith, 2011). Lang et 

al. (Lang, 2003) argued that the detection of natural objects is comparatively more 

difficult than the detection of the man-made objects. This is because, of a high 

degree of homogeneity of a man-made object, the set of heuristics to be used for 

the recognition process seems to be relatively clear.   

To address all these problems, we came up with a novel automated 

hierarchical 3D object extraction algorithm called Automated Virtual Surveyor 

based Object Extraction (AVSOE). The research objective of this work was to 
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develop an algorithm, which can derive hierarchical object representation 

(automated detection and extraction of intruded and protruded objects and sub-

objects – natural and man-made) from the LiDAR image of a given terrain.   



 

5 
 

2. LiDAR basics 

 

Airborne LiDAR emits a laser pulse from the plane and measures the time 

it takes to return. This generates a 3D point cloud of the landscape from the time 

interval, the pulse angle and the absolute location of the sensor. The GPS/IMU 

carried by airplane provides the position and orientation of the sensor platform. 

LiDAR collects data at a sampling rate greater than 150 kHz (NOAA Coastal 

Service Center, 2012). The resultant output is, therefore, a very dense and highly 

accurate geo-referenced elevation data. The scanning scheme of an airborne 

LiDAR system is shown in Figure 1. 

 

Figure 1 Airborne laser scanning (Monika, 2008) 
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An important aspect of a LiDAR system is its capability to capture multiple 

returns per pulse. Figure 2 shows an example, where multiple returns are 

generated from a single laser pulse. This capability enables accurate 

characterization of LiDAR returns from the vegetation areas 

 

 

Figure 2 Multiple returns from a single laser pulse (Garcia et al., 2011) 

 

The LiDAR acquisition system records, in addition to the laser returns, the 

strength of the returns (intensity). An example of the intensity map of a rural area 

is shown in Figure 3(b). LiDAR intensity is determined by the reflectivity of the 

surface object, so it can be used for land-cover classification.  
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Figure 3 LiDAR point cloud (a) elevation and (b) intensity 

 

There are different ways to represent the elevation map of a terrain: Digital 

Elevation Models (DEM), Digital Surface Models (DSM), Digital Terrain Models 

(DTM), and Triangular Irregular Networks (TIN). A DEM is a raster representation 

of the terrain's surface. A raster is a data structure which consists of a matrix of 

equally sized cells arranged in a grid where each cell contains an attribute value 

and location coordinates. DEM is interchangeably used with DSM and DTM. Digital 

surface model is a DEM created from the first return in a multiple-return LiDAR 

pulse or the sole return for a single-return pulse. Thus, DSM represents the earth 

surface and captures all natural and built features on it. Whereas, DTM is a DEM 

that includes only the bare earth surface. (See Figure 4). 
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Figure 4 Surface represented by DSM and DTM 

 

The most popular geometric property exploited by different feature 

extraction strategy from rasterized LiDAR data is the local elevation change. 

Natural features usually possess a low elevation slope compared to man-made 

features. Some natural features such as water surface and ground are usually 

approximately flat. In general, natural features, commonly referred to as landforms, 

are tangible landscape objects that have a characteristic shape and are bounded 

by topographic discontinuity (MacMillan, 2009). Man-made features introduce high 

elevation changes on the terrain surface. Thereby, they are easily distinguishable 

from the background natural fluctuation. 

In recent years, a new kind of LiDAR system has emerged called the 

Geiger-mode sensor. The Geiger-mode LiDAR offers several advantages over 

existing linear mode LiDAR capability. This includes the capability to capture a 

denser point cloud over a large area more quickly and at a lower cost than the 

traditional linear scanners. Figure 5 shows an example of the Geiger-mode LiDAR 
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data of an urban area. This may necessitate changes in the way we extract 

buildings as discussed below. 

 

 

Figure 5 Geiger mode LiDAR data (Courtesy: Harris) 

 

Man-made features such as buildings are usually extracted from LiDAR 

data based on the footprint outlines derived from roof edges, not the position of the 

wall (Awrangjeb, 2014).  The reasoning behind that is aerial linear mode LiDAR 

has an almost nadir view, i.e., it captures the details of the rooftop while collecting 

only a few returns from the walls. A similar issue has to be dealt with for natural 

features such as a cliff or a deep ravine.  Assuming the outline of the roof as the 

footprint of the building can sometimes be misleading, especially for the building, 

which has a larger rooftop than its footprint area (S. Wei, 2014). 

With the advent of new LiDAR sensor technology such as Geiger-mode 

LiDAR and Single-photon LiDAR, the vertical walls or planes are no longer left out 
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from the laser illumination.  Geiger-mode/Single-photon LiDAR’s 360-degree 

(Figure 6) view guarantees that vertical features present in the man-made structure 

or the landform are fully covered.  With a lot of points on the wall, it can now be 

mapped more accurately. Thus, the true footprint of the building and natural 

features with a steep slope such as cliff and deep ravine can be extracted. 

 

 

Figure 6 Laser footprint of (a) Linear and (b) Geiger-mode 

 

The purpose of this dissertation, as stated in Section 1, is to introduce a robust 

new automated solution that extracts all the objects in a given LiDAR image with 

a high degree of accuracy. The method was developed with the mindset that it 

would exploit the data on the aspect of the object (vertical feature) recently made 

available by the new LiDAR sensor technology. Unlike the traditional segmentation 

methodology, the vertical features of the objects have been mapped in this 

method.  However, the method is tested on traditional linear-mode LiDAR data and 

has demonstrated full competence. Despite low point density on the vertical plane, 
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the walls can still be constructed via Delaunay triangulation or Digital Elevation 

map generation, which connects the roof boundaries to the nearest points on the 

ground.  
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3. Review of the Literature 

 

Single class object detection from airborne LiDAR data has been an 

important research topic for many years. In this dissertation, the term ‘object’ refers 

to its generalized form, including anthropogenic or man-made objects as well as 

natural objects.   Extensive work has been performed on automatic detection of 

buildings (Verma et al.,2006; Sohn et al., 2008; Sun and Salvaggio,2013; 

Awrangjeb,2014), roads (Hu,2004; Hu-ying et al.,2012), trees (Koch et al.,2006; 

Liu et al.,2013), waterbody (Toscano et al.,2015; Acharjee et al.,2016) and 

vehicles (Yao et al.,2010). However, since in this work, we aim to extract a variety 

of object class present in the scene so we would focus on multi-class object 

extraction. 

Multi-class object extraction from a given scene can be approached from 

two directions: simultaneous classification and hierarchical classification. 

Simultaneous classification strategy classifies each LiDAR point as belonging to a 

specific object in a single step. Whereas, hierarchical classification consists of 

more than one step. For example, a popular hierarchical classification technique 

involves two steps: filtering and object classification (Zhu and Toutin, 2013). In the 

filtration step, the point cloud is partitioned into two class: ground and non-ground. 

This is popularly known as a ground filter or DTM generator. Here, the overlying 

objects can be extracted indirectly by the difference between the DSM and the 

DTM generated. This representation of elevated objects is called normalized digital 

surface model (nDSM). The result can be fed into a multi-class classifier to identify 
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their classes. Most ground filter cover here have not been designed for the purpose 

of objects extraction, but they all can potentially be adapted to work in conjunction 

with the multi-class classifier for enabling object representation of the terrain.  

Based on the basic element used in the classification process, multi-class 

object classification can be categorized into two classes: Pixel-based and Object-

based. In the Pixel-based approach, each pixel of the image is classified based 

exclusively on the attribute of itself and its spatial neighborhood. Pixel based 

approach essentially employs the simultaneous classification strategy. In the 

Object based approach, the image is first partition into meaningful segments and 

then a classification is performed on those segments. Therefore, Object based 

approach adopts hierarchical classification strategy. 

 A typical LiDAR-based ground filter is a pixel-based approach, which 

classifies each pixel into one of two classes: ground or non-ground. The attributes 

are derived from the elevation value of the point. 

 

3.1. Pixel-based object extraction 

 

Extensive work has been reported in pixel-based object extraction. In the 

following, some of the popular Pixel-based object extraction methods are 

discussed: 
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 Antonarakis et al. (2008) proposed a supervised classification strategy 

exploiting the combined analysis of both skewness and kurtosis for both elevation 

and intensity distributions to distinguish between forest and ground. 

 Lafarge and Mallet (2011) introduced a four-step urban objects extraction 

and modeling strategy from complex urban scenes. First, the point cloud is 

classified (unsupervised) into the building, vegetation, and ground using 

discriminative geometric features. The author combines local features and local 

context by applying an energy function and Potts model.  In the second step, 

shapes and lines are extracted from the segments. In the third stage, the extracted 

components are projected in a 2D grid space arrangement by applying geometric 

constraints, and the labels evaluated in the first step are propagated accordingly. 

In the final stage, the urban objects are represented in 3D. 

 Brodu and Lague (2012) classify complex natural scenes based on a multi-

scale analysis of 3D points from terrestrial LiDAR. The analysis reveals, for each 

point, the optimal neighborhood size to be considered and the local 3D 

organization of the vicinity (linear, planar or volumetric). Such dimensional 

information at each point, and at different scales, are introduced as input features 

for classification. They demonstrate its efficacy by separating riparian vegetation 

from the ground and classifying a mountain stream into vegetation, rock, gravel, 

and water pixel. 

 Niemeyer et al. (2013) proposed a supervised point-wise classification 

method that incorporates a random forest classifier into a Conditional Random 

Field (CRF) framework.  The method successfully detected six types of urban 
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objects: natural ground, asphalt, buildings, vegetation, fences, and cars. However, 

a massive amount of training samples is required to establish a per-class and per-

interclass relationship, which can be a logistic nightmare considering the huge 

variety of urban objects usually present in the urban scene. 

 Weinmann et al. (2015) proposed a robust methodology that assigns each 

individual 3D points with a local 3D neighborhood of optimal size for extracting 

distinctive geometric features. The features are then fed along with training 

example to a supervised classifier. 

 Guo et al. (2015) used JointBoost classifier to classify the point cloud into 

five main class: building, ground, vegetation, power-lines and pylons, using locally 

extracted features. The JointBoost classifier is known to perform automatic feature 

selection and therefore can process many input features for multi-class 

classification. As a post-processing step, a Graph-cut segmentation method is 

used to improve the classification results. 

 

Existing ground filter methods can be classified into five major classes: 

surface model-based (Tóvári and Pfeifer, 2005; Mongus and Žalik, 2012; Chen et 

al., 2013; Chen et al., 2012; Chen et al., 2016), morphology-based (Arefi and 

Hahn, 2005), TIN-based (Axelsson, 2000), Segmentation-based (Chen et al.,2014; 

Zhang et el.,2013) and Statistical analysis based (Crosilla et al., 2013; Costantino 

et al.,2011). Here, some segmentation-based and morphological based (Arefi and 

Hahn, 2005) ground filter can be categorized as object-based, but the rest are 
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pixel-based. Here, we discuss some of these pixels based ground filter 

approaches, among which some were directly used for hierarchical classification: 

 Axelsson (2000) proposed a ground filter algorithm based on iterative 

densification of the TIN representation of the terrain. The algorithm first identifies 

some control ground points and use them to create a sparse TIN model of the 

terrain. During each iteration, more and more points are added to the TIN if they 

meet certain criteria. As a result, the TIN model is progressively densified. The 

iteration continues until there is no point left that satisfy the criteria. A version of 

this algorithm has been implemented in a popular commercial software 

TerraScanTM from TerraSolid (Sithole and Vosselman, 2003). This method has 

proved very successful in urban areas. However, this filter performance is below 

par in case of rough terrain (Chen, 2016). 

 Tovari and Pfeifer (2005) proposed a DTM generation method based on 

the surface Moving Least Square (MLS) linear interpolation, which has been highly 

popular among researchers. Firstly, the method iterates an interpolated surface to 

the ground using some control ground points. At each iteration, the residuals are 

calculated and a proportionate weight is assigned to each point. This minimizes 

the weights for points from non-ground objects whilst points from ground object 

have a large influence on the run of the surface. The iteration continues until the 

ground surface model stabilize. 

 Meng et al. (2009) proposed a hierarchical classification strategy to extract 

building based on the morphological processing. The algorithm first employs a 

ground filtering algorithm to separate ground from its overlying objects. Next, an 
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analytic approach acts on the resulted nDSM to remove the remaining non-building 

points using building elementary structure filtering. 

 Costantino et al. (2011) developed a classification strategy based on the 

statistical parameters of the LiDAR point cloud distribution values. In the 

unsupervised algorithm, a combined analysis of both skewness and kurtosis on 

elevation distribution classifies the point cloud distribution into terrain/off-terrain 

class. Next, the RANSAC algorithm has been applied on the off-terrain points to 

detect buildings. The heavy use of thresholds in the method potentially undermines 

the extent of automation involved in the process. 

 Mongus and Zalik (2012) proposed a parameter-free strategy which 

combines surface-modeling, morphological filtering, multi-resolution comparison, 

and statistical analysis. The approach uses morphological filtering to eliminates 

noisy outliers, then use surface-interpolation at a multi-scale level to approximate 

the terrain. Next, the method employs a hierarchical morphological approach to 

compute the residual of each point from the surface. Finally, statistical analysis is 

applied enabling automatic thresholding and thereby, parameter-free ground 

filtering is achieved. The method is robust but computationally intensive. 

 Chen et al. (2012) proposed a ground filtering method based on upward-

fusion. This method first generates several preliminary DTMs at different scale 

level using a local minimum method. Next, by comparing the elevation difference 

between the course-scale preliminary DTMs and fine-scale DTMs with a threshold, 

the output DTM is refined. Unclassified points from the finer DTM that qualifies the 

criteria are selected, otherwise replaced by the value of the large-scale DTM. This 
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upward-fusion continues until all preliminary DTMs had been considered. The 

output is a refined DTM of high resolution. 

