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Abstract 

 
IMPROVING WATER QUALITY FORECASTING  

USING DATA ASSIMILATION 

 

Hamideh Riazi, PhD 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Dong-Jun (DJ) Seo 

Population growth increases agricultural, industrial and human activities which 

threaten the quality of water resources, especially water supply sources such as lakes 

and reservoirs. In potentially high-impact situations such as algal blooms, active 

measures such as controlled release from reservoirs may be necessary. To minimize 

release while meeting the water quality requirements, accurate short-range water quality 

forecast is necessary. Because watershed water quality models have a large number of 

state variables most of which are never observed, their initial conditions (IC) are subject 

to large uncertainties which may propagate into large forecast errors. In this research, a 

data assimilation (DA) algorithm is developed and evaluated which updates the ICs of the 

watershed water quality model, the Hydrologic Simulation Program – Fortran (HSPF), 

based on real-time observations of water quality and streamflow. The water quality 

observations include streamflow, water temperature (TW), ammonium (NH4), nitrate 

(NO3), phosphate (PO4), chlorophyll-a (CHL-a), total nitrate (TN), total phosphate (TP), 

total organic carbon (TOC), biochemical oxygen demand (BOD), and dissolved oxygen 

(DO). The DA technique used is maximum likelihood ensemble filter (MLEF) which 

combines the strengths of variational assimilation (VAR) and ensemble Kalman filter 

(EnKF). In this work, the resulting DA algorithm is developed into a plugin module, 
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referred to as MLEF-HSPF, for the Water Quality Forecast System at the National 

Institute of Environmental Research (WQFS-NIER). To evaluate the MLEF-HSPF 

module, hindcast experiments were designed and carried out for a large number of 

catchments in the four major river basins in the Republic of Korea. To compare the 

performance of HSPF and DA with a purely data-driven approach, time series modeling 

was carried out for simulation and prediction for selected catchments. The results show 

that MLEF-HSPF consistently improves analysis and prediction of most of the water 

quality variables and streamflow over the DA-less results, but that the improvement 

varies significantly from catchment to catchment and from variable to variable. 

Comparisons with time series modeling and prediction show that the incremental value of 

water quality modeling and prediction using HSPF and DA is rather uneven; it varies 

significantly across catchments and variables. The findings suggest that there exists 

large room for improvement in HSPF modeling, including model physics and calibration. 

Also described toward that end are the factors limiting the performance of DA and the 

areas of improvement in the end-to-end forecast process to improve watershed water 

quality modeling and the performance of DA. 

Keywords: Watershed water quality forecasting, HSPF, Data assimilation, 

Maximum likelihood ensemble filter 
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Chapter 1  

Introduction 

The quality of inland water is of great importance to water supply, agriculture, the 

ecosystem and recreation. For proactive and timely protection and management of water 

quality, the decision makers need skillful predictive water quality information. When 

bacterial contamination or harmful algal blooms occur rapidly, the time window for action 

is very limited (Twigt et al. 2011). In aquaculture, decision makers need to take 

immediate action to avert disasters such as fish mortality which may occur from a single 

water pollution event (Bode and Nusch 1999). Whereas in-situ analysis only allows 

monitoring of the current state of water quality, forecasting provides an added ability to 

predict water quality states and to assess the potential consequences of possible actions, 

thereby allowing proactive decision making. Despite the clear needs and potential 

benefits, however, real-time water quality forecasting is not practiced very widely for 

multiple reasons. The first is that it involves a wide range of scientific, engineering and 

technological capabilities which, collectively, may require a large investment. The second 

is that, in the U.S. and elsewhere, the primary purpose of water quality modeling has 

been to meet regulatory requirements rather than to support real-time forecasting. As 

such, there are significant gaps in modeling and supporting tools for forecasting 

applications. The third is that the biophysiochemical processes involved in water quality 

forecasting are complex, operate over a wide range of space-time scales and are often 

highly variable in space and time. The recently-initiated real-time water quality forecasting 

operation at the Water Quality Control Center of the National Institute of Environmental 

Research (NIER) hence provides a golden opportunity to advance understanding, assess 

value and ascertain the limits of real-time water quality forecasting, and to develop new 

methodologies and tools and identify directions for improvement. 
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1.1. Statement of Problem 

Plankton algae population in a water system is generally beneficial to fish and 

aquatic life. In some cases, however, these microscopic cells increase in abundance 

leading to negative impacts on aquaculture, fisheries and human health. Harmful Algal 

Blooms (HAB) in major rivers and lakes are a large environmental issue in the Republic 

of Korea and elsewhere. HABs cover a heterogeneous set of events that share two 

characteristics; they are caused by microalgae and have a negative impact on human 

activities (Zingone and Enevoldsen 2000). As explained by Coad et al. (2014), algal 

bloom management programs offer environmental managers limited capacity to 

adequately monitor and respond to algal blooms due to the cost of field monitoring, 

insufficient staff availability and resources, field safety issues, large sampling intervals, 

and lack of means for reporting and public notification. The diverse impact of algal 

blooms requires management strategies that mitigate threats to the economy and to 

human health (Zingone and Enevoldsen 2000). One of the most active measures for 

responding to major HABs is controlled release of impounded water from the reservoirs. 

For such measures to be cost-effective, however, accurate short-range forecasts of both 

water quantity and quality are necessary so that the water quality requirements may be 

met while minimizing the release.  

There are multiple sources of uncertainty in water quality forecasting: uncertain 

observations, model states, model parameters, model structures, future input forcings 

and anthropogenic control and alternations of water quantity and quality (Beck 1987, Seo 

et al. 2010, see Figure  1-1): 

 

https://en.wikipedia.org/wiki/Algae
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Figure  1-1 Sources of uncertainty in water quality forecasting (from Seo et al. 2010). 

A number of studies have shown that the largest errors in water quality prediction 

occur when the state variables change rapidly due to increased biochemical activities 

(see, e.g., Beck 1987 and references therein). Through calibration and pre-processing, 

one may be able to reduce the uncertainties associated with model parameters, 

observations and inputs to a varying extent (see Figure  1-1). Calibration, however, is a 

time-consuming effort and may not be undertaken routinely. Because many model states 

in water quality models are never observed (see Table  1-1) and the models are never 

perfect, it is very likely that the initial conditions (IC) of the models are highly uncertain. 

To keep the model states in line with the unfolding reality as reflected in the real-time 

observations of water quality and hydrologic variables, it is necessary in operational 

forecasting to employ some form of real-time state updating. Data assimilation (DA) is an 

objective way to optimally estimate the model states by jointly utilizing the actual 

observations available in real time and the model-predicted observations that can be 

compared to the real observations for inference on the adjustment necessary to the 
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model states. DA has gained great popularity and importance recently in oceanography, 

atmospheric sciences and hydrology (e.g. Evensen 1994, Houtekamer and Mitchell 1998, 

Whitaker and Hamill 2002, Zupanski 2005, Seo et al. 2003). The positive impact of 

reducing uncertainties in the model ICs on improving forecast accuracy has been amply 

demonstrated in oceanography, weather forecasting and hydrology (Han et al. 2012, 

Carrassi et al. 2009, Komma et al. 2008, Kim et al. 2014, Rafieeinasab et al. 2014). The 

World Meteorological Organization (WMO), for example, identifies DA as an essential 

technique for accurate flood forecasting (WMO, 1992). 

To provide the reservoir managers with accurate predictive water quality 

information, the Water Quality Control Center of NIER in the Republic of Korea produces 

real-time water quality forecasts for the four major rivers in Korea (see Figure  1-2). For 

watershed water quality forecasting, NIER uses the Hydrological Simulation Program-

Fortran (HSPF, Bicknell et al. 2001). For river water quality forecasting, the 

Environmental Fluid Dynamics Code (EFDC, Hamrick 2007) is used (see Figure  1-3). 

The HSPF model is one way-coupled with EFDC such that the former provides the latter 

with the boundary conditions (BC) along the major tributaries and main stems of the river 

systems. For real-time operation of these models, NIER uses the Water Quality Forecast 

System (WQFS)-NIER, developed jointly by Deltares and NIER, based on the Delft-Flood 

Early Warning System (FEWS) (Werner et al. 2004). Figure  1-3 shows the schematic of 

the daily water quality forecast operation at NIER.  

The watershed water quality model used, HSPF, is a continuous semi-distributed 

model for simulation of hydrologic and water quality processes on pervious and 

impervious land surfaces and in streams as well as in well-mixed impoundments (Bicknell 

et al. 2001). A successor to the Stanford model developed in the 1960s for continuous 

simulation of hydrologic processes (Crawford and Burges 2004), HSPF was developed to 
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determine non-point loads and total maximum daily loads (TMDL), and has many state 

variables (see Table  1-1). Because only a small subset of the model states is actually 

observed (see Table  1-1), it is very likely that the model ICs have large uncertainties. 

Given that the HSPF results are used as the BCs of the EFDC model, one may expect 

that improving the accuracy of the ICs of the watershed water quality model will not only 

improve the accuracy of the river water quality forecasts by providing more accurate BCs 

for the hydrodynamical model but also increase the lead time by leveraging the 

hydrologic memory in the upstream catchments which is significantly longer than the 

hydraulic memory in the river systems. Toward that end, this research aims at obtaining 

more accurate ICs for HSPF by objectively updating the model states via advanced DA. 

Because of the semi-distributed nature of the HSPF model, the number of model states 

to be updated by DA is very large. State updating for such a system is a high-dimensional 

inverse problem for which manual updating is effectively infeasible and automatic DA is 

the only practical solution. 
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Figure  1-2 An example of real-time water quality forecast for the four major rivers in 

Korea produced by the Water Quality Control Center of the National Institute of 

Environmental Research. Real Time Water Quality Index (RTWQI) provides information 

on the water quality of rivers in Korea (adapted from NIER 2014). 
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Figure  1-3 Schematic of the water quality forecast process using WQFS-NIER (from Shin 

2013). 
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Table  1-1 HSPF state variables. 

Module Variable 
name 

Observation 
data Definition 

PERLND 
(for 
pervious 
land) 

CEPS No interception storage 
SURS No surface (overland flow) storage 
UZS No upper zone storage 
IFWS No interflow storage 
LZS No lower zone storage 
AGWS No active groundwater storage 
GWVS No index to groundwater slope 
SQO-NH4 No storage of NH4 on the surface 
SQO-NO3 No storage of NO3 on the surface 
SQO-PO4 No storage of PO4 on the surface 

SQO-BOD No storage of biochemical oxygen demand 
(BOD) on the surface 

IMPLND 
(for 
impervious 
land) 

RETS No retention storage 
SURS No surface (overland flow) storage 
SQO-NH4 No storage of NH4 on the impervious surface 
SQO-NO3 No storage of NO3 on the impervious surface 
SQO-PO4 No storage of PO4 on the impervious surface 

SQO-BOD No storage of biochemical oxygen demand on 
the impervious surface 

RCHRES 
(for in-
stream 
process) 

VOL No volume of water in the RCHRES at end of 
interval 

TW Yes water temperature 
DOX Yes dissolved oxygen concentration 
BOD Yes biochemical oxygen demand concentration 
NO3 Yes dissolved concentration of NO3 

TAM Yes dissolved concentration of TAM (incl. NH3, 
NH4) 

PO4 Yes dissolved concentration of PO4 
PHYTO No phytoplankton concentration  
ORP No organic refractory phosphorus 
ORN No organic refractory nitrogen 
ORC No organic refractory carbon 
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1.2. Objectives  

This research develops, implements and evaluates a plugin DA module for the 

watershed water quality model, HSPF, in the open architecture forecast system, WQFS-

NIER, for real-time short-range (a few to several days ahead) water quality forecasting for 

the four major rivers in the Republic of Korea. HSPF is one of the most widely used 

watershed water quality model in the world and FEWS is widely used for operational 

hydrologic forecasting around the world (Singh et al. 2005, Shirinian-Orlando 2007, 

Verwey et al. 2006, Twigt et al. 2011). This research has the following specific objectives: 

• Improve water quality forecasting of major rivers by improving the ICs of 

watershed water quality model via advanced DA. The predictability of water quality 

in a watershed is limited by the residence time of water in various storages as well as 

the reaction time of the biophysiochemical processes involved. Given the generally 

longer residence time in the runoff generating areas of the watershed compared to 

that in the rivers, one may expect that improving the accuracy of the ICs for HSPF will 

increase the accuracy and lead-time of the water quality forecasts for the river 

systems.  

• Advance understanding of the limits of state-of-the-art water quality modeling 

and DA, and identify and assess the limiting factors. For DA to be effective, the 

model has to be representative of the reality. If the model cannot simulate the 

biophysiochemical processes that occur in the catchment, one may not expect DA to 

add significant skill. As such, understanding the performance and limitations of the 

model is critical to assessing and improving the performance and potency of DA.  

• Assess predictability of water quality variables by data-driven modeling and 

comparatively evaluate HSPF and DA. A potentially less expensive alternative to 

using HSPF and DA is to use time series modeling and forecasting. Such data-driven 
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modeling results would provide reference against which the HSPF modeling and DA 

results may be judged. Also, model identification and parameter estimation would 

indicate and reflect statistical structure and predictability of the water quality variables 

and help advance understanding of the different processes at work in different 

catchments. 

For Objective 2, different aspects of model performance, such as whether HSPF is 

able to capture the variability of water quality variables, is examined in evaluating the 

quality of the base (i.e., DA-less) model simulations. All DA techniques have their own 

limitations and strengths depending on the problem. Aspects such as the linear-vs.-

nonlinear model dynamics, structure of the observation equations, structure of the model 

errors, structure of the observation errors, and the degrees of freedom of the inverse 

problem should be called into consideration for effective application of DA. Since the 

relationships between the observations and the model states may be highly nonlinear 

(e.g., streamflow observations and model soil moisture states), the DA technique should 

be able to handle nonlinear observation equations as well as nonlinear model dynamic. 

For Objective 3, auto regressive integrated moving average (ARIMA) time series model is 

used to simulate and forecast water quality variables in multiple catchments. The ARIMA 

model prediction results are then compared with the DA-aided predictions to assess the 

value of HSPF modeling and DA. The specific questions to be addressed by this 

research include: 

• How much improvement does DA bring to watershed water quality forecasting? 

• What are the limiting factors for DA in watershed water quality forecasting? 

• What is the potential of DA in watershed water quality forecasting? 

• How skillful is HSPF?  

• How does the goodness of HSPF impact performance of DA? 
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• How predictable are the water quality variables? How does the predictability vary from 

catchment to catchment? What are the factors contributing to the variations? 

• How does the predictability relate to the performance of DA? 

The new contributions of this research are as follows: 

• Assessment of the value and potential of DA in watershed water quality forecasting 

using HSPF,  

• Advanced understanding of the sensitivity of DA performance to ensemble size, size 

of the assimilation window, magnitude and structure of model errors, and magnitude 

and structure of observation errors,  

• Advanced understanding and solution of under-determined inverse problems in 

watershed water quality modeling and prediction using HSPF, 

• Identification of limitations of and constraints for DA for real-time watershed water 

quality forecasting using HSPF, and 

• Advanced understanding and assessment of predictability of water quality variables 

using time series modeling and comparison with HSPF modeling and DA. 
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Chapter 2  

Literature review 

As argued in Chapter 1, an effective way to improve the accuracy of water quality 

predictions is to reduce uncertainties in the ICs of the water quality models by updating 

the model states based on real-time observations of water quality and streamflow. DA is 

an objective way to optimally estimate the model states by jointly utilizing the actual 

observations available in real time and the model-simulated observations. The state 

space of a dynamic system modeled may be described as: 

𝑥𝑡+1 = 𝑀(𝑥𝑡 ,𝜃,𝑢𝑡+1) + 𝑤𝑡+1       (2-1) 

where 𝑥𝑡 and 𝑥𝑡+1 denote the state vectors at times t and t+1, respectively, 𝑀( ) 

denotes the nonlinear model, 𝜃 denotes the model parameter vector, 𝑢𝑡+1,denotes the 

input vector at time t+1 and 𝑤𝑡+1 denotes the model error vector at time t+1. Model error 

accounts for the uncertainties in the model dynamics, i.e., 𝑀( ) in Eq.(2-1). In this work, 

all HSPF variables that represent the model states are considered as the state variables. 

In state-space representation, the model states are related to the observations via the 

observation equation as follows: 

𝑧𝑡+1 = 𝐻(𝑥𝑡+1,𝜃) + 𝜀𝑡+1        (2-2) 

where 𝑧𝑡+1 denotes the observation vector at time t+1, 𝐻 denotes the observation 

operator and 𝜀𝑡+1 denotes the observation error at time t+1. In this work, 𝑀( ) in Eq. (2-1) 

represents the HSPF model, and 𝐻( ) in Eq. (2-2) represents the nonlinear relationship 

between the model states and the model-simulated observations. 

Various DA techniques have been used in water quality forecasting since the 

1970s to improve forecast accuracy by reducing uncertainties in the ICs or parameters 

(Beck and Young 1976). Canale et al. (1980) used DA to improve prediction of PO4 

concentration. The most popular choice for the DA technique in water quality forecasting 
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has been Kalman filter (KF) and its variants owing to the algorithmic simplicity and ease 

of implementation. Below, a general overview of different DA techniques and their 

applications in different areas of water quality modeling and prediction are given.  

2.1. Kalman filter (KF) 

Kalman Filter (Kalman 1960) is a sequential filtering method; the model is 

integrated forward in time and, whenever measurements are available, they are used to 

reinitialize the model before the integration continues (Evensen 2003). The main 

assumptions for optimality for KF are that both the model and observation operators are 

linear and the model and observation errors are Gaussian. Algorithmically, KF consists of 

a forecast step and an update step. The model states are first propagated forward in time 

from the initial states. When a set of observations becomes available, the model states 

are updated (analysis step). In the following step, the updated model states are 

integrated forward over the forecast horizon to produce forecast (forecast step). 

 

Figure  2-1 Schematic illustration of Kalman filter (Kim et al. 2013). 

In the forecast step, the condition mean and covariance of the current states are 

integrated forward over the forecast horizon (see Eqs. (2-3) and (2-4)). In the update 
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step, the model states are updated by optimally weighing the actual observations and 

model-simulated observations (see Eqs. (2-5), (2-6) and (2-7)): 

𝑥𝑡
𝑓 = 𝑀𝑥𝑡−1𝑎 + 𝑤𝑡        (2-3) 

𝑃𝑡
𝑓 = 𝑀𝑃𝑡−1𝑎 𝑀𝑇 + 𝑄𝑡        (2-4) 

𝑥𝑡𝑎 = 𝑥𝑡
𝑓 + 𝐾𝑡(𝑧𝑡 − 𝐻𝑥𝑡

𝑓)        (2-5) 

𝑃𝑡𝑎 = 𝑃𝑡
𝑓 − 𝐾𝑡𝐻𝑃𝑡

𝑓         (2-7) 

In Eq.(2-5), the Kalman gain, 𝐾𝑡, is given by:  

𝐾𝑡 =  𝑃𝑡
𝑓𝐻𝑇  �𝐻𝑃𝑡

𝑓𝐻𝑇 + 𝑅𝑡�
−1

       (2-6) 

where 𝑃𝑡𝑎, 𝑃𝑡
𝑓 and 𝑅𝑡 denote the error covariance matrices of analysis, forecast 

and observation, respectively. M and H denote the linear model and observation 

operators, respectively. In the above, T stands for transpose, 𝑧𝑡 denotes the observation 

vector and 𝑄𝑡 denotes the model error covariance matrix. 

