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Abstract 

MERGING RADAR-ONLY QPE AND RAIN GAUGE DATA  

VIA CONDITIONAL BIAS-PENALIZED  

OPTIMAL ESTIMATION 

 

Beomgeun Kim, MS 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Dong-Jun Seo 

A new technique for merging radar precipitation estimates and rain gauge data is 

developed and evaluated to improve multisensor quantitative precipitation estimation 

(QPE). Various types of linear and nonlinear techniques have been used to combine rain 

gauge and radar data. Linear cokriging and its variants, for example, may be considered 

as the best linear unbiased estimators which minimize the error variance in the 

unconditional sense. They are, however, subject to conditional biases (CB) that may be 

unacceptably large for estimation of heavy-to-extreme precipitation. In this work, I 

develop, apply, and evaluate conditional bias-penalized cokriging (CBPCK) for spatial 

estimation of precipitation using weather radar and rain gauge data which explicitly 

minimizes Type-II CB. The proposed CBPCK is a bivariate version of extended 

conditional bias-penalized kriging (ECBPK) which was developed for gauge-only 

estimation of heavy-to-extreme precipitation. To evaluate the proposed method, CBPCK 

is comparatively evaluated with a variant of ordinary cokriging (OCK), the currently used 

algorithm in NWS’s Multisensor Precipitation Estimator (MPE), via cross validation and 

visual examination of merged fields. The analysis domain is about 560 x 560 𝑘𝑚2 in the 

North Central Texas region and the analysis period is from 2002 to 2011. The radar data 



v 

used is from the reanalysis of the radar-only National Mosaic and multisensor QPE 

(NMQ/Q2). The rain gauge data used is from the Hydrometeorological Automated Data 

System (HADS). The results show that CBPCK significantly reduce CB for estimation of 

heavy-to-extreme precipitation at subdaily scales of accumulation, and that the margin of 

improvement over OCK is larger when the fractional coverage of rainfall is high, i.e., 

when it is precipitation over most of the area over the ungauged location. CBPCK may be 

used in reanalysis or in real-time analysis for which accurate estimation of heavy-to-

extreme precipitation is of particular importance.  
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Chapter 1  

Introduction 

1.1. Background 

Heavy-to-extreme rainfall is a growing concern since it is very often a direct 

cause for serious natural disasters such as flash floods, urban inundation, river floods 

and landslides. In recent years, weather radars have become a popular tool for 

quantitative precipitation estimation (QPE). Many techniques have been investigated and 

developed over the last 40 years for more skillful QPE with higher spatio-temporal 

resolution. However, radar QPE is subject to various error sources such as uncertain Z-R 

relationships, lack of calibration, attenuation, anomalous propagation (AP) and variations 

of vertical reflectivity profile (VPR), etc. (Austin, 1987; Smith et al., 1996; Steiner et al., 

1999; Wilson and Brandes, 1979; Fang et al., 2004; Villarini and Krajewski, 2009). 

Therefore, radar-only estimates are often combined with rain gauge data, which are often 

considered as true precipitation, to produce more accurate QPE. Many linear and 

nonlinear merging techniques have been reported for multisensor QPE (e.g. Creutin et 

al., 1988; Delrieu et al., 2014; Goovaerts, 2000). Cokriging, for example, is one of the 

widely used geostatistical merging techniques (Goudenhoofdt and Delobbe, 2009; 

Krajewski, 1987; Seo et al., 1990a,b; Sideris et al., 2014). Its variants (Seo, 1998a,b) are 

currently used for radar-gauge analysis in the NWS’s Multisensor Precipitation Estimator 

(MPE, Seo et al. 2010). Kriging, cokriging and their variants are often considered as the 

best linear unbiased estimators in the unconditional sense because they are unbiased 

and minimize error variance in the unconditional mean sense (Journel and Huibjbregts 

1978). In the conditional sense, however, these optimal estimation techniques frequently 

underestimate large precipitation and overestimate small precipitation. This is because, 

to minimize error variance unconditionally, the above estimators reduce errors primarily 
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over the median range of precipitation amounts, which occur far more frequently (Ciach 

et al., 2000; Habib et al., 2013; Seo and Breidenbach, 2002). For accurate estimation 

specifically of large amounts, it is at least as important to reduce conditional bias (CB), in 

particular Type-II CB, as to minimize unconditional error variance, particularly for 

estimation of mean areal precipitation (MAP). Note that, in MAP estimation, random 

errors tend to average out whereas conditional biases do not. Type-I and Type-II CB 

emerge from Type-I and Type-II errors, respectively. Type-I error occurs when falsely 

detecting an effect which does not exist whereas Type-II error occurs when failing to 

detect an existing effect. Whereas Type-I CB can be reduced via calibration, Type-II CB 

cannot. As such, reducing Type-II CB addresses an important gap in multisensor QPE. 

Toward the above end, conditional bias-penalized kriging (CBPK, Seo, 2012) has 

been developed for gauge-only estimation which minimizes Type-II CB in addition to 

unconditional error variance. More recently, extended CB-penalized kriging (ECBPK, Seo 

et al., 2014) has been developed to address negative estimates in areas of light 

precipitation. They showed that ECBPK improves estimation of heavy-to-extreme 

precipitation over the variant of ordinary kriging (OK), which is currently used in NWS’s 

MPE algorithm for gauge-only analysis. Explicit minimization of CB in multisensor QPE, 

however, has not been investigated yet. The purpose of this work is to develop a 

bivariate version of ECBPK, referred to herein as conditional bias-penalized cokriging 

(CBPCK), and comparatively evaluate with the variant of ordinary cokriging (OCK) which 

is currently used in the NWS’s MPE algorithm for radar-gauge analysis. Note that, while 

referred to as CBPCK for the sake of brevity, the proposed technique does include the 

enhancement made in ECBPK to address negative estimates in areas of light 

precipitation. 
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1.2. Objective 

The main objective of this study is to improve multisensor estimation of heavy-to-

extreme precipitation via CBPCK. Whereas the currently used MPE algorithm, a variant 

of OCK, minimizes unconditional error variance only (Seo, 1998 a,b), CBPCK explicitly 

minimizes both unconditional error variance and CB thereby improving performance for 

estimation of very large and very small amounts of precipitation. To evaluate CBPCK, 

cross validation experiments were designed and carried out over Texas. For comparison, 

the MPE algorithms for gauge-only and radar-gauge analyses are also carried out. To 

measure performance, conditional RMSE, conditional mean and multiplicative bias are 

used. To visual examine performance, scatter plots and quantile-quantile (QQ) plots are 

examined. For visual assessment of the quality of analysis, CBPCK-estimated 

precipitation fields are compared with precipitation fields from gauge-only, radar-only, and 

OCK analysis. The analysis domain is about 560 x 560 𝑘𝑚2 area in the North Central 

Texas region and the analysis period is from 2002 to 2011. The radar data used is from 

reanalysis of the radar-only National Mosaic and multisensor QPE (NMQ/Q2, Zhang et 

al., 2011). The rain gauge data used is from the Hydrometeorological Automated Data 

System (HADS, Kim et al., 2009). 
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1.3. Outline of the Thesis 

This thesis is organized as follows. Chapter 1 presents the background of the 

study, the statement of the problem, the specific objectives of the study and the thesis 

organization. Chapter 2 reviews the literature on geostatistical merging techniques, CB 

and significant findings from relevant previous studies in precipitation estimation. Chapter 

3 provides mathematical representation and description of CBPCK. Chapter 4 describes 

the analysis domain, the data used, and the data quality control process used. Chapter 5 

describes the procedures used to estimate the statistical parameters and the 

assumptions used. Chapter 6 presents the results and analysis. Chapter 7 presents the 

conclusion and future research recommendations. 
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Chapter 2  

Literature Review 

2.1. Merging Techniques 

Many geostatistical techniques have been developed to merge two or more 

variables in environmental science and engineering applications (e.g. Creutin et al., 1988; 

Delrieu et al., 2014; Goovaerts, 2000, 2000; Goudenhoofdt and Delobbe, 2009; Velasco-

Forero et al., 2009). Kriging is one of the most widely used geostatistical techniques for 

estimation of the variable(s) of interest at unsampled locations using neighboring 

observations. Kriging is a so-called best linear unbiased estimator (BLUE) in the sense 

that it employs a linear estimator, is unbiased (unconditionally) and minimizes 

(unconditional) error variance. If there exist observations of auxiliary variable(s) that may 

be cross-correlated with those of the primary variable(s) of interest, one may use 

cokriging (Goudenhoofdt and Delobbe, 2009; Journel and Huijbregts, 1978; Krajewski, 

1987; Seo et al., 1990a,b; Sideris et al., 2014) or similar techniques to estimate the 

primary variable(s) at ungauged or unsampled locations using multiple data sets. In 

addition to cokriging, conditional merging (Ehret, 2003), kriging with external drift 

(Haberlandt, 2007; Verworn and Haberlandt, 2011) and other techniques have been 

developed for similar purposes. Based on the mathematical form, the estimator may be 

linear or nonlinear, leading to linear or nonlinear estimators, respectively. 