 

 

3.2. Object-based object extraction 

 

Can a computer be programmed to generate a hierarchical object 

representation from LiDAR data?  The representation would present a hierarchy 

of super and sub-objects in mapping complex objects. There are very few 

examples of computer-aided hierarchical object representation. Object-based 

image analysis (OBIA) framework has gained traction recently in remote sensing 

and geographic information science (GIS) to map imagery into semantically 

meaningful objects. (Blaschke et al., 2014).  OBIA involves two steps: image 

segmentation and object classification. Firstly, a segmentation algorithm is applied 

to partition the image into a relatively homogeneous group of pixels referred to as 

object candidates. This result, in addition to spectral values, in a plethora of new 

information such as aggregated spectral pixel values, morphology, texture, context 

as well as topology (Table 1). These features can be exploited in the subsequent 

identification of the object candidates.  This makes object-based classification 

superior to pixel based classification. However, there is a caveat. Object-based 

classifier outperforms pixel based approach only if the resultant segments 

accurately represent real-world objects (Yan et al., 2008). In other words, the 
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segmentation quality has a direct impact on the classification accuracy (Duro et 

al., 2012). 

A comparison of the features available for pixel and object-based classifiers 

is shown in Table 1.  

 

Table 1 Features available for pixel and object-based method 

 

Pixel Object 

Spectral   

Spectral statistics   

Size   

Shape   

Neighbors   

Hierarchy   

 

One other significant leverage the object based approach has over the 

pixel-based approach is that the image object delineation process reduces the 

effect of intra-class spectral variation and inter-class spectral similarity, thereby 

increase the classification accuracy (Wu, 2016). 

One of the important aspects of the OBIA framework is the hierarchical 

image representation through a tree structure i.e. to produce a hierarchy of super- 

and sub-objects (Blaschke et al, 2014). As illustrated in Figure 7, hierarchical 

representation reveals two important pieces of topological information: the context 



 

20 
 

feature and the object’s spatial arrangement feature. Availability of context 

information can lead to improvement in classification accuracy (Tang et al., 2013; 

Cui et al. 2016). It should be noted that the boundaries shared by the object and 

its sub-objects in the physical world, should perfectly overlap in their resultant 

segments of the image. 

 

 

Figure 7 Hierarchy of image objects (Blaschke et al., 2014) 

 

Relevant Segmentation techniques used in Object-based Image Analysis 

can be categorized into four classes, edge based, graph based, region based and 

ground filter based. In the edge based techniques, the LiDAR data is first converted 

to a raster and then the edges are detected. A contour generating algorithm is then 

used to close the region. The biggest limitation of the edge based technique is that 
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it cannot be used to extract objects which have overlapping surfaces such as 

bridges and buildings (Sithole, 2005). Among the four classes of object extraction 

method mentioned above, graph based technique, ground filter based, and the 

region based technique are the most popular.   

In the graph based technique, the objects are first localized and then are 

extracted using graph cut algorithm. Some of the state of the art graph based 

object extraction techniques, used to interpret LiDAR data, are discussed below: 

 Golovinskiy et al. (2009) present a min-cut based method for extracting 

small urban objects from a combined Airborne and Terrestrial LiDAR point cloud 

data. At first, a k-nearest neighbors graph is built. Then the potential object location 

is determined by applying a normalized cut upon the graph. Next, using points near 

those locations, foreground-background segmentation is computed with a min-cut 

algorithm that delineates the objects from its surrounding in the graph. Next, Shape 

features and contextual features are extracted for each point cluster. Finally, the 

feature vector for each candidate object is classified using a Support Vector 

Machine (SVM), trained on a set of manually labeled objects. A limitation of the 

segmentation method is that it often fails to detect all of the referenced objects. 

 Yao et al. (2009) proposed a 3d segmentation method combining non-

parametric clustering with spectral graph clustering to extract flyovers and vehicles 

in urban areas from raw airborne LiDAR data. The approach started with the mean-

shift segmentation process, which over-segments the scene to produce 

superpixels. So the results are further classified via a modified normalized-cuts 

based on geometric features such as the horizontal and vertical similarity within 
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each superpixel, thereby generating a more consistent subset of laser points.  The 

flyovers were extracted successfully, but the vehicles extraction rate was lower. 

Region based techniques merge smaller regions into larger ones based on 

similarity. The growth stops once the growing region properties exceed the 

heterogeneity threshold. Among the region based techniques, the Multi-resolution 

segmentation (MRS) algorithm (Baatz and Schäpe, 2000) has recently garnered a 

lot of attention within the OBIA domain for the delineation of semantically 

meaningful objects. MRS is a bottom-up region growing method, which initially 

considers each pixel as a distinct object. Iteratively, smaller image-objects are 

merged into larger ones based on the similarity between adjacent image objects. 

The growth stops once the growing object properties exceed the heterogeneity 

threshold, defined by the scale parameter.  Heterogeneity is usually expressed in 

terms of the spectral value and shape of the object.   

Choosing the right scale parameter is crucial in this algorithm since it has 

a direct effect on the classification accuracy (Blaschke, 2010). The traditional 

procedure for scale parameter selection involves a long time-consuming trial-and-

error. Even though this procedure allows the incorporation of expert knowledge, it 

is deemed irreproducible and not robust enough.  Recently, some progress has 

been made in the development of methods for automatic tuning of scale 

parameters. For instance, the Estimation-of-Scale-Parameters (ESP) tool [Drǎguţ, 

2010] from eCognition is used by MRS to delineate landforms from the spectral 

image at multiple segmentation scales, whenever there is significant size variation. 

The resulting segments are then classified based on the physical attributes such 
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as length, width, and height and by the statistical frequency of specific 

geomorphometric variables [Evans, 2011]. 

 D’Oleire-Oltmanns, et al. (2012) employ multiresolution segmentation 

techniques on DEM to segment landforms such as drumlins since they vary 

significantly in form and shape. Unlike cirques and drumlins, most other landforms 

are not clearly bounded and their delimitation offers varying degrees of difficulty 

(Evans, 2012). For example, segmentation of gullies is difficult due to its 

heterogeneous morphologic characteristics; thus, the authors rely on aerial 

photographs for gully mapping. The paper also demonstrates the challenge facing 

MRS using ESP for delineating landforms such as drumlins.  Despite the 

knowledge-based selection of an optimal segmentation layer, it performs poorly in 

delineating the exact limit of drumlins.  

 Dragut, et al. [2013] employ MRS to segment elementary forms from Digital 

Elevation Maps (DEMs) based on the homogeneity of elevation derivatives such 

as gradient, aspect, profile curvature and plan curvature. However, landforms are 

composed of multiple such landform elements (Evans, 2012).  

 Zhang et al. (2013) developed a land cover classification system based on 

object-based point cloud analysis. It consists of two sub-step: clustering and 

classification. For clustering, the author employs a plane-fitting algorithm to extract 

planar segments from the point cloud. Thirteen different features of the geometry, 

radiometry, topology, and LiDAR return characteristics are derived from the 

extracted segments. Next, a support vector machine (SVM) is used to classify the 

segments into five categories: ground, vegetation, building, vehicle, and powerline. 
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In the post processing, the author proposed a connected component analysis for 

3D point clouds to improve the original classification results. 

 Sevara et al. (2016) make a comparison of pixel-based and object-based 

approaches for the extraction of an archeological feature from LiDAR data.  

 Wu et al. (2016) applied SVM classifier on combined MRS results from 

LiDAR nDSM image and WorldView-2 imagery to extract different urban land cover 

types.  

 In another research effort (Chen and Gao, 2014), the land cover 

classification (building and trees) is based solely on the available features from 

discrete LiDAR data (elevation and intensity). Using just the following two key 

attributes: elevation and intensity difference between the first and the last return 

from LiDAR has proven to be effective in the object based classification. Here, 

eCognition has been employed for the multi-resolution segmentation.  

 Xu et al. (2014) proposed a multiple-entity-based classification system 

where features were extracted from three different entities: points, plane 

segments, and segments produced by mean shift. Here, first, using the planar 

segments, the underlying ALS data is roughly classified to the ground, water, 

vegetation, roofs and undefined object. Then, from the labeled data, the walls and 

roof elements are identified point-wise using the contextual information of a 

building. Finally, from the points labeled as roof elements, the errors arise from 

contextual information are re-segmented by the mean shift method and then re-

classified. The overall accuracy of the result is better than that achieved by using 

the just point-based method.  
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 Chen et al. (2016) proposed an image-segmentation-based method for 

urban DTM generation. Firstly, fine-scale segmentation is conducted on the DSM 

image using eCognition software. Next, among the unclassified segments, the 

lowest one within each cell is selected as the control seed ground segment. The 

rest of the unclassified segments are analyzed by comparing the spatial correlation 

with its nearest ground segment. In this process, all segments belong to ground 

are extracted. Finally, the output DTM is generated through post-interpolation. 

 

, The ground filter based object extraction technique consists of two 

subsequent steps, filtering and object classification. In the filtration step, a pixel-

based classifier such as a ground filter is employed to partition the point cloud into 

two class: ground and non-ground. The ground point is then used to create the 

DEM and the first return is used to create a raster DSM. Next, the overlying objects 

are extracted from the nDSM (which is the difference between the DSM and the 

DEM.). In the following, some of the well-known ground filter based object 

extraction techniques are discussed: 

 Arefi et al., (2005) present a hierarchical segmentation procedure using 

morphological operations with different structuring element sizes to extract 

matched off-terrain regions. The region is then classified based on region 

properties. The authors targeted two classes: building and vegetation regions. The 

performance of the filter depends on the filtering window size. So, it needs an 

accurate a priori knowledge of the target terrain. 
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 Zhang et al. (2014) proposed an object-based point cloud analysis method 

to detect and extract vehicles from only one data source: LiDAR data. It involves 

two steps: candidate generation and verification. For candidate generation, firstly, 

a segmentation-based progressive TIN densification algorithm is employed to 

separate the terrains and off-terrains point and then, among the non-ground points, 

those point whose height within a scope is selected. For verification, firstly, 

features such as area, rectangularity, and elongateness are extracted, and then, 

rule-based classification is performed. 

 

3.3. Challenges facing current object extraction methods 

 

The challenges common to all object extraction approaches are as follows: 

 Due to the relative complexity of the real-world objects, intra-class 

heterogeneity is high. This contributes to the over-segmentation problem (Sevara 

et al., 2016). Moreover, the problem is further exacerbated with the availability of 

higher resolution imagery, as the heterogeneity becomes more pronounced. 

 Object extraction approaches focus on only protruded object such as 

building, trees etc. while ignoring intruded objects such as crater, crevice, 

swimming pool, irrigation channel etc.  

 Selection of the appropriate scale parameters for segmenting out object 

and sub-objects to generate the hierarchical object representation. 
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The challenges facing MRS based region growing technique are as follows: 

 The performance of MRS heavily depends on the scale parameter 

selected, which is challenging to obtain automatically for every object class present 

in the scene (Musci et al., 2013). This leads to over-segmentation and under-

segmentation.   

 Hierarchical relations among objects derived at different scales is difficult 

to establish. For example, the boundaries shared between objects and sub-objects 

in the real-world scenario may not coincide in their corresponding resultant 

segments due to the imprecise selection of the scale parameters. 

 

 

The limitation of graph based object extraction techniques are as follows: 

 The discriminative feature used in graph based object extraction methods 

is the proximity measure between neighbor nodes of the graph. In some objects, 

for example, a hill with a gradual slope, it is not clear where the hill ends and the 

flat ground begins. Graph-cut requires such clear-cut distinction. Therefore, it has 

been rarely used for extracting natural object 

 Graph cuts algorithm is only capable of reaching a global optimum for two 

labels problems such as foreground/background image segmentation. Therefore, 

to accomplish hierarchical segmentation, a non-parametric clustering algorithm 

such as mean-shift is usually employed. However, the clustering algorithm is scale 

dependent. To illustrate the problem, an example of 2D mean-shift clustering of a 

feature vector of size 5 (color (R, G, B) + location (x, y)) with two different scale-
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parameters (𝜎𝑠, 𝜎𝑟) is shown in Figure 8. In Figure 8 (b), the Gaussian window is 

small so that small sub-objects such as windows, doors, pillars are segmented out. 

In Figure 8 (a), the Gaussian window is large, as a result, the intricate details are 

lost. However, the whole building (parent object) is segmented out. Both results 

are important as in one case the parent object is extracted whereas, in another 

case the, sub-objects are extracted. The challenge is, however, to find the 

appropriate scale-parameter that will serve the purpose. 

 

Figure 8 Two mean-shift results with different parameters (Courtesy: IS-lab, 

Halmstad University) 

 Objects that lie in close proximity are difficult to separate using the graph-

cut algorithm. This is again because the algorithm relies on proximity between 

neighbor nodes for discrimination. 
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The challenges facing a ground filter based object extraction technique are as 

follows: 

 These object extraction techniques employ a ground filter in the first step. 

Therefore, the quality of the filtration has a direct impact on its performance. The 

inaccuracy in the filter results is defined by two statistical measure: Type I error 

and Type II error. A Type I error is the incorrect rejection of bare earth points 

whereas, a type II error is the failure to reject object points. There is a trade-off 

between type I error and type II error. Most filters are designed to minimize Type 

II errors. The filter parameter is set such that it guarantees the removal of most 

object points, even those objects that have a small size and a relatively low height. 

However, this may cause the removal of many ground points and thereby 

increases the Type I error.  

 Most ground filtering methods mentioned above have one thing in common; 

they are all pixel-based approach. They classify each LiDAR point as belonging to 

an object or ground based on its attribute and its neighborhood. Consequently, the 

classifier in the filter algorithm has limited information to work with and is deprived 

of the contextual information.  

 The result from pixel-based approach such as ground filter may contain 

some misclassified isolated pixels or group of pixels, which collectively known as 

salt and pepper noise. 

