
UNIVERSITY OF TEXAS AT ARLINGTON

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PH.D. DISSERTATION

Algorithms For Building Compact
Representatives And Processing

Ranking Queries

By:

ABOLFAZL ASUDEH

Advisor:

DR. GAUTAM DAS

Committee Members:

DR. GERGELY ZÁRUBA

DR. CHENGKAI LI

DR. RAMEZ ELMASRI

16-OCT-2017

To my grandfather, Mohammad Asudeh.

1

ACKNOWLEDGEMENTS
I would like to thank my supervising professor Dr. Gautam Das for his constant

support, patience, invaluable advice, brilliant ideas, and for teaching me the team
work and research. I thank Dr. Gergely Zaruba who always took my back and
supported me in past 5+ years, like a good friend. I also want to thank Dr. Changkai
Li for the time he spent helping me, and Dr. Ramez Elmasri for his advice.

I want to extend my appreciation to my kind collaborators, especially Dr. Nan
Zhang, Dr. Nick Koudas, and Dr. Divesh Srivastava, my current and past lab-mates,
my teachers, and the CSE department for the support during my PhD.

I cannot be grateful enough to my parents who sacrificed their life for my
success, my brother Omid, my sisters Zeinab and Bita, and my best friend and wife
Hadis.

2

1 Abstract

Ranked retrieval model has rapidly replaced the traditional Boolean retrieval model
as the de facto way for query processing when a large portion of (big) data matches
a given query. Returning all the query results in these cases is not efficient nor
informative. Unlike the Boolean retrieval model, the ranked retrieval model orders
the matching tuples according to an often proprietary ranking function and returns
the top-k of them. In this dissertation, we study ranked retrieval model and propose
exact and approximate algorithms for (i) building representatives for fast query
processing, and (ii) online processing of ranking queries. We study the problem
both in the general cases and in the special environment of web databases, a natural
fit for the ranked retrieval model.

We start the dissertation by building representatives that serve as indices for
ranking query processing. A critical observation is that skyline, also known as
Pareto-optimal, (resp. k sky-band) is a set that contains the top-1 (resp. top-k) for
every possible ranking function following the monotonic order of attribute values.
Thus, first, we study the problem crowdsourcing Pareto-optimal object finding,
in the case where objects do not have explicit attributes and preference relations
on objects are strict partial orders. Then, we initiate the research into the novel
problem of skyline discovery over hidden web databases, which enables a wide
variety of innovative third-party applications over one or multiple web databases.

A major problem with the ranking queries representatives, i.e., skyline and
convex hull, is that as in real-world applications the representative can be a
significant portion of the data, its performance in the ranking query processing is
greatly reduced. Thus, computing a subset limited to r tuples that minimize the
user’s dissatisfaction with the result from the limited set is of interest. We make
several fundamental theoretical as well as practical advances in developing such a
compact set.

Finally, considering the limitations of top-k indices, while focusing on the
client-server databases, we propose query reranking third-party service that uses
public interface of the database to enable the on-the-fly processing of ranking
queries.

3

Table of Contents

1 Abstract 3

2 Introduction 8
2.1 Pareto-Optimal Object Finding by Pairwise Comparisons 8
2.2 Discovering the Skyline of Web Databases 9
2.3 Regret-ratio Minimizing Set . 9
2.4 Query Reranking Service . 10

3 Pareto-Optimal Object Finding by Pairwise Comparisons 11
3.1 General Framework . 16

3.1.1 Question Selection . 20
3.1.2 Resolving Unusual Contradictions in Question Outcomes . 24

3.2 Micro-Ordering in Question Selection 26
3.2.1 Random Question (RandomQ) 26
3.2.2 Random Pair (RandomP) 27
3.2.3 Pair with Fewest Remaining Questions (FRQ) 29

3.3 Experiments . 33
3.3.1 Efficiency and Scalability 33
3.3.2 Experiments Using a Real Crowdsourcing Marketplace . . 37

3.4 Related Work . 38
3.5 Final Remarks . 39

4 Discovering the Skyline of Web Databases 41
4.1 Preliminaries . 45

4.1.1 Model of Hidden Database 45
4.1.2 Taxonomy of Attribute Search Interface 47
4.1.3 Problem Definition . 49

4.2 Skyline Discovery for SQ-DB 50
4.2.1 Key Idea: Algorithm SQ-DB-SKY 52
4.2.2 Query-Cost Analysis . 56

4.3 Skyline Discovery for RQ-DB 61

4

4.3.1 Key Idea: Algorithm RQ-DB-SKY 62
4.3.2 Query-Cost Analysis . 66

4.4 Skyline Discovery for PQ-DB 67
4.4.1 2D Case . 67
4.4.2 Higher-D Case: Negative Results 71
4.4.3 Algorithm PQ-DB-SKY 77

4.5 Skyline Discovery for Mixed-DB 83
4.5.1 Overview . 84
4.5.2 Details for Leveraging Two-Ended Ranges 85
4.5.3 Algorithm MQ-DB-SKY 86

4.6 Extensions . 87
4.6.1 Anytime Property . 87
4.6.2 Sky Band . 88

4.7 Experimental Evaluation . 91
4.7.1 Experimental Setup . 91
4.7.2 Experiments over Real-World Dataset 94
4.7.3 Online Demonstration 97

4.8 Related Work . 99
4.9 Final Remarks . 100

5 Regret-ratio Minimizing Set: A Compact Maxima Representative 101
5.1 Motivation . 101
5.2 Technical Highlights . 103

5.2.1 Summary of Contributions 104
5.3 Preliminaries . 105

5.3.1 Problem Definition . 108
5.4 2D Regret-ratio Minimizing Set 108

5.4.1 Graph Modeling . 109
5.4.2 Baseline Solution . 113
5.4.3 Dynamic Programming Algorithm 114

5.5 HD Regret-ratio Minimizing Set 116
5.5.1 Problem with Existing Heuristic Solution 116

5

5.5.2 Conceptual Model . 117
5.5.3 Matrix Discretization . 118
5.5.4 HD-RRMS Algorithm 122
5.5.5 Practical HD-RRMS Algorithm 125

5.6 Discussion . 127
5.6.1 Top-k Extension . 127
5.6.2 Alternative Matrix Discretization 128

5.7 Experiments . 128
5.7.1 Experimental Setup . 128
5.7.2 Two-dimensional Experimental Result 132
5.7.3 High-dimensional Experimental Result 135

5.8 Related Work . 141
5.9 Final Remarks . 143

6 Query Reranking As A Service 144
6.1 Preliminaries . 149

6.1.1 Database Model . 149
6.1.2 Problem Definition . 150

6.2 1D-RERANK . 152
6.2.1 Baseline Solution and Its Problem 152
6.2.2 1D-RERANK . 155

6.3 MD-RERANK . 162
6.3.1 Problem with TA over 1D-RERANK 163
6.3.2 MD-Baseline . 165
6.3.3 MD-Binary . 168
6.3.4 MD-RERANK . 173

6.4 discussions . 173
6.5 Experimental Evaluation . 175

6.5.1 Experimental Setup . 175
6.5.2 1D Experiments . 177
6.5.3 MD Experiments . 181

6.6 Related Work . 183

6

6.7 Final Remarks . 184

7 List of Publications 185

7

2 Introduction

In this dissertation, we present efficient algorithms for building compact represen-
tatives and processing ranking queries. When a large portion of (big) data matches
a given query, returning all the query results in these cases is not efficient nor
informative Thus, as a natural fit, ranked retrieval model has become the de facto
way for query processing in these environments. This model orders the matching
tuples according to an often proprietary ranking function and returns the top-k of
them. Focusing on the ranked retrieval model, we propose exact and approximate
algorithms for (i) building representatives for fast query processing, and (ii) online
processing of ranking queries. We study the problem both in the general cases and
in the special environment of web databases, a natural fit for the ranked retrieval
model. The following are the studies problems in this dissertation.

2.1 Pareto-Optimal Object Finding by Pairwise Comparisons

Crowdsourcing Pareto-optimal object finding has applications in public opinion
collection, group decision making, and information exploration. Departing from
prior studies on crowdsourcing skyline and ranking queries, it considers the case
where objects do not have explicit attributes and preference relations on objects are
strict partial orders. The partial orders are derived by aggregating crowdsourcers’
responses to pairwise comparison questions. The goal is to find all Pareto-optimal
objects by the fewest possible questions. It employs an iterative question-selection
framework. Guided by the principle of eagerly identifying non-Pareto optimal
objects, the framework only chooses candidate questions which must satisfy three
conditions. This design is both sufficient and efficient, as it is proven to find a
short terminal question sequence. The framework is further steered by two ideas—
macro-ordering and micro-ordering. By different micro-ordering heuristics, the
framework is instantiated into several algorithms with varying power in pruning
questions. Experiment results using both real crowdsourcing marketplace and
simulations exhibited not only orders of magnitude reductions in questions when
compared with a brute-force approach, but also close-to-optimal performance from

8

the most efficient instantiation.

2.2 Discovering the Skyline of Web Databases

Many web databases are “hidden” behind proprietary search interfaces that enforce
the top-k output constraint, i.e., each query returns at most k of all matching tuples,
preferentially selected and returned according to a proprietary ranking function. In
this paper, we initiate research into the novel problem of skyline discovery over
top-k hidden web databases. Since skyline tuples provide critical insights into
the database and include the top-ranked tuple for every possible ranking function
following the monotonic order of attribute values, skyline discovery from a hidden
web database can enable a wide variety of innovative third-party applications
over one or multiple web databases. Our research in the paper shows that the
critical factor affecting the cost of skyline discovery is the type of search interface
controls provided by the website. As such, we develop efficient algorithms for
three most popular types, i.e., one-ended range, free range and point predicates,
and then combine them to support web databases that feature a mixture of these
types. Rigorous theoretical analysis and extensive real-world online and offline
experiments demonstrate the effectiveness of our proposed techniques and their
superiority over baseline solutions.

2.3 Regret-ratio Minimizing Set

Finding the maxima of a database based on a user preference, especially when the
ranking function is a linear combination of the attributes, has been the subject of
recent research. A critical observation is that the convex hull is the subset of tuples
that can be used to find the maxima of any linear function. However, in real world
applications the convex hull can be a significant portion of the database, and thus
its performance is greatly reduced. Thus, computing a subset limited to r tuples
that minimizes the regret ratio (a measure of the user’s dissatisfaction with the
result from the limited set versus the one from the entire database) is of interest. In
this paper, we make several fundamental theoretical as well as practical advances

9

in developing such a compact set. In the case of two dimensional databases, we
develop an optimal linearithmic time algorithm by leveraging the ordering of
skyline tuples. In the case of higher dimensions, the problem is known to be NP-
complete. As one of our main results of this paper, we develop an approximation
algorithm that runs in linearithmic time and guarantees a regret ratio, within any
arbitrarily small user-controllable distance from the optimal regret ratio. The
comprehensive set of experiments on both synthetic and publicly available real
datasets confirm the efficiency, quality of output, and scalability of our proposed
algorithms.

2.4 Query Reranking Service

The ranked retrieval model has rapidly become the de facto way for search query
processing in client-server databases, especially those on the web. Despite of
the extensive efforts in the database community on designing better ranking
functions/mechanisms, many such databases in practice still fail to address the
diverse and sometimes contradicting preferences of users on tuple ranking, perhaps
(at least partially) due to the lack of expertise and/or motivation for the database
owner to design truly effective ranking functions. This paper takes a different
route on addressing the issue by defining a novel query reranking problem, i.e.,
we aim to design a third-party service that uses nothing but the public search
interface of a client-server database to enable the on-the-fly processing of queries
with any user-specified ranking functions (with or without selection conditions),
no matter if the ranking function is supported by the database or not. We analyze
the worst-case complexity of the problem and introduce a number of ideas, e.g.,
on-the-fly indexing, domination detection and virtual tuple pruning, to reduce the
average-case cost of the query reranking algorithm. We also present extensive
experimental results on real-world datasets, in both offline and live online systems,
that demonstrate the effectiveness of our proposed techniques.

10

3 Pareto-Optimal Object Finding by Pairwise Com-
parisons

The growth of user engagement and functionality in crowdsourcing platforms has
made computationally challenging tasks unprecedentedly convenient. The subject
of our study is one such task—crowdsourcing Pareto-optimal object finding. The
concept of Pareto-optimal objects resembles that of skyline objects [1], but there
are several critical differences which shall be discussed later in this section, § 3.4,
and Table 4. Consider a set of objects O and a set of criteria C for comparing the
objects. An object x ∈ O is Pareto-optimal if and only if x is not dominated by
any other object, i.e., @y ∈ O such that y�x. An object y dominates x (denoted
y�x) if and only if x is not better than y by any criterion and y is better than x

by at least one criterion, i.e., ∀c ∈ C : x �c y and ∃c ∈ C : y �c x. If x and
y do not dominate each other (i.e., x � y and y � x), we denote it by x∼y. The
preference (better-than) relation Pc (also denoted �c) for each c ∈ C is a binary
relation subsumed by O ×O, in which a tuple (x, y) ∈ Pc (also denoted x�cy) is
interpreted as “x is better than (preferred over) y with regard to criterion c”. Hence,
if (x, y) /∈ Pc (also denoted x�cy), x is not better than y by criterion c. We say x

and y are indifferent regarding c (denoted x∼cy), if (x, y) /∈ Pc ∧ (y, x) /∈ Pc. We
consider the setting where each Pc is a strict partial order as opposed to a bucket
order [2] or a total order, i.e., Pc is irreflexive (∀x : (x, x) /∈ Pc) and transitive
(∀x, y : (x, y) ∈ Pc ∧ (y, z) ∈ Pc ⇒ (x, z) ∈ Pc), which together imply asymmetry
(∀x, y : (x, y) ∈ Pc ⇒ (y, x) /∈ Pc). We note that such definition of better-than
relation has been widely used in modeling preferences (e.g., [3–5]).

Pareto-optimal object finding lends itself to applications in several areas,
including public opinion collection, group decision making, and information
exploration, exemplified by the following motivating examples.

Example 1 (Collecting Public Opinion and Group Decision Making). Consider
a set of movies O={a,b,c,d,e,f} and a set of criteria C={story, music, acting}
(denoted by s, m, a in the ensuing discussion). Fig.1a shows the individual
preference relations (i.e., strict partial orders), one per criterion. Each strict

11

(a) Preference relations (i.e., strict partial orders) on three criteria.

ANSWER
QUESTION � ∼ ≺ OUTCOME

a?sb 1 0 4 b�sa
a?sc 0 0 5 c�sa
a?sd 0 2 3 d�sa
a?se 4 0 1 a�se
a?sf 3 1 1 a�sf
b?sc 1 2 2 b∼sc
b?sd 1 3 1 b∼sd
b?se 5 0 0 b�se
b?sf 4 1 0 b�sf
c?sd 3 2 0 c�sd
c?se 4 0 1 c�se
c?sf 3 1 1 c�sf
d?se 3 0 2 d�se
d?sf 3 2 0 d�sf
e?sf 1 1 3 f�se

(b) Deriving the preference relation for criterion story by pairwise comparisons. Each
comparison is performed by 5 workers. θ = 60%.

Figure 1: Finding Pareto-optimal movies by story, music, acting.

partial order is graphically represented as a directed acyclic graph (DAG), more
specifically a Hasse diagram. The existence of a simple path from x to y in the
DAG means x is better than (preferred to) y by the corresponding criterion. For
example, (a, e) ∈ Pm (a�me), i.e., a is better than e by music. (b, d) /∈ Ps and
(d, b) /∈ Ps; hence b∼sd. The partial orders define the dominance relation between
objects. For instance, movie c dominates d (c�d), because c is preferred than d on
story and music and they are indifferent on acting, i.e., c�sd, c�md, and c∼ad; a

and b do not dominate each other (a∼b), since b�sa, a�mb and b�aa. Based on
the three partial orders, b is the only Pareto-optimal object, since no other objects
dominate it and every other object is dominated by some object. Note that tasks
such as the above one may be used in both understanding the public’s preference

12

Figure 2: A question that asks to compare two movies by story.
(i.e., the preference relations are collected from a large, anonymous crowd) and
making decisions for a target group (i.e., the preference relations are from a small
group of people).

Example 2 (Information Exploration). Consider a photography enthusiast, Amy,
who is drown in a large number of photos she has taken and wants to select a
subset of the better ones. She resorts to crowdsourcing for the task, as it has
been exploited by many for similar tasks such as photo tagging, location/face
identification, sorting photos by (guessed) date, and so on. Particularly, she
would like to choose Pareto-optimal photos with regard to color, sharpness and
landscape.

By definition, the crux of finding Pareto-optimal objects lies in obtaining the
preference relations, i.e., the strict partial orders on individual criteria. Through
crowdsourcing, the preference relations are derived by aggregating the crowd’s
responses to pairwise comparison tasks. Each such comparison between objects x

and y by criterion c is a question, denoted x?cy, which has three possible outcomes—
x�cy, y�cx, and x∼cy, based on the crowd’s answers. An example is as follows.

To the best of our knowledge, this paper is the first work on crowdsourcing
Pareto-optimal object finding. The definition of Pareto-optimal objects follows
the concept of Pareto composition of preference relations in [4]. It also resembles
the definition of skyline objects on totally-ordered attribute domains (pioneered
by [1]) and partially-ordered domains [5–8]. However, except for [9], previous
studies on preference and skyline queries do not use the crowd; they focus on
query processing on existing data. On the contrary, we examine how to ask the
crowd as few questions as possible in obtaining sufficient data for determining

13

Pareto-optimal objects. Furthermore, our work differs from preference and skyline
queries (including [9]) in several radical ways:

• The preference relation for a criterion is not governed by explicit scores or values
on object attributes (e.g., sizes of houses, prices of hotels), while preference and
skyline queries on both totally- and partially-ordered domains assumed explicit
attribute representation. For many comparison criteria, it is difficult to model
objects by explicit attributes, not to mention asking people to provide such values
or scores; people’s preferences are rather based on complex, subtle perceptions,
as demonstrated in Examples 1 and 2.
• Due to the above reason, we request crowdsourcers to perform pairwise compar-

isons instead of directly providing attribute values or scores. On the contrary, [9]
uses the crowd to obtain missing attribute values. Pairwise comparison is
extensively studied in social choice and welfare, preferences, and voting. It
is known that people are more comfortable and confident with comparing objects
than directly scoring them, since it is easier, faster, and less error-prone [10].
• The crowd’s preference relations are modeled as strict partial orders, as opposed

to bucket orders or full orders. This is not only a direct effect of using pairwise
comparisons instead of numeric scores or explicit attribute values, but also a
reflection of the psychological nature of human’s preferences [3, 4], since it is not
always natural to enforce a total or bucket order. Most studies on skyline queries
assume total/bucket orders, except for [5–8] which consider partial orders.

