

Virtual Surveyor based Object Extraction from Airborne LiDAR data

by

Md. Ahsan Habib

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Electrical Engineering at

The University of Texas at Arlington

August 2017

Arlington, Texas

Supervising Committee:

Venkat Devarajan, Supervising Professor

Michael T Manry

Jonathan Bredow

Ramtin Madani

Ioannis D Schizas

ii

Copyright © by Md. Ahsan Habib 2017

All Rights Reserved

iii

Acknowledgement

To begin with, I would like to express my deepest gratitude to Professor

Venkat Devarajan for his continuous support and encouragement throughout my

pursuit of a Doctoral degree. It was a pleasure and honor to work with him. I

consider myself extremely fortunate to have an advisor who gave me the full

freedom to explore on my own. He always kept me motivated through his wisdom,

knowledge, and commitment to work.

I would like to thank my doctoral committee members, Dr. Jonathan

Bredow, Dr. Michael Manry, Dr. Ioannis Schizas and Dr. Ramtin Madani who gave

me valuable inputs in the form of coursework, in reviewing my research work and

making insightful comments.

I would like to thank the National Resources Conservation Service (NRCS)

and specifically Mr. Collin McCormick and Mr. Steven Nechero for funding my

research work and for providing me with all the raw LiDAR data required for my

dissertation. I would like to give special thanks to my colleagues in the Virtual

Environment Lab: Dr. George Toscano, Dr. Partha Pratim Acharjee, Dr. Mustafa

Alam, Mr. Sree Ram Kamabattula and Mr. Babak Namazi for their scholarly

company, support, and useful discussions. I am extremely grateful to all the EE

department faculty members and staff, especially Ms. Gail Paniuski, for their

various forms of support during my graduate study.

I would also like to thank my family especially my parents for the sacrifices

they have made to help me achieve this goal. I sincerely thank my sister Nasreen

iv

for her relentless motivation and support. I would not have been able to finish this

work without the love and encouragement from my parents and sister.

v

Abstract

VIRTUAL SURVEYOR BASED OBJECT EXTRACTION FROM AIRBORNE

LIDAR DATA

Md. Ahsan Habib, PhD

The University of Texas at Arlington, 2017

Supervising Professor: Venkat Devarajan

Topographic feature detection of land cover from LiDAR data is important

in various fields - city planning, disaster response and prevention, soil

conservation, infrastructure or forestry. In recent years, feature classification,

compliant with Object-Based Image Analysis (OBIA) methodology has been

gaining traction in remote sensing and geographic information science (GIS). In

OBIA, the LiDAR image is first divided into meaningful segments called object

candidates. This results, in addition to spectral values, in a plethora of new

information such as aggregated spectral pixel values, morphology, texture, context

as well as topology. Traditional nonparametric segmentation methods rely on

segmentations at different scales to produce a hierarchy of semantically significant

objects. Properly tuned scale parameters are, therefore, imperative in these

methods for successful subsequent classification. Recently, some progress has

been made in the development of methods for tuning the parameters for automatic

segmentation. However, researchers found that it is very difficult to automatically

refine the tuning with respect to each object class present in the scene. Moreover,

vi

due to the relative complexity of real-world objects, the intra-class heterogeneity is

very high, which leads to over-segmentation. Therefore, the method fails to deliver

correctly many of the new segment features.

In this dissertation, a new hierarchical 3D object segmentation algorithm

called Automatic Virtual Surveyor based Object Extracted (AVSOE) is presented.

AVSOE segments objects based on their distinct geometric concavity/convexity.

This is achieved by strategically mapping the sloping surface, which connects the

object to its background. Further analysis produces hierarchical decomposition of

objects to its sub-objects at a single scale level. Extensive qualitative and

qualitative results are presented to demonstrate the efficacy of this hierarchical

segmentation approach.

vii

Table of Contents

Virtual Surveyor based Object Extraction from Airborne LiDAR data i

Acknowledgement ... iii

Abstract .. v

List of Illustrations ... ix

List of Tables ...xiv

1. Problem Statement and Motivation ... 1

2. LiDAR basics... 5

3. Review of the Literature .. 12

3.1. Pixel-based object extraction ... 13

3.2. Object-based object extraction ... 18

3.3. Challenges facing current object extraction methods 26

3.4. Conclusion ... 30

4. AVSOE Algorithm Ideation ... 31

4.1. Characteristics of an object .. 31

4.2. Surveyor Guidance Vector, on_slope condition and path_loop condition

 41

4.3. Overview of the AVSOE algorithm .. 52

5. Preprocessing ... 56

5.1. Rasterization ... 58

5.2. Pfeifer’s Ground Filter .. 60

6. Naïve Object Segmentation .. 67

6.1 Segmentation using the on_slope condition .. 69

6.2 Segmentation via following the Surveyor Guidance vector 70

6.3 Segmentation Results ... 75

7. Hierarchical Decomposition .. 79

7.1 Generating the complete_flow_graph ... 81

viii

7.2 Extracting representative_path_loops ... 84

7.2.1 Eliminating the sink and source nodes ... 85

7.2.2 Finding the fork nodes ... 88

7.2.3 Finding the parallel and the circular loops of maximum depth 89

7.2.4 Eliminating the parallel and the circular loops 95

7.2.5 Presenting the representative_path_loops 104

7.3 Extracting object_path_loop ... 108

7.4 Objectness test .. 113

7.5 Find Object type ... 114

7.6 Associate planar segments to representative_path_loops 115

7.6.1 Underlying mechanism ... 116

7.6.2 Flow chart .. 119

7.7 Hierarchical Decomposition result ... 124

8. Performance Analysis .. 125

8.1 Qualitative Analysis .. 125

8.2 Quantitative Analysis ... 133

9. Conclusion and Suggested Future Work ... 137

9.1 Contribution ... 138

9.2 Future work ... 140

References .. 141

Appendix A .. 150

Appendix B .. 151

Appendix C .. 153

Biography .. 156

ix

List of Illustrations

Figure 1 Airborne laser scanning (Monika, 2008) ... 5

Figure 2 Multiple returns from a single laser pulse (Garcia et al., 2011) 6

Figure 3 LiDAR point cloud (a) elevation and (b) intensity .. 7

Figure 4 Surface represented by DSM and DTM .. 8

Figure 5 Geiger mode LiDAR data (Courtesy: Harris) .. 9

Figure 6 Laser footprint of (a) Linear and (b) Geiger-mode..................................... 10

Figure 7 Hierarchy of image objects (Blaschke et al., 2014) 20

Figure 8 Two mean-shift results with different parameters (Courtesy: IS-lab,

Halmstad University) .. 28

Figure 9 Objects and its topographic background .. 32

Figure 10 Real-world objects types ... 33

Figure 11 Decomposing a (a) complex building structure, and a (b) mountain into

slope surfaces (lighter shade) and horizontal flat surfaces (darker shade) 34

Figure 12 Foothill_slope (yellow shade) and footprint (dash line) of a (a) complex

building structure, and (a) mountain .. 35

Figure 13 While mapping the foothill_slope of the mountain, the foothill_slope of

the house is gets mapped. .. 36

Figure 14 Normal to all points in the foothill_slope of a convex object point

outward [Courtesy, 1ucasvb] .. 37

Figure 15 Top view of a cavity, a mountain, and its topographic background.

Their foothill_slope and path_loops are also shown ... 38

Figure 16 The black thick arrow indicates the direction of the main slope; the

white arrow indicates the direction of the cross slope .. 39

Figure 17 Cross slope component of the path_loop dominates over the main

slope component .. 40

Figure 18 Partitioning the terrain (shown in Figure 15) into a network of planar

segments. Here, each individual color represents a planar segment. 41

Figure 19 A surveyor as shown in (b), standing on the slope of a bowl structure

as shown in (a) ... 42

Figure 20 Surveyor path vector relation with SG vector .. 43

Figure 21 Path vector shown in three locations of the arc 44

Figure 22 Occasion when the dot product is zero between the path vector and

the SG vector .. 45

Figure 23 Occasion when the dot product is not zero between the path vector

and the SG vector .. 46

x

Figure 24 Adjacent planes when (a) form a slope, (b) and (c) does not form a

slope. .. 48

Figure 25 Transverse across adjacent planar segments ... 49

Figure 26 Case when on_slope condition fails .. 50

Figure 27 Virtual surveyor following a path_loop .. 51

Figure 28 Flowchart of the proposed methodology (AVSOE) 54

Figure 29 Stylistically simulated result obtained from each of the three main

stages of the Virtual Surveyor object extraction (VSOE) algorithm 55

Figure 30 Flowchart of the proposed methodology (AVSOE) 57

Figure 31 Square mesh model of a landscape .. 59

Figure 32 Result showing after (a) Planar segmentation (b) Robust Interpolation

of a convex object such as complex building ... 61

Figure 33 AVSOE as a ground filter refiner.. 63

Figure 34 Connected component analysis group pixels (yellow shaded) of a

concave-like object .. 64

Figure 35 (a) Border selection (magenta) and (b) seed candidate selection (cyan)

 .. 65

Figure 36 Neighboring ground planar segments (green) ... 65

Figure 37 Flowchart of the AVSOE algorithm with the Naïve Object Segmentation

stage in details .. 68

Figure 38 Variation of the magnitude of Surveyor Guidance vector with respect to

the profile of the slope ... 70

Figure 39 Guiding the surveyor around the corner ... 71

Figure 40 Normal vector projection onto the horizontal plane for adjacent planar

segments when they are (a) coplanar when they form a (b) corner about vertical

axis and a (c) corner about horizontal axis .. 73

Figure 41 Illustration displaying segmentation result of a house at (a) oblique

view, and (b) top view. The false positives planar segments are crossed out 74

Figure 42 Illustration displaying segmentation result for a hill shaped and

watershed shaped landform at (a) top view, and at (b, c, d) different angle views

 .. 75

Figure 43 Illustration displaying segmentation result of an artificial pond at (a) top

view, and (b) oblique view... 76

Figure 44 Illustration displaying (a) orthoimage of a complex building, (b) point

cloud model of the building, segmentation results at (c) top view, and (d) Oblique

view .. 77

Figure 45 Illustration displaying (a) orthoimage of a pair of adjacent pools, (b)

point cloud model of the pools, (c) the segmentation result 78

xi

Figure 46 Flowchart of the AVSOE with the Hierarchical Decomposition stage in

details ... 80

Figure 47 Illustration of the complete_flow_graph of the artificial pond (Figure 43)

 .. 82

Figure 48 Illustration of the complete_flow_graph of a composite object (hill

shaped, watershed shaped landform and a tree) (Figure 42) 83

Figure 49 Flowchart of the sub-algorithm that extracts path_loops 84

Figure 50 Sink (red) and source (blue) nodes found in the object segment (Figure

44) depicted in a (a) top view, a (b) oblique view and a (c) zoomed-in view of the

enclosed portion by the rectangular red box shown in (a) with connecting edges

 .. 86

Figure 51 Flow chart of the sub-algorithm that eliminate the source and the sink

nodes.. 87

Figure 52 Stylistically simulated example of (a) out-fork segment (b) in-fork

segment ... 88

Figure 53 Location of the in-fork and out-fork segments in the complex conjoined

path loops formed around object shown in Figure 44 .. 89

Figure 54 Stylistically simulated example of a circular loop 90

Figure 55 Simulated example of (a) a redundant parallel loop and (b) a useful

parallel loop ... 90

Figure 56 Illustration displaying a (a) 3D point cloud model of the target area

which contains a complex object, a (b) orthophoto of the building, (c) top view of

the parallel loop formation focusing the area in the red bounding box drawn in

(b), and (d) oblique view of the area in the red bounding box. 92

Figure 57 Simulated example of a (a) redundant parallel loop, and converted (b)

circular loop ... 93

Figure 58 Flowchart of a sub-algorithm which extracts all merge loops and

circular loops of a given max depth ... 94

Figure 59 An example of a (a) circular loop, the (b) circular loop after detachment

and then the (c) circular loop after cleanup .. 96

Figure 60 An example of a (a) parallel loop, the (b) parallel loop after detachment

and then the (c) parallel loop after cleanup .. 97

Figure 61 Six different configurations of parallel loops, each showing the path

flow and the connecting edge candidates to be clipped .. 98

Figure 62 Six different configurations of circular loops, each showing the flow and

the connecting edge candidates to be clipped .. 101

Figure 63 Illustration displaying a (a) complete_flow_graph, and the (b) extracted

representative_path_loops ... 105

xii

Figure 64 Extracted representative_path_loop of the artificial pond 106

Figure 65 Illustration displaying representative_path_loop of hill shaped and

watershed shaped landform at (a) top view, and (b) oblique view 107

Figure 66 Flowchart of the sub-algorithm that extract object_path_loop 108

Figure 67 Complete_flow_graph from object segment shown in Figure 41 (a)

oblique view (b) top view ... 109

Figure 68 Representative_path_loop of the object (a) oblique view (b) top view

 .. 110

Figure 69 Sub-graph of the object (a) oblique view (b) top view 110

Figure 70 Object_path_loop of the object (a) Oblique view (b) top view 111

Figure 71 Extracted object after using Hierarchical decomposition on object

segment shown in Figure 41 .. 112

Figure 72 A simulated example of an Object and its sub-object........................... 113

Figure 73 Simulated example of a path loop around an (a) horizontal convex

structure (b) horizontal concave structure .. 115

Figure 74 Convex structure object with (a) closed path loop and (b) the points

connected to the loop .. 116

Figure 75 Illustration displaying the complete_flow_graph of a composite object

segment with representative_path_loops in cyan color ... 117

Figure 76 Representative_path_loop of every sub-object is connected to the

representative_path_loop of the object via a chain of connecting edges 118

Figure 77 Flowchart of the algorithm that associates planar segments to the

representative_path_loops ... 121

Figure 78 (a) Landform segmentation decompose to (b & d) two horizontal

convex structure and (c) one concave structure. See also Figure 42 124

Figure 79 Top-view RGB image of (a) complex building (b) pools and (c)

elevation image .. 126

Figure 80 Pfeifer's ground filter results. Red planar segments - ground pixel,

White planar segments – object pixel ... 127

Figure 81 Virtual Surveyor Segmentation result .. 128

Figure 82 Hierarchical decomposition of the complex building. Blue segments

represent convex structure whereas red segments represent concave structure.

 .. 129

Figure 83 Hierarchical decomposition of the pair of pools 130

Figure 84 Illustration displaying a (a) 3D point cloud model of the complex

building adjacent to a small rectangular object (highlighted by a red bounding

box), a (b) orthophoto of the complex building, (c) close up top view of the

xiii

neighboring rectangular object superimposed by their representative_path_loops,

(d) oblique view .. 131

Section 7.2.3 explains the formation of representative_path_loops for both

objects. They, therefore, can be easily separated during the Hierarchical

decomposition step. It is evident from the Hierarchical decomposition result of the

complex building in figure 85 that the neighboring objects have been cleanly

separated. .. 132

Figure 86 Object candidates collected from these two terrains. 133

Figure 87 Eight samples of the given test objects, the first column represents

Pfeiffer’s ground filter result, the second column represents VSOE result, the

third column represents the ground truth ... 134

Figure 88 IDW for raster interpolation ... 150

Figure 89 Parameters of the weight function ... 154

Figure 90 Parameters of the modified weight function ... 155

xiv

List of Tables

Table 1 Features available for pixel and object-based method 19

Table 2 Weight distribution ... 73

Table 3 Segment coverage test result .. 136

1. Problem Statement and Motivation

The availability of a massive amount of high-quality LiDAR data gives us an

unprecedented opportunity to extract useful and accurate information for a wide

variety of applications. The only practical method of analyzing such a huge dataset

is through automated algorithms. Feature engineering, i.e. finding a good data

representation, is the key to success in interpreting image data by computer

(Domingos, 2012). Hierarchical object representation offers new possibilities to

gain insight into the content of a given digital image. This enables the image

classifier to exploit a number of new features. Unlike object detection, which

detects objects of a certain class (such as buildings, or trees) in a given digital

image, hierarchical object representation based image analysis aims to address

the whole scene (Lang and Blaschke, 2003). Here, the entire image is first

segmented in several levels of aggregation to produce its constituent image-

objects and sub-objects. Next, an object recognition algorithm is employed to

analyze the hierarchical object representation to detect specific objects or a certain

object type. Partitioning the given scene into objects is much like the way humans

conceptually organize the topographic surface for interpretation (Hay and Castilla,

2008). The section of the brain responsible for analyzing visual information is the

visual cortex. There is strong evidence that the visual cortex encodes an object

based on a hierarchical model (Riesenhuber and Poggio, 1999). The cortex

organizes visual information about a target object into a hierarchy of an

increasingly complex object representation. The ability of the human brain to

2

interpret visual data in an effortless manner and with unparalleled accuracy has

inspired designs in automated vision system that model the hierarchical object

representation in the visual cortex (Rodríguez-Sánchez et al, 2015).

Automatic separation of the topographic surface and its overlying 3D objects

is a challenging problem, especially in complex environments and rough terrain.