 In the case of ground filter object extraction approach, as far as I know, 

there is no solution available to produce hierarchical object representation. 
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3.4. Conclusion 

 

Based on the literature review, the following conclusions are drawn: 

 Object based approach is superior to pixel based approach. Therefore, in 

our research, we focused on developing an object based approach to extract 3D 

objects. 

 In an ideal situation, the resulting segment presented to the object based 

classifier would correspond to the real-world object. However, current object 

extraction techniques fall short of the mark. They are, therefore, cannot fully exploit 

the leverage the object based approach has over the pixel-based approach.  We 

attempt to overcome these limitations in our proposed methodology. 

 The main two challenges facing OBIA are scale dependency and the 

relative complexity of the real-world objects. 
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4. AVSOE Algorithm Ideation 

 

The aim of the research has been the development and the implementation 

of an algorithm for automated extraction of unknown salient objects - natural and 

man-made, protruded and intruded, from the topographic surface using airborne 

LiDAR data.  As discussed in the previous section, the main two challenges facing 

object based image analysis are the scale dependency and the relative complexity 

of the real-world objects. Our object extraction algorithm is designed to tackle 

these problems. In this section, the underlying assumptions upon which our object 

extraction algorithm is based, are first discussed. Thereafter, a brief overview is 

provided on the working principle of the algorithm.  

 

4.1. Characteristics of an object 

 

Axiom 1: An object can be defined as one which introduces a distinct 

geometric concavity or convexity on its topographic background.  

The following two corollaries can be derived from Axiom 1 (referring to 

Figure 9 and Figure 10):  

Corollary 1: An object is bounded by topographic discontinuities. 

Corollary 2: An object can be approximated into either of (or a mixture of) 

two fundamental 3D geometric structures: a ‘convex-like’ object and a ‘concave-

like’ object.    
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Definition 1: A convex-like object is one which introduce convexity to the 

topographic background 

Definition 2: A concave_like object is one which introduce concavity to the 

topographic background 

For example, buildings, drumlins, hills, trees etc. falls into the convex-like 

structure category whereas a watershed, a swimming pool, a gully, a crater etc. 

can be categorized as concave-like structures.  The volcano has characteristics of 

both types. 

 

 

 

Figure 9 Objects and its topographic background 
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Figure 10 Real-world objects types 

 

We can decompose any concave or convex-like object into two surface 

types: ‘slope surface’ and ‘horizontal flat surface’.  

Definition 3:  A slope surface is one which encompasses the object or sub-

object and whose slope is strictly monotonic.  

Definition 4: The horizontal flat surface is an open surface whose slope is 

zero.  

An example is shown in Figure 11. Here, the surface of each object has 

been decomposed into multiple slope surfaces and horizontal flat surfaces.  
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Figure 11 Decomposing a (a) complex building structure, and a (b) mountain into 

slope surfaces (lighter shade) and horizontal flat surfaces (darker shade) 

Referring to Figure 11(a), a single slope surface would include all the 

vertical facades of the tall building. A second single slope surface would include 

all four facades of the shorter building. In Figure 11(b), a single slope surface would 

include the lighter shaded surface going all around the mountain.  Virtual Surveyor 

based segmentation algorithm is designed to map only the slope surface of the 

object leaving behind the horizontal flat surface.  

Axiom 2: A single slope surface always connects the object, no matter how 

complex, to its background. This special slope surface is called ‘foothill_slope’. 

Foothill_slope of an object ends with the boundary of the object. 

Figure 12 shows the foothill_slope of the objects as illustrated in Figure 11. 

Referring to this figure and axiom 2, the following conclusion can be drawn, 

Corollary 3: A seed growing segmentation algorithm that maps the slope 

surface of an object and which starts from a seed positioned in the vicinity of the 
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object boundary is guaranteed to capture the object boundary in the resultant 

segment.  

 

Figure 12 Foothill_slope (yellow shade) and footprint (dash line) of a (a) complex 

building structure, and (a) mountain 

 

Our strategy is, therefore, to map the foothill_slope of the object using a 

seed growing segmentation algorithm. It starts with a seed at somewhere on the 

foothill_slope of the object and it includes neighbor that maintain the strict 

monotonicity as that defined by the slope of the seed. (See Definition 1). 

In the process of mapping, the foothill_slope of sub-objects that lies on the 

foothill_slope region of the parent object are also get mapped and included into 

the growing segment. This is demonstrated in Figure 13 which shows the close-up 

view of the house on the mountain (Figure 11(b)). While mapping the foothill_slope 

of the mountain, the foothill_slope of the house is also get mapped. This is 
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because, surface B of the house maintain the strict monotonicity as that defined 

by the neighbor surface A of the mountain. 

 

 

Figure 13 While mapping the foothill_slope of the mountain, the foothill_slope of 

the house is gets mapped. 

 

A foothill_slope can be classified into two types: convex and concave. 

Observation 1: Surface Normal vectors to all points in the foothill_slope of 

convex type point outward as shown in Figure 14. 

Observation 2: Surface Normal vectors to all points in the foothill_slope of 

concave type point outward 
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Figure 14 Normal to all points in the foothill_slope of a convex object point 

outward [Courtesy, 1ucasvb] 

 

Referring to definition e and Figure 10, the following observation of the 

foothill_slope can be made: 

Axiom 3: Foothill_slope of a convex-like and concave-like object is always 

convex and concave respectively. This means that a convex object can have 

several instances of horizontal flat surfaces, and/or concave slope surfaces, but 

its foothill_slope is always convex. 

Definition 5: There exist a set of circular loops, associated to its 

foothill_slope, that encircle the entire structure and the normal to each point of the 

loop, points inward in the case of concave foothill_slope and outward in case of 

convex foothill_slope. For each point on the slope surface, there exists at least one 

member of that set of loops, which passes through the point. These special circular 

loops are called ‘path_loops’. 
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 Figure 15 shows few path_loops encircling a mountain and a cavity. It is 

to be noted that the boundary of the object is itself a path_loop. 

 

 

Figure 15 Top view of a cavity, a mountain, and its topographic 

background. Their foothill_slope and path_loops are also shown 

 

According to the definition 5, observation 1 and 2, and axiom 3, the 

following conclusion can be drawn: 

Corollary 4:  the normal at each point of the path_loop either point inward 

or outward in case of concave or convex-like object respectively. 

The following conclusion can be derived from axiom 2, definition 5 and 

corollary 4:  
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Corollary 5: Each object in a topographic map can be represented by a set 

of path_loops encircling the object. The normal at each point of the circular loop 

point inward or outward, depending on the type of the object. 

The direction of the path_loops can be decomposed into two major 

components: cross slope and main slope. Here cross slope is perpendicular to the 

direction of the main slope as shown in Figure 16.  

 

Figure 16 The black thick arrow indicates the direction of the main slope; the 

white arrow indicates the direction of the cross slope 

An important observation of these path_loops is:  

Axiom 4: The cross slope component of the path_loop dominates over the 

main slope component. This is demonstrated in Figure 17. 
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Figure 17 Cross slope component of the path_loop dominates over the main 

slope component 

 

Like every other algorithm that deals with airborne LiDAR point cloud data, 

our algorithm first derives the surface representation from the point cloud model of 

the terrain. In our case, a network of the planar segment is constructed from the 

point cloud model of the terrain. This is done by fitting planes onto the point cloud. 

Figure 18 shows the stylistic simulation of the partition of a terrain (Figure 15) into 

a network of planar segments. The following conclusion can be derived from 

corollary 1: 
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Corollary 6:  the planar segments border coincides with the object border 

as shown in Figure 18. 

 

Figure 18 Partitioning the terrain (shown in Figure 15) into a network of planar 

segments. Here, each individual color represents a planar segment. 

 

 

4.2. Surveyor Guidance Vector, on_slope condition and path_loop condition 

 

Consider a virtual surveyor, as shown in Figure 19(b), standing on the 

sloping surface of a bowl-shaped structure, as shown in Figure 19(a). Now 

suppose, the normal to the background onto which the bowl is placed is known 

and is referred as Background Normal vector (BN vector). Here, the BN vector is 

vertical. The normal to the slope on which the surveyor is standing can be locally 

estimated and is referred as a Surface Normal vector (SN vector). The cross 
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product between the BN vector and SN vector produce a special vector which we 

called Surveyor Guidance vector (SG vector). 

𝑟 =  �̂� × �̂� = |�̂�||�̂�|𝑠𝑖𝑛𝜃�̂� = 𝑠𝑖𝑛𝜃�̂�            eq. 1 

 

 

Figure 19 A surveyor as shown in (b), standing on the slope of a bowl structure 

as shown in (a) 

 

Observation 3: If the surveyor is facing the direction of the Surveyor 

Guidance vector 𝑟, the Surface Normal vector �̂�, the surveyor and his right arm 

are in the same plane. The following conclusion can be drawn: 

Corollary 7: When the dot product between path vector  �⃗� and the Surveyor 

Guidance vector 𝑟 is positive, the Surface Normal vector �̂� lies on her right-hand 

side. If the dot product is negative, SN vector �̂� is on her left-hand side. The 

premise is proved below. 
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Proof:  Figure 20 shows the top view of the surveyor standing on the slope. 

Here, the BN vector points out of the page. The path vector �⃗� shows the direction 

taken by the surveyor. The dot product between �⃗� and 𝑟 is the scalar projection of 

�⃗� to 𝑟 which is represented by the cyan colored vector in Figure 20.  

 

Figure 20 Surveyor path vector relation with SG vector 

 

The dot product between �⃗� and 𝑟 is given by 

�⃗�. 𝑟 = |�⃗�||𝑟| cos 𝜃 

Now, when 𝜃 =  −
𝜋

2
 →  

𝜋

2
 , �⃗�. 𝑟 ≥ 0, SN vector is on RHS 

And, when 𝜃 =  
𝜋

2
 →  

3𝜋

2
 , �⃗�. 𝑟 < 0, SN vector is on LHS 

 

Definition 5: Suppose a surveyor follows the arc shown in Figure 21. The 

path vector is shown in three different location of the arc. The path vector is 

tangential at each point of the curvy path. The arc can be divided into infinite pieces 

called ‘path_elements’. Each infinitesimal piece can be approximated as a straight 
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line which lies in the direction of the path vector at the start point. That means, at 

each point of the path_element, the path vectors point in the same direction along 

the path_element.  Representing the path taken by a surveyor as a chain of 

path_elements concur with our surface representation of a network of planar 

segments. Here, the surveyor can hop from one planar segment to the neighbor 

planar segment in a straight line. Each such straight line represents a 

path_element. 

 

 

Figure 21 Path vector shown in three locations of the arc 

 

Definition 6: Figure 22 shows an arc (𝑎𝑟𝑐𝐴𝐵) drawn on the foothill_slope of 

a bowl-shaped structure. The direction of the arc is radially outward. The arc can 

be divided into its path_elements. At each point of each path_element, the dot 

product between the path vector and the Surveyor Guidance vector at that location 

is zero since they are perpendicular to each other. We call these special 

path_elements as ‘radial_path_elements’. Therefore, it can be stated that, at each 

point of the foothill_slope, a path_element can be associated such that the dot 
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product between the SG vector and the path vector is zero at all points of the 

path_element.  

 

 

Figure 22 Occasion when the dot product is zero between the path vector and 

the SG vector 

 

Corollary 8: At each point of the foothill_slope, the set of all possible 

path_elements, which can be associated to the point, excluding the 

radial_path_elements obeys the following condition. The dot product between the 

path vector and the Surveyor Guidance vector maintain the same sign at all points 

of the path_element.  This premise is proved as follows. 

Proof: In Figure 23, consider the set of points in the circle drawn on the 

foothill_slope of the concave-like structure. Consider the set of arcs where each 

starts from any of those points and ends at the center. Each arc can be divided 

into its path_elements. Each associated path vector of a path_element can be 

decomposed into two components: one in the direction of radial_path_element (�⃗�𝑟) 
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and the other one is perpendicular to it (�⃗�𝑝). Since, the radial_path_element 

component (�⃗�𝑟) has no contribution to the dot product, as discussed in definition 

6, the evaluation of the dot product is therefore solely depended on the component 

that is perpendicular to the radial_path_element (�⃗�𝑝). Since the Background 

Normal vector is vertical, �⃗�𝑝 can be visualize from the top view as shown in Figure 

23. Figure 23 demonstrates that, at each point of  �⃗�𝑝 , for each path_element, the 

normal points to the same side, either left-hand side or right-hand side, of the path 

vector component �⃗�𝑝. That means, the dot product between the path vector and 

the Surveyor Guidance vector maintain the same sign at all points constituting the 

path_elements that belongs to the foothill_slope. 

 

 

 

Figure 23 Occasion when the dot product is not zero between the path vector 

and the SG vector 

 

Conclusion 1: If Antecedent S is a “slope surface” and Consequence N 

represent the following event, “dot product between the SG vector and the path 
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vector defined by two infinitely close neighbor points (except those pair of points 

which constitute the radial_arc) has the same sign”. Then, S guarantees N, i.e. S 

=> N. (Sufficiency condition). 

 

Corollary 9: In the case of two close neighboring points, where each 

belongs to a different slope surface, the dot product at all points of the 

path_element connecting the points do not have the same sign. This premise is 

proved as follows. 

Proof: In Figure 24 (a), plane A and B belong to the same slope surface 

since the monotonicity of their grade has been maintained, whereas, in (b) and (c), 

they each belong to a different slope surface. In Figure 24 (a), �⃗⃗�𝐴 and �⃗⃗�𝐵 both point 

to the same side of path vector of the path_element defined by any pair of points 

(except radial_path_element) that lies on both side of the boundary between A and 

B. On the other hand, in Figure 24(b) �⃗⃗�𝐵 = 0 and in Figure 24 (c) �⃗⃗�𝐴 and �⃗⃗�𝐵 both 

point to the opposite sides of the path vector which connects the two neighboring 

points across the boundary. So, the dot product at either end has the same sign in 

(a) but not in the case of (b) and (c). 
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Figure 24 Adjacent planes when (a) form a slope, (b) and (c) does not form a 

slope. 