Our objective is to find all Pareto-optimal objects with as few questions as
possible. A brute-force approach will obtain complete preference relations via
pairwise comparisons of all object pairs by every criterion. However, without
such exhaustive comparisons, incomplete knowledge collected from a small set of
questions may suffice in discerning all Pareto-optimal objects. Toward this end, it
may appear that we can take advantage of the transitivity of object dominance—a
cost-saving property often exploited in skyline query algorithms (e.g., [1]) to
exclude dominated objects from participating in any future comparison once
they are detected. But, we shall prove that object dominance in our case is not

14

transitive (Property 1), due to the lack of explicit attribute representation. Hence,
the aforementioned cost-saving technique is inapplicable.

Aiming at Pareto-optimal object finding by a short sequence of questions,
we introduce a general, iterative algorithm framework (§ 3.1). Each iteration
goes through four steps—question selection, outcome derivation, contradiction
resolution, and termination test. In the i-th iteration, a question qi=x?cy is selected
and its outcome is determined based on crowdsourcers’ answers. On unusual
occasions, if the outcome presents a contradiction to the obtained outcomes of
other questions, it is changed to the closest outcome such that the contradiction
is resolved. Based on the transitive closure of the outcomes to the questions so
far, the objects O are partitioned into three sets—O√ (objects that must be Pareto-
optimal), O× (objects that must be non-Pareto optimal), and O? (objects whose
Pareto-optimality cannot be fully discerned by the incomplete knowledge so far).
WhenO? becomes empty, O√ contains all Pareto-optimal objects and the algorithm
terminates. The question sequence so far is thus a terminal sequence.

There are a vast number of terminal sequences. Our goal is to find one that is
as short as possible. We observe that, for a non-Pareto optimal object, knowing
that it is dominated by at least one object is sufficient, and we do not need to
find all its dominating objects. It follows that we do not really care about the
dominance relation between non-Pareto optimal objects and we can skip their
comparisons. Hence, the overriding principle of our question selection strategy is
to identify non-Pareto optimal objects as early as possible. Guided by this principle,
the framework only chooses from candidate questions which must satisfy three
conditions (§ 3.1.1). This design is sufficient, as we prove that an empty candidate
question set implies a terminal sequence, and vice versa (Proporty 2). The design
is also efficient, as we further prove that, if a question sequence contains non-
candidate questions, there exists a shorter or equally long sequence with only
candidate questions that produces the same O×, matching the principle of eagerly
finding non-Pareto optimal objects (Theorem 1). Moreover, by the aforementioned
principle, the framework selects in every iteration such a candidate question x?cy

that x is more likely to be dominated by y. The selection is steered by two ideas—

15

macro-ordering and micro-ordering. By using different micro-ordering heuristics,
the framework is instantiated into several algorithms with varying power in pruning
questions (§ 3.2). We also derive a lower bound on the number of questions
required for finding all Pareto-optimal objects (Theorem 2).

3.1 General Framework

By the definition of Pareto-optimal objects, the key to finding such objects is to
obtain the preference relations, i.e., the strict partial orders on individual criteria.
Toward this end, the most basic operation is to perform pairwise comparison—
given a pair of objects x and y and a criterion c, determine whether one is better
than the other (i.e., (x, y) ∈ Pc or (y, x) ∈ Pc) or they are indifferent (i.e., (x, y) /∈
Pc ∧ (y, x) /∈ Pc).

The problem of crowdsourcing Pareto-optimal object finding is thus essentially
crowdsourcing pairwise comparisons. Each comparison task between x and y by
criterion c is presented to the crowd as a question q (denoted x?cy). The outcome to
the question (denoted rlt(q)) is aggregated from the crowd’s answers. Given a set
of questions, the outcomes thus contain an (incomplete) knowledge of the crowd’s
preference relations for various criteria. Fig.2 illustrates the screenshot of one such
question (comparing two movies by story) used in our empirical evaluation. We
note that there are other viable designs of question, e.g., only allowing the first two
choices (x�cy and y�cx). Our work is agnostic to the specific question design.

Given n objects and r criteria, a brute-force approach will perform pairwise
comparisons on all object pairs by every criterion, which leads to r · n · (n−1)/2

comparisons. The corresponding question outcomes amount to the complete
underlying preference relations. The quadratic nature of the brute-force approach
renders it wasteful. The bad news is that, in the worst case, we cannot do better
than it. To understand this, consider the scenario where all objects are indifferent
by every criterion. If any comparison x?cy is skipped, we cannot determine if x and
y are indifferent or if one dominates another.

In practice, though, the outlook is much brighter. Since we look for only
Pareto-optimal objects, it is an overkill to obtain complete preference relations.

16

Figure 3: The general framework.

Specifically, for a Pareto-optimal object, knowing it is not dominated by any object
is sufficient, and we do not need to find all the objects dominated by it; for a non-
Pareto optimal object, knowing it is dominated by at least one object is sufficient,
and we do not need to find all its dominating objects. Hence, without exhausting
all possible comparisons, incomplete knowledge on preference relations collected
from a set of questions may suffice in fully discerning all Pareto-optimal objects.

Our objective is to find all Pareto-optimal objects with as few questions as
possible. By pursuing this goal, we are applying a very simple cost model—the
cost of a solution only depends on its number of questions. Although the cost
of a task in a crowdsourcing environment may depend on monetary cost, latency
and other factors, the number of questions is a generic, platform-independent cost
measure and arguably proportionally correlates with the real cost. Therefore, we
assume a sequential execution model which asks the crowd an ordered sequence of
questions Q = 〈q1, ..., qn〉—it only asks qi+1 after rlt(qi) is obtained. Thereby, we
do not consider asking multiple questions concurrently. Furthermore, in discussion
of our approach, the focus shall be on how to find a short question sequence instead
of the algorithms’ complexity.

To find a short sequence, we design a general algorithm framework, as displayed
in Fig.3. Alg.1 shows the framework’s pseudo-code. Its execution is iterative.
Each iteration goes through four steps—question selection, outcome derivation,
contradiction resolution, and termination test. In the i-th iteration, a question
qi=x?cy is selected and presented to the crowd. The question outcome rlt(qi)
is derived from the crowd’s aggregated answers. On unusual occasions, if the

17

Algorithm 1 The general framework
Input. O : the set of objects
Output. O√ : Pareto-optimal objects of O

1: while O? = {} do
2: x?cy ← question selection
3: rlt(x?cy)← outcome derivation// resolve conflict, if any

4: R(Q)← R(Q) ∪ {rlt(x?cy)}
5: (O√, O×, O?) ← partitioning objects based on R+(Q)// R+(Q) is the

transitive closure of R(Q)

6: end while

outcome presents a contradiction to the obtained outcomes of other questions so
far, it is changed to the closest outcome to resolve contradiction. By computing
R+(Qi), the transitive closure of R(Qi)—the obtained outcomes to questions so
far 〈q1, . . . , qi〉, the outcomes to certain questions are derived and such questions
will never be asked. Based on R+(Qi), if every object is determined to be either
Pareto-optimal or non-Pareto optimal without uncertainty, the algorithm terminates.

Below, we discuss outcome derivation and termination test. § 3.1.1 examines
the framework’s key step—question selection, and § 3.1.2 discusses contradiction
resolution.

Outcome derivation Given a question x?cy, its outcome rlt(x?cy) must be ag-
gregated from multiple crowdsourcers, in order to reach a reliable result with
confidence. Particularly, one of three mutually-exclusive outcomes is determined
based on k crowdsourcers’ answers to the question:

rlt(x?cy) =

x �c y if #x

k
≥ θ

y �c x if #y
k
≥ θ

x ∼c y (x �c y ∧ y �c x) otherwise
(1)

where θ is such a predefined threshold that θ>50%, #x is the number of crowd-
sourcers (out of k) preferring x over y on criterion c, and #y is the number of
crowdsourcers preferring y over x on c. Fig.1b shows the outcomes of all 15

questions according to Equation (1) for comparing movies by story using k=5 and

18

θ=60%. Other conceivable definitions may be used in determining the outcome
of x?cy. For example, the outcome may be defined as the choice (out of the
three possible choices) that receives the most votes from the crowd. The ensuing
discussion is agnostic to the specific definition.

The current framework does not consider different levels of confidence on
question outcomes. The confidence on the outcome of a question may be repre-
sented as a probability value based on the distribution of crowdsourcers’ responses.
An interesting direction for future work is to find Pareto-optimal objects in prob-
abilistic sense. The confidence may also reflect the crowdsourcers’ quality and
credibility [11].

Termination test In each iteration, Alg.1 partitions the objects into three sets by
their Pareto-optimality based on the transitive closure of question outcomes so far.
If every object’s Pareto-optimality has been determined without uncertainty, the
algorithm terminates. Details are as follows.

Definition 1 (Transitive Closure of Outcomes). Given a set of questionsQ=〈q1, ..., qn〉,
the transitive closure of their outcomesR(Q)= {rlt(q1), ..., rlt(qn)} isR+(Q)={x∼cy
| x∼cy ∈ R(Q)}

⋃
{x�cy | (x�cy ∈ R(Q)) ∨ (∃ w1,w2,...,wm : w1=x, wm=y

∧ (∀0 < i < m : wi �c wi+1 ∈ R(Q))) }.

In essence, the transitive closure dictates x�cz without asking the question
x?cz, if the existing outcomes R(Q) (and recursively the transitive closure R+(Q))
contains both x�cy and y�cz. Based on R+(Q), the objects O can be partitioned
into three sets:

O√ = {x ∈ O | ∀y ∈ O : (∃c ∈ C : x�cy ∈ R+(Q))∨(∀c ∈ C : x∼cy ∈ R+(Q))};

O× = {x ∈ O | ∃y ∈ O : (∀c ∈ C : y�cx ∈ R+(Q)∨ x∼cy ∈ R+(Q)) ∧ (∃c ∈ C :

y�cx ∈ R+(Q))};

O? = O\(O√ ∪O×).

O√ contains objects that must be Pareto-optimal, O× contains objects that cannot
possibly be Pareto-optimal, and O? contains objects for which the incomplete

19

knowledgeR+(Q) is insufficient for discerning their Pareto-optimality. The objects
in O? may turn out to be Pareto-optimal after more comparison questions. If the set
O? for a question sequence Q is empty, O√ contains all Pareto-optimal objects and
the algorithm terminates. We call such a Q a terminal sequence, defined below.

Definition 2 (Terminal Sequence). A question sequence Q is a terminal sequence
if and only if, based on R+(Q), O?=∅.

3.1.1 Question Selection

Given objects O and criteria C, there can be a huge number of terminal sequences.
Our goal is to find a sequence as short as possible. As Fig.3 and Alg.1 show,
the framework is an iterative procedure of object partitioning based on question
outcomes. It can also be viewed as the process of moving objects from O? to O√

and O×. Once an object is moved to O√ or O×, it cannot be moved again. With
regard to this process, we make two important observations, as follows.

• In order to declare an object x not Pareto-optimal, it is sufficient to just know x is
dominated by another object. It immediately follows that we do not really care
about the dominance relationship between objects in O× and thus can skip the
comparisons between such objects. Once we know x∈ O? is dominated by another
object, it cannot be Pareto-optimal and is immediately moved to O×. Quickly
moving objects into O× can allow us skipping many comparisons between objects
in O×.

• In order to declare an object x Pareto-optimal, it is necessary to know that no
object can dominate x. This means we may need to compare x with all other
objects including non Pareto-optimal objects. As an extreme example, it is
possible for x to be dominated by only a non-Pareto optimal object y but not
by any other object (not even the objects dominating y). This is because object
dominance based on preference relations is intransitive, which is formally stated
in Property 1.

Property 1 (Intransitivity of Object Dominance). Object dominance based on
the preference relations over a set of criteria is not transitive. Specifically, if x�y

20

Figure 4: Intransitivity of object dominance: x�y, y�z, z�x.

and y�z, it is not necessarily true that x�z. In other words, it is possible that x∼z

or even z�x.

We show the intransitivity of object dominance by an example. Consider objects
O = {x,y,z}, criteria C = {c1, c2, c3}, and the preference relations in Fig.4. Three
dominance relationships violate transitivity: (i) x�y (based on x�c1y, x∼c2y,
x∼c3y), (ii) y�z (based on y∼c1z, y�c2z, y∼c3z), and (iii) z�x (based on z∼c1x,
z∼c2x, z�c3x). As another example, in Fig.1a, b�c (since b∼sc, b∼mc, b�ac,
where s =story, m =music, a =acting) and c�a (since c�sa, c∼ma, c�aa), but
a∼b (since b�sa, a�mb, b�aa) where transitivity does not hold.

analysis [1]. The contradiction is due to the lack of explicit attribute representation—
in our case two objects may be considered equally good on a criterion if they are
indifferent, while in skyline analysis they are equally good regarding an attribute
if they bear identical values. Skyline query algorithms exploit the transitivity of
object dominance to reduce execution cost, because an object can be immediately
excluded from further comparison once it is found dominated by any other object.
However, due to Property 1, we cannot leverage such pruning anymore.

Based on these observations, the overriding principle of our question selection
strategy (Alg.2) is to identify non-Pareto optimal objects as early as possible.
At every iteration of the framework (Alg.1), we choose to compare x and y by
criterion c (i.e., ask question x?cy) where x?cy belongs to candidate questions. Such
candidate questions must satisfy three conditions (Definition 3). There can be many
candidate questions. In choosing the next question, by the aforementioned principle,
we select such x?cy that x is more likely to be dominated by y. More specifically,
we design two ordering heuristics—macro-ordering and micro-ordering. Given the
three object partitions O√, O× and O?, the macro-ordering idea is simply that we
choose x from O? (required by one of the conditions on candidate questions) and y

21

Algorithm 2 Question selection
Input. R+(Qi), O√(Qi), O?(Qi), O×(Qi)
Output. Q1

can or Q2
can

1: Qcan ← {x?cy | rlt(x?cy) /∈ R+(Qi) ∧ x ∈ O?(Qi) ∧ (@c′ ∈ C : x �c′ y ∈
R+(Qi))}

2: Q1
can ← {x?cy | x?cy ∈ Qcan, y /∈ O×(Qi)}

3: Q2
can ← {x?cy | x?cy ∈ Qcan, y ∈ O×(Qi)}

4: // Macro-ordering: consider Q1
can before Q2

can.

5: if Q1
can 6= ∅ then

6: return micro-ordering(Q1
can)

7: else
8: return micro-ordering(Q2

can)
9: end if

from O√ ∪ O? (if possible) or O× (otherwise). The reason is that it is less likely
for an object in O× to dominate x. Micro-ordering further orders all candidate
questions satisfying the macro-ordering heuristic. In § 3.2, we instantiate the
framework into a variety of solutions with varying power in pruning questions, by
using different micro-ordering heuristics.

Definition 3 (Candidate Question). Given Q, the set of asked questions so far, x?cy

is a candidate question if and only if it satisfies the following conditions:
1. The outcome of x?cy is unknown yet, i.e., rlt(x?cy) /∈ R+(Q);
2. x must belong to O?;
3. Based on R+(Q), the possibility of y�x must not be ruled out yet, i.e., @c′ ∈ C :

x �c′ y ∈ R+(Q).
We denote the set of candidate questions byQcan. Thus,Qcan = {x?cy | rlt(x?cy) /∈

R+(Q) ∧ x ∈ O? ∧ (@c′ ∈ C : x �c′ y ∈ R+(Q))}.

If no candidate question exists, the question sequence Q is a terminal sequence.
The reverse statement is also true, i.e., upon a terminal sequence, there is no
candidate question left. This is formalized in the following property.

Property 2. Qcan = ∅ if and only if O? = ∅.

Proof. The proof is omitted due to space limitations and can be found in the
technical report [12].

22

Questions violating the three conditions may also lead to terminal sequences.
However, choosing only candidate questions matches our objective of quickly
identifying non-Pareto optimal objects. Below we justify the conditions.

Condition (1): This is straightforward. If R(Q) or its transitive closure already
contains the outcome of x?cy, we do not ask the same question again.

Condition (2): This condition essentially dictates that at least one of the two
objects in comparison is from O?. (If only one of them belongs to O?, we make
it x.) Given a pair x and y, if neither is from O?, there are three scenarios—(1)
x ∈ O√, y ∈ O√, (2) x ∈ O√, y ∈ O× or x ∈ O×, y ∈ O√, (3) x ∈ O×, y ∈ O×.
Once we know an object is in O√ or O×, its membership in such a set will never
change. Hence, we are not interested in knowing the dominance relationship
between objects from O√ and O× only. In all these three scenarios, comparing x

and y is only useful for indirectly determining (by transitive closure) the outcome
of comparing other objects. Intuitively speaking, such indirect pruning is not as
efficient as direct pruning.

Condition (3): This condition requires that, when x?cy is chosen, we cannot
rule out the possibility of y dominating x. Otherwise, if y cannot possibly dominate
x, the outcome of x?cy cannot help prune x. Note that, in such a case, comparing
x and y by c may help prune y, if y still belongs to O? and x may dominate y.
Such possibility is not neglected and is covered by a different representation of the
same question—y?cx, i.e., swapping the positions of x and y in checking the three
conditions. If it is determined x and y cannot dominate each other, then their further
comparison is only useful for indirectly determining the outcome of comparing
other objects. Due to the same reason explained for condition (2), such indirect
pruning is less efficient.

The following simple Property 3 helps to determine whether y�x is possible: If
x is better than y by any criterion, then we can already rule out the possibility of y�x,
without knowing the outcome of their comparison by every criterion. This allows
us to skip further comparisons between them. Its correctness is straightforward
based on the definition of object dominance.

Property 3 (Non-Dominance Property). At any given moment, suppose the set

23

of asked questions is Q. Consider two objects x and y for which the comparison
outcome is not known for every criterion, i.e., ∃c such that rlt(x?cy) /∈ R+(Q). It
can be determined that y�x if ∃c ∈ C such that x�cy∈ R+(Q).

In justifying the three conditions in defining candidate questions, we intuitively
explained that indirect pruning is less efficient—if it is known that x does not belong
to O? or y cannot possibly dominate x, we will not ask question x?cy. We now
justify this strategy theoretically and precisely. Consider a question sequence
Q=〈q1, . . . , qn〉. We use O√(Q), O?(Q), O×(Q) to denote object partitions
according to R+(Q). For any question qi, the subsequence comprised of its
preceding questions is denoted Qi−1=〈q1, . . . , qi−1〉. If qi was not a candidate
question when it was chosen (i.e., after R(Qi−1) was obtained), we say it is a non-
candidate. The following Theorem 1 states that, if a question sequence contains
non-candidate questions, we can replace it by a shorter or equally long sequence
without non-candidate questions that produces the same set of dominated objects
O×. Recall that the key to our framework is to recognize dominated objects and
move them into O× as early as possible. Hence, the new sequence will likely lead
to less cost when the algorithm terminates. Hence, it is a good idea to only select
among candidate questions.

