
1

A SUPERVISED APPROACH TO

TRAINING GAUSSIAN MIXTURE

MODEL CLASSIFIERS

by

Vineet Dilip Gundecha

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

July 2017

2

Copyright © by Vineet Dilip Gundecha 2017

All Rights Reserved

3

Acknowledgements

I would like to sincerely thank my supervising professor Dr. Michael Manry for his guidance

and advice. His continual support was essential in successfully completing my thesis.

I dedicate this thesis to my parents, Mr. Dilip Gundecha and Mrs. Savita Gundecha. Their

support and encouragement helped me throughout my Master’s.

July 31st, 2017

4

Abstract

A SUPERVISED APPROACH TO

 TRAINING

 GAUSSIAN MIXTURE

MODEL CLASSIFIERS

VINEET DILIP GUNDECHA, MS

The University of Texas at Arlington, 2017

Supervising Professor: Dr. Michael T. Manry

A new method for training Gaussian Mixture Model (GMM) classifiers is presented. First,

an objective function is defined in terms of the number of clusters, K, per class, the mean

vectors, the inverse covariance matrices for each class, and the prior probabilities for each

class. For each increment in K, gradients of the objective function improve upon the prior

probabilities, mean vectors, and inverse covariance matrices. Improvement in accuracy for

different datasets are shown and results are compared with the EM algorithm.

5

Acknowledgements ... 3

Abstract ... 4

List of Figures .. 7

List of Tables ... 8

Chapter 1 .. 9

1.1 Classifiers .. 9

1.2 Classifier Design ... 10

1.2 Bayes classifier ... 11

1.3 Bayes Gaussian Classifier .. 12

1.4 Gaussian Mixture Model (GMM) ... 12

1.5 Proposed method .. 13

Chapter 2 .. 14

2.1 Notation ... 14

2.2 Structure of Bayes Gaussian classifiers ... 14

2.3 Structure of Gaussian Naïve Bayes classifiers ... 15

2.4 Structure of Gaussian Mixture Models .. 17

2.5 Training a Gaussian Mixture Model using Expectation Maximization 18

2.6 Gaussian Mixture Model classifiers .. 20

2.7 Problems with Gaussian Mixture Model classifiers ... 22

Chapter 3 .. 24

3.1 Problem formulation .. 24

3.2 Proposed technique for updating the parameters ... 25

3.3 Training the parameters .. 27

6

3.4 Training only one set of parameters at a time .. 28

3.4.1 Training the prior probabilities .. 28

3.4.2 Training the mean vectors ... 28

3.4.3 Training the inverse variances elements ... 29

Chapter 4 .. 32

4.1 Final algorithm ... 32

Chapter 5 .. 38

Appendix A .. 39

Appendix B .. 43

References .. 47

7

List of Figures

Figure 1.1: Illustration of how a classifier separates the input space. 10

Figure 1.2: Example pattern recognition system .. 11

Figure 3.1: Decrease in training error as training progresses... 30

Figure 3.2: Improvement in validation accuracy after training parameters 31

Figure 4.1: Performace comparison of training a single parameter with training all

parameters .. 36

Figure 4.2: Change in validation accuracy with number of components K. 37

8

List of Tables

Table 1: The table shows the improvement in accuracy after training the prior

probabilities .. 29

Table 2: The table shows the improvement in accuracy after training the prior

probabilities and mean vectors... 30

Table 3: The table compares performance for three different algorithms 35

9

Chapter 1

 INTRODUCTION

This chapter introduces the problem of classification in the field of pattern

recognition. It also gives a brief review on Gaussian Naïve Bayes classifiers and Gaussian

Mixture Model classifiers.

1.1 Classifiers

In pattern recognition and machine learning, classification is the problem of

identifying to which of a set of categories a new observation belongs, on the basis of a

training set of data containing observations (or feature vectors) whose category

membership is known [1]. An example would be classifying a cancer tumor as benign or

malignant as described by observed characteristics of the patient and the tumor. Machine

learning has enjoyed remarkable success in recent days on a wide range of tasks – e.g.,

image classification [25], speech recognition [26], spam filtering [27]. An algorithm that

implements classification is known as a classifier. Formally, classifiers are mathematical

functions that map input data to a category. Some examples of classifiers are perceptron

[5], support vector machines [2], decision trees [3], multi-layer perceptron [4]. All classifiers

have a set of parameters that need to be trained using the training data. The procedure of

tuning these weights is called as training, and the algorithm used for training is called the

training algorithm. Training algorithms are broadly classified as supervised or

unsupervised. In supervised learning algorithms, the training data is labeled, i.e. the

category membership for all examples is known.

10

Figure 1.1: A classifier separates the input space. The circles and crosses are patterns
belonging to two different classes. The dotted line is the decision boundary.

1.2 Classifier Design

An example pattern recognition system is shown in figure 1.1 below. The input is first

processed by a feature extractor to extract information that can be helpful for discriminating

the classes. As an example, for a system that classifies binary images of handwritten digits,

counting the number white pixels, or detecting edges can be helpful for classification. The

extracted features are then given as input to the classifier. The process of providing input

and allowing the classifier to adapt its parameters is called learning. In supervised learning

[7], the classifier is also provided with the desired outputs along with the inputs. After

training, the classifier performance is evaluated on a testing set which consists of input

patterns that the classifier has not seen while training.

11

Figure 1.2: Pattern recognition system

1.2 Bayes classifier

Bayes Classifiers try to minimize the probability of error. In order to

construct a Bayes classifier, we need to model the conditional density of the feature vectors

given the class, denoted by 𝑓𝑓(𝒙𝒙|𝑖𝑖) . This is then combined with the a-priori probabilities of

each class, 𝑃𝑃(𝑖𝑖), to get the discriminants 𝑑𝑑(𝑖𝑖) using the Bayes rule [6]. The class with the

maximum value of the discriminant is chosen as the predicted class.

There are three common forms of the Bayes discriminant.

(B1) 𝑑𝑑(𝑖𝑖) = 𝑃𝑃(𝑖𝑖)𝑓𝑓(𝒙𝒙|𝑖𝑖)

(B2) 𝑑𝑑(𝑖𝑖) = g(𝑃𝑃(𝑖𝑖)𝑓𝑓(𝒙𝒙|𝑖𝑖)), where g() is an increasing function

(B3) 𝑑𝑑(𝑖𝑖) = 𝑃𝑃(𝑖𝑖 | 𝒙𝒙)

For all the above forms of discriminants, the class with the maximum value of the

discriminant is chosen as the predicted class. It is difficult to estimate the conditional

densities in (B1) and (B2) above because of the limited training data available. Different

classifiers make some assumptions about the data to simplify the density.

Input Feature
Extraction

Classifier

Predicted
Class

12

1.3 Bayes Gaussian Classifier

Bayes Gaussian classifiers use the same idea as Bayes classifier in that they use

the Bayes rule to calculate the discriminants of each class. But they simplify the problem

of estimating the conditional density of the feature vectors given the class by making the

assumption that the feature vectors come from a multi-variate Gaussian distribution [10].

Bayes Gaussian classifiers model the conditional probability density function of the data

given the class as a multi-variate Gaussian distribution [23]. A Gaussian distribution is

parameterized by a mean vector and a covariance matrix. The training procedure of a

Bayes Gaussian classifier involves finding the mean vector and covariance matrix of each

class. Bayes theorem is used to combine the probability density with the prior probabilities

of each class to get the posterior probabilities of the classes given the data. A simple

decision rule of picking the most probable class is used to obtain the predicted class.

A modification of Bayes Gaussian classifiers is the naïve Bayes classifier. Along

with assuming that the feature vectors come from a Gaussian distribution, naïve Bayes

classifiers also assume that the features are independent. This leads to a simplified form

of the conditional density. Naïve Bayes finds applications in medical diagnosis [11], text

retrieval [12], credit scoring [24], etc. Gaussian naïve Bayes classifiers tend to perform

poorly if the feature vector for a class does not come from a Gaussian distribution. For

e.g.., a single Gaussian is not suitable to model a bimodal Gaussian distribution. To

address this issue, Gaussian mixture models are used.

