
1 
 

A SUPERVISED APPROACH TO  

TRAINING GAUSSIAN MIXTURE  

MODEL CLASSIFIERS 

by 

Vineet Dilip Gundecha 

 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements 

for the Degree of 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 

 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

July 2017 

  



2 
 

 

 

 

 

 

 

 

 

 

 

 

Copyright © by Vineet Dilip Gundecha 2017 

All Rights Reserved 

 

 

  



3 
 

Acknowledgements 

I would like to sincerely thank my supervising professor Dr. Michael Manry for his guidance 

and advice. His continual support was essential in successfully completing my thesis.          

I dedicate this thesis to my parents, Mr. Dilip Gundecha and Mrs. Savita Gundecha. Their 

support and encouragement helped me throughout my Master’s.  

 

July 31st, 2017 

 



4 
 

Abstract 

 

A SUPERVISED APPROACH TO 

 TRAINING 

 GAUSSIAN MIXTURE  

MODEL CLASSIFIERS 

 

VINEET DILIP GUNDECHA, MS 

The University of Texas at Arlington, 2017 

 

Supervising Professor: Dr. Michael T. Manry 

 

A new method for training Gaussian Mixture Model (GMM) classifiers is presented. First, 

an objective function is defined in terms of the number of clusters, K, per class, the mean 

vectors, the inverse covariance matrices for each class, and the prior probabilities for each 

class. For each increment in K, gradients of the objective function improve upon the prior 

probabilities, mean vectors, and inverse covariance matrices. Improvement in accuracy for 

different datasets are shown and results are compared with the EM algorithm.  
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Chapter 1 

           INTRODUCTION 

This chapter introduces the problem of classification in the field of pattern 

recognition. It also gives a brief review on Gaussian Naïve Bayes classifiers and Gaussian 

Mixture Model classifiers. 

 

1.1 Classifiers 

In pattern recognition and machine learning, classification is the problem of 

identifying to which of a set of categories a new observation belongs, on the basis of a 

training set of data containing observations (or feature vectors) whose category 

membership is known [1]. An example would be classifying a cancer tumor as benign or 

malignant as described by observed characteristics of the patient and the tumor. Machine 

learning has enjoyed remarkable success in recent days on a wide range of tasks – e.g., 

image classification [25], speech recognition [26], spam filtering [27]. An algorithm that 

implements classification is known as a classifier. Formally, classifiers are mathematical 

functions that map input data to a category. Some examples of classifiers are perceptron 

[5], support vector machines [2], decision trees [3], multi-layer perceptron [4]. All classifiers 

have a set of parameters that need to be trained using the training data. The procedure of 

tuning these weights is called as training, and the algorithm used for training is called the 

training algorithm. Training algorithms are broadly classified as supervised or 

unsupervised. In supervised learning algorithms, the training data is labeled, i.e. the 

category membership for all examples is known. 



10 
 

 

Figure 1.1: A classifier separates the input space. The circles and crosses are patterns 
belonging to two different classes. The dotted line is the decision boundary. 

 

 

1.2 Classifier Design 

An example pattern recognition system is shown in figure 1.1 below. The input is first 

processed by a feature extractor to extract information that can be helpful for discriminating 

the classes. As an example, for a system that classifies binary images of handwritten digits, 

counting the number white pixels, or detecting edges can be helpful for classification. The 

extracted features are then given as input to the classifier. The process of providing input 

and allowing the classifier to adapt its parameters is called learning. In supervised learning 

[7], the classifier is also provided with the desired outputs along with the inputs. After 

training, the classifier performance is evaluated on a testing set which consists of input 

patterns that the classifier has not seen while training.  
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Figure 1.2: Pattern recognition system 

 

 

1.2 Bayes classifier 

Bayes Classifiers try to minimize the probability of error. In order to 

construct a Bayes classifier, we need to model the conditional density of the feature vectors 

given the class, denoted by 𝑓𝑓(𝒙𝒙|𝑖𝑖) . This is then combined with the a-priori probabilities of 

each class, 𝑃𝑃(𝑖𝑖), to get the discriminants 𝑑𝑑(𝑖𝑖) using the Bayes rule [6]. The class with the 

maximum value of the discriminant is chosen as the predicted class.  

There are three common forms of the Bayes discriminant.  

(B1)       𝑑𝑑(𝑖𝑖) =  𝑃𝑃(𝑖𝑖)𝑓𝑓(𝒙𝒙|𝑖𝑖) 

(B2)       𝑑𝑑(𝑖𝑖) = g(𝑃𝑃(𝑖𝑖)𝑓𝑓(𝒙𝒙|𝑖𝑖)), where g() is an increasing function  

(B3)       𝑑𝑑(𝑖𝑖) =  𝑃𝑃(𝑖𝑖 | 𝒙𝒙)  

For all the above forms of discriminants, the class with the maximum value of the 

discriminant is chosen as the predicted class. It is difficult to estimate the conditional 

densities in (B1) and (B2) above because of the limited training data available. Different 

classifiers make some assumptions about the data to simplify the density. 

 

Input Feature 
Extraction 

Classifier  

Predicted 
Class 
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1.3 Bayes Gaussian Classifier 

Bayes Gaussian classifiers use the same idea as Bayes classifier in that they use 

the Bayes rule to calculate the discriminants of each class. But they simplify the problem 

of estimating the conditional density of the feature vectors given the class by making the 

assumption that the feature vectors come from a multi-variate Gaussian distribution [10]. 

Bayes Gaussian classifiers model the conditional probability density function of the data 

given the class as a multi-variate Gaussian distribution [23]. A Gaussian distribution is 

parameterized by a mean vector and a covariance matrix. The training procedure of a 

Bayes Gaussian classifier involves finding the mean vector and covariance matrix of each 

class. Bayes theorem is used to combine the probability density with the prior probabilities 

of each class to get the posterior probabilities of the classes given the data. A simple 

decision rule of picking the most probable class is used to obtain the predicted class.  

A modification of Bayes Gaussian classifiers is the naïve Bayes classifier. Along 

with assuming that the feature vectors come from a Gaussian distribution, naïve Bayes 

classifiers also assume that the features are independent. This leads to a simplified form 

of the conditional density. Naïve Bayes finds applications in medical diagnosis [11], text 

retrieval [12], credit scoring [24], etc. Gaussian naïve Bayes classifiers tend to perform 

poorly if the feature vector for a class does not come from a Gaussian distribution.  For 

e.g.., a single Gaussian is not suitable to model a bimodal Gaussian distribution. To 

address this issue, Gaussian mixture models are used. 