Theorem 1. If Q contains non-candidate questions, there exists a question se-
quence Q′ without non-candidate questions such that |Q′| ≤ |Q| and O×(Q′) =

O×(Q).
Proof. We prove by demonstrating how to transform Q into such a Q′. Given any
non-candidate question qi = x?cy in Q, we remove it and, when necessary, replace
several questions. The decisions and choices are partitioned into three mutually
exclusive scenarios, which correspond to violations of the three conditions in
Definition 3. The detailed proof is omitted due to space limitations and can be
found in the technical report [12].

3.1.2 Resolving Unusual Contradictions in Question Outcomes

A preference relation can be more accurately derived, if more input is collected
from the crowd. However, under practical constraints on budget and time, the

24

limited responses from the crowd (k answers per question) may present two types
of contradicting preferences.

(i) Suppose rlt(x?cy) =x�cy and rlt(y?cz) =y�cz have been derived, i.e., they
belong to R(Q). They together imply x�cz, since a preference relation must be
transitive. Therefore the question x?cz will not be asked. If the crowd is nevertheless
asked to further compare x and z, the result rlt(x?cz) might be possibly z�cx, which
presents a contradiction.

(ii) Suppose rlt(x?cy) =x∼cy and rlt(y?cz) =y�cz have been derived from the
crowd. If the crowd is asked to further compare x and z, the result rlt(x?cz) might
be possibly z�cx. The outcomes y�cz and z�cx together imply y�cx, which con-
tradicts with x∼cy. (A symmetric case is rlt(x?cy) =x∼cy, rlt(y?cz) =z�cy, and
the crowd might respond with rlt(x?cz) =x�cz, which also leads to contradiction
with x∼cy. The following discussion applies to this symmetric case, which is thus
not mentioned again.)

In practice, such contradictions are uncommon. This is easy to understand
intuitively—as long as the underlying preference relation is transitive, collective
wisdom of the crowds will reflect it. We can find evidence of it in [13, 14],
which confirmed that preference judgments of relevance in document retrieval are
transitive.

Nevertheless, contradictions still occur. Type (i) contradictions can be prevented
by enforcing the following simple Rule 1 to assume transitivity and thus skip
certain questions. They will never get into the derived preference relations. In fact,
in calculating transitive closure (Definition 1) and defining candidate questions
(§ 3.1.1), we already apply this rule.

Rule 1 (Contradiction Prevention by Skipping Questions). Given objects x, y, z and
a criterion c, if rlt(x?cy) =x�cy and rlt(y?cz) = y�cz, we assume rlt(x?cz) =x�cz
and thus will not ask the crowd to further compare x and z by criterion c.

To resolve type (ii) contradictions, we enforce the following simple Rule 2.

Rule 2 (Contradiction Resolution by Choosing Outcomes). Consider objects x, y,

z and a criterion c. Suppose rlt(x?cy) = x∼cy and rlt(y?cz) =y�cz are obtained
from the crowd. If rlt(x?cz) = z�cx is obtained from the crowd afterwards, we

25

replace the outcome of this question by x∼cz. (Note that we do not replace it by
x�cz, since z�cx is closer to x∼cz.)

3.2 Micro-Ordering in Question Selection

At every iteration of Alg.1, we choose a question x?cy from the set of candidate
questions. By macro-ordering, when available, the question selection strategy
(Alg.2) chooses a candidate question in which y /∈ O×, i.e., it chooses from Q1

can.
Otherwise, it chooses from Q2

can. The size of Q1
can and Q2

can can be large. Micro-
ordering is for choosing from the many candidates. As discussed in § 3.1, in order
to find a short question sequence, the overriding principle of our question selection
strategy is to identify non-Pareto optimal objects as early as possible. Guided by
this principle, this section discusses several micro-ordering strategies. Since the
strategies are the same for Q1

can and Q2
can, we will simply use the term “candidate

questions” without distinction between Q1
can and Q2

can.

3.2.1 Random Question (RandomQ)

RandomQ, as its name suggests, simply selects a random candidate question. Table 1
shows an execution of the general framework under RandomQ for Example 1. For
each iteration i, the table shows the question outcome rlt(qi). Following the
question form x?cy in Definition 3, the object “x” in a question is underlined when
we present the question outcome. The column “derived results” displays derived
question outcomes by transitive closure (e.g., a�me based on rlt(q7)=d�me and
rlt(q10)=a�md) and derived object dominance (e.g., b�d after q20). The table also
shows the object partitions (O√, O? and O×) when the execution starts and when
the partitions are changed after an iteration. Multiple iterations may be presented
together if other columns are the same for them.

As Table 1 shows, this particular execution under RandomQ requires 30 ques-
tions. When the execution terminates, it finds the only Pareto-optimal object b. This
simplest micro-ordering strategy already avoids many questions in the brute-force
approach. The example clearly demonstrates the benefits of choosing candidate

26

i rlt(qi) Derived ResultsO√ O? O×
1-9 b�me, c∼ad, a∼mc ∅ {a,b,c,d,e,f} ∅

c�se, b∼sd, b�aa
d�me, b∼md, b�sf

10 a�md a�me
11 c�aa
12 b∼sc
13 c�md c�me

14-19 d�se, e∼ac, d∼af
a∼ad, f�aa, b�ae

20 b�ad b�d ∅ {a,b,c,e,f} {d}

21-23 c�sf, a�se, f∼mb
24 a�sf a∼f
25 e�af b�af, b�aa ∅ {a,b,c,e} {d,f}

e�aa, b�f
26 b�ac
27 a�mb
28 b�se b�e ∅ {a,b,c} {d,e,f}

29 c�sa c�se, c�a ∅ {b,c} {a,d,e,f}

30 b∼mc b�c {b} ∅ {a,c,d,e,f}

Table 1: RandomQ on Example 1.

questions only and applying macro-strategy.

3.2.2 Random Pair (RandomP)

RandomP randomly selects a pair of objects x and y and keeps asking questions to
compare them (x?cy or y?cx) until no such candidate question remains, upon which
it randomly picks another pair of objects. This strategy echoes our principle of
eagerly identifying non-Pareto optimal objects. To declare an object x non-Pareto
optimal, we must identify another object y such that y dominates x. If we directly
compare x and y, it requires comparing them by every criterion in C in order to
make sure y�x. By skipping questions according to transitive closure, we do not
need to directly compare them by every criterion. However, Property 4 below states
that we still need at least |C| questions involving x—some are direct comparisons
with y, others are comparisons with other objects which indirectly lead to outcomes
of comparisons with y. When there is a candidate question x?cy, it means y may
dominate x. The fewer criteria remain for comparing them, the more likely y will
dominate x. Hence, by keeping comparing the same object pair, RandomP aims at
finding more non-Pareto objects by less questions.

Property 4. Given a set of criteria C and an object x∈ O, at least |C| pairwise

27

i rlt(qi) Derived ResultsO√ O? O×
1 c�sf ∅ {a,b,c,d,e,f} ∅
2 f�mc f∼c

3− 4 a�se, a�me
5 e�aa a∼e

6− 7 c�se, c�me
8 e∼ac c�e ∅ {a,b,c,d,f} {e}

9 b�sa b�se
10 a�mb a∼b
11 d�sf
12 f�md f∼d
13 d�sa d�se
14 a�md a∼d

15− 16b∼sc, b∼mc
17 b�ac b�c ∅ {a,b,d,f} {c,e}

18− 19d∼sb, d∼mb
20 b�ad b�d ∅ {a,b,f} {c,d,e}

21 a�sf b�sf
22 a∼mf
23 f�aa a∼f
24 b∼mf
25 b�af b�aa, b�f {b} {a} {c,d,e,f}

26− 27c�sa, a∼mc
28 c�aa c�a {b} ∅ {a,c,d,e,f}

Table 2: RandomP on Example 1.

comparison questions involving x are required in order to find another object y

such that y�x.

Proof. By the definition of object dominance, if y�x, then ∀c ∈ C, either y�cx∈
R+(Q) or x∼cy∈ R+(Q), and ∃c ∈ C such that y�cx ∈ R+(Q). Given any
particular c, if x∼cy ∈ R+(Q), then x∼cy ∈ R(Q), i.e., a question x?cy or y?cx

belongs to the sequence Q, because indifference of objects on a criterion cannot
be derived by transitive closure. If y�cx∈ R+(Q), then y�cx∈ R(Q) or ∃ w1, . . . ,

wm ∈ O such that y�cw1 ∈ R(Q), . . . , wi�cwi+1 ∈ R(Q), . . . , wm�cx∈ R(Q).
Either way, at least one question involving x on each criterion c is required. Thus,
it takes at least |C| questions involving x to determine y�x.

Table 2 illustrates an execution of RandomP for Example 1. The initial two
questions are between c and f. Afterwards, it is concluded that c∼f by Property 3.
Therefore, RandomP moves on to ask 3 questions between a and e. In total, the
execution requires 28 questions. Although it is shorter than Table 1 by only 2

questions due to the small size of the example, it clearly moves objects into O×

28

more quickly. (In Table 1, O× is empty until the 20th question. In Table 2, O×
already has 3 objects after 20 questions.) The experiment results in § 3.3 exhibit
significant performance gain of RandomP over RandomQ on larger data.

3.2.3 Pair with Fewest Remaining Questions (FRQ)

Similar to RandomP, once a pair of objects x and y are chosen, FRQ keeps asking
questions between x and y until there is no such candidate questions. Different
from RandomP, instead of randomly picking a pair of objects, FRQ always chooses
a pair with the fewest remaining questions. There may be multiple such pairs. To
break ties, FRQ chooses such a pair that x has dominated the fewest other objects
and y has dominated the most other objects. Furthermore, in comparing x and y,
FRQ orders their remaining questions (and thus criteria) by how likely x is worse
than y on the criteria. Below we explain this strategy in more detail.

Selecting Object Pair Consider a question sequence Qi so far and FRQ is to
select the next question Qi+1. We use Cx,y to denote the set of criteria c such
that x?cy is a candidate question, i.e., Cx,y = {c ∈ C | x?cy ∈ Q1

can}. (We
assume Q1

can is not empty. Otherwise, FRQ chooses from Q2
can in the same way;

cf. Alg.2.) By Definition 3, the outcomes of these questions are unknown, i.e.,
∀c ∈ Cx,y : rlt(x?cy) /∈ R+(Qi). Furthermore, if any remaining question (whose
outcome is unknown) between x and y is a candidate question, then all remaining
questions between them are candidate questions. FRQ chooses a pair with the fewest
remaining candidate questions, i.e., a pair belonging to S1 = argmin(x,y) |Cx,y|.

The reason to choose such a pair is intuitive. It requires at least |Cx,y| candidate
questions to determine y�x. (The proof would be similar to that of Property 4.)
Therefore, min(x,y) |Cx,y| is the minimum number of candidate questions to further
ask, in order to determine that an object is dominated, i.e., non-Pareto optimal.
Thus, a pair in S1 may lead to a dominated object by the fewest questions, matching
our goal of identifying non-Pareto optimal objects as soon as possible.

We further justify this strategy in a probabilistic sense. For y�x to be realized,
it is necessary that none of the remaining questions has an outcome x�cy, i.e.,
∀c ∈ Cx,y : rlt(x?cy) 6= x�cy. Make the simplistic assumption that every question

29

x?cy has an equal probability p of not having outcome x�cy, i.e., ∀x?cy ∈ Q1
can,

P (rlt(x?cy)6=x�cy)=p. Further assuming independence of question outcomes,
the probability of satisfying the aforementioned necessary condition is p|Cx,y|.
By taking a pair belonging to S1, we have the largest probability of finding a
dominated object. We note that, for y�x to be realized, in addition to the above
necessary condition, another condition must be satisfied—if @c such that y�cx
∈ R+(Qi), the outcome of at least one remaining question should be y�cx, i.e.,
∃c ∈ Cx,y : rlt(x?cy) =y�cx. Our informal probability-based analysis does not
consider this extra requirement.

Breaking Ties There can be multiple object pairs with the fewest remaining
questions, i.e., |S1| > 1. To break ties, FRQ chooses such an x that has dominated
the fewest other objects, since it is more likely to be dominated. If there are still
ties, FRQ further chooses such a y that has dominated the most other objects, since
it is more likely to dominate x. More formally, FRQ chooses a pair belonging to
S2 = {(x,y) ∈ S1 | @(x’,y’) ∈ S1 such that d(x’) > d(x) ∨ (d(x’) = d(x) ∧ d(y’) >

d(y))}, where the function d(·) returns the number of objects so far dominated by
an object, i.e., ∀x, d(x) = |{y|x�y based on R+(Qi)}|. This heuristic follows the
principle of detecting non-Pareto optimal objects as early as possible. Note that S2

may still contain multiple object pairs. In such a case, FRQ chooses an arbitrary
pair.

Selecting Comparison Criterion Once a pair (x,y) is chosen, FRQ has to select
a criterion for the next question. FRQ orders the remaining criteria Cx,y based on
the heuristic that the sooner it understands y�x will not happen, the lower cost it
pays. As discussed before, |Cx,y| questions are required in order to conclude that
y�x; on the other hand, only one question (if asked first) can be enough for ruling
it out. Consider the case that x is better than y by only one remaining criterion, i.e.,
∃c ∈ Cx,y : rlt(x?cy) =x�cy and ∀c′ ∈ Cx,y, c′ 6= c : rlt(x?c′y) = x �c′ y. If FRQ

asks x?cy after all other remaining questions, it takes |Cx,y| questions to understand
y does not dominate x; but if x?cy is asked first, no more questions are necessary,
because there will be no more candidate questions in the form of x?cy.

30

i rlt(qi)Derived Results (x,y), Cx,y O√ O? O×

(a,b), {s,m, a} ∅ {a,b,c,d,e,f} ∅
1 b�sa (a,b), {m, a}
2 a�mb a∼b (a,c), {s, a,m}
3 c�sa (a,c), {a,m}
4 c∼aa (a,c), {m}
5 c�ma c�a (b,c), {a, s,m} ∅ {b,c,d,e,f} {a}

6 b∼ac (b,c), {s,m}
7 b∼sc (b,c), {m}
8 b�mc b�ma, b�c (d,b), {a, s,m} ∅ {b,d,e,f} {a,c}

9 b∼ad (d,b), {s,m}
10 b∼sd (d,b), {m}
11b�md b�d (e,b), {a, s,m} ∅ {b,e,f} {a,c,d}

12b�ae (e,b), {s,m}
13 b�se (e,b), {m}
14b�me a�me, b�e (f,b), {a, s,m} ∅ {b,f} {a,c,d,e}

15 b�af (f,b), {s,m}
16 b�sf (f,b), {m}
17 b�mf b�f {b} ∅ {a,c,d,e,f}

Table 3: FRQ on Example 1.

Therefore, FRQ orders the criteria Cx,y by a scoring function that reflects
the likelihood of x’s superiority than y by the corresponding criteria. More
specifically, for each c ∈ Cx,y, its score is rc(x,y) = rc(y) + r′c(y) − r′′c(y) −
(rc(x) + r′c(x) − r′′c(x)) where rc(y) = |{z | z�cy∈ R+(Qi)}|, r′c(y) = |{z |
y∼cz∈ R+(Qi)}|, and r′′c(y) = |{z | y�cz∈ R+(Qi)}|. In this scoring function,
rc(y) is the number of objects preferred over y by criterion c, r′c(y) is the number
of objects equally good (or bad) as y by c, and r′′c(y) is the number of objects
to which y is preferred with regard to c. FRQ asks the remaining questions in
decreasing order of the corresponding criteria’s scores. This way, it may find such
a question that rlt(x?cy) =x�cy earlier than later.

Table 3 presents the framework’s execution for Example 1, by applying the FRQ

policy. In addition to the same columns in Tables 1 and 2, Table 3 also includes an
extra column to show, at each iteration, the chosen object pair for the next question
(x,y) and the set of remaining comparison criteria between them (Cx,y). The criteria
in Cx,y are ordered by the aforementioned ranking function r(·). At the beginning
of the execution, the object pair is arbitrarily chosen and the criteria are arbitrarily
ordered. In the example, we assume a?sb is chosen as the first question. After q2,
FRQ can derive that a∼b. Hence, there is no more candidate question between
them and FRQ chooses the next pair (a,c). Three questions are asked for comparing

31

them. At the end of q5, multiple object pairs have the fewest remaining questions.
By breaking ties, (b,c) is chosen as the next pair, since only c has dominated
any object so far. The remaining criteria Cb,c are ordered as {a, s,m}, because
ra(b,c) > rs(b,c) and ra(b,c) > rm(b,c). The execution sequence terminates after
17 questions, much shorter than the 30 and 28 questions by RandomQ and RandomP,
respectively.

To conclude the discussion on micro-ordering, we derive a lower bound on the
number of questions required for finding all Pareto-optimal objects (Theorem 2).
The experiment results in § 3.3 reveal that FRQ is nearly optimal and the lower
bound is practically tight, since the number of questions used by FRQ is very close
to the lower bound.

Theorem 2. Given objects O and criteria C, to find all Pareto-optimal objects
in O, at least (|O| − k)× |C|+ (k − 1)× 2 pairwise comparison questions are
necessary, where k is the number of Pareto-optimal objects in O.

Proof. Suppose the non-Pareto optimal objects are O1 and the Pareto-optimal
objects are O2 (O1∪O2 = O and O1∩O2 =∅). We first separately consider n1

(the minimum number of questions involving objects in O1) and n2 (the minimum
number of questions comparing objects within O2 only).

(1) By Property 4 (and its proof), for every non-Pareto optimal object x∈ O1, at
least |C| questions involving x are required. There exists at least an object y such
that y�x. The required |C| questions lead to outcome either y∼cx or z�cx such
that y�c . . . �cz�cx (z can be y) for each c ∈ C. For different x, the |C| questions
cannot overlap—for a question with outcome z�cx, the x is different; for a question
with outcome y∼cx, the same question cannot be part of both the |C| questions for
x and the |C| questions for y to detect both as non-Pareto optimal, because it is
impossible that x�y and y�x. Hence, n1 = (|O| − k)× |C|.