 

2.1.1. Nonlinear Estimation 

Linear estimators are generally optimal, in the sense of BLUE, only if the 

variables of interest are normally distributed (i.e., multivariate normal). Precipitation , 

particularly short-term accumulations, has a skewed distribution. To improve estimation 
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of skewed variables, nonlinear cokriging methods, such as indicator cokriging and 

disjunctive cokriging, have been developed. 

Indicator cokriging (Journel, 1983; Journel and Huijbregts, 1978; Seo, 1998a, 

1996) is a nonparametric nonlinear estimation technique. The indicator variable is defined 

as: 

𝐼(𝑢0; 𝑧𝑐) = {
0      𝑖𝑓  𝑧(𝑢0) ≤ 𝑧𝑐

1      𝑖𝑓  𝑧(𝑢0)  > 𝑧𝑐
                                                      (2.1) 

where 𝐼(𝑢0; 𝑧𝑐) denotes the indicator variable at location 𝑢0 with the cutoff 𝑧𝑐 (i.e., the 

threshold of interest), and 𝑧(𝑢0) denotes the measurement at location 𝑢0. Each 

observation can be expressed as a binary experimental outcome of 0 and 1, depending 

on whether it exceeds the cutoff 𝑧𝑐. Under the second-order homogeneity assumption, 

indicator cokriging can be performed at many different thresholds from which one may 

estimate the conditional cumulative probability distribution function (CDF) of the variable 

of interest at the ungauged location (Seo, 1996). The above estimation utilizes the fact 

that the conditional expectation of an indicator variable given the neighboring 

observations is equivalent to the conditional probability of the variable exceeding the 

threshold given the neighboring observations (see Eq.(2.1)). A variant of indicator kriging 

has also been used in Double Optimal Estimation (DOE, Seo, 1998b) to estimate the 

probability of precipitation (PoP) from rain gauge or rain gauge and radar data.  

Disjunctive cokriging (Azimi-Zonooz et al., 1989; Journel and Huijbregts, 1978; 

Matheron, 1975; Webster and Rivoirard, 1991; Yates et al., 1986) is a parametric version 

of indicator cokriging. It transforms each variable into a normal deviate via the Hermite 

polynomial transformation (Journel and Huijbgregts 1978), assumes multivariate 

normality of the transformed variables, performs estimation in the normal space, and 

back-transforms the estimate and estimation variance into the original space. For real-
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time estimation, however, disjunctive kriging may not very desirable for computational 

cost and the fact that, unlike indicator kriging, it is not suited to handle the discrete 

probability mass at zero for no precipitation.  

 

2.1.2. Linear Estimation Using Multiple Variables 

Simple and ordinary cokriging are widely used geostatistical techniques when 

two or more variables are available. When the gauge observations of precipitation and 

radar estimates of precipitation are jointly second-order homogeneous, ordinary or simple 

cokriging may be used. Simple cokriging (SCK) may be used when the mean of gauge 

precipitation is known from an independent source of information. If rain gauge 

observations and radar data are the primary and secondary variables, respectively, the 

SCK estimator is made of the known mean and the linear weighted combination of the 

residuals as shown below: 

𝐺𝑘
∗(𝑢0) = 𝑚 + ∑ 𝜆𝑔𝑖

𝑛𝑔

𝑖=1
[𝐺𝑘(𝑢𝑖) − 𝑚] + ∑ 𝜆𝑟𝑗

𝑛𝑟
𝑗=1 [𝑅𝑘(𝑢𝑗) − 𝑚]     (2.2) 

where 𝐺𝑘
∗(𝑢0) denotes the estimated precipitation at the ungauged bin centered at 𝑢0 in 

hour 𝑘, 𝑚 is the known spatially-constant mean precipitation, 𝐺𝑘(𝑢𝑖) denotes the gauge 

precipitation at location 𝑢𝑖 at hour 𝑘, 𝑅𝑘(𝑢𝑗) denotes the radar precipitation at location 𝑢𝑗 

at hour 𝑘, 𝜆𝑔𝑖 denotes the weights given to the 𝑖-th gauge observation, 𝑛𝑔 denotes the 

number of the nearest gauges used, and the subscripts g and 𝑟 signify that the variables 

are associated with gauge-observed and radar-estimated precipitation, respectively. The 

optimal weights, 𝜆𝑔𝑖 and 𝜆𝑟𝑗 in Eq.(2.2), are obtained by minimizing the error variance:  

𝑉𝑎𝑟[𝐺𝑘(𝑢0) − 𝐺𝑘
∗(𝑢0)] = 𝐸[{𝐺𝑘(𝑢0) − 𝐺𝑘

∗(𝑢0)}2]               (2.3) 

Ordinary cokriging (OCK) may be used when there is no prior knowledge 

available about the mean of gauge-observed precipitation and the mean of radar–

estimated precipitation. The OCK estimator is expressed as: 
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𝐺𝑘
∗(𝑢0) = ∑ 𝜆𝑔𝑖

𝑛𝑔

𝑖=1
𝐺𝑘(𝑢𝑖) + ∑ 𝜆𝑟𝑗

𝑛𝑟
𝑗=1 𝑅𝑘(𝑢𝑗)                          (2.4) 

∑ 𝜆𝑔𝑖
𝑛𝑔

𝑖=1
+ ∑ 𝜆𝑟𝑗

𝑛𝑟
𝑗=1 = 1                                          (2.5) 

where the sum of the weights, 𝜆𝑔𝑖 and 𝜆𝑟𝑗, is equal to unity to force unbiasedness, which 

may be easily verified by taking expectations on both sides of Eq.(2.4) and applying 

Eq.(2.5). The weights,  𝜆𝑔𝑖 and 𝜆𝑟𝑗 in Eq.(2.4), are obtained by minimizing the 

unconditional error variance. Though cokriging has been widely used, the original 

formulations do not address intermittency of precipitation. To address precipitation 

intermittency and inner variability explicitly, Single Optimal Estimation (SOE) and Double 

Optimal Estimation (DOE) were developed (Seo, 1998 a,b) which are used in MPE (Seo 

et al. 2010). 

 

2.2. Conditional Bias (CB) 

Kriging or its variants provide unbiased precipitation estimates as well as 

minimum error variance in the unconditional sense. In the conditional sense, however, 

these optimal estimation techniques tend to overestimate light precipitation and 

underestimate heavy precipitation (Ciach et al., 2000; Seo, 2012b; Seo et al., 2014). 

These tendencies arise because the number of precipitation observations near the 

median is necessarily much larger than those over the tails. To minimize unconditional 

error variance, the BLUE estimators improve accuracy around the median, where 

precipitation occurs very frequently, rather than over the tails, where precipitation occurs 

very infrequently. For accurate estimation specifically of large amounts, however, it is 

very important to reduce CB, in particular Type-II CB, than to minimize unconditional 

error variance.  

Type-I and Type-II CB emerge from Type-I and Type-II errors, respectively. 