 

1.4 Gaussian Mixture Model (GMM) 

Gaussian mixture models [8] are a natural extension to naïve Bayes and Bayes 

Gaussian classifiers. Instead of modelling the probability density of each class as a single 

Gaussian, GMM uses a sum of multiple Gaussians. The contribution of each Gaussian is 

weighted. The procedure of finding the mean vectors and covariance matrices is more 
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complicated than naïve Bayes. The popular algorithm to train GMM is the EM algorithm 

[9]. GMM have recently been used for feature extraction from speech data in speech 

recognition [15]. They have also been used in object tracking of multiple objects [16] 

 

1.5 Proposed method 

This thesis proposes a novel training algorithm for Gaussian naïve Bayes and 

Gaussian mixture model classifiers. Instead of using the EM algorithm for optimizing the 

mean vectors and covariance matrices, we use gradients of an error function w.r.t the 

elements of the mean vectors and the covariance matrices to iteratively update them.  

Chapter 2 reviews the complete structure of GMM classifiers, including the 

Expectation Maximization algorithm. Chapter 3 explains the proposed algorithm for training 

GMM classifiers using the gradient descent technique. Chapter 4 introduces different 

variants of the proposed algorithm. Chapter 5 presents the results on different datasets 

 

 

 

 

 

 

 

 

  



14 
 

Chapter 2 

STRUCTURE OF BAYES GAUSSIAN, NAIVE BAYES AND GAUSSIAN 

MIXTURE MODEL CLASSIFIERS 

This chapter reviews the structure of Bayes Gaussian, naïve Bayes and 

Gaussian mixture model classifiers. It also introduces notation that will be used for the 

rest of the chapters. 

2.1 Notation  

N is the number of features (inputs) in each pattern. 𝒙𝒙𝒑𝒑 is the pth  N-dimensional input 

vector. 𝑁𝑁𝑣𝑣 is the number of training patterns in the training data. 𝑁𝑁𝑐𝑐 is the number of classes. 

𝑁𝑁𝑣𝑣(𝑖𝑖) is the number of training patterns for the  𝑖𝑖𝑡𝑡ℎ class. 𝒎𝒎𝑖𝑖 is the N-dimensional mean 

vector of the 𝑖𝑖𝑡𝑡ℎ class. 𝚺𝚺𝑖𝑖 is the NxN covariance matrix of the  𝑖𝑖𝑡𝑡ℎ class. K is the number of 

components in a mixture. 𝑁𝑁𝑣𝑣(𝑘𝑘, 𝑖𝑖) is the number of patterns in the 𝑘𝑘𝑡𝑡ℎ component of the 𝑖𝑖𝑡𝑡ℎ 

class. 𝒎𝒎𝑖𝑖𝑖𝑖 is the N-dimensional mean vector for the 𝑘𝑘𝑡𝑡ℎ component of 𝑖𝑖𝑡𝑡ℎ class. 𝚺𝚺𝑖𝑖𝑖𝑖 is the 

NxN covariance matrix for 𝑘𝑘𝑡𝑡ℎ component of 𝑖𝑖𝑡𝑡ℎ class. 𝐚𝐚𝑖𝑖𝑖𝑖 is the weighting parameter for 

the 𝑘𝑘𝑡𝑡ℎ component of the 𝑖𝑖𝑡𝑡ℎ class. P(i) is the a-priori probability of the 𝑖𝑖𝑡𝑡ℎ class. 𝒕𝒕𝒑𝒑 is the 

pth Nc dimensional target vector. 𝑖𝑖𝑐𝑐(𝑝𝑝) is the correct class or the ground truth for the 𝑝𝑝𝑡𝑡ℎ 

pattern 

 

2.2 Structure of Bayes Gaussian classifiers 

Bayes Gaussian classifiers are simple probabilistic classifiers based on the Bayes rule. 

Given the training data, these classifiers model the probability density function for each 

class as a multivariate Gaussian. Each Gaussian is parameterized by a mean vector and 

a covariance matrix that is calculated from the training data. The discriminant is calculated 

by using the Bayes rule which combines the prior probabilities of each class with the 

modeled probability density.  
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1) For each class i, the mean vector is estimated as  

𝑚𝑚𝑖𝑖(𝑛𝑛) =
1

𝑁𝑁𝑣𝑣(𝑖𝑖)
� 𝑥𝑥𝑝𝑝(𝑛𝑛)
𝑁𝑁𝑣𝑣(𝑖𝑖)

𝑝𝑝:𝑖𝑖𝑐𝑐(𝑝𝑝)=𝑖𝑖

 

 
(2.2.1) 

for 1 ≤ n ≤ N 

2) The 𝑖𝑖𝑡𝑡ℎ class covariance matrix is then estimated as 

1

1 ( )( )
v T

N

p pi i i
pN =

= − −∑∑ x m x m  
 

(2.2.2) 

3) Once we have the mean vector and covariance matrix, the conditional density is 

given as: 

𝑓𝑓(𝒙𝒙|𝑖𝑖) =
𝑒𝑒𝑥𝑥𝑝𝑝 �− 1

2  �𝒙𝒙 −𝒎𝒎𝑖𝑖 �
𝑇𝑇
𝜮𝜮𝒊𝒊−1 �𝒙𝒙 −𝒎𝒎𝑖𝑖 �  �

�(2𝜋𝜋)𝑁𝑁|𝜮𝜮𝒊𝒊|
 

 
(2.2.3) 

  

4) Combining the conditional density with the a-priori probabilities, the B3 Bayes 

discriminants are calculated as  

1

)
( ) ( | )

( ) ( |
( ) ( | )

cp
p

p N

p
j

P i f i
d i P i

P j f j
=

= =

∑
x

x

x
 

 
(2.2.4) 

The class with the maximum value of the Bayes discriminants is the predicted class 

𝑖𝑖𝑝𝑝′ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖�𝑑𝑑𝑝𝑝(𝑖𝑖)� (2.2.5) 

 

 

2.3 Structure of Gaussian Naïve Bayes classifiers 

One major problem in the Bayes Gaussian classifier is that we need to calculate the inverse 

of the covariance matrix 𝜮𝜮𝒊𝒊. This is difficult if the matrix is singular or close to singular. 
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Gaussian Naïve Bayes overcome this problem by making strong independence 

assumptions between the features. Since the features are independent, the covariance 

between them is 0. This assumption leads to a diagonal covariance matrix which is easy 

to invert.  The diagonal terms represent the variance of each feature.  

 Following are the details for calculating the discriminants for a Gaussian Naïve Bayes 

classifier -         

1) For each class i, the mean vector is estimated as  

𝑚𝑚𝑖𝑖(𝑛𝑛) =
1

𝑁𝑁𝑣𝑣(𝑖𝑖)
� 𝑥𝑥𝑝𝑝(𝑛𝑛)
𝑁𝑁𝑣𝑣(𝑖𝑖)

𝑝𝑝:𝑖𝑖𝑐𝑐(𝑝𝑝)=𝑖𝑖

 

 
(2.2.1) 

for 1 ≤ n ≤ N. 