Arefi, in his 2005 paper, pointed to automated segmentation as one of the major

and unsolved problems for interpreting LiDAR data. A decade later, a generic

solution to this problem has not been developed yet, as pointed out in a recent

survey paper (Cheng, 2016). Nevertheless, extensive research has been

conducted in this direction. One classical approach is segmentation through object

recognition. However, the presence of a large variety of objects in a scene renders

classical segmentation through object recognition ineffective. This is because

object-recognition based approaches find image objects using object models,

which are known a priori and are therefore restricted to a fixed number of objects

(whose models were previously stored or learned). Object segmentation of

unknown objects with arbitrary shapes in a complex environment poses an

important but formidable challenge. Nonparametric segmentation methods can be

a solution to this problem. Traditional nonparametric segmentation methods rely

on segmentations at different scales to produce a hierarchy of semantically

significant objects. Properly tuned scale parameters are, therefore, imperative in

these methods for successful subsequent classification. Recently, some progress

has been made in the development of methods for the automatic tuning of

segmentation scale parameter. However, researchers found that it is very difficult

3

to automatically refine the tuning with respect to each object class present in the

scene. Therefore, the methods fail to correctly deliver the result.

LiDAR-based object detection and extraction work mainly concentrate on

protruding man-made features and few very distinguishable natural features such

as trees. The most object extraction methods assume that the ground surfaces are

usually the lowest feature in a local neighborhood. In some cases, this assumption

is wrong. For example, swimming pools, mines, an irrigation channel, construction

pit etc. are all man-made objects. Thus, intruding objects are largely left out in the

extraction process.

Most natural objects, commonly referred to as landforms, are also ignored.

Examples of landform types include hills, mountains, watersheds, dunes, cirques,

drumlins, crater, lakes, rivers etc. Maps representing landform distribution in a

given terrain is in high demand and is referred to as a geomorphological map.

Geomorphological maps are fundamental to many geological quantitative

analyses (involving landscape ecology, forestry, and soil science) and to

management tools for land use and geomorphological risk (Smith, 2011). Lang et

al. (Lang, 2003) argued that the detection of natural objects is comparatively more

difficult than the detection of the man-made objects. This is because, of a high

degree of homogeneity of a man-made object, the set of heuristics to be used for

the recognition process seems to be relatively clear.

To address all these problems, we came up with a novel automated

hierarchical 3D object extraction algorithm called Automated Virtual Surveyor

based Object Extraction (AVSOE). The research objective of this work was to

4

develop an algorithm, which can derive hierarchical object representation

(automated detection and extraction of intruded and protruded objects and sub-

objects – natural and man-made) from the LiDAR image of a given terrain.

5

2. LiDAR basics

Airborne LiDAR emits a laser pulse from the plane and measures the time

it takes to return. This generates a 3D point cloud of the landscape from the time

interval, the pulse angle and the absolute location of the sensor. The GPS/IMU

carried by airplane provides the position and orientation of the sensor platform.

LiDAR collects data at a sampling rate greater than 150 kHz (NOAA Coastal

Service Center, 2012). The resultant output is, therefore, a very dense and highly

accurate geo-referenced elevation data. The scanning scheme of an airborne

LiDAR system is shown in Figure 1.

Figure 1 Airborne laser scanning (Monika, 2008)

6

An important aspect of a LiDAR system is its capability to capture multiple

returns per pulse. Figure 2 shows an example, where multiple returns are

generated from a single laser pulse. This capability enables accurate

characterization of LiDAR returns from the vegetation areas

Figure 2 Multiple returns from a single laser pulse (Garcia et al., 2011)

The LiDAR acquisition system records, in addition to the laser returns, the

strength of the returns (intensity). An example of the intensity map of a rural area

is shown in Figure 3(b). LiDAR intensity is determined by the reflectivity of the

surface object, so it can be used for land-cover classification.

7

Figure 3 LiDAR point cloud (a) elevation and (b) intensity

There are different ways to represent the elevation map of a terrain: Digital

Elevation Models (DEM), Digital Surface Models (DSM), Digital Terrain Models

(DTM), and Triangular Irregular Networks (TIN). A DEM is a raster representation

of the terrain's surface. A raster is a data structure which consists of a matrix of

equally sized cells arranged in a grid where each cell contains an attribute value

and location coordinates. DEM is interchangeably used with DSM and DTM. Digital

surface model is a DEM created from the first return in a multiple-return LiDAR

pulse or the sole return for a single-return pulse. Thus, DSM represents the earth

surface and captures all natural and built features on it. Whereas, DTM is a DEM

that includes only the bare earth surface. (See Figure 4).

8

Figure 4 Surface represented by DSM and DTM

The most popular geometric property exploited by different feature

extraction strategy from rasterized LiDAR data is the local elevation change.

Natural features usually possess a low elevation slope compared to man-made

features. Some natural features such as water surface and ground are usually

approximately flat. In general, natural features, commonly referred to as landforms,

are tangible landscape objects that have a characteristic shape and are bounded

by topographic discontinuity (MacMillan, 2009). Man-made features introduce high

elevation changes on the terrain surface. Thereby, they are easily distinguishable

from the background natural fluctuation.

In recent years, a new kind of LiDAR system has emerged called the

Geiger-mode sensor. The Geiger-mode LiDAR offers several advantages over

existing linear mode LiDAR capability. This includes the capability to capture a

denser point cloud over a large area more quickly and at a lower cost than the

traditional linear scanners. Figure 5 shows an example of the Geiger-mode LiDAR

9

data of an urban area. This may necessitate changes in the way we extract

buildings as discussed below.

Figure 5 Geiger mode LiDAR data (Courtesy: Harris)

Man-made features such as buildings are usually extracted from LiDAR

data based on the footprint outlines derived from roof edges, not the position of the

wall (Awrangjeb, 2014). The reasoning behind that is aerial linear mode LiDAR

has an almost nadir view, i.e., it captures the details of the rooftop while collecting

only a few returns from the walls. A similar issue has to be dealt with for natural

features such as a cliff or a deep ravine. Assuming the outline of the roof as the

footprint of the building can sometimes be misleading, especially for the building,

which has a larger rooftop than its footprint area (S. Wei, 2014).

With the advent of new LiDAR sensor technology such as Geiger-mode

LiDAR and Single-photon LiDAR, the vertical walls or planes are no longer left out

10

from the laser illumination. Geiger-mode/Single-photon LiDAR’s 360-degree

(Figure 6) view guarantees that vertical features present in the man-made structure

or the landform are fully covered. With a lot of points on the wall, it can now be

mapped more accurately. Thus, the true footprint of the building and natural

features with a steep slope such as cliff and deep ravine can be extracted.

Figure 6 Laser footprint of (a) Linear and (b) Geiger-mode

The purpose of this dissertation, as stated in Section 1, is to introduce a robust

new automated solution that extracts all the objects in a given LiDAR image with

a high degree of accuracy. The method was developed with the mindset that it

would exploit the data on the aspect of the object (vertical feature) recently made

available by the new LiDAR sensor technology. Unlike the traditional segmentation

methodology, the vertical features of the objects have been mapped in this

method. However, the method is tested on traditional linear-mode LiDAR data and

has demonstrated full competence. Despite low point density on the vertical plane,

11

the walls can still be constructed via Delaunay triangulation or Digital Elevation

map generation, which connects the roof boundaries to the nearest points on the

ground.

12

3. Review of the Literature

Single class object detection from airborne LiDAR data has been an

important research topic for many years. In this dissertation, the term ‘object’ refers

to its generalized form, including anthropogenic or man-made objects as well as

natural objects. Extensive work has been performed on automatic detection of

buildings (Verma et al.,2006; Sohn et al., 2008; Sun and Salvaggio,2013;

Awrangjeb,2014), roads (Hu,2004; Hu-ying et al.,2012), trees (Koch et al.,2006;

Liu et al.,2013), waterbody (Toscano et al.,2015; Acharjee et al.,2016) and

vehicles (Yao et al.,2010). However, since in this work, we aim to extract a variety

of object class present in the scene so we would focus on multi-class object

extraction.

Multi-class object extraction from a given scene can be approached from

two directions: simultaneous classification and hierarchical classification.

Simultaneous classification strategy classifies each LiDAR point as belonging to a

specific object in a single step. Whereas, hierarchical classification consists of

more than one step. For example, a popular hierarchical classification technique

involves two steps: filtering and object classification (Zhu and Toutin, 2013). In the

filtration step, the point cloud is partitioned into two class: ground and non-ground.

This is popularly known as a ground filter or DTM generator. Here, the overlying

objects can be extracted indirectly by the difference between the DSM and the

DTM generated. This representation of elevated objects is called normalized digital

surface model (nDSM). The result can be fed into a multi-class classifier to identify

13

their classes. Most ground filter cover here have not been designed for the purpose

of objects extraction, but they all can potentially be adapted to work in conjunction

with the multi-class classifier for enabling object representation of the terrain.

Based on the basic element used in the classification process, multi-class

object classification can be categorized into two classes: Pixel-based and Object-

based. In the Pixel-based approach, each pixel of the image is classified based

exclusively on the attribute of itself and its spatial neighborhood. Pixel based

approach essentially employs the simultaneous classification strategy. In the

Object based approach, the image is first partition into meaningful segments and

then a classification is performed on those segments. Therefore, Object based

approach adopts hierarchical classification strategy.

 A typical LiDAR-based ground filter is a pixel-based approach, which

classifies each pixel into one of two classes: ground or non-ground. The attributes

are derived from the elevation value of the point.

3.1. Pixel-based object extraction

Extensive work has been reported in pixel-based object extraction. In the

following, some of the popular Pixel-based object extraction methods are

discussed:

14

 Antonarakis et al. (2008) proposed a supervised classification strategy

exploiting the combined analysis of both skewness and kurtosis for both elevation

and intensity distributions to distinguish between forest and ground.

 Lafarge and Mallet (2011) introduced a four-step urban objects extraction

and modeling strategy from complex urban scenes. First, the point cloud is

classified (unsupervised) into the building, vegetation, and ground using

discriminative geometric features. The author combines local features and local

context by applying an energy function and Potts model. In the second step,

shapes and lines are extracted from the segments. In the third stage, the extracted

components are projected in a 2D grid space arrangement by applying geometric

constraints, and the labels evaluated in the first step are propagated accordingly.

In the final stage, the urban objects are represented in 3D.

 Brodu and Lague (2012) classify complex natural scenes based on a multi-

scale analysis of 3D points from terrestrial LiDAR. The analysis reveals, for each

point, the optimal neighborhood size to be considered and the local 3D

organization of the vicinity (linear, planar or volumetric). Such dimensional

information at each point, and at different scales, are introduced as input features

for classification. They demonstrate its efficacy by separating riparian vegetation

from the ground and classifying a mountain stream into vegetation, rock, gravel,

and water pixel.

 Niemeyer et al. (2013) proposed a supervised point-wise classification

method that incorporates a random forest classifier into a Conditional Random

Field (CRF) framework. The method successfully detected six types of urban

15

objects: natural ground, asphalt, buildings, vegetation, fences, and cars. However,

a massive amount of training samples is required to establish a per-class and per-

interclass relationship, which can be a logistic nightmare considering the huge

variety of urban objects usually present in the urban scene.

 Weinmann et al. (2015) proposed a robust methodology that assigns each

individual 3D points with a local 3D neighborhood of optimal size for extracting

distinctive geometric features. The features are then fed along with training

example to a supervised classifier.

 Guo et al. (2015) used JointBoost classifier to classify the point cloud into

five main class: building, ground, vegetation, power-lines and pylons, using locally

extracted features. The JointBoost classifier is known to perform automatic feature

selection and therefore can process many input features for multi-class

classification. As a post-processing step, a Graph-cut segmentation method is

used to improve the classification results.

Existing ground filter methods can be classified into five major classes:

surface model-based (Tóvári and Pfeifer, 2005; Mongus and Žalik, 2012; Chen et

al., 2013; Chen et al., 2012; Chen et al., 2016), morphology-based (Arefi and

Hahn, 2005), TIN-based (Axelsson, 2000), Segmentation-based (Chen et al.,2014;

Zhang et el.,2013) and Statistical analysis based (Crosilla et al., 2013; Costantino

et al.,2011). Here, some segmentation-based and morphological based (Arefi and

Hahn, 2005) ground filter can be categorized as object-based, but the rest are

16

pixel-based. Here, we discuss some of these pixels based ground filter

approaches, among which some were directly used for hierarchical classification:

 Axelsson (2000) proposed a ground filter algorithm based on iterative

densification of the TIN representation of the terrain. The algorithm first identifies

some control ground points and use them to create a sparse TIN model of the

terrain. During each iteration, more and more points are added to the TIN if they

meet certain criteria. As a result, the TIN model is progressively densified. The

iteration continues until there is no point left that satisfy the criteria. A version of

this algorithm has been implemented in a popular commercial software

TerraScanTM from TerraSolid (Sithole and Vosselman, 2003). This method has

proved very successful in urban areas. However, this filter performance is below

par in case of rough terrain (Chen, 2016).

 Tovari and Pfeifer (2005) proposed a DTM generation method based on

the surface Moving Least Square (MLS) linear interpolation, which has been highly

popular among researchers. Firstly, the method iterates an interpolated surface to

the ground using some control ground points. At each iteration, the residuals are

calculated and a proportionate weight is assigned to each point. This minimizes

the weights for points from non-ground objects whilst points from ground object

have a large influence on the run of the surface. The iteration continues until the

ground surface model stabilize.

 Meng et al. (2009) proposed a hierarchical classification strategy to extract

building based on the morphological processing. The algorithm first employs a

ground filtering algorithm to separate ground from its overlying objects. Next, an

17

analytic approach acts on the resulted nDSM to remove the remaining non-building

points using building elementary structure filtering.

 Costantino et al. (2011) developed a classification strategy based on the

statistical parameters of the LiDAR point cloud distribution values. In the

unsupervised algorithm, a combined analysis of both skewness and kurtosis on

elevation distribution classifies the point cloud distribution into terrain/off-terrain

class. Next, the RANSAC algorithm has been applied on the off-terrain points to

detect buildings. The heavy use of thresholds in the method potentially undermines

the extent of automation involved in the process.

 Mongus and Zalik (2012) proposed a parameter-free strategy which

combines surface-modeling, morphological filtering, multi-resolution comparison,

and statistical analysis. The approach uses morphological filtering to eliminates

noisy outliers, then use surface-interpolation at a multi-scale level to approximate

the terrain. Next, the method employs a hierarchical morphological approach to

compute the residual of each point from the surface. Finally, statistical analysis is

applied enabling automatic thresholding and thereby, parameter-free ground

filtering is achieved. The method is robust but computationally intensive.

 Chen et al. (2012) proposed a ground filtering method based on upward-

fusion. This method first generates several preliminary DTMs at different scale

level using a local minimum method. Next, by comparing the elevation difference

between the course-scale preliminary DTMs and fine-scale DTMs with a threshold,

the output DTM is refined. Unclassified points from the finer DTM that qualifies the

criteria are selected, otherwise replaced by the value of the large-scale DTM. This

18

upward-fusion continues until all preliminary DTMs had been considered. The

output is a refined DTM of high resolution.

3.2. Object-based object extraction

Can a computer be programmed to generate a hierarchical object

representation from LiDAR data? The representation would present a hierarchy

of super and sub-objects in mapping complex objects. There are very few

examples of computer-aided hierarchical object representation. Object-based

image analysis (OBIA) framework has gained traction recently in remote sensing

and geographic information science (GIS) to map imagery into semantically

meaningful objects. (Blaschke et al., 2014). OBIA involves two steps: image

segmentation and object classification. Firstly, a segmentation algorithm is applied

to partition the image into a relatively homogeneous group of pixels referred to as

object candidates. This result, in addition to spectral values, in a plethora of new

information such as aggregated spectral pixel values, morphology, texture, context

as well as topology (Table 1). These features can be exploited in the subsequent

identification of the object candidates. This makes object-based classification

superior to pixel based classification. However, there is a caveat. Object-based

classifier outperforms pixel based approach only if the resultant segments

accurately represent real-world objects (Yan et al., 2008). In other words, the

19

segmentation quality has a direct impact on the classification accuracy (Duro et

al., 2012).

A comparison of the features available for pixel and object-based classifiers

is shown in Table 1.

Table 1 Features available for pixel and object-based method

Pixel Object

Spectral

Spectral statistics

Size

Shape

Neighbors

Hierarchy

One other significant leverage the object based approach has over the

pixel-based approach is that the image object delineation process reduces the

effect of intra-class spectral variation and inter-class spectral similarity, thereby

increase the classification accuracy (Wu, 2016).

One of the important aspects of the OBIA framework is the hierarchical

image representation through a tree structure i.e. to produce a hierarchy of super-

and sub-objects (Blaschke et al, 2014). As illustrated in Figure 7, hierarchical

representation reveals two important pieces of topological information: the context

20

feature and the object’s spatial arrangement feature. Availability of context

information can lead to improvement in classification accuracy (Tang et al., 2013;

Cui et al. 2016). It should be noted that the boundaries shared by the object and

its sub-objects in the physical world, should perfectly overlap in their resultant

segments of the image.

Figure 7 Hierarchy of image objects (Blaschke et al., 2014)

Relevant Segmentation techniques used in Object-based Image Analysis

can be categorized into four classes, edge based, graph based, region based and

ground filter based. In the edge based techniques, the LiDAR data is first converted

to a raster and then the edges are detected. A contour generating algorithm is then

used to close the region. The biggest limitation of the edge based technique is that

21

it cannot be used to extract objects which have overlapping surfaces such as

bridges and buildings (Sithole, 2005). Among the four classes of object extraction

method mentioned above, graph based technique, ground filter based, and the

region based technique are the most popular.