1.4 Gaussian Mixture Model (GMM)

Gaussian mixture models [8] are a natural extension to naïve Bayes and Bayes

Gaussian classifiers. Instead of modelling the probability density of each class as a single

Gaussian, GMM uses a sum of multiple Gaussians. The contribution of each Gaussian is

weighted. The procedure of finding the mean vectors and covariance matrices is more

13

complicated than naïve Bayes. The popular algorithm to train GMM is the EM algorithm

[9]. GMM have recently been used for feature extraction from speech data in speech

recognition [15]. They have also been used in object tracking of multiple objects [16]

1.5 Proposed method

This thesis proposes a novel training algorithm for Gaussian naïve Bayes and

Gaussian mixture model classifiers. Instead of using the EM algorithm for optimizing the

mean vectors and covariance matrices, we use gradients of an error function w.r.t the

elements of the mean vectors and the covariance matrices to iteratively update them.

Chapter 2 reviews the complete structure of GMM classifiers, including the

Expectation Maximization algorithm. Chapter 3 explains the proposed algorithm for training

GMM classifiers using the gradient descent technique. Chapter 4 introduces different

variants of the proposed algorithm. Chapter 5 presents the results on different datasets

14

Chapter 2

STRUCTURE OF BAYES GAUSSIAN, NAIVE BAYES AND GAUSSIAN

MIXTURE MODEL CLASSIFIERS

This chapter reviews the structure of Bayes Gaussian, naïve Bayes and

Gaussian mixture model classifiers. It also introduces notation that will be used for the

rest of the chapters.

2.1 Notation

N is the number of features (inputs) in each pattern. 𝒙𝒙𝒑𝒑 is the pth N-dimensional input

vector. 𝑁𝑁𝑣𝑣 is the number of training patterns in the training data. 𝑁𝑁𝑐𝑐 is the number of classes.

𝑁𝑁𝑣𝑣(𝑖𝑖) is the number of training patterns for the 𝑖𝑖𝑡𝑡ℎ class. 𝒎𝒎𝑖𝑖 is the N-dimensional mean

vector of the 𝑖𝑖𝑡𝑡ℎ class. 𝚺𝚺𝑖𝑖 is the NxN covariance matrix of the 𝑖𝑖𝑡𝑡ℎ class. K is the number of

components in a mixture. 𝑁𝑁𝑣𝑣(𝑘𝑘, 𝑖𝑖) is the number of patterns in the 𝑘𝑘𝑡𝑡ℎ component of the 𝑖𝑖𝑡𝑡ℎ

class. 𝒎𝒎𝑖𝑖𝑖𝑖 is the N-dimensional mean vector for the 𝑘𝑘𝑡𝑡ℎ component of 𝑖𝑖𝑡𝑡ℎ class. 𝚺𝚺𝑖𝑖𝑖𝑖 is the

NxN covariance matrix for 𝑘𝑘𝑡𝑡ℎ component of 𝑖𝑖𝑡𝑡ℎ class. 𝐚𝐚𝑖𝑖𝑖𝑖 is the weighting parameter for

the 𝑘𝑘𝑡𝑡ℎ component of the 𝑖𝑖𝑡𝑡ℎ class. P(i) is the a-priori probability of the 𝑖𝑖𝑡𝑡ℎ class. 𝒕𝒕𝒑𝒑 is the

pth Nc dimensional target vector. 𝑖𝑖𝑐𝑐(𝑝𝑝) is the correct class or the ground truth for the 𝑝𝑝𝑡𝑡ℎ

pattern

2.2 Structure of Bayes Gaussian classifiers

Bayes Gaussian classifiers are simple probabilistic classifiers based on the Bayes rule.

Given the training data, these classifiers model the probability density function for each

class as a multivariate Gaussian. Each Gaussian is parameterized by a mean vector and

a covariance matrix that is calculated from the training data. The discriminant is calculated

by using the Bayes rule which combines the prior probabilities of each class with the

modeled probability density.

15

1) For each class i, the mean vector is estimated as

𝑚𝑚𝑖𝑖(𝑛𝑛) =
1

𝑁𝑁𝑣𝑣(𝑖𝑖)
� 𝑥𝑥𝑝𝑝(𝑛𝑛)
𝑁𝑁𝑣𝑣(𝑖𝑖)

𝑝𝑝:𝑖𝑖𝑐𝑐(𝑝𝑝)=𝑖𝑖

(2.2.1)

for 1 ≤ n ≤ N

2) The 𝑖𝑖𝑡𝑡ℎ class covariance matrix is then estimated as

1

1 ()()
v T

N

p pi i i
pN =

= − −∑∑ x m x m

(2.2.2)

3) Once we have the mean vector and covariance matrix, the conditional density is

given as:

𝑓𝑓(𝒙𝒙|𝑖𝑖) =
𝑒𝑒𝑥𝑥𝑝𝑝 �− 1

2 �𝒙𝒙 −𝒎𝒎𝑖𝑖 �
𝑇𝑇
𝜮𝜮𝒊𝒊−1 �𝒙𝒙 −𝒎𝒎𝑖𝑖 � �

�(2𝜋𝜋)𝑁𝑁|𝜮𝜮𝒊𝒊|

(2.2.3)

4) Combining the conditional density with the a-priori probabilities, the B3 Bayes

discriminants are calculated as

1

)
() (|)

() (|
() (|)

cp
p

p N

p
j

P i f i
d i P i

P j f j
=

= =

∑
x

x

x

(2.2.4)

The class with the maximum value of the Bayes discriminants is the predicted class

𝑖𝑖𝑝𝑝′ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖�𝑑𝑑𝑝𝑝(𝑖𝑖)� (2.2.5)

2.3 Structure of Gaussian Naïve Bayes classifiers

One major problem in the Bayes Gaussian classifier is that we need to calculate the inverse

of the covariance matrix 𝜮𝜮𝒊𝒊. This is difficult if the matrix is singular or close to singular.

16

Gaussian Naïve Bayes overcome this problem by making strong independence

assumptions between the features. Since the features are independent, the covariance

between them is 0. This assumption leads to a diagonal covariance matrix which is easy

to invert. The diagonal terms represent the variance of each feature.

 Following are the details for calculating the discriminants for a Gaussian Naïve Bayes

classifier -

1) For each class i, the mean vector is estimated as

𝑚𝑚𝑖𝑖(𝑛𝑛) =
1

𝑁𝑁𝑣𝑣(𝑖𝑖)
� 𝑥𝑥𝑝𝑝(𝑛𝑛)
𝑁𝑁𝑣𝑣(𝑖𝑖)

𝑝𝑝:𝑖𝑖𝑐𝑐(𝑝𝑝)=𝑖𝑖

(2.2.1)

for 1 ≤ n ≤ N.

2) The variances are then calculated as

σ𝑖𝑖2 (𝑛𝑛) =
1

𝑁𝑁𝑣𝑣(𝑖𝑖)
� (𝑥𝑥𝑝𝑝(𝑛𝑛) − 𝑚𝑚𝑖𝑖(𝑛𝑛))2
𝑁𝑁𝑣𝑣(𝑖𝑖)

𝑝𝑝:𝑖𝑖𝑐𝑐(𝑝𝑝)=𝑖𝑖

(2.2.2)

for 1 ≤ n ≤ N.

3) Once we have the mean vector and covariance matrix, the conditional density of

𝒙𝒙 is given as:

2

1

2

1

1exp((() ()) ())
2(|)

(2) ()

N

p i i
n

p N
n

i
n

x n m n v n
f i

nπ σ

=

=

−
−

=
∑

∏
x

(2.2.3)

 where 𝑣𝑣𝑖𝑖(𝑛𝑛) = σ𝑖𝑖2 (𝑛𝑛)−1.

4) Combining the conditional density with the a-priori probabilities, the B3 Bayes

discriminants are calculated as

17

1

)
() (|)

() (|
() (|)

p
p

p Nc

p
j

P i f i
d i P i

P j f j
=

= =
∑

x
x

x

(2.2.4)

The class with the maximum value of the Bayes discriminants is the predicted class

𝑖𝑖𝑝𝑝′ = argmax𝑖𝑖�𝑑𝑑𝑝𝑝(𝑖𝑖)� (2.2.5)

2.4 Structure of Gaussian Mixture Models

A Gaussian mixture model [8] is a probabilistic model that assumes all the data

points are generated from a mixture of a finite number of Gaussian distributions with

unknown parameters. One hint that data might follow a mixture model is that the data looks

multimodal, i.e. there is more than one "peak" in the distribution of data. Trying to fit a

multimodal distribution with a unimodal (one "peak") model will generally give a poor fit, as

shown in the example below. Since many simple distributions are unimodal, an obvious

way to model a multimodal distribution would be to assume that it is generated by multiple

unimodal distributions [17]. A Gaussian mixture model is parameterized by two types of

values, the mixture component weights and the component means and covariances.