2) The variances are then calculated as 

σ𝑖𝑖2 (𝑛𝑛) =  
1

𝑁𝑁𝑣𝑣(𝑖𝑖)
� (𝑥𝑥𝑝𝑝(𝑛𝑛) −  𝑚𝑚𝑖𝑖(𝑛𝑛))2    
𝑁𝑁𝑣𝑣(𝑖𝑖)

𝑝𝑝:𝑖𝑖𝑐𝑐(𝑝𝑝)=𝑖𝑖

 

 
(2.2.2) 

for 1 ≤ n ≤ N. 

3) Once we have the mean vector and covariance matrix, the conditional density of  

𝒙𝒙 is given as:   

2

1

2

1

1exp( ( ( ) ( )) ( ))
2( | )

(2 ) ( )

N

p i i
n

p N
n

i
n

x n m n v n
f i

nπ σ

=

=

−
−

=
∑

∏
x  

 
(2.2.3) 

           where 𝑣𝑣𝑖𝑖(𝑛𝑛) = σ𝑖𝑖2 (𝑛𝑛)−1.  

4) Combining the conditional density with the a-priori probabilities, the B3 Bayes 

discriminants are calculated as  
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1

)
( ) ( | )

( ) ( |
( ) ( | )

p
p

p Nc

p
j

P i f i
d i P i

P j f j
=

= =
∑

x
x

x
 

 
(2.2.4) 

 

The class with the maximum value of the Bayes discriminants is the predicted class 

𝑖𝑖𝑝𝑝′ = argmax𝑖𝑖�𝑑𝑑𝑝𝑝(𝑖𝑖)� (2.2.5) 

  

 

2.4 Structure of Gaussian Mixture Models  

A Gaussian mixture model [8] is a probabilistic model that assumes all the data 

points are generated from a mixture of a finite number of Gaussian distributions with 

unknown parameters. One hint that data might follow a mixture model is that the data looks 

multimodal, i.e. there is more than one "peak" in the distribution of data. Trying to fit a 

multimodal distribution with a unimodal (one "peak") model will generally give a poor fit, as 

shown in the example below. Since many simple distributions are unimodal, an obvious 

way to model a multimodal distribution would be to assume that it is generated by multiple 

unimodal distributions [17]. A Gaussian mixture model is parameterized by two types of 

values, the mixture component weights and the component means and covariances. 

 A Gaussian mixture model pdf with K components can be represented as follows: 

𝑓𝑓(𝒙𝒙) = �𝑎𝑎𝑖𝑖
𝑒𝑒𝑥𝑥𝑝𝑝 �− 1

2  �𝒙𝒙 −𝒎𝒎𝑖𝑖 �
𝑇𝑇
𝜮𝜮𝒌𝒌−1 �𝒙𝒙 −𝒎𝒎𝑖𝑖 �  �

�(2𝜋𝜋)𝑁𝑁|𝜮𝜮𝒌𝒌|

𝐾𝐾

𝑖𝑖=1

 

 
  (2.3.1) 

The weights, 𝑎𝑎𝑖𝑖, represent the contribution of the corresponding component to the resulting 

density. The weights 𝑎𝑎𝑖𝑖 are positive and have values between 0 and 1.  The sum of these 

weights add up to 1 so that total probability distribution normalizes to 1. 
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�𝑎𝑎𝑖𝑖 = 1
𝐾𝐾

𝑖𝑖=1

 
 

     (2.3.2) 

 

2.5 Training a Gaussian Mixture Model using Expectation Maximization 

Training a Gaussian mixture model involves finding the values for the parameters 

𝒎𝒎𝑖𝑖 ,𝜮𝜮𝒌𝒌 , 𝑎𝑎𝑖𝑖 . A common approach is to use maximum likelihood estimation which seeks to 

maximize the likelihood of observing the data under the given model parameters. This can 

be done by differentiating the likelihood w.r.t. the model parameters and set it to 0. For 

mixture models, this approach turns out to be analytically impossible.  

The technique most commonly used to train mixture models is Expectation 

Maximization (EM) [9] which is an iterative method for maximum likelihood estimation of 

parameters in a statistical model. EM iterations alternate between performing an 

expectation (E) step, which creates a function for the expectation of the log-likelihood 

evaluated using the current estimate for the parameters, and a maximization (M) step, 

which computes parameters maximizing the expected log-likelihood found on the E step . 

Following are the details of the algorithm: 

The components are usually initialized using a clustering algorithm like K-means [13]. 

The initial values for the parameters can be calculated from these clusters.  

The 𝑛𝑛𝑡𝑡ℎ element of mean vector for component 𝑘𝑘 is given as  

𝑚𝑚𝑖𝑖(𝑛𝑛) =
1

𝑁𝑁𝑣𝑣(𝑘𝑘)
� 𝑥𝑥𝑝𝑝(𝑛𝑛)
𝑁𝑁𝑣𝑣(𝑖𝑖)

𝑝𝑝:𝑖𝑖𝑐𝑐(𝑝𝑝)=𝑖𝑖

 

 

 
     (2.5.1) 
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for 1 ≤ k ≤ K, 1 ≤ n ≤ N, where 𝑁𝑁𝑣𝑣(𝑘𝑘) is the number of patterns belonging to cluster k, and 

𝑘𝑘𝑐𝑐(𝑝𝑝) is the cluster membership of pattern 𝑝𝑝. 

The covariance matrix can for component 𝑘𝑘 is given as  

( )

( ):( )
1 ( )( )

v

c

k

pv

T
N

p pk k k
p k kkN =

= − −∑∑ x m x m  (2.5.2) 

The component weights are initialized as  

 𝑎𝑎𝑖𝑖 = 𝑁𝑁𝑣𝑣(𝑖𝑖)
𝑁𝑁𝑣𝑣

   (2.5.3) 

The algorithm alternates between an Expectation step and a Maximization step described 

as below:  

Expectation Step:  

Calculate for all values p, k 

 

1

)
( ) ( | )

( |
( ) ( | )

p
p

K

p
j

P k f k
P k

P j f j
=

=
∑

x
x

x
 

 
(2.5.4) 

 

where 𝑃𝑃�𝑘𝑘�𝒙𝒙𝒑𝒑� is the probability that 𝒙𝒙𝒑𝒑 is generated by component k. 

Maximization Step: 

Using 𝑃𝑃�𝑘𝑘�𝒙𝒙𝒑𝒑� in the Expectation step, the parameters of the model are updated. 

First, the mean vectors for the component k is updated as a weighted average of 

all the patterns as per equation 2.4.2. The weight is the probability that the pattern 

was generated by that component. Thus, patterns with a large weight will tend to 

pull the mean vectors towards them.   
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1

1

( | )

( | )

Nv

p p
p

k Nv

p
p

P k

P k

=

=

=
∑

∑

x x
m

x
 

 
(2.5.5) 

Similarly, the covariance matrix is updated as a weighted cross 

product    

1

1

( | )( )( )

( | )

T
Nv

p p k p k
p

k Nv

p
p

P k

P k

=

=

− −
=
∑

∑

x x m x m

x
∑  

 
(2.5.6) 

The component weights are updated as the mean of 𝑃𝑃(𝑘𝑘|𝒙𝒙𝑝𝑝) for all the patterns. If 

𝑃𝑃(𝑘𝑘|𝒙𝒙𝑝𝑝) is large for some component k, that component will have a greater 

contribution to the density. 