Note that the magnitude of the Kalman gain depends on the relative magnitude 

of the state (𝑃) and observation (𝑅) error covariance (see Eq. (2-6)). Therefore, if the 

magnitude of 𝑅 or 𝑃 is large, the Kalman gain will be small, and the correction of the 

forecast vector will be small.  

Guo et al. (2003) developed a stochastic water quality forecasting system based 

on KF to predict dissolved oxygen (DO) and biochemical oxygen (BOD) demand levels in 

the Yiluo River in northern China. They suggested that the forecast results could be used 

for regional water quality management. Schilling and Martens (1986) used KF to predict 

DO concentration in the Leine River south of Hannover in West Germany. KF was used 

to estimate biogeochemical rates or model state variables (McNair et al. 2013, Batt and 

Carpenter 2012).  
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The KF method has proven effective and efficient for linear problems but works 

poorly for nonlinear systems (Evensen 1992, Miller et al. 1994, Kang and Lansey 2009). 

Therefore, variants of the KF algorithm have been developed to cope with nonlinearities. 

2.2. Extended Kalman filter (EKF) 

Extended Kalman filter (Jazwinski 1970) was developed to handle nonlinear 

model operators and to approximate nonlinear observation operators with a tangent 

linear operator (Jacobian). Therefore, EKF yields an approximation of the optimal 

estimate if the model dynamics and/or the observation equation is nonlinear. EKF uses 

linearized forms of the model and observation operators, M and H, respectively, and 

utilizes the KF solution described in the previous subsection (see Eq. (2-3) through (2-7)). 

EKF was the DA technique of choice in the 1970s and 1980s (Beck 1987, Beck 

and Young 1976, Cosby et al. 1984). It was used to forecast algal bloom (Mao et al. 

2009) and to update the parameters of a DO-chlorophyll (CHL-a) model (Pastres et al. 

2003). EKF was used to estimate the optimal parameters and to assess the structure of a 

simple model, which is capable of simulating NO3 (Sloan et al. 1994). Whitehead and 

Hornberger (1984) used an algal model and performed sensitivity analysis to identify the 

key parameters controlling the highly nonlinear algal behavior. They then used EKF to 

estimate the parameters. Ennola et al. (1998) applied EKF for modeling zooplankton 

population dynamics. Voutilainen et al. (2007) used a reduced-order iterative EKF to 

estimate lake water constituents. They suggested that the practical use of EKF in high 

dimensional problems is computationally expensive, and that a dimension reduction 

technique may be necessary to reduce the computational burden of filtering. 

2.3. Ensemble Kalman filter (EnKF) 

For strongly nonlinear systems, EKF may produce instabilities or even diverge 

(Hoteit et al. 2005, Evensen 1992). In addition, unbounded error growth may occur in 
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EKF due to an oversimplified closure in error covariance modeling (Evensen 1994). EnKF 

is a non-linear ensemble-based filtering technique introduced by Evensen (1994) to 

overcome limitations associated with EKF for cases of strong nonlinear dynamics and 

large state spaces (Burgers et al. 1998, Evensen 2003, 2009). Unlike EKF, EnKF does 

not require linearization of the model or the observation operator. If the observation 

equation is linear, EnKF is optimal in the second-order sense (Kalman 1960, 

RafieeiNasab et al. 2014). 

EnKF is a sequential Monte-Carlo assimilation technique in which an ensemble 

of model states perturbed by adding noise to a best-guess estimate is propagated 

forward in time to predict the states as an ensemble valid at future time steps (see Eq. (2-

8) and Figure  2-2) in which the ensemble represents the probability distribution of the 

states:  

𝑋𝑡 = [𝑥𝑡1, 𝑥𝑡2, … , 𝑥𝑡𝑁−1, 𝑥𝑡𝑁]
𝑜𝑛𝑒−𝑠𝑡𝑒𝑝 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� 𝑋𝑡+1 = [𝑥𝑡+11 , 𝑥𝑡+12 , … , 𝑥𝑡+1𝑁−1, 𝑥𝑡+1𝑁 ]  (2-8) 

where 𝑥𝑡𝑖 denotes the prior estimate of the model state at time t represented by 

the i-th ensemble member, and N denotes the number of ensemble members. In EnKF, 

Eqs. (2-5) and (2-6) are applied to each ensemble member. Since the true state is not 

known, in practice the forecast error variance is prescribed by the error covariance 

around the ensemble mean, �̅�𝑡
𝑓 ,  as defined in Eq. (2-9) (Burgers et al. 1998, Liu and 

Gupta 2007): 

𝑃𝑡
𝑓 = (𝑥𝑡

𝑓 − �̅�𝑡
𝑓)(𝑥𝑡

𝑓 − �̅�𝑡
𝑓)𝑇���������������������������       (2-9) 

EnKF uses an ensemble of observations at each analysis time in which 

perturbations may be added to represent observational uncertainty. This step is very 

important to maintain variance in the updated ensemble but at the same time does not 

affect the prediction of the ensemble mean (Burgers et al. 1998).  
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Figure  2-2 Schematic illustration of ensemble Kalman filter.  

EnKF has been applied widely in climatology, meteorology and oceanography as 

well as hydrologic and water quality forecasting (Eknes and Evensen 2002, Moradkhani 

et al. 2005b, Neal et al. 2007, Vrugt and Robinson 2007, Clark et al. 2008, Xie and Zhang 

2010, Xue et al. 2012, Huang et al. 2013, Kim et al. 2014). Huang et al. (2013) used 

EnKF to assimilate measured CHL-a into a spatial hydrodynamic-phytoplankton model to 

predict the short-term changes in the CHL-a concentration as a measure of the 

phytoplankton biomass in Lake Taihu in China. They found that good ICs for CHL-a are 

critical to good predictions of phytoplankton biomass. Kim et al. (2014) used EnKF to 

improve prediction of algal bloom and to evaluate its applicability in Han River in the 

Republic of Korea. They suggested a DA framework composed of 1) two models linked 

together to simulate the watershed and the river channels and 2) error models at the 

interface of the two models to reflect the uncertainty of the watershed simulation. The 

authors found that the use of EnKF improves river water quality predictions, and that, if 

the state variables of the watershed water quality model are not updated, the effect of DA 
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vanishes very quickly when the flow velocities are high. EnKF gained popularity owing to 

algorithmic simplicity and relative ease of implementation (e.g., no adjoint code is 

necessary) (Evensen 2003, Hotiet et al. 2005). As argued by Madsen and Skotner 

(2005), however, the computational cost may still be too high in operational systems; the 

ensemble size necessary to obtain a reliable representation of the covariance structures 

is typically on the order of 100.  

2.4. Particle filter (PF) 

PF (Arulampalam et al. 2002, Weerts and El Serafy 2006) uses Monte Carlo 

sampling to estimate the system state directly via Bayes theorem thereby avoiding the 

linearity assumption typical of the KF family of filters. The advantage of PF over KF is that 

the state-space model does not assume linearity or normality (see Figure  2-3). Early 

applications of PF were based on Sequential Importance Sampling (SIS) to represent the 

posterior density function by a set of random samples with associated weights (see e.g. 

Weerts and El Serafy 2006). With a large number of particles, this Monte Carlo 

characterization becomes equivalent to the posterior pdf (Arulampalam et al. 2002) which 

is approximated by: 

p(xk|z1:k) ≈ ∑ wk
i δ(𝑁

i=1 xk − xki )        (2-10) 

where N denotes the number of the particles, δ( ) denotes the Dirac delta 

function, wk
i  denotes the weights and xk denotes the posterior state. In practice, samples 

are drawn from a known distribution, in lieu of the posterior density function (Weerts and 

El Serafy 2006), referred to as the importance density (DeChant and Moradkhani 2012, 

Weerts and El Serafy 2006), q(xn|zn). The weights are given by (Arulampalam et al. 

2002): 

wk
i(∗) ∝ wk−1

i(∗) 𝑝�zk�𝑥𝑘
𝑖 �𝑝�𝑥𝑘

𝑖 �𝑥𝑘−1
𝑖 �

𝑞�𝑥𝑘
𝑖 �𝑥𝑘−1

𝑖 ,𝑧𝑘�
=

𝑝�𝑥𝑘
𝑖 �𝑧1:𝑘�

𝑞�𝑥𝑘
𝑖 �𝑧1:𝑘�

     𝑖 = 1, . . . ,𝑛    (2-11) 
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Therefore, it is possible to sequentially update the importance weights given an 

appropriate choice of the importance density 𝑞�𝑥𝑘𝑖 �𝑥𝑘−1𝑖 , 𝑧𝑘�. 

A common problem with PF is filter degeneracy in which the weights of all 

particles collapse into one. This degeneracy implies that a large computational effort is 

necessary to update the particles that are not contributing to the inference of the posterior 

distribution (Arulampalam et al. 2002). To refine the weights, Sequential Importance 

Resampling (RIS) was proposed by Gordon et al. (1993). By resampling the weights and 

moving the particles, the degeneracy problem is addressed to an extent but at the 

expense of increased computational burden (Pham 2001). PF can be applied to non-

Gaussian models and, in its basic form, it is very easy to implement. Applications of KF 

appear much more often than those of PF in the literature for water quality forecasting 

due to the KF’s longer history and to the fact that, for high-dimensional problems, PF may 

be computationally too expensive to be operationally viable. 

 

Figure  2-3 Schematic illustration of particle filtering (from Guiot et al. 2014). 
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PF has been applied in climatology, meteorology and hydrology (Pham 2001, 

Moradkhani et al. 2005a, Weerts and El Serafy 2006, Van Leeuwen 2009, DeChant and 

Moradkhani 2011a, Guingla et al. 2013, Yan et al. 2015). Leisenring and Moradkhani 

(2012) used PF for prediction of suspended sediment load. Nagarajan et al. (2011) used 

PF to improve root-zone soil moisture estimates by assimilating synthetic and field 

observations of soil moisture under dynamic vegetation. PF was used to assimilate water 

stage records into hydraulic models (Matgen et al. 2010, Giustarini et al. 2011).  

2.5. Variational Assimilation (VAR) 

Unlike the KF and PF family of filters which assimilate observations sequentially, 

VAR assimilates observations in batches (Figure  2-4) to update the model ICs (Drecourt 

2004). As such, variational methods are smoothers (Liu and Gupta 2007). The principle 

behind this type of DA is to minimize the cost function J( ) (see Eq.(2-12)) that weights 

the departure of the updated states from the background states (the first term in Eq.(2-

12)) and that of the model-simulated observations (based on the updated model states) 

from the actual observations over the time interval or the assimilation window (the second 

term in Eq.(2-12)) (Ide et al. 1997): 

𝐽(𝑥) = (𝑥 − 𝑥𝑏)𝑇𝑃−1(𝑥 − 𝑥𝑏) + ∑ (𝑧𝑖 − 𝐻𝑖(𝑥𝑖))𝑇𝑅𝑖−1(𝑛
𝑖=0 𝑧𝑖 − 𝐻𝑖(𝑥𝑖))   (2-12) 

where xb denotes the background state. VAR minimizes J( ) for x in Eq. (2-12) to 

obtain the best estimate of the model states (Li and Navon 2001). An important aspect of 

VAR is that, for gradient-based minimization, adjoint code is required which may not be 

very easy to generate, depending on the structure of the computer program of the model 

(i.e., the forward code) and the way and the language in which it is written. 

http://onlinelibrary.wiley.com/doi/10.1029/2011WR011116/full%23wrcr13292-bib-0030
http://onlinelibrary.wiley.com/doi/10.1029/2011WR011116/full%23wrcr13292-bib-0045
http://onlinelibrary.wiley.com/doi/10.1029/2011WR011116/full%23wrcr13292-bib-0007
http://onlinelibrary.wiley.com/doi/10.1029/2011WR011116/full%23wrcr13292-bib-0007
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Figure  2-4 Schematic illustration of variational data assimilation. 

Limited applications of VAR are found in water quality forecasting. Xie (2012) and 

Sebens et al. (2013) used a VAR approach to simulate water column temperature in a 

eutrophic reservoir in central Indiana. They addressed improving the model performance 

by combining water temperature from multi-spectral remote sensing analysis and in-situ 

measurements. VAR is widely used in hydrologic and weather forecasting (Li and Navon 

2001, Seo et al. 2003, 2009, Lee et al. 2012). Reichle et al. (2001) used VAR for large-

scale soil moisture assimilation. Seo et al (2003) used VAR for hydrologic operational 

forecasting. Seo et al. (2003) and Lee et al. (2012) found that VAR improves streamflow 

forecast accuracy. Seo et al. (2009) used VAR to assimilate discharge observations into 

the Sacramento Soil Moisture Accounting (SAC-SMA) model (Burnash et al. 1973) for a 

large number of watersheds in Texas. Lee et al. (2012) found that automatic state 

updating of the gridded SAC-SMA and kinematic-wave routing model states via 4-

dimensional VAR (4DVAR) provided significant improvement in streamflow predictions. 

Ragnoli et al. (2012) proposed a variational method to assimilate ocean surface current 

measurements into a numerical ocean model based on data from High Frequency Radar 

(HFR). 
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Whereas KF provides error covariance estimates for prediction, VAR in itself 

does not (Liu and Gupta 2007). Also, in cases where observations arrive continuously in 

time, the sequential methods may be more suitable for real-time DA (Liu and Gupta 

2007). EKF relies on tangent linear model and assumes linear observation operators to 

approximate the state and observation equations. VAR, on the other hand, does not 

assume linear model dynamics or linear observation equations but relies on tangent 

linear model for adjoint-based gradient evaluation. EnKF does not assume linear model 

dynamics but assumes linear observation equations. PF, on the other hand, does not 

assume linear model dynamics or linear observation equations.  

2.6. Maximum likelihood ensemble filter (MLEF) 

Maximum likelihood ensemble filter (MLEF, Zupanski 2005) combines the 

strengths of VAR (Jazwinski 1970, Li and Navon 2001, Seo et al. 2003, 2009, Lee et al. 

2011, 2012) and EnKF (Evensen 1994). MLEF may be viewed as an ensemble extension 

of VAR or iterative EnKF (Lorentzen and Naevdal 2011). The minimization of the cost 

function in MLEF is performed in an ensemble-spanned subspace while, in VAR (see Eq. 

(2-12)), the full model space is used. Unlike VAR, however, MLEF does not require 

adjoint code for gradient evaluation. Unlike EnKF, MLEF does not assume that the 

observation equation is linear. For more detail regarding the mathematical framework of 

the MLEF, see Subsection  4.3.1 3.1.  

MLEF was used to assimilate precipitation-affected microwave radiances into the 

Weather Research and Forecasting (WRF) model (Zhang et al. 2013); the results show 

that MLEF improves the quality of precipitation analysis in terms of spatial distribution 

and intensity in accumulated surface rainfall as verified by independent ground-based 

precipitation observations. Zupanski et al (2011) used WRF and MLEF to examine the 

potential impact of assimilating observations from the future Geostationary Operational 
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Environmental Satellite - Generation R (GOES-R Advanced Baseline Imager (ABI)) on 

improving the knowledge about model-simulated clouds. The DA and short-term forecast 

results over multiple assimilation cycles have clearly indicated improvements due to 

assimilation of the GOES-R ABI radiance observations compared to the DA-less. 

Zupanski et al. (2007) used MLEF to estimate and reduce biases in the CO2 

photosynthesis and respiration fluxes. For evaluation, they compared the MLEF results 

with KF results. Since the problem was linear, the KF solution was considered optimal. 

Their results indicates that MLEF had a stable performance over a wide range of 

ensemble sizes, and converged smoothly to the KF solution as the ensemble size 

approached the size of the control variable. Rafieeinasab et al. (2014) compared MLEF 

and EnKF for real time assimilation of streamflow data into an operational hydrologic 

model. Their results indicate that MLEF outperformed EnKF under varying conditions of 

observation and model errors, and ensemble size, and that MLEF performed well with an 

ensemble size as small as 5 whereas EnKF required a much larger ensemble size to 

perform closely to MLEF. 

Due to the complex nonlinear nature of the biophysiochemical processes that 

occur in water bodies, water quality prediction is very uncertain and generally has smaller 

predictive skills for most water quality variables than flood prediction. Capturing nonlinear 

dynamics is hence important in reducing forecasting errors via DA in water quality 

forecasting (Jian and Yu 1998). One may then expect that DA for operational water 

quality forecasting has to be able to handle both nonlinear model dynamics and nonlinear 

observation operators. Based on the above considerations, MLEF was selected as the 

DA methodology of choice in this research, and a prototype DA algorithm for HSPF and 

the supporting modules for initialization have been developed, tested and evaluated, as 

describe in the chapters to follows.  
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Chapter 3  

Methodology 

Based on the experience in Seo et al. (2003, 2009) and Lee et al. (2011, 2012), a 

fixed-lag smoother formulation (Schweppe 1973, Li and Navon 2001) is used for MLEF-

HSPF, which is described below (see Figure  3-1). In each assimilation cycle, all 

observations within the assimilation window are assimilated to update the model ICs valid 

at the beginning of the assimilation window and the multiplicative adjustment factors to 

mean areal precipitation (MAP) and mean areal potential evapotranspiration (MAPE) 

valid over the window. Because large errors may exist in the estimates of MAP and 

MAPE, two control variables representing the multiplicative adjustment factors, or biases, 

for MAP and MAPE were added to the control vector. It is well known that forcing errors 

greatly impact the accuracy of ICs of both hydrologic and water quality variables. 

Following Seo et al. (2003, 2009) and Lee et al. (2011, 2012), the biases are assumed to 

be spatially constant over the subcatchment of interest and temporally constant within the 

assimilation window. To implement the multiplicative adjustment factors to MAP and 

MAPE, segment-specific precipitation and PE within the subcatchment were weight-

averaged according to the size of the area to derive MAP over the entire subcatchment. 

The adjustment factors inflate or deflate MAP and MAPE while keeping the spatial 

pattern of MAP and MAPE among the segments as originally prescribed. While the 

choice of spatiotemporally constant bias may seem overly simplistic, experience with 

hydrologic models indicate that the gain from a more complex approach such as 

spatiotemporally-varying bias is rather small. 

The ICs and the adjustment factors form the control vector for the DA algorithm. 

The assimilation window, or the time scale of the fixed lag, is a few to several days long 

for headwater basins in reflection of the response time of the basins in the study area 
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(Seo et al. 2012). Because the sampling frequency of water quality observations is only 

about once a week, an assimilation window of 7 days was chosen to increase the 

frequency of DA. For prediction, HSPF is run over the assimilation window using the 

updated ICs valid at the beginning of the assimilation window and the adjustment factors 

valid over the assimilation window to produce the updated model states valid at the 

prediction time, which are then used to forward-integrate the model 3 to 7 days into the 

future. For the next assimilation cycle, HSPF is forward-integrated from the beginning of 

the current assimilation window to that of the next window to produce the updated model 

ICs valid at the beginning of the next assimilation cycle.  