Conclusion 2: Again, if the Antecedent S is “slope surface” and the 

Consequence N represent the following event, ““dot product between the SG 

vector and the path vector defined by two infinitely close neighbor points (except 

those pair of points which constitute the radial_arc) has the same sign” then the 

following condition statement holds:  if S is false, N is false or in other words, S <= 

N (Necessity condition) 

Conclusion 1 and 2 can be summarized as S is necessary and sufficient 

for N or in other words, S if and only if N i.e., S  N. That means, the adjacent 

planes are part of the same surface slope if and only if the dot product between 

the path vector  �⃗� and the Surveyor Guidance vector 𝑟 have the same sign all 

through. 

Referring to Figure 25, according to the conclusion derived above, the point 

A and the point B lies on the same slope surface if, 

�⃗�𝐴𝐵.  𝑟𝐴 ≠ 0            eq. 2 

�⃗�𝐴𝐵.  𝑟𝐵 ≠ 0            eq. 3 
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𝑠𝑖𝑔𝑛(�⃗�𝐴𝐵.  𝑟𝐴) = 𝑠𝑖𝑔𝑛(�⃗�𝐴𝐵 .  𝑟𝐵)   eq. 4 

This expression (eq. 4) can be rewritten as follows: 

(𝑓𝑖𝑟𝑠𝑡_𝑑𝑜𝑡_𝑝𝑟𝑜𝑑) × (𝑠𝑒𝑐𝑜𝑛𝑑_𝑑𝑜𝑡_𝑝𝑟𝑜𝑑) > 0     eq. 5 

Where, 𝑓𝑖𝑟𝑠𝑡_𝑑𝑜𝑡_𝑝𝑟𝑜𝑑  = �⃗�𝐴𝐵 .  𝑟𝐴 and 𝑠𝑒𝑐𝑜𝑛𝑑_𝑑𝑜𝑡_𝑝𝑟𝑜𝑑  = �⃗�𝐴𝐵.  𝑟𝐵 

This expression (eq. 5) is termed as ‘on_slope’ condition. Therefore, the planar 

segments that satisfy the above condition belong to the same slope surface.  

 

 

Figure 25 Transverse across adjacent planar segments 

 

The above expression can be used for seed growing object segmentation 

process. The planar segments that satisfy the condition are only eligible for 

inclusion in the object image segment.  

It is to be noted that in our surface representation in the form of planar 

segments network, the resolution of the network needs to be very high for the 

condition required by premise 2 and 3 to be effective. However, to generate such 
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high-resolution network of planar segments is often not possible. Therefore, even 

though theoretically, the implement of the on_slope condition in the segmentation 

process is sufficient to guarantee the accurate mapping of foothill_slope of the 

object. However, practically on many occasion, due to the granular representation 

of the terrain, the on_slope condition fails to serve this purpose. 

 An example of such case is shown in Figure 26. The highest resolution 

possible for our network of planar segments is limited by the raster representation 

of the point cloud from which the network has been derived. Details of the 

construction of the network of planar segments are given in section 5.1. 

 

 

Figure 26 Case when on_slope condition fails 

 

Here, as shown in the figure above, the elementary unit of the raster such 

as A can have such a distorted nonplanar geometric surface. As a result, the 

Surface Normal vector of both cell A and B point to the RHS of the surveyor, so in 

both cases, the dot product has the same sign. These kinds of cases render the 
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necessity condition of the on_slope condition (conclusion 2) ineffective. That is 

why the application of the on_slope condition for mapping the foothill_slope is not 

enough and so it is just a part of the elaborate process described in chapter 7 and 

8.  

Referring to Figure 27, suppose a virtual surveyor diligently follows one of 

the path_loop shown in Figure 15. Since, at each point of the path, the SN vector 

points to the right-hand side of the surveyor so, the dot product between the path 

vector and SG vector is positive all throughout the path_loop.   

 

Figure 27 Virtual surveyor following a path_loop 

Therefore, referring to Figure 25, suppose planar segments A and B are 

neighbors at somewhere on the foothill_slope, then �⃗�𝐴𝐵 constitute a path_loop if 

the following condition hold: 

(first_dot_prod > 0) ∧ (second_dot_prod > 0)      eq. 6 
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Eq. 6 is a special case of eq. 5. This is a property of the path_loop and is 

therefore called ‘path_loop condition’. 

Now, this property of a path_loop has three major implications: 

1.  If there exists an arbitrary loop on a topographic surface, and if it is found 

that the loop obeys the path_loop condition, then the loop is a path_loop. That 

means, there is an object present and the loop encircles it. 

2. Since the dot product is positive all through the path_loop. That means, the 

SG vector can be used to guide the surveyor around the foothill_slope. 

3. The direction of the path_loop for a concave foothill_slope is clockwise 

whereas, the direction of the path_loop for a convex foothill_slope is counter-

clockwise. 

 

4.3. Overview of the AVSOE algorithm 

 

Before delving into the details of the proposed methodology, this section 

walks through the logical steps that have been taken which eventually leads to the 

final form of the algorithm.  

First, a network of the planar segment is constructed from the point cloud 

model of the terrain as discussed in section 4.1.  Next, a directed graph is 

constructed from the planar segment representation of the terrain, with each planar 

segment represent the node and there exist an edge between neighboring nodes 

only if the edge complies with the path_loop condition. According to the path_loop 
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property discussed in section 4.2, it is guaranteed that this process will produce a 

set of a chain of connecting edges in the graph that encircles the foothill_slope of 

each object and sub-object present in the scene.  Thereby, these cycle graphs 

(circular loops) represent the path_loops. Detection of these path_loops will reveal 

simultaneously the presence and position of all objects and sub-objects in the 

scene. However, such graph can be very dense for a large terrain, so finding each 

loop in the graph can be computationally expensive. Moreover, the ground itself 

has plenty of small concave and convex structures. So, loops will form around 

them and hence contribute to the set of false positive.  To overcome these 

problems, a best-of-class pixel based ground filter algorithm can be employed to 

filter out most of the ground planar segments. Analyzing the filter result provides 

crucial information about the object candidates, such as seeds and back ground 

normal vector, which can be utilized by a seed growing segmentation algorithm to 

carve out regions from the map, where each region includes the foothill_slope of 

an object candidate. It is to be noted that the object candidate is a sub-set of the 

segmented region. These segments are called ‘naïve segments’ and the process 

that produces them are called ‘naïve object segmentation’. After the segmentation, 

a sub-algorithm is assigned to work on the sub-graph contained inside each of the 

regions individually to extract the boundary of the object and its sub-objects. The 

result is a hierarchical representation of the object and the process that produce it 

is called hierarchical decomposition algorithm. This divide and conquer approach 

of AVSOE made the overall process very efficient and remove most of the false 

positives.  
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Figure 28 shows the overall block diagram of the Automatic Virtual 

Surveyor based Object Extraction (AVSOE) algorithm. It consists of three stages: 

Preprocessing, Naïve Object Segmentation and Hierarchical Decomposition. The 

preprocessing step employs the ground filter and extracts the object candidates, 

each of which is represented by its corresponding seed and Background Normal 

vector. The result is fed into the Naïve Segmentation step which produces the 

naïve segments out of it. The Hierarchical Decomposition module works on the 

sub-graph contained inside each of the naïve segment and extract the object and 

its sub-objects boundaries. 

 

 

Figure 28 Flowchart of the proposed methodology (AVSOE) 
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Figure 29 shows the stylistically simulated results obtained from each of 

the three stages. In the following chapters, the individual parts of the flowchart are 

explained in detail. 

 

 

Figure 29 Stylistically simulated result obtained from each of the three main 

stages of the Virtual Surveyor object extraction (VSOE) algorithm 
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5. Preprocessing 

 

In this section, the preprocessing stage is described in detail. This 

sequence of steps processes the input point cloud data and extract information 

that is later used by the subsequent stages. 

Figure 30 shows the overall block diagram of the Automatic Virtual 

Surveyor based Object Extraction (AVSOE) algorithm with preprocessing stage in 

details.  

1. The input to our algorithm is the LiDAR point cloud data of the target terrain.  

2. In the preprocessing step, the point cloud is first rasterized to produce a 

Digital Elevation Model (DEM) representation.  

3. The mesh is then fed into a plane-fitting algorithm to generate planes. 

4.   Our method then employs a well-known pixel-based ground filter (Tóvári 

and Pfeifer, 2005), whose sole purpose is to filter out the background planar 

segments (ground pixels) and present the salient planar segments (object pixels) 

to the subsequent object extraction algorithm.  

5. Since neighboring object planar segments may have derived from a single 

object, the planar segments are grouped together using connected component 

analysis. Each group of planar segments provides a number of seed candidates 

which is leveraged by our (seed-dependent) naïve object extraction sub-algorithm. 

Background Normal vector is also extracted by fitting planes to the neighboring 

planar segments that belong to the ground. 
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Figure 30 Flowchart of the proposed methodology (AVSOE) 
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5.1. Rasterization 

 

As discussed in Chapter 2, the two key derivatives that can be produced 

from the LiDAR point cloud data for the surface analysis are Digital Elevation 

Models (DEMs) and Triangulated Irregular Networks (TINs). Even though a TIN 

can admittedly give more accurate results, we opted for the DEM as it significantly 

reduces the data dimension and processing time. Moreover, in the case of a low 

point density or a zero-point density patch in the area of interest, the TIN facets 

become larger in size resulting in unnatural triangular artifacts. DEM uses the 

interpolation approaches to fill in such void patches. In our method, the TIN input 

can be easily plugged in if necessary in the place of DEM without requiring any 

further processing. 

For DEM, the grid is overlaid on the terrain surface, so the attribute 

represents surface elevation obtained by means of interpolation of the 

corresponding point cloud data. For generating DEM, the spatial interpolation 

approach generally used are Inverse Distance Weighted (IDW), kriging, Nearest 

Neighbor etc. We use IDW since it is robust for landscape with high surface 

variability (Mongus, 2014). 

The input to our algorithm was a LAS file, which stores airborne LiDAR data 

in a binary format. The mean point density of the acquired LiDAR data is 4/m2. 

First, the LAS file for a target area was exported to the ASCII text format and was 

then read in MATLAB. For rasterization, the small cell size of 2m is chosen to 

ensure low quantization error. The target area is then overlaid with a 2m x 2m 
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square grid.  The well-known IDW interpolation is then used to predict the voxel 

value at the center of each cell, using a linearly weighted combination of a set of 

sample points present in that cell. The weight is a function of the inverse distance 

from the sample point to the center of the cell. The IDW is again used to interpolate 

elevation to ‘empty’ cell (cell with no LiDAR point). Here, instead of the neighbor 

sample point, the neighbor cells value has been used.  In Appendix A, the IDW 

interpolation method is detailed. An example of the resultant square mesh model 

of a landscape is shown in Figure 31 

 

 

Figure 31 Square mesh model of a landscape 
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5.2. Pfeifer’s Ground Filter 

 

In our work, we selected the well-known surface based filter proposed by 

Tóvári and Pfeifer (2005) as our pixel-based ground filter. This approach combines 

planar segmentation and ground filtration using a robust interpolation technique. 

In the first step, a plane-fitting algorithm is used to generate planes. The 

planar segmentation step is based on a region growing algorithm, where the seeds 

are placed, first randomly, and then in unexplored spaces, to divide the target area 

into planar segments. Once a seed is selected, the nearest neighbor points are 

examined, to determine whether they meet certain criteria. Neighbor points that 

satisfy the criteria are added to the growing region. The details of this algorithm 

are discussed in Appendix B. 

The next step is a robust interpolation. First, planar segments with a size 

larger than the largest man-made structure possible are extracted and identified 

as ground. These ground seeds act as ground elevation references to initiate the 

filtering process. Next, a surface is interpolated initially, using surface moving least 

squares (MLS), from all points. For each planar segment, a weight is assigned 

based on the average difference in the distance of the interpolated surface to the 

constituents observed value. These weights are considered in the next iteration 

and therefore, segments with a large weight have a larger influence on the run of 

the surface. This process is iterated until there is no object point left, i.e. their 

weight becomes zero. The details of this algorithm are discussed in Appendix C. 



 

61 
 

Figure 32(a) shows the result of the planar segmentation algorithm. Here, 

each color represents an individual planar segment. Figure 32(b) shows the result 

after robust interpolation. Here, the red color represents the ground planar 

segments and the white represents the non-ground planar segments. 

 

Figure 32 Result showing after (a) Planar segmentation (b) Robust Interpolation 

of a convex object such as complex building 

 

The procedure from (Tóvári and Pfeifer, 2005) was designed to detect 

planar segments only belonging to conspicuous convex objects such as building, 

trees etc. As stated in chapter 1, our objective is not only to detect prominent 

convex objects but also objects that are not so discernable from its background 

such as mountain and objects that are concave in shape such as a pond, artificial 

cavities etc.  To serve our purpose, we made two modifications in the interpolation 

method. One modification enables the extraction of planar segments belonging to 

concave objects. Details of this modification are explained in Appendix C. 
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The other modification enables the ground filter to detect all possible planar 

segments belonging to object even those with low heights. Details of the underlying 

mechanism of this modification are explained below. 