Type-I error is associated with a false alarm (e.g. crying wolf without a wolf in sight), while 
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Type-II error is associated with failing to raise an alarm (i.e. failing to see the wolf). Type-I 

CB is defined as E[𝑋|𝑋̂ = 𝑥̂] − 𝑥̂ where X, 𝑋̂, and 𝑥̂ denote the unknown truth, the 

estimate and the realization of 𝑋̂, respectively (Jolliffe and Stephenson, 2012). Type-I CB 

exists when, given the estimate, the expected value of the unknown truth is different from 

the realization of the estimate. Type-II CB is defined as E[𝑋̂|𝑋 = 𝑥] − 𝑥 where X, 𝑋̂,  and x 

denote the unknown truth, the estimate and the realization of X, respectively. Type-II CB 

exists when, given the unknown truth, the expected value of the estimate is different from 

the realization of the unknown truth. Whereas Type-I CB can be reduced by calibration 

(e.g., If the false alarm rate is too high, one may not cry wolf as often), Type-II CB is not 

amenable to statistical bias correction or post processing (Brown and Seo, 2013). 

Throughout the rest of this thesis, Type-II CB is referred to as CB for brevity. 

Seo (2012) developed CBPK which minimizes both unconditional error variance 

and CB of the estimate. The resulting CBPK system is a very simple extension of the 

simple kriging (SK) system and can be implemented very easily in an existing SK or OK 

code. Brown and Seo (2012) have proposed a nonparametric technique to minimize 

Type-II CB in streamflow prediction. This technique is analogous to indicator cokriging 

(ICK) and is referred to as conditional bias-penalized indicator cokriging (CBP-ICK). They 

showed that CBP-ICK successfully reduces Type-II CB and produces more skillful 

estimates than the estimates from other post-processing techniques used in hydrologic 

prediction. 

Because CBPK minimizes both unconditional error variance and conditional CB, 

its solution is not as good as OK’s in the unconditional sense. As such, the CBPK 

estimates are inferior to the OK estimates around the median and superior over the tails. 

If one can predict, with a high degree of accuracy, the general range of the truth by 

utilizing soft information that may be available, one may use both CBPK and OK 
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depending on the a priori determination of the magnitude of the truth. Toward that end, 

this work develops, applies and evaluates a bivariate version of ECBPK (Seo et al. 2014), 

referred to as CBPCK, which combines CBPK and the bivariate version of OK for spatial 

estimation of precipitation using radar QPE and rain gauge observations. 
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Chapter 3  

Methodology 

In this section, two different merging techniques are described: (1) the bivariate 

version of OCK used in Multisensor Precipitation Estimator (MPE, Seo et al. 2010) in 

NWS; and (2) the bivariate version of ECBPK (Seo et al., 2014). 

 

3.1. Ordinary Cokriging (OCK)  

OCK estimates the precipitation amount at an ungauged location given the 

neighboring rain gauge observations and the radar QPE. The OCK estimator has the 

following form: 

𝐺𝑘
∗(𝑢0) = ∑ 𝜆𝑔𝑖

𝑛𝑔

𝑖=1
𝐺𝑘(𝑢𝑖) + ∑ 𝜆𝑟𝑗

𝑛𝑟
𝑗=1 𝑅𝑘(𝑢𝑗)          (3.1) 

∑ 𝜆𝑔𝑖
𝑛𝑔

𝑖=1
+ ∑ 𝜆𝑟𝑗

𝑛𝑟
𝑗=1 = 1             (3.2) 

where 𝐺𝑘
∗(𝑢0) denotes the estimated precipitation at the ungauged bin centered at 𝑢0 in 

hour 𝑘, 𝐺𝑘(𝑢𝑖)  and 𝑅𝑘(𝑢𝑗)  denote gauge and radar precipitation at location 𝑢𝑖 in hour 𝑘, 

respectively,  𝜆𝑔𝑖 and 𝜆𝑟𝑗 denotes the weights given to the 𝑖-th gauge and the 𝑗-th radar 

data ,respectively, 𝑛𝑔 and 𝑛𝑟 denote the number of gauge and radar used ,respectively. 

The constraint, Eq.(3.2), renders the estimate 𝐺𝑘
∗(𝑢0) in Eq.(3.1) unbiased in the mean 

sense. The weights given to the nearest gauge and radar data, 𝜆𝑔𝑖  and 𝜆𝑟𝑗 in Eq.(3.1), 

respectively, are obtained by minimizing the error variance of 𝐺𝑘
∗(𝑢0) (see Seo, 1998b for 

details). The above formulation assumes that the radar precipitation estimates, 𝑅𝑘(𝑢𝑗), 

are unbiased.  

The optimal weights, 𝜆𝑔𝑖 and 𝜆𝑟𝑗 , can be obtained by minimizing the error 

variance of the estimate, 𝐽𝑂𝐶𝐾: 

𝐽𝑂𝐶𝐾 = 𝑉𝑎𝑟[𝐺𝑘
∗(𝑢0) − 𝐺𝑘(𝑢0)] = 𝐸[{𝐺𝑘

∗(𝑢0) − 𝐺𝑘(𝑢0)}2] = 1 − ∑ 𝜆𝑖
𝑛𝑔+𝑛𝑟

𝑖=1
ρ𝑖0 − 𝜇      (3.3) 
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where µ denotes the Lagrange multiplier (Journel and Huijbregts, 1978). The optimal 

weights are a function of the covariances of gauge and radar precipitation and the cross-

covariance between the two. The covariance, e.g., is given by (Seo, 1998a,b): 

Cov[G(𝑢𝑖), 𝑅(𝑢𝑗)] = 𝐸[𝐺(𝑢𝑖) · 𝑅(𝑢𝑖)] − 𝐸[𝐺(𝑢𝑖)] · 𝐸[𝑅(𝑢𝑖)] 

 = 𝐸[𝐺(𝑢𝑖) · 𝑅(𝑢𝑖)|𝐺(𝑢𝑖) > 0, 𝑅(𝑢𝑗) > 0] · Pr[𝐺(𝑢𝑖) > 0, 𝑅(𝑢𝑗) > 0] 

      − E[𝐺(𝑢𝑖)|𝐺(𝑢𝑖) > 0] · Pr [𝐺(𝑢𝑖) > 0] · E[𝑅(𝑢𝑗)|𝑅(𝑢𝑗) > 0] · Pr [𝑅(𝑢𝑗) > 0]                (3.4) 

In the above, the time index k is dropped for notational brevity. Eq.(3.4) can be rewritten 

as: 

Cov[G(ui), R(uj)] = σ𝑔σ𝑟[mIg(1 − mIg)]
1
2[mIr(1 − mIr)]

1
2ρ𝑐(|ui − uj|)ρIc(|ui − uj|) 

+ m𝑔m𝑟[mIg(1 − mIg)]1/2[mIr(1 − mIr)]1/2ρ𝐼𝑐(|ui − uj|) + σ𝑔σ𝑟mIgmIrρ𝑐(|ui − uj|)       (3.5) 

where σ𝑔 and σ𝑟 denotes the standard deviation of gauge and radar precipitation, 

respectively, mIg and mIr denote the mean fractional coverage by rain gauge and radar 

precipitation, respectively, m𝑔 and  m𝑟 denote the unconditional mean of gauge and radar 

precipitation, respectively, and ρ𝑐(|ui − uj|) and ρIc(|ui − uj|) denote the conditional and 

indicator cross-correlation functions between gauge and radar precipitation, respectively. 