   𝑎𝑎𝑖𝑖  =  
1
𝑁𝑁𝑣𝑣

�𝑃𝑃(𝑘𝑘|𝒙𝒙𝑝𝑝)
𝑁𝑁𝑣𝑣

𝑝𝑝=1

 

 
(2.5.7) 

 

The training iterates over these two steps until the parameters converge. The EM algorithm 

guarantees that the likelihood increases after each step. Usually, the training is stopped if 

the change in likelihood is smaller than a chosen tolerance value. EM can get stuck in a 

local maximum or a saddle point. Also, it is sensitive to the initial values of the parameters. 

 

2.6 Gaussian Mixture Model classifiers 

Gaussian mixture models can also be used for classification.  We can think about 

this as an extension of the Bayes Gaussian classifier. Instead of using a single Gaussian 

to model the conditional density, we use a mixture of Gaussians. The densities are then 
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combined with the prior probabilities of each class and the discriminant is calculated using 

the Bayes rule.  

GMM classifiers are initialized using K-means. Each class is clustered into K 

components. The initial values of the component weight are calculated as  

𝑎𝑎𝑖𝑖𝑖𝑖 =
𝑁𝑁𝑣𝑣(𝑘𝑘, 𝑖𝑖)
𝑁𝑁𝑣𝑣(𝑖𝑖)

 

The 𝑖𝑖𝑡𝑡ℎ class density is given as: 

𝑓𝑓(𝒙𝒙|𝑖𝑖) = �𝑎𝑎𝑖𝑖𝑖𝑖
𝑒𝑒𝑥𝑥𝑝𝑝 �−1

2  �𝒙𝒙 −𝒎𝒎𝑖𝑖𝑖𝑖 �
𝑇𝑇
𝜮𝜮𝒊𝒊𝒌𝒌−1 �𝒙𝒙 −𝒎𝒎𝑖𝑖𝑖𝑖 �  �

�(2𝜋𝜋)𝑁𝑁|𝜮𝜮𝒊𝒊𝒌𝒌|

𝐾𝐾

𝑖𝑖=1

  

 
     (2.6.1) 

  

Calculate the discriminants as: 
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     (2.6.2) 

 

The predicted class is given  

𝑖𝑖𝑝𝑝′ = argmax𝑖𝑖�𝑑𝑑𝑝𝑝(𝑖𝑖)� (2.6.3) 

 

Training a Gaussian mixture model classifier involves modeling the probability 

density for each class separately.  The number of components K for each mixture is usually 

chosen by evaluating the performance of the classifier on a validation set 
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Training algorithm for Gaussian mixture model classifiers using EM 

(Initialize K = 2, separate training data into training and validation) 

1. For each class i, cluster the patterns belonging to that class into K clusters using 
K-means ++ [14]. Calculate the component weights as  
 

𝑎𝑎𝑖𝑖𝑖𝑖 =
𝑁𝑁𝑣𝑣(𝑘𝑘, 𝑖𝑖)
𝑁𝑁𝑣𝑣(𝑖𝑖)

 

 

2. Run EM on each class separately to get the estimated 𝒎𝒎𝑖𝑖𝑖𝑖, 𝜮𝜮𝒌𝒌𝒊𝒊, 𝑎𝑎𝑖𝑖𝑖𝑖  

3. Calculate 𝑃𝑃(𝑖𝑖) as 𝑁𝑁𝑣𝑣(𝑖𝑖)/𝑁𝑁𝑣𝑣 

4. Use equation 2.5.2 to calculate the discriminants for each pattern 

5. Use equation 2.5.3 to get the predicted class 

6. Evaluate the performance on a validation set, save the model if the validation 

accuracy is improved 

7. Increment K by 1 and go to 1 

8. Pick the best value of K using the validation accuracy. 

 

2.7 Problems with Gaussian Mixture Model classifiers 

1. Mean vectors initialized using K-means may not be optimal for the task of 

classification. Mean vectors found using K-means are optimized for minimizing the 

Euclidean distance between them and the points in the cluster. They may be good 

for purpose of clustering, but not for classification. EM is used to improve the mean 

vectors 𝒎𝒎𝑖𝑖𝑖𝑖 initialized using K-means. But since EM is used for each class 

separately, there’s no interaction between mean vectors for clusters belonging to 

different classes. 

2. Similarly, 𝜮𝜮𝒊𝒊𝒌𝒌 , 𝑎𝑎𝑖𝑖𝑖𝑖  that maximize the log likelihood in EM, are not optimal for 

classification  
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3. When using EM, each class is trained separately. Thus, EM needs to be run 

𝑁𝑁𝑐𝑐  times. 

These problems are the motivation for the proposed algorithm described in the next 

chapter   
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Chapter 3 

GRADIENT BASED TRAINING OF GAUSSIAN MIXTURE MODEL CLASSIFIERS 

In this chapter, a new technique for training of Gaussian mixture model classifier is 

presented. 

 

3.1 Problem formulation 

We formulate the problem of training the classifier as a supervised learning 

problem. As mentioned before, in supervised learning we adjust the parameters of our 

model by using the ground truth information. In classification, the ground truth is the class 

number to which the pattern belongs. This ground truth, or the desired output, can be 

represented as a 𝑁𝑁𝑐𝑐-dimensional vector. This vector is now our target output 𝒕𝒕𝒑𝒑. It is defined 

as below:  

𝑡𝑡𝑝𝑝(𝑖𝑖) =  𝛿𝛿(𝑖𝑖 − 𝑖𝑖𝑐𝑐)             𝑓𝑓𝑓𝑓𝑎𝑎 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑐𝑐 (3.1.1) 

where 𝛿𝛿 is the Kronecker delta function [22]. The target output is 1 for the correct class 

and 0 elsewhere. The output of our classifier is same as in equation 2.5.2. It is 

represented by the vector 𝒚𝒚𝒑𝒑.  
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(3.1.2) 

where, 𝑓𝑓�𝒙𝒙𝒑𝒑�𝑖𝑖� is the value of the conditional density of 𝒙𝒙𝒑𝒑 for class 𝑖𝑖 

 

2 1/2

1

2

1

/21 ( ( ))

exp( ( ( ) ( )) ( ))
( | )

(2 )
N

ki
n

N

pK ki ki
n

p ki
Nk n

x n m n v n
f i a

σπ
=

=

=

− −
=

∏

∑
∑x  



25 
 

   

We define an error function E to quantify the difference between the desired output 𝒕𝒕𝒑𝒑 and 

the actual output 𝒚𝒚𝒑𝒑.  

𝐸𝐸 =  
1
𝑁𝑁𝑣𝑣

���𝑡𝑡𝑝𝑝(𝑖𝑖) − 𝑦𝑦𝑝𝑝(𝑖𝑖)�
2

𝑁𝑁𝑐𝑐

𝑖𝑖=1

𝑁𝑁𝑣𝑣

𝑝𝑝=1

 

 
(3.1.3) 

We want to minimize this error function w.r.t the parameters of the mixture model classifier. 