 A Gaussian mixture model pdf with K components can be represented as follows:

𝑓𝑓(𝒙𝒙) = �𝑎𝑎𝑖𝑖
𝑒𝑒𝑥𝑥𝑝𝑝 �− 1

2 �𝒙𝒙 −𝒎𝒎𝑖𝑖 �
𝑇𝑇
𝜮𝜮𝒌𝒌−1 �𝒙𝒙 −𝒎𝒎𝑖𝑖 � �

�(2𝜋𝜋)𝑁𝑁|𝜮𝜮𝒌𝒌|

𝐾𝐾

𝑖𝑖=1

 (2.3.1)

The weights, 𝑎𝑎𝑖𝑖, represent the contribution of the corresponding component to the resulting

density. The weights 𝑎𝑎𝑖𝑖 are positive and have values between 0 and 1. The sum of these

weights add up to 1 so that total probability distribution normalizes to 1.

18

�𝑎𝑎𝑖𝑖 = 1
𝐾𝐾

𝑖𝑖=1

 (2.3.2)

2.5 Training a Gaussian Mixture Model using Expectation Maximization

Training a Gaussian mixture model involves finding the values for the parameters

𝒎𝒎𝑖𝑖 ,𝜮𝜮𝒌𝒌 , 𝑎𝑎𝑖𝑖 . A common approach is to use maximum likelihood estimation which seeks to

maximize the likelihood of observing the data under the given model parameters. This can

be done by differentiating the likelihood w.r.t. the model parameters and set it to 0. For

mixture models, this approach turns out to be analytically impossible.

The technique most commonly used to train mixture models is Expectation

Maximization (EM) [9] which is an iterative method for maximum likelihood estimation of

parameters in a statistical model. EM iterations alternate between performing an

expectation (E) step, which creates a function for the expectation of the log-likelihood

evaluated using the current estimate for the parameters, and a maximization (M) step,

which computes parameters maximizing the expected log-likelihood found on the E step .

Following are the details of the algorithm:

The components are usually initialized using a clustering algorithm like K-means [13].

The initial values for the parameters can be calculated from these clusters.

The 𝑛𝑛𝑡𝑡ℎ element of mean vector for component 𝑘𝑘 is given as

𝑚𝑚𝑖𝑖(𝑛𝑛) =
1

𝑁𝑁𝑣𝑣(𝑘𝑘)
� 𝑥𝑥𝑝𝑝(𝑛𝑛)
𝑁𝑁𝑣𝑣(𝑖𝑖)

𝑝𝑝:𝑖𝑖𝑐𝑐(𝑝𝑝)=𝑖𝑖

 (2.5.1)

19

for 1 ≤ k ≤ K, 1 ≤ n ≤ N, where 𝑁𝑁𝑣𝑣(𝑘𝑘) is the number of patterns belonging to cluster k, and

𝑘𝑘𝑐𝑐(𝑝𝑝) is the cluster membership of pattern 𝑝𝑝.

The covariance matrix can for component 𝑘𝑘 is given as

()

():()
1 ()()

v

c

k

pv

T
N

p pk k k
p k kkN =

= − −∑∑ x m x m (2.5.2)

The component weights are initialized as

 𝑎𝑎𝑖𝑖 = 𝑁𝑁𝑣𝑣(𝑖𝑖)
𝑁𝑁𝑣𝑣

 (2.5.3)

The algorithm alternates between an Expectation step and a Maximization step described

as below:

Expectation Step:

Calculate for all values p, k

1

)
() (|)

(|
() (|)

p
p

K

p
j

P k f k
P k

P j f j
=

=
∑

x
x

x

(2.5.4)

where 𝑃𝑃�𝑘𝑘�𝒙𝒙𝒑𝒑� is the probability that 𝒙𝒙𝒑𝒑 is generated by component k.

Maximization Step:

Using 𝑃𝑃�𝑘𝑘�𝒙𝒙𝒑𝒑� in the Expectation step, the parameters of the model are updated.

First, the mean vectors for the component k is updated as a weighted average of

all the patterns as per equation 2.4.2. The weight is the probability that the pattern

was generated by that component. Thus, patterns with a large weight will tend to

pull the mean vectors towards them.

20

1

1

(|)

(|)

Nv

p p
p

k Nv

p
p

P k

P k

=

=

=
∑

∑

x x
m

x

(2.5.5)

Similarly, the covariance matrix is updated as a weighted cross

product

1

1

(|)()()

(|)

T
Nv

p p k p k
p

k Nv

p
p

P k

P k

=

=

− −
=
∑

∑

x x m x m

x
∑

(2.5.6)

The component weights are updated as the mean of 𝑃𝑃(𝑘𝑘|𝒙𝒙𝑝𝑝) for all the patterns. If

𝑃𝑃(𝑘𝑘|𝒙𝒙𝑝𝑝) is large for some component k, that component will have a greater

contribution to the density.

 𝑎𝑎𝑖𝑖 =
1
𝑁𝑁𝑣𝑣

�𝑃𝑃(𝑘𝑘|𝒙𝒙𝑝𝑝)
𝑁𝑁𝑣𝑣

𝑝𝑝=1

(2.5.7)

The training iterates over these two steps until the parameters converge. The EM algorithm

guarantees that the likelihood increases after each step. Usually, the training is stopped if

the change in likelihood is smaller than a chosen tolerance value. EM can get stuck in a

local maximum or a saddle point. Also, it is sensitive to the initial values of the parameters.

2.6 Gaussian Mixture Model classifiers

Gaussian mixture models can also be used for classification. We can think about

this as an extension of the Bayes Gaussian classifier. Instead of using a single Gaussian

to model the conditional density, we use a mixture of Gaussians. The densities are then

21

combined with the prior probabilities of each class and the discriminant is calculated using

the Bayes rule.

GMM classifiers are initialized using K-means. Each class is clustered into K

components. The initial values of the component weight are calculated as

𝑎𝑎𝑖𝑖𝑖𝑖 =
𝑁𝑁𝑣𝑣(𝑘𝑘, 𝑖𝑖)
𝑁𝑁𝑣𝑣(𝑖𝑖)

The 𝑖𝑖𝑡𝑡ℎ class density is given as:

𝑓𝑓(𝒙𝒙|𝑖𝑖) = �𝑎𝑎𝑖𝑖𝑖𝑖
𝑒𝑒𝑥𝑥𝑝𝑝 �−1

2 �𝒙𝒙 −𝒎𝒎𝑖𝑖𝑖𝑖 �
𝑇𝑇
𝜮𝜮𝒊𝒊𝒌𝒌−1 �𝒙𝒙 −𝒎𝒎𝑖𝑖𝑖𝑖 � �

�(2𝜋𝜋)𝑁𝑁|𝜮𝜮𝒊𝒊𝒌𝒌|

𝐾𝐾

𝑖𝑖=1

 (2.6.1)

Calculate the discriminants as:

1

() (|)
()

() (|)

p
p Nc

p
j

P i f i
d i

P j f j
=

=
∑

x

x

 (2.6.2)

The predicted class is given

𝑖𝑖𝑝𝑝′ = argmax𝑖𝑖�𝑑𝑑𝑝𝑝(𝑖𝑖)� (2.6.3)

Training a Gaussian mixture model classifier involves modeling the probability

density for each class separately. The number of components K for each mixture is usually

chosen by evaluating the performance of the classifier on a validation set

22

Training algorithm for Gaussian mixture model classifiers using EM

(Initialize K = 2, separate training data into training and validation)

1. For each class i, cluster the patterns belonging to that class into K clusters using
K-means ++ [14]. Calculate the component weights as