Under the assumption of homogeneity, the mean fractional coverage of precipitation is 

equivalent to PoP (Seo and Smith, 1996). As in Seo (1998b), it is assumed in Eq.(3.5) 

that σ𝑔 is the same as σ𝑟, mIg is the same as  mIr, ρ𝑐(|ui − uj|) is the same as ρIc(|ui −

uj|) and m𝑔 is the same as m𝑟. These assumptions reduce Eq.(3.5) to: 

Cov[G(ui), R(uj)] = σ𝑟
2 · [mIr(1 − mIr)] · ρ𝑐(|ui − uj|) · ρIc(|ui − uj|) + m𝑟

2 · [mIr(1 − mIr)] ·

ρIc(|ui − uj|) + σ𝑟
2 · mIr

2 · ρ𝑐(|ui − uj|)           (3.6) 

If our interest is only in the estimate and not in the estimation variance, OK may be 

performed using correlation instead of covariance. Dividing Eq.(3.6) with the variance of 
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radar precipitation, Var[R(𝑢)] = σ𝑟
2 · mIr +  m𝑟

2 · mIr(1 − mIr), results in the correlation 

between 𝐺(𝑢𝑖) and 𝑅(𝑢𝑗): 

Corr[G(ui), R(uj)] = 

CV𝑟
2·(1−mIr)·ρ𝑐(|ui−uj|)·ρIc(|ui−uj|)+(1−mIr)·ρIc(|ui−uj|)+CV𝑟

2·mIr·ρ𝑐(|ui−uj|)

CV𝑟
2+(1−mIr)

         (3.7) 

where CV𝑟 denotes the coefficient of variation (CV) of radar precipitation. The optimal 

weights in Eqs.(3.1) and (3.2) are obtained by solving the so-called kriging system 

(Journel and Huijbregts, 1978): 

[
       𝐶𝐺𝐺     𝐶𝐺𝑅

       𝐶𝑅𝐺     𝐶𝑅𝑅
  
1
⋮
1

       1 … 1   0

    ] [

𝜆i

⋮
𝜆i+j

𝜇

] = [
𝐶0𝐺

𝐶0𝑅

1

]                                         (3.8) 

where 𝐶𝐺𝐺, 𝐶𝐺𝑅 (=𝐶𝑅𝐺
𝑇 ), and 𝐶𝑅𝑅 denotes (𝑛𝑔) x (𝑛𝑔), (𝑛𝑔) x (𝑛𝑟), (𝑛𝑟) x (𝑛𝑟) covariance 

matrices whose entries are given by Cov[G(ui), G(u𝑖)], Cov[G(ui), R(u𝑗)] and 

Cov[𝑅(u𝑗), R(u𝑗)], respectively, and 𝐶0𝐺 and 𝐶0𝑅 are the (1) x (𝑛𝑔) and (1) x (𝑛𝑟) 

covariance vector whose entries are given by Cov[G(u0), G(u𝑖)] and Cov[G(u0), R(uj)], 

respectively (i = 1, … , 𝑛𝑔, j = 1, … , 𝑛𝑟).   

 

3.2. Conditional Bias-Penalized Cokriging (CBPCK) 

CBPCK is the bivariate version of ECBPK (Seo et al., 2014). In CBPCK, the CB 

penalty term 𝐸[{𝐸[𝐺∗(𝑢0)|𝐺(𝑢0)] − 𝐺(𝑢0)}2] is added to the objective function where the 

time index k has been dropped for notational brevity: 

𝐽𝐶𝐵𝑃𝐶𝐾 = 𝐸[{𝐺∗(𝑢0) − 𝐺(𝑢0)}2] + 𝛼 • 𝐸[{𝐸[𝐺∗(𝑢0)|𝐺(𝑢0)] − 𝐺(𝑢0)}2]        (3.9) 

where α denotes the positive weight given to the CB penalty term. The weight, α, can be 

optimized to improve the balance between reducing error variance and reducing CB. If 𝛼 

is zero, 𝐽𝐶𝐵𝑃𝐶𝐾 is the same as 𝐽𝑂𝐶𝐾 described in Section 3.1. To specify 𝐸[𝐺∗(𝑢0)|𝐺(𝑢0)] in 
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Eq.(3.9), the Bayesian optimal estimator (Schweppe, 1973) is used. The CBPCK system 

then results from minimizing 𝐽𝐶𝐵𝑃𝐶𝐾 in Eq.(3.9) with respect to the weights, 𝜆𝑖′𝑠, below: 

∑ 𝜆𝑗
𝑛𝑔+𝑛𝑟

𝑗=1
(ρ𝑖𝑗 + 𝛼 · ρ𝑖0 · ρ𝑗0)σ𝑖 · σ𝑗 = (1 + 𝛼)ρ𝑖0 · σ𝑖 · σ0    𝑖 = 1, … , 𝑛𝑔 + 𝑛𝑟       (3.10) 

∑ 𝜆𝑔𝑖
𝑛𝑔

𝑖=1
+ ∑ 𝜆𝑟𝑗

𝑛𝑟
𝑗=1 = 1           (3.11) 

where ρ𝑖𝑗 denotes the correlation between the  two variables.  

  

3.2.1. Fractional Coverage-Dependent Long-Term Bias Correction 

CBPK often produce negative estimates in areas of light precipitation. To 

address this, the bias correction procedure in ECBPK (Seo at el. 2014) has been applied 

to CBPCK in which the negative CBPCK estimates set to be zero and the scaling 

coefficient, γ, is applied to the positive CBPCK estimates: 

𝐺∗(𝑢0)𝐶𝐵𝑃𝐶𝐾
′ = {

   0                                 𝑖𝑓  𝐺∗(𝑢0)𝐶𝐵𝑃𝐶𝐾 < 0

 γ · 𝐺∗(𝑢0)𝐶𝐵𝑃𝐶𝐾       o𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                
                                   (3.12) 

Where  𝐺∗(𝑢0)𝐶𝐵𝑃𝐶𝐾
′  denotes the bias-corrected CBCPK estimates and the scaling 

coefficient, γ,  is empirically estimated as a function of the fractional coverage of 

precipitation over the ungauged location by: 

γ =
𝐸[𝐺∗(𝑢0)𝐶𝐵𝑃𝐶𝐾]

𝐸[𝐺∗(𝑢0)𝐶𝐵𝑃𝐶𝐾|𝐺∗(𝑢0)𝐶𝐵𝑃𝐶𝐾>0]
                                                                  (3.13) 

where 𝐸[𝐺∗(𝑢0)𝐶𝐵𝑃𝐶𝐾] denotes the spatiotemporal mean of CBPCK estimate, 𝐺∗(𝑢0), at 

location 𝑢0 and 𝐸[𝐺∗(𝑢0)𝐶𝐵𝑃𝐶𝐾|𝐺∗(𝑢0)𝐶𝐵𝑃𝐶𝐾 > 0] denotes the spatiotemporal mean of 

positive CBPCK estimate, 𝐺∗(𝑢0). The scaling coefficient, γ, is estimated for each 

subrange of the fractional coverage of precipitation. The fractional coverage is calculated 

by dividing the number of neighboring positive observations by the total number of 

neighboring observations. If there are no gauge data within the radius of influence, the 

fractional coverage is estimated by using the radar data only, whereas, if no radar data 
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exist within the radius of influence, only the rain gauge data are used to estimate the 

fractional coverage. If both gauges and radar report precipitation somewhere in the 

radius of influence, the fractional coverage is estimated via arithmetic averaging of the 

two.  

 

3.2.2. Co-utilizing OCK and CBPCK 

While CBPK is superior to OK over the tail ends of the distribution, it is inferior 

over the mid-ranges (Seo, 2012). The aim of co-utilizing OCK and CBPCK is to choose 

one of the two based on the most skillful information available about the magnitude of the 

true precipitation. In reality, however, we do not know what the true precipitation amount 

is at the ungauged location. In the absence of any other sources of information, one 

might consider the radar QPE as the best guess for true precipitation. Radar QPE, 

however, is generally biased in distribution relative to rain gauge observations. One might 

also consider the nearest rain gauge observation, but it very quickly loses skill if the 

distance increases. The OCK estimate, on the other hand, reflects precipitation 

information in both rain gauge and radar data. As such, the OCK estimate is considered 

as the most skillful in this work and transformed into the standard normal deviate, ZOCK, 

which then specifies the weight alpha given to CB term, α, through a simple functional 

relationship. The decided relationships between alpha and ZOCK are α=f(Z)=0.5ZOCK
2
 for 

the analysis period from 2002 to 2008 and α=f(Z)=0.286ZOCK
2
 for the analysis period from 

2008 to 2011 by conducting sensitivity analysis. As a result, in the mid-ranges, alpha is 

smaller and hence the final estimate is closer to the OCK estimate, whereas, in the tails 

alpha is larger and hence the final estimate is closer to the CBPCK estimate. 
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Chapter 4  

Analysis Domain and Data Acquisition 

4.1. Analysis Domain 

The analysis domain is the North Central Texas region as shown in Figure 4.1. 