In the graph based technique, the objects are first localized and then are

extracted using graph cut algorithm. Some of the state of the art graph based

object extraction techniques, used to interpret LiDAR data, are discussed below:

 Golovinskiy et al. (2009) present a min-cut based method for extracting

small urban objects from a combined Airborne and Terrestrial LiDAR point cloud

data. At first, a k-nearest neighbors graph is built. Then the potential object location

is determined by applying a normalized cut upon the graph. Next, using points near

those locations, foreground-background segmentation is computed with a min-cut

algorithm that delineates the objects from its surrounding in the graph. Next, Shape

features and contextual features are extracted for each point cluster. Finally, the

feature vector for each candidate object is classified using a Support Vector

Machine (SVM), trained on a set of manually labeled objects. A limitation of the

segmentation method is that it often fails to detect all of the referenced objects.

 Yao et al. (2009) proposed a 3d segmentation method combining non-

parametric clustering with spectral graph clustering to extract flyovers and vehicles

in urban areas from raw airborne LiDAR data. The approach started with the mean-

shift segmentation process, which over-segments the scene to produce

superpixels. So the results are further classified via a modified normalized-cuts

based on geometric features such as the horizontal and vertical similarity within

22

each superpixel, thereby generating a more consistent subset of laser points. The

flyovers were extracted successfully, but the vehicles extraction rate was lower.

Region based techniques merge smaller regions into larger ones based on

similarity. The growth stops once the growing region properties exceed the

heterogeneity threshold. Among the region based techniques, the Multi-resolution

segmentation (MRS) algorithm (Baatz and Schäpe, 2000) has recently garnered a

lot of attention within the OBIA domain for the delineation of semantically

meaningful objects. MRS is a bottom-up region growing method, which initially

considers each pixel as a distinct object. Iteratively, smaller image-objects are

merged into larger ones based on the similarity between adjacent image objects.

The growth stops once the growing object properties exceed the heterogeneity

threshold, defined by the scale parameter. Heterogeneity is usually expressed in

terms of the spectral value and shape of the object.

Choosing the right scale parameter is crucial in this algorithm since it has

a direct effect on the classification accuracy (Blaschke, 2010). The traditional

procedure for scale parameter selection involves a long time-consuming trial-and-

error. Even though this procedure allows the incorporation of expert knowledge, it

is deemed irreproducible and not robust enough. Recently, some progress has

been made in the development of methods for automatic tuning of scale

parameters. For instance, the Estimation-of-Scale-Parameters (ESP) tool [Drǎguţ,

2010] from eCognition is used by MRS to delineate landforms from the spectral

image at multiple segmentation scales, whenever there is significant size variation.

The resulting segments are then classified based on the physical attributes such

23

as length, width, and height and by the statistical frequency of specific

geomorphometric variables [Evans, 2011].

 D’Oleire-Oltmanns, et al. (2012) employ multiresolution segmentation

techniques on DEM to segment landforms such as drumlins since they vary

significantly in form and shape. Unlike cirques and drumlins, most other landforms

are not clearly bounded and their delimitation offers varying degrees of difficulty

(Evans, 2012). For example, segmentation of gullies is difficult due to its

heterogeneous morphologic characteristics; thus, the authors rely on aerial

photographs for gully mapping. The paper also demonstrates the challenge facing

MRS using ESP for delineating landforms such as drumlins. Despite the

knowledge-based selection of an optimal segmentation layer, it performs poorly in

delineating the exact limit of drumlins.

 Dragut, et al. [2013] employ MRS to segment elementary forms from Digital

Elevation Maps (DEMs) based on the homogeneity of elevation derivatives such

as gradient, aspect, profile curvature and plan curvature. However, landforms are

composed of multiple such landform elements (Evans, 2012).

 Zhang et al. (2013) developed a land cover classification system based on

object-based point cloud analysis. It consists of two sub-step: clustering and

classification. For clustering, the author employs a plane-fitting algorithm to extract

planar segments from the point cloud. Thirteen different features of the geometry,

radiometry, topology, and LiDAR return characteristics are derived from the

extracted segments. Next, a support vector machine (SVM) is used to classify the

segments into five categories: ground, vegetation, building, vehicle, and powerline.

24

In the post processing, the author proposed a connected component analysis for

3D point clouds to improve the original classification results.

 Sevara et al. (2016) make a comparison of pixel-based and object-based

approaches for the extraction of an archeological feature from LiDAR data.

 Wu et al. (2016) applied SVM classifier on combined MRS results from

LiDAR nDSM image and WorldView-2 imagery to extract different urban land cover

types.

 In another research effort (Chen and Gao, 2014), the land cover

classification (building and trees) is based solely on the available features from

discrete LiDAR data (elevation and intensity). Using just the following two key

attributes: elevation and intensity difference between the first and the last return

from LiDAR has proven to be effective in the object based classification. Here,

eCognition has been employed for the multi-resolution segmentation.

 Xu et al. (2014) proposed a multiple-entity-based classification system

where features were extracted from three different entities: points, plane

segments, and segments produced by mean shift. Here, first, using the planar

segments, the underlying ALS data is roughly classified to the ground, water,

vegetation, roofs and undefined object. Then, from the labeled data, the walls and

roof elements are identified point-wise using the contextual information of a

building. Finally, from the points labeled as roof elements, the errors arise from

contextual information are re-segmented by the mean shift method and then re-

classified. The overall accuracy of the result is better than that achieved by using

the just point-based method.

25

 Chen et al. (2016) proposed an image-segmentation-based method for

urban DTM generation. Firstly, fine-scale segmentation is conducted on the DSM

image using eCognition software. Next, among the unclassified segments, the

lowest one within each cell is selected as the control seed ground segment. The

rest of the unclassified segments are analyzed by comparing the spatial correlation

with its nearest ground segment. In this process, all segments belong to ground

are extracted. Finally, the output DTM is generated through post-interpolation.

, The ground filter based object extraction technique consists of two

subsequent steps, filtering and object classification. In the filtration step, a pixel-

based classifier such as a ground filter is employed to partition the point cloud into

two class: ground and non-ground. The ground point is then used to create the

DEM and the first return is used to create a raster DSM. Next, the overlying objects

are extracted from the nDSM (which is the difference between the DSM and the

DEM.). In the following, some of the well-known ground filter based object

extraction techniques are discussed:

 Arefi et al., (2005) present a hierarchical segmentation procedure using

morphological operations with different structuring element sizes to extract

matched off-terrain regions. The region is then classified based on region

properties. The authors targeted two classes: building and vegetation regions. The

performance of the filter depends on the filtering window size. So, it needs an

accurate a priori knowledge of the target terrain.

26

 Zhang et al. (2014) proposed an object-based point cloud analysis method

to detect and extract vehicles from only one data source: LiDAR data. It involves

two steps: candidate generation and verification. For candidate generation, firstly,

a segmentation-based progressive TIN densification algorithm is employed to

separate the terrains and off-terrains point and then, among the non-ground points,

those point whose height within a scope is selected. For verification, firstly,

features such as area, rectangularity, and elongateness are extracted, and then,

rule-based classification is performed.

3.3. Challenges facing current object extraction methods

The challenges common to all object extraction approaches are as follows:

 Due to the relative complexity of the real-world objects, intra-class

heterogeneity is high. This contributes to the over-segmentation problem (Sevara

et al., 2016). Moreover, the problem is further exacerbated with the availability of

higher resolution imagery, as the heterogeneity becomes more pronounced.

 Object extraction approaches focus on only protruded object such as

building, trees etc. while ignoring intruded objects such as crater, crevice,

swimming pool, irrigation channel etc.

 Selection of the appropriate scale parameters for segmenting out object

and sub-objects to generate the hierarchical object representation.

27

The challenges facing MRS based region growing technique are as follows:

 The performance of MRS heavily depends on the scale parameter

selected, which is challenging to obtain automatically for every object class present

in the scene (Musci et al., 2013). This leads to over-segmentation and under-

segmentation.

 Hierarchical relations among objects derived at different scales is difficult

to establish. For example, the boundaries shared between objects and sub-objects

in the real-world scenario may not coincide in their corresponding resultant

segments due to the imprecise selection of the scale parameters.

The limitation of graph based object extraction techniques are as follows:

 The discriminative feature used in graph based object extraction methods

is the proximity measure between neighbor nodes of the graph. In some objects,

for example, a hill with a gradual slope, it is not clear where the hill ends and the

flat ground begins. Graph-cut requires such clear-cut distinction. Therefore, it has

been rarely used for extracting natural object

 Graph cuts algorithm is only capable of reaching a global optimum for two

labels problems such as foreground/background image segmentation. Therefore,

to accomplish hierarchical segmentation, a non-parametric clustering algorithm

such as mean-shift is usually employed. However, the clustering algorithm is scale

dependent. To illustrate the problem, an example of 2D mean-shift clustering of a

feature vector of size 5 (color (R, G, B) + location (x, y)) with two different scale-

28

parameters (𝜎𝑠, 𝜎𝑟) is shown in Figure 8. In Figure 8 (b), the Gaussian window is

small so that small sub-objects such as windows, doors, pillars are segmented out.

In Figure 8 (a), the Gaussian window is large, as a result, the intricate details are

lost. However, the whole building (parent object) is segmented out. Both results

are important as in one case the parent object is extracted whereas, in another

case the, sub-objects are extracted. The challenge is, however, to find the

appropriate scale-parameter that will serve the purpose.

Figure 8 Two mean-shift results with different parameters (Courtesy: IS-lab,

Halmstad University)

 Objects that lie in close proximity are difficult to separate using the graph-

cut algorithm. This is again because the algorithm relies on proximity between

neighbor nodes for discrimination.

29

The challenges facing a ground filter based object extraction technique are as

follows:

 These object extraction techniques employ a ground filter in the first step.

Therefore, the quality of the filtration has a direct impact on its performance. The

inaccuracy in the filter results is defined by two statistical measure: Type I error

and Type II error. A Type I error is the incorrect rejection of bare earth points

whereas, a type II error is the failure to reject object points. There is a trade-off

between type I error and type II error. Most filters are designed to minimize Type

II errors. The filter parameter is set such that it guarantees the removal of most

object points, even those objects that have a small size and a relatively low height.

However, this may cause the removal of many ground points and thereby

increases the Type I error.

 Most ground filtering methods mentioned above have one thing in common;

they are all pixel-based approach. They classify each LiDAR point as belonging to

an object or ground based on its attribute and its neighborhood. Consequently, the

classifier in the filter algorithm has limited information to work with and is deprived

of the contextual information.

 The result from pixel-based approach such as ground filter may contain

some misclassified isolated pixels or group of pixels, which collectively known as

salt and pepper noise.

 In the case of ground filter object extraction approach, as far as I know,

there is no solution available to produce hierarchical object representation.

30

3.4. Conclusion

Based on the literature review, the following conclusions are drawn:

 Object based approach is superior to pixel based approach. Therefore, in

our research, we focused on developing an object based approach to extract 3D

objects.

 In an ideal situation, the resulting segment presented to the object based

classifier would correspond to the real-world object. However, current object

extraction techniques fall short of the mark. They are, therefore, cannot fully exploit

the leverage the object based approach has over the pixel-based approach. We

attempt to overcome these limitations in our proposed methodology.

 The main two challenges facing OBIA are scale dependency and the

relative complexity of the real-world objects.

31

4. AVSOE Algorithm Ideation

The aim of the research has been the development and the implementation

of an algorithm for automated extraction of unknown salient objects - natural and

man-made, protruded and intruded, from the topographic surface using airborne

LiDAR data. As discussed in the previous section, the main two challenges facing

object based image analysis are the scale dependency and the relative complexity

of the real-world objects. Our object extraction algorithm is designed to tackle

these problems. In this section, the underlying assumptions upon which our object

extraction algorithm is based, are first discussed. Thereafter, a brief overview is

provided on the working principle of the algorithm.

4.1. Characteristics of an object

Axiom 1: An object can be defined as one which introduces a distinct

geometric concavity or convexity on its topographic background.

The following two corollaries can be derived from Axiom 1 (referring to

Figure 9 and Figure 10):

Corollary 1: An object is bounded by topographic discontinuities.

Corollary 2: An object can be approximated into either of (or a mixture of)

two fundamental 3D geometric structures: a ‘convex-like’ object and a ‘concave-

like’ object.

32

Definition 1: A convex-like object is one which introduce convexity to the

topographic background

Definition 2: A concave_like object is one which introduce concavity to the

topographic background

For example, buildings, drumlins, hills, trees etc. falls into the convex-like

structure category whereas a watershed, a swimming pool, a gully, a crater etc.

can be categorized as concave-like structures. The volcano has characteristics of

both types.

Figure 9 Objects and its topographic background

33

Figure 10 Real-world objects types

We can decompose any concave or convex-like object into two surface

types: ‘slope surface’ and ‘horizontal flat surface’.

Definition 3: A slope surface is one which encompasses the object or sub-

object and whose slope is strictly monotonic.

Definition 4: The horizontal flat surface is an open surface whose slope is

zero.

An example is shown in Figure 11. Here, the surface of each object has

been decomposed into multiple slope surfaces and horizontal flat surfaces.

34

Figure 11 Decomposing a (a) complex building structure, and a (b) mountain into

slope surfaces (lighter shade) and horizontal flat surfaces (darker shade)

Referring to Figure 11(a), a single slope surface would include all the

vertical facades of the tall building. A second single slope surface would include

all four facades of the shorter building. In Figure 11(b), a single slope surface would

include the lighter shaded surface going all around the mountain. Virtual Surveyor

based segmentation algorithm is designed to map only the slope surface of the

object leaving behind the horizontal flat surface.

Axiom 2: A single slope surface always connects the object, no matter how

complex, to its background. This special slope surface is called ‘foothill_slope’.

Foothill_slope of an object ends with the boundary of the object.

Figure 12 shows the foothill_slope of the objects as illustrated in Figure 11.

Referring to this figure and axiom 2, the following conclusion can be drawn,

Corollary 3: A seed growing segmentation algorithm that maps the slope

surface of an object and which starts from a seed positioned in the vicinity of the

35

object boundary is guaranteed to capture the object boundary in the resultant

segment.

Figure 12 Foothill_slope (yellow shade) and footprint (dash line) of a (a) complex

building structure, and (a) mountain

Our strategy is, therefore, to map the foothill_slope of the object using a

seed growing segmentation algorithm. It starts with a seed at somewhere on the

foothill_slope of the object and it includes neighbor that maintain the strict

monotonicity as that defined by the slope of the seed. (See Definition 1).

In the process of mapping, the foothill_slope of sub-objects that lies on the

foothill_slope region of the parent object are also get mapped and included into

the growing segment. This is demonstrated in Figure 13 which shows the close-up

view of the house on the mountain (Figure 11(b)). While mapping the foothill_slope

of the mountain, the foothill_slope of the house is also get mapped. This is

36

because, surface B of the house maintain the strict monotonicity as that defined

by the neighbor surface A of the mountain.

Figure 13 While mapping the foothill_slope of the mountain, the foothill_slope of

the house is gets mapped.

A foothill_slope can be classified into two types: convex and concave.

Observation 1: Surface Normal vectors to all points in the foothill_slope of

convex type point outward as shown in Figure 14.

Observation 2: Surface Normal vectors to all points in the foothill_slope of

concave type point outward

37

Figure 14 Normal to all points in the foothill_slope of a convex object point

outward [Courtesy, 1ucasvb]

Referring to definition e and Figure 10, the following observation of the

foothill_slope can be made:

Axiom 3: Foothill_slope of a convex-like and concave-like object is always

convex and concave respectively. This means that a convex object can have

several instances of horizontal flat surfaces, and/or concave slope surfaces, but

its foothill_slope is always convex.

Definition 5: There exist a set of circular loops, associated to its

foothill_slope, that encircle the entire structure and the normal to each point of the

loop, points inward in the case of concave foothill_slope and outward in case of

convex foothill_slope. For each point on the slope surface, there exists at least one

member of that set of loops, which passes through the point. These special circular

loops are called ‘path_loops’.

38

 Figure 15 shows few path_loops encircling a mountain and a cavity. It is

to be noted that the boundary of the object is itself a path_loop.

Figure 15 Top view of a cavity, a mountain, and its topographic

background. Their foothill_slope and path_loops are also shown

According to the definition 5, observation 1 and 2, and axiom 3, the

following conclusion can be drawn:

Corollary 4: the normal at each point of the path_loop either point inward

or outward in case of concave or convex-like object respectively.

The following conclusion can be derived from axiom 2, definition 5 and

corollary 4:

39

Corollary 5: Each object in a topographic map can be represented by a set

of path_loops encircling the object. The normal at each point of the circular loop

point inward or outward, depending on the type of the object.

The direction of the path_loops can be decomposed into two major

components: cross slope and main slope. Here cross slope is perpendicular to the

direction of the main slope as shown in Figure 16.

Figure 16 The black thick arrow indicates the direction of the main slope; the

white arrow indicates the direction of the cross slope

An important observation of these path_loops is:

Axiom 4: The cross slope component of the path_loop dominates over the

main slope component. This is demonstrated in Figure 17.