𝑎𝑎𝑖𝑖𝑖𝑖 =
𝑁𝑁𝑣𝑣(𝑘𝑘, 𝑖𝑖)
𝑁𝑁𝑣𝑣(𝑖𝑖)

2. Run EM on each class separately to get the estimated 𝒎𝒎𝑖𝑖𝑖𝑖, 𝜮𝜮𝒌𝒌𝒊𝒊, 𝑎𝑎𝑖𝑖𝑖𝑖

3. Calculate 𝑃𝑃(𝑖𝑖) as 𝑁𝑁𝑣𝑣(𝑖𝑖)/𝑁𝑁𝑣𝑣

4. Use equation 2.5.2 to calculate the discriminants for each pattern

5. Use equation 2.5.3 to get the predicted class

6. Evaluate the performance on a validation set, save the model if the validation

accuracy is improved

7. Increment K by 1 and go to 1

8. Pick the best value of K using the validation accuracy.

2.7 Problems with Gaussian Mixture Model classifiers

1. Mean vectors initialized using K-means may not be optimal for the task of

classification. Mean vectors found using K-means are optimized for minimizing the

Euclidean distance between them and the points in the cluster. They may be good

for purpose of clustering, but not for classification. EM is used to improve the mean

vectors 𝒎𝒎𝑖𝑖𝑖𝑖 initialized using K-means. But since EM is used for each class

separately, there’s no interaction between mean vectors for clusters belonging to

different classes.

2. Similarly, 𝜮𝜮𝒊𝒊𝒌𝒌 , 𝑎𝑎𝑖𝑖𝑖𝑖 that maximize the log likelihood in EM, are not optimal for

classification

23

3. When using EM, each class is trained separately. Thus, EM needs to be run

𝑁𝑁𝑐𝑐 times.

These problems are the motivation for the proposed algorithm described in the next

chapter

24

Chapter 3

GRADIENT BASED TRAINING OF GAUSSIAN MIXTURE MODEL CLASSIFIERS

In this chapter, a new technique for training of Gaussian mixture model classifier is

presented.

3.1 Problem formulation

We formulate the problem of training the classifier as a supervised learning

problem. As mentioned before, in supervised learning we adjust the parameters of our

model by using the ground truth information. In classification, the ground truth is the class

number to which the pattern belongs. This ground truth, or the desired output, can be

represented as a 𝑁𝑁𝑐𝑐-dimensional vector. This vector is now our target output 𝒕𝒕𝒑𝒑. It is defined

as below:

𝑡𝑡𝑝𝑝(𝑖𝑖) = 𝛿𝛿(𝑖𝑖 − 𝑖𝑖𝑐𝑐) 𝑓𝑓𝑓𝑓𝑎𝑎 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑐𝑐 (3.1.1)

where 𝛿𝛿 is the Kronecker delta function [22]. The target output is 1 for the correct class

and 0 elsewhere. The output of our classifier is same as in equation 2.5.2. It is

represented by the vector 𝒚𝒚𝒑𝒑.

1

)
() (|)

() (|
() (|)

p
p

p Nc

p
j

y
P i f i

i P i
P j f j

=

= =
∑

x
x

x

(3.1.2)

where, 𝑓𝑓�𝒙𝒙𝒑𝒑�𝑖𝑖� is the value of the conditional density of 𝒙𝒙𝒑𝒑 for class 𝑖𝑖

2 1/2

1

2

1

/21 (())

exp((() ()) ())
(|)

(2)
N

ki
n

N

pK ki ki
n

p ki
Nk n

x n m n v n
f i a

σπ
=

=

=

− −
=

∏

∑
∑x

25

We define an error function E to quantify the difference between the desired output 𝒕𝒕𝒑𝒑 and

the actual output 𝒚𝒚𝒑𝒑.

𝐸𝐸 =
1
𝑁𝑁𝑣𝑣

���𝑡𝑡𝑝𝑝(𝑖𝑖) − 𝑦𝑦𝑝𝑝(𝑖𝑖)�
2

𝑁𝑁𝑐𝑐

𝑖𝑖=1

𝑁𝑁𝑣𝑣

𝑝𝑝=1

(3.1.3)

We want to minimize this error function w.r.t the parameters of the mixture model classifier.

There are three different types of parameters – the prior probabilities P(i), the elements of

the mean vectors 𝒎𝒎𝑖𝑖𝑖𝑖, and the elements of the covariance matrices 𝜮𝜮𝒌𝒌𝒊𝒊. As mentioned

before, we assume that the inputs to the classifier are independent. Thus, the covariance

matrices are diagonal and the diagonal elements represent the variance of the

corresponding input. The output of the classifier 𝒚𝒚𝒑𝒑 is a function of these three types of

parameters.

3.2 Proposed technique for updating the parameters

To minimize the error function, we use the gradient descent technique. Gradient

descent is a first-order iterative optimization algorithm for finding the minimum of a function

[18]. Finding the minimum of a function using gradient descent involves two steps -

calculate the gradient of the function at the current point, take steps in the direction of the

negative gradient to update the parameters. If a function has multiple minima, gradient

descent can get stuck in a local minimum.

It was found during experiments that a variant of the gradient descent technique,

called as Adam [19], performed much better. It stands for Adaptive Moment Estimation.

Adam keeps an exponentially decaying average of the gradients from all the previous

iterations. This quantity is known as the momentum term p. We also keep an exponentially

decaying average of the squared gradients from all the previous iterations. This is denoted

26

by q. The p and q arrays have the same dimensions as 𝜽𝜽 which denotes the sets of

parameters. Both are initialized to 0.

𝒑𝒑𝟎𝟎 = 0, 𝒒𝒒𝟎𝟎 = 0

Consider 𝜽𝜽 as a 3-D array containing all the parameters. For iteration 𝑡𝑡, 𝑝𝑝𝑡𝑡(𝑖𝑖, 𝑗𝑗,𝑘𝑘),

𝑞𝑞𝑡𝑡(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) can be calculated as follows

𝑝𝑝𝑡𝑡(𝑖𝑖, 𝑗𝑗,𝑘𝑘) = 𝛽𝛽1𝑝𝑝𝑡𝑡−1(𝑖𝑖, 𝑗𝑗,𝑘𝑘) + (1 − 𝛽𝛽1)𝑎𝑎𝑡𝑡(𝑖𝑖, 𝑗𝑗,𝑘𝑘) (3.2.1)

𝑞𝑞𝑡𝑡(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 𝛽𝛽2𝑞𝑞𝑡𝑡−1(𝑖𝑖, 𝑗𝑗,𝑘𝑘) + (1 − 𝛽𝛽2)𝑞𝑞𝑡𝑡2(𝑖𝑖, 𝑗𝑗,𝑘𝑘) (3.2.2)

Here, 𝑎𝑎𝑡𝑡(𝑖𝑖, 𝑗𝑗,𝑘𝑘) represents the gradient at iteration t. 𝛽𝛽1,𝛽𝛽2 are numbers between 0 and

1. Typical values proposed are 0.9 for 𝛽𝛽1, 0.999 𝑓𝑓𝑓𝑓𝑎𝑎 𝛽𝛽2. The parameters at iteration t are

given by 𝜽𝜽𝒕𝒕, the update equation for parameter 𝜃𝜃(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) is given as

𝜃𝜃𝑡𝑡+1(𝑖𝑖, 𝑗𝑗,𝑘𝑘) = 𝜃𝜃𝑡𝑡(𝑖𝑖, 𝑗𝑗,𝑘𝑘) −
𝛼𝛼

�𝑞𝑞𝑡𝑡(𝑖𝑖, 𝑗𝑗, 𝑘𝑘)+ ∈
𝑝𝑝𝑡𝑡(𝑖𝑖, 𝑗𝑗,𝑘𝑘)

(3.2.3)

𝛼𝛼 is the learning rate and ∈ is a small number to prevent division by 0. The learning rate

𝛼𝛼 is chosen heuristically.

The advantage of using Adam is two-fold. First, the momentum term is helpful for

accelerating the training in directions where the gradient does not change sign. It also helps

in preventing oscillations in steep directions where the gradient is high [20]. Second, the

𝒗𝒗𝒕𝒕 term acts as an adaptive, per-parameter learning rate, similar to that in [21]. This makes

it possible to use different learning rate for each parameter. The learning rate is inversely

related to the gradient of that parameter.