There are three different types of parameters – the prior probabilities P(i), the elements of 

the mean vectors 𝒎𝒎𝑖𝑖𝑖𝑖, and the elements of the covariance matrices 𝜮𝜮𝒌𝒌𝒊𝒊. As mentioned 

before, we assume that the inputs to the classifier are independent. Thus, the covariance 

matrices are diagonal and the diagonal elements represent the variance of the 

corresponding input. The output of the classifier 𝒚𝒚𝒑𝒑  is a function of these three types of 

parameters.  

 

3.2 Proposed technique for updating the parameters 

To minimize the error function, we use the gradient descent technique. Gradient 

descent is a first-order iterative optimization algorithm for finding the minimum of a function 

[18]. Finding the minimum of a function using gradient descent involves two steps - 

calculate the gradient of the function at the current point, take steps in the direction of the 

negative gradient to update the parameters. If a function has multiple minima, gradient 

descent can get stuck in a local minimum. 

It was found during experiments that a variant of the gradient descent technique, 

called as Adam [19], performed much better. It stands for Adaptive Moment Estimation. 

Adam keeps an exponentially decaying average of the gradients from all the previous 

iterations. This quantity is known as the momentum term p. We also keep an exponentially 

decaying average of the squared gradients from all the previous iterations. This is denoted 



26 
 

by q. The p and q arrays have the same dimensions as 𝜽𝜽 which denotes the sets of 

parameters. Both are initialized to 0. 

𝒑𝒑𝟎𝟎 = 0, 𝒒𝒒𝟎𝟎 = 0 

Consider 𝜽𝜽 as a 3-D array containing all the parameters. For iteration 𝑡𝑡, 𝑝𝑝𝑡𝑡(𝑖𝑖, 𝑗𝑗,𝑘𝑘), 

𝑞𝑞𝑡𝑡(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) can be calculated as follows 

𝑝𝑝𝑡𝑡(𝑖𝑖, 𝑗𝑗,𝑘𝑘) =  𝛽𝛽1𝑝𝑝𝑡𝑡−1(𝑖𝑖, 𝑗𝑗,𝑘𝑘) + (1 − 𝛽𝛽1)𝑎𝑎𝑡𝑡(𝑖𝑖, 𝑗𝑗,𝑘𝑘) (3.2.1) 

𝑞𝑞𝑡𝑡(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) =  𝛽𝛽2𝑞𝑞𝑡𝑡−1(𝑖𝑖, 𝑗𝑗,𝑘𝑘) + (1 − 𝛽𝛽2)𝑞𝑞𝑡𝑡2(𝑖𝑖, 𝑗𝑗,𝑘𝑘) (3.2.2) 

Here, 𝑎𝑎𝑡𝑡(𝑖𝑖, 𝑗𝑗,𝑘𝑘) represents the gradient at iteration t. 𝛽𝛽1,𝛽𝛽2 are numbers between 0 and 

1. Typical values proposed are 0.9 for 𝛽𝛽1, 0.999 𝑓𝑓𝑓𝑓𝑎𝑎 𝛽𝛽2. The parameters at iteration t are 

given by 𝜽𝜽𝒕𝒕, the update equation for parameter 𝜃𝜃(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) is given as 

𝜃𝜃𝑡𝑡+1(𝑖𝑖, 𝑗𝑗,𝑘𝑘) =  𝜃𝜃𝑡𝑡(𝑖𝑖, 𝑗𝑗,𝑘𝑘) −
𝛼𝛼

�𝑞𝑞𝑡𝑡(𝑖𝑖, 𝑗𝑗, 𝑘𝑘)+ ∈
𝑝𝑝𝑡𝑡(𝑖𝑖, 𝑗𝑗,𝑘𝑘) 

 
(3.2.3) 

𝛼𝛼 is the learning rate and ∈ is a small number to prevent division by 0. The learning rate 

𝛼𝛼 is chosen heuristically. 

The advantage of using Adam is two-fold. First, the momentum term is helpful for 

accelerating the training in directions where the gradient does not change sign. It also helps 

in preventing oscillations in steep directions where the gradient is high [20]. Second, the  

𝒗𝒗𝒕𝒕 term acts as an adaptive, per-parameter learning rate, similar to that in [21]. This makes 

it possible to use different learning rate for each parameter. The learning rate is inversely 

related to the gradient of that parameter. 
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3.3 Training the parameters 

There are number of different ways to perform the training. Since we have three 

different types of parameters, the a-priori probabilities, the mean vectors, and the inverse 

covariance elements, number of permutations can be tried. Experiments were carried for 

the following methods: 

i. Training all parameters together 

In this method, all three set of parameters are updated together for each iteration. 

For each iteration, we calculate the gradients of the error function defined in equation 

3.1.1 w.r.t each parameter. The parameters are then updated using Adam as 

described in the previous section 

ii. Training one parameter at a time 

Training in this method occurs in three steps. In each step, one parameter is trained 

while others are kept constant. For e.g.: In the first step, the mean vectors are 

trained. In the second step, the trained mean vectors are kept constant and the 

inverse variances are trained. In the third step, the trained mean vectors and inverse 

variances are kept constant and the prior probabilities are trained. 

iii. Adding one parameter at each step 

This method starts by training a single parameter. At every subsequent step, a new 

parameter is added and training continues for the newly added parameter as well 

as for parameter added before. 

Additionally, in ii and iii, the order of parameters can also change. During experiments, it 

was found that training all the parameters together performs the best. Also, it is faster since 

all parameters are trained together.  
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3.4 Training only one set of parameters at a time 

In this sub-section, we perform training by updating only one out of the three set 

of parameters and evaluate the performance on different datasets 

 

3.4.1 Training the prior probabilities 

Prior probabilities for each are initialized as the fraction of patterns belonging to 

that class. For most classification datasets, the number of patterns in a class is the same 

for all classes. So, the prior probabilities indicate that all classes are equally probable. 

During experiments, it was found that training the prior probabilities does not make much 

difference in the classifier performance. Prior probabilities should always be positive. This 

is done by using the square of the square root of those elements while calculating the 

output. Additionally, the probabilities should also add up to 1. This is ensured by dividing 

the probabilities by the sum of all probabilities. 

 

3.4.2 Training the mean vectors 

For each class, we have K component clusters. As mentioned before, the cluster 

mean vectors are initialized using K-means++. The cluster centers are initialized to 

minimize the Euclidean distance between the patterns belonging to that class and the 

mean vectors. Thus, mean vectors obtained by K-means++ may not be optimal for our final 

task which is classification. We could optimize the center vectors so that it minimizes the 

error function defined in equation 3.1.3. Table 2 shows the improvement in accuracy after 

training the prior probabilities and the mean vectors 
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3.4.3 Training the inverse variances elements 

Similar to the mean vectors, the inverse variances are calculated using clusters 

initialized by K-means. As reasoned before, they may not be optimal. We use the same 

technique to optimize the inverse variances. Since variances are always positive, it is 

important to ensure that they don’t go negative while training. This is done by using the 

square of the square root of those elements while calculating the output. 