40

Figure 17 Cross slope component of the path_loop dominates over the main

slope component

Like every other algorithm that deals with airborne LiDAR point cloud data,

our algorithm first derives the surface representation from the point cloud model of

the terrain. In our case, a network of the planar segment is constructed from the

point cloud model of the terrain. This is done by fitting planes onto the point cloud.

Figure 18 shows the stylistic simulation of the partition of a terrain (Figure 15) into

a network of planar segments. The following conclusion can be derived from

corollary 1:

41

Corollary 6: the planar segments border coincides with the object border

as shown in Figure 18.

Figure 18 Partitioning the terrain (shown in Figure 15) into a network of planar

segments. Here, each individual color represents a planar segment.

4.2. Surveyor Guidance Vector, on_slope condition and path_loop condition

Consider a virtual surveyor, as shown in Figure 19(b), standing on the

sloping surface of a bowl-shaped structure, as shown in Figure 19(a). Now

suppose, the normal to the background onto which the bowl is placed is known

and is referred as Background Normal vector (BN vector). Here, the BN vector is

vertical. The normal to the slope on which the surveyor is standing can be locally

estimated and is referred as a Surface Normal vector (SN vector). The cross

42

product between the BN vector and SN vector produce a special vector which we

called Surveyor Guidance vector (SG vector).

𝑟 = �̂� × �̂� = |�̂�||�̂�|𝑠𝑖𝑛𝜃�̂� = 𝑠𝑖𝑛𝜃�̂� eq. 1

Figure 19 A surveyor as shown in (b), standing on the slope of a bowl structure

as shown in (a)

Observation 3: If the surveyor is facing the direction of the Surveyor

Guidance vector 𝑟, the Surface Normal vector �̂�, the surveyor and his right arm

are in the same plane. The following conclusion can be drawn:

Corollary 7: When the dot product between path vector �⃗� and the Surveyor

Guidance vector 𝑟 is positive, the Surface Normal vector �̂� lies on her right-hand

side. If the dot product is negative, SN vector �̂� is on her left-hand side. The

premise is proved below.

43

Proof: Figure 20 shows the top view of the surveyor standing on the slope.

Here, the BN vector points out of the page. The path vector �⃗� shows the direction

taken by the surveyor. The dot product between �⃗� and 𝑟 is the scalar projection of

�⃗� to 𝑟 which is represented by the cyan colored vector in Figure 20.

Figure 20 Surveyor path vector relation with SG vector

The dot product between �⃗� and 𝑟 is given by

�⃗�. 𝑟 = |�⃗�||𝑟| cos 𝜃

Now, when 𝜃 = −
𝜋

2
 →

𝜋

2
 , �⃗�. 𝑟 ≥ 0, SN vector is on RHS

And, when 𝜃 =
𝜋

2
 →

3𝜋

2
 , �⃗�. 𝑟 < 0, SN vector is on LHS

Definition 5: Suppose a surveyor follows the arc shown in Figure 21. The

path vector is shown in three different location of the arc. The path vector is

tangential at each point of the curvy path. The arc can be divided into infinite pieces

called ‘path_elements’. Each infinitesimal piece can be approximated as a straight

44

line which lies in the direction of the path vector at the start point. That means, at

each point of the path_element, the path vectors point in the same direction along

the path_element. Representing the path taken by a surveyor as a chain of

path_elements concur with our surface representation of a network of planar

segments. Here, the surveyor can hop from one planar segment to the neighbor

planar segment in a straight line. Each such straight line represents a

path_element.

Figure 21 Path vector shown in three locations of the arc

Definition 6: Figure 22 shows an arc (𝑎𝑟𝑐𝐴𝐵) drawn on the foothill_slope of

a bowl-shaped structure. The direction of the arc is radially outward. The arc can

be divided into its path_elements. At each point of each path_element, the dot

product between the path vector and the Surveyor Guidance vector at that location

is zero since they are perpendicular to each other. We call these special

path_elements as ‘radial_path_elements’. Therefore, it can be stated that, at each

point of the foothill_slope, a path_element can be associated such that the dot

45

product between the SG vector and the path vector is zero at all points of the

path_element.

Figure 22 Occasion when the dot product is zero between the path vector and

the SG vector

Corollary 8: At each point of the foothill_slope, the set of all possible

path_elements, which can be associated to the point, excluding the

radial_path_elements obeys the following condition. The dot product between the

path vector and the Surveyor Guidance vector maintain the same sign at all points

of the path_element. This premise is proved as follows.

Proof: In Figure 23, consider the set of points in the circle drawn on the

foothill_slope of the concave-like structure. Consider the set of arcs where each

starts from any of those points and ends at the center. Each arc can be divided

into its path_elements. Each associated path vector of a path_element can be

decomposed into two components: one in the direction of radial_path_element (�⃗�𝑟)

46

and the other one is perpendicular to it (�⃗�𝑝). Since, the radial_path_element

component (�⃗�𝑟) has no contribution to the dot product, as discussed in definition

6, the evaluation of the dot product is therefore solely depended on the component

that is perpendicular to the radial_path_element (�⃗�𝑝). Since the Background

Normal vector is vertical, �⃗�𝑝 can be visualize from the top view as shown in Figure

23. Figure 23 demonstrates that, at each point of �⃗�𝑝 , for each path_element, the

normal points to the same side, either left-hand side or right-hand side, of the path

vector component �⃗�𝑝. That means, the dot product between the path vector and

the Surveyor Guidance vector maintain the same sign at all points constituting the

path_elements that belongs to the foothill_slope.

Figure 23 Occasion when the dot product is not zero between the path vector

and the SG vector

Conclusion 1: If Antecedent S is a “slope surface” and Consequence N

represent the following event, “dot product between the SG vector and the path

47

vector defined by two infinitely close neighbor points (except those pair of points

which constitute the radial_arc) has the same sign”. Then, S guarantees N, i.e. S

=> N. (Sufficiency condition).

Corollary 9: In the case of two close neighboring points, where each

belongs to a different slope surface, the dot product at all points of the

path_element connecting the points do not have the same sign. This premise is

proved as follows.

Proof: In Figure 24 (a), plane A and B belong to the same slope surface

since the monotonicity of their grade has been maintained, whereas, in (b) and (c),

they each belong to a different slope surface. In Figure 24 (a), �⃗⃗�𝐴 and �⃗⃗�𝐵 both point

to the same side of path vector of the path_element defined by any pair of points

(except radial_path_element) that lies on both side of the boundary between A and

B. On the other hand, in Figure 24(b) �⃗⃗�𝐵 = 0 and in Figure 24 (c) �⃗⃗�𝐴 and �⃗⃗�𝐵 both

point to the opposite sides of the path vector which connects the two neighboring

points across the boundary. So, the dot product at either end has the same sign in

(a) but not in the case of (b) and (c).

48

Figure 24 Adjacent planes when (a) form a slope, (b) and (c) does not form a

slope.

Conclusion 2: Again, if the Antecedent S is “slope surface” and the

Consequence N represent the following event, ““dot product between the SG

vector and the path vector defined by two infinitely close neighbor points (except

those pair of points which constitute the radial_arc) has the same sign” then the

following condition statement holds: if S is false, N is false or in other words, S <=

N (Necessity condition)

Conclusion 1 and 2 can be summarized as S is necessary and sufficient

for N or in other words, S if and only if N i.e., S N. That means, the adjacent

planes are part of the same surface slope if and only if the dot product between

the path vector �⃗� and the Surveyor Guidance vector 𝑟 have the same sign all

through.

Referring to Figure 25, according to the conclusion derived above, the point

A and the point B lies on the same slope surface if,

�⃗�𝐴𝐵. 𝑟𝐴 ≠ 0 eq. 2

�⃗�𝐴𝐵. 𝑟𝐵 ≠ 0 eq. 3

49

𝑠𝑖𝑔𝑛(�⃗�𝐴𝐵. 𝑟𝐴) = 𝑠𝑖𝑔𝑛(�⃗�𝐴𝐵 . 𝑟𝐵) eq. 4

This expression (eq. 4) can be rewritten as follows:

(𝑓𝑖𝑟𝑠𝑡_𝑑𝑜𝑡_𝑝𝑟𝑜𝑑) × (𝑠𝑒𝑐𝑜𝑛𝑑_𝑑𝑜𝑡_𝑝𝑟𝑜𝑑) > 0 eq. 5

Where, 𝑓𝑖𝑟𝑠𝑡_𝑑𝑜𝑡_𝑝𝑟𝑜𝑑 = �⃗�𝐴𝐵 . 𝑟𝐴 and 𝑠𝑒𝑐𝑜𝑛𝑑_𝑑𝑜𝑡_𝑝𝑟𝑜𝑑 = �⃗�𝐴𝐵. 𝑟𝐵

This expression (eq. 5) is termed as ‘on_slope’ condition. Therefore, the planar

segments that satisfy the above condition belong to the same slope surface.

Figure 25 Transverse across adjacent planar segments

The above expression can be used for seed growing object segmentation

process. The planar segments that satisfy the condition are only eligible for

inclusion in the object image segment.

It is to be noted that in our surface representation in the form of planar

segments network, the resolution of the network needs to be very high for the

condition required by premise 2 and 3 to be effective. However, to generate such

50

high-resolution network of planar segments is often not possible. Therefore, even

though theoretically, the implement of the on_slope condition in the segmentation

process is sufficient to guarantee the accurate mapping of foothill_slope of the

object. However, practically on many occasion, due to the granular representation

of the terrain, the on_slope condition fails to serve this purpose.

 An example of such case is shown in Figure 26. The highest resolution

possible for our network of planar segments is limited by the raster representation

of the point cloud from which the network has been derived. Details of the

construction of the network of planar segments are given in section 5.1.

Figure 26 Case when on_slope condition fails

Here, as shown in the figure above, the elementary unit of the raster such

as A can have such a distorted nonplanar geometric surface. As a result, the

Surface Normal vector of both cell A and B point to the RHS of the surveyor, so in

both cases, the dot product has the same sign. These kinds of cases render the

51

necessity condition of the on_slope condition (conclusion 2) ineffective. That is

why the application of the on_slope condition for mapping the foothill_slope is not

enough and so it is just a part of the elaborate process described in chapter 7 and

8.

Referring to Figure 27, suppose a virtual surveyor diligently follows one of

the path_loop shown in Figure 15. Since, at each point of the path, the SN vector

points to the right-hand side of the surveyor so, the dot product between the path

vector and SG vector is positive all throughout the path_loop.

Figure 27 Virtual surveyor following a path_loop

Therefore, referring to Figure 25, suppose planar segments A and B are

neighbors at somewhere on the foothill_slope, then �⃗�𝐴𝐵 constitute a path_loop if

the following condition hold:

(first_dot_prod > 0) ∧ (second_dot_prod > 0) eq. 6

52

Eq. 6 is a special case of eq. 5. This is a property of the path_loop and is

therefore called ‘path_loop condition’.

Now, this property of a path_loop has three major implications:

1. If there exists an arbitrary loop on a topographic surface, and if it is found

that the loop obeys the path_loop condition, then the loop is a path_loop. That

means, there is an object present and the loop encircles it.

2. Since the dot product is positive all through the path_loop. That means, the

SG vector can be used to guide the surveyor around the foothill_slope.

3. The direction of the path_loop for a concave foothill_slope is clockwise

whereas, the direction of the path_loop for a convex foothill_slope is counter-

clockwise.

4.3. Overview of the AVSOE algorithm

Before delving into the details of the proposed methodology, this section

walks through the logical steps that have been taken which eventually leads to the

final form of the algorithm.

First, a network of the planar segment is constructed from the point cloud

model of the terrain as discussed in section 4.1. Next, a directed graph is

constructed from the planar segment representation of the terrain, with each planar

segment represent the node and there exist an edge between neighboring nodes

only if the edge complies with the path_loop condition. According to the path_loop

53

property discussed in section 4.2, it is guaranteed that this process will produce a

set of a chain of connecting edges in the graph that encircles the foothill_slope of

each object and sub-object present in the scene. Thereby, these cycle graphs

(circular loops) represent the path_loops. Detection of these path_loops will reveal

simultaneously the presence and position of all objects and sub-objects in the

scene. However, such graph can be very dense for a large terrain, so finding each

loop in the graph can be computationally expensive. Moreover, the ground itself

has plenty of small concave and convex structures. So, loops will form around

them and hence contribute to the set of false positive. To overcome these

problems, a best-of-class pixel based ground filter algorithm can be employed to

filter out most of the ground planar segments. Analyzing the filter result provides

crucial information about the object candidates, such as seeds and back ground

normal vector, which can be utilized by a seed growing segmentation algorithm to

carve out regions from the map, where each region includes the foothill_slope of

an object candidate. It is to be noted that the object candidate is a sub-set of the

segmented region. These segments are called ‘naïve segments’ and the process

that produces them are called ‘naïve object segmentation’. After the segmentation,

a sub-algorithm is assigned to work on the sub-graph contained inside each of the

regions individually to extract the boundary of the object and its sub-objects. The

result is a hierarchical representation of the object and the process that produce it

is called hierarchical decomposition algorithm. This divide and conquer approach

of AVSOE made the overall process very efficient and remove most of the false

positives.

54

Figure 28 shows the overall block diagram of the Automatic Virtual

Surveyor based Object Extraction (AVSOE) algorithm. It consists of three stages:

Preprocessing, Naïve Object Segmentation and Hierarchical Decomposition. The

preprocessing step employs the ground filter and extracts the object candidates,

each of which is represented by its corresponding seed and Background Normal

vector. The result is fed into the Naïve Segmentation step which produces the

naïve segments out of it. The Hierarchical Decomposition module works on the

sub-graph contained inside each of the naïve segment and extract the object and

its sub-objects boundaries.

Figure 28 Flowchart of the proposed methodology (AVSOE)

55

Figure 29 shows the stylistically simulated results obtained from each of

the three stages. In the following chapters, the individual parts of the flowchart are

explained in detail.

Figure 29 Stylistically simulated result obtained from each of the three main

stages of the Virtual Surveyor object extraction (VSOE) algorithm

56

5. Preprocessing

In this section, the preprocessing stage is described in detail. This

sequence of steps processes the input point cloud data and extract information

that is later used by the subsequent stages.

Figure 30 shows the overall block diagram of the Automatic Virtual

Surveyor based Object Extraction (AVSOE) algorithm with preprocessing stage in

details.

1. The input to our algorithm is the LiDAR point cloud data of the target terrain.

2. In the preprocessing step, the point cloud is first rasterized to produce a

Digital Elevation Model (DEM) representation.

3. The mesh is then fed into a plane-fitting algorithm to generate planes.

4. Our method then employs a well-known pixel-based ground filter (Tóvári

and Pfeifer, 2005), whose sole purpose is to filter out the background planar

segments (ground pixels) and present the salient planar segments (object pixels)

to the subsequent object extraction algorithm.

5. Since neighboring object planar segments may have derived from a single

object, the planar segments are grouped together using connected component

analysis. Each group of planar segments provides a number of seed candidates

which is leveraged by our (seed-dependent) naïve object extraction sub-algorithm.

Background Normal vector is also extracted by fitting planes to the neighboring

planar segments that belong to the ground.

57

Figure 30 Flowchart of the proposed methodology (AVSOE)

58

5.1. Rasterization

As discussed in Chapter 2, the two key derivatives that can be produced

from the LiDAR point cloud data for the surface analysis are Digital Elevation

Models (DEMs) and Triangulated Irregular Networks (TINs). Even though a TIN

can admittedly give more accurate results, we opted for the DEM as it significantly

reduces the data dimension and processing time. Moreover, in the case of a low

point density or a zero-point density patch in the area of interest, the TIN facets

become larger in size resulting in unnatural triangular artifacts. DEM uses the

interpolation approaches to fill in such void patches. In our method, the TIN input

can be easily plugged in if necessary in the place of DEM without requiring any

further processing.

For DEM, the grid is overlaid on the terrain surface, so the attribute

represents surface elevation obtained by means of interpolation of the

corresponding point cloud data. For generating DEM, the spatial interpolation

approach generally used are Inverse Distance Weighted (IDW), kriging, Nearest

Neighbor etc. We use IDW since it is robust for landscape with high surface

variability (Mongus, 2014).

The input to our algorithm was a LAS file, which stores airborne LiDAR data

in a binary format. The mean point density of the acquired LiDAR data is 4/m2.

First, the LAS file for a target area was exported to the ASCII text format and was

then read in MATLAB. For rasterization, the small cell size of 2m is chosen to

ensure low quantization error. The target area is then overlaid with a 2m x 2m

59

square grid. The well-known IDW interpolation is then used to predict the voxel

value at the center of each cell, using a linearly weighted combination of a set of

sample points present in that cell. The weight is a function of the inverse distance

from the sample point to the center of the cell. The IDW is again used to interpolate

elevation to ‘empty’ cell (cell with no LiDAR point). Here, instead of the neighbor

sample point, the neighbor cells value has been used. In Appendix A, the IDW

interpolation method is detailed. An example of the resultant square mesh model

of a landscape is shown in Figure 31

Figure 31 Square mesh model of a landscape

60

5.2. Pfeifer’s Ground Filter

In our work, we selected the well-known surface based filter proposed by

Tóvári and Pfeifer (2005) as our pixel-based ground filter. This approach combines

planar segmentation and ground filtration using a robust interpolation technique.