(2) Given any Pareto-optimal object x∈ O2, for any other y∈ O2, either (a)
x∼cy for all criteria c ∈ C or (b) there exist at least two criteria c1 and c2 such that
x�c1y and y�c2x. Among the k − 1 other objects in O2, suppose ka and kb of them
belong to cases (a) and (b), respectively (ka + kb = k − 1). Under case (a), each
of the ka objects requires |C| questions. Under case (b), there must be a question

32

leading to outcome z�c1y, where z=x or x�c1 . . . �c1z�c1y. Similarly, there must
be a question with outcome y�c2z such that z=x or y�c2z�c2 . . . �c2x. Therefore,
each of the kb objects requires at least 2 questions. Clearly, such required questions
for comparing x with the k − 1 other objects in O2 are all distinct. They are also
all different from the questions involving non-Pareto optimal objects (case (1)).
Hence, n2 = ka × |C|+ kb × 2 ≥ (k − 1)× 2.

Summing up n1 and n2, a lower bound on the number of required questions is
thus (|O| − k)× |C|+ (k − 1)× 2. Note that, when k = 0, a trivial, tighter lower
bound is |O| × |C|. (One example in which k = 0 is Fig.4.)

3.3 Experiments

We designed and conducted experiments to compare the efficiency of different
instantiations of the general framework under varying problem sizes. Our experi-
ments used both a real crowdsourcing marketplace and simulations based on a real
dataset.

3.3.1 Efficiency and Scalability

We studied the efficiency and scalability of various instantiations of the general
framework. Given the large number of questions required for such a study, we
cannot afford using a real crowdsourcing marketplace. Hence, we performed the
following simulation. Each object is an NBA player in a particular year. The
objects are compared by 10 criteria, i.e., performance categories such as points,
rebounds, assists, etc. We simulated the corresponding 10 preference relations
based on the players’ real performance in individual years, as follows. Consider a
performance category c and two objects x=(player1, year1) and y=(player2, year2).
x.c is player1’s per-game performance on category c in year1 (similarly for y.c).
Values in each category c are normalized into the range [0, 1], where 0 and 1

correspond to the minimal and maximal values in c, respectively. Suppose x.c >y.c.
We generated a uniform random number v in [0, 1]. If v < 1 − e−(x.c−y.c), we
set x�cy, otherwise we set x∼cy. This way, we introduced a perturbation into the

33

 3

 4

 5

 6

 7

 8

 9

 10

 2000 4000 6000 8000 10000

N
u

m
b

er
 o

f
C

ri
te

ri
a

Number of Objects

 0

 50

 100

 150

 200

 250

 300

 350

N
u

m
b

er
 o

f
P

ar
et

o
-O

p
ti

m
al

 O
b

je
ct

s

Figure 5: No. of Pareto-optimal objects. Varying |O| and |C|.
preference relations in order to make sure they are partial orders, as opposed to
directly using real performance statistics (which would imply bucket orders). Fig.5
shows that the number of Pareto-optimal objects increases by the sizes of both
object set O (objects are randomly selected) and criteria set C (the first |C| criteria
of the aforementioned 10 criteria).

Effectiveness of candidate questions and macro-ordering
To verify the effectiveness of candidate questions and macro-ordering, we com-
pared five methods—BruteForce, –CQ–MO, –CQ+MO, +CQ–MO, and +CQ+MO.
The notation +/– before CQ and MO indicates whether a method only selects
candidate questions (CQ) and whether it applies the macro-ordering strategy
(MO), respectively. In all these five methods, qualifying questions are randomly
selected, i.e., no particular micro-ordering heuristics are applied. For instance,
+CQ+MO selects only candidate questions and applies macro-ordering. Hence, it is
equivalent to RandomQ. Fig.6 shows the numbers of required pairwise comparisons
(in logarithmic scale) for each method, varying by object set size (|O| from 500

to 10, 000 for |C|=4 and |C|=10) and criterion set size (|C| from 3 to 10 for
|O|=3, 000 and |O|=10, 000). The figure clearly demonstrates the effectiveness
of both CQ and MO, as taking out either feature leads to significantly worse
performance than RandomQ. Particularly, the gap between +CQ–MO and –CQ+MO

suggests that choosing only candidate questions has more fundamental impact than
macro-ordering. If neither is applied (i.e., –CQ–MO), the performance is equally
poor as that of BruteForce. (–CQ–MO uses slightly less questions than BruteForce,
since it can terminate before exhausting all questions. However, the difference is
negligible for practical purpose, as their curves overlap under logarithmic scale.)

34

BruteForce -CQ-MO -CQ+MO +CQ-MO RandomQ (+CQ+MO)

104

105

106

107

108

 2000 4000 6000 8000 10000

N
u

m
b

er
 o

f
Q

u
es

ti
o

n
s

(L
o

g
 S

ca
le

)

Number of Objects

(a) |C| = 4, varying |O|

105

106

107

108

 500 1000 1500 2000 2500 3000

N
u

m
b

er
 o

f
Q

u
es

ti
o

n
s

(L
o

g
 S

ca
le

)

Number of Objects

(b) |C| = 10, varying |O|

105

106

107

 4 5 6 7 8 9 10

N
u

m
b

er
 o

f
Q

u
es

ti
o

n
s

(L
o

g
 S

ca
le

)

Number of Criteria

(c) |O| = 3, 000, varying |C|

106

107

108

109

 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f
Q

u
es

ti
o

n
s

(L
o

g
 S

ca
le

)

Number of Criteria

(d) |O| = 10, 000, varying |C|

Figure 6: No. of questions by BruteForce and basic methods.

Effectiveness of micro-ordering
Fig.7 presents the numbers of pairwise comparisons required by different micro-
ordering heuristics (RandomQ, i.e., +CQ+MO, RandomP, FRQ) and LowerBound (cf.
Theorem 2) under varying sizes of the object set (|O| from 500 to 10, 000 for
|C| = 4 and |C| = 10) and the criteria set (|C| from 3 to 10 for |O| = 3, 000

and |O| = 10, 000). In all these instantiations of the general framework, CQ

and MO are applied. The results are averaged across 30 executions. All these
methods outperformed BruteForce by orders of magnitude. (BruteForce is not
shown in Fig.7 since it is off scale, but its number can be calculated by equation
|C| × |O| × (|O| − 1)/2.) For instance, for 5, 000 objects and 4 criteria, the ratio
of pairwise comparisons required by even the naive RandomQ to that used by

35

RandomQ (+CQ+MO) RandomP FRQ LowerBound

104

105

 2000 4000 6000 8000 10000

N
u

m
b

er
 o

f
Q

u
es

ti
o

n
s

(L
o

g
 S

ca
le

)

Number of Objects

(a) |C| = 4, varying |O|

104

105

106

 2000 4000 6000 8000 10000

N
u

m
b

er
 o

f
Q

u
es

ti
o

n
s

(L
o

g
 S

ca
le

)

Number of Objects

(b) |C| = 10, varying |O|

104

105

 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f
Q

u
es

ti
o

n
s

(L
o

g
 S

ca
le

)

Number of Criteria

(c) |O| = 3, 000, varying |C|

105

106

 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f
Q

u
es

ti
o

n
s

(L
o

g
 S

ca
le

)

Number of Criteria

(d) |O| = 10, 000, varying |C|

Figure 7: No. of questions by different micro-ordering heuristics.

BruteForce is already as low as 0.0048. This clearly shows the effectiveness of
CQ and MO, as discussed for Fig.6. The ratios for RandomP and FRQ are further
several times smaller (0.00094 and 0.00048, respectively). The big gain by FRQ

justifies the strategy of choosing object pairs with the fewest remaining questions.
Especially, FRQ has nearly optimal performance, because it gets very close to
LowerBound in Fig.7. The small gap between FRQ and LowerBound also indicates
that the lower bound is practically tight. The figure further suggests excellent
scalability of FRQ as its number of questions grows almost linearly by both |C|
and |O|.

36

3.3.2 Experiments Using a Real Crowdsourcing Marketplace

We also studied the performance of the proposed algorithms using the popular
crowdsourcing marketplace Amazon Mechanical Turk (AMT). The task is to
compare 100 photos of our institution with regard to color, sharpness and land-
scape. To obtain the ground-truth data, all 14, 850 possible pairwise questions
were partitioned into 1, 650 tasks, each containing 9 questions on a criterion. An
AMT crowdsourcer is allowed to perform a task only if they have responded to
at least 100 HITs (Human Intelligence Tasks) before with at least 90% approval
rate. Furthermore, we implemented basic quality control by including 2 additional
validation questions in each task that expect certain answers. For instance, one such
question asks the crowd to compare a colorful photo and a dull photo by criterion
color. A crowdsourcer’s responses in a task are discarded if their response to a
validation question deviates from our expectation. (236 crowdsourcers failed on
this.) The parameters in Equation (1) were set to be k = 5 and θ = 0.6. Hence, in
total (1, 650× 5 + 236)× (9 + 2) = 93, 346 pairwise comparisons were performed
by AMT crowdsourcers. We paid 1 cent for each comparison and therefore spent
close to $1,000 in total.

The responses to all possible questions provide the ground-truth data. An
algorithm execution only needs the responses to a subset of the questions. We
randomly selected a subset of photos O (|O| from 10 to 100) and applied various
algorithms to find Pareto-optimal photos. Figure 8 shows, for varying |O|, the
number of questions (in logarithmic scale) required by each micro-ordering strategy.
To account for the randomness in RandomP and RandomQ, we repeated these
two algorithms, respectively, 30 times, and we reported the average numbers of
questions. Confirming the results in Figure 7, FRQ was close to the theoretical lower
bound, performing better than the other two methods, and RandomP outperformed
RandomQ.

37

101

102

103

 10 20 30 40 50 60 70 80 90 100

N
u

m
b

er
 o

f
Q

u
es

ti
o

n
s

(l
o

g
sc

al
e)

Number of Objects

RandomQ
RandomP

FRQ
LowerBound

Figure 8: No. of questions by different micro-ordering heuristics. |C| = 3, varying
|O|.

Task Question type Multiple
attributes

Order among
objects (on each
attribute)

Explicit attribute
representation

[15] full ranking pairwise comparison no bucket/total order no
[16] top-k ranking rank subsets of objects no bucket/total order no
[17] top-k ranking and grouping pairwise comparison no bucket/total order no
[9] skyline queries missing value inquiry yes bucket/total order yes

This work Pareto-optimal object finding pairwise comparison yes strict partial order no

Table 4: Related work comparison.
3.4 Related Work

This is the first work on crowdsourcing Pareto-optimal object finding. There are
several recent studies on using crowdsourcing to rank objects and answer group-
by, top-k and skyline queries. Crowd-BT [15] ranks objects by crowdsourcing
pairwise object comparisons. Polychronopoulos et al. [16] find top-k items in an
itemset by asking human workers to rank small subsets of items. Davidson et
al. [17] evaluate top-k and group-by queries by asking the crowd to answer type
questions (whether two objects belong to the same group) and value questions
(ordering two objects). Lofi et al. [9] answer skyline queries over incomplete data
by asking the crowd to provide missing attribute values. Table 4 summarizes the
similarities and differences between these studies and our work. The studies on
full and top-k ranking [15–17] do not consider multiple attributes in modeling
objects. On the contrary, the concepts of skyline [9] and Pareto-optimal objects
(this paper) are defined in a space of multiple attributes. [9] assumes explicit
attribute representation. Therefore, they resort to the crowd for completing missing
values, while other studies including our work request the crowd to compare

38

objects. Our work considers strict partial orders among objects on individual
attributes. Differently, other studies assume a bucket/total order [15–17] or multiple
bucket/total orders on individual attributes [9].

Besides [15], there were multiple studies on ranking objects by pairwise
comparisons, which date back to decades ago as aggregating the preferences
of multiple agents has always been a fundamental problem in social choice and
welfare [18]. The more recent studies can be categorized into three types: 1)
Approaches such as [19–21] predict users’ object ranking by completing a user-
object scoring matrix. Their predications take into account users’ similarities
in pairwise comparisons, resembling collaborative filtering [22]. They thus do
not consider explicit attribute representation for objects. 2) Approaches such
as [23–25] infer query-specific (instead of user-specific) ranked results to web
search queries. Following the paradigm of learning-to-rank [26], they rank a
query’s result documents according to pairwise result comparisons of other queries.
The documents are modeled by explicit ranking features. 3) Approaches such
as [27–30] are similar to [15] as they use pairwise comparisons to infer a single
ranked list that is neither user-specific nor query-specific. Among them, [28]
is special in that it also applies learning-to-rank and requires explicit feature
representation. Different from our work, none of these studies is about Pareto-
optimal objects, since they all assume a bucket/total order among objects; those
using learning-to-rank require explicit feature representation, while the rest do not
consider multiple attributes. Moreover, except [28,29], they all assume comparison
results are already obtained before their algorithms kick in. In contrast, we aim
at minimizing the pairwise comparison questions to ask in finding Pareto-optimal
objects.

3.5 Final Remarks

In this chapter we studied crowdsourcing Pareto-optimal finding when objects
do not have explicit attributes and preference relations are strict partial orders.
The partial orders are obtained by pairwise comparison questions to the crowd.
It introduces an iterative question-selection framework that is instantiated into

39

different methods by exploiting the ideas of candidate questions, macro-ordering
and micro-ordering. Experiment were conducted by simulations on large object
sets and by using a real crowdsourcing marketplace. The results exhibited not only
orders of magnitude reductions in questions against a brute-force approach, but
also close-to-optimal performance from the most efficient method.

40

4 Discovering the Skyline of Web Databases

Motivation: Skyline for structured databases has been extensively studied in recent
years. Consider a database with n tuples over m numerical/ordinal attributes, each
featuring a domain that has a preferential order for certain applications, e.g., price
(smaller the better), model year (newer the better), etc. A tuple t is said to dominate
a tuple u if for every attribute Ai, the value of t[Ai] is preferred over u[Ai]. The
skyline is the set of all tuples ti such that ti is not dominated by any other tuple in
the database.

Skyline is important for multi-criteria decision making, and is further related
to well-known problems such as convex hulls, top-k queries and nearest neighbor
search. For example, a precomputed skyline can serve as an index for efficiently
answering any top-1 query with a monotonic ranking function over attributes. The
extension of a skyline to a K-sky band (containing all tuples not dominated by
more than K − 1 others) enables efficient answering of top-k queries when k ≤ K.
For a summary of research on skyline computation and their applications, please
refer to Section 4.8.

Much of the prior work assumes a traditional database with full SQL support
[1, 31–33] or databases that expose a ranked list of all tuples according to a pre-
known ranking function [34,35]. In this paper, we consider a novel problem of how
to compute the skyline over a deep web, “hidden”, database that only exposes a
top-k query interface. Unlike the traditional assumptions, real-world web databases
place severe limits on how external users can perform searches. Typically, a user
can only specify conjunctive queries with range or (single-valued) point conditions,
depending on which one(s) the web interface supports, and receive at most k
matching tuples, selected and sorted according to a ranking function that is often
proprietary and unknown to the external user.

Discovering skyline tuples from a hidden web database enables a wide variety
of third-party applications, ranging from understanding the “performance envelope”
of tuples in the database to enabling uniform ranking functions over multiple web
databases. For example, consider the construction of a diamond search service that

41

taps into web databases of several jewelry stores such as Blue Nile (by collecting
data through their web search interfaces). While there are well-known preferential
orders on all critical attributes of a diamond such as clarity, carat, color, cut and
price, each jewelry store may design its own ranking function as a unique weighting
of these attributes. On the other hand, the third-party service needs to rank all tuples
from all stores consistently, and ideally support user-specified ranking functions
(e.g., different weightings of the attributes) according to his/her own need. An
efficient and effective way to enable this is to first discover the skyline tuples from
the hidden web database of each jewelry store, and then apply a user-specified
ranking function on all the retrieved data to obtain tuples most preferred by the user.
One can see that, similarly, this approach can be used to enable third-party services
such as flight search with user-defined ranking functions on price, duration, number
of stops, etc.

Challenges: The technical challenges we face are fundamentally different from
traditional skyline computation techniques, mainly because the data access model
is completely different. In traditional skyline research, there is no top-k constraint
on data access, so the algorithms can take advantage of either full SQL power or
certain pre-existing data indices such as sequence access according to a known
ranking function [34, 35]. On the other hand, as mentioned earlier, in hidden
databases the data access is severely restricted. In principle, one can apply prior
techniques developed to crawl the entire hidden database (e.g., using algorithms
such as [36]), and then compute the skyline over a local copy of the database.
However, as we shall show in the experimental results, such an approach is often
impractical as crawling the entire database (as opposed to just the skyline) requires
an inordinate number of search queries (i.e., web accesses). Note that many real-
world web databases limit the number of web accesses one can issue through
per-IP-address or per-API-key limits. In many cases, this limit is too small to
sustain the execution of a complete crawl. Thus, it is necessary to develop skyline
discovery algorithms that execute as few search queries via the restrictive web
interface as possible.

Technical Highlights: We distinguish between several important categories of

42

web search interfaces: whether range predicates are supported for the attributes
(either one-ended, e.g. Price < 300, or two-ended, e.g., 200 < Price ≤ 300), or
only single-value/point predicates (e.g., Number of Stops = 0) are allowed. We
also consider hidden databases where a mix of range and point attributes exist.
Computing skylines over each type of interface offers its own unique challenges.

For the case of one-ended range queries, we develop SQ-DB-SKY, an iterative
divide-and-conquer skyline discovery algorithm that starts by issuing broad queries
(i.e., queries with few predicates), determines which queries to issue next based on
the tuples received so far, and then gradually narrows them to more specific ones.
For the case of two-ended range queries, we develop algorithm RQ-DB-SKY,
which is similar to the previous algorithm, except that instead of being forced
to issue overlapping queries, the algorithm is able to take advantage of the more
powerful search interface and issue mutually exclusive queries to cover the search
space and be able to terminate earlier.

In the worst case, the maximum number of queries issued by SQ-DB-SKY
may be O(m · |S|m+1) where m is the number of attributes and |S| is the size of
the skyline set. Note that this running time is independent1 of the database size n.
In contrast, the worst case query cost for RQ-DB-SKY is O(m ·min(|S|m+1, n)).
More interestingly, while the worst case behavior appears to grow fast with |S|
when m is large, we show through theoretical analysis and real-world experiments
that this is the artifact of some extremely-ill-behaving ranking function (which
has to be considered in worst-case analysis). In practice, the algorithms perform
extremely well.

As additional highlights of our contributions, we provide an interesting theoret-
ical result on the average-case behavior of the above algorithms by proving that,
for any arbitrary database, the expected query cost taken over the randomness of
the ranking function is always bounded from above by (e+ e · |S|/m)m. Note that
the growth speed of this bound with |S| is orders of magnitude slower than that of
the worst-case bound. Furthermore, we also show why the real-world performance
of SQ- and RQ-DB-SKY is likely even better than the average-case performance

1at least conditionally given m and |S|

43

for any “reasonable” ranking function used by the hidden database.
For the case of point queries, the significantly weaker search interface intro-

duces novel challenges in designing an efficient skyline discovery algorithm. For
the special case of 2-dimensional data, we design algorithm PQ-2D-SKY that is
instance-optimal, although the worst-case complexity is a complex function that
depends not only on parameters such as n and S, but also on the domain sizes
of the attributes. Unfortunately, the generalization to higher dimensions proves
much more complicated, as shown by a negative result that no instance-optimal
algorithm can exist for higher dimensions.