The climate of the domain is humid-subtropical with hot summers and relatively mild 

winters. Summer daytime temperatures frequently exceed 100°F. Average high and low 

temperatures range from 37°F in January to 98°F in August. Mean annual precipitation 

also varies considerably, ranging from less than 20 inches to the West to more than 50 

inches to the East. 

 
Figure 4.1 Analysis domain. 

 

4.2. Rain Gauge Data 

The rain gauge data used is from HADS which is operated by the NWS Office of 

Hydrologic Development (OHD, now the National Water Center). The data come from 

more than 10,000 rain gauges across the Continental U.S. (CONUS). A total of 199 rain 

gauges out of 243 are chosen through quality control process within the analysis domain.  
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4.3. Radar Data 

The radar data used is the reanalysis at the National Clmatic Data Center 

(NCDC, Heiss et al., 1990) of the radar-only National Mosaic and multisensor QPE 

(NMQ/Q2) for which the primary source is the NEXt generation RADar (NEXRAD, Heiss 

et al., 1990). NMQ incorporates data from different observing systems to create high-

resolution national multisensor QPE for various applications such as flash flood and flood 

warnings and water resources management. The main capability for QPE in the NMQ 

system (Zhang et al., 2011) is the next generation QPE, or Q2 (Vasiloff et al., 2007). Q2 

generates multiple products such as radar-only QPE, local bias-corrected radar QPE, 

gauge-only QPE, and Q2 Mountain Mapper (MM), etc. The NMQ/Q2 products have been 

evaluated over the twelve River Forecast Center (RFC) service areas in CONUS using 

rain gauge observations from the Automated Surface Observing System (ASOS) (Wu et 

al., 2011). The results indicate that the radar-only QPE from Q2 have higher correlation 

and lower bias compared to those from the WSR-88D Precipitation Processing 

Subsystem (PPS, Fulton et al., 1998). In this work, hourly radar-only NMQ/Q2 for the 10-

year period of 2002 to 2011 is used. The radar data is on a 502 × 502 grid over the 

analysis domain with a spatial resolution of 0.01° × 0.01°. The upper-left corner of the 

analysis domain is 35.01 °N latitude and 99.00 °W longitude. Table 1 summarizes the 

rain gauge and radar data used in this work. 

 

Table 4.1 Data used 

 
Spatial 

Resolution 
Temporal 

Resolution 
Analysis Period Source 

Radar data 0.01° × 0.01°  1 hour 2002 - 2011 NOAA/NCDC 

Rain gauge 
data 

point  1 hour 2002 - 2011 NOAA/NCDC 
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4.4. Quality Control (QC) of Rain Gauge Data 

Rain gauge observations are subject to systematic biases (Essery and Wilcock, 

1990; Fankhauser, 1998; Sevruk et al., 1991) and have numerous sources of error such 

as wind, mechanical malfunction, electronic malfunction, biological contamination, etc. 

This subsection describes how the rain gauge data were quality-controlled before being 

used in multisensor QPE in this work. 

 
4.4.1. Range Check 

Figure 4.2 shows the 100-year return period for hourly precipitation in the Texas 

region. Based on the map, a cap of 125 mm/hr was set for hourly gauge observations. A 

few data points exceeded this threshold. They were then compared with the neighboring 

gauge observations, determined to be outliers and thrown out. 

 

 
 

Figure 4.2 100-year 1-hour precipitation (in inches) in Texas and vicinity (Frederick et al., 

1977). 
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4.4.2. Summary-Statistical Check 

To quality control individual rain gauges, PoP and the conditional (on positive 

precipitation) coefficient of variation (CV) of hourly gauge precipitation are calculated for 

each gauge for the entire period of record (Seo and Breidenbach 2002). PoP is 

calculated by the number of positive gauge reports divided by the total number of gauge 

reports. The conditional CV is the conditional standard variation divided by the conditional 

mean. If the PoP or the conditional CV of the rain gauge precipitation is too large or too 

small compared to the reginal climatology represented by the general pattern of the 

statistics, the gauge is considered suspect and discarded. Figure 4.3 shows the PoP and 

conditional CV of hourly rain gauge precipitation at the 199 locations after throwing out 

suspicious gauge locations.  

 

Figure 4.3 Probability of precipitation and coefficient of variation of 199 rain gauge 

locations within the analysis domain after removing suspicious gauges. 
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4.4.3. Gauge-Radar Comparison 

Gauge-radar comparisons are useful in screening out malfunctioning rain gauges 

as well as highly suspect individual rain gauge reports. For example, if a gauge 

continuously reports no precipitation while radar continuously reports positive 

precipitation in a non-ground clutter zone, the gauge is identified as malfunctioning and 

thrown out. The rain gauge data are visually inspected extensively against radar QPE for 

quality control. For example, if the gauge data show little or no patterns of correlation with 

radar data in scatter plots, the gauge is thrown out. To use as much data as possible, the 

scatter plots are generated on monthly, seasonal and annual bases so that, if a gauge is 

identified as stuck for a certain period, only the data in the impacted period is excluded 

while the rest is retained. In addition, unusually large rain gauge observations are 

compared with neighboring gauge and radar data to exclude unrealistic data points. 

Other statistics, such as the unconditional and conditional mean of gauge and radar 

precipitation, the ratio of the sum of gauge precipitation to the sum of radar precipitation 

and the indicator and conditional correlation coefficients between gauge and radar 

precipitation are also examined to aid the above analysis. 
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Chapter 5  

Estimation of Statistical Parameters 

5.1. Correlation Structure Analysis 

The merging algorithms used in this work require modeling spatial covariance 

structures of intermittency and inner variability of precipitation (Seo, 1998a,b). Because it 

is impractically difficult to estimate time-varying covariance structures due to lack of data 

and large computing requirements, climatological correlograms from the 7-year period of 

2002 to 2008 are used. In this work, the correlogram structures are estimated using the 

hourly radar QPE under the assumption that the correlogram structures of gauge 

precipitation are the same as that of radar precipiation (Seo, 1998b). The conditional and 

indicator correlograms are estimated for each month. The experimental correlograms of 

radar QPE are estimated first, and then they are fitted with the exponential, Gaussian, 

and spherical models with the nugget effect, sill and range as the model paramters 

(Journel and Huijbregts, 1978). In almost all cases, both the conditional and indicator 

correlograms are fitted very well with the exponential model. As such, the experimental 

model was used throughout all analyses. 

Figure 5.1 shows examples of the fitted conditional and indicator correlograms. In 

each panel, the dotted line represents the experimental correlogram and the solid line 

represents the fitted correlogram model.  
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Figure 5.1 Examples of fitted conditional (left) and indicator (right) correlograms along 0 

degree (i.e. horizontal line) for August. 

 

In reality, precipitation fields are generally anisotropic. To determine anisotropy, 

directional experimental correlograms are calculated along the angles of 0°, 26.6°, 45°, 

63.4°, 90°, 116.6°, 135°, and 153.4° counterclockwise from due east. Each experimental 

correlogram is then fitted with the exponential, Gaussian, and spherical models.  

Figure 5.2 shows the conditional and indicator correlation structures along the 

eight directions for August and November. If the directional correlograms are close to one 

another such as in August, the precipitation fields are generally isotropic whereas, if the 

correlograms are different from one another, they are anisotropic. The isotropic structure 

is generally associated with the convective precipitation in the warm season, whereas the 

anisotropic structure is usually associated with the frontal precipitation in the cool season. 

Figure 5.3 presents the contour plots of the conditional and indicator correlograms for 

August and November which show more clearly about the correlation structures and their 

seasonal variations. Examination of the above results for all months indicates that 

anisotropy is not very strong in the wettest month in June for the analysis period. As such, 
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even though anisotropy is observed in the less-wet cool season, anisotropy is assumed 

in this work. 

 

 

Figure 5.2 Conditional (left) and indicator (right) correlograms along the eight directions 

(0°, 26.6°, 45°, 63.4°, 90°, 116.6°, 135°, and 153.4°) for August (upper) and November 

(lower). 
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Figure 5.3 Contour plots of conditional and indicator correlograms for August (upper) and 

November (below). 