In the first step, a plane-fitting algorithm is used to generate planes. The

planar segmentation step is based on a region growing algorithm, where the seeds

are placed, first randomly, and then in unexplored spaces, to divide the target area

into planar segments. Once a seed is selected, the nearest neighbor points are

examined, to determine whether they meet certain criteria. Neighbor points that

satisfy the criteria are added to the growing region. The details of this algorithm

are discussed in Appendix B.

The next step is a robust interpolation. First, planar segments with a size

larger than the largest man-made structure possible are extracted and identified

as ground. These ground seeds act as ground elevation references to initiate the

filtering process. Next, a surface is interpolated initially, using surface moving least

squares (MLS), from all points. For each planar segment, a weight is assigned

based on the average difference in the distance of the interpolated surface to the

constituents observed value. These weights are considered in the next iteration

and therefore, segments with a large weight have a larger influence on the run of

the surface. This process is iterated until there is no object point left, i.e. their

weight becomes zero. The details of this algorithm are discussed in Appendix C.

61

Figure 32(a) shows the result of the planar segmentation algorithm. Here,

each color represents an individual planar segment. Figure 32(b) shows the result

after robust interpolation. Here, the red color represents the ground planar

segments and the white represents the non-ground planar segments.

Figure 32 Result showing after (a) Planar segmentation (b) Robust Interpolation

of a convex object such as complex building

The procedure from (Tóvári and Pfeifer, 2005) was designed to detect

planar segments only belonging to conspicuous convex objects such as building,

trees etc. As stated in chapter 1, our objective is not only to detect prominent

convex objects but also objects that are not so discernable from its background

such as mountain and objects that are concave in shape such as a pond, artificial

cavities etc. To serve our purpose, we made two modifications in the interpolation

method. One modification enables the extraction of planar segments belonging to

concave objects. Details of this modification are explained in Appendix C.

62

The other modification enables the ground filter to detect all possible planar

segments belonging to object even those with low heights. Details of the underlying

mechanism of this modification are explained below.

As discussed in section 3.3, there are two types of errors that can occur

during the filtering process: Type I error and Type II error. The type-I error happens

when a ground filter fails to accept a valid bare earth point. Type-II error occurs

when it accepts points belonging to an image object as a ground point. In our

method, the parameters of the filter are tuned to minimize the type II error i.e. it

guarantees the removal of most of the non-ground points, even those that

correspond to objects that are small and close to the ground. Therefore, the ground

filter is designed to capture every salient point it found on its way during the region

growing. Since there is a trade-off involved in making type I error and type II error,

type I error increases in the process. However, in the subsequent steps, the

extracted object planar segments are scrutinized further and the misclassified

ground planar segments are detected and eliminated. Therefore, the combined

subsequent stages (Naïve object segmentation and Hierarchical decomposition)

act as a Virtual Surveyor based refining module. This reduces the type I error. As

a result, both type I and type II error are minimized. Figure 33 shows the flowchart

of AVSOE from the perspective where it acts as a ground filter refiner.

63

Figure 33 AVSOE as a ground filter refiner

In the next step, the object planar segments extracted using the pixel-

based ground filter is grouped using connected component analysis. This is a fast

and very simple method to implement clustering. The input planar segment

network is first converted to a binary image by assigning those pixels corresponds

to object planar segments to 1 and the rest to 0. Here, in this analysis 4-type

connectivity is assumed. Figure 34 shows the result of connected component

analysis on pixels belonging to a concave object.

64

Figure 34 Connected component analysis group pixels (yellow shaded) of a

concave-like object

As explained in section 4.3, the naïve object segmentation is a seed

growing segmentation method. The seed candidates can be selected from the

planar segments of the cluster representing the object. Since it is desired to select

the seed candidate from the foothill_slope of the object (according to Section 4.1),

the seeds in our method are collected from the border of the cluster. So, we find

out the planar segments that lie on the border and designated them as seed

candidates. Figure 35(a) shows the estimation of the border of the object shown in

Figure 34 and Figure 35(b) shows the seed selected from that border.

65

Figure 35 (a) Border selection (magenta) and (b) seed candidate selection (cyan)

Naïve object segmentation sub-algorithm also requires the estimation of

the corresponding Background Normal vector of the object. Background Normal

vector is the vector perpendicular to the topographic surface onto which the object

is placed. To estimate the normal, the planar segments corresponding to the

neighboring ground is selected and a plane is fitted to the points using the plane-

fitting algorithm described in Appendix B. Figure 36 shows the group of

neighboring ground planar segments of the concave object shown in Figure 34.

Figure 36 Neighboring ground planar segments (green)

66

The preprocessing step produces the following: the planar segment

network and the object candidates represented by their corresponding seeds and

Background Normal vectors (BN vectors). These results are then fed into naïve

object segmentation sub-algorithm.

67

6. Naïve Object Segmentation

Our object segmentation method is inspired by how a human surveyor,

placed at somewhere on the foothill_slope of an object would plan her path so that

she gradually covers and maps the slope of the entire object without any external

help. In essence, this method is presented with the same set of data as the human

surveyor and it adaptively analyses the data much like the human surveyor would.

Hence, the name Virtual Surveyor. However, the segmentation method only maps

the slope surface of the objects leaving behind the top horizontal flat surface of the

objects. Objects that lies on the foothill_slope of the parent object are also included

in the segmentation as explained in section 4.1. These sub-objects are later

detected and segmented out in the hierarchical decomposition stage.

The purpose of the naïve object segmentation algorithm as discussed in

section 4.3 is to partition the map of the terrain into regions that contain potential

object candidates. This significantly reduces the complexity for the Hierarchical

decomposition sub-algorithm to determine the perimeter of the object and its sub-

objects. The sub-algorithm considers each of the object candidates extracted from

the previous steps to map out a region such that it encompasses the foothill_slope

of the object. However, in the process, the segmentation may include nodes

(planar segments) that are not part of the foothill_slope of the object. Since the

segmentation is far from perfect, the algorithm is termed as ‘Naïve object

Segmentation’.

68

Figure 37 shows the overall flowchart of the AVSOE algorithm with the

Naïve object segmentation sub-algorithm in details.

Figure 37 Flowchart of the AVSOE algorithm with the Naïve Object Segmentation

stage in details

. The input to the object segmentation module is the planar segments

network, object candidates represented by their corresponding seeds location and

Background Normal vectors (BN vectors). In the following, the individual parts of

the flowchart are explained in detail.

69

6.1 Segmentation using the on_slope condition

One way to do object segmentation is by using a seed growing

segmentation algorithm that starts with a seed at somewhere on the foothill_slope

and accepts those neighbors with which the connecting edge obeys the on_slope

condition. Theoretically, this would have ensured that the nodes that are being

included belong to the foothill_slope of the object. However, in practical, due to the

granular representation of the terrain, it is found that segmentation may

occasionally cross over the boundary of the object.

To terminate the segmentation, the algorithm computes the magnitude of

the Surveyor Guidance vector of the selected neighbor. As can be seen from the

Figure 38, the magnitude of the SG vector, which is the cross product of BN vector

and SN vector, is proportional to the grade of the slope with respect to the

background. So, when the magnitude of the SG vector of the selected neighbor

becomes less than a certain low threshold value, this indicates that the

segmentation has ventured outside the boundary of the object, so this would

prompt the termination of the segmentation process. However, as stated in Section

4.2, the segmentation through on_slope condition, may occasionally cross over

the boundary of the object so the termination condition may cause the

segmentation to end prematurely, that is, before capturing the entire foothill_slope

of the object.

70

Figure 38 Variation of the magnitude of Surveyor Guidance vector with respect to

the profile of the slope

6.2 Segmentation via following the Surveyor Guidance vector

To overcome this problem, we enhance the segmentation strategy. Instead

of including all the neighboring nodes that pass the on_slope condition at the same

instant, it prioritizes the inclusion of the neighboring node that maximizes the

fitness value 𝑄𝑐𝑜𝑛𝑛𝑒𝑐𝑡 which is computed according to this formula (Referring to

Figure 25 and Figure 38):

𝑄𝑐𝑜𝑛𝑛𝑒𝑐𝑡 = 𝑊1 × |𝑓𝑖𝑟𝑠𝑡_𝑑𝑜𝑡_𝑝𝑟𝑜𝑑| + 𝑊2 × |𝑠𝑒𝑐𝑜𝑛𝑑_𝑑𝑜𝑡_𝑝𝑟𝑜𝑑| + 𝑊3 × |𝑟𝐴|

eq. 7

71

Here, the first term measures how close the direction of the path vector is

to the Surveyor Guidance vector at the current node, the second term encourages

the virtual surveyor to take the path that preserves the SG vector direction and the

last term measure the grade of the slope with respect to the background. In this

way, the mapping process follows the SG vector and the entire foothill_slope of

the object will get mapped before the termination criteria are reached. The

neighboring planar segment with the maximum fitness value Qconnect is merged into

the growing segment region.

However, the fitness equation (eq. 7) faces difficulty in guiding the surveyor

around the corner since the first_dot_prod measure in that direction is low, as

demonstrated with an example in Figure 39. In order to compensate for the low

contribution of first_dot_prod, we introduce a new measure in the fitness equation

called angle_measure.

Figure 39 Guiding the surveyor around the corner

72

Referring to Figure 40 where 𝑟𝐵 = �̂� × �̂�𝐵 and 𝑟𝐴 = �̂� × �̂�𝐴 . Here, �̂� is the

Background Normal vector.

Here, the SG vector corresponds to the current segment (A) and the

neighbor segment (B) are first projected onto the horizontal plane

𝑝𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑒(𝑟𝐴) = 𝑟𝐴 − (𝑟𝐴. �̂�) × �̂� eq. 8

𝑝𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑒(𝑟𝐵) = 𝑟𝐵 − (𝑟𝐵. �̂�) × �̂� eq. 9

The angle_measure is the angle between the projected SG vectors pair

𝑎𝑛𝑔𝑙𝑒_𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 𝑐𝑜𝑠−1 (
𝑝𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑒(𝑟𝐴).𝑝𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑒(𝑟𝐵)

|𝑝𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑒(𝑟𝐴)|×|𝑝𝑟𝑜𝑗𝑝𝑙𝑎𝑛𝑒(𝑟𝑩)|
)

eq. 10

It should be noted that angle_measure is impervious to the rotation along

the horizontal axis as shown in Figure 40(c). So, the surveyor is encouraged to

rotate only along the axis in the direction of BN vector.

With the introduction of the magnitude of angle_measure, the fitness

equation as given by:

𝑄𝑐𝑜𝑛𝑛𝑒𝑐𝑡 = 𝑊1 × |𝑓𝑖𝑟𝑠𝑡_𝑑𝑜𝑡_𝑝𝑟𝑜𝑑| + 𝑊2 × |𝑠𝑒𝑐𝑜𝑛𝑑_𝑑𝑜𝑡_𝑝𝑟𝑜𝑑| + 𝑊3 × |𝑟𝐴| + 𝑊4 ×

|𝑎𝑛𝑔𝑙𝑒_𝑚𝑒𝑎𝑠𝑢𝑟𝑒| eq. 11

Here, 𝑊1, 𝑊2, 𝑊3 and 𝑊4 represent the weights set for each term.

73

Figure 40 Normal vector projection onto the horizontal plane for adjacent planar

segments when they are (a) coplanar when they form a (b) corner about vertical

axis and a (c) corner about horizontal axis

Referring to Figure 37, the segmentation algorithm first finds all the nodes

that are neighbors to the segment region. Then, it filters out the neighbors that

pass the on_slope condition. Next, 𝑄𝑐𝑜𝑛𝑛𝑒𝑐𝑡 is calculated for all remaining

neighbors. Next, it finds the neighbor that have maximum 𝑄𝑐𝑜𝑛𝑛𝑒𝑐𝑡 which is then

added to the growing region. Table 2 shows the distribution of the weights. The

values of the weights were determined empirically.

Table 2 Weight distribution

𝑊1 𝑊2 𝑊3 𝑊4

35 10 65 20

74

In order to ensure the naïve segmentation includes the foothill_slope of the

object entirely, the threshold value for the termination of the segmentation process

is set very low. As stated in section 6.1, the on_slope condition fails in some

occasion and the mapping process may cross over the boundary of the object.

This cause inclusion of some planar segments that are not part of the object. An

example of such false positive planar segments is shown in Figure 41 (b). In the

hierarchical decomposition step, the perimeter of the object is correctly detected

and the false positive planar segments are consequently removed.

Figure 41 Illustration displaying segmentation result of a house at (a) oblique

view, and (b) top view. The false positives planar segments are crossed out

75

6.3 Segmentation Results

Figure 42 is the segmented result of two adjacent landforms. Here, the

segmentation result is expressed in terms of the planar segments. This is a very

interesting case, where both the hill and the watershed share the same slope. For

this reason, both are segmented from their surrounding using a single seed. In the

next step of the hierarchical segmentation algorithm, both will be individually

identified.

Figure 42 Illustration displaying segmentation result for a hill shaped and

watershed shaped landform at (a) top view, and at (b, c, d) different angle views

Figure 43 shows successful segmentation of an artificial pond.

76

Figure 43 Illustration displaying segmentation result of an artificial pond at (a) top

view, and (b) oblique view

Figure 44 shows the segmentation result of a complex building. It is evident

from the figure that all the walls of the building have been successfully mapped.

77

Figure 44 Illustration displaying (a) orthoimage of a complex building, (b) point

cloud model of the building, segmentation results at (c) top view, and (d) Oblique

view

Figure 45 shows the segmentation result of a pair of adjacent pools. As can

be seen from the figure, sub-objects that lie on the foothill_slope of the parent

objects are also included in the resultant segment.

78

Figure 45 Illustration displaying (a) orthoimage of a pair of adjacent pools, (b)

point cloud model of the pools, (c) the segmentation result

79

7. Hierarchical Decomposition

In the segmentation step, the map is partitioned into regions that each

contain an object. The object can be a composite one, containing many sub-

objects. The segmentation method ensures the entire foothill_slope of the object

and its sub-objects are captured. In the process, false positive planar segments

are also included in the naive segment. The next obvious step is to hierarchically

decompose the composite object into its constituent objects and draw their

boundaries along with the parent object. The extracted sub-object can itself be a

distinctive part of the parent object or an independent object. The relationship of

the sub-object to the parent object will be clarified in the Hierarchical

decomposition step. Figure 46 shows the overall flowchart of the AVSOE algorithm

with the Hierarchical Decomposition stage in details. In the following, individual

parts of the flowchart of the Hierarchical Decomposition stage are explained in

detail.

The Hierarchical decomposition sub-algorithm work on the segmentation

result delivered by the Virtual Surveyor based Naïve Segmentation algorithm. The

purpose of the VS Hierarchical Decomposition is twofold:

1. Identify the constituent sub-objects of the composite object

2. Find the boundaries associated with the parent object and each of its sub-

objects.

In other words, the hierarchical decomposition process segments out the

object and its sub-objects. As shown in Figure 46, this segmentation of object and

80

its sub-objects is carried out in a recursive pattern. As stated in section 4.3, the

sub-algorithm first constructs a directed graph inside the naïve segment where the

nodes are the planar segments and the edges obey the path_loop condition. This

in-segment graph is termed as ‘complete_flow_graph’.

Figure 46 Flowchart of the AVSOE with the Hierarchical Decomposition stage in

details

81

7.1 Generating the complete_flow_graph

As stated in Section 4.3, in any convex or concave-like object, there exists

a set of circular path loops, associated to its foothill_slope, which encircles the

entire structure. For each point on the slope, there exists at least one member of

that set of path loops, which passes through the point. The normal at each point

of the circular path loop point inward or outward.

In section 4.2, the following conclusions were drawn:

1. Each object in a topographic map can be represented by a set of circular

path_loops where the dot product between their Path vector and the Surveyor

Guidance vector (SG vector) at each point has the same sign i.e., the loop follows

the path_loop condition.

2. Every point on the object can be connected to any path_loop via a chain of

connecting edges that satisfies the on_slope condition.

From these conclusions, we derived the idea of constructing a graph,

where each planar segment inside the object segment is connected to its

neighboring planar segments if it follows the path_loop condition. The graph would

capture not only all the possible path_loops but also the chain of connecting edges

that connect each planar segment constituting the naïve segment to any of that

loop. We call this graph ‘complete_flow_graph’. A real-world example of such a

graph is shown in Figure 47 and Figure 48.

82

Figure 47 Illustration of the complete_flow_graph of the artificial pond (Figure 43)

During the formation of the complete_flow_graph, the procedure also

computes the Qconnect value for each connection. The mathematical expression for

evaluating Qconnect value is shown in eq. 2. This Qconnect value of the edge quantity

the likelihood of the neighboring nodes belonging to the same foothill_slope. These

Qconnect values for each connection are recorded in a map referred to as

Qconnect_map which is later used in subsequent steps.