As discussed in section 3.3, there are two types of errors that can occur 

during the filtering process: Type I error and Type II error. The type-I error happens 

when a ground filter fails to accept a valid bare earth point. Type-II error occurs 

when it accepts points belonging to an image object as a ground point. In our 

method, the parameters of the filter are tuned to minimize the type II error i.e. it 

guarantees the removal of most of the non-ground points, even those that 

correspond to objects that are small and close to the ground. Therefore, the ground 

filter is designed to capture every salient point it found on its way during the region 

growing. Since there is a trade-off involved in making type I error and type II error, 

type I error increases in the process. However, in the subsequent steps, the 

extracted object planar segments are scrutinized further and the misclassified 

ground planar segments are detected and eliminated. Therefore, the combined 

subsequent stages (Naïve object segmentation and Hierarchical decomposition) 

act as a Virtual Surveyor based refining module. This reduces the type I error. As 

a result, both type I and type II error are minimized. Figure 33 shows the flowchart 

of AVSOE from the perspective where it acts as a ground filter refiner. 
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Figure 33 AVSOE as a ground filter refiner 

 

In the next step, the object planar segments extracted using the pixel-

based ground filter is grouped using connected component analysis. This is a fast 

and very simple method to implement clustering. The input planar segment 

network is first converted to a binary image by assigning those pixels corresponds 

to object planar segments to 1 and the rest to 0. Here, in this analysis 4-type 

connectivity is assumed. Figure 34 shows the result of connected component 

analysis on pixels belonging to a concave object. 
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Figure 34 Connected component analysis group pixels (yellow shaded) of a 

concave-like object 

  

As explained in section 4.3, the naïve object segmentation is a seed 

growing segmentation method. The seed candidates can be selected from the 

planar segments of the cluster representing the object. Since it is desired to select 

the seed candidate from the foothill_slope of the object (according to Section 4.1), 

the seeds in our method are collected from the border of the cluster. So, we find 

out the planar segments that lie on the border and designated them as seed 

candidates. Figure 35(a) shows the estimation of the border of the object shown in 

Figure 34 and Figure 35(b) shows the seed selected from that border. 
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Figure 35 (a) Border selection (magenta) and (b) seed candidate selection (cyan) 

 

Naïve object segmentation sub-algorithm also requires the estimation of 

the corresponding Background Normal vector of the object. Background Normal 

vector is the vector perpendicular to the topographic surface onto which the object 

is placed. To estimate the normal, the planar segments corresponding to the 

neighboring ground is selected and a plane is fitted to the points using the plane-

fitting algorithm described in Appendix B. Figure 36 shows the group of 

neighboring ground planar segments of the concave object shown in Figure 34.  

 

 

Figure 36 Neighboring ground planar segments (green) 
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The preprocessing step produces the following: the planar segment 

network and the object candidates represented by their corresponding seeds and 

Background Normal vectors (BN vectors). These results are then fed into naïve 

object segmentation sub-algorithm.   
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6. Naïve Object Segmentation 

 

Our object segmentation method is inspired by how a human surveyor, 

placed at somewhere on the foothill_slope of an object would plan her path so that 

she gradually covers and maps the slope of the entire object without any external 

help. In essence, this method is presented with the same set of data as the human 

surveyor and it adaptively analyses the data much like the human surveyor would. 

Hence, the name Virtual Surveyor. However, the segmentation method only maps 

the slope surface of the objects leaving behind the top horizontal flat surface of the 

objects. Objects that lies on the foothill_slope of the parent object are also included 

in the segmentation as explained in section 4.1.  These sub-objects are later 

detected and segmented out in the hierarchical decomposition stage. 

The purpose of the naïve object segmentation algorithm as discussed in 

section 4.3 is to partition the map of the terrain into regions that contain potential 

object candidates. This significantly reduces the complexity for the Hierarchical 

decomposition sub-algorithm to determine the perimeter of the object and its sub-

objects.  The sub-algorithm considers each of the object candidates extracted from 

the previous steps to map out a region such that it encompasses the foothill_slope 

of the object. However, in the process, the segmentation may include nodes 

(planar segments) that are not part of the foothill_slope of the object. Since the 

segmentation is far from perfect, the algorithm is termed as ‘Naïve object 

Segmentation’. 
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Figure 37 shows the overall flowchart of the AVSOE algorithm with the 

Naïve object segmentation sub-algorithm in details.  

 

Figure 37 Flowchart of the AVSOE algorithm with the Naïve Object Segmentation 

stage in details 

 

. The input to the object segmentation module is the planar segments 

network, object candidates represented by their corresponding seeds location and 

Background Normal vectors (BN vectors). In the following, the individual parts of 

the flowchart are explained in detail. 
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6.1 Segmentation using the on_slope condition 

 

One way to do object segmentation is by using a seed growing 

segmentation algorithm that starts with a seed at somewhere on the foothill_slope 

and accepts those neighbors with which the connecting edge obeys the on_slope 

condition. Theoretically, this would have ensured that the nodes that are being 

included belong to the foothill_slope of the object. However, in practical, due to the 

granular representation of the terrain, it is found that segmentation may 

occasionally cross over the boundary of the object.   

To terminate the segmentation, the algorithm computes the magnitude of 

the Surveyor Guidance vector of the selected neighbor. As can be seen from the 

Figure 38, the magnitude of the SG vector, which is the cross product of BN vector 

and SN vector, is proportional to the grade of the slope with respect to the 

background. So, when the magnitude of the SG vector of the selected neighbor 

becomes less than a certain low threshold value, this indicates that the 

segmentation has ventured outside the boundary of the object, so this would 

prompt the termination of the segmentation process. However, as stated in Section 

4.2, the segmentation through on_slope condition, may occasionally cross over 

the boundary of the object so the termination condition may cause the 

segmentation to end prematurely, that is, before capturing the entire foothill_slope 

of the object. 
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Figure 38 Variation of the magnitude of Surveyor Guidance vector with respect to 

the profile of the slope 

 

 

6.2 Segmentation via following the Surveyor Guidance vector 

 

To overcome this problem, we enhance the segmentation strategy. Instead 

of including all the neighboring nodes that pass the on_slope condition at the same 

instant, it prioritizes the inclusion of the neighboring node that maximizes the 

fitness value 𝑄𝑐𝑜𝑛𝑛𝑒𝑐𝑡 which is computed according to this formula (Referring to 

Figure 25 and Figure 38): 

𝑄𝑐𝑜𝑛𝑛𝑒𝑐𝑡 =  𝑊1 × |𝑓𝑖𝑟𝑠𝑡_𝑑𝑜𝑡_𝑝𝑟𝑜𝑑| + 𝑊2 × |𝑠𝑒𝑐𝑜𝑛𝑑_𝑑𝑜𝑡_𝑝𝑟𝑜𝑑| +  𝑊3 ×  |𝑟𝐴| 

eq. 7  
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Here, the first term measures how close the direction of the path vector is 

to the Surveyor Guidance vector at the current node, the second term encourages 

the virtual surveyor to take the path that preserves the SG vector direction and the 

last term measure the grade of the slope with respect to the background. In this 

way, the mapping process follows the SG vector and the entire foothill_slope of 

the object will get mapped before the termination criteria are reached. The 

neighboring planar segment with the maximum fitness value Qconnect is merged into 

the growing segment region. 

However, the fitness equation (eq. 7) faces difficulty in guiding the surveyor 

around the corner since the first_dot_prod measure in that direction is low, as 

demonstrated with an example in Figure 39. In order to compensate for the low 

contribution of first_dot_prod, we introduce a new measure in the fitness equation 

called angle_measure.   

 

 

Figure 39 Guiding the surveyor around the corner 
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Referring to Figure 40 where 𝑟𝐵 =  �̂� × �̂�𝐵 and  𝑟𝐴 =  �̂� × �̂�𝐴 . Here, �̂� is the 

Background Normal vector.  

Here, the SG vector corresponds to the current segment (A) and the 

neighbor segment (B) are first projected onto the horizontal plane 

𝑝𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑒(𝑟𝐴) = 𝑟𝐴 − (𝑟𝐴. �̂�) × �̂�     eq. 8 

 

𝑝𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑒(𝑟𝐵) = 𝑟𝐵 − (𝑟𝐵. �̂�) × �̂�                               eq. 9 

 

The angle_measure is the angle between the projected SG vectors pair 

𝑎𝑛𝑔𝑙𝑒_𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 𝑐𝑜𝑠−1 (
𝑝𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑒(𝑟𝐴).𝑝𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑒(𝑟𝐵)

|𝑝𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑒(𝑟𝐴)|×|𝑝𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑒(𝑟𝑩)|
)      

eq. 10 

It should be noted that angle_measure is impervious to the rotation along 

the horizontal axis as shown in Figure 40(c).  So, the surveyor is encouraged to 

rotate only along the axis in the direction of BN vector. 

With the introduction of the magnitude of angle_measure, the fitness 

equation as given by: 

𝑄𝑐𝑜𝑛𝑛𝑒𝑐𝑡 =  𝑊1 × |𝑓𝑖𝑟𝑠𝑡_𝑑𝑜𝑡_𝑝𝑟𝑜𝑑| + 𝑊2 × |𝑠𝑒𝑐𝑜𝑛𝑑_𝑑𝑜𝑡_𝑝𝑟𝑜𝑑| + 𝑊3 ×  |𝑟𝐴|   +  𝑊4 ×

|𝑎𝑛𝑔𝑙𝑒_𝑚𝑒𝑎𝑠𝑢𝑟𝑒|                             eq. 11 

Here, 𝑊1, 𝑊2, 𝑊3 and 𝑊4 represent the weights set for each term. 
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Figure 40 Normal vector projection onto the horizontal plane for adjacent planar 

segments when they are (a) coplanar when they form a (b) corner about vertical 

axis and a (c) corner about horizontal axis 

 

Referring to Figure 37, the segmentation algorithm first finds all the nodes 

that are neighbors to the segment region. Then, it filters out the neighbors that 

pass the on_slope condition. Next, 𝑄𝑐𝑜𝑛𝑛𝑒𝑐𝑡 is calculated for all remaining 

neighbors. Next, it finds the neighbor that have maximum 𝑄𝑐𝑜𝑛𝑛𝑒𝑐𝑡 which is then 

added to the growing region. Table 2 shows the distribution of the weights. The 

values of the weights were determined empirically. 

 

Table 2 Weight distribution 

𝑊1 𝑊2 𝑊3 𝑊4 

35 10 65 20 
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In order to ensure the naïve segmentation includes the foothill_slope of the 

object entirely, the threshold value for the termination of the segmentation process 

is set very low. As stated in section 6.1, the on_slope condition fails in some 

occasion and the mapping process may cross over the boundary of the object. 

This cause inclusion of some planar segments that are not part of the object.  An 

example of such false positive planar segments is shown in Figure 41 (b). In the 

hierarchical decomposition step, the perimeter of the object is correctly detected 

and the false positive planar segments are consequently removed. 

 

Figure 41 Illustration displaying segmentation result of a house at (a) oblique 

view, and (b) top view. The false positives planar segments are crossed out 
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6.3 Segmentation Results 

 

Figure 42 is the segmented result of two adjacent landforms. Here, the 

segmentation result is expressed in terms of the planar segments. This is a very 

interesting case, where both the hill and the watershed share the same slope. For 

this reason, both are segmented from their surrounding using a single seed. In the 

next step of the hierarchical segmentation algorithm, both will be individually 

identified. 

 

 

Figure 42 Illustration displaying segmentation result for a hill shaped and 

watershed shaped landform at (a) top view, and at (b, c, d) different angle views 

 

Figure 43 shows successful segmentation of an artificial pond.  
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Figure 43 Illustration displaying segmentation result of an artificial pond at (a) top 

view, and (b) oblique view 

 

 

Figure 44 shows the segmentation result of a complex building. It is evident 

from the figure that all the walls of the building have been successfully mapped. 
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Figure 44  Illustration displaying (a) orthoimage of a complex building, (b) point 

cloud model of the building, segmentation results at (c) top view, and (d) Oblique 

view  

 

Figure 45 shows the segmentation result of a pair of adjacent pools. As can 

be seen from the figure, sub-objects that lie on the foothill_slope of the parent 

objects are also included in the resultant segment. 
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Figure 45 Illustration displaying (a) orthoimage of a pair of adjacent pools, (b) 

point cloud model of the pools, (c) the segmentation result 
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7. Hierarchical Decomposition 

 

In the segmentation step, the map is partitioned into regions that each 

contain an object. The object can be a composite one, containing many sub-

objects. The segmentation method ensures the entire foothill_slope of the object 

and its sub-objects are captured. In the process, false positive planar segments 

are also included in the naive segment. The next obvious step is to hierarchically 

decompose the composite object into its constituent objects and draw their 

boundaries along with the parent object. The extracted sub-object can itself be a 

distinctive part of the parent object or an independent object. The relationship of 

the sub-object to the parent object will be clarified in the Hierarchical 

decomposition step. Figure 46 shows the overall flowchart of the AVSOE algorithm 

with the Hierarchical Decomposition stage in details. In the following, individual 

parts of the flowchart of the Hierarchical Decomposition stage are explained in 

detail.  

The Hierarchical decomposition sub-algorithm work on the segmentation 

result delivered by the Virtual Surveyor based Naïve Segmentation algorithm. The 

purpose of the VS Hierarchical Decomposition is twofold: 

1. Identify the constituent sub-objects of the composite object 

2. Find the boundaries associated with the parent object and each of its sub-

objects. 

In other words, the hierarchical decomposition process segments out the 

object and its sub-objects. As shown in Figure 46, this segmentation of object and 
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its sub-objects is carried out in a recursive pattern. As stated in section 4.3, the 

sub-algorithm first constructs a directed graph inside the naïve segment where the 

nodes are the planar segments and the edges obey the path_loop condition. This 

in-segment graph is termed as ‘complete_flow_graph’. 

 

 

Figure 46 Flowchart of the AVSOE with the Hierarchical Decomposition stage in 

details 
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7.1 Generating the complete_flow_graph 

 

As stated in Section 4.3, in any convex or concave-like object, there exists 

a set of circular path loops, associated to its foothill_slope, which encircles the 

entire structure. For each point on the slope, there exists at least one member of 

that set of path loops, which passes through the point.  The normal at each point 

of the circular path loop point inward or outward. 