27

3.3 Training the parameters

There are number of different ways to perform the training. Since we have three

different types of parameters, the a-priori probabilities, the mean vectors, and the inverse

covariance elements, number of permutations can be tried. Experiments were carried for

the following methods:

i. Training all parameters together

In this method, all three set of parameters are updated together for each iteration.

For each iteration, we calculate the gradients of the error function defined in equation

3.1.1 w.r.t each parameter. The parameters are then updated using Adam as

described in the previous section

ii. Training one parameter at a time

Training in this method occurs in three steps. In each step, one parameter is trained

while others are kept constant. For e.g.: In the first step, the mean vectors are

trained. In the second step, the trained mean vectors are kept constant and the

inverse variances are trained. In the third step, the trained mean vectors and inverse

variances are kept constant and the prior probabilities are trained.

iii. Adding one parameter at each step

This method starts by training a single parameter. At every subsequent step, a new

parameter is added and training continues for the newly added parameter as well

as for parameter added before.

Additionally, in ii and iii, the order of parameters can also change. During experiments, it

was found that training all the parameters together performs the best. Also, it is faster since

all parameters are trained together.

28

3.4 Training only one set of parameters at a time

In this sub-section, we perform training by updating only one out of the three set

of parameters and evaluate the performance on different datasets

3.4.1 Training the prior probabilities

Prior probabilities for each are initialized as the fraction of patterns belonging to

that class. For most classification datasets, the number of patterns in a class is the same

for all classes. So, the prior probabilities indicate that all classes are equally probable.

During experiments, it was found that training the prior probabilities does not make much

difference in the classifier performance. Prior probabilities should always be positive. This

is done by using the square of the square root of those elements while calculating the

output. Additionally, the probabilities should also add up to 1. This is ensured by dividing

the probabilities by the sum of all probabilities.

3.4.2 Training the mean vectors

For each class, we have K component clusters. As mentioned before, the cluster

mean vectors are initialized using K-means++. The cluster centers are initialized to

minimize the Euclidean distance between the patterns belonging to that class and the

mean vectors. Thus, mean vectors obtained by K-means++ may not be optimal for our final

task which is classification. We could optimize the center vectors so that it minimizes the

error function defined in equation 3.1.3. Table 2 shows the improvement in accuracy after

training the prior probabilities and the mean vectors

29

3.4.3 Training the inverse variances elements

Similar to the mean vectors, the inverse variances are calculated using clusters

initialized by K-means. As reasoned before, they may not be optimal. We use the same

technique to optimize the inverse variances. Since variances are always positive, it is

important to ensure that they don’t go negative while training. This is done by using the

square of the square root of those elements while calculating the output.

Dataset Number of
inputs

Number of
classes

Accuracy
before training
prior
probabilities

Accuracy after
training prior
probabilities

Comf18 18 4 63.21 64.87

Grng 16 4 81.0 81.2

Gongtrn 16 10 89.2 89.4

F17C 17 39 96.2 97.2

Phoneme 5 2 78.9 80.6

M-feat 6 10 73.4 73.8

Table 1: The table shows the improvement in accuracy after training the prior

probabilities

Dataset Number of
inputs

Number of
classes

Accuracy
before training
mean vectors

Accuracy after
training mean
vectors

Comf18 18 4 63.21 71.6

Grng 16 4 80.0 85.0

Gongtrn 16 10 89.2 91.4

F17C 17 39 96.4 98.4

Phoneme 5 2 78.9 85.1

M-feat 6 10 73.4 75.0

30

Table 2: The table shows the improvement in accuracy after training the prior

probabilities and mean vectors

Table 1 shows the improvement in accuracy after training the prior probabilities. As

mentioned before, this doesn’t result in much performance gain. The table shows the

improvement in accuracy after training the prior probabilities and the mean vectors. We

see significant improvement after training the mean vectors. This indicates that mean

vectors initialized by K-means++ are not optimal for classification.

Figure 3.1: This figure shows the decrease in the error as the training progresses

31

Figure 3.2 The figure shows how training the parameters (only the mean vector in this
case) increases the validation accuracy

32

Chapter 4

FINAL ALGORITHM AND RESULTS

In this chapter, we present the final algorithm, and compare the results with EM.

 4.1 Final algorithm

In chapter 3, section 3.5, we presented the results after training the prior

probabilities and the mean vectors. For the final algorithm, we train all the parameters

together. For each iteration, we jointly optimize all three sets of parameters. To prevent the

prior probabilities from going negative, we initialize them as square root of the actual

probabilities and use square of those values while calculating the output. Similar trick is

used for the variances where they are initialized as standard deviations

The prior probabilities are stored in 𝜽𝜽𝒑𝒑. It is a vector of size 𝑁𝑁𝑐𝑐 with elements �𝑃𝑃(𝑖𝑖).

𝑃𝑃(𝑖𝑖) is given as:

𝑃𝑃(𝑖𝑖) =
𝑁𝑁𝑣𝑣(𝑖𝑖)
𝑁𝑁𝑣𝑣

The mean vectors are stored in 𝜽𝜽𝒎𝒎. It is 3-dimensional array of size 𝑁𝑁𝑐𝑐𝑥𝑥 𝐾𝐾𝑥𝑥 𝑁𝑁 with the

elements 𝑚𝑚𝑖𝑖𝑖𝑖(𝑛𝑛) .

𝑚𝑚𝑖𝑖𝑖𝑖(𝑛𝑛) =
1

𝑁𝑁𝑣𝑣(𝑘𝑘, 𝑖𝑖)
� 𝑥𝑥𝑝𝑝(𝑛𝑛)

𝑁𝑁𝑣𝑣(𝑖𝑖,𝑖𝑖)

𝑝𝑝:𝑖𝑖𝑐𝑐(𝑝𝑝)=𝑖𝑖,𝑖𝑖𝑐𝑐(𝑝𝑝)=𝑖𝑖

where, 𝑖𝑖𝑐𝑐(𝑝𝑝),𝑘𝑘𝑐𝑐(𝑝𝑝) are the class and cluster membership of pattern 𝑝𝑝 respectively.

 𝜽𝜽𝒗𝒗 is also 3-dimensional array of size 𝑁𝑁𝑐𝑐𝑥𝑥 𝐾𝐾𝑥𝑥 𝑁𝑁 containing the elements 𝑣𝑣𝑖𝑖𝑖𝑖(𝑛𝑛) which are

the inverse standard deviations
1

�𝜎𝜎𝑘𝑘𝑘𝑘
2 (𝑛𝑛)

.

33

𝜎𝜎𝑖𝑖𝑖𝑖2 (𝑛𝑛) =
1

𝑁𝑁𝑣𝑣(𝑘𝑘, 𝑖𝑖)
� (𝑥𝑥𝑝𝑝(𝑛𝑛) − 𝑚𝑚𝑖𝑖𝑖𝑖(𝑛𝑛))2

𝑁𝑁𝑣𝑣(𝑖𝑖,𝑖𝑖)

𝑝𝑝:𝑖𝑖𝑐𝑐(𝑝𝑝)=1,𝑖𝑖𝑐𝑐(𝑝𝑝)=𝑖𝑖

This describes the final training algorithm using the approach described in

section 3.1-3.3.