The Qconnect formulae and the weights assigned is restated below:

𝑄𝑐𝑜𝑛𝑛𝑒𝑐𝑡 = 𝑊1 × |𝑓𝑖𝑟𝑠𝑡𝑑𝑜𝑡𝑝𝑟𝑜𝑑
| + 𝑊2 × |𝑠𝑒𝑐𝑜𝑛𝑑𝑑𝑜𝑡𝑝𝑟𝑜𝑑

| + 𝑊3 ×

|𝑎𝑛𝑔𝑙𝑒𝑚𝑒𝑎𝑠𝑢𝑟𝑒| + 𝑊4 × |𝑟𝐴|

where, 𝑊1 = 45, 𝑊2 = 10, 𝑊3 = 40 and 𝑊4 = 5

83

Here, the weight is assigned such that high preference is given to

neighbors which lie in the direction close to the SG Vector. This encourages a

chain of connections to form around objects.

Figure 48 Illustration of the complete_flow_graph of a composite object (hill

shaped, watershed shaped landform and a tree) (Figure 42)

As is evident in the figure above, multiple numbers of path_loop encircle

each object and sub-object present in the scene. As stated in section 4.3, detection

of these path_loops will reveal simultaneously, the presence and position of all

objects and sub-objects in the scene. However, ambiguities may arise due to the

multiplicity of path_loops associated with each object. A sub-algorithm is designed

to tackle this problem. The algorithm deals with the multiplicity problem by merging

84

parallel loops to a single loop that represent the group. Hence, the loop is called

‘representative_path_loop’.

7.2 Extracting representative_path_loops

Referring back to Figure 46, the flowchart for the algorithm that extracts

path_loops is shown in Figure 49.

Figure 49 Flowchart of the sub-algorithm that extracts path_loops

Our objective for this algorithm is to extract from each naïve segment a

single path_loop that represents the set of circular path_loops encircling each

object. We refer to this special path_loop as ‘representative_path_loop’, which

85

enables detection of all the convex or concave-like sub-objects present in the naïve

segment. Moreover, they provide information about the hierarchical and

neighborhood relationship among the objects and sub-objects. In the following,

individual parts of the flowchart are explained in detail.

7.2.1 Eliminating the sink and source nodes

In the subsequent chapter, the term ‘flow’ has been used frequently. Flow

is simply the traversal of the directed graph. In the complete_flow_graph, there are

some planar segments (nodes of the graph), where the flow stops and others

where the flow starts. Neither set is part of the closed loops that we desire to

extract. The nodes that do not connect to any other nodes are sink nodes or sink

planar segments, whereas the nodes that are not connected by any other nodes

are source nodes or source planar segments. Figure 50 shows a map of the sink

and source planar segments of a given naïve segment. The objective of this sub-

algorithm is, therefore, to remove all connecting edges that lead to the sink nodes

and all connecting edges that connect source nodes to the complete_flow_graph.

86

Figure 50 Sink (red) and source (blue) nodes found in the object segment (Figure

44) depicted in a (a) top view, a (b) oblique view and a (c) zoomed-in view of the

enclosed portion by the rectangular red box shown in (a) with connecting edges

87

The flowchart of the sub-algorithm that eliminates source and sink nodes

are shown in Figure 51

Figure 51 Flow chart of the sub-algorithm that eliminate the source and the sink

nodes

The input to this algorithm is the complete_flow_graph generated from the

previous step. The operation begins with detection of the sink and the source

nodes in the graph and then they are removed along with their connections.

Consequently, new sink and source nodes are generated. This pruning process

continues in a loop until no sink and source nodes are left in the graph.

88

7.2.2 Finding the fork nodes

A complex object can consist of many sub-objects and their corresponding

path_loops may share a section of the loop. The segments representing the start

point and the end point of the common section between a pair of path_loops are

referred to as fork segments. We define two types of fork segments: the in-fork

segment and the out-fork segment.

Here, the in-fork segment is one, where there are at least two incoming

paths and one outgoing path (a simulated example is shown in Figure 52(a))

whereas, an out-fork segment is one, where there are at least two outgoing paths

and one incoming path (Figure 52 (b)).

Figure 52 Stylistically simulated example of (a) out-fork segment (b) in-fork

segment

89

In a complex object structure, both types of fork segments can be found.

Figure 53 shows the major path loops that can be found in the complex object

structure shown in Figure 44.

Figure 53 Location of the in-fork and out-fork segments in the complex conjoined

path loops formed around object shown in Figure 44

7.2.3 Finding the parallel and the circular loops of maximum depth

We defined two types of loops: circular loop (path_loop) and parallel loop.

For a circular loop, a surveyor following the directed graph would return to her

initial position. A stylistically simulated example of a circular path loop is shown in

Figure 54.

90

Figure 54 Stylistically simulated example of a circular loop

For a parallel loop, there is more than one path a surveyor can take, which

will eventually lead to the same destination. We call each of these paths

‘loop_arm’. An arm that branches from an out-fork node in the right-hand direction

is termed ‘right arm’, and the one that branches in the left-hand direction, the ‘left

arm’. A simulated example of a parallel loop is shown in Figure 55.

Figure 55 Simulated example of (a) a redundant parallel loop and (b) a useful

parallel loop

91

Most of the parallel loops formed in the complete_flow_graph are

redundant in the context of flow around the object. We refer to them as redundant

parallel loops. But in certain circumstances, such as when the objects (of different

height) are adjacent to each other and there are no planar segments separating

them, the parallel loop would be formed and should be considered to detect sub-

objects. It is then called a ‘useful parallel loop’. One such example is shown in

Figure 56. The redundant parallel path loops are defined as the ones, which do not

encompass the object and therefore there exist no unmapped region within the

path loop as demonstrated in the simulated example shown in Figure 55. This

distinguishing feature is used by a procedure to seek out useful and redundant

parallel loops. The extracted useful parallel loop can be converted to the desired

circular loop as demonstrated in Figure 57.

92

Figure 56 Illustration displaying a (a) 3D point cloud model of the target area

which contains a complex object, a (b) orthophoto of the building, (c) top view of

the parallel loop formation focusing the area in the red bounding box drawn in

(b), and (d) oblique view of the area in the red bounding box.

93

Figure 57 Simulated example of a (a) redundant parallel loop, and converted (b)

circular loop

Figure 58 shows the flowchart of the sub-algorithm employed to extract all

the parallel loops and the path_loops. This algorithm is analogous to the Depth

First Search (DFS) algorithm used in finding cycle graph from a directed graph.

94

Figure 58 Flowchart of a sub-algorithm which extracts all merge loops and

circular loops of a given max depth

The upper limit for the size of loops to be extracted is given as input to the

sub-algorithm. This input variable is referred to as ‘max depth’. The other inputs to

the functions are the complete_flow_graph and a fork node. In a dance graph,

almost all the path_loops contain one or more fork nodes. All the fork nodes

present in the object segments are extracted in the previous step of the flowchart

as shown in Figure 49. The loop extractor procedure considers each of these fork

nodes and explores the flow graph starting from the considered fork node in a

95

recursive fashion. The recursion ceases to “wind up” and starts to “unwind” once

the depth of the tree explored reaches the max depth. Throughout the process, the

procedure maintains a map that keeps track of the nodes that have already been

explored. This map is referred to as the ‘explored map’. In the case of the parallel

loops as well as the path_loops, a node would eventually get revisited during the

traversal. The procedure detects the event with the aid of the explored map and

initiates the exit of the process flow from the recursion cycle. The chain of

connecting edges which leads to such situation is recorded and returned to the

function caller.

7.2.4 Eliminating the parallel and the circular loops

In this sub-algorithm, the primary objective is to extract all the circular

path_loops and useful parallel loops from the complete_flow_graph. Depending

on the size of the convex/concave-like sub-objects present in the naïve segment,

the loops can exist in various lengths. For a composite object, the largest circular

loop can be found around the main parent object. In the high connectivity graph,

such as complete_flow_map, the extraction of large loops using the method

described in the previous section would take increasingly high computational time.

It is, therefore, imperative to simplify the graph before running the path_loops

extraction algorithm with a large max depth input. In the flowchart shown in Figure

49, there is a program control flow loop, where during each iteration the max depth

is increased from a small value and, the parallel and circular loops of length less

96

than or equal to that of max depth are extracted and then they are gradually

removed from the graph, while making sure that the overall flow remains

undisrupted. The simplification of the graph enables the loop extraction of the

successive larger length in a very short period of time.

A simple simulated example of the elimination process is demonstrated in

Figure 59 for the circular loop and in Figure 60 for the parallel loop. In both cases,

a connecting edge constituting the loop is strategically detached. This neutralizes

the loop while the flow (from A to B) remain undisrupted. However, this leads to

the formation of a redundant arm with a loose end (sink or source node) as shown

in the figure. Such loose end arms produced are later cleaned up by the sink and

source nodes eliminator stage (See the flowchart in Figure 49)

The simulated example is shown in Figure 59 and Figure 60 is a simple

example but the graph can get more complicated than this. Figure 61 shows an

example of a parallel loop with various complex configurations.

Figure 59 An example of a (a) circular loop, the (b) circular loop after detachment

and then the (c) circular loop after cleanup

97

Figure 60 An example of a (a) parallel loop, the (b) parallel loop after detachment

and then the (c) parallel loop after cleanup

98

Figure 61 Six different configurations of parallel loops, each showing the path

flow and the connecting edge candidates to be clipped

Here in the figure, I stand for the in-fork nodes and O stands for the out-

fork nodes. The connecting edge candidates to be clipped are marked by red

crosses. For each configuration, there can be several such candidates. Only one

needs to be selected to render the loop inoperable. Whatever the choice is, none

of the flow in the configuration will be compromised.

99

 By examining various possible configurations possible for a parallel loop,

a set of heuristic rules is derived for the parallel loops to determine the connecting

edge candidates that are safe to be clipped. The rules are given below with

reference to Figure 61.

1. If there exists a node in the path loop_arm which is both an in-fork and an out-

fork, then ignore. (See Figure 61(f) right arm)

2. If the arm contains no fork node, then every connecting edges of that arm is a

candidate. (See Figure 61(a) right arm)

3. From A to B, if the configuration is such that the fork nodes in the arm are

sequenced OOOOO... O then the connecting edge candidates for clipping are

present in the configuration as OOOOO... OXX…X, where X represents the

candidates i.e. all connecting edges in the arm after the final out-fork node in

the sequence, are eligible candidates. (See Figure 61(a) right arm, (b) left arm)

4. From A to B, if the configuration is such that the fork nodes in the arm are

sequenced IIIIIIIII…. I then the connecting edge candidates for clipping are

present in the configuration as XX...X IIIIIIIII…. I. (See Figure 61(a) right arm,

(b) right arm)

5. From A to B, if the configuration is such that the fork nodes in the arm are

sequenced OOO... O IIIIII…. I then the connecting edge candidates for clipping

are present in configuration as OOO... OXX...X IIIIII…. I. (See Figure 61(b) left

arm, (d) right arm, left arm, (f)left arm)

6. The arm configuration that doesn’t satisfy the above stated (2, 3, 4, 5)

condition, are ignored. (See Figure 61(c) left arm, (e) left arm)

100

If connecting edge candidates for clipping are found in both arms of the

parallel loop, then the sum of Qconnect values for both arm is calculated and then

their Q average value (�̅�) is evaluated by dividing the sum with the number of

connecting edges in the arm. The arm with the lower Q average value is chosen

for clipping. This ensure that the chain of connecting edges that remain intact are

the best among its peer.

101

Figure 62 shows an example of circular loops with various complex

configurations.

Figure 62 Six different configurations of circular loops, each showing the flow and

the connecting edge candidates to be clipped

102

Here also, for each configuration, there are several options but just one

needs to be taken to achieve the purpose. Whatever the choice is, none of the

path flow in the configuration will be compromised. Here, the sequence of the fork

node in the path_loop is ordered in the direction of path flow starting with in-fork

node I*. This sequence is recorded in an array, which is later used to find the

connecting edge candidates that can be clipped.

 By examining various possible configurations for the circular loop, a set

of heuristic rules is derived for the circular loops to determine those connecting

edge candidates. The rules are given below with referring to Figure 62.

1. If the configuration in the path loop is such that there is no fork node present,

then all connecting edges forming the loop are eligible candidates. (See Figure

62 (a, b))

2. If the configuration in the path loop is such that the fork nodes are all the same

type i.e. all are either in-fork nodes or out-fork nodes, then all connecting edges

forming the loop are eligible candidates.

3. If the configuration in the path loop is such that there exist a mixture of in-fork

and out-fork nodes, then a procedure is assigned to circularly shift the elements

of the sequence array mentioned above. The shifting continues until the first

element becomes an out-fork node and the last element is an in-fork node. The

reordered sequence becomes interesting when the in-fork and out-fork nodes

can be divided into two clearly separate groups i.e. if the sequence is like

OOOO…OIIII…I. Then the connecting edge candidates for clipping are present

in configuration as OOO... OXX...X IIIIII…. I. i.e. all connections between the

103

last out-fork node and the first in-fork node in the sequence. (See Figure 62 (c,

d, f, g, h))

4. If the loop configuration doesn’t satisfy the above stated (1, 2, 3) conditions,

then no further action is required. (See Figure 62 (e))

104

7.2.5 Presenting the representative_path_loops

The program control flow loop (Figure 49) begins with a low-value max

depth. Inside the program control flow loop, the path loops of size less than or

equal to the max depth are extracted and removed. The extracted circular

path_loops and the useful parallel loops are recorded. Removing the path_loops

and parallel loops simplifies the graph so that after each successive iteration with

a little higher max depth, the graph can be explored in a very short period to extract

the loops. Once the value of max depth reaches a preset higher value, it is safe to

say that all the path loops present in the object image segment are extracted. The

gradual removal of parallel loops ensures that one circular path_loop among the

set of circular path_loops survives per object i.e. out of many path loops, the one

with the highest Q average value (�̅�) remains intact. Therefore, each of these

extracted path loops acts as a representative_path_loop for its object. Each

representative_path_loop reveals the presence and the position of all the sub-

objects. A simulated example of a complete_flow_graph in an object segment is

shown in Figure 63(a). The final simulated result of the path loops grouping

algorithm is shown in Figure 63(b). The representative loops of the sub-objects are

connected to the representative loop of the main parent object. This indicates the

hierarchical relationship between objects and their sub-objects.

105

Figure 63 Illustration displaying a (a) complete_flow_graph, and the (b) extracted

representative_path_loops

Figure 64 shows the representative_path_loop, extracted from the

complete_flow_graph of an artificial pond, shown in Figure 47. Figure 65 display

the representative_path_loop, extracted from the complete_flow_graph of a

composite object (hill shaped, watershed shaped landform and a tree), shown in

Figure 48. Here, the hierarchical relations among sub-objects can be observed.

106

Figure 64 Extracted representative_path_loop of the artificial pond

107

Figure 65 Illustration displaying representative_path_loop of hill shaped and

watershed shaped landform at (a) top view, and (b) oblique view

108

7.3 Extracting object_path_loop

The representative_path_loops extracted in the previous step indicates the

presence of object and sub-objects in the scene. However, the loops do not map

out the boundary of the object. Since the perimeter of an object constitutes planar

segments that belong to the foothill_slope and thereby can be represented by a

path_loop (Figure 15). This special path_loop is termed as object_path_loop. A

sub-algorithm is designated to determine the object_path_loop of the object and

sub-object using the representative_path_loop and the complete_flow_graph of

the object segment. Figure 66 shows the flowchart of the sub-algorithm employed

to extract the object_path_loops.

Figure 66 Flowchart of the sub-algorithm that extract object_path_loop

109

An example of the complete_flow_graph generated from the naïve

segment (Figure 41) is shown in Figure 67. The corresponding

representative_path_loop is shown in Figure 68.

Figure 67 Complete_flow_graph from object segment shown in Figure 41 (a)

oblique view (b) top view

The algorithm first extracts the sub-graph present inside the

representative_path_loop. The sub-graph is then subtracted from the

complete_flow_graph. The sub-graph that remains is shown in Figure 69. Since

the representative_path_loop uniquely represent the corresponding object, graph

representing any sub-object get excluded within the extracted sub-graph. Thereby,

path_loops that can be extracted from the sub-graph belongs to the targeted

object.

110

Figure 68 Representative_path_loop of the object (a) oblique view (b) top view

Figure 69 Sub-graph of the object (a) oblique view (b) top view

All the path_loops present in the sub-graph is extracted by the method

described in Section 7.2. Next, the algorithm finds out the path_loop that contains

111

within its boundary the maximum number of nodes. That path_loop is our desired

object_path_loop. An example of the object_path_loop is shown in Figure 70.

Figure 70 Object_path_loop of the object (a) Oblique view (b) top view

The object segment is thereby defined by the group of planar segments

within the confines of the object_path_loop. Figure 71 shows the extracted object

segment of the example. Comparing the result with the naïve segment (Figure 41),

It is clearly evident that most of the false-positive has been removed due to this

process.

112

Figure 71 Extracted object after using Hierarchical decomposition on

object segment shown in Figure 41

113

7.4 Objectness test

Generation of representative_path_loop from the complete_flow_graph is

based on the principle of object geometric property such as concavity or convexity.

This may cause some false positive results as any non-object which have concave

shape structure may produce a representative_path_loop. Even a slightly elevated

corner of a rectangular object can be extracted as sub-object in this process. That

is why every extracted object segments are subjected to a validity test which filter

out the non-objects. We call this test ‘Objectness test’ and is based on a quantity

called ‘objectness’. Figure 72 shows a simulated example of an object and its sub-

object.