 

Figure  3-1 Schematic of the DA cycle based on the fixed-lag smoother formulation. 

 
3.1. Maximum likelihood ensemble filter (MLEF)  

Algorithmically, the sequential assimilation process using the fixed lag smoother 

consists of the following steps (see also Figure  3-2 for flowchart). DA is initiated when 

there exist observations valid at any time within the current assimilation window. For 
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notational brevity, the index for the current time step k is omitted. It is hence to be 

understood that all time-dependent variables are associated with the time step of k 

unless indicated otherwise. In Step 1, the square root of the (SxS) forecast error 

covariance, fP , where S denotes the number of ensemble members and k-1 denotes the 

previous time step, is specified by: 

𝑃𝑓
1/2 = (𝑏1𝑏2 … 𝑏𝑠)        (4-1) 

where 

𝑏𝑖 = 𝑀�𝑝�𝑖 ≈ 𝑀(𝑥𝑘−1 + 𝑝�𝑖) −𝑀(𝑥𝑘−1)      (4-2) 

In the above, i denotes the i-th ensemble member, ib denotes the (Nx1) i-th 

ensemble member of the (NxS) matrix where N denotes the number of control variables, 

𝑀() denotes the (Nx1) one-step forward-integrated control vector of the model states and 

adjustment factors, 𝑀� denotes the (NxN) Jacobian of the model with respect to the 

control vector transitioning from time step k-1 to time step k, and 𝑝�𝑖denotes the i-th (1xN) 

vector in the (NxS) square root of the analysis error covariance, 𝑃𝑎
1/2, from the previous 

assimilation cycle (see Eq.( 4-11)) defined as: 

𝑃𝑎
1/2 = (𝑝�1𝑝�2 …𝑝�𝑠)        (4-3) 

where 

𝑝�𝑖 = �𝑝1,𝑖  𝑝2,𝑖 … 𝑝𝑁,𝑖�
𝑇; 𝑖 = 1,2, … , 𝑠       (4-4) 

The entry, 𝑝j,𝑖, in Eq.(4-4) denotes the ensemble perturbation for the j-th control 

variable in the i-th ensemble member. With the above definitions, it should be clear that 

𝑏𝑖 in Eq.(4-2) represents the perturbations in the i-th ensemble member of the control 

vector valid at time step k around the corresponding control, or the maximum likelihood, 

solution. In the very beginning of DA when there is no analysis error covariance available, 

the perturbations, 𝑏𝑖, are generated by sampling from lognormal distributions (see 
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section  4.3.2). In Step 2, MLEF-HSPF performs the following weakly-constrained 

minimization in ensemble subspace, the solution of which represents the maximum 

likelihood estimate of the control variables: 

Minimize  

𝐽(𝑥) = 1
2

(𝑥 − 𝑥𝑏)𝑇𝑃𝑓−1(𝑥 − 𝑥𝑏) + 1
2

(𝑦 − 𝐻(𝑥))𝑇𝑅−1(𝑦 − 𝐻(𝑥))   (4-5) 

subject to 

𝑥 = 𝑀(𝑥𝑘−1) + 𝑤𝑘−1        (4-6a) 

𝑥𝑙𝑜𝑤𝑒𝑟 ≤ 𝑥𝑘 ≤ 𝑥𝑢𝑝𝑝𝑒𝑟        (4-6b) 

where x  denotes the (Nx1) control vector, 𝑥𝑙𝑜𝑤𝑒𝑟 and 𝑥𝑢𝑝𝑝𝑒𝑟 denote the (Nx1) 

lower and upper bounds of the control vector, respectively, 𝑥𝑏 denotes the (Nx1) a priori, 

or background, states of the control vector, 𝑦 denotes the (Mx1) observation vector, 𝐻() 

denotes the nonlinear observation operator, 𝑅 denotes the (MxM) observation error 

covariance matrix and 𝑤𝑘−1 denotes the (Nx1) dynamical model error vector at time step 

k-1. The observation equation associated with the above cost function is given by: 

𝑦 = 𝐻(𝑥) + 𝑣         (4-7) 

where 𝑣 denotes the (Mx1) observation error vector at time step k. MLEF solves 

the nonlinear constrained minimization problem of Eqs.(4-5) and (4-6) in ensemble 

subspace via the following variable transformation which also serves as a perfect 

preconditioner (Zupanski, 2005): 

𝑥 − 𝑥𝑏 = 𝑃𝑓
1 2⁄ (𝐼 + 𝐶)−𝑇/2𝜁       (4-8) 

In the above, 𝐼 denotes the (SxS) identity matrix, 𝜁 denotes the (Sx1) control 

vector in ensemble subspace and 𝐶 denotes the (SxS) information matrix (see Zupanski 

2005 for definition) whose ij-th entry is given by 𝑧𝑖𝑇𝑧𝑗 where the (Mx1) vector 𝑧𝑖 , 𝑖 = 1, … , 𝑠, 

is defined and approximated via finite differencing by: 
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𝑍𝑖 = (𝑅−1 2⁄ 𝐻�𝑃𝑓
1 2⁄ )𝑖 = 𝑅−1 2⁄ 𝐻�𝑏𝑖 ≈ 𝑅−1 2⁄ 𝐻(𝑥 + 𝑏𝑖) − 𝑅−1 2⁄ 𝐻(𝑥)   (4-9) 

In the above, 𝐻� denotes the (MxS) Jacobian of the observation function, 𝐻(), 

with respect to the control variables. The gradient of the cost function with respect to the 

control vector in ensemble subspace is given by (Zupanski 2005): 

𝑔𝜁 = (𝐼 + 𝐶)−1𝜁 − (𝐼 + 𝐶)−
1
2�𝑅−1 2⁄ 𝐻�𝑃𝑓

1 2⁄ �
𝑇
𝑅−1 2⁄ �𝑦 − 𝐻 �𝑥𝑏 + 𝑃𝑓

1 2⁄ (𝐼 + 𝐶)−
𝑇
2𝜁�� (4-10) 

In Step 3, the control solution in ensemble subspace, 𝜁, is back-transformed to 

that in the physical space, 𝑥𝑜𝑝𝑡, via Eq.(4-8). In Step 4, the square root analysis 

covariance matrix of the model state, 𝑃𝑎
1 2⁄ , is specified by Eq.(4-11) which is then used 

as ensemble perturbations for the next analysis cycle according to Eqs. (4-3) and (4-4): 

𝑃𝑎
1 2⁄ = 𝑃𝑓

1 2⁄ [𝐼 + 𝐶�𝑥𝑜𝑝𝑡�]−𝑇/2       (4-11) 

Finally, in Step 5, MLEF-HSPF makes the last call to HSPF to generate the DA-

aided forecasts using the updated ICs. In evaluating [𝐼 + 𝐶�𝑥𝑜𝑝𝑡�]−𝑇/2, MLEF-HSPF 

performs eigenvalue decomposition using the LAPACK algorithm, dspev (Linear Algebra 

Package, http://www.netlib.org/lapack). Noting that [𝐼 + 𝐶�𝑥𝑜𝑝𝑡�]−𝑇/2 is a scaling and 

rotation operation on the ensemble subspace solution, the eigenvalue spectrum reflects 

the information content present in the ensemble members (see Subsection  6.3 for an 

example). Because MLEF is a reduced-rank filter, MLEF-HSPF may be rank-deficient in 

some assimilation cycles. The eigenvalue analysis helps assess possible rank deficiency. 

For minimization, MLEF-HSPF uses the Fletcher-Reeves-Polak-Ribiere algorithm of 

FRPRMN in Numerical Recipes (Press et al. 1986), a nonlinear conjugate gradient 

method. 

http://www.netlib.org/lapack
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Figure  3-2 Flowchart of the MLEF-HSPF algorithm. 
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3.2. Initial perturbations of ICs 

In the first step of the MLEF-HSPF algorithm, lognormal distribution is assumed 

for the control variables, in which the mean is given by the current state of the control 

variables and standard deviation given by the user-specified fraction of the current state. 

A number of state variables in the HSPF are collinear (e.g., PO4 and CHL-a in the 

reaches). As such, it is necessary to account for interdependences among the state 

variables in the initial perturbations. It is well known (references here), however, that, 

even if the dependence structure among the initial states may not be realistic, the MLEF- 

updated ICs develop a realistic structure after a number of assimilation cycles.  

3.3. Accounting of model errors 

The original formulation of MLEF (Zupanski 2005) assumes a perfect dynamical 

model. MLEF has been used since to estimate and correct systematic model errors or 

biases (Zupanski and Zupanski 2006) but without accounting for random errors. Two 

approaches, direct perturbation and state augmentation were considered in this work to 

account for model errors as described below 

 Direct perturbation approach 3.3.1

In this approach, the residual model error c
k

p
k ww i

1−− is added to Eq.(4-2) where

ip
kw and c

kw 1− denote the dynamical model errors associated with the i-th perturbation 

and control runs, respectively. Because c
k

p
k ww i

1−− is a first order difference, model 

errors of the same direction cancel out and one may expect its magnitude to be smaller 

than that of 1−kw  in Eq.(4-6a). In this work, c
k

p
k ww i

1−−  was modeled as a fraction of the 

upper bound of the individual state variables based on the experience of applying MLEF 
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to hydrologic models for streamflow prediction (Rafieeinasab et al. 2014). The setting for 

the fraction was chosen based on sensitivity analysis (see  Chapter 4). 

 State augmentation approach 3.3.2

In this approach, random errors in the dynamical model are explicitly accounted 

for by augmenting the square root forecast covariance matrix as follows: 

𝑃𝑓
1/2 = [�𝑀�𝑃𝑎,𝑘−1�

1
2𝑄𝑘−1

1
2 ]𝑇       (4-12) 

where 1−kQ  denotes the (NxN) covariance matrix of the random error at time step k-1. 

Note that, by post-multiplying T
fP )( 21  to both sides of Eq.(4-12), one has

11,
~~

−− += k
T

kaf QMPMP , which is equivalent to the second-order moment propagation 

equation in KF. The above state augmentation, however, increases the dimensionality of 

the ensemble subspace by the size of the control vector, N, if the random errors are 

assumed to be mutually independent: 
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In the above, nnp2 denotes the dimensionality of the control vector, nn+2, where 

nn denotes the total number of active HSPF state variables and the two additional entries 

representing the multiplicative adjustment factors for MAP and MAPE. Because the total 
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number of active HSPF state variables (i.e. nn) is very large, the increased computational 

burden associated with this approach can also be very large. For this reason, it is 

assumed in this work that the random errors are perfectly correlated among all control 

variables in which case the dimensionality is increased only by one: 
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To assess comparative performance between the direct perturbation and state 

augmentation approaches and between the independence and dependence assumptions 

for the state augmentation approach, a set of twin experiments were carried out, which 

are described in Subsection  4.6.  

3.4. Observational error variance 

Ideally, the observational error should be modeled heteroscedastically. Since the 

truth is not generally not known, however, such modeling is a tall order. In this work, all 

observational errors are modeled as homoscedastic for simplicity and parsimony and 

prescribed based on sensitivity analysis (see Appendix A) for each observed water 

quality variable (see Table  4-2). Experience also suggests that heteroscedastic modeling 

is rather tricky and requires uncertainty information which is usually not available in the 

real world (Rafieeinasab et al. 2014). 
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3.5. Bias correction 

DA as formulated above addresses uncertainties in the ICs and observed BCs of 

MAP and MAPE only. If significant parametric or structural errors exist in the model, DA 

is likely to adjust the model ICs for the wrong reasons to compensate for any systematic 

biases resulting from other sources of error. Ideally, issues such as model bias, scale-

dependent variability and limited dynamic range should be addressed by improving 

model physics and calibration before DA. Such an effort, however, is expected to occur 

over time and hence is beyond the scope of this research. As an alternative, MLEF-HSPF 

employs a bias correction procedure to account for systematic errors so that the DA 

solution may be found within the dynamic range of the model. To correct conditional 

biases in model simulations particularly in the right tail end of their distributions, MLEF-

HSPF uses conditional bias-penalized optimal linear estimation (Seo 2013, Seo et al. 

2014). The operation amounts to embedding linear transformation in the observation 

equation, Eq.(4-7), under the assumption that the model simulation and the verifying 

observation are linearly related according to: 

iiiii bXaY ε++=         (4-15) 

where Xi and Yi denote the model-simulated and actual observations of the i-th 

variable, respectively, ai and bi denote the coefficients of the i-the variable to be 

determined, and εi denotes the zero-mean random error for the i-th variable. In 

conventional linear estimation or regression, the coefficients are solved for by minimizing 

the error variance only, ])[( 2*
,* iiYY YYE

ii
− , where iiii bXaY +=*  and the subscripts 

denote the variables for which the expectation is taken. In conditional bias-penalized 

linear estimation, the penalty term for Type-II conditional bias is added to the objective 

function (Seo 2013): 
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]}]|[[{])[( 2*2*
, ** iiiYYiiiYYi YYYEEYYEJ

iiii
−+−= α     (4-16) 

where αi denotes the weight given to the conditional bias penalty term for the i-th 

variable. Using the Bayesian optimal linear estimator (Schweppe 1973) for ]|[ *
* iiY YYE

i
, 

it can be easily shown that the solution for the above minimization is given by (Seo 2013): 

iX

Y
YX

YXi

i
i

i

ii

ii

a
σ
σ

ρ
ρα
α

21
1
+
+

=        (4-17) 

ii XiYi mamb −=          (4-18) 

where 
iiYXρ  denotes the correlation between Xi and Yi, iXσ  and 

iYσ  denote the 

standard deviation of Xi and Yi, respectively, and 
iXm  and 

iYm  denote the mean of Xi 

and mean of Yi, respectively. Note that, if αi=0 (i.e. conditional bias is not at all important), 

the slope ai is reduced to the conventional optimal linear estimation solution, i.e., 

iiii XYYXia σσρ /= . If αi→∞ (i.e. conditional bias is of sole importance), the slope ai is 

reduced to 
iiii XYYXia σσρ /)/1(= . The weight, αi, is chosen based on sensitivity 

analysis and visual inspection of the fit as described in Subsection  6.2. Once the bias 

correction parameters are estimated for each observed variable, they are used in MLEF-

HSPF in two different ways. The first is to transform the actual observations, y in Eqs. (4-

5) and (4-10), into the model state space by inverting them via iiii bXaY +=* . The 

second is to transform the updated model states, optx  in Eq. (4-11), and the predicted 

states into the observation space via iiii bXaY +=*  for DA-aided analysis and 

predictions, respectively. 



 

35 

Chapter 4  

MLEF-HSPF parameters and their estimation 

MLEF-HSPF employs a set of DA-specific parameters to optimize performance 

and to maximize flexibility. The parameters include ensemble size, assimilation window, 

tolerance (for terminating minimization), multiplicative scaling factors to initially perturb 

the ICs, magnitude of model error, and observation error variances. The selection of the 

optimal settings based on sensitivity analysis for each parameter is explained in 

Subsections  4.1 through  4.7. The sensitivity analyses were carried out only for the 

Kumho Catchment in the Nakdong River Basin for a two-year period (2008-2009) to 

compare HSPF simulation results 1) without bias correction or DA (Base), 2) with bias 

correction only (BC-Base) and 3) with bias correction and DA (BC-DA) under the 

assumption of clairvoyant future MAP and MAPE. To assess performance, root mean 

square error (RMSE) was calculated for Base, BC-Base and BC-DA for analysis and 

Day-1 through -3 predictions of biochemical oxygen demand (BOD), chlorophyll-a (CHL-

a), dissolved oxygen (DO), nitrate (NO3), phosphate (PO4), water temperature (TW) and 

streamflow. 

4.1. Ensemble size 

A set of sensitivity analyses were performed to determine the optimum ensemble 

size. The ensemble sizes of 9, 15, 18 and 24 were considered (see Table  4-1) for the 

sensitivity analyses. Figure  4-2 through Figure  4-8 show the RMSE of Base (black bars), 

BC-Base (white bars) and BC-DA (green bars) for analysis and Day-1 through -3 

predictions of water quality variables and streamflow. It was observed that the 

performance of MLEF is not very sensitive to the ensemble size and the performance is 

satisfactory even with an ensemble size as small as 9. Therefore, an ensemble size of 9 

was chosen throughout the rest of this work. 



 

36 

4.2. Assimilation window 

It is necessary to consider a number of factors in sizing the assimilation window. 

If the window is too large, the set of observations being assimilated in each cycle would 

be large and some of the observations may be too old and/or redundant. If the window is 

too small, the DA procedure would work mostly like a filter than a smoother, thereby 

compromising performance. In this research, the window sizing was dictated largely by 

the fact that the water quality observations are available only about once a week on 

average. It means that, in order to perform DA on a daily basis, the assimilation window 

has to be at least as large as 7 days. Based on the above considerations, a 7-day 

assimilation window was chosen in this work so that water quality observations were 

available for assimilation in most cycles (see Appendix A). 

4.3. Tolerance for terminating minimization 

The DA algorithm uses the Fletcher-Reeves-Polak-Ribiere algorithm (FRPRMN, 

Press et al. 1986) for minimization. A large/small value of ftol prescribes a large/small 

tolerance in the stopping criterion, expressed in terms of reduction in the cost function. 

Two values, 10e+1 and 10e+3, of tolerance were compared (see Table  4-1). A smaller 

ftol increases the number of iterations thereby increasing the computational amount while 

a larger ftol may not produce a near-optimal solution. Based on the RMSE results, a 

setting of 10e+3 was chosen (see Figure  4-2 through Figure  4-8).  

4.4. Multiplicative scaling factor for initial perturbation 

The multiplicative scaling factor (frac_state) for the HSPF state variables 

specifies the standard deviation of the perturbations to the model states. For example, if it 

is set to 0.1, the standard deviation of the perturbations is 10% of the magnitude of the 

states. Based on the sensitivity analysis (see Appendix A), it was set to 0.01. 
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4.5. Model error factor 

The model error factor, 𝑓 (frac_gen), represents a fraction of the difference 

between the current model states and the model states at the receding time step. Based 

on the sensitivity analysis (see Appendix A), the model error factor was set to 0.1 (i.e., 

10% of the difference in the model states between the current and the preceding time 

steps). An extremely large value of 𝑓 means that the model has no predictive skill and 

𝑓 = 0 implies that the model is perfect. In the former, MLEF would draw information 

solely from the observations within the current assimilation window whereas, in the latter, 

MLEF would place a large weight to the model predictions when combining with the 

observations. 