As such, our eventual algorithm for higher dimensions, PQ-DB-SKY, uses as a
subroutine a revised version of the 2D algorithm that is able to discover all skyline
from a “pruned”’ 2D subspace in an instance-optimal manner (though the overall
algorithm for higher dimensions is not instance-optimal). Given the exponential
nature of dividing a higher-dimensional space into 2D subspaces, the worst-case
query cost of the algorithm can be quite large. However, as we shall show through
real-world online experiments, the nature of these PQ attributes used in real-world
hidden databases (e.g., they usually have small domains with all domain values
occupied by real tuples) makes the actual performance of PQ-DB-SKY often fairly
efficient in practice.

When the hidden database features a mixture of range and point attributes, we
show that the straightforward idea of only applying RQ-DB-SKY directly over the
range-predicate attributes and not using the point-predicate attributes at all does not
work because some skyline tuples may be missed. These remaining tuples need to
be identified by a modified version of PQ-DB-SKY. These ideas are combined into
our eventual algorithm MQ-DB-SKY that can discover the skyline of a database
containing a mixture of one-ended, two-ended, and/or point attributes.

The above algorithms are all about computing the skyline of a hidden database.
We have also extended these algorithms to compute the top-K sky band of the
database. We conducted comprehensive experiments over multiple real-world
datasets to demonstrate the effectiveness of these algorithms and their superiority
over the baseline, crawling-based, solution. In addition, we also tested our algo-

44

rithms live online over multiple real-world web databases such as Yahoo! Autos,
Google Flights, and Blue Nile (an online diamond retailer). For all these real-world
databases tested, our algorithms can discover all skyline tuples in a highly efficient
manner.

Summary of Contributions:
• We introduce the novel problems of computing the skyline/band of hidden web

databases with top-k constraints, motivate them with third-party applications,and
show why traditional skyline computation approaches are inappropriate for these
problems.
• We distinguish between different search interfaces that hidden databases typically

provide: one-ended and two-ended ranges and point predicates, and show that
each brings different challenges in designing algorithms for skyline discovery.
• For the case of one-ended (resp. two-ended) range predicates, we develop SQ-

DB-SKY (resp. RQ-DB-SKY). For the case of point predicates, we develop
PQ-2D-SKY for two-dimensional data, and a more general PQ-DB-SKY for
higher-dimensional data. For databases with a mixture of range and point
predicates, we develop MQ-DB-SKY.
• We provide rigorous theoretical analysis including worst/average-case analysis

and instance-optimality in certain cases. We also conducted comprehensive
experiments over real datasets and live web databases to demonstrate the effec-
tiveness of our algorithms.

4.1 Preliminaries

4.1.1 Model of Hidden Database

Database: Consider a hidden web database D with n tuples over m attributes
A1, . . . , Am. Let the domain of Ai be Dom(Ai) and the value of Ai for tuple t be
t[Ai] ∈ Dom(Ai) ∪ {NULL}.
Skyline: The m attributes of a web database can be divided into two categories:
ranking attributes with an inherent preferential order (either numeric or ordinal);
and filtering attributes whose values are not ordered. The skyline definition only

45

concerns the ranking attributes. For a ranking attribute Ai, we denote the total
order by <, i.e., vi ranks higher than vj if vi < vj . With this notation, a tuple
t ∈ D is a skyline tuple if and only if there does not exist any other tuple t′ ∈ D
with t′ 6= t such that t′ dominates t, i.e. t′[Ai] ≤ t[Ai] for each and every ranking
attribute Ai. In other words, no other tuple t′ in the database outranks t on every
ranking attribute.

Note that the skyline definition can be easily extended to sky band - i.e., a tuple
is in the K-skyband if and only if it is not dominated by more than K − 1 tuples.
One can see that the skyline is indeed a special case of (top-1) sky band. In most
parts of the paper, we focus on the problem of skyline discovery. The extension to
discovering the K-skyband (K > 1) is discussed in Section 4.6.

Query Interface: The web interface of a hidden database takes as input a user-
specified query (supported by the interface) and produces as output at most k
tuples matching the query. At the input side, the interface generally supports
conjunctive queries on one or more attributes. The predicate supported for each
attribute, however, is a subtle issue that depends on the type of the attribute and
the interface design. While filtering attributes with categorical values generally
support equality (=) only, a ranking attribute may support any subset of <, =, >,
≤, and ≥ predicates. Since the supported predicate types turn out to be critical for
our algorithm design, we leave it for detailed discussions in the next subsection.

Output-wise, the query answer is subject to the top-k constraint, i.e., when
more than k tuples match the input query, instead of returning all matching tuples,
the hidden database preferentially selects k of them according to a ranking function
and returns only these top-k tuples through the interface. In this case, we say that
query q overflows and triggers the top-k limitation.

The design of this ranking function has been extensively studied in the database
literature, leading to numerous variations. In this paper, we support a very broad
set of ranking functions with only one requirement: domination-consistent, i.e., if
a tuple t dominates t′ and both match a query q, then t should be ranked higher
than t′ in the answer. All results in the paper hold on any arbitrary ranking function
so long as it satisfies this requirement.

46

Filtering Attributes: While a web database may contain order-less filtering
attributes, they have no bearing on the definition of skyline tuples. We further
note that filtering attributes have no implication on skyline discovery unless there
are skyline tuples with the exact same value combination on all ranking attributes.
Even in this case, what one needs to do is to simply issue, for each discovered
skyline tuple, a conjunctive query with equality conditions on all ranking attributes.
If the query overflows, one can then crawl all tuples matching the query using the
techniques in [36] .

Since such a case (i.e., multiple skyline tuples having the exact same value
combination on all ranking attributes) is unlikely to happen when we have a
meaningful skyline definition, in most parts of the paper we make the general
positioning assumption, i.e., all skyline tuples have unique value combinations on
ranking attributes, as assumed in most prior work [1, 31–33]. Our experiments
in § 4.7, however, do involve filtering attributes and confirm that they have no
implication on skyline discovery.

Finally, for the purpose of this paper, we consider the problem of discovering
skyline tuples over the entire database. If the goal is to discover skyline tuples
for a subset of the database subject to certain filtering conditions, all results in the
paper still readily apply. The only change required is to simply append the filtering
conditions as conjunctive predicates to all queries issued.

4.1.2 Taxonomy of Attribute Search Interface

We now discuss in detail what types of predicates may be supported for an attribute
- an issue that, somewhat surprisingly, turns out crucial for the efficiency of skyline
discovery. Specifically, we partition the support into three categories depending
on two factors: (1) whether range predicates are supported for the attribute, or
only equality (i.e., point) predicates are allowed, and (2) when range predicates
are supported, whether the range is one-ended (i.e., “better than” a user-specified
value), or two-ended.
• SQ, i.e., Single-ended range Query predicate, means that predicate on Ai can

be Ai < v, Ai ≤ v or Ai = v, where v ∈ Dom(Ai). Note that we do not

47

further distinguish whether < or ≤ (or both) is supported, because they are
easily reducible to each other - e.g., one can combine the answers to Ai < v and
Ai = v to produce that for Ai ≤ v. On the other hand, if Ai ≤ v is supported
but not Ai < v, one can take the next smaller value (than v) in Dom(Ai), say v′,
and then query Ai ≤ v′ instead2.
• RQ, i.e., Range Query predicate, means that predicate on Ai can be Ai < (or ≤)

v, Ai = v or Ai > (or ≥) v.
• PQ, i.e., Point Query predicate, means that predicate on Ai can only be of the

form Ai = v.
Having defined the three types of predicates, SQ, RQ and PQ, we now discuss

the comparisons between them, starting with SQ vs RQ within range predicates,
and then range vs point predicates.

SQ vs RQ: One might wonder why both single-ended SQ and two-ended RQ exist
in a web interface. To understand why, consider two examples: the memory size
and price of a laptop, respectively. Both have an inherent order: the larger the
memory size or the lower the price, the better. Nonetheless, their presentations in
the search interface are often different:

Memory size is often presented as SQ, because there is little motivation for a
user to specify an upper bound on the memory size. Price, on the other hand, is
quite different. Specifically, it is usually set as an RQ attribute with two-ended
range support because, even though almost all users prefer a lower price (for the
same product), many users indeed specify both ends of a price range to filter the
search results to the items they desire. The underlying reason here is that price is
often correlated (or perceived to be correlated) with the quality or performance
of a laptop. For the lack of understanding of the more “technical” attributes, or
for the simplicity of considering only one factor, many users set a lower bound on
price to filter out low-performance laptops that do not meet their needs.

2Of course, in the case where Dom(Ai) is an infinite set, e.g., when Ai is continuous, a tacit
assumption here is that we know a small value ε such that no tuple can have Ai ∈ (v − ε, v). Given
that the values represented in a database are anyway discrete in nature, this assumption can be
easily satisfied by assuming a fixed precision level for the skyline definition.

48

SQ/RQ vs PQ: Note that range-predicate support (SQ or RQ) is strictly “stronger”
than PQ: While it is easy to specify a range predicate that is equivalent to a point
one, to “simulate” a range query, one might have to issue numerous point queries,
especially when the domain sizes and the number of attributes are large.

Fortunately though, real-world hidden databases often only represent an ordinal
ranking attribute as PQ when it has (or is discretized to) a very small domain size.
For example, flight search websites set the number of stops as PQ because it usually
takes only 3 values: 0, 1, or 2+. On the other hand, price is rarely PQ given the
wide range of values it can take. As we shall elaborate later, the small domain
sizes of PQ attributes help with keeping the query cost small, even though PQ still
generally requires a much higher query cost for skyline discovery than SQ/RQ.

4.1.3 Problem Definition

Performance Measure: In most parts of the paper, we consider the objective of
discovering all skyline tuples from the hidden web database. Interestingly, our
solutions also feature the anytime property [37] which enables them to quickly
discover a large portion of the skyline.

When our goal is complete skyline discovery, what we need to optimize is a
single target: efficiency. We note the most important efficiency measure here is not
the computational time, but the number of queries we must issue to the underlying
web database. The rationale here is the query rate limitation enforced by almost all
web databases - in terms of the number of queries allowed from an IP address or a
user account per day. For example, Google Flight Search API allows only 50 free
queries per user per day.

SKYLINE DISCOVERY PROBLEM: Given a hidden database D with query
interface supporting a mixture of SQ, RQ or PQ for ranking attributes,
without knowledge of the ranking function (except that it is domination-
consistent as defined above), retrieve all skyline tuples while minimizing
the number of queries issued through the interface.

49

4.2 Skyline Discovery for SQ-DB

We start by considering the problem of skyline discovery for interfaces that support
single-ended range queries. Recall from Section 5.3 that a single-ended range
supports < (along with = and ≤) only, but not >. In this section, we first prove
the problem of skyline discovery single-ended range queries is exponential, then
develop the main ideas behind our SQ-DB-SKY algorithm, and discuss its query
cost analysis.

Theorem 3. Considering the SQ interface, there exists a data- base D such that
discovering its skyline requires at least O(|S|m) queries.

Proof. We construct the proof for the case where |S| is larger than m. Let the
domain of each attribute Ai (i ∈ [1,m]) be [0, h+ 1], with smaller values preferred
over larger ones. We first insert into the database D the following m tuples
t01, . . . , t

0
m, such that

t0i [Aj] =

0, if i 6= j,

h+ 1, if i = j.
(2)

There are two key observations here. First is that, knowing the insertion of
these m tuples, any optimal skyline discovery algorithm for SQ-DB must issue
solely fully-specified queries (i.e., those with one conjunctive predicate on each
attributeAi). The reason is that any query with fewer thanm predicates will always
return one of t01, . . . , t

0
m, rendering the query answer useless.

Second is that the insertion of these tuples do not affect the skyline nature of
any skyline tuples in D, so long as we keep the domain of Ai for any tuple in
D within [1, h]. The reason is that any tuple with attribute values solely in [1, h]

cannot be dominated by a tuple in t01, . . . , t
0
m, which always has one attribute equal

to h+ 1.
Having established the fact that the query sequence issued for skyline discovery

consists solely of fully-specified SQ queries, we can safely represent each query by
a point in the m-dimensional space, specifically the lowest-ranked point covered
by the query. For example, given an SQ query

50

q: SELECT * FROM D WHERE A1 < v1 AND · · · AND Am < vm,

we can represent q as the point v(q) : 〈v1, . . . , vm〉. We are now ready to introduce
the following key proposition:

Proposition: If a point v (v 6∈ D) satisfies two conditions: (1) v is a skyline tuple
over D ∪ {v}, and (2) any tuple dominated by v must also be dominated by at least
one tuple in D, then any skyline discovery algorithm over D must issue the query
corresponding to v.

The proof to the proposition is simple. Since, as proved above, skyline
discovery algorithms can only issue fully specified queries, the only such queries
that return v are corresponding to points that are equal to or dominated by v. Since
any point v′ dominated by v is also dominated by a tuple in D, it means that issuing
v′ may reveal the tuple in D instead of v. In other words, without issuing v, there
is no way for a skyline discovery algorithm to distinguish between D and D ∪ {v},
meaning that the algorithm cannot safely conclude that it has crawled all skyline
tuples over D. Thus, any skyline discovery algorithm over D must issue the query
corresponding to v.

Given the proposition, one can see that the lower bound proof is essentially
reduced to a count of points that satisfy the two conditions in the proposition.
Consider a database with |S| skyline tuples t1, . . . , t|S|, each having a unique
permutation of 1, 2, . . . ,m as the values for A1, . . . , Am, respectively. To better
illustrate the proof, we add a unique, arbitrarily small, noise εij to the value of
Aj for skyline tuple ti (i ∈ [1, |S|], j ∈ [1,m]), such that εij is unique for each
combination of i and j.

We now show that every unique combination of m − 1 tuples in t1, . . . , t|S|
yields a unique point v that satisfies the two above-described conditions. Without
loss of generality, consider m − 1 tuples t1, . . . , tm−1. Consider the following
construction:

We start with A1 and assign v[A1] = max(t1[A1], . . . , tm−1[A1]). Again
without loss of generality, let t1 be the tuple featuring this “worst” value on
A1. Next, we exclude t1 from consideration and find the worst value on A2, i.e.,

51

v[A2] = max(t2[A2], . . . , tm−1[A2]), and continue this process. One can see that
by the time we reach Am−1, there is only one tuple left, say tm−1, and we assign
v[Am−1] = tm−1.

To determine the value for v[Am], we issue the following query

q: SELECT MIN(Am) FROM D WHERE A1 ≤ v[A1] AND · · · AND
Am−1 ≤ v[Am−1],

and assign to v[Am] the result minus an arbitrarily small noise, i.e., v[Am] = q − ε
where ε is arbitrarily close to 0. Note that this query will never return empty because
the above construction guarantees that Am−1 satisfies the selection conditions in
the query.

There are two key observations from this construction. First, this constructed v
is guaranteed to satisfy both conditions described above. The proof is straightfor-
ward, given that v[Am] is equal to (sans an arbitrarily small noise) the MIN(Am)
among all tuples dominating v on the other m− 1 attributes.

Second, each different combination of m − 1 tuples in t1, . . . , t|S| yields a
different point v. The reason for this is also simple: each of the first m − 1

attributes of v comes from a different tuple. Since each attribute of each tuple
features a unique value (thanks to the inserted noise εij), each unique combination
of m− 1 tuples yields a unique v.

One can see that, given these two observations, there are at least
(
|S|
m

)
points

v that satisfy both of the above conditions. Thus, the query cost for a skyline
discovery algorithm is O(|S|m).

4.2.1 Key Idea: Algorithm SQ-DB-SKY

Our SQ-DB-SKY algorithm is an iterative divide-and-conquer one that starts by
issuing broad queries, determines which queries to issue next based on the tuples
received so far, and then gradually narrowing them to more specific ones. For the
ease of understanding, consider the example of a 3-dimensional database. Suppose
the tuple returned by q1 : SELECT * FROM D is t1. Algorithm SQ-DB-SKY first
issues the following three queries:

52

q2: SELECT * FROM D WHERE A1 < t1[A1]

q3: SELECT * FROM D WHERE A2 < t1[A2]

q4: SELECT * FROM D WHERE A3 < t1[A3]

A key observation here is that the comprehensiveness of skyline discovery is
maintained when we divide the problem to the subspaces defined by q2, q3, q4.
Specifically, every skyline tuple (besides t1) must satisfy at least one of q2, q3, q4
because otherwise it would be dominated by t1. Now suppose q2 returns t2 as top-1
(which must be on the skyline because no tuple with Ai ≥ v can dominate one
with Ai < v). We continue with further “dividing” (the subspace defined by) q2
into three queries according to t2:

q5: WHERE A1 < t2[A1]

q6: WHERE A1 < t1[A1] AND A2 < t2[A2]

q7: WHERE A1 < t1[A1] AND A3 < t2[A3]

Again, any skyline tuple that satisfies q2 (i.e., with A1 < t1[A1]) must match
at least one of the three queries. One can see that this process can be repeated
recursively from here: Every time a query qj returns a tuple t, we generate m
queries by appending A1 < t[A1], . . . , Am < t[Am] to qj , respectively. A critical
observation here is that any skyline tuple matching qj must match at least one of
the m generated queries, because it has to surpass t on at least one attribute in order
to be on the skyline. As such, so long as we follow the process to traverse a “query
tree” as shown in Figure 9, we are guaranteed to discover all skyline tuples.

Theorem 4. Algorithm SQ-DB-SKY is guaranteed to discover all skyline tuples.

Proof. Consider any skyline tuple t. To prove that t will always be discovered
by SQ-DB-SKY, we construct the proof by contradiction. Suppose that t is not
discovered, i.e., it is not returned by any node in the tree. We start by considering
the m branches of the root node. Since t is a skyline tuple, it must satisfy at least
one of these branches, as otherwise it would be dominated by the tuple returned by
the root node (contradicting the assumption that t is a skyline tuple). When there
are multiple branches matching t, choose one branch arbitrarily. Consider the node
corresponding to the branch, say qi : Ai < t1[Ai]. Since qi matches t yet does not

53

return it (because otherwise t would have been discovered), it must overflow and
therefore have m branches of its own.