In section 4.2, the following conclusions were drawn:  

1. Each object in a topographic map can be represented by a set of circular 

path_loops where the dot product between their Path vector and the Surveyor 

Guidance vector (SG vector) at each point has the same sign i.e., the loop follows 

the path_loop condition. 

2. Every point on the object can be connected to any path_loop via a chain of 

connecting edges that satisfies the on_slope condition. 

From these conclusions, we derived the idea of constructing a graph, 

where each planar segment inside the object segment is connected to its 

neighboring planar segments if it follows the path_loop condition. The graph would 

capture not only all the possible path_loops but also the chain of connecting edges 

that connect each planar segment constituting the naïve segment to any of that 

loop. We call this graph ‘complete_flow_graph’. A real-world example of such a 

graph is shown in Figure 47 and Figure 48. 
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Figure 47 Illustration of the complete_flow_graph of the artificial pond (Figure 43) 

 

During the formation of the complete_flow_graph, the procedure also 

computes the Qconnect value for each connection. The mathematical expression for 

evaluating Qconnect value is shown in eq. 2.  This Qconnect value of the edge quantity 

the likelihood of the neighboring nodes belonging to the same foothill_slope. These 

Qconnect values for each connection are recorded in a map referred to as 

Qconnect_map which is later used in subsequent steps. 

The Qconnect formulae and the weights assigned is restated below:  

𝑄𝑐𝑜𝑛𝑛𝑒𝑐𝑡 =  𝑊1 × |𝑓𝑖𝑟𝑠𝑡𝑑𝑜𝑡𝑝𝑟𝑜𝑑
| + 𝑊2 × |𝑠𝑒𝑐𝑜𝑛𝑑𝑑𝑜𝑡𝑝𝑟𝑜𝑑

| + 𝑊3 ×

|𝑎𝑛𝑔𝑙𝑒𝑚𝑒𝑎𝑠𝑢𝑟𝑒| + 𝑊4 × |𝑟𝐴|       

where, 𝑊1 = 45, 𝑊2 = 10, 𝑊3 = 40 and 𝑊4 = 5 
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Here, the weight is assigned such that high preference is given to 

neighbors which lie in the direction close to the SG Vector. This encourages a 

chain of connections to form around objects. 

 

 

Figure 48 Illustration of the complete_flow_graph of a composite object (hill 

shaped, watershed shaped landform and a tree) (Figure 42) 

As is evident in the figure above, multiple numbers of path_loop encircle 

each object and sub-object present in the scene. As stated in section 4.3, detection 

of these path_loops will reveal simultaneously, the presence and position of all 

objects and sub-objects in the scene. However, ambiguities may arise due to the 

multiplicity of path_loops associated with each object. A sub-algorithm is designed 

to tackle this problem. The algorithm deals with the multiplicity problem by merging 
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parallel loops to a single loop that represent the group. Hence, the loop is called 

‘representative_path_loop’. 

 

7.2 Extracting representative_path_loops 

 

Referring back to Figure 46, the flowchart for the algorithm that extracts 

path_loops is shown in Figure 49. 

 

 

Figure 49 Flowchart of the sub-algorithm that extracts path_loops 

 

Our objective for this algorithm is to extract from each naïve segment a 

single path_loop that represents the set of circular path_loops encircling each 

object. We refer to this special path_loop as ‘representative_path_loop’, which 
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enables detection of all the convex or concave-like sub-objects present in the naïve 

segment. Moreover, they provide information about the hierarchical and 

neighborhood relationship among the objects and sub-objects. In the following, 

individual parts of the flowchart are explained in detail. 

 

7.2.1 Eliminating the sink and source nodes 

 

In the subsequent chapter, the term ‘flow’ has been used frequently. Flow 

is simply the traversal of the directed graph. In the complete_flow_graph, there are 

some planar segments (nodes of the graph), where the flow stops and others 

where the flow starts. Neither set is part of the closed loops that we desire to 

extract. The nodes that do not connect to any other nodes are sink nodes or sink 

planar segments, whereas the nodes that are not connected by any other nodes 

are source nodes or source planar segments. Figure 50 shows a map of the sink 

and source planar segments of a given naïve segment. The objective of this sub-

algorithm is, therefore, to remove all connecting edges that lead to the sink nodes 

and all connecting edges that connect source nodes to the complete_flow_graph. 
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Figure 50 Sink (red) and source (blue) nodes found in the object segment (Figure 

44)  depicted in a (a) top view, a (b) oblique view and a (c) zoomed-in view of the 

enclosed portion by the rectangular red box shown in (a) with connecting edges 
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The flowchart of the sub-algorithm that eliminates source and sink nodes 

are shown in Figure 51 

 

 

Figure 51 Flow chart of the sub-algorithm that eliminate the source and the sink 

nodes 

 

The input to this algorithm is the complete_flow_graph generated from the 

previous step. The operation begins with detection of the sink and the source 

nodes in the graph and then they are removed along with their connections. 

Consequently, new sink and source nodes are generated. This pruning process 

continues in a loop until no sink and source nodes are left in the graph.  
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7.2.2 Finding the fork nodes 

 

A complex object can consist of many sub-objects and their corresponding 

path_loops may share a section of the loop. The segments representing the start 

point and the end point of the common section between a pair of path_loops are 

referred to as fork segments. We define two types of fork segments: the in-fork 

segment and the out-fork segment. 

Here, the in-fork segment is one, where there are at least two incoming 

paths and one outgoing path (a simulated example is shown in Figure 52(a)) 

whereas, an out-fork segment is one, where there are at least two outgoing paths 

and one incoming path (Figure 52 (b)).   

 

 

Figure 52 Stylistically simulated example of (a) out-fork segment (b) in-fork 

segment 
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In a complex object structure, both types of fork segments can be found. 

Figure 53 shows the major path loops that can be found in the complex object 

structure shown in Figure 44.   

 

Figure 53 Location of the in-fork and out-fork segments in the complex conjoined 

path loops formed around object shown in Figure 44 

 

7.2.3 Finding the parallel and the circular loops of maximum depth 

 

We defined two types of loops: circular loop (path_loop) and parallel loop. 

For a circular loop, a surveyor following the directed graph would return to her 

initial position. A stylistically simulated example of a circular path loop is shown in 

Figure 54.  
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Figure 54 Stylistically simulated example of a circular loop 

 

For a parallel loop, there is more than one path a surveyor can take, which 

will eventually lead to the same destination. We call each of these paths 

‘loop_arm’. An arm that branches from an out-fork node in the right-hand direction 

is termed ‘right arm’, and the one that branches in the left-hand direction, the ‘left 

arm’. A simulated example of a parallel loop is shown in Figure 55.   

 

 

Figure 55 Simulated example of (a) a redundant parallel loop and (b) a useful 

parallel loop 
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Most of the parallel loops formed in the complete_flow_graph are 

redundant in the context of flow around the object. We refer to them as redundant 

parallel loops. But in certain circumstances, such as when the objects (of different 

height) are adjacent to each other and there are no planar segments separating 

them, the parallel loop would be formed and should be considered to detect sub-

objects. It is then called a ‘useful parallel loop’.  One such example is shown in 

Figure 56. The redundant parallel path loops are defined as the ones, which do not 

encompass the object and therefore there exist no unmapped region within the 

path loop as demonstrated in the simulated example shown in Figure 55. This 

distinguishing feature is used by a procedure to seek out useful and redundant 

parallel loops. The extracted useful parallel loop can be converted to the desired 

circular loop as demonstrated in Figure 57. 
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Figure 56 Illustration displaying a (a) 3D point cloud model of the target area 

which contains a complex object, a (b) orthophoto of the building, (c) top view of 

the parallel loop formation focusing the area in the red bounding box drawn in 

(b), and (d) oblique view of the area in the red bounding box. 
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Figure 57 Simulated example of a (a) redundant parallel loop, and converted (b) 

circular loop 

 

Figure 58 shows the flowchart of the sub-algorithm employed to extract all 

the parallel loops and the path_loops. This algorithm is analogous to the Depth 

First Search (DFS) algorithm used in finding cycle graph from a directed graph. 
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Figure 58 Flowchart of a sub-algorithm which extracts all merge loops and 

circular loops of a given max depth 

 

The upper limit for the size of loops to be extracted is given as input to the 

sub-algorithm. This input variable is referred to as ‘max depth’. The other inputs to 

the functions are the complete_flow_graph and a fork node. In a dance graph, 

almost all the path_loops contain one or more fork nodes. All the fork nodes 

present in the object segments are extracted in the previous step of the flowchart 

as shown in Figure 49. The loop extractor procedure considers each of these fork 

nodes and explores the flow graph starting from the considered fork node in a 
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recursive fashion. The recursion ceases to “wind up” and starts to “unwind” once 

the depth of the tree explored reaches the max depth. Throughout the process, the 

procedure maintains a map that keeps track of the nodes that have already been 

explored. This map is referred to as the ‘explored map’. In the case of the parallel 

loops as well as the path_loops, a node would eventually get revisited during the 

traversal. The procedure detects the event with the aid of the explored map and 

initiates the exit of the process flow from the recursion cycle. The chain of 

connecting edges which leads to such situation is recorded and returned to the 

function caller. 

 

7.2.4 Eliminating the parallel and the circular loops 

 

In this sub-algorithm, the primary objective is to extract all the circular 

path_loops and useful parallel loops from the complete_flow_graph.  Depending 

on the size of the convex/concave-like sub-objects present in the naïve segment, 

the loops can exist in various lengths. For a composite object, the largest circular 

loop can be found around the main parent object. In the high connectivity graph, 

such as complete_flow_map, the extraction of large loops using the method 

described in the previous section would take increasingly high computational time. 

It is, therefore, imperative to simplify the graph before running the path_loops 

extraction algorithm with a large max depth input. In the flowchart shown in Figure 

49, there is a program control flow loop, where during each iteration the max depth 

is increased from a small value and, the parallel and circular loops of length less 
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than or equal to that of max depth are extracted and then they are gradually 

removed from the graph, while making sure that the overall flow remains 

undisrupted. The simplification of the graph enables the loop extraction of the 

successive larger length in a very short period of time. 

A simple simulated example of the elimination process is demonstrated in 

Figure 59 for the circular loop and in Figure 60 for the parallel loop. In both cases, 

a connecting edge constituting the loop is strategically detached. This neutralizes 

the loop while the flow (from A to B) remain undisrupted. However, this leads to 

the formation of a redundant arm with a loose end (sink or source node) as shown 

in the figure. Such loose end arms produced are later cleaned up by the sink and 

source nodes eliminator stage (See the flowchart in Figure 49) 

The simulated example is shown in Figure 59 and Figure 60 is a simple 

example but the graph can get more complicated than this. Figure 61 shows an 

example of a parallel loop with various complex configurations.  

 

 

 

Figure 59 An example of a (a) circular loop, the (b) circular loop after detachment 

and then the (c) circular loop after cleanup 
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Figure 60 An example of a (a) parallel loop, the (b) parallel loop after detachment 

and then the (c) parallel loop after cleanup 
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Figure 61 Six different configurations of parallel loops, each showing the path 

flow and the connecting edge candidates to be clipped 

 

Here in the figure, I stand for the in-fork nodes and O stands for the out-

fork nodes. The connecting edge candidates to be clipped are marked by red 

crosses.  For each configuration, there can be several such candidates. Only one 

needs to be selected to render the loop inoperable. Whatever the choice is, none 

of the flow in the configuration will be compromised.   
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 By examining various possible configurations possible for a parallel loop, 

a set of heuristic rules is derived for the parallel loops to determine the connecting 

edge candidates that are safe to be clipped. The rules are given below with 

reference to Figure 61.  

1. If there exists a node in the path loop_arm which is both an in-fork and an out-

fork, then ignore. (See Figure 61(f) right arm) 

2. If the arm contains no fork node, then every connecting edges of that arm is a 

candidate. (See Figure 61(a) right arm) 

3. From A to B, if the configuration is such that the fork nodes in the arm are 

sequenced OOOOO... O then the connecting edge candidates for clipping are 

present in the configuration as OOOOO... OXX…X, where X represents the 

candidates i.e. all connecting edges in the arm after the final out-fork node in 

the sequence, are eligible candidates. (See Figure 61(a) right arm, (b) left arm) 

4. From A to B, if the configuration is such that the fork nodes in the arm are 

sequenced IIIIIIIII…. I then the connecting edge candidates for clipping are 

present in the configuration as XX...X IIIIIIIII…. I. (See Figure 61(a) right arm, 

(b) right arm) 

5. From A to B, if the configuration is such that the fork nodes in the arm are 

sequenced OOO... O IIIIII…. I then the connecting edge candidates for clipping 

are present in configuration as OOO... OXX...X IIIIII…. I. (See Figure 61(b) left 

arm, (d) right arm, left arm, (f)left arm) 

6. The arm configuration that doesn’t satisfy the above stated (2, 3, 4, 5) 

condition, are ignored. (See Figure 61(c) left arm, (e) left arm) 
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If connecting edge candidates for clipping are found in both arms of the 

parallel loop, then the sum of Qconnect values for both arm is calculated and then 

their Q average value (�̅�) is evaluated by dividing the sum with the number of 

connecting edges in the arm. The arm with the lower Q average value is chosen 

for clipping. This ensure that the chain of connecting edges that remain intact are 

the best among its peer. 
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Figure 62 shows an example of circular loops with various complex 

configurations. 

 

Figure 62 Six different configurations of circular loops, each showing the flow and 

the connecting edge candidates to be clipped 
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Here also, for each configuration, there are several options but just one 

needs to be taken to achieve the purpose. Whatever the choice is, none of the 

path flow in the configuration will be compromised. Here, the sequence of the fork 

node in the path_loop is ordered in the direction of path flow starting with in-fork 

node I*. This sequence is recorded in an array, which is later used to find the 

connecting edge candidates that can be clipped. 