4.6. Model error augmentation 

In the state augmentation approach (iaug), the model errors may be considered 

either dependent or independent among all state variables. If iaug is set to 1, model 

errors are assumed independent. If iaug is set to 2, model errors are assumed 

dependent. Two sets of experiments were carried out to evaluate the performance of DA 

in each approach (Figure  4-1). The computational burden under the assumption of 

independent model error is far greater (15 days for a 1-yr run) than dependent model 

error (1 day for the same 1-yr run). Yet, it was found that the performance of DA under 

the dependence assumption is superior. The reduction in RMSE for prediction is 5% for 

TW, 10% for BOD, DO, NO3, and PO4, and 15% for streamflow and CHL-a over the 

results based on the independence assumption.  
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Figure  4-1 RMSE for DA performance using the state augmentation approach (a) 

independence and (b) dependence assumptions. 

4.7. Observational error variance 

All observation errors are assumed to be independent of one another. An 

extremely large value for the observation error variances indicates non-informative data, 

in which case DA has no impact on the base (i.e. DA-less) model prediction. An 

extremely small value, on the other hand, indicates near-perfect observations, in which 
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case DA would weigh the data very heavily even if it may mean deviating greatly from the 

model prediction. The magnitude of the observation error variances are based on a 

combination of laboratory analysis (Ministry of Environment, 2011) and sensitivity 

analysis. The initial estimates for observation error variances were used in Run 1. Except 

for BOD, DA reduced analysis RMSE for all water quality variables. The observation error 

variance for BOD was then reduced by an order of magnitude to assess sensitivity (Run 

3), which further reduced RMSE. The observation error variance for BOD was reduced 

again by an order of magnitude (Run 4) which, while reduced RMSE for BOD analysis, 

increased RMSE for analysis of other variables such as CHL-a. In Run 6, the observation 

error variances were reduced by two orders of magnitude compared to those for Run 5. 

For most water quality variables, the results for both analysis and prediction were similar 

to those for Run 3. As such, the observation error variances for Run 3 were selected (see 

Table  4-1 and Figure  4-2 through Figure  4-8). It was seen that, among all runs for the 

Kumho Catchment, the RMSE of BC-DA compared to Base for most of the water quality 

variables and streamflow was greatly reduced in Run 3. Thus, the parameter settings 

associated with Run 3 were identified to be the best (see Table  4-2). 
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Table  4-1 The MLEF-HSPF parameters settings for systematic sensitivity analysis runs for the Kumho Catchment. 

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Ensemble size 9 9 9 9 9 9 15 9 9 18 9 18 18 24 9 9 
Tolerance for terminating 

minimization 10
4
 10

4
 10

4
 10

4
 10

4
 10

4
 10

4
 10

2
 10

4
 10

4
 10

2
 10

4
 10

2
 10

4
 10

4
 10

4
 

Model error 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Multiplicative scaling 

factor 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

O
bs

er
va

tio
n 

er
ro

r v
ar

ia
nc

e 

Daily flow 0.1 0.1 0.1 0.1 1 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Hourly flow 0.1 0.1 0.1 0.1 1 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Dftmdl flow 1 1 1 1 10 0.1 1 1 1 1 1 1 1 1 1 1 

TW 0.1 0.1 0.1 0.1 1 0.01 0.1 0.1 1 1 1 0.1 0.1 0.1 0.1 0.1 

NH4 0.001 0.001 0.001 0.001 0.01 0.0001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

NO3 0.1 0.1 0.1 0.1 1 0.01 0.1 0.1 1 1 1 0.1 0.1 0.1 0.1 0.1 

PO4 0.01 0.01 0.01 0.01 0.1 0.001 0.01 0.01 0.1 0.1 0.1 0.01 0.01 0.01 0.01 0.01 

BOD 0.1 0.01 0.01 0.001 0.1 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

CHL-a 1 1 1 1 10 0.1 1 1 1 1 1 1 1 1 1 1 

DO 0.01 0.01 0.01 0.01 0.1 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Precipitation 0.1 1 0.1 0.1 1 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Evaporation 0.1 1 0.1 0.1 1 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

TP 1 1 1 1 10 0.1 1 1 10 10 10 1 1 1 1 1 

TN 1 1 1 1 10 0.1 1 1 10 10 10 1 1 1 1 1 

TOC 1 1 1 1 10 0.1 1 1 10 10 10 1 1 1 1 1 
Model error 

augmentation 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 
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Figure  4-2 RMSE of Base, BC-Base and BC-DA for analysis and Day-1 through Day-3 prediction of BOD.  
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Figure  4-3 RMSE of Base, BC-Base and BC-DA for analysis and Day-1 through Day-3 prediction of CHL-a.  
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Figure  4-4 RMSE of Base, BC-Base and BC-DA for analysis and Day-1 through Day-3 prediction of Flow.  
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Figure  4-5 RMSE of Base, BC-Base and BC-DA for analysis and Day-1 through Day-3 prediction of DO.  
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Figure  4-6 RMSE of Base, BC-Base and BC-DA for analysis and Day-1 through Day-3 prediction of NO3.  
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Figure  4-7 RMSE of Base, BC-Base and BC-DA for analysis and Day-1 through Day-3 prediction of PO4.  
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Figure  4-8 RMSE of Base, BC-Base and BC-DA for analysis and Day-1 through Day-3 prediction of TW. 
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Table  4-2 MLEF-HSPF parameter settings for the Kumho Catchment. Shown in the 

parentheses are the parameter names used in MLEF-HSPF. 

Description (parameter name) Recommended setting 
Dynamical model error in one-step transition (frac_gen) 0.1 
Multiplicative scaling factor to the HSPF state variables for 
the initial perturbation (frac_state) 0.01 

Ensemble size (ns) 9 
Option for mean daily flow observations (idf) 0 
Assimilation window in hrs (nwin) 7 x 24 
Option for the use of LAPACK solver (ilapack) 1 
Tolerance for the stoppage condition for conjugate gradient 
minimization (ftol) 10.e+3 

Control 
variables 

Number 
of HSPF 
state 
variables 
to be 
updated 
(nstate) 

Pervious 

Interception storage 
Surface (overland flow) storage 
Interflow storage 
Active groundwater storage 
Upper zone storage 
Lower zone storage 
Index to groundwater slope 
BOD, NH4, NO3, PO4 

11 

28 30 
Impervious 

Retention storage 
Surface (overland flow) storage 
BOD, NH4, NO3, PO4 

6 

Reach 

Volume of water in the reach 
water temperature 
Chlorophyll-a, 
DOX,ORP,ORN,ORC 
BOD, NH4, NO3, PO4 

11 

multiplicative adjustment factors for MAP and MAPE 2 

Observation error 
variance 

Mean daily flow, (cms)2 0.1 
Hourly flow, (cms)2 0.1 
Instantaneous flow, (cms)2 1. 
Water temperature (degrees C)2 0.1 
NH4, (mg/l)2 , RCH only 0.001 
NO3, (mg/l)2 0.1 
PO4, (mg/l)2 0.01 
BOD, (mg/l)2, RCH only 0.1 
CHL-a, (ug/l)2, RCH only 1. 
DO, (mg/l)2, RCH only 0.01 
TP, (mg/l)2, RCH only 1. 
TN, (mg/l)2, RCH only 1. 
TOC, (mg/l)2, RCH only 1. 
Hourly precipitation, (mm)2 1. 
Hourly PE, (mm)2 1. 
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Chapter 5  

Evaluation 

Ideally, one would like to test and evaluate MLEF-HSPF in real time environment 

for operational forecasting. Due to lack of real-time observations and forecast forcings, 

however, such testing and evaluation were not possible. Instead, a set of hindcasting 

experiments were designed and carried out for retrospective evaluation of MLEF-HSPF 

using the observed forcings of MAP and MAPE under the assumption of clairvoyant 

future forcings. 

5.1. Study area 

The four major river basins in the Republic of Korea are the Han, the Geum, the 

Nakdong and the Youngsan River Basins. The four river basins consist of 32 catchments 

ranging in size from 66 km2 to 7200 km2 (Table  5-1). For evaluation of MLEF-HSPF, 

multiple catchments were chosen based on examination of the overall quality of HSPF 

simulations, the number of water quality variables observed, the period of record of 

observations, and the observation frequency. The streamflow and water quality 

observations used in this research are made approximately once a week at the water 

quality and point-source monitoring stations. They are the instantaneous observations of 

streamflow, water temperature (TW), ammonium (NH4), nitrate (NO3), phosphate (PO4), 

chlorophyll-a (CHL-a), total nitrate (TN), total phosphate (TP), total organic carbon (TOC), 

biochemical oxygen demand (BOD), and dissolved oxygen (DO). The observation time, 

typically between 10 am to 5 pm, varies from station to station and according to the 

sampling schedule. 

The MLEF-HSPF module is capable of assimilating observations from both the 

outlet and interior locations within a catchment. Because HSPF has not been calibrated 
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for the interior locations, however, the hindcasting experiments were performed only for 

the most downstream (outlet) monitoring station in each catchment.  

Table  5-1 Catchments in the Geum, Han, Nakdong, and Yeongsan River Basins.  

River 
Basin Catchment Most downstream 

monitoring station ID Area (km2) Number of 
monitoring stations 

Geum 

Daekyo 38 66 1 
Gap 40 649 9 
Jeongahn 34 161 1 
Miho 26 1855 15 
Yongsu 37 98 1 
Yugu 43 283 1 

Han 

Bokha 100 312 3 
Cheongmi 132 580 3 
Cheongpyeong 35 7182 19 
Chungjudam 185 6683 24 
Dal 164 1593 12 
Gyeongan 80 545 4 
Jojong 34 262 3 
Seom 130 1483 12 
Yanhwa 106 353 1 

Nakdong 

Andongdam 51 1610 8 
Banbyeon 52 1957 8 
Gam 90 1000 3 
Hoe 158 775 3 
Hwang 161 1301 9 
Kumho 135 2170 12 
Naeseong 49 1804 11 
Nam 186 3437 20 
Whi 74 1396 6 
Yeong 63 909 3 

Yeongsan 

Gomakwo 68 218 3 
Gwangju 34 114 2 
Hwangnyong 40 554 4 
Jisuk 46 654 6 
Manbong 65 108 2 
Pungyeongjeong 29 117 1 
Yeongsan 28 476 3 

 

5.2. Data availability 

Table  5-2 shows the availability of observations at the most downstream 

monitoring stations in the four major river basins in Korea. Most water quality variables 
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are sampled weekly (w) or monthly (m). For most monitoring stations, the period of 

record for the water quality observations is different from that for the streamflow 

observation before 2011. Since 2011, however, both the sampling interval and period of 

record are the same for all observations. The observations of NO3, NH4, PO4, CHL-a and 

TOC are sampled more infrequently than other water quality observations in several 

catchments (see Column 9 in Table  5-2).  

5.3. Study catchments 

The NIER’s calibration period of HSPF for all catchments is from Jan 2008 to 

Dec 2010. For dependent validation, the Kumho Catchment in the Nakdong River Basin 

is used based on the availability of observations and the quality of HSPF simulation. The 

Kumho River is the largest tributary of the Nakdong River and runs through Daegu, the 

third largest city in the Republic of Korea. As such, the Kumho River is susceptible to 

degradation in water quality and has a clear need for accurate water quality forecasting to 

avoid hazardous water quality situations. Similarly, based on the availability of the 

observations and the quality of the HSPF simulations, 12 catchments were selected for 

independent validation. The selected catchments include the Gap and Miho Catchments 

in the Geum River Basin, the Cheongmi, Jojong, Seom and Yanhwa Catchments in the 

Han River Basin, the Gam, Kumho and Nam Catchments in the Naktong River Basin and 

the Gomakwo, Jisuk and Uchi Catchments in the Youngsan River Basin.  

The cross-correlation functions (CCF) between the observed and simulated 

variables were estimated for the selected catchments for a 6-year period of 2008 to 2013. 

Table  5-3 shows the maximum cross correlation values along with the time lags at which 

the maxima occur. A non-zero lag indicates a phase error (a lag of 1 corresponds to one 

week). Among the 12 catchments, those catchments for which the lags are close to zero 

for most of the variables are selected for independent validation. Therefore for 
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independent validation, MLEF-HSPF module has been tested and evaluated extensively 

for the Kumho Catchment in the Nakdong River Basin, the Jojong and Yanghwa 

Catchments in the Han River Basin and the Miho Catchment in the Geum River Basin 

(see Figure  5-1). The area pie charts in Figure  5-1 show the land use patterns in the 

catchment. Six different land usages are represented in each catchment: forest, 

agricultural land, pervious developed land, impervious land, wet land, and water. Note 

that the Miho Catchment has the highest percentage of urban area.  

5.4. Selection of the catchments for comparison between HSPF-DA and time 

series modeling 

Comparisons between the DA-aided predictions using HSPF and those based on 

time series modeling are made for the Kumho, Banbyeon, Naeseong, and Nam 

Catchments in the Nakdong River Basin, the Seom Catchment in the Han River Basin, 

and the Uchi Catchment in the Youngsan River Basin (see Figure  5-2). The available 

period of record for these catchments is from Jan 2008 to Dec 2013 during which all the 

variables were observed weekly. 

Table  5-4 through Table  5-9 show the statistical measures including root mean 

square error (RMSE), mean square error (MSE) decomposition, correlation coefficient 

and Nash-Sutcliff efficiency (NSE) of all observed variables at the outlet of the selected 

catchments in the four major river basins in Korea. Note that, except for the Kumho and 

Seom Catchments, the HSPF simulations for most of the variables are generally poor.  
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Table  5-2 availability of observations at each monitoring station in the four major river basins. 
R

iv
er

 
Ba

si
n 

Catchment 
Flow (m3/s) Water quality variables 

Water quality variables collected separately from the 6, 
7, and 8th columns Start Sample 

size 
Sampling 
frequency Start Sample 

size 
Sampling 
frequency 

G
eu

m
 

Daekyo 2012 67 w 2012 75 w TOC: 53 since 2012 
Gap 2009 183 w 2008 308 w TOC: 296 

Jeongan 2012 128 m & w 2008 128 m & w TOC: 29 since 2011 
Miho 2009 147 w 2008 308 w TOC: 196 since 2008 

Yongsu 2012 64 m & w 2008 128 m & w TOC: 51 since 2012 
Yugu 2012 74 m & w 2008 128 m & w TOC: 51 since 2012 

H
an

 

Bokha 2011 124 w 2008 270 w NO3,NH4,PO4: 92 since 2010, CHL-a: 76 since 2011 
Cheongmi 2011 126 w 2008 269 w CHL-a: 138 since 2008 

Cheongpyeong 2011 129 w 2008 217 w NO3,NH4,PO4,CHL-a: 94 since 2010 
Chungjudam 2011 126 w 2008 267 w CHL-a: 72 since 2008 

Dal 2011 120 w 2008 267 w CHL-a: 136 since 2008 
Gyeongan 2011 142 w 2008 290 w NO3,NH4,PO4,CHL-a: 96 since 2010 

Jojong 2011 122 w 2008 267 w CHL-a: 138 since 2008 
Seom 2011 125 w 2008 302 w -- 

Yanhwa 2011 123 w 2008 269 w CHL-a: 138 since 2008 

N
ak

do
ng

 

Andongdam 2008 290 w 2008 290 w TOC: 152 since 2008, m & w 
Banbyeon 2008 282 w 2008 289 w -- 

Gam 2012 63 w 2008 116 m & w -- 
Hoe 2008 237 w 2008 239 w NO3,NH4,PO4: 154, m & w, CHL-a:193 since 2008 

Hwang 2008 239 w 2008 240 w NO3,NH4,PO4: 157, m & w, CHL-a:194 since 2008 
Kumho 2008 283 w 2008 289 w -- 

Naeseong 2008 268 w 2008 289 w -- 
Nam 2008 279 w 2008 289 w -- 
Whi 2008 233 w 2008 238 w CHL-a:193 since 2008, m & w 

Yeong 2008 237 w 2008 239 w NO3,NH4,PO4: 159, m & w, CHL-a:194 since 2008 

Ye
on

gs
an

 

Gomakwo 2012 92 w 2008 264 w NO3,NH4,PO4,CHL-a:73 since 2008 
Gwangju 2012 74 m & w 2008 127 m & w NO3,NH4,PO4:118 since 2008, TOC: 85 since 2011 

Hwangnyong 2012 67 w 2008 299 w -- 
Jisuk 2012 71 w 2008 299 w -- 

Manbong 2012 71 w 2012 72 w NO3,NH4,PO4: 54 since 2012 
Pungyeongjeong 2012 72 m &w 2008 125 m &w NO3,NH4,PO4: 97, TOC:74 since 2011 

Uchi 2011 154 w 2008 306 w TOC: 288 
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Table  5-3 Maximum CCF value along with corresponding lag value for all the variables for the selected catchments. 

River Basin Catchments Variable TW FLOW PO4 DO BOD NO3 NH4 CHL-a TP TN TOC 

GEUM 
Miho 

CCF 0.96 0.72 0.34 0.55 0.52 0.62 0.61 0.65 0.3 0.59 -0.31 
lag 0 0 -1 0 1 0 1 0 8 0 13 

Gap 
CCF 0.97 0.8 0.31 0.29 0.57 -0.23 0.52 0.49 0.75 0.52 -0.29 
lag 0 0 -14 -13 1 10 0 1 0 0 15 

HAN 

Jojong 
CCF 0.95 0.85 0.31 0.84 0.41 0.61 -0.31 0.48 0.23 0.63 0.31 
lag 0 0 0 1 0 3 -7 0 -1 2 4 

Yanhwa 
CCF 0.97 0.67 0.33 0.71 0.45 0.75 0.69 0.7 0.28 0.74 0.43 
lag 0 0 2 0 1 0 1 0 1 2 8 

Seom 
CCF 0.97 0.83 0.62 0.76 0.46 -0.48 0.76 0.66 0.53 0.72 0.34 
lag 0 0 0 0 7 21 -1 0 0 -2 4 

Cheongmi 
CCF 0.98 0.67 0.17 0.7 0.41 0.56 0.77 0.57 0.14 0.6 0.45 
lag 0 0 -19 0 1 2 1 0 -19 1 1 

Nakdong 

Gam 
CCF 0.96 0.64 0.73 0.67 -0.28 0.46 0.57 0.35 0.64 0.48 -0.39 
lag 0 0 0 1 -4 0 1 1 0 0 10 

Kumho 
CCF 0.97 0.92 0.88 0.74 0.54 0.72 0.49 0.49 0.86 0.76 0.39 
lag 0 0 0 0 5 0 3 0 0 0 0 

Nam 
CCF 0.97 0.92 0.23 0.82 0.38 0.67 0.7 0.45 0.57 0.81 0.48 
lag 0 0 20 1 20 -1 2 0 1 1 16 

Yeongsangang 

Jisuk 
CCF 0.97 0.82 0.29 0.86 -0.5 0.6 -0.18 0.29 0.36 0.63 0.46 
lag 0 0 19 0 -20 0 -18 1 1 3 11 

Gomakwo 
CCF 0.97 0.71 0.56 0.85 0.43 0.75 -0.35 0.36 0.37 0.52 0.54 
lag 0 0 0 0 1 0 -1 -9 9 -1 4 

Uchi 
CCF 0.97 0.64 -0.15 0.35 -0.28 0.62 0.27 0.49 0.29 0.57 0.34 
lag 0 0 -7 0 -11 -1 3 0 -21 2 1 
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Figure  5-1 The location and land-use maps of the Kumho, Miho, Yanghwa and Jojong 

Catchments in the Nakdong, Geum and Han River Basins, respectively. 
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Figure  5-2 The location of the Kumho, Banbyeon, Naeseong, Nam Catchments in the 

Nakdong River Basin, Seom Catchment in the Han River Basin and Uchi Catchment in 

the Youngsan River Basin, respectively.  
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Table  5-4 Statistics measures for the outlet of the Seom Catchment in the Han River Basin. 