(Initialize K = 2, separate training data into training and validation. Choose a

maximum value for K as 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚)

1. For each class 𝑖𝑖, cluster the patterns belonging to that class into K clusters using

K-means ++ [14]

2. Calculate the mean vectors 𝒎𝒎𝑖𝑖𝑖𝑖, inverse variances 𝒗𝒗𝒌𝒌𝒊𝒊 for the clusters. Initialize

the prior probabilities P(i) as 𝑁𝑁𝑣𝑣(𝑖𝑖)/𝑁𝑁𝑣𝑣. Initialize the component weights 𝑎𝑎𝑖𝑖𝑖𝑖 as

𝑁𝑁𝑣𝑣(𝑘𝑘, 𝑖𝑖)/𝑁𝑁𝑣𝑣(𝑖𝑖). Initialize 𝑷𝑷𝒎𝒎, 𝑷𝑷𝒗𝒗,𝑷𝑷𝒑𝒑,𝑸𝑸𝒎𝒎,𝑸𝑸𝒗𝒗,𝑸𝑸𝒑𝒑 as 0

3. For iteration 𝑖𝑖𝑡𝑡 = 1 to 𝑁𝑁𝑖𝑖𝑡𝑡, where 𝑁𝑁𝑖𝑖𝑡𝑡 is the total number of iterations

4. Calculate 𝒚𝒚 as

1

)
() (|)

() (|
() (|)

p
p

p Nc

p
j

y
P i f i

i P i
P j f j

x
x

x
=

= =
∑

2

2 1/2

1

2

1

/21 (())

exp((() ()) ())
(|)

(2)
N

ki
n

N

pK ki ki
n

p ki
Nk n

x n m n v n
f i a

σπ
=

=

=

− −
=

∏

∑
∑x

5. Calculate error E and gradients of E (Refer to Appendix A for complete equations).

𝑮𝑮𝒎𝒎,𝑮𝑮𝑷𝑷,𝑮𝑮𝒗𝒗, denote the matrices of partial derivatives of E w.r.t the mean vectors,

prior probabilities and inverse variances respectively. Elements of 𝑮𝑮𝒎𝒎 are
𝝏𝝏𝐸𝐸

𝝏𝝏𝑚𝑚𝑘𝑘𝑘𝑘(𝑛𝑛)

34

and are given in equation 6.1.5 of Appendix A. Elements of 𝑮𝑮𝒗𝒗 are
𝝏𝝏𝐸𝐸

𝝏𝝏𝑣𝑣𝑘𝑘𝑘𝑘(𝑛𝑛)
 and are

given in equation 6.1.6 of Appendix A. Elements of 𝑮𝑮𝒑𝒑 are
𝝏𝝏𝐸𝐸

𝝏𝝏𝑃𝑃(𝑗𝑗)
 and are given in

equation 6.1.7 of Appendix A.

6. For all values of 𝑖𝑖,𝑘𝑘,𝑛𝑛 (1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑐𝑐 , 1 ≤ 𝑘𝑘 ≤ 𝐾𝐾, 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁) calculate

𝑃𝑃𝑚𝑚(𝑖𝑖, 𝑘𝑘, 𝑛𝑛),𝑃𝑃𝑣𝑣(𝑖𝑖, 𝑘𝑘, 𝑛𝑛),𝑃𝑃𝑝𝑝(𝑖𝑖), 𝑄𝑄𝑚𝑚(𝑖𝑖, 𝑘𝑘, 𝑛𝑛),𝑄𝑄𝑣𝑣(𝑖𝑖, 𝑘𝑘, 𝑛𝑛),𝑄𝑄𝑝𝑝(𝑖𝑖) as follows. 𝛽𝛽1 = 0.99,𝛽𝛽2

= 0.999.

 𝑃𝑃𝑚𝑚(𝑖𝑖,𝑘𝑘,𝑛𝑛) ← 𝛽𝛽1 𝑃𝑃𝑚𝑚(𝑖𝑖,𝑘𝑘,𝑛𝑛) + (1 − 𝛽𝛽1) 𝐺𝐺𝑚𝑚(𝑖𝑖,𝑘𝑘,𝑛𝑛)

𝑃𝑃𝑝𝑝(𝑖𝑖) ← 𝛽𝛽1𝑃𝑃𝑝𝑝(𝑖𝑖) + (1 − 𝛽𝛽1)𝐺𝐺𝑝𝑝(𝑖𝑖)

𝑃𝑃𝑣𝑣(𝑖𝑖,𝑘𝑘,𝑛𝑛) ← 𝛽𝛽1 𝑃𝑃𝑣𝑣(𝑖𝑖, 𝑘𝑘,𝑛𝑛) + (1 − 𝛽𝛽1) 𝐺𝐺𝑣𝑣(𝑖𝑖,𝑘𝑘,𝑛𝑛)

𝑄𝑄𝑚𝑚(𝑖𝑖, 𝑘𝑘,𝑛𝑛) ← 𝛽𝛽2𝑄𝑄𝑚𝑚(𝑖𝑖,𝑘𝑘,𝑛𝑛) + (1 − 𝛽𝛽2)𝐺𝐺𝑚𝑚2 (𝑖𝑖,𝑘𝑘,𝑛𝑛)

𝑄𝑄𝑝𝑝(𝑖𝑖) ← 𝛽𝛽2𝑄𝑄𝑝𝑝(𝑖𝑖) + (1 − 𝛽𝛽2)𝐺𝐺𝑝𝑝2(𝑖𝑖)

𝑄𝑄𝑣𝑣(𝑖𝑖,𝑘𝑘,𝑛𝑛) ← 𝛽𝛽2 𝑄𝑄𝑣𝑣(𝑖𝑖,𝑘𝑘,𝑛𝑛) + (1 − 𝛽𝛽2) 𝐺𝐺𝑣𝑣2(𝑖𝑖,𝑘𝑘,𝑛𝑛)

7. Update parameters as

𝜃𝜃𝑝𝑝(𝑖𝑖) ← 𝜃𝜃𝑝𝑝(𝑖𝑖) −
𝛼𝛼

�𝑄𝑄𝑝𝑝(𝑖𝑖)+ ∈
𝑃𝑃𝑝𝑝(𝑖𝑖)

𝜃𝜃𝑚𝑚(𝑖𝑖,𝑘𝑘,𝑛𝑛) ← 𝜃𝜃𝑚𝑚(𝑖𝑖,𝑘𝑘,𝑛𝑛) −
𝛼𝛼

�𝑄𝑄𝑚𝑚(𝑖𝑖,𝑘𝑘,𝑛𝑛)+ ∈
 𝑃𝑃𝑚𝑚(𝑖𝑖,𝑘𝑘, 𝑛𝑛)

𝜃𝜃𝑣𝑣(𝑖𝑖,𝑘𝑘,𝑛𝑛) ← 𝜃𝜃𝑣𝑣(𝑖𝑖,𝑘𝑘,𝑛𝑛) −
𝛼𝛼

�𝜃𝜃𝑣𝑣(𝑖𝑖,𝑘𝑘,𝑛𝑛)+ ∈
𝑃𝑃𝑣𝑣(𝑖𝑖,𝑘𝑘,𝑛𝑛)

8. Normalize the priors so that they sum up to 1.

1

()()
()

cN

j

P iP i
P j

=

←

∑

9. Check performance on validation data. If performance is better than the previous

iteration, save the parameters.

35

10. Increase 𝑖𝑖𝑡𝑡 by 1. If 𝑖𝑖𝑡𝑡 < 𝑁𝑁𝑖𝑖𝑡𝑡, go to 4

11. End iterations

12. If K < 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚. Increase K by 1, go to step 1.

The value of K which performs the best on validation data is chosen as the final value of

K. The final values for the prior probabilities and variances are found as:

𝑃𝑃(𝑖𝑖) ← 𝑃𝑃2(𝑖𝑖)

𝜎𝜎𝑖𝑖𝑖𝑖2 ← (𝜎𝜎𝑖𝑖𝑖𝑖)2

 This way the prior probabilities and inverse variances are prevented from going

negative.

In the following the table, we show the improvement obtained after training the

parameters using the algorithm described and compare it with training the parameters

using EM as described in section 2.6.

Dataset Number
of
inputs

Number
of
classes

GMM initialized
with K-means

GMM
initialized with
K-means and
trained with
gradient
approach

GMM
initialized
with K-means
and trained
with EM

Comf18 18 4 63.21 (K = 2) 77.94 (K = 4) 68.67 (K = 4)

Grng 16 4 80.0 (K = 3) 92.0 (K = 2) 83.0 (K = 2)

Gongtrn 16 10 89.2 (K = 4) 92.8 (K = 2) 88.8 (K = 2)

F17C 17 39 96.4 (K = 5) 99.2 (K = 5) 97.0 (K = 3)

Phoneme 5 2 78.96 (K = 2) 87.37 (K = 4) 79.97 (K = 4)

M-feat 6 10 73.4 (K = 2) 76.2 (K = 3) 68.0 (K = 3)

Table 3: This table compares performance for three different algorithms. The final value

of K is given in brackets.