  By examining various possible configurations for the circular loop, a set 

of heuristic rules is derived for the circular loops to determine those connecting 

edge candidates. The rules are given below with referring to Figure 62.  

1. If the configuration in the path loop is such that there is no fork node present, 

then all connecting edges forming the loop are eligible candidates. (See Figure 

62 (a, b)) 

2. If the configuration in the path loop is such that the fork nodes are all the same 

type i.e. all are either in-fork nodes or out-fork nodes, then all connecting edges 

forming the loop are eligible candidates. 

3. If the configuration in the path loop is such that there exist a mixture of in-fork 

and out-fork nodes, then a procedure is assigned to circularly shift the elements 

of the sequence array mentioned above. The shifting continues until the first 

element becomes an out-fork node and the last element is an in-fork node. The 

reordered sequence becomes interesting when the in-fork and out-fork nodes 

can be divided into two clearly separate groups i.e. if the sequence is like 

OOOO…OIIII…I. Then the connecting edge candidates for clipping are present 

in configuration as OOO... OXX...X IIIIII…. I. i.e. all connections between the 
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last out-fork node and the first in-fork node in the sequence. (See Figure 62 (c, 

d, f, g, h)) 

4. If the loop configuration doesn’t satisfy the above stated (1, 2, 3) conditions, 

then no further action is required.  (See Figure 62 (e)) 
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7.2.5 Presenting the representative_path_loops 

 

 

The program control flow loop (Figure 49) begins with a low-value max 

depth. Inside the program control flow loop, the path loops of size less than or 

equal to the max depth are extracted and removed. The extracted circular 

path_loops and the useful parallel loops are recorded. Removing the path_loops 

and parallel loops simplifies the graph so that after each successive iteration with 

a little higher max depth, the graph can be explored in a very short period to extract 

the loops. Once the value of max depth reaches a preset higher value, it is safe to 

say that all the path loops present in the object image segment are extracted. The 

gradual removal of parallel loops ensures that one circular path_loop among the 

set of circular path_loops survives per object i.e. out of many path loops, the one 

with the highest Q average value (�̅�) remains intact. Therefore, each of these 

extracted path loops acts as a representative_path_loop for its object. Each 

representative_path_loop reveals the presence and the position of all the sub-

objects. A simulated example of a complete_flow_graph in an object segment is 

shown in Figure 63(a). The final simulated result of the path loops grouping 

algorithm is shown in Figure 63(b). The representative loops of the sub-objects are 

connected to the representative loop of the main parent object. This indicates the 

hierarchical relationship between objects and their sub-objects. 



 

105 
 

 

Figure 63 Illustration displaying a (a) complete_flow_graph, and the (b) extracted 

representative_path_loops 

Figure 64 shows the representative_path_loop, extracted from the 

complete_flow_graph of an artificial pond, shown in Figure 47. Figure 65 display 

the representative_path_loop, extracted from the complete_flow_graph of a 

composite object (hill shaped, watershed shaped landform and a tree), shown in 

Figure 48. Here, the hierarchical relations among sub-objects can be observed. 
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Figure 64 Extracted representative_path_loop of the artificial pond 
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Figure 65 Illustration displaying representative_path_loop of hill shaped and 

watershed shaped landform at (a) top view, and (b) oblique view 
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7.3 Extracting object_path_loop 

 

The representative_path_loops extracted in the previous step indicates the 

presence of object and sub-objects in the scene. However, the loops do not map 

out the boundary of the object. Since the perimeter of an object constitutes planar 

segments that belong to the foothill_slope and thereby can be represented by a 

path_loop (Figure 15). This special path_loop is termed as object_path_loop. A 

sub-algorithm is designated to determine the object_path_loop of the object and 

sub-object using the representative_path_loop and the complete_flow_graph of 

the object segment. Figure 66 shows the flowchart of the sub-algorithm employed 

to extract the object_path_loops. 

 

 

Figure 66 Flowchart of the sub-algorithm that extract object_path_loop 
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An example of the complete_flow_graph generated from the naïve 

segment (Figure 41) is shown in Figure 67. The corresponding 

representative_path_loop is shown in Figure 68.  

 

 

Figure 67 Complete_flow_graph from object segment shown in Figure 41 (a) 

oblique view (b) top view 

 

The algorithm first extracts the sub-graph present inside the 

representative_path_loop. The sub-graph is then subtracted from the 

complete_flow_graph. The sub-graph that remains is shown in Figure 69. Since 

the representative_path_loop uniquely represent the corresponding object, graph 

representing any sub-object get excluded within the extracted sub-graph. Thereby, 

path_loops that can be extracted from the sub-graph belongs to the targeted 

object.  
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Figure 68 Representative_path_loop of the object (a) oblique view (b) top view 

 

 

Figure 69 Sub-graph of the object (a) oblique view (b) top view 

 

All the path_loops present in the sub-graph is extracted by the method 

described in Section 7.2. Next, the algorithm finds out the path_loop that contains 
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within its boundary the maximum number of nodes. That path_loop is our desired 

object_path_loop. An example of the object_path_loop is shown in Figure 70. 

 

 

Figure 70 Object_path_loop of the object (a) Oblique view (b) top view 

 

The object segment is thereby defined by the group of planar segments 

within the confines of the object_path_loop. Figure 71 shows the extracted object 

segment of the example. Comparing the result with the naïve segment (Figure 41), 

It is clearly evident that most of the false-positive has been removed due to this 

process. 
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Figure 71 Extracted object after using Hierarchical decomposition on 

object segment shown in Figure 41 
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7.4 Objectness test 

 

 

Generation of representative_path_loop from the complete_flow_graph is 

based on the principle of object geometric property such as concavity or convexity. 

This may cause some false positive results as any non-object which have concave 

shape structure may produce a representative_path_loop. Even a slightly elevated 

corner of a rectangular object can be extracted as sub-object in this process. That 

is why every extracted object segments are subjected to a validity test which filter 

out the non-objects. We call this test ‘Objectness test’ and is based on a quantity 

called ‘objectness’.  Figure 72 shows a simulated example of an object and its sub-

object. 

 

Figure 72 A simulated example of an Object and its sub-object 
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The objectness is calculated using two measures: the maximum height of 

the object from its base (h) and the angle between the object normal and the BG 

normal (𝜃). That is why, in Figure 72 the measure of object 1 is ℎ1 and 𝜃1 (which 

is 0) and the measure of object 2 is ℎ2 and 𝜃2. If the height and the angle is above 

a certain threshold value, the segment is classified as object. Otherwise, the 

structure is rejected as non-object. 

 

 

7.5 Find Object type 

 

 

Next, the path loops extracted from the previous stages are used to classify 

the object as belonging to either of two groups: convex-like object and concave-

like object. A procedure is dedicated to serve this purpose. 

As discussed in section 4.1, in the case of a convex-like object, the 

surveyor motion is in counter-clockwise direction whereas, for the concave-like 

object, the motion is clockwise.  The exterior angle that corresponds to each 

connecting edge forming the loop is determined. A rule of the polygons is that the 

sum of the exterior angles always equals 360 degrees. Therefore, in case of 

concave-like object as shown in Figure 73(a), sum of exterior angle = ∑ 𝜃𝑖𝑖  = -

360°. In case of convex-like object (Figure 73 (b)), sum of exterior angle = ∑ 𝜃𝑖𝑖  = 

360°. The sign of the sum hints the class of the object. 
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Figure 73 Simulated example of a path loop around an (a) horizontal convex 

structure (b) horizontal concave structure 

 

7.6 Associate planar segments to representative_path_loops 

 

 

In the previous steps, the parent object has been delineated from its 

topographic background. The representative_path_loop of the sub-object reveals 

its presence and position relative to the parent object. The next step is to find the 

boundaries of the sub-objects. In the case of the parent object, the boundary was 

determined based on the sub-graph extracted using the naive segment (which 

provide the upper-limit of the boundary) and the representative_path_loop (which 

provide the lower-limit of the boundary). However, in the case of sub-object, there 

is no such segment available that specifically includes the foothill_slope individual 

sub-object (referred as ‘sub-object region’). A sub-algorithm is assigned to 

estimate the sub-object region. In the next two subsequent sub-section, the 
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underlying mechanism for this method is discussed and the flowchart of the 

algorithm is shown and discussed. 

 

7.6.1 Underlying mechanism 

 

In section 7.1 we arrive at the conclusion that, each object in a topographic 

map can be represented by a set of circular path loops where the dot product 

between their Path vector and the Surveyor Guidance vector at each point has the 

same sign i.e. the loop satisfies the path_loop condition. One such circular path 

loop termed as representative_path_loop is considered as shown in Figure 74(a). 

 

 

Figure 74 Convex structure object with (a) closed path loop and (b) the points 

connected to the loop 

 

Since a path_loop can be associated with each point of the object, and the 

representative_path_loop is formed by the merge of all such path_loops. So, it can 

be postulated that every point on the object can be connected to the loop via a 
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chain of connecting edges that satisfy the path_loop condition.  A stylistically 

simulated example is shown in Figure 74 (b).  This means it is possible to associate 

each planar segment of the object to the representative_path_loops with a chain 

of connecting edges.  

A stylistically simulated example of a complete_flow_graph of a complex 

object segment is shown in Figure 75.  

 

 

Figure 75 Illustration displaying the complete_flow_graph of a composite object 

segment with representative_path_loops in cyan color 

 

Since a number of nodes at the edge of the sub-objects is connected to a 

number of nodes belonging to the parent object and since each node is connected 

to the corresponding representative_path_loops, it can be postulated that the 
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representative_path_loop of the sub-objects is connected to the 

representative_path_loop of the parent object via a chain of connecting edges.  

 

Figure 76 Representative_path_loop of every sub-object is connected to the 

representative_path_loop of the object via a chain of connecting edges 

 

Here the nodes are represented by small colored squares. 

Representative_path_loop of the sub-object L1 is connected to the 

representative_path_loop of the parent object L3 via two nodes whereas L2 is 

connected to the L3 via 4 nodes.  

One of the underlying assumptions is that a sub-object is bound by 

topographic discontinuities. This means the connecting edge that crosses over that 

boundary (connection colored red in Figure 76) are weak and therefore the 
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Qconnection value of that connection would be low. This means, Q average value (�̅�) 

of the connecting edges that take that route to the parent representative_path_loop 

L3 would be lower than those routes to the local representative_path loop (L1 or 

L2). Therefore, to associate the planar segments (nodes) to its corresponding 

representative_path_loop, the following strategy can be adopted. 

 For each node in the composite object, the minimum Q average value (�̅�) 

of the chain of connecting edges to each of the representative_path_loops (if there 

exist a connection) is measured. Among the competed representative_path_loops, 

the one that gives the lowest Q average value (�̅�) is selected as the corresponding 

representative_path_loop 

 

 

 

 

 

7.6.2 Flow chart 

 

 

Figure 77 shows the detailed flow chart of the algorithm that is responsible 

for the planar segments association to the representative_path_loops.   
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Figure 77 Flowchart of the algorithm that associates planar segments to the 

representative_path_loops 
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The procedure begins with labeling the representative_path_loops in a 

map referred to as ‘id_map’. The procedure also maintains two other maps called 

‘Q_map’ and ‘Q_depth’ throughout the process. They are initialized to zero. The 

objective of the procedure is to identify objects and sub objects membership for 

each node of the considered object segment i.e. to fill the id_map up with the 

labels. This is achieved by associating each planar segment to a 

representative_path_loop such that the overall Q average value (�̅�) measured for 

each planar segments in the object segment from their connection to its 

corresponding representative_path_loop is the maximum. At the end of the run, 

each planar segment in the Q_map would store the optimized Q average value (�̅�) 

and in case of Q_depth, each planar segment would store the distance, in terms 

of number of connecting edges forming the connection, to the corresponding 

representative_path_loop. In the procedure, at each iteration, the planar segments 

in the object segment are explored gradually via the complete_flow_graph and the 

Q_map and Q_depth map are updated.  For a given planar segment, Q average 

value (�̅�) is calculated for each of its neighbors based on its own Q average value, 

Qfg (extracted from the Q_map) and the depth value, Dfg (extracted from the 

Q_depth) and also the Qconnect value of the connection, qa (extracted from the 

Qconnect_map). The formula used for Q average value (�̅�) estimation is given below:  

�̅�  =
𝑞𝑎+𝐷𝑓𝑔×𝑄𝑓𝑔

𝐷𝑓𝑔+1
     eq. 12 

If the Q average value (�̅�) estimated is greater than the Q_map value of 

the neighboring planar segment, that value is replaced by Q average value (�̅�) and 
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both the Q_depth map and the id_map are updated accordingly. The whole 

procedure is run several times until no apparent change is detected in the Q_map 

with each cycle. This ensures that the Q_map has reach its globally optimum state. 

Appendix D demonstrates how this optimization ensures proper distribution of 

labels of planar segments in the object segment. 
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7.7 Hierarchical Decomposition result 

 

Figure 78 shows a complex landforms segment (Figure 42) decomposed 

to its constituent landforms. Their neighborhood and hierarchical relationship are 

also specified in the figure. 

 

Figure 78 (a) Landform segmentation decompose to (b & d) two horizontal 

convex structure and (c) one concave structure. See also Figure 42  
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8. Performance Analysis 

 

In this chapter, the performance of the Virtual Surveyor based object 

extraction method is discussed. Since segmentation of the parent object and its 

sub-objects is carried out in a recursive pattern, in the performance analysis, we 

focus mainly on the segmentation of the parent object. In the first subsection of the 

chapter, the qualitative result of the algorithm is examined and in the subsequent 

subsection, result from the quantitative analysis is shown. 