Variable sample size NSE Correlation RMSE (Bias in Mean)^2 (Bias in STD)^2 Cross term 
Flow(cms) 124 0.709 0.845 37.979 1.624 42.329 1410.171 

TW(C) 302 0.951 0.976 2.073 0.074 0.042 4.195 
PO4(mg/l) 302 -1.942 0.645 0.098 0.003 0.002 0.004 
DO(mg/l) 302 0.492 0.773 1.660 0.493 0.061 2.209 

BOD(mg/l) 302 -0.074 0.382 0.965 0.034 0.032 0.869 
NO3(mg/l) 302 -1.591 0.388 1.098 0.072 0.196 0.941 
NH4(mg/l) 302 0.481 0.699 0.477 0.000 0.065 0.163 

CHLA(μg/l) 301 0.388 0.654 9.163 2.318 5.170 76.740 
TP(mg/l) 302 -0.948 0.521 0.104 0.002 0.001 0.008 
TN(mg/l) 302 0.049 0.671 1.172 0.000 0.134 1.244 

TOC(mg/l) 293 -0.329 0.249 1.900 0.902 0.703 2.015 
 

Table  5-5 Statistics measures for the outlet of the Nam Catchment in the Nakdong River Basin. 

Variable sample size NSE Correlation RMSE (Bias in Mean)^2 (Bias in STD)^2 Cross term 
Flow(cms) 231 -5.131 0.580 331.108 485.017 65656.045 43966.189 

TW(C) 241 0.914 0.974 2.561 1.997 1.065 3.516 
PO4(mg/l) 241 -2.990 0.225 0.041 0.000 0.000 0.001 
DO(mg/l) 241 0.611 0.803 1.353 0.142 0.303 1.393 

BOD(mg/l) 241 -1.098 0.330 2.313 0.165 0.407 4.799 
NO3(mg/l) 241 -0.120 0.668 0.995 0.150 0.078 0.765 
NH4(mg/l) 241 0.392 0.675 0.253 0.001 0.001 0.062 

CHLA(μg/l) 241 0.070 0.446 40.321 116.609 164.673 1350.773 
TP(mg/l) 241 -0.604 0.537 0.065 0.000 0.001 0.004 
TN(mg/l) 241 0.487 0.812 1.177 0.352 0.001 1.036 

TOC(mg/l) 236 -1.736 0.428 2.383 0.000 1.378 4.325 
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Table  5-6 Statistics measures for the outlet of the Naeseong Catchment in the Nakdong River Basin. 

Variable sample size NSE Correlation RMSE (Bias in Mean)^2 (Bias in STD)^2 Cross term 
Flow(cms) 220 0.467 0.814 53.909 21.768 350.240 2547.362 

TW(C) 238 0.886 0.966 3.170 4.029 0.336 5.708 
PO4(mg/l) 241 -5.583 -0.387 0.063 0.001 0.000 0.003 
DO(mg/l) 241 0.640 0.867 1.511 0.678 0.252 1.359 

BOD(mg/l) 241 0.104 0.384 0.781 0.029 0.246 0.338 
NO3(mg/l) 241 0.132 0.532 0.732 0.032 0.015 0.492 
NH4(mg/l) 241 -0.188 0.214 0.053 0.000 0.000 0.002 

CHLA(μg/l) 241 -0.277 0.020 10.195 0.815 17.521 86.029 
TP(mg/l) 241 -1.546 -0.337 0.118 0.001 0.000 0.013 
TN(mg/l) 241 -0.299 0.483 0.861 0.186 0.002 0.555 

TOC(mg/l) 236 -0.304 0.194 2.357 1.453 2.621 1.500 
 

Table  5-7 Statistics measures for the outlet of the Kumho Catchment in the Nakdong River Basin. 

Variable sample size NSE Correlation RMSE (Bias in Mean)^2 (Bias in STD)^2 Cross term 
Flow(cms) 236 0.807 0.918 48.326 0.025 889.487 1455.868 

TW(C) 241 0.943 0.974 1.938 0.275 0.001 3.495 
PO4(mg/l) 241 -0.294 0.878 0.217 0.018 0.015 0.015 
DO(mg/l) 242 0.512 0.742 1.827 0.030 1.344 1.979 

BOD(mg/l) 242 -0.166 0.348 1.702 0.711 0.982 1.213 
NO3(mg/l) 241 -0.270 0.719 1.807 0.340 0.722 2.214 
NH4(mg/l) 241 0.132 0.436 0.215 0.001 0.007 0.038 

CHLA(μg/l) 241 0.140 0.488 39.621 167.810 344.957 1062.881 
TP(mg/l) 242 0.182 0.865 0.192 0.007 0.012 0.019 
TN(mg/l) 242 0.033 0.759 1.707 0.016 0.733 2.178 

TOC(mg/l) 237 -3.195 0.389 2.932 5.947 0.006 2.654 
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Table  5-8 Statistics measures for the outlet of the Banbyeon Catchment in the Nakdong River Basin. 

Variable sample size NSE Correlation RMSE (Bias in Mean)^2 (Bias in STD)^2 Cross term 
Flow(cms) 234 0.409 0.696 43.599 0.841 1076.290 831.909 

TW(C) 240 0.888 0.964 2.808 2.871 0.130 4.905 
PO4(mg/l) 241 0.121 0.369 0.008 0.000 0.000 0.000 
DO(mg/l) 241 0.615 0.869 1.390 0.668 0.224 1.045 

BOD(mg/l) 241 -0.376 -0.162 0.742 0.027 0.136 0.389 
NO3(mg/l) 241 -0.338 0.431 0.544 0.107 0.031 0.159 
NH4(mg/l) 241 -0.181 0.134 0.030 0.000 0.000 0.001 

CHLA(μg/l) 241 -0.137 -0.110 5.673 0.963 16.854 14.493 
TP(mg/l) 241 -0.019 -0.039 0.034 0.000 0.001 0.000 
TN(mg/l) 241 -0.513 0.460 0.677 0.217 0.061 0.181 

TOC(mg/l) 236 -1.973 -0.114 3.391 7.540 3.305 0.670 
 

Table  5-9 Statistics measures for the outlet of the Uchi Catchment in the Yeongsan River Basin. 

Variable sample size NSE Correlation RMSE (Bias in Mean)^2 (Bias in STD)^2 Cross term 
Flow(cms) 154 0.394 0.641 18.614 5.831 113.170 229.722 

TW(C) 306 0.942 0.975 2.034 0.433 0.040 3.678 
PO4(mg/l) 306 -0.861 -0.068 0.033 0.000 0.000 0.001 
DO(mg/l) 306 0.115 0.346 7.157 0.068 29.552 21.771 

BOD(mg/l) 306 -2.409 0.121 2.720 2.324 0.175 4.916 
NO3(mg/l) 303 0.226 0.588 0.611 0.008 0.004 0.363 
NH4(mg/l) 306 -0.040 0.223 0.146 0.000 0.005 0.017 

CHLA(μg/l) 306 0.193 0.492 19.189 13.754 63.289 292.320 
TP(mg/l) 306 -1.571 0.039 0.065 0.001 0.000 0.003 
TN(mg/l) 306 -0.340 0.470 0.791 0.142 0.000 0.485 

TOC(mg/l) 288 -0.844 0.307 2.765 1.125 0.064 6.480 
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5.5. Performance measures 

To assess the quality of the analysis and prediction results of water quality 

variables and streamflow, visual examination of the time series and scatter plots, and a 

set of statistical measures, including root mean square error (RMSE), skill score, mean 

square error (MSE) decomposition, correlation coefficient and Nash-Sutcliff efficiency 

(NSE), were used. RMSE gives the standard deviation of the error in the same unit as 

simulation and observation. A smaller RMSE indicates better performance: 

𝑅𝑀𝑆𝐸 = �∑ (𝑆𝑖𝑚𝑖−𝑂𝑏𝑠𝑖)2
𝑛
𝑖=1

𝑛−1
        (5-1) 

where n denotes the number of pairs of simulated and observed water quality 

variables or streamflow. The skill score is defined based on MSE as follows: 

𝑆𝑆𝐷𝐴 = 1 − 𝑀𝑆𝐸𝐷𝐴
𝑀𝑆𝐸𝐵𝑎𝑠𝑒

        (5-2) 

where 𝑀𝑆𝐸𝐷𝐴 denotes the MSE of the DA-aided prediction or analysis and 

𝑀𝑆𝐸𝐵𝑎𝑠𝑒 denotes the MSE of the base, i.e., DA-less, prediction or analysis. A skill score 

of unity represents perfect analysis or prediction whereas a skill score of zero indicate 

that DA does not add any skill to the base simulation. MSE can be decomposed into 

three terms as follows (Murphy and Winkler 1987, Nelson et al. 2010): 

𝑀𝑆𝐸 = ∑ (𝑓𝑖 −𝑁
𝑖=1 𝑜𝑖)2 = (𝑚𝑓 −𝑚𝑜)2 + (𝜎𝑓 − 𝜎𝑜)2 + 2𝜎𝑓𝜎𝑜(1 − 𝜌)   (5-3) 

where 𝑓𝑖 and 𝑜𝑖 denote the ith forecast and verifying observation, respectively, N 

denotes the number of pairs of forecast and verifying observation, 𝑚𝑓 and 𝑚𝑜 denote the 

mean of forecast and that of verifying observation, respectively, 𝜎𝑓 and 𝜎𝑜 denote the 

standard deviation of forecast and that of verifying observation, respectively, and 𝜌 

denotes the correlation between the forecast and the verifying observation. In the RHS of 

Eq.(5-3), the first and second terms measure the bias in the mean and that in the 

standard deviation, respectively, and the third term measures the strength of covariation 
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(the smaller, the stronger) between the forecast and the verifying observation (Nelson et 

al. 2010). The correlation coefficient is a measure of linear association between the 

simulated and observed variables:  

𝐶𝑜𝑟𝑟 = 𝐶𝑜𝑣(𝑠𝑖𝑚,𝑜𝑏𝑠)
𝜎𝑠𝑖𝑚𝜎𝑜𝑏𝑠

        (5-4) 

where 𝜎𝑠𝑖𝑚 and 𝜎𝑜𝑏𝑠 denote the standard deviation of the simulated and that of 

the observed, respectively, and 𝐶𝑜𝑣(𝑠𝑖𝑚, 𝑜𝑏𝑠) denotes the covariance between the 

observed and the simulated. The Nash-Sutcliffe efficiency is a skill score that expresses 

the relative magnitude of the residual variance ("noise") compared to the measured data 

variance ("information") (Nash and Sutcliffe 1970): 

𝑁𝑆𝐸 = 1 −  ∑ (𝑠𝑖𝑚𝑖−𝑜𝑏𝑠𝑖)2
𝑛
𝑖=1
∑ (𝑜𝑏𝑠𝑖−𝑜𝑏𝑠�����)2𝑛
𝑖=1

       (5-5) 

where 𝑜𝑏𝑠����� denotes the mean of the observations. The Nash-Sutcliffe efficiencies 

range from negative infinity to unity. An NSE equal to one corresponds to a perfect 

simulation. An NSE equal to zero indicates that the model simulation is no more skillful 

than the mean of the observations. An NSE of less than zero indicates that the observed 

mean is better than the model simulation. 

5.6. Comparative evaluation with time series modeling 

The effectiveness of DA depends not only on the quality of the model but also on 

the predictability of the water quality variables. If the biophysiochemical processes of 

interest have little memory, one may not expect DA to improve prediction significantly. 

Certain processes, on the other hand, may be very predictable in which case one may 

expect DA to do well. In this element of the research, time series modeling (Box and 

Jenkins 1970, Bras and Rodriguez-Iturbe 1985) is carried out for the water quality 

variables to better understand the statistical nature of the processes modeled and their 

predictability. For this purpose, auto-regressive integrated moving average (ARIMA) 
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model was used to simulate and predict the water quality variables. Several studies used 

different types of ARIMA models to simulate water quality variables and to predict the 

long- and short-term trends of water quality in river systems or a basins (Balasuriya et al. 

1982, Montanari et al. 1997, Ragavan et al. 2006, Parmar and Bhardwaj 2014). 

Arya and Zhang (2015) applied the order series method and ARIMA model for univariate 

simulation of DO and TW for four water quality assessment stations on the Stillaguamish 

River in WA. The time series model identified for each univariate water quality time series 

was found to be capable of predicting future values with reasonable accuracy. Therefore, 

they suggested that the time series modeling approach might be an effective tool for 

assessing water quality in river systems. Worrall and Burt (1999) applied autoregressive 

(AR) and autoregressive-moving average (ARMA) modeling to examine the nature of the 

detrended and deseasoned residual time series for NO3 levels. In addition, they used the 

time series models derived from spatial variations of nitrate concentrations from three 

catchments in the North and South of England to predict future NO3 levels. They 

concluded that ARMA modeling proved to be an effective prediction tool. Chen et al. 

(2015) developed an ARIMA model to predict daily CHL-a concentrations using data from 

Taihu Lake in China. In addition, they developed a multivariate linear regression (MVLR) 

model to predict daily CHL-a concentrations using the same data. They compared the 

prediction results of the MVLR model with the ARIMA model. They concluded that the 

ARIMA model had more advantages compared to the MVLR model because the ARIMA 

model needed only one input (CHL-a observation) variable and provided short-term 

predictions with acceptable accuracy. Unlike the ARMA model, the ARIMA model is able 

to handle non-stationarity by allowing differencing of the data series. Appendix B 

describes ARIMA modeling used in this work. 
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Chapter 6  

Results and discussions 

6.1. MLEF-HSPF evaluation experiments  

The MLEF-HSPF module was evaluated via dependent and independent 

validation. Dependent validation represents evaluation of MLEF-HSPF for the period for 

which HSPF was calibrated by NIER. Independent validation represents evaluation of 

MLEF-HSPF for the period outside of the HSPF calibration period. The dependent 

validation was performed for the Kumho Catchment, and independent validation was 

performed for multiple catchments in the four river basins. Before presenting the DA 

results, the bias correction results are presented first below. 

6.2. Bias correction 

To specify α and the bias correction parameters, a and b (see Eq. (4-15), 

Subsection  3.5 for details), HSPF simulations of streamflow, TW, NH4, NO3, PO4, CHL-a, 

TN, TP, TOC, BOD, and DO were compared with the observed. The bias correction 

parameters were then estimated based on simulations and observations from a two-year 

period of 2011-2012 for the Kumho Catchment. The criteria used to specify α and to 

estimate the bias correction parameters are as follows: 

1. The coefficient a should be greater than 0.5, or the ranges of bias-corrected 

simulations become unrealistic and the simulations might not capture the variability of 

the observations.  

2. The coefficient a should not be negative, or the feasible region of the model physics 

might be violated and the bias-corrected model simulations might become unrealistic.  

3. The absolute value of the coefficient b should not be very large compared to the 

magnitude of observations.  
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4. The weight α may be selected based on visual comparison of the bias-corrected 

model simulations with the observed. 

5. If the coefficients a and b violate the above criteria, bias correction is not be used for 

that variable and set a and b to unity and zero, respectively. 

Figure  6-1 shows the scatter plots of CHL-a between the simulated and the 

observed for different values of α. As may be seen in the figure, values of α greater than 

2 resulted in negative values of CHL-a whereas an α of zero was unable to capture the 

variability of the observed. Hence, α=1 was chosen for CHL-a. Figure  6-2 shows the 

scatter plots of NO3 for different values of α. It is seen from the figure that, as α increases 

from zero to five, the bias correction procedure reduces systematic first-order conditional 

biases and captures the variability of the observations effectively. As such, α=5 was 

chosen for NO3. The highlighted values in Table  6-1 represent the selected bias 

correction parameters for each of the water quality variables for the Kumho Catchment. 
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Table  6-1 The calculated bias correction parameters for different values of α. 

Variable 
α 

Selected a&b 
0 1 2 3 4 5 

Fl
ow

 a 0.642 0.750 0.795 0.819 0.834 0.845 0.845 

b 9.046 4.559 2.708 1.698 1.061 0.624 0.624 

TW
 a 0.973 0.998 1.007 1.012 1.014 1.016 0.998 

b 0.544 0.131 -0.012 -0.084 -0.128 -0.157 0.131 

N
H

4 a 0.542 0.981 1.345 1.651 1.911 2.136 0.981 

b 0.137 0.062 -0.001 -0.053 -0.098 -0.136 0.062 

N
O

3 a 0.447 0.588 0.657 0.698 0.725 0.744 0.744 

b 3.037 2.275 1.901 1.679 1.532 1.428 1.428 

PO
4 a 0.583 0.665 0.697 0.715 0.726 0.733 0.733 

b 0.074 0.0512 0.042 0.037 0.034 0.032 0.032 

B
O

D
 a 1.243 1.998 2.504 2.867 3.141 3.354 1.243 

b 0.062 -1.858 -3.147 -4.072 -4.769 -5.312 0.062 

C
H

L-
a a 0.740 1.173 1.457 1.658 1.807 1.923 1.173 

b 17.219 4.432 -3.957 -9.884 -14.293 -17.702 4.432 

D
O

 a 1.272 1.546 1.666 1.733 1.775 1.805 1.0 

b -2.709 -5.570 -6.819 -7.519 -7.967 -8.278 0.0 

TP
 a 0.606 0.699 0.738 0.758 0.771 0.779 0.779 

b 0.131 0.098 0.085 0.078 0.073 0.069 0.069 

TN
 a 0.485 0.638 0.712 0.757 0.786 0.807 0.807 

b 3.633 2.686 2.223 1.948 1.765 1.636 1.636 

TO
C

 a 0.368 0.633 0.833 0.989 1.114 1.217 1.216 

b 4.656 3.671 2.929 2.349 1.884 1.503 1.503 
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Figure  6-1 Selection of α for CHL-a for the Kumho Catchment based on available 

observations in 2011-2012. 
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Figure  6-2 Selection of α for NO3 for the Kumho Catchment based on available 

observations in 2011-2012. 
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6.3. Dependent validation of MLEF-HSPF 

The Kumho Catchment has a drainage area of 2170.65 km2. The observations 

are available weekly at the outlet location where the evaluation was made. HSPF 

simulates hydrologic and water quality processes for 31 model segments in the Kumho 

Catchment which leads to a total of 333 control variables including the multiplicative 

adjustment factors for MAP and MAPE. 

In the hindcasting experiment, the observed variables were predicted out to three 

days into the future in each assimilation cycle for 2008. Based on the sensitivity analysis, 

an ensemble size of 9 was used. Figure  6-3 shows the time series of the BC-DA (●) vs. 