 

Dataset Number of 
inputs  

Number of 
classes 

Accuracy 
before training 
prior 
probabilities 

Accuracy after 
training prior 
probabilities 

Comf18 18 4 63.21 64.87 

Grng 16 4 81.0 81.2 

Gongtrn 16 10 89.2 89.4 

F17C 17 39 96.2 97.2 

Phoneme 5 2 78.9 80.6 

M-feat 6 10 73.4 73.8 

 
Table 1: The table shows the improvement in accuracy after training the prior 

probabilities 

 

Dataset Number of 
inputs  

Number of 
classes 

Accuracy 
before training 
mean vectors 

Accuracy after 
training mean 
vectors 

Comf18 18 4 63.21 71.6 

Grng 16 4 80.0 85.0 

Gongtrn 16 10 89.2 91.4 

F17C 17 39 96.4 98.4 

Phoneme 5 2 78.9 85.1 

M-feat 6 10 73.4 75.0 
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Table 2: The table shows the improvement in accuracy after training the prior 

probabilities and mean vectors 

 

 

Table 1 shows the improvement in accuracy after training the prior probabilities. As 

mentioned before, this doesn’t result in much performance gain. The table shows the 

improvement in accuracy after training the prior probabilities and the mean vectors. We 

see significant improvement after training the mean vectors. This indicates that mean 

vectors initialized by K-means++ are not optimal for classification. 

 

Figure 3.1: This figure shows the decrease in the error as the training progresses 
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Figure 3.2 The figure shows how training the parameters (only the mean vector in this 
case) increases the validation accuracy 
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Chapter 4 

FINAL ALGORITHM AND RESULTS  

In this chapter, we present the final algorithm, and compare the results with EM. 

 

  4.1 Final algorithm 

In chapter 3, section 3.5, we presented the results after training the prior 

probabilities and the mean vectors. For the final algorithm, we train all the parameters 

together. For each iteration, we jointly optimize all three sets of parameters. To prevent the 

prior probabilities from going negative, we initialize them as square root of the actual 

probabilities and use square of those values while calculating the output. Similar trick is 

used for the variances where they are initialized as standard deviations 

The prior probabilities are stored in 𝜽𝜽𝒑𝒑. It is a vector of size 𝑁𝑁𝑐𝑐 with elements �𝑃𝑃(𝑖𝑖). 

𝑃𝑃(𝑖𝑖) is given as: 

𝑃𝑃(𝑖𝑖) =
𝑁𝑁𝑣𝑣(𝑖𝑖)
𝑁𝑁𝑣𝑣

  

The mean vectors are stored in 𝜽𝜽𝒎𝒎.  It is 3-dimensional array of size 𝑁𝑁𝑐𝑐𝑥𝑥 𝐾𝐾𝑥𝑥 𝑁𝑁 with the 

elements 𝑚𝑚𝑖𝑖𝑖𝑖(𝑛𝑛) . 

𝑚𝑚𝑖𝑖𝑖𝑖(𝑛𝑛) =
1

𝑁𝑁𝑣𝑣(𝑘𝑘, 𝑖𝑖)
� 𝑥𝑥𝑝𝑝(𝑛𝑛)

𝑁𝑁𝑣𝑣(𝑖𝑖,𝑖𝑖)

𝑝𝑝:𝑖𝑖𝑐𝑐(𝑝𝑝)=𝑖𝑖,𝑖𝑖𝑐𝑐(𝑝𝑝)=𝑖𝑖

 

where, 𝑖𝑖𝑐𝑐(𝑝𝑝),𝑘𝑘𝑐𝑐(𝑝𝑝) are the class and cluster membership of pattern 𝑝𝑝 respectively. 

 𝜽𝜽𝒗𝒗 is also 3-dimensional array of size 𝑁𝑁𝑐𝑐𝑥𝑥 𝐾𝐾𝑥𝑥 𝑁𝑁 containing the elements 𝑣𝑣𝑖𝑖𝑖𝑖(𝑛𝑛) which are 

the inverse standard deviations 
1

�𝜎𝜎𝑘𝑘𝑘𝑘
2 (𝑛𝑛)

.  
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𝜎𝜎𝑖𝑖𝑖𝑖2 (𝑛𝑛) =
1

𝑁𝑁𝑣𝑣(𝑘𝑘, 𝑖𝑖)
� (𝑥𝑥𝑝𝑝(𝑛𝑛) −  𝑚𝑚𝑖𝑖𝑖𝑖(𝑛𝑛))2

𝑁𝑁𝑣𝑣(𝑖𝑖,𝑖𝑖)

𝑝𝑝:𝑖𝑖𝑐𝑐(𝑝𝑝)=1,𝑖𝑖𝑐𝑐(𝑝𝑝)=𝑖𝑖

  

 

This describes the final training algorithm using the approach described in 

section 3.1-3.3.  

(Initialize K = 2, separate training data into training and validation. Choose a 

maximum value for K as 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 ) 

1. For each class 𝑖𝑖, cluster the patterns belonging to that class into K clusters using 

K-means ++ [14] 

2. Calculate the mean vectors 𝒎𝒎𝑖𝑖𝑖𝑖, inverse variances 𝒗𝒗𝒌𝒌𝒊𝒊 for the clusters. Initialize 

the prior probabilities P(i) as  𝑁𝑁𝑣𝑣(𝑖𝑖)/𝑁𝑁𝑣𝑣. Initialize the component weights 𝑎𝑎𝑖𝑖𝑖𝑖 as  

𝑁𝑁𝑣𝑣(𝑘𝑘, 𝑖𝑖)/𝑁𝑁𝑣𝑣(𝑖𝑖). Initialize 𝑷𝑷𝒎𝒎, 𝑷𝑷𝒗𝒗,𝑷𝑷𝒑𝒑,𝑸𝑸𝒎𝒎,𝑸𝑸𝒗𝒗,𝑸𝑸𝒑𝒑  as 0 

3. For iteration 𝑖𝑖𝑡𝑡 = 1 to 𝑁𝑁𝑖𝑖𝑡𝑡, where 𝑁𝑁𝑖𝑖𝑡𝑡 is the total number of iterations 

4. Calculate 𝒚𝒚 as 
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5. Calculate error E and gradients of E (Refer to Appendix A for complete equations). 