 

Table 5.1 and Table 5.2 show the conditional correlogram model and indicator 

correlogram model, respectively, for each month. 
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Table 5.1 Conditional correlogram model for each month 

MONTH MODEL 
RELATIVE 

NUGGET EFFECT 

RANGE (KM) 

AVERAGE  MINIMUM  MAXIMUM  

JAN ex 0.03 51.3 38.1 81.7 

FEB ex 0.03 47.4 31.9 71.3 

MAR ex 0.01 42.8 30.6 63.5 

APR ex 0 58.9 33.8 127.2 

MAY ex 0 43.2 31.9 60.1 

JUN ex 0 36 29.4 45.5 

JUL ex 0.01 27.1 23 34 

AUG ex 0.01 27.6 24.2 33 

SEP ex 0.01 38.6 35.3 42.5 

OCT ex 0 59 40.3 81.7 

NOV ex 0 52.4 30.3 98.3 

DEC ex 0.04 43.2 31.5 68.4 

                                                                                                                                               * ex: exponential  
 

 

 

Table 5.2 Indicator correlogram model for each month 

MONTH MODEL 
RELATIVE 

NUGGET EFFECT 

RANGE (KM) 

AVERAGE  MINIMUM  MAXIMUM  

JAN ex 0.17 97.5 85.2 105.5 

FEB ex 0.15 94.9 82.7 107.9 

MAR ex 0.16 92.5 84.3 101.2 

APR ex 0.15 97.4 91.2 105.6 

MAY ex 0.15 96.7 91.7 101.5 

JUN ex 0.19 82.5 78.1 88.2 

JUL ex 0.22 57.3 54.7 59 

AUG ex 0.21 66.2 60.3 70.6 

SEP ex 0.19 70.5 65.3 74 

OCT ex 0.16 97.2 91.4 101.4 

NOV ex 0.16 81.4 73.6 88.9 

DEC ex 0.18 94.3 86.8 103.9 

                                 * ex: exponential                    
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The radius of influence for the neighboring observations is specified by the 

indicator correlation scale. The fractional coverage of precipitation within the radius of 

influence, mIr in Eq.(3.7), is specified dynamically from real-time observations of rain 

gauge and radar data by dividing the number of neighboring positive precipitation-

reporting observations by the total number of neighboring observations that include zero 

precipitation. If both data sources are not available within the radius of influence, the 

fractional coverage is estimated by using only a single source. The number of neighbors 

used in the estimation process is 30, as determined from sensitivity analysis. The actual 

number of rain gauges used, however, may vary from hour to hour because only the rain 

gauges inside the radius of influence are used in the estimation process. Figure 5.4 

shows the histogram of the actual number of gauge observations used in the analysis 

period of 2002 through 2008. 

 

Figure 5.4 The frequency of the actual number of gauge used for cross validation (2002-

2008). 
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Chapter 6  

Results and Analysis 

6.1. Cross Validation 

Cross validation was performed using hourly radar QPE and hourly rain gauge 

observations to evaluate the proposed technique. The process of cross validation 

includes the following steps: 1) withhold hourly rain gauge observations one at a time and 

estimate precipitation at the withheld gauge location using all available data except the 

withheld rain gauge measurement; 2) compare the estimated amount against the 

withheld rain gauge measurement; 3) repeat the first and second steps for all rain gauge 

locations in the entire cross-validation period. Cross validation is performed for OCK, 

CBPCK, gauge-only and radar-only QPE. The gauge-only estimates and the radar-only 

estimates are denoted as GO and RO below, respectively. 

 

6.1.1. Scatter Plots and Quantile-Quantile (QQ) plots 

Figure 6.1 shows the scatter and QQ (in red) plots of the GO, RO, OCK and 

CBPCK estimates vs. the hourly gauge precipitation. Note that GO (upper-left) and OCK 

(lower-left) tend to significantly underestimate large precipitation amounts (>50mm). RO 

is reasonably conditionally unbiased in the global sense but generally have a larger 

scatter compared to OCK and CBPCK. Figure 6.2 is the same as Figure 6.1 but only for 

those data points for which the estimated fractional coverage (FC) over the ungauged 

location is greater than 0.9 (i.e., it is precipitating in most of the local area). Note that 

CBPCK significantly improves over both RO and OCK, greatly improves estimation of 

large precipitation amounts over OCK, but overestimates a large number of smaller 

amounts compared to OCK and a small number of smaller amounts compared to RO. 

The isolated significant overestimation of smaller amounts by CBPCK compared to RO 
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due to overestimation in the standard normal space by OCK as explained below. Recall 

that the weight alpha, α, for the CB term in CBPCK is specified by the standard normal 

transform of the OCK estimate. If OCK incorrectly overestimates small amounts, the OCK 

estimates have large standard normal deviates and hence large values of alpha, α, 

increasing the spread (i.e., the error variance) in the CBPCK estimate.  

 
Figure 6.1 Scatter and QQ plots of the GO, RO, OCK and CBPCK estimates (2002-2008). 
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Figure 6.2 Scatter and QQ plots of the GO, RO, OCK and CBPCK estimates when FC 

exceeds 0.9 (2002-2008). 

 

Figure 6.3 shows the error plot of the RO, OCK and CBPCK estimates when FC 

is greater than 0.9. The horizontal line of zero error means that the estimate is perfect. 

Note that the errors in OCK are smaller than those in RO and CBPCK for smaller 

precipitation amounts, and that the CBPCK estimates have significantly smaller errors for 
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larger amounts. Note also that the 4 data points associated with very large 

overestimation by CBPCK are associated with outlying OCK estimates. Eliminating 

occurrences of such large errors of overestimation is a challenge for which additional 

sources of precipitation, soft or hard, information is necessary. 

 

Figure 6.3 Errors in the RO, OCK and CBPCK estimates with respect to the ground truth 

when FC is greater than 0.9 (2002-2008). 

 
6.1.2. Reduction in RMSE 

The root mean squared error (RMSE) conditioned on the minimum threshold of 

gauge precipitation is used to measure the conditional performance of the estimators.  

The RMSE is defined as:  

RMSE = √
1

𝑛
∑ [𝐺∗(𝑢𝑖) − 𝐺(𝑢𝑖)]2𝑛

𝑖=1       (6.1) 
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where 𝐺∗(𝑢𝑖) denotes the estimated precipitation at location 𝑢𝑖, 𝐺(𝑢𝑖) denotes the rain 

gauge precipitation at location 𝑢𝑖 and 𝑛 denotes the total number of observations.  Figure 

6.4 shows the reduction in RMSE by OCK over RO and by CBPCK over RO conditional 

on the verifying gauge precipitation greater than that shown on the x-axis. The reduction 

in RMSE is conditioned also on FC. For all conditions of FC, little or no reduction in 

RMSE is seen until the threshold precipitation begins to exceed 60 mm. For FC > 0.9, on 

the other hand, clear improvements are shown in both OCK and CBPCK over all ranges 

of the thresholding precipitation amount. Note also that the margin of improvement by 

CBPCK is greater than that by OCK when FC is high. 