Base (o) and BC-Base (x) results and the verifying observation (●) for CHL-a at the 

catchment outlet. Note in the figure that there are multiple BC-DA results for each 

verifying observation. This is because DA is performed every day over an assimilation 

window of 7 days, resulting in as many as 7 analysis results. It is readily seen in the 

figure that BC-DA tracks the verifying observations much more closely than Base or BC-

Base. 

Figure  6-4 shows the MSE decomposition of the analysis result by Base, BC-

Base and BC-DA for CHL-a. Note that BC reduces biases in the mean and standard 

deviation, and significantly improves the strength of covariation between the observed 

and simulated values. Figure  6-5 shows the RMSE of the Base (left bars), BC-Base 

(middle bars) and BC-DA (right bars) results for analysis and Day-1 through -3 

predictions for BOD, CHL-a, DO, NO3, TW, PO4 and streamflow at the catchment outlet. 

Note that BC-DA significantly reduces RMSE compared to Base. 
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Figure  6-3 Base, BC-Base and BC-DA vs. the verifying observations of CHL-a at the 

outlet of the Kumho Catchment. 

Figure  6-6 shows the MSE-based skill score of the analysis and Day-1 through -3 

predictions. Note that DA has larger predictive skills compared to the base simulation 

results except for Day-1 predictions of streamflow and DO. It was found that predictions 

based on 7 day-old observations provide little predictive skill and hence should not be 

considered for assimilation. As such, a screening criterion was added to check the quality 

of the DA results based on assimilating 7 day-old observations and the DA solutions are 

accepted only if the analysis results show significant improvement.  

Figure  6-7 shows the eigenvalue spectra of 2)}({ TxCI −+ in Eq. (4-8) at 

optxx = (see Eq. (4-11)) for all assimilation cycles in 2008. With 9 ensemble members 

and the use of state augmentation approach for dynamical model errors, the 

dimensionality of the above matrix is 10. Via eigenvalue decomposition, 2)}({ TxCI −+  
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may be expressed as TVV 2/1)1( −Λ+  where V and Λ denote the eigenvector and 

eigenvalue matrices, respectively. Figure  6-7 plots (1 + 𝜆𝑖2)−1/2 where 𝜆𝑖2 denotes the i-th 

eigenvalue. Note in Eq. (4-8) that 2)}({ TxCI −+  maps the DA solution in ensemble 

subspace to the incremental solution in the physical space. Hence, the eigenvalues 

represent the principal components of the incremental solution in the orthogonal space 

spanned by the ensemble members. The Figure  6-7 indicates that, in most assimilation 

cycles, only about four ensemble members carry significant information, and that about 7 

members capture all information in all assimilation cycles. The above observation 

supports the choice of the ensemble size of 9 used in this research and also points out 

the lack of realism in HSPF necessary to simulate diverse ensemble members from 

perturbed ICs. 
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Figure  6-4 MSE decomposition into bias in mean squared (■), bias in standard deviation 

squared (■), and strength of covariation (the smaller, the stronger) (■) for BASE, BC-

BASE and BC-DA analysis for CHL-a for 2008.  
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Figure  6-5 RMSE of BASE, BC-BASE and BC-DA analysis and Day-1 through -3 

predictions for CHL-a for 2008. 
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Figure  6-6 MSE skill score of BC–DA analysis and Day-1 through -3 predictions for BOD, 

CHL-a, DO, NO3, PO4, TW and flow. The reference is BASE. 

 

Figure  6-7 Eigenvalue spectra of 2/1)]([ −+ optxCI  for all assimilation cycles in 2008. 
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6.4. Independent validation of MLEF-HSPF 

The hindcasting experiment for independent validation was performed for the 

Kumho Catchment in the Nakdong River Basin, the Jojong and Yanghwa Catchments in 

the Han River Basin and the Miho Catchment in the Geum River Basin; they comprise 

31, 10, 10 and 39 model segments resulting in 331, 103, 103 and 412 control variables, 

respectively. Figure  6-8 shows the empirical cumulative distribution functions of 

streamflow and CHL-a for the period of 2008 to 2013 for Kumho and for the period of 

2011 to 2013 for all others. As seen in the figure, the Kumho and Miho Catchments have 

much larger flow and higher concentration of CHL-a than Jojong and Yanghwa. As it was 

shown in Figure  5-1, the Kumho and Miho Catchments have larger fraction of urban 

areas and are more prone to water quality contaminations.  

 

Figure  6-8 Empirical cumulative distribution functions of streamflow (left) and CHL-a 

(right) for the 4 study catchments. 

For DA to be effective, the model has to be reasonably skillful. If the model 

cannot simulate the biophysiochemical processes that occur in the catchment, one may 

not expect DA to add skill. There are multiple aspects to consider in evaluating the quality 

of base model simulations for application of DA. The model may be better at simulating 
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certain processes and variables than others. The model may represent all observations 

well individually, but may not be able to simulate co-variability among them. The model 

may capture co-variability well, but may have phase, or timing, errors in some variables. 

The HSPF model used in this work was calibrated by the water quality modelers at NIER. 

Calibration, however, is an ongoing effort which is expected to continue and improve over 

time. In this work, all aspects listed above are considered in selection of the study 

catchments. To illustrate how the quality of base model simulations was assessed, the 

lag-0 correlation between the base simulation and the verifying observation for all 

observed variables are shown in Figure  6-9 for all four catchments. As may be seen in 

this figure, the Kumho Catchment generally has the highest correlations between the 

base simulations and the verifying observations for most of the variables, and the Miho 

Catchment has the poorest, especially for PO4. Cross correlation among the variables 

also showed significant variability among catchments. The above observations suggest 

that one may expect significant variations in the performance of DA among different 

catchments and variables.  

Below, the DA results for analysis and prediction are presented. Because MLEF-

HSPF produces ensembles, it is possible to verify ensemble analysis and prediction 

using, e.g., the Ensemble Verification system (EVS, Brown et al. 2010). It was learned, 

however, that the raw ensembles from HSPF are severely underspread due to lack of 

degrees of freedom in HSPF (Seo et al. 2013); the initial spread quickly collapses as the 

model is forward-integrated in time. Because the officially-supported HSPF is available 

only as an executable, it is not possible to add error terms explicitly to the model 

dynamics. In this subsection, all results presented are limited only for ensemble mean for 

both analysis and prediction. Analysis results reflect how closely the model-simulated 

observations match the actual observations based on the updated control vector. 
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Accordingly, the analysis results reflect the performance of DA as an optimizer. In the 

hindcasting experiment for the four catchments, predictions were made out to 7 days into 

the future in each daily assimilation cycle for 2012 for the Kumho and Jojong Catchments 

and for 2013 for the Miho and Yanghwa Catchments. The ensemble size used was 9 for 

all four catchments. Initially, all available observations that are valid within the 

assimilation window were assimilated regardless of the specific variables observed or the 

number of observations available for a given variable. Evaluation of the results indicated, 

however, that such a practice does not compare well with assimilating only a single set of 

observations of all 11 observed variables. This is because changes in the available 

observations from one assimilation cycle to the next may significantly change the inverse 

problem in ensemble subspace and hence the DA solution tends to lose temporal 

consistency. It was also found that assimilating multiple sets of observations within a 

single assimilation window does not work as well as assimilating only a single, the most 

recent set of observations. This is because multiple sets of observations may lead to DA 

solutions that are in conflict from one iteration to the next in the optimization process due 

to imperfect model and uncertainty modeling. Similar observations were made in 

assimilating streamflow, MAP and MAPE into hydrologic models (Seo et al. 2003, 2009). 
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Figure  6-9 Correlation between observed and simulated variables at the outlet of the 

catchments. The period of record is 2008-2012 for Kumho and 2011-2013 for all others. 

 
Figure  6-10 shows the time series of the Base, BC-Base and BC-DA analysis for 

streamflow, CHL-a, DO and TW against the verifying observations for the Kumho 

Catchment for 2012. Note in the figure that, as in the dependent validation analysis 

results, there are multiple DA analysis results for a single verifying observation due to the 

fact that DA is performed every day over an assimilation window of 7 days, resulting in as 

many as 7 analysis results (see Figure  3-1). The analysis results differ depending on the 

age of the observations. Note in Figure  3-1 that, the newer/older the observations are, 

the more/less closely they reflect the state of the system at the prediction time. 

Accordingly, one may expect the DA analysis based on newer observations to contribute 

larger predictive skill than that based on older observations. Indeed, it was found that 

assimilation of 7 day-old observations does not produce skillful solutions and hence were 

not used in evaluation. The quality of analysis based on assimilating 6 day-old 
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observations (orange circles in Figure  6-10), on the other hand, is acceptable most of the 

times, but there are occasions when the quality is very poor. This is because, depending 

on the dynamical state of the model, 6 day-old observations may lack information content 

to result in a skillful solution. The use of the information content measures such as the 

degrees of freedom for signal to determine the dynamic state of the system (Kim et al. 

2014, Zupanski et al. 2007), however, is not easy because such measures assume 

perfect modeling of the uncertainties, a tall order in reality. Given the above, a simple 

screening criterion for accepting or rejecting the DA solution from assimilating 6 day-old 

observations was employed; if the relative percent error of the analysis solution exceeds 

a preset threshold, the DA results for that particular assimilation cycle were not used. All 

results presented below are based on the above screening. Note in Figure  6-10 that the 

DA analysis tracks the verifying observations much more closely than Base or BC-Base. 

Figure  6-11 through Figure  6-14 show the RMSE of Base (left bars), BC-Base (middle 

bars) and BC-DA (right bars) results for analysis of streamflow, CHL-a, DO and TW, 

respectively, at the outlet locations of the four catchments. Note again that the DA 

analysis results differ depending on the age of the observations, and that BC-DA 

consistently reduces RMSE, an indication that the DA algorithm is successful in 

optimization. The only exception is the streamflow analysis for the Yanghwa Catchment 

for which DA was not able to reduce RMSE compared to Base. Further investigation 

showed that for one week (from 2013/06/06 to 2013/06/11) the adjustment factors for 

MAP and MAPE reached the preset bounds, due probably to very large errors in HSPF 

and/or the forcings. Note also that BC-Base is not always successful in reducing RMSE 

over Base. This is due to the interannual variability of the water quality variables and the 

sampling uncertainty in the bias correction parameters arising from the relatively small 

number of data points used in their estimation. It is important to note that, even though it 
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may not consistently reduce errors by itself, BC is necessary to reconcile any possibly 

large discrepancies between the model space and the real-world space. Figure  6-15 

through Figure  6-18 show the RMSE of Base (left bars), BC-Base (middle bars) and BC-

DA (right bars) results for Day-1 through -3 predictions for the outlets of the four 

catchments for streamflow, CHL-a, DO and TW, respectively. Note that, except for Day-1 

prediction of DO for Miho, Day-1 prediction of TW for Jojong and Day-1 through -3 

predictions of flow for Jojong, BC-DA consistently reduces RMSE, often very significantly 

to substantially, over Base or BC-Base for Day-1 through -3 predictions for all variables. 

As may be seen in Figure  6-8, the magnitude of flow in the Jojong Catchment is the 

smallest among the four catchments. The minimum value of flow to calculate the relative 

percent error for the screening procedure described above was 10 cms. In 2012, 

however, more than 70% of the observed flow fell below 10 cms. As such, it is possible 

that a number of very poor DA results were included in the evaluation statistics for 

Jojong. Figure  6-19 through Figure  6-22 show the MSE skill score of BC-Base and BC-

DA relative to Base for analysis and predictions of streamflow, CHL-a, DO and TW, 

respectively. A skill score of unity indicates perfect analysis or prediction whereas a skill 

score of zero indicates that DA does not add any skill to the base simulation or prediction. 

Note that BC-DA consistently adds skill whereas BC alone does not.  
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Figure  6-10 Time series of the observed (OBS), base (Base), bias-corrected (BC-Base), 

and bias-corrected and DA-aided (BC-DA) simulations of flow, CHL-a, DO and TW at the 

outlet of the Kumho Catchment. 
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Figure  6-11 RMSE of flow analysis based on 1 day- to 5 day-old observations for the 4 study catchments.  
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Figure  6-12 RMSE of CHL-a analysis based on 1 day- to 5 day-old observations for the 4 study catchments. 
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Figure  6-13 RMSE of DO analysis based on 1 day- to 5 day-old observations for the 4 study catchments. 
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Figure  6-14 RMSE of TW analysis based on 1 day- to 5 day-old observations for the 4 study catchments.   
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Figure  6-15 RMSE of Day-1 through -3 predictions of flow by Base, BC-Base and BC-DA for the 4 study catchments.  

Jojong  Yanghwa 

Kumho Miho  



 

 

86 

 
Figure  6-16 RMSE of Day-1 through -3 predictions of CHL-a by Base, BC-Base and BC-DA for the 4 study catchments. 

Jojong  Yanghwa 

Miho  Kumho 



 

 

87 

 
Figure  6-17 RMSE of Day-1 through -3 predictions of DO by Base, BC-Base and BC-DA for the 4 study catchments.  
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Figure  6-18 RMSE of Day-1 through -3 predictions of TW by Base, BC-Base and BC-DA for the 4 study catchments. 
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Figure  6-19 MSE skill score of BC-Base and BC-DA over Base (see text for explanations) 

for analysis and Day-1 through -3 predictions of flow for the 4 study catchments. 
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Figure  6-20 MSE skill score of BC-Base and BC-DA over Base (see text for explanations) 

for analysis and Day-1 through -3 predictions of CHL-a for the 4 study catchments. 
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Figure  6-21 MSE skill score of BC-Base and BC-DA over Base (see text for explanations) 

for analysis and Day-1 through -3 predictions of DO for the 4 study catchments. 
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Figure  6-22 MSE skill score of BC-Base and BC-DA over Base (see text for explanations) 

for analysis and Day-1 through -3 predictions of TW for the 4 study catchments. 
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the CHL-a and DO results, respectively. Note that the direction of adjustment by DA is in 

agreement with the adjustment necessary to approach the observations at the outlet 

location for both variables. It is seen that the DA-updated DO is very reasonable 

compared to the base simulation states at all the reaches, but that the DA-updated CHL-

a states may not be very realistic at some reaches. Addition research is necessary to 

assimilate observations at both the outlet and interior locations so that the 

underdeterminedness of the inverse problem may be reduced for improved analysis and 

prediction at all locations within the catchment. 

Figure  6-25 illustrates how the MLEF-HSPF module may operate as part of 

WQFS-NIER. The WQFS-NIER general adapter retrieves the meteorological, 

precipitation, water quality, point source and streamflow (mean daily or instantaneous) 

data from the local database (see Figure  6-24) and converts them into an xml format. The 

HSPF adapter for WQFS-NIER converts the xml format to the WDM format for ingest by 

HSPF as part of the MLEF-HSPF operation. Once the MLEF-HSPF run is complete, the 

results may be presented in WQFS-NIER as shown in Figure  6-25. In the figure, the 

markers and dotted lines in the upper panel and the solid lines in the lower panel 

represent the weekly observations, all other solid lines showing diurnal cycles represent 

model simulations for which different colors represent different catchments. The output 

from MLEF-HSPF is then exported to LocalDataStore in WQFS-NIER to provide EFDC 

with the forecast BCs of flow and water quality variables along the main stem and major 

tributaries.  
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Figure  6-23 Example comparisons of DA-updated model states with the base-simulated 

at all reaches in the Kumho Catchment for (a) CHL-a and (b) DO. The black, red and 

green dots denote the base simulated, DA-updated and observed states, respectively. 

The smaller the control variable number is, the more upstream the reach is. 
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Figure  6-24 An example set of (a) meteorological forcing, (b) precipitation, (c) water 

quality, (d) point source and (e) streamflow (mean daily or instantaneous) data retrieved 

daily from the local database of WQFS-NIER. 
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Figure  6-25 An example display of DA-aided analysis and forecast in WQFS-NIER (solid 

lines with diurnal cycles). Also shown are the observations in markers and dotted lines 

(top) and solid straight lines (bottom).  



 

97 

6.5. Ensemble verification of DA-aided predictions 

The evaluations carried out above pertain only to the quality of ensemble mean. 

In this subsection, we examine the quality of ensemble results to better understand the 

HSPF dynamics in the context of ensemble forecasting. It must be acknowledged, 

however, that the ensemble results are from using MLEF-HSPF solely as a reduced-rank 

minimizer and no consideration was given for ensemble performance. As such, they are 

only exploratory in nature. For ensemble verification, the Ensemble Verification System 

(EVS, Brown et al. 2010) developed by the US National Weather Service Office of 

Hydrologic Development was used. EVS is a software tool for verification of ensemble 

forecasts of hydrologic and hydrometeorological variables such as precipitation and 

streamflow. EVS includes a large number of metrics to assess the quality of both single-

valued and ensemble forecasts. In this subsection, only a few of the metrics are 

presented. The hindcasting experiment for verification of DA-updated state variables was 

performed for the Kumho Catchment for a two-year period of 2008-2009. The observed 

variables were predicted out to three days into the future in each assimilation cycle. 

Figure  6-26 shows the modified box-and-whisker plot of the forecasting error (ensemble 

member – observed value) for Day-1 through -3 of DA-aided ensemble predictions. The 

figure shows that the ensemble predictions are severely underspread. Investigations into 

the response of HSPF to varying levels of ensemble perturbations in the ICs indicate that 

HSPF collapses even the very large perturbations into tightly bundled ensemble traces 

rather quickly, suggesting that the model dynamics may lack realism to produce realistic 

spread. Figure  6-27 shows the Relative Operating Characteristic (ROC) for different 

thresholds for the three lead times for CHL-a forecast. ROC measures the ability of an 

ensemble forecast to discriminate between two possible outcomes (i.e., occurrence vs. 

non-occurrence of an event). ROC plots the Probability of Detection (POD) on the y-axis 
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vs. the Probability of False Detection (POFD) on the x-axis for a given threshold. The 

diagonal line represents the climatological forecast or ‘zero skill’ line. Ensemble forecast 

with perfect discriminatory skill connects (0,0), (0,1) and (1,1). The figure shows that the 

DA-aided ensemble forecasts have positive discriminatory skill, that the skill decreases 

as lead time increases, that the skills are higher for moderate to high thresholds than at a 

low threshold, but that the ensembles are severely underspread as shown by the 

triangular ROC areas. Figure  6-28 shows the reliability diagram of the CHL-a forecast 

exceeding 21.7, 47.0 and 82. 5 μg/l of observed CHL-a at lead times of one, two and 

three days. Perfectly reliable ensemble forecast would place the reliability diagram on the 

diagonal line, i.e., the forecast probability is unbiased against the frequency at which the 

observations verify in the mean sense (i.e., over a long period of time). The figure shows 

that the ensembles are not reliable due to the severe underspreadness observed above. 
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Figure  6-26 The modified box plot of the ensemble forecast errors against forecast time 

for three lead times ((a) Day-1, (b) Day-2 and (c) Day-3) during 2008-2009 for CHL-a. 
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Figure  6-27 Relative Operating Characteristic (ROC) for different probability thresholds 

for three lead times ((a) Day-1, (b) Day-2 and (c) Day-3) during 2008-2009 for CHL-a.   
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Figure  6-28 Reliability diagram for various event thresholds for three lead times ((a) Day-

1, (b) Day-2 and (c) Day-3) during 2008-2009 for CHL-a. 
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6.6. Time series modeling and prediction 

The calibration period of HSPF for the four major River Basins is 2008 to 2010. 