We also compare performance for methods described in section 3.5 with the final

algorithm. In figure 4.1, we show that training all parameters performs better than training

any individual parameter. Also, as mentioned before, training the prior probabilities gives

36

the least improvement in performance. Training the mean vectors and inverse variances

do give a considerable improvement in performance, but it is still less than training all

parameters together.

Figure 4.1: This figure shows how training all parameters together performs much better
than training them individually.

In figure 4.2, we show how validation accuracy changes with number of

components in each mixture model. There’s an optimal value of K which gives the best

classification performance. Also, the optimal value of K varies with the dataset.

37

Figure 4.2. The figure shows how validation accuracy changes with K.

38

Chapter 5

 CONCLUSIONS

In this thesis, a supervised learning approach is proposed to train Gaussian

mixture model classifiers. The results show a considerable improvement in performance

compared to EM. A possible reason for this could be that the final objective for EM is to

find parameters that maximize the likelihood of the observed data. This is different than the

objective of training classifiers which is minimizing the probability of error. Also, when using

EM, each class is trained separately, so there is no interaction between the parameters of

different classes. In the gradient approach, the error function ties all the parameters

together. This leads to interaction between the classes which helps in improving the

classification performance.

While training the parameters, we make sure that the prior probabilities add up to

1. Also, it is ensured that the inverse variances are positive after training. Thus, the

resulting mixture model after training the parameters using a gradient approach is still a

valid mixture model. After training, the mean vectors may not represent the actual centers

of the corresponding cluster. The resulting model may not be a good estimate of the true

conditional density, but it is good for classification.

39

Appendix A

 Derivation of gradients

40

Here we derive the equations for gradients used in section 3.3. We need the gradient of

the error function w.r.t the mean vector elements, inverse variance elements, and with the

prior probabilities.

We first derive the gradient of the error function E w.r.t the conditional density of class u

𝑓𝑓�𝒙𝒙𝒑𝒑�𝑢𝑢�.

The error function E and output 𝑦𝑦𝑝𝑝(𝑖𝑖) is given as

1

2

1 1

() (|

)
()

() (

|)

(() ())
v

p
p Nc

p
j

N M

p p
p i

P i f i
y i

P j f j

E t i y i

=

= =

=

= −

∑

∑∑

x

x

1 1

()
2 (() ())

(|) (|)
vN M

p
p p

p ip p

y iE t i y i
f u f u= =

∂∂ = − −
∂ ∂∑∑

x x
 (6.1.1)

2

1

2

1

2

1

((|)) (|)
()

(|) ((|))

() (|)
(|) ((|))

Nc

j p u u p
p j

Nc
p

j p
j

p u p i
Nc

p
j p

j

for u i

P f j P P f u
y i

f u P f j

for u i
y i P f i P

f u P f j

=

=

=

=

−
∂

=
∂

≠
∂ −

=
∂

∑

∑

∑

x x

x x

x
x x

 (6.1.2)

We now derive the gradient of the conditional density 𝑓𝑓�𝒙𝒙𝒑𝒑�𝑢𝑢�. w.r.t the mean vector

elements 𝑚𝑚𝑙𝑙𝑙𝑙(𝑞𝑞) and inverse variances 𝑣𝑣𝑙𝑙𝑙𝑙(𝑞𝑞). The conditional density is given as

41

2

1
/2 1/2

1

exp((() ()) ())
(|)

(2) | |

N

pK ku ku
n

p ku N
k ku

x n m n v n
f u a

π
x =

=

− −
=

∑

∑
∑

The partial of conditional density of 𝒙𝒙𝒑𝒑 for class 𝑢𝑢 w.r.t mean vector element 𝑞𝑞 of component

𝑙𝑙 is given as

2

1
/2 1/2

exp((() ()) ())(|)
(2(() ())() (2) | |

N

lu lu
p n

plu luN
lu lu

x n m n v nf u
a x q m qm q π

x =
− −∂

= −
∂ ∑

∑

 (6.1.3)

The partial of conditional density of 𝒙𝒙𝒑𝒑 for class 𝑢𝑢 w.r.t inverse variance of element 𝑞𝑞 of

component 𝑙𝑙 is given as

2

2

1
/2 1/2

exp((() ()) ())(|)
(() ())

() (2) | |

p

N

lu lu
p n

plu luN
lu lu

x n m n v nf u
a x q m q

v q π
=

− −∂
= −

∂ ∑

∑x

 (6.1.4)

Combining equations 6.1.1, 6.1.2, 6.1.3, 6.1.4, the gradient of the error function w.r.t the

mean vector elements and inverse variances is

 () (|)
(|)

()plu

p

lu

E E
m q f u

f u
m q

=
∂ ∂

∂ ∂
∂
∂x

x
 (6.1.5)

() (|)

(|)
()plu

p

lu

E E
v q f u

f u
v q

=
∂ ∂

∂ ∂
∂
∂x

x
 (6.1.6)

Finally, we derive the gradient of the error function w.r.t to the prior probabilities

1 1

()
2 (() ())

() ()
vN M

p
p p

p i

y iE t i y i
P m P m= =

∂∂ = − −
∂ ∂∑∑ (6.1.7)

42

2

1

2

1

2

1

((|)) (|) () (|)

((|))

()
()

() (|) (|)
() ((|))

Nc

j p p p
j

Nc

j p
j

p

p i p p
Nc

j p
j

P f j f m P m f m

P f j

y i
P m

y i P f i f m
P m P f j

=

=

=

−
=

≠

=

∂
∂

∂ −
∂

∑

∑

∑

for m = i

for m i

x x x

x

x x

x

43

Appendix B

 Description of datasets

44

F17C

This file has 17 inputs, 39 classes and 4745 patterns. This data file consists of parameters

that are available in the basic health usage monitoring system (HUMS), plus some others.

The data was obtained from the M430 flight load level survey conducted in Mirabel Canada

in early 1995. The input features include: (1) CG F/A load factor, (2) CG lateral load factor,

(3) CG normal load factor, (4) pitch attitude, (5) pitch rate, (6) roll attitude, (7) roll rate, (8)

yaw rate, (9) corrected airspeed, (10) rate of climb, (11) longitudinal cyclic stick position,

(12) pedal position, (13) collective stick position, (14) lateral cyclic stick position, (15) main

rotor mast torque, (16) main rotor mast pm, (17) density ratio. The 39 classes represent

different maneuvers of the flight like taking off, landing, turning right or left etc. This is an

application for prognostics or flight condition recognition

COMF18

This file has 18 inputs, 4 classes and 12392 patterns. The training data file is

generated segmented images. Each segmented region is separately histogram equalized

to 20 levels. Then the joint probability density of pairs of pixels separated by a given

distance and a given direction is estimated. We use 0, 90, 180, 270 degrees for the

directions and 1, 3, and 5 pixels for the separations. The density estimates are computed

for each classification window. For each separation, the co-occurrences for the four

directions are folded together to form a triangular matrix. From each of the resulting three

matrices, six features are computed: angular second moment, contrast, entropy,

correlation, and the sums of the main diagonal and the first off diagonal. This results in 18

features for each classification window. [28]

GONGTRN

45

This file has 16 inputs, 10 classes and 3000 patterns. The raw data consists of images

from hand printed numerals collected from 3,000 people by the Internal Revenue Service.

We randomly chose 300 characters from each class to generate 3,000-character training

data. Images are 32 by 24 binary matrices. An image scaling algorithm is used to remove

size variation in characters. The feature set contains 16 elements. The 10 classes

correspond to 10 Arabic numerals [29]

GRNG

This file has 16 inputs, 4 classes and 800 patterns. The geometric shape recognition data

file consists of four geometric shapes, ellipse, triangle, quadrilateral, and pentagon. Each

shape consists of a matrix of size 64*64. For each shape, 200 training patterns were

generated using different degrees of deformation. The deformations included rotation,

scaling, translation, and oblique distortions. The feature set is ring-wedge energy (RNG),

and has 16 features [30]

PHONEME

This file has 5 inputs, 2 classes and 5404 patterns. The aim of this dataset is to distinguish

between nasal (class 0) and oral sounds (class 1). The class distribution is 3,818 samples

in class 0 and 1,586 samples in class 1. The phonemes are transcribed as follows: sh as

in she, dcl as in dark, iy as the vowel in she, aa as the vowel in dark, and ao as the first

vowel in water. [31]

M-FEAT

This dataset consists of features of handwritten numerals (0 - 9) extracted from a

collection of Dutch utility maps. 200 patterns per class (for a total of 2,000 patterns) have

46

been digitized in binary images. These digits are represented in terms of the following six

feature sets (files): 1. mfeat-fou: 76 Fourier coefficients of the character shapes; 2. mfeat-

fac: 216 profile correlations; 3. mfeat-kar: 64 Karhunen-Love coefficients; 4. mfeat-pix:

240 pixel averages in 2 x 3 windows; 5. mfeat-zer: 47 Zernike moments; 6. mfeat-mor: 6

morphological features. [32]

47

References

[1] Wikipedia contributors. "Statistical classification." Wikipedia, The Free Encyclopedia.