Once again, t has to satisfy at least one of thesem branches (of qi), as otherwise
t would have been dominated by the tuple returned by qi (contradicting the skyline
assumption). Repeat this process recursively; and one can see that there must
exist a path from the root to a leaf node in the tree, such that t satisfies each and
every node on the path. Since every leaf node of the tree is a valid or underflowing
query, this means that the leaf node must return t, contradicting the assumption
that t is not discovered. This proves the completeness of skyline discovery by
SQ-DB-SKY.

In order to better understand the correctness of the algorithm, consider the dummy
example provided in Figure 10, and its corresponding SQ-DB-SKY tree in Fig-
ure 11. One can see that each skyline tuple appears in at least one of the branches,
as otherwise it would have been dominated by another (skyline) tuple.

Algorithm 3 depicts the pseudo code for SQ-DB-SKY. Note from the algorithm
that a larger k (as in top-k returned by the database) reduces query cost for two
reasons: First, every returned tuple that is not dominated by another in the top-k is
guaranteed to be a skyline tuple. Second, a larger k also makes the tree shallower
because a node becomes leaf if it returns fewer than k tuples. This phenomenon is
verified in our experimental studies.

We would like to clarify that, it is not needed to find the largest domain value
of Ai smaller than v. Instead, so long as we find v′ < v such that replacing the
predicate Ai ≤ v with Ai ≤ v′ still leads to an non-empty query answer, the
algorithms will work. The only case where we may have trouble with a ≤ interface
is when Ai ≤ v overflows, yet it takes a larger number of queries to perform binary
search to find v′ < v with nonempty Ai ≤ v′. This means that there is a tuple with
value v − ε on Ai, with ε extremely close to 0. While it is true that this situation
may lead to a high query cost for our algorithm, we have not seen this behavior in
any real-world database for the simple reason that it will make it extremely difficult
for a normal user of the hidden database to specify a query that unveils the tuple
with Ai = v − ε.

54

Figure 9: Tree illustration

A1A2A3

t1 5 1 9
t2 4 4 8
t3 1 3 7
t4 3 2 3

Figure 10: Illustration of example

55

Figure 11: SQ-DB-SKY example tree

Algorithm 3 SQ-DB-SKY
1: QueryQ = {SELECT * FROM D}
2: S = ∅
3: while QueryQ is not empty do
4: q = QueryQ.deque(); T = Top-k(q)
5: if T is not empty then
6: Append the none-dominated tuples in T to S
7: if T contains k tuples then
8: Construct m queries q1, . . . , qm where query qi appends predicate

“Ai < T0[Ai]” to q
9: Append q1, . . . qm to QueryQ

10: end if
11: end if
12: end while

4.2.2 Query-Cost Analysis

Algorithm SQ-DB-SKY has one nice property and one problem in terms of query
cost: The nice property is that the top-1 tuple returned by every node (i.e., query)
must be on the skyline (because it cannot be dominated by a tuple not matching

56

the query). The problem, however, is that a skyline tuple t might be returned as
No. 1 by multiple nodes, potentially leading to a large tree size and thus a high
query cost. For example, if t has t[A1] < t1[A1] and t[A2] < t2[A2], then it might
be returned by both q2 and q3.

Worst-Case Analysis: Given the overlap between tuples returned by different
nodes, the key for analyzing the query cost of SQ-DB-SKY is to count how many
nodes in the tree return a tuple. Because we are analyzing the worst-case scenario,
we have to consider k = 1 and any arbitrary, ill-behaved, system ranking functions.
In other words, so long as a tuple matches a node, it may be returned by it. To this
end, there is almost no limit on how many times a tuple can be returned, except the
following prefix-free rule:

Note that each node in the tree can be (uniquely) represented by a sequence
of 2-tuples 〈ti, Aj〉, where ti is a skyline tuple returned by a node, and Aj is
an attribute corresponding to the branch taken from the node. For example, the
nodes corresponding to q2 and q5 are represented as 〈t1, A1〉 and 〈t1, A1〉, 〈t2, A1〉,
respectively. The one property that all nodes returning the same tuple t must satisfy
is that the sequence representing one node, say q, cannot be a prefix of the sequence
representing another, say q′. The reason is simple: if the sequence of q is a prefix
of q′, then q′ must be in the subtree of q. However, according to the design of
SQ-DB-SKY, since q returns t, none of the nodes in the subtree of q matches t.
This contradicts the assumption that both q and q′ return t.

Given the prefix-free rule, a crude upper bound for the number of nodes
returning a tuple is w ≤ |S|m, where |S| is the number of skyline tuples. This is
because a query can have at most m predicates, each with a different attribute and a
value (i.e., v as in Ai < v) equal to that of one of the skyline tuples (i.e., v = t[Ai]

where t is a skyline tuple). Since no query of concern can be the prefix of another,
the maximum number of such queries is O(|S|m). Given this bound, the maximum
number of nodes in the tree is O(|S| · (|S|m) · (m+ 1)) = O(m · |S|m+1).

One can make two observations from this worst-case bound: First, the query
cost of SQ-DB-SKY depends on the number of skyline tuples, not the total number
of tuples. This is good news because, as prior research on skyline sizes [38] shows,

57

the number of skyline tuples is likely orders of magnitude smaller than the number
of tuples. Another observation, however, is seemingly bad news: the worst-case
cost grows exponentially with the number of attributes m. Fortunately, this is
mostly the artifact of an arbitrary system ranking function we must assume in
the worst-case analysis, rather than an indication of what happens in practice. To
understand why, consider what really happens when the worst-case result strikes,
i.e., a tuple t is returned by queries with Ω(m) predicates.

Consider a Level-m node returning t. Let its 2-tuple sequence be 〈t1, A1〉, . . .,
〈tm, Am〉. What this means is not only that t outperforms ti on Ai for all i ∈ [1,m],
but also that tm does the same (i.e., outperforms ti on Ai) for all i ∈ [1,m − 1],
tm−1 for all i ∈ [1,m− 2], etc. In other words, this tuple t is likely ranked highly
on many attributes - yet its overall rank is too low to be returned by any of the
m predecessor queries. While this could occur for an ill-behaved system ranking
function, it is difficult to imagine a reasonable ranking function doing the same.
As we show as follows, so long as we assume a “reasonable” ranking function, the
worst-case query cost can indeed be reduced by orders of magnitude, no matter
what the underlying data distribution is.

Average-Case Analysis: By “average-case” analysis, we mean an analysis done
based on a single assumption: the system ranking function is random among
skyline tuples - i.e., for any query q, the ranking function returns a tuple chosen
uniformly at random from S(q), i.e., the set of skyline tuples matching q. One can
see that this represents the “average” case as a randomly chosen skyline tuple from
S(q) can be considered an average of the top-1 selections of all legitimate ranking
functions given q and the database D. As we shall discuss after this analysis, this
is likely still “worse” than what happens in practice. Yet even this conservation
assumption is enough to significantly reduce the worst-case query cost.

The most important observation for our average-case analysis can be stated
as follows: The expected query cost (taken over the aforementioned randomness
of the system ranking function) of SQ-DB-SKY is a deterministic function of the
number of skyline points |S|, regardless of how the tuple are actually distributed.

To understand why, we start from the simplest case of |S| = 1. In this case,

58

the SELECT * query returns the single skyline tuple, while the m branches of it
all return empty, finishing the algorithm execution. In other words, the query cost
is always C1 = m + 1 (where the subscript 1 stands for |S| = 1). Now consider
|S| = 2. Here, depending on which tuple is returned by SELECT *, some of its m
branches may be empty; while some others may return the other skyline tuple. Let
m0 be the number of empty branches. For the (m−m0) non-empty branches, we
essentially need C1 queries to examine each and its m sub-branches (all of which
will return empty). One can see that the overall query cost will be

C2 = 1 +m0 + (m−m0) · C1. (3)

Interestingly, regardless of how tuples are distributed, the above-described
random ranking always yields E(m0) = m/2 and thus

E(C2) = 1 +m/2 + C1 ·m/2, (4)

where the expected value E(·) is taken over the randomness of the ranking function.
To see why, note that m0 is indeed the number of attributes on which the tuple
returned by SELECT * outperforms the other tuple in the database. Since the
ranking function chooses the returned tuple uniformly at random, the expected
value of m0 is always m/2 regardless of what the actual values are.Similarly when
|S| > 2, Cs = 1 +m0 +m1 · C1 + . . .+ms−1 · Cs−1, where mi is the number of
attributes on which i skyline tuples outrank the tuple returned by SELECT * (t0).
Since the probability that t0 is outranked by i skyline tuples on a given attribute is
1/s, the expected number of such attributes is m/s. Consequently, the expected
query cost of SQ-DB-SKY is

E(Cs) = 1 +
m

s
·
s−1∑
i=0

E(Ci) (5)

59

where C0 = 1. With Z-transform and differential equations,

E(Cs) =
m((m+ s− 1)!− (m− 1)!s!)

(m− 1)(m− 1)!s!
. (6)

For example, when m = 2, we have E(Cs) = 2s.
We now show why this average-case query cost is orders of magnitude smaller

than the worst-case result. First, since E(Ci) ≥ m+ 1 for all i ≥ 1, we can derive
from (5) that

E(Cs) ≤
m+ 1

m
· m
s
·
s−1∑
i=0

E(Ci) =
m+ 1

s
·
s−1∑
i=0

E(Ci) (7)

Clearly, if we set Fi such that F0 = 1 and Fs = ((m + 1)/s) ·
∑s−1

i=0 Fi, then we
have E(Ci) ≤ Fi for all i ≥ 0. Consider the ratio between Fs and Fs−1 when
s� m. Note that Fs−1 = (m+ 1)/(s− 1) ·

∑s−2
i=1 Fi - i.e.,

s−1∑
i=1

Fi =
s+m

m+ 1
· Fs−1. (8)

In other words,

E(Cs) ≤ Fs =
m+ 1

s
· s+m

m+ 1
· Fs−1 =

s+m

s
Fs−1 (9)

=
(s+m)!

s! ·m!
=

(
s+m

m

)
(10)

≤
(

(s+m) · e
m

)m
=
(
e+

e · s
m

)m
(11)

One can see that the growth rate of Fs (with |S|) is much slower than what is
indicated by the worst-case analysis - specifically, the base of exponentiation
is approximately (e/m) · |S| instead of |S|. Figure 12 confirms this finding by
showing the average and worst-case cost of SQ-DB-SKY for the cases where
m = 4 and m = 8. One can observe from the figures the significantly smaller
query cost indicated by the average-case analysis.

60

1 3 5 7 9 11 13 15 17 19
10

0

10
2

10
4

10
6

10
8

Number of Skylines

Q
ue

ry
 C

os
t

Average Cost
Worst−case Cost

(a) m=4

1 3 5 7 9 11 13 15 17 19
10

0

10
5

10
10

10
15

Number of Skylines

Q
ue

ry
 C

os
t

Average Cost
Worst−case Cost

(b) m=8

Figure 12: Comparing worst and average cost of SQ-DB-SKY

Before concluding the average case analysis, we would like to point out that
even this analysis is likely an overly conservative one. To understand why, note
from (3) that the smaller m0 is, i.e., the more branches return empty, the smaller the
query cost will be. In the average-case analysis, since we assume a random order
of skyline tuples, E(m0) = m/|S|, i.e., the top-ranked tuple returned by SELECT
* features the top-ranked value on an average of m/|S| attributes. Clearly, with
a real-world ranking function, this number is likely to be much higher, simply
because the more “top” attributes values a tuple has, the more likely a reasonable
ranking function would rank the tuple at the top. As a result, the query cost in
practice is usually even lower than what the average-case analysis suggests, as we
show in the experimental results.

4.3 Skyline Discovery for RQ-DB

We now consider the RQ-DB case where range queries support two-ended ranges,
rather than one-ended as in the SQ-DB case. Since RQ-DB has a more powerful
interface, a straightforward solution here is to directly use Algorithm SQ-DB-SKY.
One can see that the algorithm still guarantees complete skyline discovery.

The problem with this solution, however, lies in cases where |S|, the number
of skyline tuples, is large. Specifically, when |S| approaches the database size
n, the worst-case query cost may actually be larger than the baseline query cost

61

of O(m · n) for crawling the entire database over a RQ-DB interface [36]. This
indicates what SQ-DB-SKY fails to (or cannot, as it was designed for SQ-DB)
leverage - i.e., the availability of both ends on range queries - may reduce the query
cost significantly when |S| is large. We consider how to leverage this opportunity
in this section.

4.3.1 Key Idea: Algorithm RQ-DB-SKY

A Simple Revision and Its Problem: Our first idea for reducing the query cost
stems from a simple observation on the design of q2 to q4 described above: Instead
of having them as three overlapping queries, we can revise them to be mutually
exclusive:

q2: WHERE A1 < t1[A1]

q3: WHERE A1 ≥ t1[A1] & A2 < t1[A2]

q4: WHERE A1 ≥ t1[A1] & A2 ≥ t1[A2] & A3 < t1[A3]

With this new design, allm branches from a node in the tree (Figure 9) represent
mutually exclusive queries. Interestingly, the completeness of skyline discovery is
not affected! For example, any skyline tuple other than t1 still belongs to at least
one of q2 to q4.

The effectiveness of this revision is evident from one key observation - because
of the mutual exclusiveness and the (still valid) completeness of skyline discovery,
now every skyline tuple is returned by exactly one node in the tree. While this
seemingly solves all the problems in the query-cost analysis for SQ-DB-SKY, it
unfortunately introduces another challenge:

Unlike in SQ-DB-SKY where the top-1 tuple returned by every node is a
skyline tuple, with this revised tree, a node might return a tuple not on the skyline
as the No. 1. This can be readily observed from the design of q2 and q3: it is now
possible for a tuple returned by q3 to be dominated by q2 - as the space covered
by q3 now excludes the space of q2. Because of this new problem, the worst-case
query cost for this revised algorithm becomes O(n ·m), as it is now possible for
each of the n tuples in the database (even those not on the skyline) to be returned
by a interior node in the tree. While this bound may still be smaller than that of

62

SQ-DB-SKY when |S| approaches n, it may also be much worse when |S| is small.
Since we do not have any prior knowledge of |S| before running the algorithm, we
need a solution that adapts to the different |S| and offers a consistently small query
cost in all cases.

Algorithm RQ-DB-SKY: To achieve this, our key idea is to combine SQ-DB-
SKY with the above-described revision to be the more efficient of the two. To
understand the idea, note a 1-1 correspondence between the tree constructed in
SQ-DB-SKY and the revised tree: In the revised tree, we map every query q in the
tree of SQ-DB-SKY to a query R(q) covering all value combinations matching q
but not any q′ in SQ-DB-SKY which appears before q in the (depth-first) post-order
traversal of the tree. Based on this 1-1 mapping, RQ-DB-SKY works as follows.

We traverse the tree in SQ-DB-SKY and issue queries in depth-first preorder.
A key additional step here is that, for each query q in the tree, before issuing it,
we first check all tuples returned by previously issued queries and check if any of
these tuples match q. If none of them does, then we proceed with issuing q and
continuing on with the traversal process.

Otherwise, if at least one previously retrieved tuple matches q, then instead of
issuing q, we issue its counterpart R(q). If R(q) is empty, no new skyline tuple
can be discovered from the subtree of q. Thus, we should abandon this subtree
and move on. If R(q) returns as No. 1 a tuple t, then either t is dominated by a
previously retrieved (skyline) tuple, or it must be a (new) skyline tuple itself. Either
way, we must have never seen t before in the answers to the issued queries. If t is
dominated by a previously retrieved tuple, say t′, then we generate the children of
q according to t′. Otherwise, we generate them according to t. In either case, we
continue on with exploring the subtree of q in depth-first preorder. Algorithm 4
depicts the pseudocode of RQ-DB-SKY.

The correctness of RQ-DB-SKY follows directly from that of SQ-DB-SKY,
because these two algorithms essentially follow the exact same query sequence
with only one exception: In RQ-DB-SKY, when we are certain from the answer
to R(q) that no skyline tuple could possibly be discovered from the subtree of
q, we forgo the exploration of this subtree and move on. Instead, SQ-DB-SKY

63

Algorithm 4 RQ-DB-SKY
1: S = ∅
2: seen = ∅
3: while traversing the SQ-DB-SKY tree in depth first preorder and at each q in

the tree do
4: if @ t ∈Seen that matches q then
5: T = Top-k(q)
6: if T contains k tuples then
7: generate the children of q based on T0
8: end if
9: else

10: T = Top-k(R(q))
11: if T contains k tuples then
12: if ∃t′ ∈ S that dominates T0 then
13: generate the children of q based on t′
14: else
15: generate the children of q based on T0
16: end if
17: end if
18: end if
19: Update S by T ;
20: seen = seen ∪ T
21: end while

does not have this early-termination detection (because the SQ-DB interface does
not support R(q)), and therefore has to complete the useless subtree exploration
process. As we shall show in the next subsection, this early-termination detection
can lead to a significant saving of query cost, especially when the number of skyline
tuples |S| is large.

Theorem 5. Algorithm RQ-DB-SKY is guaranteed to discover all skyline tuples.

Proof. The proof can be constructed in analogy to that of Theorem 4. The only
difference is that, unlike in the proof for SQ-DB-SKY where t might match more
than one of the m branches of a node, here t must match exactly one of the m
branches, simply because these m branches are mutually exclusive by design in
RQ-DB-SKY. Despite of this difference, the logic of the proof stays exactly the

64

same: there must be exactly one branch of the root satisfying t because otherwise t
would be dominated by the tuple returned by the root. Recursively, we can construct
a path from the root to a leaf node in the tree, such that t satisfies each and every
node on the path. Since every leaf node of the tree is a valid or underflowing query,
this means that the leaf node must return t, contradicting the assumption that t is
not discovered.

Once again, let us consider the dummy example provided in Figure10, and its
corresponding RQ-DB-SKY tree in Figure 13. One can see that applying R(q4)=
WHEREA2 ≥ 3 ANDA3 < 7, instead of q4, causes that each skyline tuple appears
in exactly one of the branches.

Figure 13: RQ-DB-SKY example tree

65

5 15 25 35 45 55 65 75 85 95
10

1

10
2

10
3

10
4

10
5

10
6

Number of Skylines

Q
ue

ry
 C

os
t

SQ−DB−SKY
RQ−DB−SKY

(a) 4D

5 15 25 35 45 55 65 75 85 95
10

2

10
4

10
6

10
8

10
10

10
12

Number of Skylines

Q
ue

ry
 C

os
t

SQ−DB−SKY
RQ−DB−SKY

(b) 8D

Figure 14: simulation results for RQ-DB-SKY, in comparison with SQ-DB-SKY

4.3.2 Query-Cost Analysis

The key to the query-cost analysis of RQ-DB-SKY is to count the number of
internal, i.e., interior, nodes of the tree. There are two important observations:
First, the SQ-query q of a interior node must match at least one skyline tuple, as
otherwise it would have to return empty which makes the node a leaf. Second, if a
interior node is not the first (according to preorder) which returns the skyline tuple,
then the node’s RQ-query (i.e., R(q)) must return a unique tuple in the database
that does not match any node accessed before it, because otherwise the node would
return empty and become a leaf. With these two observations, an upper bound on
the number of internal nodes is min(|S|m+1, n). As a result, the total query cost of
RQ-DB-SKY is O(m ·min(|S|m+1, n)).