  

Figure 6.4 Reduction in RMSE by OCK over RO and by CBPCK over RO (2002-2008). 
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In addition to a reduction in RMSE, the percent reduction in RMSE (PRIRMSE) 

by CBPCK over OCK, or 𝑃𝑅𝑖𝑅𝑀𝑆𝐸(𝐶𝐵𝑃𝐶𝐾), is calculated: 

𝑃𝑅𝑖𝑅𝑀𝑆𝐸(𝐶𝐵𝑃𝐶𝐾) =
𝑅𝑀𝑆𝐸(𝑂𝐶𝐾)−𝑅𝑀𝑆𝐸(𝐶𝐵𝑃𝐶𝐾)

𝑅𝑀𝑆𝐸(𝑂𝐶𝐾)
  × 100                    (6.2) 

where 𝑅𝑀𝑆𝐸(𝐶𝐵𝑃𝐶𝐾) and 𝑅𝑀𝑆𝐸(𝑂𝐶𝐾) denote the RMSEs of CBPCK and OCK 

estimates, respectively. Figure 6.5 shows the percent reduction in RMSE as a function of 

the minimum FC of precipitation over the ungauged location by CBPCK over OCK for 

hourly gauge precipitation intensity greater than the amount shown on the x-axis. The 

figure shows that CBPCK is superior to OCK for precipitation amounts greater than 30 

mm regardless of FC. For FC > 0.5, the reduction is positive when gauge precipitation 

exceeds approximately 15 mm and, for verifying precipitation exceeding 40 mm, the 

reduction is about 8%. If the threshold gauge precipitation is less than 10 mm, however, 

CBPCK is inferior to OCK regardless of FC. The negative reduction in light precipitation 

arises from the fact that OCK minimizes unconditional error variance and hence does 

better than CBPCK for precipitation amounts around the median. Figure 6.5 also shows 

that, the larger the precipitation amount is, the larger the percent reduction in RMSE by 

CBPCK is over OCK, and that, the larger the FC is, the larger the percent reduction in 

RMSE is. 
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Figure 6.5 Percent reduction in RMSE as a function of the minimum FC over the 

ungauged location by CBPCK over OCK for hourly point precipitation amounts greater 

than that shown on the x-axis (2002-2008). 

 
6.1.3. Conditional Mean 

Figure 6.6 shows the conditional mean of the gauge (denoted as truth), RO, OCK 

and CBPCK estimates for hourly point precipitation amounts greater than that shown on 

the x-axis for FC > 0. Figure 6.7 is the same as Figure 6.6 but for FC > 0.9. The figure 

indicates that CBPCK reduces conditional mean bias over OCK for all ranges and over 

RO for precipitation amounts exceeding 50 mm. The margin of improvement by CBPCK 

over OCK increases as the threshold of verifying precipitation increases. 
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Figure 6.6 Conditional mean of the gauge (denoted as truth), RO, OCK and CBPCK 

estimates for FC > 0 (2002-2008). 

 
 

Figure 6.7 Conditional mean of the gauge (denoted as truth), RO, OCK and CBPCK 

estimates for FC > 0.9 (2002-2008). 
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6.1.4. Multiplicative Bias 

The multiplicative bias is defined as the ratio of the sum of the estimates to the 

sum of the verifying observations: 

        Multiplicative Bias =  
∑ 𝐺∗(𝑢𝑖)𝑛

𝑖=1

∑ 𝐺(𝑢𝑖)𝑛
𝑖=1

          (6.3) 

Figure 6.8 shows the multiplicative bias of OCK and CBPCK estimates conditional on the 

verifying precipitation exceeding the threshold for FC > 0 and FC > 0.9. Large biases are 

observed both in the OCK and CBPCK estimates for large precipitation amounts for FC > 

0. The biases are significantly reduced for FC > 0.9 in reflection of the observations 

above that, when FC is large, improvement by CBPCK over OCK is larger. As observed 

above, the margin of reduction in multiplicative bias by CBPCK over OCK also increases 

as the thresholding gauge precipitation increases. 

 
 

Figure 6.8 Multiplicative bias of the estimate (y-axis) conditional on verifying precipitation 

exceeding the threshold (x-axis) for FC > 0 (solid line) and for FC > 0.9 (dashed line) 

(2002-2008). 
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6.2. Bias Correction 

In this section, the impact of bias correction in radar-only QPE is evaluated. The 

OCK and CBPCK techniques, as formulated in this work, assume that the radar 

precipitation estimates are unbiased. In reality, however, the radar QPE may be biased 

due to numerous error sources. If the bias is known in advance as precipitation 

reanalysis, one may improve the quality of multisensor QPE by combining the rain gauge 

observations and bias-corrected radar QPE. Bias correction is applied here by multiplying 

the bias correction factor to radar QPE. The bias correction factor 𝛽 defined as: 

𝛽 =
∑ 𝐺𝑖(𝑢𝑖)𝑛

𝑖

∑ 𝑅𝑖(𝑢𝑖)𝑛
𝑖

       (6.4) 

The summations in Eq.(6.4) include only the pairs of positive gauge precipitation and 

positive radar precipitation. 

 

6.2.1. Global Bias Correction  

 The global bias correction factor is a single number calculated using Eq.(6.4) 

from all available data in the entire analysis period. Here, a 4-yr analysis period of 2008 

to 2011 is considered. The global bias correction factor estimated for this period is 0.90. 

Figure 6.9 shows the scatter plots of the GO, RO, OCK and CBPCK estimates after 

global bias correction. Both the scatter and QQ plots of RO vs. verifying observations 

show the positive impact of bias correction. The GO estimates are not influenced by the 

bias correction but the scatter plots of the GO are shown for comparison. 
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Figure 6.9 Scatter and QQ plots of the GO, RO, OCK and CBPCK estimates  

after global bias correction (2008-2011). 

 

The scatter plots of hourly estimates are often difficult to compare visually due to 

large variability. Figure 6.10 shows the scater and QQ plots of the monthly GO, RO, OCK 

and CBPCK estimates following global bias correction of radar QPE. The value of 

multisensor estimation is readily seen. As noted above, CB is an issue largely at subdaily 
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time scales. As such, one may expect CBPCK to approach OCK as the time scale of 

aggregation increases. It is interesting to note that, albeit small, the positive impact of 

CBPCK relative to OCK is seen in reducing CB even at monthly scale. 

   

 
Figure 6.10 Scatter and QQ plots of the monthly GO, RO, OCK and CBPCK estimates 

after global bias correction (2008-2011). 
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6.2.2. Monthly Bias Correction 

In this approach, the bias correction factor is calculated for every month for the 

same 4-yr period to consider the seasonal bias. Figure 6.11 shows the monthly bias 

correction factors averaged over 4 years. The results indicate that the radar QPE 

generally over- and underestimate the gauge precipitation during the warm and cool 

seasons, respectively.  

 

Figure 6.11 Monthly bias correction factor for radar QPE (2008-2011). 

 

Figure 6.12 shows the scatter and QQ plots of the GO, monthly bias-corrected 

RO, OCK and CBPCK estimates after monthly bias correction to radar data.  Compared 

to the global bias correction results, the generally reduced scatter in all estimates may be 

seen. It may also be seen that the CBPCK estimates have the smallest CB for larger 

precipitation amounts. Figure 6.13 shows the scatter and QQ plots of the monthly GO, 

RO, OCK and CBPCK estimates after monthly bias correction. Note that both OCK and 

CBPCK are clearly closer to the true precipitation compared to RO. 
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Figure 6.12 Scatter and QQ plots of the GO, RO, OCK and CBPCK estimates  

after monthly bias correction (2008-2011). 
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Figure 6.13 Scatter and QQ plots of the monthly GO, RO, OCK and CBPCK estimates 

after monthly bias correction (2008-2011). 

 
Figure 6.14 shows the percent reduction in RMSE by OCK over RO and by 

CBPCK over RO after monthly and global bias correction. OCK is inferior to RO over 

thresholds less than 50 mm. CBPCK, on the other hand, is superior or comparable to RO 

at all thresholds. For large precipitation amounts, significant reduction of up to 20% in 

RMSE by CBPCK over RO is seen. Compared to global bias correction, the relative 
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performance by OCK over RO after monthly bias correction is slightly improved. The 

relative performance by CBPCK over RO, on the other hand, does not changed much 

with the different bias correction methods. 

 
Figure 6.14 Percent reduction in RMSE by OCK over RO and by CBPCK over RO after 

bias correction (2008-2011). 
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6.3. Monthly Events Analysis 

While the global analysis over long analysis periods is useful for assessment of 

long-term performance, the relative performance among GO, RO, OCK and CBPCK may 

depend greatly on specific rainfall events that produce very large to extreme amounts of 

precipitation. Event-specific evaluation of the techniques, however, was beyond the 

scope of this work. As a compromise, the scatter plots of hourly estimates were visually 

examined for a number of specific months that produced large amounts of precipitation. 

Figure 6.15 through 6.21 show the scatter and QQ plots of the hourly estimates of GO, 

RO, OCK and CBPCK vs. the verifying precipitation for the month shown in each figure. 