Figure 72 A simulated example of an Object and its sub-object

114

The objectness is calculated using two measures: the maximum height of

the object from its base (h) and the angle between the object normal and the BG

normal (𝜃). That is why, in Figure 72 the measure of object 1 is ℎ1 and 𝜃1 (which

is 0) and the measure of object 2 is ℎ2 and 𝜃2. If the height and the angle is above

a certain threshold value, the segment is classified as object. Otherwise, the

structure is rejected as non-object.

7.5 Find Object type

Next, the path loops extracted from the previous stages are used to classify

the object as belonging to either of two groups: convex-like object and concave-

like object. A procedure is dedicated to serve this purpose.

As discussed in section 4.1, in the case of a convex-like object, the

surveyor motion is in counter-clockwise direction whereas, for the concave-like

object, the motion is clockwise. The exterior angle that corresponds to each

connecting edge forming the loop is determined. A rule of the polygons is that the

sum of the exterior angles always equals 360 degrees. Therefore, in case of

concave-like object as shown in Figure 73(a), sum of exterior angle = ∑ 𝜃𝑖𝑖 = -

360°. In case of convex-like object (Figure 73 (b)), sum of exterior angle = ∑ 𝜃𝑖𝑖 =

360°. The sign of the sum hints the class of the object.

115

Figure 73 Simulated example of a path loop around an (a) horizontal convex

structure (b) horizontal concave structure

7.6 Associate planar segments to representative_path_loops

In the previous steps, the parent object has been delineated from its

topographic background. The representative_path_loop of the sub-object reveals

its presence and position relative to the parent object. The next step is to find the

boundaries of the sub-objects. In the case of the parent object, the boundary was

determined based on the sub-graph extracted using the naive segment (which

provide the upper-limit of the boundary) and the representative_path_loop (which

provide the lower-limit of the boundary). However, in the case of sub-object, there

is no such segment available that specifically includes the foothill_slope individual

sub-object (referred as ‘sub-object region’). A sub-algorithm is assigned to

estimate the sub-object region. In the next two subsequent sub-section, the

116

underlying mechanism for this method is discussed and the flowchart of the

algorithm is shown and discussed.

7.6.1 Underlying mechanism

In section 7.1 we arrive at the conclusion that, each object in a topographic

map can be represented by a set of circular path loops where the dot product

between their Path vector and the Surveyor Guidance vector at each point has the

same sign i.e. the loop satisfies the path_loop condition. One such circular path

loop termed as representative_path_loop is considered as shown in Figure 74(a).

Figure 74 Convex structure object with (a) closed path loop and (b) the points

connected to the loop

Since a path_loop can be associated with each point of the object, and the

representative_path_loop is formed by the merge of all such path_loops. So, it can

be postulated that every point on the object can be connected to the loop via a

117

chain of connecting edges that satisfy the path_loop condition. A stylistically

simulated example is shown in Figure 74 (b). This means it is possible to associate

each planar segment of the object to the representative_path_loops with a chain

of connecting edges.

A stylistically simulated example of a complete_flow_graph of a complex

object segment is shown in Figure 75.

Figure 75 Illustration displaying the complete_flow_graph of a composite object

segment with representative_path_loops in cyan color

Since a number of nodes at the edge of the sub-objects is connected to a

number of nodes belonging to the parent object and since each node is connected

to the corresponding representative_path_loops, it can be postulated that the

118

representative_path_loop of the sub-objects is connected to the

representative_path_loop of the parent object via a chain of connecting edges.

Figure 76 Representative_path_loop of every sub-object is connected to the

representative_path_loop of the object via a chain of connecting edges

Here the nodes are represented by small colored squares.

Representative_path_loop of the sub-object L1 is connected to the

representative_path_loop of the parent object L3 via two nodes whereas L2 is

connected to the L3 via 4 nodes.

One of the underlying assumptions is that a sub-object is bound by

topographic discontinuities. This means the connecting edge that crosses over that

boundary (connection colored red in Figure 76) are weak and therefore the

119

Qconnection value of that connection would be low. This means, Q average value (�̅�)

of the connecting edges that take that route to the parent representative_path_loop

L3 would be lower than those routes to the local representative_path loop (L1 or

L2). Therefore, to associate the planar segments (nodes) to its corresponding

representative_path_loop, the following strategy can be adopted.

 For each node in the composite object, the minimum Q average value (�̅�)

of the chain of connecting edges to each of the representative_path_loops (if there

exist a connection) is measured. Among the competed representative_path_loops,

the one that gives the lowest Q average value (�̅�) is selected as the corresponding

representative_path_loop

7.6.2 Flow chart

Figure 77 shows the detailed flow chart of the algorithm that is responsible

for the planar segments association to the representative_path_loops.

120

121

Figure 77 Flowchart of the algorithm that associates planar segments to the

representative_path_loops

122

The procedure begins with labeling the representative_path_loops in a

map referred to as ‘id_map’. The procedure also maintains two other maps called

‘Q_map’ and ‘Q_depth’ throughout the process. They are initialized to zero. The

objective of the procedure is to identify objects and sub objects membership for

each node of the considered object segment i.e. to fill the id_map up with the

labels. This is achieved by associating each planar segment to a

representative_path_loop such that the overall Q average value (�̅�) measured for

each planar segments in the object segment from their connection to its

corresponding representative_path_loop is the maximum. At the end of the run,

each planar segment in the Q_map would store the optimized Q average value (�̅�)

and in case of Q_depth, each planar segment would store the distance, in terms

of number of connecting edges forming the connection, to the corresponding

representative_path_loop. In the procedure, at each iteration, the planar segments

in the object segment are explored gradually via the complete_flow_graph and the

Q_map and Q_depth map are updated. For a given planar segment, Q average

value (�̅�) is calculated for each of its neighbors based on its own Q average value,

Qfg (extracted from the Q_map) and the depth value, Dfg (extracted from the

Q_depth) and also the Qconnect value of the connection, qa (extracted from the

Qconnect_map). The formula used for Q average value (�̅�) estimation is given below:

�̅� =
𝑞𝑎+𝐷𝑓𝑔×𝑄𝑓𝑔

𝐷𝑓𝑔+1
 eq. 12

If the Q average value (�̅�) estimated is greater than the Q_map value of

the neighboring planar segment, that value is replaced by Q average value (�̅�) and

123

both the Q_depth map and the id_map are updated accordingly. The whole

procedure is run several times until no apparent change is detected in the Q_map

with each cycle. This ensures that the Q_map has reach its globally optimum state.

Appendix D demonstrates how this optimization ensures proper distribution of

labels of planar segments in the object segment.

124

7.7 Hierarchical Decomposition result

Figure 78 shows a complex landforms segment (Figure 42) decomposed

to its constituent landforms. Their neighborhood and hierarchical relationship are

also specified in the figure.

Figure 78 (a) Landform segmentation decompose to (b & d) two horizontal

convex structure and (c) one concave structure. See also Figure 42

125

8. Performance Analysis

In this chapter, the performance of the Virtual Surveyor based object

extraction method is discussed. Since segmentation of the parent object and its

sub-objects is carried out in a recursive pattern, in the performance analysis, we

focus mainly on the segmentation of the parent object. In the first subsection of the

chapter, the qualitative result of the algorithm is examined and in the subsequent

subsection, result from the quantitative analysis is shown.

8.1 Qualitative Analysis

In this section, we discussed some of the qualitative results that

demonstrate the efficacy of the algorithm. Here, two man-made structures are

considered as shown in Figure 79. Figure 79 (a) is a complex building structure,

whereas Figure 79 (b) is a pair of adjacent pools. The latter is a convex structure,

whereas the former is a concave structure. Figure 80 shows the corresponding

results obtained by applying the Pfeifer’s ground filter. The region colored red is

labeled as ground.

126

Figure 79 Top-view RGB image of (a) complex building (b) pools and (c)

elevation image

127

Figure 80 Pfeifer's ground filter results. Red planar segments - ground pixel,

White planar segments – object pixel

As evident from the figure (Figure 80), the object image is contaminated

with salt and pepper noise, which is a common trait for the pixel-based ground

filter. The courtyard of the building is labeled as non-ground. This is due to the fact

that the ground filter has been modified to detect man-made cavities on the ground

in addition to man-made convex structure. For some user, this might be

undesirable as the courtyard is usually regarded as ground. In Figure 80 (b), it is

128

evident that the bank of the pool, which is part of the man-made structure, has not

been labeled as an object class. This interpolation based filter underperforms at

the vicinity of a low-grade slope’s edge. Figure 81 shows the corresponding results

obtained by applying the Virtual Surveyor based object extraction algorithm. As

can be seen from the figure, sub-objects that lie on the foothill_slope of the parent

objects are also included in the resultant segment.

Figure 81 Virtual Surveyor Segmentation result

129

Figure 82 shows the hierarchical decomposition of the extracted image

object of the complex building. There is multi-level decomposition obtained at a

single scale.

Figure 82 Hierarchical decomposition of the complex building. Blue segments

represent convex structure whereas red segments represent concave structure.

In the first level, the image object is first decomposed into three neighboring

objects: the main building and the two small rectangular block adjacent to the

corner at the opposite side of the main building. The building is then further

decomposed into its major components. The courtyard is clearly identified and

segmented out. Here, the blue represents a convex object, whereas, the red

130

represents concave objects. It is to be noted that there are two external objects at

the side of the building that was included during the segmentation process has

also been extracted as external objects.

Figure 83 shows the hierarchical decomposition of the extracted image

object of the adjacent pair of pools.

Figure 83 Hierarchical decomposition of the pair of pools

131

Here, too, multi-level decomposition is conducted without traversing

through multiple scales. In the first level, the pools are separately identified and

segmented out. One of the pools is further decomposed into its sub-objects. The

individual trees are also revealed in the result as shown in the figure.

The VSOE algorithm is able to separate objects that lie in close proximity.

An example is of two high proximity neighboring objects is shown in Figure 84 (a)

and (b). Figure 84 (c) and (d) shows their representative_path_loops from different

views.

Figure 84 Illustration displaying a (a) 3D point cloud model of the complex

building adjacent to a small rectangular object (highlighted by a red bounding

132

box), a (b) orthophoto of the complex building, (c) close up top view of the

neighboring rectangular object superimposed by their representative_path_loops,

(d) oblique view

Section 7.2.3 explains the formation of representative_path_loops for both

objects. They, therefore, can be easily separated during the Hierarchical

decomposition step. It is evident from the Hierarchical decomposition result of the

complex building in figure 85 that the neighboring objects have been cleanly

separated.

133

8.2 Quantitative Analysis

In this section, the quantitative analysis of the algorithm performance is

discussed. Here, we compare the performance of object extraction by Pfeifer’s

ground filter and that by VSOE. This will demonstrate the effectiveness of VSOE

to improve upon the result of the Pfeiffer’s ground filter. To test VSOE, we build a

database of 78 small object candidates collected after applying Pfeifer’s ground

filter on two different terrains shown in Figure 86.

Figure 86 Object candidates collected from these two terrains.

134

In the figure, on the right-hand side, the top view of the RGB image of the

terrain is shown whereas, on the left-hand side, the result obtained by the

application of Pfeifer’s ground filter on these terrains are shown. Here, the red

planar segments are the ground pixel and the white planar segments are the object

pixels. A sample of the object candidates that are collected from the terrains is

shown in Figure 87.

Figure 87 Eight samples of the given test objects, the first column represents

Pfeiffer’s ground filter result, the second column represents VSOE result, the

third column represents the ground truth

135

The ground truth of the segmentation for each sample is shown in the third

column. The ground truth is obtained manually based on human judgment. In the

database, we only consider small objects since manually drawing the boundaries

on the large object is time-consuming and error prone. Large objects such as

shown in Figure 79 are ignored.

The measurement metric adopted for the performance comparison

between the filter results and the ground truth is based on the number of common

square elements that can be found in the raster representations. Since, in the

performance analysis, the boundary of the foothill_slope is what matters, so we

only consider the square elements that form the boundary of the object segment.

 A segmentation result is usually evaluated by assessing its consistency

with the ground truth segmentation (Van Rijsbergen, 1979). Here we use the F1 -

score for consistency. F1-score is based on the precision and recall values of the

segmentation result. Precision and recall is defined as

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 eq. 13

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 eq. 14

Where, TP = True Positive, FP = False Positive and FN = False Negative.

F1-score is defined as

F1 − 𝑠𝑐𝑜𝑟𝑒 = 2 𝑅×𝑃
𝑃+𝑅

 eq. 15

136

The precision, recall and the F1 – score is shown in Table 3. The table

clearly demonstrates the efficacy of the AVSOE algorithm

Table 3 Segment coverage test result

 Precision Recall F1 – score

Pfeifer’s GF 0.933 0.83 0.878

AVSOE 0.989 0.968 0.978

137

9. Conclusion and Suggested Future Work

In this work, we introduced a fully automatic algorithm, called Automatic

Virtual Surveyor based Object Extraction (AVSOE) that works on the airborne

LiDAR point cloud data of a given terrain to segment out natural as well as man-

made objects. The algorithm is designed to tackle two main challenges facing

object based image analysis: scale dependency and the object complexity. The

3D object segmentation method is based on the premise that an object, no matter

how complex, introduces a distinct concavity or convexity onto its topographic

background. The algorithm starts by constructing a directed graph from the mesh

representation of the point cloud data of the terrain with nodes representing the

cell of the mesh and the edges traverse perpendicularly to the direction of the

sloping surface. As a result, each object and sub-objects present in the scene are

encircled by cycle graphs. Detection of these cycle graph and subsequent

processing reveals simultaneously the presence of the objects and sub-objects,

their positions, their hierarchical relations and their associated voxels. Thereby,

objects of all size and shape are extracted in a single scale level.

The non-parametric and scale independent algorithm is therefore capable

of automatically segmenting, at a single scale level, a complex object such as

forest and also each of the constituent sub-objects such as the individual tree

composing the forest. The proposed algorithm is therefore non-parametric and

scales independently.

138

9.1 Contribution

In this research, the key contributions are:

1. In this work, we propose a method, which suggests a paradigm shift in

the way 3D object segmentation is approached. The method provides a generic

solution to extract 3D objects

2. Existing 3D object extraction method only segment convex objects such

as trees, building etc. Our method can extract not only convex structured objects

but also concave structured objects.

3. In most object extraction methods, a compromise has to be made

between Type-I error and Type-II error. However, using this method, Type-I error

and type-II error can both be minimized.

4. Existing 3D object segmentation method mostly rely on the distinctive

geometric properties of the object, such as the proximity between neighboring

LiDAR points. In some cases, (mostly natural objects), it is not clear, where the

object ends and the background begins. Moreover, it can prove difficult for the

method to distinguish objects that lie in close proximity.

Our method is designed to extract objects overlaying the topographic

surface irrespective of the grade of its slope or its proximity to other objects in the

scene.

5. Due to the relative complexity of real-world objects and the difficulty in

setting scale parameters tuned to each class of objects present in the scene, over-

139

segmentation is an issue in the results of existing object extraction method. The

problem is further exacerbated in the case of high-quality data since the

heterogeneity present in the image-object become more pronounced. Since

segmentation quality has a direct impact on object-based classification result, the

performance of the traditional methods is below par. In addition, due to the

imprecise selection of the scale parameter, boundaries do not perfectly overlap

(coincide) through scale. Therefore, hierarchical relation is difficult to establish

among object and its sub-objects.

Our proposed method is independent of scale parameters and is designed

to segment convex and concave structure representing the image object

regardless of the extent of internal heterogeneity present in the structure. The

boundaries shared by the object and its sub-objects emerge simultaneously in the

hierarchical decomposition process, and the hierarchical relations are explicitly

expressed.

140

9.2 Future work

As a future work, the following things could be attempted:

1. AVSOE automatically segments the 3D object and its sub-objects. The next

step is to identify the object. As discussed in section 3.2, 3D object segmentation

enables the classifier to exploit a range of new features such as aggregated

spectral pixel values, shape, texture, context as well as topology.

2. The data set delivered by the new LiDAR sensor technology such as the

Geiger-mode and the single photon is much richer than the traditional linear mode.

Due to the 360-degree view of the new sensor, it generates points of high density

on the vertical features of the object. Our object extraction method is designed to

leverage this newly revealed aspect of the object. It would be interesting to see the

performance of AVSOE on those data set.

141

References

P. Acharjee,G. Toscano,C. McCormick and V. Devarajan, “Performance analysis

of a novel algorithm for large scale water-body surface mapping using

elevation and intensity of LiDAR data,” Imaging and Geospatial Technology

Forum, IGTF 2016 - ASPRS Annual Conference and co-located JACIE

Workshop. American Society for Photogrammetry and Remote Sensing, Fort

Worth, Texas, 2016

A. Antonarakis, K. S. Richards, and J. Brasington, “Object-based land cover

classification using airborne LiDAR,” Remote Sensing of Environment, vol.

112, no. 6, pp. 2988–2998, 2008.

H. Arefi and M. Hahn, “A hierarchical procedure for segmentation and classification

of airborne LIDAR images,” in INTERNATIONAL GEOSCIENCE AND

REMOTE SENSING SYMPOSIUM, 2005, vol. 7, p. 4950.