 

8.1 Qualitative Analysis 

 

In this section, we discussed some of the qualitative results that 

demonstrate the efficacy of the algorithm.  Here, two man-made structures are 

considered as shown in Figure 79. Figure 79 (a) is a complex building structure, 

whereas Figure 79 (b) is a pair of adjacent pools. The latter is a convex structure, 

whereas the former is a concave structure. Figure 80 shows the corresponding 

results obtained by applying the Pfeifer’s ground filter. The region colored red is 

labeled as ground.  
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Figure 79 Top-view RGB image of (a) complex building (b) pools and (c) 

elevation image 
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Figure 80 Pfeifer's ground filter results. Red planar segments - ground pixel, 

White planar segments – object pixel 

As evident from the figure (Figure 80), the object image is contaminated 

with salt and pepper noise, which is a common trait for the pixel-based ground 

filter. The courtyard of the building is labeled as non-ground. This is due to the fact 

that the ground filter has been modified to detect man-made cavities on the ground 

in addition to man-made convex structure. For some user, this might be 

undesirable as the courtyard is usually regarded as ground. In Figure 80 (b), it is 



 

128 
 

evident that the bank of the pool, which is part of the man-made structure, has not 

been labeled as an object class.  This interpolation based filter underperforms at 

the vicinity of a low-grade slope’s edge. Figure 81 shows the corresponding results 

obtained by applying the Virtual Surveyor based object extraction algorithm. As 

can be seen from the figure, sub-objects that lie on the foothill_slope of the parent 

objects are also included in the resultant segment. 

 

 

Figure 81 Virtual Surveyor Segmentation result 
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Figure 82 shows the hierarchical decomposition of the extracted image 

object of the complex building. There is multi-level decomposition obtained at a 

single scale.  

 

 

 

Figure 82 Hierarchical decomposition of the complex building. Blue segments 

represent convex structure whereas red segments represent concave structure. 

 

In the first level, the image object is first decomposed into three neighboring 

objects: the main building and the two small rectangular block adjacent to the 

corner at the opposite side of the main building. The building is then further 

decomposed into its major components. The courtyard is clearly identified and 

segmented out. Here, the blue represents a convex object, whereas, the red 
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represents concave objects. It is to be noted that there are two external objects at 

the side of the building that was included during the segmentation process has 

also been extracted as external objects. 

Figure 83 shows the hierarchical decomposition of the extracted image 

object of the adjacent pair of pools.   

 

 

Figure 83 Hierarchical decomposition of the pair of pools 
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Here, too, multi-level decomposition is conducted without traversing 

through multiple scales. In the first level, the pools are separately identified and 

segmented out. One of the pools is further decomposed into its sub-objects. The 

individual trees are also revealed in the result as shown in the figure. 

The VSOE algorithm is able to separate objects that lie in close proximity. 

An example is of two high proximity neighboring objects is shown in Figure 84 (a) 

and (b). Figure 84 (c) and (d) shows their representative_path_loops from different 

views.  

 

 

Figure 84 Illustration displaying a (a) 3D point cloud model of the complex 

building adjacent to a small rectangular object (highlighted by a red bounding 



 

132 
 

box), a (b) orthophoto of the complex building, (c) close up top view of the 

neighboring rectangular object superimposed by their representative_path_loops, 

(d) oblique view 

 

Section 7.2.3 explains the formation of representative_path_loops for both 

objects. They, therefore, can be easily separated during the Hierarchical 

decomposition step. It is evident from the Hierarchical decomposition result of the 

complex building in figure 85 that the neighboring objects have been cleanly 

separated. 
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8.2 Quantitative Analysis 

 

In this section, the quantitative analysis of the algorithm performance is 

discussed. Here, we compare the performance of object extraction by Pfeifer’s 

ground filter and that by VSOE. This will demonstrate the effectiveness of VSOE 

to improve upon the result of the Pfeiffer’s ground filter.  To test VSOE, we build a 

database of 78 small object candidates collected after applying Pfeifer’s ground 

filter on two different terrains shown in Figure 86.  

 

Figure 86 Object candidates collected from these two terrains.  
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In the figure, on the right-hand side, the top view of the RGB image of the 

terrain is shown whereas, on the left-hand side, the result obtained by the 

application of Pfeifer’s ground filter on these terrains are shown. Here, the red 

planar segments are the ground pixel and the white planar segments are the object 

pixels. A sample of the object candidates that are collected from the terrains is 

shown in Figure 87. 

 

Figure 87 Eight samples of the given test objects, the first column represents 

Pfeiffer’s ground filter result, the second column represents VSOE result, the 

third column represents the ground truth 
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The ground truth of the segmentation for each sample is shown in the third 

column. The ground truth is obtained manually based on human judgment. In the 

database, we only consider small objects since manually drawing the boundaries 

on the large object is time-consuming and error prone. Large objects such as 

shown in Figure 79 are ignored.  

The measurement metric adopted for the performance comparison 

between the filter results and the ground truth is based on the number of common 

square elements that can be found in the raster representations. Since, in the 

performance analysis, the boundary of the foothill_slope is what matters, so we 

only consider the square elements that form the boundary of the object segment. 

 A segmentation result is usually evaluated by assessing its consistency 

with the ground truth segmentation (Van Rijsbergen, 1979). Here we use the F1 - 

score for consistency. F1-score is based on the precision and recall values of the 

segmentation result. Precision and recall is defined as 

𝑃 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
   eq. 13 

𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   eq. 14 

Where, TP = True Positive, FP = False Positive and FN = False Negative. 

F1-score is defined as 

F1 − 𝑠𝑐𝑜𝑟𝑒 =  2 𝑅×𝑃
𝑃+𝑅

  eq. 15 
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The precision, recall and the F1 – score is shown in Table 3. The table 

clearly demonstrates the efficacy of the AVSOE algorithm 

 

Table 3 Segment coverage test result 

 Precision Recall F1 – score 

Pfeifer’s GF 0.933 0.83 0.878 

AVSOE 0.989 0.968 0.978 
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9. Conclusion and Suggested Future Work 

 

In this work, we introduced a fully automatic algorithm, called Automatic 

Virtual Surveyor based Object Extraction (AVSOE) that works on the airborne 

LiDAR point cloud data of a given terrain to segment out natural as well as man-

made objects. The algorithm is designed to tackle two main challenges facing 

object based image analysis: scale dependency and the object complexity. The 

3D object segmentation method is based on the premise that an object, no matter 

how complex, introduces a distinct concavity or convexity onto its topographic 

background. The algorithm starts by constructing a directed graph from the mesh 

representation of the point cloud data of the terrain with nodes representing the 

cell of the mesh and the edges traverse perpendicularly to the direction of the 

sloping surface. As a result, each object and sub-objects present in the scene are 

encircled by cycle graphs. Detection of these cycle graph and subsequent 

processing reveals simultaneously the presence of the objects and sub-objects, 

their positions, their hierarchical relations and their associated voxels. Thereby, 

objects of all size and shape are extracted in a single scale level. 

The non-parametric and scale independent algorithm is therefore capable 

of automatically segmenting, at a single scale level, a complex object such as 

forest and also each of the constituent sub-objects such as the individual tree 

composing the forest. The proposed algorithm is therefore non-parametric and 

scales independently. 
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9.1 Contribution 

 

In this research, the key contributions are:  

1.  In this work, we propose a method, which suggests a paradigm shift in 

the way 3D object segmentation is approached. The method provides a generic 

solution to extract 3D objects 

2. Existing 3D object extraction method only segment convex objects such 

as trees, building etc. Our method can extract not only convex structured objects 

but also concave structured objects. 

3. In most object extraction methods, a compromise has to be made 

between Type-I error and Type-II error. However, using this method, Type-I error 

and type-II error can both be minimized. 

4. Existing 3D object segmentation method mostly rely on the distinctive 

geometric properties of the object, such as the proximity between neighboring 

LiDAR points. In some cases, (mostly natural objects), it is not clear, where the 

object ends and the background begins. Moreover, it can prove difficult for the 

method to distinguish objects that lie in close proximity.  

Our method is designed to extract objects overlaying the topographic 

surface irrespective of the grade of its slope or its proximity to other objects in the 

scene. 

5. Due to the relative complexity of real-world objects and the difficulty in 

setting scale parameters tuned to each class of objects present in the scene, over-
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segmentation is an issue in the results of existing object extraction method. The 

problem is further exacerbated in the case of high-quality data since the 

heterogeneity present in the image-object become more pronounced. Since 

segmentation quality has a direct impact on object-based classification result, the 

performance of the traditional methods is below par. In addition, due to the 

imprecise selection of the scale parameter, boundaries do not perfectly overlap 

(coincide) through scale. Therefore, hierarchical relation is difficult to establish 

among object and its sub-objects. 

Our proposed method is independent of scale parameters and is designed 

to segment convex and concave structure representing the image object 

regardless of the extent of internal heterogeneity present in the structure. The 

boundaries shared by the object and its sub-objects emerge simultaneously in the 

hierarchical decomposition process, and the hierarchical relations are explicitly 

expressed. 
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9.2 Future work 

 

As a future work, the following things could be attempted: 

1. AVSOE automatically segments the 3D object and its sub-objects. The next 

step is to identify the object. As discussed in section 3.2, 3D object segmentation 

enables the classifier to exploit a range of new features such as aggregated 

spectral pixel values, shape, texture, context as well as topology.  

2. The data set delivered by the new LiDAR sensor technology such as the 

Geiger-mode and the single photon is much richer than the traditional linear mode. 

Due to the 360-degree view of the new sensor, it generates points of high density 

on the vertical features of the object. Our object extraction method is designed to 

leverage this newly revealed aspect of the object. It would be interesting to see the 

performance of AVSOE on those data set. 
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Appendix A 

The Mathematical formulae used to compute IDW for raster interpolation 

The IDW for the raster interpolation is expressed below with referring to 

Figure 88: 

𝑍𝑟 =
∑

𝑍𝑛
𝑑𝑛

𝑁
𝑛=1

∑
1

𝑑𝑛

𝑁
𝑛=1

                                                    eq. 16 

 

Where,  𝑍𝑟 = interpolated elevation value 

 𝑍𝑛 = Surface elevation at sample point 

 𝑑𝑛 = distance from sample point to center 

 N = number of sample points 

 

 

Figure 88 IDW for raster interpolation 
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Appendix B 

Plane fitting algorithm adapted from (Tóvári and Pfeifer, 2005) 

The planar segmentation is based on a region growing algorithm, adapted 

from (Tóvári and Pfeifer, 2005), where the seeds are placed first randomly and 

then in unexplored spaces to divide the target area into planar segments.  Once a 

seed triangle is selected, the nearest neighbor cells are examined to determine 

whether they meet certain criteria. An optimal plane is estimated from the sample 

points representing the cells in the growing region. There are two popular 

approaches to find optimal planes: Least square fitting and principal component 

analysis. In our method, we used the principal component analysis since it has 

been proven to be more robust in the presence of noise (Huang and Tseng, 2008). 

The PCA computes the eigenvalues and the eigenvectors of the sample 

covariance matrix. The largest two eigenvectors give the dimension of the plane. 

Hence the cross-product of the two vectors give the normal of the plane. 

Nearest neighbor triangles are incorporated into the growing region if they 

fulfill the following three criteria: 

1. the angle difference between the normal vectors of the optimal plane and 

the neighbor triangle is below a certain threshold value, 

2. the distance from the optimal plane to the triangle is shorter than a 

predefined maximum value, 

3. the distance between the center of the optimal plane and the neighbor 

triangle is under a threshold value. 
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 The optimal plane is re-estimated after each time a triangle is accepted to 

the growing region. The growing continues until there is no triangle left.  
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Appendix C 

Robust interpolation algorithm adapted from (Tóvári and Pfeifer, 2005) 

The plane segments extracted from the plane fitting algorithm (described 

in Appendix B) is feed into the robust interpolation algorithm that enables filtration 

of the segments belong to the ground. First, planar segments with a size larger 

than the largest man-made structure possible are extracted and identified as 

ground. These ground seeds act as ground elevation references to initiate the 

filtering process.  

During the iterative process, each point (xj, yj, zj) within the segment has 

one weight wj. This weight is initially set to one. The robust interpolation algorithm 

runs as follows: 

1. A surface is interpolated initially, using the surface moving least squares 

(MLS) with an order one polynomial (a plane) and the current weights (wj) of the 

points associated with the segments. The current weight of the points is further 

adjusted via its product to a 2-dimensional weight function which ensures that 

points near the interpolation position gain higher weights and reach a value of zero 

at a certain range.  

2. For each point, filter value (rj) is determined by the difference in the distance 

of the interpolated surface to the constituents observed value. 

3. Since a segment can either entirely belong to ground, or entirely belong to 

an object, all filter value belonging to each segment are analyzed together. A 

representative filter value (Rk) is therefore determined by averaging the filter values 
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belonging to each segment. A new weight (Wk) is assigned based on this 

aggregated value and a weight function for robust adjustment. The function to 

assign a weight (Wk) for the segment used in (Tóvári and Pfeifer, 2005) is shown 

in Figure 89 

 

Figure 89 Parameters of the weight function 

 

Here, the weight drops from the maximum 1 to 0 as Rk value increases 

from 0 to f. However, the weight remains constant at 1 for all negative filter values, 

i.e. segments with an average filter value less than zero will always have the 

maximum weight. This means the interpolation is forced to conform to surface that 

lies below the interpolated surface. Therefore, planar segments of objects that are 

convex in shape are filtered out and those that belong to concave objects are 

ignored.  However, as stated in chapter 1, my objective is to detect not only convex 

objects but also objects that are concave in shape such as a pond, artificial 

cavities.  To serve our purpose, the weight function is modified as shown in Figure 

90. Here, the left branch is a mirror image of the right branch. Therefore, this 
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enables the interpolation algorithm to filter out planar segments that belong to both 

concave and convex. 

 

Figure 90 Parameters of the modified weight function 

 

4. These weights are considered in the next iteration and therefore, segments 

with a large weight have a larger influence on the run of the surface. This process 

is iterated until there is no object point left, i.e. their weight becomes zero. 
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