The generally positive impact of multisensor estimation and specifically of CBPCK, may 

be seen. The figures also illustrate the limitation of CBPCK. In this subsection, monthly 

bias corrected radar QPE is used (denotes as RO for brevity). 
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Figure 6.15 Scatter and QQ plots of the hourly estimates (April, 2008) 
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Figure 6.16 Scatter and QQ plots of the hourly estimates (June, 2008) 
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Figure 6.17 Scatter and QQ plots of the hourly estimates (September, 2008) 
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Figure 6.18 Scatter and QQ plots of the hourly estimates (May, 2009) 
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Figure 6.19 Scatter and QQ plots of the hourly estimates (October, 2009) 
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Figure 6.20 Scatter and QQ plots of the hourly estimates (June, 2010) 
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Figure 6.21 Scatter and QQ plots of the hourly estimates (September, 2010) 
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6.4. Visual Examination of Merged Fields 

In this subsection, the hourly multisensor analyses are accumulated up to a 

month for visual assessment of the performance of each technique. Unlike cross 

validation, all data points within the analysis domain of GO, RO, OCK and CBPCK 

estimates are included in the scatter plot and the QQ plot. In this subsection, monthly 

bias corrected radar QPE is used (denotes as RO for brevity). 

 

6.4.1. Hourly Analysis 

Figure 6.22 shows an example of the hourly field of GO, RO, OCK and CBPCK 

analyses. The GO field is generated using ECBPK (Seo et al., 2014).The complementary 

nature of the multisensor analyses is readily seen. Note also that, compared to the OCK 

analysis, the CBPCK analysis shows increased precipitation in the convective cores, and 

that, to improve analysis, it is necessary to model anisotropy. 
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Figure 6.22 Examples of hourly precipitation analysis by GO (upper-left), RO (upper-

right), OCK (lower-left) and CBPCK (lower-right) valid at 9 pm on March 18, 2008. 
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6.4.2. Daily Analysis 

Figure 6.23 shows the examples of daily precipitation based on hourly GO  

(upper-left), RO (upper-right), OCK (lower-left) and CBPCK (lower-right) on March 18, 

2008. Note that, the daily fields are generated by accumulating the hourly analyses as 

opposed to by analysis using daily precipitation data. Similar observations to the hourly 

example above may be made. Figure 6.24 shows the scatter and QQ plots of daily 

precipitation for RO vs. GO (upper-left), OCK vs. GO (upper-right), CBPCK vs. GO 

(lower-left) and CBPCK vs. RO (lower-right) analysis for March 18, 2008. It may be seen 

that the RO severely underestimate GO in areas of heavy precipitation. By contrast, the 

OCK estimates are generally in line with the GO estimates albeit somewhat lower overall 

precipitation amounts. CBPCK is seen to be somewhat lower than GO but slightly higher 

than GO for large precipitation amounts.  
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Figure 6.23 Example fields of daily precipitation by GO (upper-left), RO (upper-right), 

OCK (lower-left) and CBPCK (lower-right) for 18 March 18, 2008. 
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Figure 6.24 Scatter and QQ plots of daily precipitation for RO vs. GO (upper-left), OCK vs. 

GO (upper-right), CBPCK vs. GO (lower-left) and CBPCK vs. RO (lower-right) analysis 

for March 18, 2008. 
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6.4.3. Monthly Analysis 

Figure 6.25 shows the example fields of monthly precipitation from GO (upper-

left), RO (upper-right), OCK (lower-left) and CBPCK (lower-right) for March, 2008. The 

figure strengthens the observations made above. It is interesting to note that CBPCK 

shows a more RO-like precipitation patterns than OCK. While it is not possible to verify 

due to lack of ground truth, the above suggests that CBPCK may be better able to 

capture the variability.  

 

Figure 6.25 Example fields of monthly precipitation from GO (upper-left), RO (upper-

right), OCK (lower-left) and CBPCK (lower-right) for March, 2008. 
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Figure 6.26 shows the scatter and QQ plots of monthly precipitation for RO vs. 

GO (upper-left), OCK vs. GO (upper-right), CBPCK vs. GO (lower-left) and CBPCK vs. 

RO (lower-right) analysis for March, 2008. Compared to the OCK estimates, the CBPCK 

is more closely in line with the GO estimates for large precipitation amounts but shows 

larger variability. 

 

Figure 6.26 Scatter and QQ plots of monthly precipitation for RO vs. GO (upper-left), 

OCK vs. GO (upper-right), CBPCK vs. GO (lower-left) and CBPCK vs. RO (lower-right) 

analysis for March, 2008. 
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Finally, Figure 6.27 shows the difference between the monthly OCK and CBPCK 

estimates for March, 2008. The difference ranges from negative 25 mm to positive 70 

mm. It may be seen that CBPCK significantly increases estimates in areas of heavy 

precipitation while decreasing over areas of light precipitation. 

 

 

Figure 6.27 Difference between the monthly OCK and CBPCK estimates for March, 2008. 
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Chapter 7  

Conclusions and Future Research Recommendations 

A new multisensor QPE technique, conditional bias-penalized cokriging 

(CBPCK), has been developed to improve estimation of heavy-to-extreme precipitation 

using radar quantitative precipitation estimates (QPE) and rain gauge observations. 

Based on extended CBPK (ECBPK, Seo et al., 2014) developed for gauge-only analysis, 

CBPCK explicitly reduces Type-II conditional bias (CB) in addition to error variance. For 

evaluation, multi-year cross validation is carried out for CBPCK, Single Optimal 

Estimation (SOE, Seo, 1998 a,b) which is currently used in the NWS’s Multisensor 

Precipitation Estimator (MPE), radar-only QPE from Q2 reanalysis (Nelson et al., 2010) 

and gauge-only analysis using ECBPK. SOE is a variant of ordinary cokriging (OCK) and 

is referred to here as OCK. The analysis domain is about 560 x 560 𝑘𝑚2 in the North 

Central Texas region. The analysis grid has a resolution of 0.01° (latitude) × 0.01° 

(longitude). The analysis period is from 2002 to 2011. The hourly rain gauge data used is 

from the Hydrometeorological Automated Data System (HADS, Kim et al., 2009). There 

are 199 rain gauges in the analysis domain. To quality-control the rain gauge data, a 

series of gauge-only and radar-gauge checks are carried out. The main findings and 

conclusions are as follows. CBPCK improves over OCK for estimation of hourly 

precipitation exceeding 30 mm. The margin of improvement depends most significantly 

on the fractional coverage (FC) of precipitation at the ungauged location. If FC is 50% or 

higher, CBPK reduces root mean square error (RMSE) over OCK by approximately 

8%for hourly precipitation greater than 40 mm. If FC is 90% or higher (i.e., it is 

precipitating with near certainty), the margin of improvement is approximately 15% for 

hourly precipitation greater than 70 mm. 
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  Bias correction to radar data improves the performance of both OCK and 

CBPCK. Compared to global bias correction, monthly bias correction is marginally more 

effective. The Q2 reanalysis product is found to be biased high globally by about 10%, 

and over and underestimates in the warm and cool seasons, respectively. The above 

findings suggest that monthly bias correction may suffice in multisensor precipitation 

reanalysis using the Q2 products (Nelson et al. 2010). Quality control of rain gauge 

observations remains a large challenge. For objective evaluation, there exists a clear 

need for high quality hourly rain gauge data. Visual examination of the analysis results at 

hourly, daily and monthly scales of accumulation indicates that, compared to OCK, 

CBPCK increases and decreases the amounts in areas of heavy and light precipitation, 

respectively, and that the CBPCK estimates tend to be more in line with the gauge-only 

estimates than the OCK estimates. There are indications, however, that the CBPCK 

estimates might be too high. Because the quality of the weighting factor, α, is only as 

good as that of the OCK estimates, there are occasions when CBPCK severely 

overestimates light precipitation due to mis-prognostication of the magnitude of 

precipitation at the ungauged location. For more skillful determination of α, it is necessary 

to incorporate additional sources of precipitation information, such as satellite QPE, 

lightning observations and numerical weather prediction (NWP) output. It points out that, 

to address different types of errors, it is necessary to utilize all available precipitation 

information.  
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