𝑮𝑮𝒎𝒎,𝑮𝑮𝑷𝑷,𝑮𝑮𝒗𝒗, denote the matrices of partial derivatives of E w.r.t the mean vectors, 

prior probabilities and inverse variances respectively. Elements of 𝑮𝑮𝒎𝒎 are 
𝝏𝝏𝐸𝐸

𝝏𝝏𝑚𝑚𝑘𝑘𝑘𝑘(𝑛𝑛)
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and are given in equation 6.1.5 of Appendix A. Elements of 𝑮𝑮𝒗𝒗 are 
𝝏𝝏𝐸𝐸

𝝏𝝏𝑣𝑣𝑘𝑘𝑘𝑘(𝑛𝑛)
 and are 

given in equation 6.1.6 of Appendix A. Elements of 𝑮𝑮𝒑𝒑 are 
𝝏𝝏𝐸𝐸

𝝏𝝏𝑃𝑃(𝑗𝑗)
 and are given in 

equation 6.1.7 of Appendix A.  

6. For all values of 𝑖𝑖,𝑘𝑘,𝑛𝑛 (1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑐𝑐 , 1 ≤ 𝑘𝑘 ≤ 𝐾𝐾, 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁) calculate 

𝑃𝑃𝑚𝑚(𝑖𝑖, 𝑘𝑘, 𝑛𝑛),𝑃𝑃𝑣𝑣(𝑖𝑖, 𝑘𝑘, 𝑛𝑛),𝑃𝑃𝑝𝑝(𝑖𝑖), 𝑄𝑄𝑚𝑚(𝑖𝑖, 𝑘𝑘, 𝑛𝑛),𝑄𝑄𝑣𝑣(𝑖𝑖, 𝑘𝑘, 𝑛𝑛),𝑄𝑄𝑝𝑝(𝑖𝑖)  as follows. 𝛽𝛽1 = 0.99,𝛽𝛽2 

= 0.999. 

  𝑃𝑃𝑚𝑚(𝑖𝑖,𝑘𝑘,𝑛𝑛) ←  𝛽𝛽1 𝑃𝑃𝑚𝑚(𝑖𝑖,𝑘𝑘,𝑛𝑛) + (1 − 𝛽𝛽1) 𝐺𝐺𝑚𝑚(𝑖𝑖,𝑘𝑘,𝑛𝑛)  

𝑃𝑃𝑝𝑝(𝑖𝑖) ← 𝛽𝛽1𝑃𝑃𝑝𝑝(𝑖𝑖) + (1 − 𝛽𝛽1)𝐺𝐺𝑝𝑝(𝑖𝑖) 

𝑃𝑃𝑣𝑣(𝑖𝑖,𝑘𝑘,𝑛𝑛) ←  𝛽𝛽1 𝑃𝑃𝑣𝑣(𝑖𝑖, 𝑘𝑘,𝑛𝑛) + (1 − 𝛽𝛽1) 𝐺𝐺𝑣𝑣(𝑖𝑖,𝑘𝑘,𝑛𝑛) 

𝑄𝑄𝑚𝑚(𝑖𝑖, 𝑘𝑘,𝑛𝑛) ←  𝛽𝛽2𝑄𝑄𝑚𝑚(𝑖𝑖,𝑘𝑘,𝑛𝑛) + (1 − 𝛽𝛽2)𝐺𝐺𝑚𝑚2 (𝑖𝑖,𝑘𝑘,𝑛𝑛) 

𝑄𝑄𝑝𝑝(𝑖𝑖) ← 𝛽𝛽2𝑄𝑄𝑝𝑝(𝑖𝑖) + (1 − 𝛽𝛽2)𝐺𝐺𝑝𝑝2(𝑖𝑖) 

𝑄𝑄𝑣𝑣(𝑖𝑖,𝑘𝑘,𝑛𝑛) ←  𝛽𝛽2 𝑄𝑄𝑣𝑣(𝑖𝑖,𝑘𝑘,𝑛𝑛) + (1 − 𝛽𝛽2) 𝐺𝐺𝑣𝑣2(𝑖𝑖,𝑘𝑘,𝑛𝑛) 

7. Update parameters as  

𝜃𝜃𝑝𝑝(𝑖𝑖) ←  𝜃𝜃𝑝𝑝(𝑖𝑖)  −
𝛼𝛼

�𝑄𝑄𝑝𝑝(𝑖𝑖)+ ∈
𝑃𝑃𝑝𝑝(𝑖𝑖) 

𝜃𝜃𝑚𝑚(𝑖𝑖,𝑘𝑘,𝑛𝑛) ←  𝜃𝜃𝑚𝑚(𝑖𝑖,𝑘𝑘,𝑛𝑛)  −
𝛼𝛼

�𝑄𝑄𝑚𝑚(𝑖𝑖,𝑘𝑘,𝑛𝑛)+ ∈
 𝑃𝑃𝑚𝑚(𝑖𝑖,𝑘𝑘, 𝑛𝑛) 

𝜃𝜃𝑣𝑣(𝑖𝑖,𝑘𝑘,𝑛𝑛) ←  𝜃𝜃𝑣𝑣(𝑖𝑖,𝑘𝑘,𝑛𝑛)  −
𝛼𝛼

�𝜃𝜃𝑣𝑣(𝑖𝑖,𝑘𝑘,𝑛𝑛)+ ∈
𝑃𝑃𝑣𝑣(𝑖𝑖,𝑘𝑘,𝑛𝑛) 

8. Normalize the priors so that they sum up to 1. 

 

1

( )( )
( )

cN

j

P iP i
P j

=

←

∑
  

9. Check performance on validation data. If performance is better than the previous 

iteration, save the parameters. 
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10. Increase 𝑖𝑖𝑡𝑡 by 1. If 𝑖𝑖𝑡𝑡 < 𝑁𝑁𝑖𝑖𝑡𝑡, go to 4 

11. End iterations 

12. If K < 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚. Increase K by 1, go to step 1. 

The value of K which performs the best on validation data is chosen as the final value of 

K. The final values for the prior probabilities and variances are found as: 

𝑃𝑃(𝑖𝑖) ← 𝑃𝑃2(𝑖𝑖) 

𝜎𝜎𝑖𝑖𝑖𝑖2 ←  (𝜎𝜎𝑖𝑖𝑖𝑖)2 

 This way the prior probabilities and inverse variances are prevented from going 

negative.    

In the following the table, we show the improvement obtained after training the 

parameters using the algorithm described and compare it with training the parameters 

using EM as described in section 2.6.  

Dataset Number 
of 
inputs  

Number 
of 
classes 

GMM initialized 
with K-means 

GMM 
initialized with 
K-means and 
trained with 
gradient 
approach 

GMM 
initialized 
with K-means 
and trained 
with EM 

Comf18 18 4 63.21 (K = 2) 77.94 (K = 4) 68.67  (K = 4) 

Grng 16 4 80.0   (K = 3) 92.0   (K = 2) 83.0    (K = 2) 

Gongtrn 16 10 89.2   (K = 4) 92.8   (K = 2) 88.8    (K = 2) 

F17C 17 39 96.4   (K = 5) 99.2   (K = 5) 97.0    (K = 3) 

Phoneme 5 2 78.96 (K = 2) 87.37 (K = 4) 79.97  (K = 4) 

M-feat 6 10 73.4   (K = 2) 76.2   (K = 3) 68.0    (K = 3) 

 
Table 3: This table compares performance for three different algorithms. The final value 

of K is given in brackets.  