P. Axelsson, “DEM generation from laser scanner data using adaptive TIN

models,” International Archives of Photogrammetry and Remote Sensing, vol.

33, no. B4/1; PART 4, pp. 111–118, 2000.

M. Baatz and A. Schäpe, “Multiresolution segmentation: an optimization approach

for high quality multi-scale image segmentation,” Angewandte Geographische

Informationsverarbeitung XII, vol. 58, pp. 12–23, 2000.

T. Blaschke, “Object based image analysis for remote sensing,” ISPRS journal of

photogrammetry and remote sensing, vol. 65, no. 1, pp. 2–16, 2010.

142

T. Blaschke et al., “Geographic object-based image analysis–towards a new

paradigm,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 87,

pp. 180–191, 2014.

N. Brodu and D. Lague, “3D terrestrial lidar data classification of complex natural

scenes using a multi-scale dimensionality criterion: Applications in

geomorphology,” ISPRS Journal of Photogrammetry and Remote Sensing, vol.

68, pp. 121–134, 2012.

Y. Cui, L. Chapel, and S. Lefèvre, “Combining multiscale features for classification

of hyperspectral images: a sequence based kernel approach,” in Workshop on

Hyperspectral Image and Signal Processing: Evolution in Remote Sensing

(WHISPERS), 2016.

Z. Chen, B. Devereux, B. Gao, and G. Amable, “Upward-fusion urban DTM

generating method using airborne Lidar data,” ISPRS journal of

photogrammetry and remote sensing, vol. 72, pp. 121–130, 2012.

C. Chen, Y. Li, W. Li, and H. Dai, “A multiresolution hierarchical classification

algorithm for filtering airborne LiDAR data,” ISPRS Journal of Photogrammetry

and Remote Sensing, vol. 82, pp. 1–9, 2013.

Chen, Z.Y.; Gao, B.B. An Object-Based Method for Urban Land Cover

Classification Using Airborne Lidar Data. IEEE J. Sel. Top. Appl. Earth Obs.

Remote Sens. 2014, 10, 4243–4354.

Q. Chen, H. Wang, H. Zhang, M. Sun, and X. Liu, “A point cloud filtering approach

to generating DTMs for steep mountainous areas and adjacent residential

areas,” Remote Sensing, vol. 8, no. 1, p. 71, 2016.

143

Z. Chen, B. Xu, and B. Gao, “An Image-Segmentation-Based Urban DTM

Generation Method Using Airborne Lidar Data,” IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 1, pp.

496–506, 2016.

G. Cheng and J. Han, “A survey on object detection in optical remote sensing

images,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 117,

pp. 11–28, 2016

D. Costantino and M. G. Angelini, “Features and ground automatic extraction from

airborne LiDAR data,” Int Arch Photogramm Remote Sens Spat Inf Sci, vol. 38,

no. 5/W12, 2011.

F. Crosilla, D. Macorig, M. Scaioni, I. Sebastianutti, and D. Visintini, “LiDAR data

filtering and classification by skewness and kurtosis iterative analysis of

multiple point cloud data categories,” Applied Geomatics, vol. 5, no. 3, pp. 225–

240, 2013.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective

genetic algorithm: NSGA-II,” IEEE transactions on evolutionary computation,

vol. 6, no. 2, pp. 182–197, 2002.

S. D’Oleire-Oltmanns, C. Eisank, L. Drăguţ, L. Schrott, I. Marzolff, and T. Blaschke,

“Object-Based Landform Mapping at Multiple Scales from Digital Elevation

Models (DEMs) and Aerial Photographs,” Proceedings of the 4th GEOBIA, pp.

496–502, 2012.

P. Domingos, “A few useful things to know about machine learning,”

Communications of the ACM, vol. 55, no. 10, pp. 78–87, 2012.

144

L. Drăguţ, O. Csillik, J. Minár, and I. S. Evans, “Land-surface segmentation to

delineate elementary forms from Digital Elevation Models,” 2013.

L. Drǎguţ, D. Tiede, and S. R. Levick, “ESP: a tool to estimate scale parameter for

multiresolution image segmentation of remotely sensed data,” International

Journal of Geographical Information Science, vol. 24, no. 6, pp. 859–871,

2010.

D. C. Duro, S. E. Franklin, and M. G. Dubé, “A comparison of pixel-based and

object-based image analysis with selected machine learning algorithms for the

classification of agricultural landscapes using SPOT-5 HRG imagery,” Remote

Sensing of Environment, vol. 118, pp. 259–272, 2012.

I. S. Evans, “Geomorphometry and landform mapping: What is a landform?,”

Geomorphology, vol. 137, no. 1, pp. 94–106, 2012.

I. S. Evans and J. Minár, “A classification of geomorphometric variables,” in

Proceedings of the Geomorphometry 2011 Conference, Redlands, California,

USA, 2011, pp. 105–108.

A. Golovinskiy, V. G. Kim, and T. Funkhouser, “Shape-based recognition of 3D

point clouds in urban environments,” in 2009 IEEE 12th International

Conference on Computer Vision, 2009, pp. 2154–2161.

B. Guo, X. Huang, F. Zhang, and G. Sohn, “Classification of airborne laser

scanning data using JointBoost,” ISPRS Journal of Photogrammetry and

Remote Sensing, vol. 100, pp. 71–83, 2015.

145

G. J. Hay and G. Castilla, “Geographic Object-Based Image Analysis (GEOBIA):

A new name for a new discipline,” in Object-based image analysis, Springer,

2008, pp. 75–89.

Y. Hu, Automated extraction of digital terrain models, roads and buildings using

airborne LiDAR data, vol. 69. 2004.

C.-M. Huang and Y.-H. Tseng, “Plane Fitting Methods of Lidar Point Cloud,” in In

29th Asian Conference on Remote Sensing (ACRS), Beijing, November 2008,

pp. 1040 – 1044

L. Hui-ying, X. Yu-jun, W. Zhi, and L. Yi-nan, “Hierarchical Algorithm in DTM

Generation and Automatic Extraction of Road from LIDAR Data,” ISPRS-

International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences, vol. 1, pp. 133–136, 2012.

B. Koch, U. Heyder, and H. Weinacker, “Detection of individual tree crowns in

airborne lidar data,” Photogrammetric Engineering & Remote Sensing, vol. 72,

no. 4, pp. 357–363, 2006.

F. Lafarge and C. Mallet, “Modeling urban landscapes from point clouds: a generic

approach,” 2011.

S. Lang and T. Blaschke, “Hierarchical object representation-comparative multi-

scale mapping of anthropogenic and natural features,” INTERNATIONAL

ARCHIVES OF PHOTOGRAMMETRY REMOTE SENSING AND SPATIAL

INFORMATION SCIENCES, vol. 34, no. 3/W8, pp. 181–186, 2003.

146

J. Liu, J. Shen, R. Zhao, and S. Xu, “Extraction of individual tree crowns from

airborne LiDAR data in human settlements,” Mathematical and Computer

Modelling, vol. 58, no. 3, pp. 524–535, 2013.

R. A. MacMillan and P. A. Shary, “Landforms and landform elements in

geomorphometry,” Developments in soil science, vol. 33, pp. 227–254, 2009.

D. Mongus and B. Žalik, “Parameter-free ground filtering of LiDAR data for

automatic DTM generation,” ISPRS Journal of Photogrammetry and Remote

Sensing, vol. 67, pp. 1–12, 2012.

Mongus, Domen, and Borut Zalik. “Computationally Efficient Method for the

Generation of a Digital Terrain Model from Airborne LiDAR Data Using

Connected Operators.” Selected Topics in Applied Earth Observations and

Remote Sensing, IEEE Journal of 7, no. 1 (2014): 340–351.

M. Musci, R. Q. Feitosa, and G. A. Costa, “An object-based image analysis

approach based on independent segmentations,” in Urban Remote Sensing

Event (JURSE), 2013 Joint, 2013, pp. 275–278.

M. Riesenhuber and T. Poggio, “Hierarchical models of object recognition in

cortex,” Nature neuroscience, vol. 2, no. 11, pp. 1019–1025, 1999.

A. J. Rodríguez-Sánchez, M. Fallah, and A. Leonardis, “Editorial: Hierarchical

Object Representations in the Visual Cortex and Computer Vision,” Frontiers

in computational neuroscience, vol. 9, 2015.

C. Sevara, M. Pregesbauer, M. Doneus, G. Verhoeven, and I. Trinks, “Pixel versus

object — A comparison of strategies for the semi-automated mapping of

147

archaeological features using airborne laser scanning data,” Journal of

Archaeological Science: Reports, vol. 5, pp. 485–498, Feb. 2016.

G. Sithole and G. Vosselman, “Report: ISPRS comparison of filters,” ISPRS

commission III, working group, vol. 3, 2003.

G. Sithole, Segmentation and classification of airborne laser scanner data. TU

Delft, Delft University of Technology, 2005.

G. Sohn, X. Huang, and V. Tao, “Using a binary space partitioning tree for

reconstructing polyhedral building models from airborne lidar data,”

Photogrammetric Engineering & Remote Sensing, vol. 74, no. 11, pp. 1425–

1438, 2008.

Smith, M.J., P. Paron, and J.S. Griffiths, Eds., 2011. "Geomorphological Mapping:

Methods and Applications". Amsterdam, Boston, Heidelberg, London, New

York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo,

Elsevier Science, 612p.

S. Sun and C. Salvaggio, “Aerial 3D building detection and modeling from airborne

LiDAR point clouds,” IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, vol. 6, no. 3, pp. 1440–1449, 2013.

H. Tang et al., “A multiscale latent dirichlet allocation model for object-oriented

clustering of VHR panchromatic satellite images,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 51, no. 3, pp. 1680–1692, 2013.

Toscano, G., Acharjee, P., McCormick, C. & Devarajan, V., (2015). Water Surface

Elevation Calculation Using LiDAR Data. Proceedings, ASPRS Conference,

Tampa, Florida

148

D. Tóvári and N. Pfeifer, “Segmentation based robust interpolation-a new

approach to laser data filtering,” International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, Enschede, Netherlands,

vol. 36, no. 3/W19, pp. 79–84, 2005.

C. J. Van Rijsbergen. “Information Retrieval”, 2nd edition. Dept. of Computer

Science, University of Glasgow, 1979.

V. Verma, R. Kumar, and S. Hsu, “3D building detection and modeling from aerial

LIDAR data,” in 2006 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’06), 2006, vol. 2, pp. 2213–2220.

G. Vosselman, B. G. Gorte, G. Sithole, and T. Rabbani, “Recognising structure in

laser scanner point clouds,” International archives of photogrammetry, remote

sensing and spatial information sciences, vol. 46, no. 8, pp. 33–38, 2004.

M. Weinmann, S. Urban, S. Hinz, B. Jutzi, and C. Mallet, “Distinctive 2D and 3D

features for automated large-scale scene analysis in urban areas,” Computers

& Graphics, vol. 49, pp. 47–57, 2015.

M. F. Wu, Z. C. Sun, B. Yang, and S. S. Yu, “A Hierarchical Object-oriented Urban

Land Cover Classification Using WorldView-2 Imagery and Airborne LiDAR

data,” in IOP Conference Series: Earth and Environmental Science, 2016, vol.

46, p. 1, 2016.

S. Xu, G. Vosselman, and S. O. Elberink, “Multiple-entity based classification of

airborne laser scanning data in urban areas,” ISPRS Journal of

photogrammetry and remote sensing, vol. 88, pp. 1–15, 2014.

149

W. Yao, S. Hinz, and U. Stilla, “Object extraction based on 3D-segmentation of

lidar data by combining mean shift with normalized cuts: Two examples from

urban areas,” in 2009 Joint Urban Remote Sensing Event, 2009, pp. 1–6.

W. Yao, S. Hinz, and U. Stilla, “Automatic vehicle extraction from airborne LiDAR

data of urban areas aided by geodesic morphology,” Pattern Recognition

Letters, vol. 31, no. 10, pp. 1100–1108, 2010.

J. Zhang, X. Lin, and X. Ning, “SVM-based classification of segmented airborne

LiDAR point clouds in urban areas,” Remote Sensing, vol. 5, no. 8, pp. 3749–

3775, 2013.

J. Zhang, M. Duan, Q. Yan, and X. Lin, “Automatic vehicle extraction from airborne

LiDAR data using an object-based point cloud analysis method,” Remote

Sensing, vol. 6, no. 9, pp. 8405–8423, 2014.

X. Zhu and T. Toutin, “Land cover classification using airborne LiDAR products in

Beauport, Québec, Canada,” International Journal of Image and Data Fusion,

vol. 4, no. 3, pp. 252–271, 2013.

150

Appendix A

The Mathematical formulae used to compute IDW for raster interpolation

The IDW for the raster interpolation is expressed below with referring to

Figure 88:

𝑍𝑟 =
∑

𝑍𝑛
𝑑𝑛

𝑁
𝑛=1

∑
1

𝑑𝑛

𝑁
𝑛=1

 eq. 16

Where, 𝑍𝑟 = interpolated elevation value

 𝑍𝑛 = Surface elevation at sample point

 𝑑𝑛 = distance from sample point to center

 N = number of sample points

Figure 88 IDW for raster interpolation

151

Appendix B

Plane fitting algorithm adapted from (Tóvári and Pfeifer, 2005)

The planar segmentation is based on a region growing algorithm, adapted

from (Tóvári and Pfeifer, 2005), where the seeds are placed first randomly and

then in unexplored spaces to divide the target area into planar segments. Once a

seed triangle is selected, the nearest neighbor cells are examined to determine

whether they meet certain criteria. An optimal plane is estimated from the sample

points representing the cells in the growing region. There are two popular

approaches to find optimal planes: Least square fitting and principal component

analysis. In our method, we used the principal component analysis since it has

been proven to be more robust in the presence of noise (Huang and Tseng, 2008).

The PCA computes the eigenvalues and the eigenvectors of the sample

covariance matrix. The largest two eigenvectors give the dimension of the plane.

Hence the cross-product of the two vectors give the normal of the plane.

Nearest neighbor triangles are incorporated into the growing region if they

fulfill the following three criteria:

1. the angle difference between the normal vectors of the optimal plane and

the neighbor triangle is below a certain threshold value,

2. the distance from the optimal plane to the triangle is shorter than a

predefined maximum value,

3. the distance between the center of the optimal plane and the neighbor

triangle is under a threshold value.

152

 The optimal plane is re-estimated after each time a triangle is accepted to

the growing region. The growing continues until there is no triangle left.

153

Appendix C

Robust interpolation algorithm adapted from (Tóvári and Pfeifer, 2005)

The plane segments extracted from the plane fitting algorithm (described

in Appendix B) is feed into the robust interpolation algorithm that enables filtration

of the segments belong to the ground. First, planar segments with a size larger

than the largest man-made structure possible are extracted and identified as

ground. These ground seeds act as ground elevation references to initiate the

filtering process.

During the iterative process, each point (xj, yj, zj) within the segment has

one weight wj. This weight is initially set to one. The robust interpolation algorithm

runs as follows:

1. A surface is interpolated initially, using the surface moving least squares

(MLS) with an order one polynomial (a plane) and the current weights (wj) of the

points associated with the segments. The current weight of the points is further

adjusted via its product to a 2-dimensional weight function which ensures that

points near the interpolation position gain higher weights and reach a value of zero

at a certain range.

2. For each point, filter value (rj) is determined by the difference in the distance

of the interpolated surface to the constituents observed value.

3. Since a segment can either entirely belong to ground, or entirely belong to

an object, all filter value belonging to each segment are analyzed together. A

representative filter value (Rk) is therefore determined by averaging the filter values

154

belonging to each segment. A new weight (Wk) is assigned based on this

aggregated value and a weight function for robust adjustment. The function to

assign a weight (Wk) for the segment used in (Tóvári and Pfeifer, 2005) is shown

in Figure 89

Figure 89 Parameters of the weight function

Here, the weight drops from the maximum 1 to 0 as Rk value increases

from 0 to f. However, the weight remains constant at 1 for all negative filter values,

i.e. segments with an average filter value less than zero will always have the

maximum weight. This means the interpolation is forced to conform to surface that

lies below the interpolated surface. Therefore, planar segments of objects that are

convex in shape are filtered out and those that belong to concave objects are

ignored. However, as stated in chapter 1, my objective is to detect not only convex

objects but also objects that are concave in shape such as a pond, artificial

cavities. To serve our purpose, the weight function is modified as shown in Figure

90. Here, the left branch is a mirror image of the right branch. Therefore, this

155

enables the interpolation algorithm to filter out planar segments that belong to both

concave and convex.

Figure 90 Parameters of the modified weight function

4. These weights are considered in the next iteration and therefore, segments

with a large weight have a larger influence on the run of the surface. This process

is iterated until there is no object point left, i.e. their weight becomes zero.

156

Biography

Md. Ahsan Habib received his B.Sc. degree in Electrical and Electronic

Engineering (EEE), in 2009 from the University of Dhaka, Dhaka, Bangladesh. He

earned his Ph.D. in Electrical Engineering at the University of Texas at Arlington,

Arlington, Texas in 2017. He has been awarded a Doctoral Dissertation Fellowship

in Summer 2017 from UT Arlington. His research interests are in Computer Vision,

Machine Learning, and Robotics.