One might wonder if, for RQ-DB-SKY, we can derive a similar result to the
average-case analysis of SQ-DB-SKY which is oblivious to the data distribution.
Unfortunately, the query cost of RQ-DB-SKY is data-dependent. The reason is
simple: the query cost of RQ-DB-SKY is essentially determined by how many non-
skyline tuples match and are returned by the RQ-queries R(q). This number,
however, depends on the data distribution: e.g., if all non-skyline tuples are
dominated by the skyline tuple returned by SELECT *, then the query cost of RQ-
DB-SKY can be extremely small (≤ m · |S|). Meanwhile, if very few non-skyline
tuples are dominated by skyline tuples returned from nodes at the top of the tree,

66

then RQ-DB-SKY requires many more queries.
Because of the data-dependent nature of RQ-DB-SKY’s query cost, to demon-

strate the power of its early-termination idea, we resort to the numeric simulations
conducted in Section 4.2. Figure 14 depicts how the query costs of SQ- and RQ-
DB-SKY change with the percentage of tuples on the skyline (when the database
contains 2000 tuples each with 2 Boolean i.i.d. uniform-distribution attributes).
Note that we control the percentage of skyline tuples by adjusting the correlation
between the two attributes, where positive correlation leads to fewer skyline tuples.
Interestingly, one can observe from the figure that while the performance of RQ-
and SQ- do not differ much when |S| is small, RQ- has a much smaller query cost
when |S| is large - consistent with the theoretical analysis.

4.4 Skyline Discovery for PQ-DB

We now turn our attention point-query PQ-predicates. We first discuss the 2D
case (i.e., a database with two attributes) and present an instance-optimal solution
PQ-2D-SKY. Then, after pointing out the key differences between 2D and higher
dimensional cases, we present Algorithm PQ-DB-SKY, which discovers all skyline
tuples from a higher dimensional database by calling (a variation of) PQ-2D-SKY
as a subroutine.

4.4.1 2D Case

Design of Algorithm PQ-2D-SKY: We start with SELECT * which is guaranteed
to return a skyline tuple, say (x1, y1). As shown in Figure 15, we can now
prune the 2D search space (for skyline tuples) into two disconnected subspaces,
both rectangles. One has diagonals (0, ymax) and (x1, y1), while the other has
(x1, y1) and (xmax, 0), where xmax and ymax are the maximum values for x and y,
respectively. We do not need to explore the rectangle with diagonals (0, 0) and
(x1, y1) because there is no tuple in it (as otherwise it would dominate (x1, y1)).
We do not need to explore the rectangle with diagonals (x1, y1) and (xmax, ymax)

either because all tuples in it must be dominated by (x1, y1).

67

Figure 15: Pruning, R1, R2, & demo of algorithm execution

From this point forward, our goal becomes to discover skyline tuples by issuing
1D queries - i.e., queries of the form of either x = x0 or y = y0. An important
observation here is that any 1D query we issue will “affect” (precise definition to
follow) exactly one of the two above-described subspaces. For example, if x0 > x1,
query x = x0 affects only R2 in Figure 15: It either proves part of the rectangle to
be empty (when the query returns empty or a tuple with y > y1), or returns a tuple
in the second rectangle that dominates all other tuples with x = x0. In either case,
Rectangle R1 remains the same and still needs to be explored. As another example,
if y0 > y1, then query y = y0 affects only R1.

This observation actually leads to a simple algorithm that is guaranteed to be
optimal in terms of query cost: at any time, pick one of the remaining (rectangle)
subspaces to explore. Let the diagonal points of the subspace be (xL, yT) and
(xR, yB), where xL ≤ xR and yT ≥ yB. If xR− xL < yT− yB, then we issue query
x = xL. Otherwise, we issue y = yB. For example, in Figure 15, if xmax−x1 > y1,
we issue y = 0.

Note the implications of the query answer on the remaining subspace to search:
Consider query q: x = xL as an example. If q returns empty, then the subspace
is shrunk to between (xL + 1, yT) and (xR, yB). Otherwise, if q returns (xL, y2),
then the subspace is shrunk to between (xL + 1, y2) and (xR, yB). Either way, the

68

subspace becomes smaller and remains disjoint from other remaining subspace(s).
For example, in Figure 15, if y = 0 is empty, R2 is shrunk to between (x1, y1)

and (xmax, 1). Otherwise, if it returns (x2, 0), then the subspace is now between
(x1, y1) and (x2, 1).

What we do next is to simply repeat the above process, i.e., pick a subspace,
determine whether the width or height is larger, and issue the corresponding query.
This continues until no subspace remains. Algorithm 5 depicts the pseudo code for
PQ-2D-SKY.

Algorithm 5 PQ-2D-SKY
1: T = Top-k(SELECT * FROM D);
2: S = {T0}
3: Partition search space into rectangles R1 and R2 based on T0
4: while search space is not fully explored do
5: Pick a rectangle and identify point query q to issue
6: T = Top-k(q);
7: S = S ∪ T0
8: if T contains k tuples then
9: prune search space based on T0

10: end if
11: end while

Instance Optimality Proof: We now prove the instance optimality of PQ-2D-SKY,
i.e., for any given database, there is no other algorithm that can use fewer queries
to discover all skyline tuples and prove that all skyline tuples have been discovered.
Note that the latter requirement (i.e., proof of completeness) is important. To
see why, consider an algorithm that issues SELECT * and then stops. For a
specific database that contains only one skyline tuple, this algorithm indeed finds
all skyline tuples extremely efficiently. But it is not a valid solution because it
cannot guarantee the completeness of skyline discovery.

We prove the instance optimality of PQ-2D-SKY by contradiction: Suppose
there exists an algorithm A that requires fewer queries. Consider the (rectangle)
subspace between (xL, yT) and (xR, yB). If xR − xL < yT − yB yet A does not
issue x = xL, then the only alternative is to issue queries y = yB, yB + 1, . . .,

69

yc, where yc is the y-coordinate value of the tuple returned by x = xL or, in the
case where x = xL returns empty, yc = yT. An example of this is illustrated in
Figure 15: Suppose ymax − y1 > x1. If A does not issue x = 0, then it must issue
y = y1, y2, . . . , yc. This is because, in order to guarantee the completeness of
skyline discovery, one must “prove” the emptiness of points (xL, yB), (xL, yB + 1),
. . ., (xL, yc − 1), (resp. (x0, y1), . . . , (x0, yc − 1) in Figure 15) while retrieving
tuple (xL, yc) (resp. (x0, yc) in Figure 15). Given that x = xL is not issued, the
only feasible solution is to issue the above-described y = yi queries.

Yet this contradicts the optimality of AlgorithmA. To understand why, consider
two cases respectively: First is when x = xL returns empty. In this case, A calls
for yT − yB + 1 queries to be issued, while PQ-2D-SKY issues at most xR − xL
queries. Since xR − xL < yT − yB, A is actually worse. Now consider the second
case, where x = xL does return a tuple (xL, yc). In this case, A calls for c queries
to be issued. We also require at most c queries, as y = yc is no longer needed given
the answer to x = xL. This again contradicts the superiority of A.

Query Cost Analysis: Having established the instance optimality of PQ-2D-
SKY, we now analyze exactly how many queries it needs to issue. Let A1 and
A2 be the two attributes and t1, . . . , t|S| be the skyline tuples in the database.
Without loss of generality, suppose ti is sorted in the increasing order of A1, i.e.,
ti[A1] ≤ ti+1[A1]. Note that, since ti are all skyline tuples, correspondingly there
must be ti[A2] ≥ ti+1[A2]. Denote as t0 and t|S|+1 the two diagonal points of the
domain, i.e., t0 = 〈0,max(Dom(A2))〉 and t|S|+1 = 〈max(Dom(A1)), 0〉. One
can see from the design of PQ-2D-SKY that its query cost is simply

C =

|S|∑
i=0

min(ti+1[A1]− ti[A1], ti[A2]− ti+1[A2]). (12)

Immediately, following Equation 12, a few upper bounds on C are: e.g.,
C ≤ t1[A2], C ≤ t|S|[A1], and C ≤ mini∈[1,|S|] (ti[A1] + ti[A2]). These upper
bounds indicate a likely small query cost in practice. To understand why, recall
that most web interfaces only present a ranking attribute as PQ when it has a
small domain. In addition, it is highly unlikely for such an attribute to have empty

70

domain values - i.e., v ∈ Dom(Ai) that is not taken by any tuple in the database -
because otherwise users of the PQ interface would be frustrated by the empty result
returned after selecting Ai = v. When every value in Dom(A1) and Dom(A2) is
occupied, unless the number of skyline tuples is very large, ti[Aj] is likely small
for ti to be on the skyline, leading to a small query cost in practice. We verify this
finding through experimental results in Section 4.7.

4.4.2 Higher-D Case: Negative Results

Unfortunately, the optimal 2D skyline discovery algorithm cannot be directly
extended to solve the higher-dimensional cases. This subsection describes two
main obstacles which explains why: The first proves that there does not exist any
deterministic algorithm that can be instance optimal for higher-D databases like
what PQ-2D-SKY achieves for 2D. The second obstacle shows that even if we are
willing to abandon optimality and consider a greedy algorithm that deals with each
2D subspace at a time for higher-D databases, PQ-2D-SKY still cannot be directly
used.

Fortunately, the second negative result also sheds positive lights towards solving
the higher-D problem. As we shall show in the next subsection, it is indeed possible
to revise PQ-2D-SKY and retain instance optimality for any 2D subspace of a
higher-D database - a result that eventually leads to our design of PQ-DB-SKY for
higher-D databases.

Non-existence of Optimal Higher Dimensional Skyline Discovery Algorithms:
The first obstacle brought by higher-D skyline discovery that makes it impossible
for any deterministic algorithm to achieve instance optimality as in the 2D case
discussed above. Here we shall first describe the obstacle, and then discuss why it
eliminates the possibility of having an optimal (deterministic) skyline discovery
algorithm.

The obstacle here is the loss of a property which we refer to as “guaranteed
single skyline return” - i.e., every 1D query (which is the focus of consideration
in 2D skyline discovery) is guaranteed to return the (at most one) skyline tuple
covered by the query. 2D and higher dimensional queries, on the other hand, may

71

0
1

2 0

1

2
0

1

2

y
x

z

Figure 16: Illustration of negative-proof construction

not reveal all skyline tuples. Specifically, even when k > 1, some of the returned
tuples may not be skyline tuples even when there are skyline tuples matching the
query that are not returned.

This property makes it no longer possible to guarantee the optimality of skyline
discovery without knowledge of the actual data distribution. To understand why,
consider a simple example depicted in Figure 16, where the database features a
top-2 interface (i.e., k = 2) and contains the following five tuples (in addition to
potentially many others): (1, 1, 1), (2, 2, 2), (2, 0, 0), (0, 2, 0), (0, 0, 2). Suppose
that the SELECT * query returns (1, 1, 1) and (2, 2, 2); while SELECT * FROM D
WHERE z = 0 returns (2, 0, 0) and (0, 2, 0). Further assume that neither query
SELECT * FROM D WHERE x = 0 nor WHERE y = 0 returns more than one
skyline tuples - e.g., say the first one returns (0, 2, 0) and (0, 3, 0) and the latter
returns (2, 0, 0) and (3, 0, 0).

The first observation we make here is that the optimal query plan consists of
only 3 queries (no matter what the other tuples are):

SELECT * FROM D
SELECT * FROM D WHERE z = 0

SELECT * FROM D WHERE x = 0 AND y = 0

72

One can see that, given the above setup, these three queries are guaranteed to return
all five aforementioned tuples, which by themselves prove that there are only four
skyline tuples in the database: (1, 1, 1), (2, 0, 0), (0, 2, 0), and (0, 0, 2), because any
other possible value combination must fall into one of the two categories: Either
it is dominated by at least one of the four tuples, or it must be one of (0, 0, 0), (1,
0, 0), (0, 1, 0), (0, 0, 1). Nonetheless, these four value combinations have been
proven non-existent in the database as otherwise it must be returned by the 3 issued
queries.

The next critical observation is that any optimal query plan must contain
SELECT * FROM D WHERE z = 0. The reason here is simple: given the four
skyline tuples and the above assumptions, the only query that returns more than
one skyline tuple is SELECT * FROM D WHERE z = 0. In other words, if this
query is not included in a query plan, then the query plan must contain at least four
queries - i.e., it is not an optimal plan.

It is exactly this observation which eliminates the existence of a deterministic
yet instance-optimal skyline discovery algorithm. To understand why, consider
a slight change to the query-answer setup when all tuples in the database remain
exactly the same: now query WHERE z = 0 returns (0, 2, 0) and (0, 3, 0), while
WHERE x = 0 returns (0, 2, 0) and (0, 0, 2). In analogy to the above analysis, now
the optimal query plan must contain SELECT * FROM D WHERE x = 0 (along
with, say, SELECT * and SELECT * FROM D WHERE y = 0 AND z = 0, to
make a 3-query optimal plan) and must not contain SELECT * FROM D WHERE
z = 0.

The problem with this new setup, however, is that no deterministic algorithm
can achieve optimality in both this setup and the original one, because it simply
cannot distinguish between the two cases without committing to a query that is
part of the optimal plan for one but cannot be part of the optimal plan for the other.
For example, the SELECT * query returns the exact same answer in the two cases -
making it impossible to make the distinction. On the other hand, while SELECT *
FROM D WHERE z = 0 does distinguish between the two cases, the very issuance
of this query already means the loss of instance optimality, as it cannot be part of

73

an optimal query plan for the second setup. More formally, the only queries that
enable the distinction are those that have different query answers between the two
cases - i.e., query SELECT * FROM D WHERE z = 0 and query WHERE x = 0 -
yet neither can appear in both optimal query plans.

One can observe from the above discussions what makes instance-optimal
skyline discovery impossible over a higher-D database: Unlike in the 2D case
where every 1D query always returns the one and only skyline tuple matching
the query (or returns empty) no matter what the ranking function actually is, in
higher-D cases whether and how many skyline tuples are “hidden” from the answer
to a matching 2D query depends on the ranking function. Since the algorithm has
no prior knowledge of the ranking function (which might even differ for different
queries), it has to rely on the returned query answers to determine which queries
to issue next. This eliminates the possibility of an instance-optimal algorithm
because, by the time the algorithm can learn enough information about the ranking
function and the underlying database, it may have already issued unnecessary
queries, making the algorithm suboptimal.

No Direct Extension to Optimal 2D Subspace Discovery: Since the above
obstacle eliminates the possibility of an instance-optimal h-D skyline discovery
algorithm, we now turn our attention to a simpler, greedy, version of the solution:
how about we partition the higher-dimensional space into mutually exclusive 2D
subspaces, and then run the instance-optimal 2D skyline discovery algorithm over
each subspace?

Unfortunately, even in this case, the 2D algorithm cannot be directly applied
without losing its optimality. To understand why, recall that in the 2D case, there
is a clean “separation” of effect for a query answer: no matter what the query
answer is, it shrinks one and exactly one rectangle subspace (to another rectangle).
This enables us to devise a divide-and-conquer approach which focuses on one
(rectangle) subspace at a time.

This clean property, however, is lost once the dimensionality increases to 3 (and
above). For example, consider the search space in the 3D case after pruning based
on the answer of SELECT * FROM D, say point (x, y, z). One can see that the

74

Figure 17: Illustration of example

pruning carves out two (small) cubes from the original space - one with diagonal
points being (0, 0, 0) and (x, y, z); while the other with diagonal points being
(x, y, z) and (xmax, ymax, zmax). The pruned result, however, is still one connected
space with a complex shape as depicted in Figure 17, which may become more and
more complex once pruning is done with additional query answers.

After projecting the pruned subspace to each 2D subspace, one can see that
the pruned space is now of the shape of a rectangle “minus” a number of smaller
rectangles. For example, consider a simple 3D case where the domains of x, y
and z are [0, 6], [0, 9], and [0, 1], respectively. Suppose that the SELECT * query
returns tuple (4, 6, 1), while SELECT * FROM D WHERE z = 0 returns tuple (0,
9, 0). We now consider the problem of skyline discovery the 2D subspace defined
by query WHERE z = 0.

Figure 18 depicts the shape of this subspace after pruning based on the SELECT
* query. One can see that three rectangles are excluded from the original space of
[0, 6]× [0, 9]. One is x = 0 - it is removed because the return of (0, 9) guarantees
no other tuple with z = 0 could have x = 0. Another is y = 9 - it is excluded
because any tuple within must be dominated by (0, 9). The final excluded rectangle

75

Figure 18: Illustration of example

has diagonals (0, 0) and (4, 6). It is excluded because, according to the SELECT *
query answer, we are assured that no tuple exists with x ≤ 4, y ≤ 6, and z = 0, as
otherwise this tuple must have been returned ahead of (4, 6, 1).

Note, however, a significant difference with the original 2D case: the rectangle
with diagonals (4, 6) and (6, 9) is not removed. Unlike in the original case where the
other diagonal rectangle can also be removed because all points in it are dominated
by the returned tuple, in this new case the pruning of rectangle (0,0)-(4,6) is not
based on a tuple with z = 0. As such, it is still possible for a tuple in rectangle
(4,6)-(6,9) to be a skyline tuple. In the following discussions, one can see that
it is exactly this change which introduces additional complexity to the design of
2D-subspace skyline discovery in higher-dimensional databases.

We now show that the 2D algorithm loses its optimality when being applied to
this pruned 2D space. Note that, according to the algorithm, we shall start with
issuing x = 1, 2, . . . because the domain size of x (i.e., 6 after pruning) is smaller
than that of y (i.e., 9 after pruning). Consider the case when there is only one more
tuple (in addition to (0, 9) returned by the SELECT * query) in this subspace: (5,
0). One can see that this algorithm will issue 5 queries - i.e., x = 1, . . . , 5, after
which it stops execution because all the subspace can then be pruned by (5, 0).
Nonetheless, the optimal query plan for this subspace consists of only 3 queries

76

Figure 19: Illustration of example

- e.g., WHERE x = 5, WHERE y = 7, and WHERE y = 8. This shows that the
original 2D algorithm is no longer optimal for this subspace skyline discovery task.