 

We also compare performance for methods described in section 3.5 with the final 

algorithm. In figure 4.1, we show that training all parameters performs better than training 

any individual parameter. Also, as mentioned before, training the prior probabilities gives 
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the least improvement in performance. Training the mean vectors and inverse variances 

do give a considerable improvement in performance, but it is still less than training all 

parameters together. 

 

 

Figure 4.1: This figure shows how training all parameters together performs much better 
than training them individually. 

 

In figure 4.2, we show how validation accuracy changes with number of 

components in each mixture model. There’s an optimal value of K which gives the best 

classification performance. Also, the optimal value of K varies with the dataset. 



37 
 

 

Figure 4.2. The figure shows how validation accuracy changes with K. 
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Chapter 5 

               CONCLUSIONS 

 

In this thesis, a supervised learning approach is proposed to train Gaussian 

mixture model classifiers. The results show a considerable improvement in performance 

compared to EM. A possible reason for this could be that the final objective for EM is to 

find parameters that maximize the likelihood of the observed data. This is different than the 

objective of training classifiers which is minimizing the probability of error. Also, when using 

EM, each class is trained separately, so there is no interaction between the parameters of 

different classes. In the gradient approach, the error function ties all the parameters 

together. This leads to interaction between the classes which helps in improving the 

classification performance.  

While training the parameters, we make sure that the prior probabilities add up to 

1. Also, it is ensured that the inverse variances are positive after training. Thus, the 

resulting mixture model after training the parameters using a gradient approach is still a 

valid mixture model. After training, the mean vectors may not represent the actual centers 

of the corresponding cluster. The resulting model may not be a good estimate of the true 

conditional density, but it is good for classification. 
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Appendix A 

              Derivation of gradients 
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Here we derive the equations for gradients used in section 3.3. We need the gradient of 

the error function w.r.t the mean vector elements, inverse variance elements, and with the 

prior probabilities. 

We first derive the gradient of the error function E w.r.t the conditional density of class u 

𝑓𝑓�𝒙𝒙𝒑𝒑�𝑢𝑢�. 

The error function E and output 𝑦𝑦𝑝𝑝(𝑖𝑖) is given as 
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We now derive the gradient of the conditional density 𝑓𝑓�𝒙𝒙𝒑𝒑�𝑢𝑢�. w.r.t the mean vector 

elements 𝑚𝑚𝑙𝑙𝑙𝑙(𝑞𝑞) and inverse variances 𝑣𝑣𝑙𝑙𝑙𝑙(𝑞𝑞). The conditional density is given as 
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The partial of conditional density of 𝒙𝒙𝒑𝒑 for class 𝑢𝑢 w.r.t mean vector element 𝑞𝑞 of component 

𝑙𝑙 is given as 
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The partial of conditional density of 𝒙𝒙𝒑𝒑 for class 𝑢𝑢 w.r.t inverse variance of element 𝑞𝑞 of 

component 𝑙𝑙 is given as 
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Combining equations 6.1.1, 6.1.2, 6.1.3, 6.1.4, the gradient of the error function w.r.t the 

mean vector elements and inverse variances is 
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Finally, we derive the gradient of the error function w.r.t to the prior probabilities  
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Appendix B 

             Description of datasets 
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F17C 

This file has 17 inputs, 39 classes and 4745 patterns. This data file consists of parameters 

that are available in the basic health usage monitoring system (HUMS), plus some others. 

The data was obtained from the M430 flight load level survey conducted in Mirabel Canada 

in early 1995. The input features include: (1) CG F/A load factor, (2) CG lateral load factor, 

(3) CG normal load factor, (4) pitch attitude, (5) pitch rate, (6) roll attitude, (7) roll rate, (8) 

yaw rate, (9) corrected airspeed, (10) rate of climb, (11) longitudinal cyclic stick position, 

(12) pedal position, (13) collective stick position, (14) lateral cyclic stick position, (15) main 

rotor mast torque, (16) main rotor mast pm, (17) density ratio. The 39 classes represent 

different maneuvers of the flight like taking off, landing, turning right or left etc. This is an 

application for prognostics or flight condition recognition 

 

COMF18  

This file has 18 inputs, 4 classes and 12392 patterns. The training data file is 

generated segmented images. Each segmented region is separately histogram equalized 

to 20 levels. Then the joint probability density of pairs of pixels separated by a given 

distance and a given direction is estimated. We use 0, 90, 180, 270 degrees for the 

directions and 1, 3, and 5 pixels for the separations. The density estimates are computed 

for each classification window. For each separation, the co-occurrences for the four 

directions are folded together to form a triangular matrix. From each of the resulting three 

matrices, six features are computed: angular second moment, contrast, entropy, 

correlation, and the sums of the main diagonal and the first off diagonal. This results in 18 

features for each classification window. [28] 

 

GONGTRN 
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This file has 16 inputs, 10 classes and 3000 patterns. The raw data consists of images 

from hand printed numerals collected from 3,000 people by the Internal Revenue Service. 

We randomly chose 300 characters from each class to generate 3,000-character training 

data. Images are 32 by 24 binary matrices. An image scaling algorithm is used to remove 

size variation in characters. The feature set contains 16 elements. The 10 classes 

correspond to 10 Arabic numerals [29] 

 

GRNG 

This file has 16 inputs, 4 classes and 800 patterns. The geometric shape recognition data 

file consists of four geometric shapes, ellipse, triangle, quadrilateral, and pentagon. Each 

shape consists of a matrix of size 64*64. For each shape, 200 training patterns were 

generated using different degrees of deformation. The deformations included rotation, 

scaling, translation, and oblique distortions. The feature set is ring-wedge energy (RNG), 

and has 16 features [30] 

 

PHONEME 

This file has 5 inputs, 2 classes and 5404 patterns. The aim of this dataset is to distinguish 

between nasal (class 0) and oral sounds (class 1). The class distribution is 3,818 samples 

in class 0 and 1,586 samples in class 1. The phonemes are transcribed as follows: sh as 

in she, dcl as in dark, iy as the vowel in she, aa as the vowel in dark, and ao as the first 

vowel in water. [31] 

 

M-FEAT 

 

This dataset consists of features of handwritten numerals (0 - 9) extracted from a 

collection of Dutch utility maps. 200 patterns per class (for a total of 2,000 patterns) have 
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been digitized in binary images. These digits are represented in terms of the following six 

feature sets (files): 1. mfeat-fou: 76 Fourier coefficients of the character shapes; 2. mfeat-

fac: 216 profile correlations; 3. mfeat-kar: 64 Karhunen-Love coefficients; 4. mfeat-pix: 

240 pixel averages in 2 x 3 windows; 5. mfeat-zer: 47 Zernike moments; 6. mfeat-mor: 6 

morphological features. [32] 
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