Wikipedia, The Free Encyclopedia, 18 Nov. 2016. Web. 18 Nov. 2016.

[2] Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." Machine

learning 20.3 (1995): 273-297.

[3] Quinlan, J. R. (1987). "Simplifying decision trees". International Journal of Man-

Machine Studies.

[4] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. Learning internal

representations by error propagation. No. ICS-8506. CALIFORNIA UNIV SAN DIEGO

LA JOLLA INST FOR COGNITIVE SCIENCE, 1985.

[5] Freund, Y.; Schapire, R. E. (1999). "Large margin classification using the perceptron

algorithm"

[6] Thomas Bayes, "An Essay towards solving a Problem in the Doctrine of Chances”,

Philosophical Transactions, 1763

[7] Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar (2012) Foundations of

Machine Learning

[8] McLachlan, G., and D. Peel. Finite Mixture Models. Hoboken, NJ: John Wiley & Sons,

Inc., 2000.

[9] Dempster, A.P.; Laird, N.M.; Rubin, D.B. (1977). "Maximum Likelihood from

Incomplete Data via the EM Algorithm". Journal of the Royal Statistical Society

[10] Hand, D. J.; Yu, K. (2001). "Idiot's Bayes — not so stupid after all?". International

Statistical Review.

[11] Rish, Irina (2001). An empirical study of the naive Bayes classifier . IJCAI Workshop

on Empirical Methods in AI.

https://en.wikipedia.org/wiki/Yoav_Freund
https://en.wikipedia.org/wiki/Robert_Schapire
http://cseweb.ucsd.edu/%7Eyfreund/papers/LargeMarginsUsingPerceptron.pdf
http://cseweb.ucsd.edu/%7Eyfreund/papers/LargeMarginsUsingPerceptron.pdf
https://en.wikipedia.org/wiki/Mehryar_Mohri
https://en.wikipedia.org/wiki/Arthur_P._Dempster
https://en.wikipedia.org/wiki/Nan_Laird
https://en.wikipedia.org/wiki/Donald_Rubin
https://en.wikipedia.org/wiki/Journal_of_the_Royal_Statistical_Society,_Series_B
http://www.research.ibm.com/people/r/rish/papers/RC22230.pdf

48

[12] Russell, Stuart; Norvig, Peter (2003) [1995]. Artificial Intelligence: A Modern

Approach (2nd ed.). Prentice Hall

[13] Selim SZ, Ismail MA (1984) K-means-type algorithms: A generalized convergence

theorem and characterization of local optimality. IEEE Transactions on Pattern

Analysis and Machine Intelligence 6(1):81

[14] Arthur, David, and Sergei Vassilvitskii. "k-means++: The advantages of careful

seeding." Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms. Society for Industrial and Applied Mathematics, 2007.

[15] Deng, L. (2014). Automatic Speech Recognition- A Deep Learning Approach (pp. 6-8).

Springer

[16] Santosh, D. (2013). Tracking Multiple Moving Objects Using Gaussian Mixture

Model. International Journal of Soft Computing and Engineering, 3-2, 114-119.

[17] Gaussian Mixture Model. Brilliant.org. Retrieved 01:51, July 13,

2017, from https://brilliant.org/wiki/gaussian-mixture-model/

[18] Wikipedia contributors. "Gradient descent" Wikipedia, The Free Encyclopedia.

Wikipedia, The Free Encyclopedia

[19] Kingma, D. P., & Ba, J. L. (2015). Adam: a Method for Stochastic Optimization.

International Conference on Learning Representations, 1–13

[20] Sutton, R. S. (1986). Two problems with backpropagation and other steepest-descent

learning procedures for networks. Proc. 8th Annual Conf. Cognitive Science Society

[21] Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization. Journal of Machine Learning Research, 12,

2121–2159.

[22] Wikipedia contributors. "Kronecker delta" Wikipedia, The Free Encyclopedia.

Wikipedia, The Free Encyclopedia

https://en.wikipedia.org/wiki/Stuart_J._Russell
https://en.wikipedia.org/wiki/Peter_Norvig
https://en.wikipedia.org/wiki/Artificial_Intelligence:_A_Modern_Approach
https://en.wikipedia.org/wiki/Artificial_Intelligence:_A_Modern_Approach
https://brilliant.org/wiki/gaussian-mixture-model/

49

[23] Wikipedia contributors. "Multivariate normal distribution" Wikipedia, The Free

Encyclopedia. Wikipedia, The Free Encyclopedia

[24] R. Vedala and B. R. Kumar, "An application of Naive Bayes classification for credit

scoring in e-lending platform," 2012 International Conference on Data Science &

Engineering (ICDSE), Cochin, Kerala, 2012, pp. 81-84.

[25] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep

convolutional neural networks. In NIPS, 2012.

[26] George E. Dahl, Dong Yu, Li Deng, and Alex Acero. Large vocabulary continuous

speech recognition with context-dependent DBN-HMMS. In ICASSP, pages 4688–

4691. IEEE, 2011. ISBN 978-1-4577- 0539-7

[27] M. N. Marsono, M. W. El-Kharashi, and F. Gebali, “Binary LNS-based naïve Bayes

inference engine for spam control: Noise analysis and FPGA synthesis”, IET

Computers & Digital Techniques, 2008

[28] R.R. Bailey, E. J. Pettit, R. T. Borochoff, M. T. Manry, and X. Jiang, "Automatic

Recognition of USGS Land Use/Cover Categories Using Statistical and Neural

Network Classifiers," Proceedings of SPIE OE/Aerospace and Remote Sensing, April

12-16, 1993, Orlando Florid

[29] W. Gong, H. C. Yau, and M. T. Manry, "Non-Gaussian Feature Analyses Using a

Neural Network," Progress in Neural Networks, vol. 2, 1994, pp. 253-269.

[30] H. C. Yau, M. T. Manry, "Iterative Improvement of a Nearest Neighbor Classifier",

Neural Networks, Vol. 4, pp. 517-524, 1991

[31] Openml.org “Phoneme dataset”, https://www.openml.org/d/1489

[32] M. van Breukelen, R.P.W. Duin, D.M.J. Tax, and J.E. den Hartog, Handwritten digit

recognition by combined classifiers, Kybernetika, vol. 34, no. 4, 1998, 381-386.

https://www.openml.org/d/1489

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Chapter 1
	1.1 Classifiers
	1.2 Classifier Design
	1.2 Bayes classifier
	1.3 Bayes Gaussian Classifier
	1.4 Gaussian Mixture Model (GMM)
	1.5 Proposed method

	Chapter 2
	2.1 Notation
	2.2 Structure of Bayes Gaussian classifiers
	2.3 Structure of Gaussian Naïve Bayes classifiers
	2.4 Structure of Gaussian Mixture Models
	2.5 Training a Gaussian Mixture Model using Expectation Maximization
	2.6 Gaussian Mixture Model classifiers
	2.7 Problems with Gaussian Mixture Model classifiers

	Chapter 3
	3.1 Problem formulation
	3.2 Proposed technique for updating the parameters
	3.3 Training the parameters
	3.4 Training only one set of parameters at a time
	3.4.1 Training the prior probabilities
	3.4.2 Training the mean vectors
	3.4.3 Training the inverse variances elements

	Chapter 4
	4.1 Final algorithm

	Chapter 5
	Appendix A
	Appendix B
	References