To allow head-to-head comparisons with Base and BC-DA, the same period of record 

was used for time series modeling for selected catchments. Figure  6-29a and 

Figure  6-29b show the time series and auto correlation function (ACF) of the observed 

DO at the outlet of the Nam Catchment for 2008 to 2010, respectively. Figure  6-30a 

shows the histogram of the observed DO, which indicates mild positive skewness. To 

reduce skewness, log transformation was applied. Figure  6-30b shows the histogram of 

the log-transformed DO. Figure  6-31 shows the time series and ACF of the log-

transformed DO. To remove seasonality seen in Figure  6-31, seasonal differencing of the 

log-transformed DO at a period of 48 weeks was applied. It was found that the resulting 

series has seasonal nonstationarity for which first-order differencing was applied. 

Figure  6-32 shows the resulting residual time series, ACF and PACF for the best-fit 

model, ARIMA(0,0,0)(0,1,0)48, for observed DO at the outlet of the Nam Catchment. The 

same procedure was performed to select the best-fit model for each water quality 

variable in the six selected catchments. The results are summarized in Table  6-2. 
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Figure  6-29 Time series plot and ACF of observed DO in the Nam Catchment. 

 
Figure  6-30 Histogram of the observed DO in the Nam Catchment (a) without any 

transformation, (b) log transformed observation.   
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Figure  6-31 Time series plot and ACF of log transformed DO in the Nam Catchment. 
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Figure  6-32 (a) residual time series, (b) the corresponding ACF and (c) PACF for log 

transformed DO for 2008 to 2010 for the most downstream monitoring station of the Nam 

Catchment.
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Table  6-2 Best fitting models for water quality observations for the selected catchments 

for period of 2008 to 2010. 

Variable 
Catchment 

Kumho Banbyeon Naeseong 
TW ARIMA(0,0,0)(0,1,0)48 ARIMA(1,0,0)(0,1,1)48 ARIMA(0,0,0)(0,1,0)48 

PO4 ARIMA(0,1,1)(0,0,1)48 ARIMA(1,0,0)(0,0,0)48 ARIMA(1,0,0)(0,1,0)48 
CHL-a ARIMA(1,0,0)(0,1,0)48 ARIMA(1,0,0)(0,1,0)48 ARIMA(0,0,0)(0,1,0)48 

BOD ARIMA(1,0,0)(0,1,0)48 ARIMA(1,0,0)(0,1,0)48 ARIMA(0,0,0)(0,1,0)48 

DO ARIMA(0,0,0)(1,1,0)48 ARIMA(0,0,0)(1,1,0)48 ARIMA(0,0,0)(1,1,0)48 

NH4 ARIMA(0,0,0)(1,1,0)48 ARIMA(1,0,0)(0,1,0)48 ARIMA(1,0,0)(1,1,0)48 

NO3 ARIMA(1,0,1)(0,1,0)48 ARIMA(1,0,0)(0,0,0)48 ARIMA(1,0,0)(0,1,0)48 

TN ARIMA(1,0,1)(0,1,0)48 ARIMA(1,0,0)(0,0,0)48 ARIMA(1,0,0)(0,1,0)48 

TP ARIMA(1,0,0)(0,1,0)48 ARIMA(1,0,0)(0,1,1)48 ARIMA(1,0,0)(1,0,0)48 

TOC ARIMA(1,0,0)(0,0,0)48 ARIMA(1,0,0)(0,0,0)48 ARIMA(0,1,1)(0,0,0)48 

Variable 
Catchment 

Nam Seom Uchi 
TW ARIMA(1,0,0)(0,1,0)48 ARIMA(0,1,1)(0,1,1)50 ARIMA(1,0,0)(0,1,0)50 
PO4 ARIMA(1,0,0)(0,0,0)48 ARIMA(1,0,1)(0,0,0)50 ARIMA(0,1,1)(0,0,0)50 

CHL-a ARIMA(1,0,0)(0,0,0)48 ARIMA(1,0,0)(0,1,1)50 ARIMA(1,0,1)(0,0,0)50 

BOD ARIMA(1,0,0)(0,0,0)48 ARIMA(0,1,1)(0,0,0)50 ARIMA(1,0,1)(0,0,0)50 

DO ARIMA(0,0,0)(0,1,0)48 ARIMA(1,0,0)(0,1,0)50 ARIMA(1,0,0)(0,1,1)50 

NH4 ARIMA(1,0,0)(1,1,0)48 ARIMA(1,0,0)(0,1,0)50 ARIMA(0,0,0)(1,1,0)50 

NO3 ARIMA(1,0,0)(0,1,1)48 ARIMA(1,0,0)(0,1,0)50 ARIMA(0,1,1)(0,0,0)50 

TN ARIMA(1,0,1)(0,1,0)48 ARIMA(1,0,0)(0,1,0)50 ARIMA(1,0,0)(0,0,0)50 

TP ARIMA(0,1,1)(0,0,0)48 ARIMA(1,0,1)(0,0,0)50 ARIMA(1,0,1)(0,1,0)50 

TOC ARIMA(0,1,1)(0,0,0)48 ARIMA(1,0,1)(0,0,0)50 ARIMA(1,0,1)(0,0,0)50 
 

□ No transformation 

■ Box-Cox transformed data 

■ Log transformed data 
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To compare the time series results with Base and BC-DA, two types of 

predictions were made using the time series modeling results. To compare with Base, the 

best-fit time series model was used to make a prediction for the next three years; this 

result is referred to as TS-Base. For this purpose, the R package ‘forecast’ was used. If 

any form of transformation such as log or Box-Cox (Box and Cox 1964) was used, the 

resulting time series was appropriately back-transformed. Figure  6-33 shows TS-Base for 

DO at the outlet of Nam:  

 

Figure  6-33 TS-Base forecast for DO for the Nam Catchment from the beginning of 2011 

to the end of 2013. 

To compare with BC-DA, a one week-ahead conditional mean prediction was 

made every week using the best-fit time series model and the past observations that are 

necessary for the conditioning. This result is referred to as TS-Pred. Figure  6-34 shows 

the TS-Pred results for DO at the outlet of Nam Catchment. 
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Figure  6-34 TS-Pred for DO for the Nam Catchment from the beginning of 2011 to the 

end of 2013. 

The same procedure was used to produce the TS-Base and TS-Pred results for 

all water quality variables at the outlets of the selected catchments. 
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suggests that the time series modeling for these catchments may not be adequate, there 

may exist large interannual variability to produce significantly different realizations 

between the calibration and validation periods or there may be nonstationary changes 

taking place to render the time series modeling results for the calibration period no longer 

applicable. It is interesting to note that, while BC-DA improves over Base consistently for 

both catchments, for the Uchi Catchment, the NSE results for BC-DA and Base are 

significantly inferior to those for TS-Pred and TS-Base, respectively. The above 

observation suggests that significant differences in statistical properties of the water 

quality variables may exist between the calibration and validation periods that may render 

the HSPF calibration results rather poor for the validation period. That BC-DA is able to 

improve NSEs very significantly over BASE for both DO and TW for the Uchi Catchment, 

on the other hand, is an indication that DA is nonetheless effective in improving the ICs of 

potentially ill-calibrated HSPF. The figures show that the margin of improvement by BC-

DA over TS-Pred and by Base over TS-Base is often significant to substantial though 

there are departures. That Base generally improves over TS-Base affirms the value of 

water quality modeling using HSPF. That BC-DA generally improves over TS-Pred and 

Base demonstrates the value of MLEF-HSPF. In addition to the above-mentioned results 

for the Banbyeon and Uchi Catchments, the NSE result for BC-DA for the Nam 

Catchment needs further investigation. Finally, it must be noted that the findings above 

are limited only to 7-day predictions due to lack of sub-weekly observations. To ascertain 

performance at shorter lead times, to advance understanding of the biophysiochemical 

processes being modeled, and to improve predictive skill of water quality forecast, it is 

critically important that routine high-frequency observation of water quality variables be 

made albeit on a limited scale. 
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Figure  6-35 Correlation between the observed and predicted DO based on TS-Base (in 

blue), Base HSPF simulation (in red), TS-Pred (in green) and BC-DA prediction (in 

purple). 

 

Figure  6-36 NSE between the observed and predicted DO based on TS-Base (in blue), 

Base HSPF simulation (in red), TS-Pred (in green) and BC-DA prediction (in purple). 
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Figure  6-37 Correlation between the observed and predicted TW based on TS-Base (in 

blue), Base HSPF simulation (in red), TS-Pred (in green) and BC-DA prediction (in 

purple). 

 
Figure  6-38 NSE between the observed and predicted TW based on TS-Base (in blue), 

Base HSPF simulation (in red), TS-Pred (in green) and BC-DA prediction (in purple). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Banbyeon Nae Nam Seom Uchi Kumho

Co
rr

el
at

io
n 

Catchment 

TS-Base Base TS-Pred BC-DA

-0.1

0.1

0.3

0.5

0.7

0.9

Banbyeon Nae Nam Seom Uchi Kumho

N
SE

 

Catchment 

TS-Base Base TS-Pred BC-DA



 

112 

Chapter 7  

Conclusions and future research recommendations 

In watershed water quality modeling, only a very small subset of the model states 

is actually observed. As such, the model initial conditions (IC) that are necessary for 

prediction are subject to large uncertainties. If one can reduce these uncertainties by 

updating the model states based on all available observations that shed light on the state 

of the system, one may expect significant improvement in short-range water quality 

forecasting. Toward that end, this research has carried out the design, development, 

testing and evaluation of a new data assimilation (DA) module for the watershed water 

quality model, the Hydrologic Simulation Program – Fortran (HSPF, Bicknell et al. 2001). 

The module enhances maximum likelihood ensemble filter (MLEF, Zupanski 2005) which 

combines the strengths of variational assimilation (VAR) and ensemble Kalman filter 

(EnKF). Referred to as MLEF-HSPF, the DA module is capable of handling both 

nonlinear model dynamics and nonlinear observation equations, does not require adjoint 

code, and produces ensemble analysis and prediction. MLEF-HSPF is being 

implemented as a plugin to the Water Quality Forecast System at the National Institute of 

Environmental Research, or WQFS-NIER. Built on the Flood Early Warning System 

(FEWS) of Deltares, WQFS-NIER is the main operational water quality forecast system in 

the Republic of Korea. 

Based on extensive experience with hydrologic DA (Lee et al. 2011, 2012, 2015, 

Rafieeinasab et al. 2014, Seo et al. 2003, 2009), MLEF-HSPF implements a fixed-lag 

smoother formulation of MLEF, assimilating observations of streamflow, TW, NH4, NO3, 

PO4, BOD, CHL-a, DO, TP, TN and TOC to update the HSPF state variables in real time. 

The observations are generally available only about once a week, which constrains the 

size of the assimilation window to one week in this research. With the 1-week window, 
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the assimilation cycle is once a day, thereby allowing the control variables to be updated 

nominally daily. To account for biases in the observed boundary conditions (BC) of mean 

areal precipitation (MAP) and mean areal potential evapotranspiration (MAPE) valid 

within the assimilation window, two multiplicative adjustment factors for MAP and MAPE 

are added to the control vector (Seo et al. 2003, 2009, Lee et al. 2012, 2012).  

The original formulation of MLEF (Zupanski 2005) does not account for 

dynamical model errors. In this research, two approaches were considered to newly 

account for dynamical model errors in MLEF: direct perturbation and state augmentation. 

Based on comparative evaluation and computational considerations, the state 

augmentation approach with dependent model errors was chosen as default.  

If significant parametric and/or structural errors exist in the model, DA is not likely 

to improve predictive skill; it is likely to compensate for the systematic errors, rather than 

directly addressing the IC uncertainty, in the state updating process. As such, it is 

necessary to remove or reduce systematic errors as much as possible. For that, a novel 

parsimonious bias correction procedure (Seo 2013) has been implemented in the 

observation equation of MLEF-HSPF. 

To assess sensitivity of MLEF-HSPF to its various parameters and to optimize 

their settings, a series of extensive sensitivity analyses was designed and carried out with 

the following summary results. Examination of the eigenvalue spectra of the information 

matrix indicates that the choice of 9 ensemble members is reasonable. Sensitivity 

analysis indicates that a larger ensemble size improves the performance of the DA 

procedure only marginally, and that the model states updated using different ensemble 

sizes yield similar spatiotemporal patterns of adjustment.  

Sensitivity analysis on the “age” of the observation being assimilated indicates 

that potency of MLEF-HSPF improves significantly if the observations are less than 6 
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days old. It suggests that significant improvement in predictive skill may be achieved by 

increasing the sampling frequency of water quality and hydrologic observations from 

once a week to once every 5 days or less. 

It was seen that bias correction alone does not consistently improve 

performance, due presumably to sampling uncertainties from interannual variability 

and/or possible nonstationarities. On the other hand, bias correction is seen to have a 

larger positive impact on DA by presumably keeping the analysis solution within the 

feasible model space. If significant parametric and/or structural errors exist in the model, 

DA is not likely to improve the predictive skills. Through improved calibration, one may 

expect to reduce parametric uncertainties. The HSPF simulation results suggest that 

additional calibration of HSPF is necessary for many catchments, which in turn will 

increase the potency of DA.  

It was seen that the quality of the forcing input of MAP and MAPE significantly 

impacts the quality of the DA solution. It was found that unrealistically large or small 

multiplicative adjustment factors to MAP and/or MAPE are usually associated with poor 

analysis solution. The above suggests that estimation of MAP and MAPE in WQFS-NIER 

needs improvement. 

Because MLEF-HSPF is a reduced-rank technique, the analysis solutions may 

be significantly underdetermined depending on the flow-dependent conditions. Additional 

research is needed to consistently improve performance by assimilating observations 

from all available monitoring stations within the catchment thereby reducing 

underdeterminedness. In this research, hydrologic and water quality states were updated 

simultaneously. One may consider decomposing the DA problem into first updating the 

hydrologic states only followed by updating only the water quality states. Such a 
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decompositional approach is likely to reduce underdeterminedness by reducing 

dimensionality of the inverse problem. 

Evaluation of ensemble DA analysis indicates that HSPF may lack realism to 

maintain realistic spread among the perturbed model trajectories. Much additional 

research is needed to improve model physics and stochastic modeling of uncertainty 

dynamics. To overcome the underspreadness of analysis ensembles in the meantime, 

one should consider a statistical post-processor that operates on the HSPF output to 

produce reliable ensembles. 

To evaluate the MLEF-HSPF module, hindcast experiments were designed and 

carried out for four catchments in the Republic of Korea: the Kumho Catchment in the 

Nakdong River Basin, the Jojong and Yanghwa Catchments in the Han River Basin and 

the Miho Catchment in the Geum River Basin. The results show that MLEF-HSPF 

consistently improves analysis and prediction of most of the water quality variables and 

streamflow. The margin of improvements, however, varies significantly from catchment to 

catchment and from variable to variable. Improvement was larger for more natural 

catchments compared to more urbanized catchments. For the Miho Catchment, which 

has a large fraction of urban areas and lower skill in the base HSPF simulation, DA is 

seen to add little predictive skill even though significant improvement is seen in DA 

analysis.  

As a “reality check” on HSPF and MLEF-HSPF and to improve understanding of the 

nature of the biophysiochemical processes modeled and their predictability, time series 

modeling of the water quality variables was carried out using autoregressive integrated 

moving-average model (ARIMA). In general, the results affirm the value of water quality 

modeling using HSPF and demonstrate the value of MLEF-HSPF. Due to lack of sub-

weekly observations, however, it was not possible to assess comparative performance at 
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lead times shorter than 7 days. To ascertain performance for short-range forecasting, to 

advance understanding of the biophysiochemical processes being modeled, and to 

improve predictive skill, it is critically important that routine high-frequency observation of 

water quality variables be made even on a limited scale only. 

Finally, due to the computational overhead associated with having to run HSPF 

in the Windows environment, the computational requirements for MLEF-HSPF can be 

significant, depending on the number of catchments involved. Hence, for operational 

implementation of the procedure on a large scale, availability of the necessary computing 

power is critical. 
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Appendix A  

Sensitivity analysis Results 
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Sensitivity analyses were performed to assess the sensitivity of MLEF-HSPF 

performance to the magnitude of its parameters and to address the following questions:  

1. How much influence does each of the hydrologic and water quality variables have on 

DA analysis and prediction? 

2. How much impact does updating the hydrologic state variables have on analysis and 

prediction of the water quality variables  

3. Does updating the water quality state variables impact the hydrologic state variables 

and analysis and prediction of streamflow  

4. How sensitive are the analysis and prediction results to the magnitude of the 

observational error variance  

5. What is the sensitivity of DA performance to the prescribed model error  

6. What is the optimal ensemble size in terms of performance and computational cost  

7. What is the optimal size of the assimilation window in terms of performance and 

computational cost 

A.1. Sensitivity analysis for selection of state variables  

To find the optimum selection of active state variables for the Kumho Catchment, 

the impact of updating one or group of state variable(s) on DA performance has been 

evaluated. In addition, the impact of using a selection of observations (less obs) or the 

entire available observations (all obs) was evaluated. Also the effect of not updating the 

multiplicative adjustment factors for MAP and MAPE (p=0) was assessed. In this section, 

only analysis and prediction results of six water quality variables and streamflow (BOD, 

CHL-a, flow, DO, NO3, PO4 and TW) are shown. Table 5-2 shows the parameter setting 

used for these runs. In the Run 1 to Run 28 only one state variable plus multiplicative 

adjustment factors for MAP and MAPE were active. In the Run 29, the hydrologic state 

variables and in the Run 30 the water quality state variables were active. In the Run 31, 
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all the state variables were active and all the observations were available. In the last 

three runs, the observations of the NH4, TP, TN and TOC were excluded. In the Run 33, 

the multiplicative adjustment factor for MAP and MAPE was not updating. In the Run 34, 

the state variables for NH4, TP, TN and TOC in the reaches were not updating. Figure A. 

1 to Figure A. 7 show the RMSE of BASE, BC-BASE and BC-DA results for analysis and 

Day-1 through Day-3 predictions of BOD, CHL-a, flow, DO, NO3, PO4 and TW where 

BASE, BC and DA denote the base, bias-corrected base and bias-corrected DA-aided 

simulations, respectively.  

In general, DA improves model performance when a group of state variables is 

active than when a single state variable is active. When only a single state variable is 

updated, DA is likely to incorrectly adjust the single active state variable to compensate 

for biases or errors from other state variables. DA improves model performance further 

when all state variables are active (Run 31) than when either only the hydrologic (Run 

29) or the water quality (Run 30) state variables are active. The RMSE comparison 

among the last four runs show that the DA procedure is insensitive to the exclusion of the 

observations of NH4, TP, TN and TOC. Based on the sensitivity analysis, the 

recommendation for the Kumho Catchment is either to set all state variables active and 

use all observations available, or to set all state variables active and use all available 

observations except for those of NH4, TP, TN and TOC. 
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Table A. 1 Active state variables used in each run for the sensitivity analysis. 

Variables Run 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

PE-Precip √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √  √ 
CEPS √ 

                           
√  √ √ √ √ 

SURS 
 

√ 
                          

√  √ √ √ √ 
IFWS 

  
√ 

                         
√  √ √ √ √ 

AGWS 
   

√ 
                        

√  √ √ √ √ 
UZS 

    
√ 

                       
√  √ √ √ √ 

LZS 
     

√ 
                      

√  √ √ √ √ 
GWVS 

      
√ 

                     
√  √ √ √ √ 

RETS 
       

√ 
                    

√  √ √ √ √ 
ISURS 

        
√ 

                   
√  √ √ √ √ 

VOL 
         

√ 
                  

√  √ √ √ √ 
TW 

          
√ 

                 
√  √ √ √ √ 

P-NH4 
           

√ 
                

 √ √ √ √ √ 
I-NH4 

            
√ 

               
 √ √ √ √ √ 

RCH-NH4 
             

√ 
              

 √ √ √ √  
P-NO3 

              
√ 

             
 √ √ √ √ √ 

I-NO3 
               

√ 
            

 √ √ √ √ √ 
RCH-NO3 

                
√ 

           
 √ √ √ √ √ 

P-PO4 
                 

√ 
          

 √ √ √ √ √ 
I-PO4 

                  
√ 

         
 √ √ √ √ √ 

RCH-PO4 
                   

√ 
        

 √ √ √ √ √ 
P-BOD 

                    
√ 

       
 √ √ √ √ √ 

I-BOD 
                     

√ 
      

 √ √ √ √ √ 
RCH-BOD 

                      
√ 

     
 √ √ √ √ √ 

CHL-a 
                       

√ 
    

 √ √ √ √ √ 
DO 

                        
√ 

   
 √ √ √ √ √ 

TP 
                         

√ 
  

 √ √ √ √  
TN 

                          
√ 

 
 √ √ √ √  

TOC 
                           

√  √ √ √ √  
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Figure A. 1 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 predictions of BOD. 
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Figure A. 2 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 predictions of CHL-a.  
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Figure A. 3 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Days 3 prediction of Flow. 
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Figure A. 4 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 predictions of DO. 
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Figure A. 5  RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 predictions of NO3. 
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Figure A. 6 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 predictions of PO4. 
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Figure A. 7 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 predictions of TW. 
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A.2. Sensitivity analysis to the magnitude of model error, initial perturbation and 

observation error variance 

In order to answer the questions 4 and 5, a set of sensitivity analysis was carried 

out for the Kumho Catchment for a 2-year period of 2008-2009. The perpose was to find 

sensitivity of DA performance to the prescribed magnitude of the model error (frac_gen), 

initial perturbation (frac_state) and the observational error variance while the size of 

assimilation window and the number of ensemble are constant (7 days and 9 ensemble). 

In this section, only analysis and prediction results of six water quality variables and 

streamflow (BOD, CHL-a, flow, DO, NO3, PO4 and TW) are shown. The model error, 

initial perturbation and observational error variance were multiplied by 0.1 and 10 and 

then combinations of these parameters were used to check the sensitivity of DA 

performance to their magnitudes (see Table A. 2).  

The results demonstrate that analysis is more sensitive to the magnitude of these 

parameters than the predictions (see Figure A. 8 to Figure A. 14). When the initial 

perturbation was multiplied by 10 (Run 17), the RMSE of analysis and Day-1 to Day-3 

predictions of BOD and CHL-a were reduced. However, the RMSE of other water quality 

variables and streamflow increased. In a case when model error and initial perturbation 

were multiplied by 10 (Run 6), the RMSE of analysis and Day-1 to Day-3 predictions of 

flow was reduced however, the RMSE of water quality variables were slightly increased. 

These observations suggest that, selected magnitudes of these parameters, as it was 

prescribed in Table 5-2, are optimal for the Kumho Catchment.  
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Table A. 2 Sensitivity analysis to the magnitude of model error, initial perturbation and 

observational error variance. 

Run Assimilation Windows ns Frac_gen Frac_state Observation error variance 

1 7 9 0.1 1 1 

2 7 9 0.1 0.1 1 

3 7 9 0.1 10 1 

4 7 9 10 1 1 

5 7 9 10 0.1 1 

6 7 9 10 10 1 

7 7 9 1 1 10 

8 7 9 0.1 1 10 

9 7 9 0.1 0.1 10 

10 7 9 0.1 10 10 

11 7 9 10 1 10 

12 7 9 10 0.1 10 

13 7 9 10 10 10 

14 7 9 1 0.1 10 

15 7 9 1 10 10 

16 7 9 1 0.1 1 

17 7 9 1 10 1 

18 7 9 1 1 1 
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Figure A. 8 Figure 39 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of BOD.  
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Figure A. 9 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of CHL-a.  
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Figure A. 10 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of Flow. 
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Figure A. 11 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of DO.  
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Figure A. 12 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of NO3.  
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Figure A. 13 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of PO4.  
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Figure A. 14 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of TW.
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A.3. Sensitivity analysis for selection of ensemble size 

Total number of the state variables in the Kumho catchment is 333. Since MLEF 

is a reduced-rank filter, it will find the optimum solution in the ensemble subspace. One 

might expect that having a full-rank filter (by increasing the number of the ensembles to 

the total number of the state variables) or higher rank filter would improve the analysis 

and prediction results. The aim of this section is to assess the sensitivity of the prediction 

results to the ensemble size and to answer the question 6. Therefore, a set of systematic 

sensitivity analysis was carried out for the Kumho Catchment for a 2-year period of 2008-

2009 to find the optimum ensemble size with different combination of model error, initial 

perturbation and observation error variance while the assimilation window was kept 

constant (see Table A. 3). In this section, only analysis and prediction results of six water 

quality variables and streamflow (BOD, CHL-a, flow, DO, NO3, PO4 and TW) are shown. 

Ensemble size of 30 was selected in the beginning however if the HSPF terminated 

prematurely due to computational instability, the run was started with the same settings 

using ensemble size of 18. Some runs terminated prematurely even with ensemble size 

of 18. For comparison, those runs are plotted but they were not used for comparison to 

other runs.  

A combination of initial perturbation multiplied by 10 and ensemble size of 30 

reduced the RMSE for BOD and CHL-a however, the RMSE of other water quality 

variables and streamflow increased (Run 17). With the scaling factors of 0.1 and 0.01 for 

model error and initial perturbation, respectively, DA using an ensemble size of 18 

reduces RMSE by 2–8% over DA using an ensemble size of 9 for Day-1 through -3 

predictions of BOD and CHL-a. No RMSE changes are observed for DO and TW. The 

RMSE increases from 2–8% for Day-1 through -3 predictions of NO3 and PO4. However, 



 

138 
 

the computation time would be twice (2 days for 1-year run with ensemble size of 18 

compared to 1 day for the same 1-year run with ensemble size of 9).  

Thus, based on these results, the ensemble size of 9 was found reasonable in 

terms of performance and computational cost and it was selected as the optimum size.  

Table A. 3 Sensitivity analysis to the ensemble size.  

Run Assimilation Windows ns Frac_gen Frac_state Observation error variance 

1 7 30 0.1 1 1 

2 7 30 0.1 0.1 1 

3 7 30 0.1 10 1 

4 7 18 10 1 1 

5 7 30 10 0.1 1 

6 7 18 10 10 1 

7 7 18 1 1 10 

8 7 18 0.1 1 10 

9 7 30 0.1 0.1 10 

10 7 18 0.1 10 10 

11 7 18 10 1 10 

12 7 30 10 0.1 10 

13 7 18 10 10 10 

14 7 18 1 0.1 10 

15 7 30 1 10 10 

16 7 30 1 0.1 1 

17 7 30 1 10 1 

18 7 18 1 1 1 

19 7 9 1 1 1 
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Figure A. 15 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of BOD.  
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Figure A. 16 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of CHL-a.  
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Figure A. 17 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of Flow.  
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Figure A. 18 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of DO.  
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Figure A. 19 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of NO3.  
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Figure A. 20 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of PO4.  
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Figure A. 21 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of TW.
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A.4. Sensitivity analysis to the assimilation windows 

A set of sensitivity analysis were carried out for the Kumho Catchment for a 2-

year period of 2008-2009 to check performance of DA to the size of assimilation window 

and to answer question 7 (see Table A. 4). In this section, only analysis and prediction 

results of six water quality variables and streamflow (BOD, CHL-a, flow, DO, NO3, PO4 

and TW) are shown. For this purpose, the assimilation window was set to 14 days while 

the magnitude of the model error, initial perturbation and observation error variance were 

inflated and/or deflated. The ensemble size was kept 9. Due to computational instability, 

the HSPF terminated prematurely for some runs. For comparison, those runs are plotted 

however, they were not used for comparison to other runs.  

In these sets of runs, all the available observations in the assimilation window 

were assimilated. Most of the time two sets of observations would be available in each 

window, therefore it was possible that the older set of observation would not be 

informative and would not add information to the system in addition to increase the 

complexity of the inverse problem. Since the sample size between the Run 19 (using 

assimilation window of 7 days) and other runs in this set (using assimilation window of 14 

days) is different, a direct comparison cannot be made. However, as it is shown in Figure 

A. 22 to Figure A. 28, in all combinations of the model error, initial perturbation and 

observation error variance and the assimilation window of 14 days the RMSE of the Base 

simulations for streamflow significantly increased and the RMSE of water quality 

variables were comparable with assimilation windows of 7 days. A comparison between 

Run 18 and Run 19 (same parameters setting but with assimilation windows of 14 and 7 

days respectively) showed that DA performance was better with assimilation window of 7 

days for all the water quality variables and streamflow.  
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In addition, with the assimilation window of 14 days, the computational burden 

increased (2 days for 1-year run with assimilation window of 14 days compared to 1 day 

for the same 1-year run with assimilation window of 7 days).  

Table A. 4 Sensitivity analysis to assimilation window of 14 days 

Run Assimilation Windows ns Frac_gen Frac_state Observation error variance 

1 14 9 0.1 1 1 

2 14 9 0.1 0.1 1 

3 14 9 0.1 10 1 

4 14 9 10 1 1 

5 14 9 10 0.1 1 

6 14 9 10 10 1 

7 14 9 1 1 10 

8 14 9 0.1 1 10 

9 14 9 0.1 0.1 10 

10 14 9 0.1 10 10 

11 14 9 10 1 10 

12 14 9 10 0.1 10 

13 14 9 10 10 10 

14 14 9 1 0.1 10 

15 14 9 1 10 10 

16 14 9 1 0.1 1 

17 14 9 1 10 1 

18 14 9 1 1 1 

19 7 9 1 1 1 
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Figure A. 22 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of BOD.  
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Figure A. 23 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of CHL-a.  
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Figure A. 24 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of Flow. 
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Figure A. 25 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of DO.  
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Figure A. 26 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of NO3.  
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Figure A. 27 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of PO4.  
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Figure A. 28 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of TW. 
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A.5. Sensitivity analysis to the assimilation windows and ensemble size 

A set of sensitivity analysis was performed for the Kumho Catchment for a 2-year 

period of 2008-2009 to check the DA performance to the size of assimilation window and 

number of the ensembles. In this section, only analysis and prediction results of six water 

quality variables and streamflow (BOD, CHL-a, flow, DO, NO3, PO4 and TW) are shown. 

Based on the experience, that the HSPF might terminated prematurely due to 

computational instability with ensemble size of 30, only ensemble size of 18 was used in 

this set of sensitivity analysis. All the runs were completed for the 2-year period of 2008-

2009.  

It was observed that the DA performance in analysis and predictions of water 

quality variables and streamflow with ensemble size of 18 and assimilation window of 14 

days were not improved compare to the assimilation window of 7 days and ensemble 

size of 9. It was concluded that if the selected assimilation window is very large, it is 

possible that the computational burden would increase due to the increased number of 

the observations (two and half days for 1-year run compared to 1 day for the same 1-year 

run). In such a case, even increasing the ensemble size would not improve the DA 

performance. DA performance is more stable with assimilation window of 7 days. 

Therefore based on these sets of sensitivity analysis assimilation window of 7 days was 

selected so that the only one set of water quality observation maybe included in all 

assimilation cycles.  
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Table A. 5 Sensitivity analysis to assimilation window of 14 days with ensemble size of 

18. 

Run Assimilation Windows ns Frac_gen Frac_state Observation error variance 

1 14 18 0.1 1 1 

2 14 18 0.1 0.1 1 

3 14 18 0.1 10 1 

4 14 18 10 1 1 

5 14 18 10 0.1 1 

6 14 18 10 10 1 

7 14 18 1 1 10 

8 14 18 0.1 1 10 

9 14 18 0.1 0.1 10 

10 14 18 0.1 10 10 

11 14 18 10 1 10 

12 14 18 10 0.1 10 

13 14 18 10 10 10 

14 14 18 1 0.1 10 

15 14 18 1 10 10 

16 14 18 1 0.1 1 

17 14 18 1 10 1 

18 14 18 1 1 1 

19 7 9 1 1 1 
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Figure A. 29 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of BOD.  
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Figure A. 30 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of CHL-a.  
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Figure A. 31 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of Flow.  
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Figure A. 32 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of DO.  
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Figure A. 33 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of NO3.  
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Figure A. 34 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of PO4.  
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Figure A. 35 RMSE of Base, BC-Base and BC-DA for analysis and Day 1 to Day 3 prediction of TW.  
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Appendix B 

Time Series Modeling 
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Auto regressive (AR) models can be integrated with a moving average (MA) model to 

form a general class of time series models called auto regressive integrated moving average 

(ARIMA) model (Chatfield 2013). The general ARIMA (p,d,q)x(P,D,Q)s model form is given as:  

𝜙(𝐵)𝜙(𝐵𝑠)∇𝑑∇𝑠𝐷𝑋𝑡 = 𝜃(𝐵)𝜃(𝐵𝑠)𝜀𝑡       (B-1) 

Where 𝑋𝑡 is the time series, 𝜙(𝐵) and 𝜃(𝐵) are the local AR to the order of p and the 

local MA to the order of q respectively, 𝜙(𝐵𝑠) 𝑎𝑛𝑑 𝜃(𝐵𝑠) are the seasonal AR to the order of P 

and the seasonal MA to the order of Q respectively. The basic seasonal period is s, d is the 

order of local differentiation, D is the order of seasonal differentiation, 𝜀𝑡 is a residual, ∇ is the 

backwards difference operator (i.e.∇1𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1) and B is the backward shift operator 

(B𝑋𝑡 = 𝑋𝑡−1).  

To find an appropriate ARIMA model for a time series (best-fit model), an iterative three 

step approach consisting of model identification, parameter estimation, and diagnostic checking 

was performed. In each step, the residual plots, auto-correlation function (ACF) and partial auto-

correlation function (PACF) were examined. ACF measures the linear relationship between the 

lagged values of a time series (e.g., ACF at lag 1 is the correlation between Xt and Xt-1 and ACF 

at lag 2 is the correlation between Xt and Xt-2). The time series that shows no autocorrelation or 

a very small (close to zero) value of autocorrelation is called white noise. It is expected that 

when the best-fit model for a variable is determined, ACF should be a white noise series, and in 

a white noise series, 95% of the spikes in the ACF should lie within ±2(�𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑙𝑒𝑛𝑔𝑡ℎ)−1. 

These bounds are generally plotted in the ACF and PACF plots and if more than 5% of the 

spikes are outside these bounds, then the time series is probably not a white noise. PACF 

measures the relationship between Xt and Xt-k, which is not explained by correlations at all lower 

order lags. For example, if Xt and Xt-1 are correlated then Xt-1  and Xt-2 should be correlated. Then 

Xt and Xt-2 could be correlated as well, which is due to the fact that both are connected to Xt-1 

rather than having to add new information by Xt-2 to the forecast. Therefore, the PACF is used. 
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In addition to ACF and PACF, the best-fit model was selected with the smallest Akaike 

information criterion (AIC) value. AIC is a measure of the ability of the statistical model to 

quantify the goodness of the fit of the selected model and the parsimony, or simplicity of the 

model, which is selected. If using a higher order of an MA and/or AR model does not change 

the AIC significantly, then it is better to use the model with lower orders.  

To deal with the skewed data, two forms of transformations were used; logarithmic 

transformation and Box-Cox transformation. The Box-Cox transformation depends on a 

parameter called lambda (λ) or transformation parameter. The λ value makes the size of the 

seasonal variation across the whole series the same. Therefore, it makes it simpler to identify 

the best-fit model. The logarithmic transformation is a specific form of the Box-Cox 

transformation in which λ is equal to zero and the natural log base is used. The family of Box-

Cox transformations is defined as follows: 

𝑤𝑡 = �
log(𝑦𝑡)     𝑖𝑓 𝜆 = 0;
𝑦𝑡
𝜆−1
𝜆

     𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒.
        (B-2) 

Where 𝑦𝑡 denotes the original observations and 𝑤𝑡 denotes the transformed 

observations. If any form of transformation was used in finding the best-fit model, the 

transformed data will be also used for the forecast. Therefore, it is necessary to reverse the 

transformation (or back-transform) to obtain forecasts based on the original scale. The reverse 

Box-Cox transformation is given as follows: 

𝑦𝑡 = �
exp(𝑤𝑡)           𝑖𝑓 𝜆 = 0;

(𝜆𝑤𝑡 + 1)1/𝜆   𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒.
         (B-3) 

To perform time series modeling, the three-step procedure of model identification, 

parameter estimation and diagnostics, was performed. In the first step, based on examination of 

the time series, skewness, and the ACF if necessary, the appropriate form of transformation of 

the series was performed to achieve normality. Then, seasonality and/or nonstationarity in the 

observed time series, based on the ACF and PACF, were identified. If the properties of a time 
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series do not depend on time then it is called a stationary time series. Thus, time series, which 

show trends or seasonality, are not stationary. Therefore, if necessary, appropriate differencing 

of the series was performed to achieve stationarity. According to the ACF and PACF of the 

stationary series, different ARIMA models were identified (see Subsection  6.6). The criterion for 

the selection of the best-fit model was the model with the smallest AIC value. When the best-fit 

model is determined, the next step is to use that model and to test and verify if that model is 

adequate for describing the studied process for each water quality variable. In the section  6.6, 

an example of the step-by-step procedure to select the best-fit model is explained.  

 

Figure B. 1 Time series procedure to select the best-fit model. 

Plot the data and its 
ACF/PACF 

Plot the ACF/PACF 
of the difference 

data 

Plot the ACF/PACF of 
the residuals of the 

proposed model 

Propose 
candidate models 

If necessary, 
difference the data 

until it appears 
stationary 

Check the plots and 
select the best model 
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