Note that this problem cannot be simply solved by partitioning the subspace
into rectangles before applying the 2D algorithm over each. This can be seen from
another simple construction: Consider a change to the above database which makes
(2, 2, 1) the tuple returned by the SELECT * FROM D query. The pruned subspace
in this case is depicted in Figure 19. One can see that, if we partition the subspace
into the three rectangles marked in the figure, then we would have issued queries
WHERE y = 0 and WHERE y = 1 for the bottom rectangle - yet these two queries
cannot be in the optimal plan when there is no tuple other than (0, 9, 0) on the
plane.

4.4.3 Algorithm PQ-DB-SKY

Optimal 2D Subspace Skyline Discovery
To develop an instance-optimal algorithm for discovering all skyline in a 2D

subspace, we start by considering the possible shape of such a subspace. As
discussed above, the subspace may be pruned by answers to queries that contain
the subspace. Without loss of generality, consider a 2D subspace S “spanning”
on attributes A1 and A2. Let S[Ai] (i > 2) be the value of the subspace on any

77

(a) Example of empty and dominated area (b) “Block-diagonal” rectangles

Figure 20: Illustration of idea for PQ-2DSUB-SKY

other attribute. If a query containing the subspace returns a tuple t such as ∀i > 2,
t[Ai] ≥ S[Ai], then we can prune from S the rectangle with diagonals (0, 0) and
(t[A1], t[A2]), because any tuple in this rectangle would dominate t, contradicting
the fact that t is returned by a query containing S. Figure 20a depicts such a
scenario.

Besides such pruning, another possible way to prune S is to exclude from it
rectangles that we are no longer interested in. For example, if we have retrieved
a tuple t such that ∀i > 2, t[Ai] ≤ S[Ai], then we are no longer interested in the
rectangle corresponding to A1 ≥ t[A1] and A2 ≥ t[A2], because any other in the
rectangle would be dominated by t and therefore cannot be a skyline tuple. One
can see that the end result of pruning is a shape like what is depicted in Figure 20a.

Given the pruned shape, the key idea of our PQ-2DSUB-SKY algorithm is
depicted in Figure 20 and can be stated as follows. First, we remove all rows and
columns that have already been completely pruned. Then, we consider a series
of “block-diagonal” rectangles as depicted in Figure 20b. Formally, if t1 : (x1, y1)

and t2 : (x2, y2), as shown in the figure, are adjacent “lower-bound” skyline points
in the subspace, then we add to the series a rectangle with diagonals (x1, y1) and
(x2, y2).

There are two critical observations here that lead to the instance optimality of
this idea: First, no matter which tuples there are in the database, these rectangles
must be covered for a complete discovery of all skyline tuples. For example,

78

consider a point outside these rectangles, say (x2 + 1, y1 + 1). If (x2, y1) turns out
to be occupied by a tuple, then (x2 + 1, y1 + 1) can be pruned without any query
covering the rectangle containing it (say the one with diagonals (x2 +1, y1 +1) and
(xmax, ymax)). On the other hand, any point inside one of the series of rectangles
cannot be pruned unless there has been at least one query “hitting” the rectangle
containing the point.

The second critical observation is that at least one of the series of rectangle
must “agree” with the overall subspace (i.e., the one after removing all completely
pruned rows and columns) on which dimension to follow for discovery (as dictated
by the skyline discovery rule in Algorithm PQ-2D-SKY). The underlying reason
is straightforward: let the width and height of each rectange in the series, say Ri,
be w1 and h1, respectively. Note that the overall width and height of the subspace
satisfy

w = w1 + · · ·+ ws, (13)

h = h1 + · · ·+ hs, (14)

where s is the number of rectangles in the series. One can see that, clearly, if w < h,
there must be at least one rectangle in the series with wi < hi - i.e., the rectangle
“agrees” with the overall subspace to discover skylines along the y-dimension (by
issuing queries of the form SELECT * FROM D WHERE x = v).

Based on these two observations, we can now develop Algorithm PQ-2DSUB-
SKY. It starts with the above two steps, and then selects any arbitrary rectangle in
the series so long as it agrees with the overall pruned subspace on which dimension
to follow. Based on the second observation, there must exist at least one such
rectangle. We crawl this rectangle using the previously developed 2D skyline
discovery algorithm, and then repeat the entire process - i.e., starting once again by
removing rows and columns that have been completely discovered. Algorithm 6
depicts the pseudo code of PQ-2DSUB-SKY. The proof of instance optimality for
this algorithm is straightforward: As proved in Section 4.4.1, the skyline discovery
in each rectangle in the series is instance optimal. As discussed above, any complete
discovery of skyline tuples in the subspace must cover all rectangles. Thus, the

79

Algorithm 6 PQ-2DSUB-SKY
1: Assuming that A1 and A2 create the current subspace S
2: for queries q that contains S and tuple t discovered by q do
3: if ∀i > 2, t[Ai] ≥ S[Ai] then
4: Remove the rectangle (0,0) and (t[A1], t[A2]) from S
5: end if
6: end for
7: for discovered tuples t that ∀i > 2, t[Ai] ≤ S[Ai] do
8: Remove the rectangle corresponding to A1 ≥ t[A1] and A2 ≥ t[A2] from S
9: end for

10: while S is not completely pruned do
11: Remove the pruned rows and columns
12: Construct the “block-diagonal” rectangles (R) between adjacent “lower-

bound” skyline points in the subspace
13: Apply PQ-2D-SKY on a rectangle r inR that agrees with the overall pruned

subspace on the dimension to follow
14: end while

only remaining issue to ensure that the issued queries indeed cover the entire
subspace (i.e., containing not only the series of rectangles but the other unpruned
part as well). Since the rectangle we choose at each step always has the same
discovery direction as the entire subspace, one can see that either the discovery
of all rectangles are along the same dimension - i.e., a complete discovery, or the
direction changes when a returned tuple triggers pruning of not only the rectangle
being processed but also the part of the subspace dominated by the rectangle - i.e.,
the skyline discovery will still be complete.

Design and Analysis of PQ-DB-SKY: Our proposed technique for higher-dimensional
skyline discovery has a key step of applying the application of this algorithm over
each 2D subspace of a higher-dimensional space.

As discussed above, instance optimality is lost once the dimensionality reaches
3. A key reason for this is because one does not know which dimension to “crawl
first”, i.e., how to partition a higher-D space into 2D subspaces (e.g., along x, y or
z?). Fortunately, heuristics for dimension selection are easy to identify. The most
important factor here is the domain size. To understand why, note that the domain

80

Algorithm 7 PQ-DB-SKY
1: T = Top-k(SELECT * FROM D); S = {T0}
2: Prune search space based on T0
3: while search space is not fully explored do
4: Pick the 2D subspace spanning 2 attributes with largest domain sizes
5: Identify skyline tuples on subspace using PQ-2DSUB-SKY
6: end while

sizes for the two dimensions selected into the 2D subspace have an additive effect
on query cost, while the others have a multiplicative effect. Thus, generally, we
should choose the two attributes with the largest domain sizes as the 2D subspace.

Based on the heuristics, the pseudo code of PQ-DB-SKY is depicted in
Algorithm 7. Given the exponential nature of dividing a higher-D space into
2D subspaces, the worst-case query cost grows exponentially with the number of
attributes. Nonetheless, as argued in the 2D case, the small domain sizes and the
value-occupancy property usually lead to a much smaller query cost in practice.
Such an effect is likely amplified even further in higher-D cases, as we shall show
in the experimental results in Section 4.7, because of the aforementioned heuristics
which places the largest domain-sized attributes in the 2D subspace, leaving the
other (multiplicative) attributes with even smaller domains.

Suppose Vm1 and Vm2 are the attributes with the largest domain size, and V ′ =
V \{Vm1 , Vm2}. PQ-DB-SKY processes the 2D plane for each value combination in
V ′. Assume for each combination of values vc for V ′ there exists a sorted list, Lvc ,
of its skyline tuples with regard to their values on Vm1 , extended by the top-left and
bottom-right corner points. Using Equation 15, the following is an upper-bound for
PQ-DB-SKY query cost, which is in the order of O((|Vm1|+ |Vm2|)×

∏
∀v′∈V ′

|v′|):

C =
∑
· · ·
∑

∀vc for V ′

|Lvc |∑
i=0

min(Lvc [i].Vm2 − Lvc [i+ 1].Vm2 ,

Lvc [i+ 1].Vm1 − Lvc [i].Vm1)

(15)

Nonetheless, it is also important to note that when the number of attributes

81

is relatively small and the attribute selection is straightforward (e.g., when two
attributes have significantly larger domains than the others), Algorithm PQ-DB-
SKY can approach the provable lower bound of query cost for skyline discovery.
To illustrate this, in the following special-case example, we show that Algorithm
PQ-DB-SKY achieves a query cost with constant difference from the proved
(instance-optimal) lower bound.

Case Study for PQ-DB-SKY: Let there be a 3D database with attributes x, y, and
z. The database ranking function follows a simple rule: If there is a tuple with
z < z0 that satisfies a query, the query will never return any tuple with z ≥ z0 (i.e.,
z is the first-priority ordering attribute). Furthermore, for any possible value of x,
say vx, there is at least one tuple in the database with x = vx and z = 0. Similarly,
for any possible value vy of y, there is at least one tuple in the database with y = vy

and z = 0.
An interesting property for this construction is that it excludes most higher-

dimensional (i.e., 2D or 3D) queries from consideration in building the optimal
query plan. The reason for doing so is as follows. First, note that the only 3D
query possible will return the same result as SELECT * FROM D WHERE z = 0.
Second, every 2D query of the form x = vx or y = vy is guaranteed to return a
tuple with z = 0 - i.e., they become equivalent with queries (x = vx AND z = 0)
and (y = vy AND z = 0), respectively.

According to these two observations, one can see that there is always an optimal
query plan which only includes a subset of the following queries: (a) 2D queries of
the form z = vz; (b) 1D queries because any other query is equivalent with a query
of these two types. We now consider the queries issued by the above-described,
optimal, 2D skyline crawling algorithm on the plane with z = 0. An important
observation here is that any query with (conjunctive) predicate z = vz (vz 6= 0)
cannot reveal any information about tuples (or even the data space) with z = 0.
As such, we consider next the following question: can the queries in optimal 3D
skyline crawling query plan with predicate z = 0 significantly differ from the
optimal 2D plan?

To answer this question, we need to consider the alternative queries that can be

82

included in the 3D optimal plan - i.e., those queries that contribute to the skyline
crawling of the plane z = 0 yet are not part of the 2D optimal plan. One can
see from the above discussions that these queries must be 1D queries of the form
x = vx AND y = vy - which reveals whether a tuple occupies the point (vx, vy, 0)

on the plane z = 0. We refer to such 1D queries as xy queries.
Now consider how many 1D queries one must issue to “replace” a query in the

optimal 2D plan. An important observation here is the on number of unique points
“covered” by a query q in the optimal 2D plan, which we refer to as the unique
coverage count of q. By “unique points” we mean points covered by exactly one
query q in the optimal plan. In other words, one cannot determine if a skyline
tuple resides on the point if q is removed from the query plan. The interesting
observation about the unique coverage count is that, for any h ≥ 0, there must be
at most h queries with a unique coverage count of h or less. This easily follows
from the 2D optimality proof discussed in Section 4.4.1.

Given this observation, one can derive the optimization ratio of simply running
the 2D optimal algorithm over z = 0, 1, . . . , |Vz| − 1, respectively. Suppose
that the query cost of doing so on z = i is ci, leading to an overall query cost of
C2D =

∑|Vz |−1
i=0 ci. One can see that any 3D skyline crawling algorithm must have

a query cost of at least

C ≥ min
h≥0

|Vz |−1∑
i=0

(ci − h)

+
h(h+ 1)

2
(16)

= min
h≥0

(
C2D − |Vz|h+

h(h+ 1)

2

)
≥ C2D −

|Vz|2

2
(17)

4.5 Skyline Discovery for Mixed-DB

We now combine our ideas for SQ, RQ and PQ to produce MQ-DB-SKY, our final
algorithm for a mixture of all attributes.

83

4.5.1 Overview

When the hidden database features a mixture of range- and point-predicates,
a straightforward idea appears to be applying RQ-DB-SKY directly over the
range-predicate attributes and not using the point ones at all (by setting them to
*), because RQ-DB-SKY is significantly more efficient than PQ-DB-SKY. The
problem, however, is that doing so misses skyline tuples, as shown below.

First, note that by setting Ai = ∗ on all point-predicate attributes, the skyline
tuples discovered by applying RQ-DB-SKY must indeed be skyline tuples. The
problem here, however, is that the completeness proof no longer holds because a
skyline tuple might be dominated by another tuple on all range-predicate attributes.
Such a tuple will be missed by RQ-DB-SKY. Fortunately, the missing tuples must
share a common property which we refer to as the range-domination property:
every tuple t missed here must be dominated by an already-discovered skyline
tuple, say D(t), on all range attributes. Meanwhile, t must surpass D(t) on at least
one of the point attributes.

Range-domination is an interesting property because it significantly shrinks
the search space for finding the remaining skyline tuples. Consider a simple
example where the execution of RQ-DB-SKY returns only one tuple t0. In this
case, we can define our new search space (for all missing skyline tuples) by simply
constructing a conjunctive query with predicates Ai ≥ t0[Ai] for every range-
predicate attribute Ai. Depending on the value of t0 and the data distribution, these
conjunctive predicates may significantly reduce the space we must search through
with PQ-DB-SKY.

When the range attributes only support one-ended ranges, the above search-
space-pruning idea does not work because predicates like Ai ≥ t0[Ai] are not
supported. Nonetheless, it is still possible to prune the search space because,
in order for a missing tuple to be on the skyline, it must dominate an already
discovered tuple on at least one point-predicate attribute. In other words, in the
execution of PQ-DB-SKY, we no longer need to consider value combinations of
point-predicate attributes that are dominated by all discovered tuples. While this
idea has a much weaker pruning power than the above one, it works for the case of

84

two-ended ranges as well, and can be readily integrated with the above idea.
In the following discussions, we shall first describe our key idea for leveraging

the pruning power afforded by two-ended ranges. Then, we develop our most
generic Algorithm MQ-DB-SKY which supports a mixture of two-ended range,
one-ended range, and point-predicate attributes.

4.5.2 Details for Leveraging Two-Ended Ranges

Before presenting our final MQ-DB-SKY algorithm, an important issue remains
on how exactly to leverage the above-described RQ-based search-space pruning.
A straightforward method is to construct for each discovered skyline tuple ti the
above-described subspace defined by conjunctive predicates Ai ≥ ti[Ai], and then
run PQ-DB-SKY over the space. The problem, however, is that PQ-DB-SKY
cannot be directly used in this case because its 2D-subspace-discovery subroutine
relies on an important property: if a tuple matches but is not returned by a 1D
query q0 as the No. 1 tuple, then it cannot be on the skyline. Unfortunately, this
property no longer holds in the mixed case.

To address this problem, we devise a new subroutine MIXED-DB-SKY as
follows. For each skyline tuple t0 discovered by the range-query algorithm, let
predicate P (t0) be (t[A1] ≥ t0[A1]) & · · · & (t[Ah] ≥ t0[Ah]) for all range
attributes A1, . . . , Ah. For each point attribute Bi(i ∈ [1, g]) and each value
v < t0[Bi], we construct a query q: WHERE P (t0) & (t[Bi] = v).

If this query returned empty, we move on to the next query. The premise (of
the efficient execution of this algorithm) is that, in practice, most such queries q
will return empty, quickly pruning the remaining search space. If q returns at least
one tuple, we need to start crawling the subspace defined by q. Now recall our
PQ-DB-SKY algorithm for point-query skyline discovery. Our first step over there
is to “partition” the space into 2-dimensional subspaces (i.e., by enumerating all
possible value combinations for the other g − 2 attributes, where g is the number
of point attributes) and deal with them one after another. This step remains the
same. Specifically, at any point we have an empty answer, we can stop further
partitioning the current subspace. When we go all the way to a 2-dimensional

85

subspace (without being stopped by an empty answer) then we’ll have to crawl the
entire 2D plane to find all tuples in it, instead of using the “2D skyline discovery”
approach in PQ-DB-SKY. This is the only difference with MIXED-DB-SKY.

A concern with this design is the large number of times MIXED-DB-SKY
may have to be called to completely discover the skyline. Note that a single call
of MIXED-DB-SKY without any appended predicates is sufficient to unveil all
skyline tuples. Yet when we append the range predicates to prune the search space,
the repeated executions of MIXED-DB-SKY, especially many skyline tuples are
discovered by RQ-DB-SKY, may lead to an even higher query cost.

To address this problem, we consider a slightly different solution of maintaining
a single execution of MIXED-DB-SKY. This time, instead of designing mTE

conjunctive predicates for each of the discovered skyline tuples, we do so only once
for the union of (dominated) data spaces corresponding to all of them. Specifically,
for each two-ended range attribute Aj , its corresponding (appended) predicate is
now

Aj ≥ min(t1[Aj], . . . , th[Aj]), (18)

where t1, . . . , th are the initially-discovered skyline tuples. One can see that these
predicates ensure comprehensiveness of skyline discovery, as any tuple that fails to
satisfy (18) must not be dominated by any discovered tuple on the range-predicate
attributes - in other words, this tuple must have already been discovered by RQ-
DB-SKY. On the other hand, given the (relatively) small number of skyline tuples,
min(t1[Aj], . . . , th[Aj]) may still have substantial pruning power, yet reducing the
number of executions of MIXED-DB-SKY to exactly 1.

4.5.3 Algorithm MQ-DB-SKY

We now combine all the above ideas to produce our ultimate (most generic)
algorithm, MQ-DB-SKY, which supports any arbitrary combination of two-ended
range, one-ended range, and point predicate attributes. Note that when there are
two-ended range attributes in the database, we use the pruning idea discussed in

86

Algorithm 8 MQ-DB-SKY
1: S = apply RQ-DB-SKY() on Range predicates; P =“”
2: for range attributeS r ∈ R do
3: append P by “AND t[r] ≥ min∀tj∈S(tj[r])”
4: end for
5: for point attributeS Bi and each value v < max∀tj∈S(tj[Bi]) do
6: q: WHERE P AND (t[Bi] = v)
7: T = Top-k(q); update S by T
8: if T contains k tuples then
9: partition the space defined q in 2D planes

10: for all planes ρ do
11: crawl the tuples in ρ and update S
12: end for
13: end if
14: end for

the above subsection. When there are only one-ended range attributes besides
point ones, our algorithm is limited to using the weaker pruning idea discussed in
Section 4.2. If there are only one-ended range, two-ended range, or point-predicate
attributes in the database, MQ-DB-SKY is reduced to SQ-, RQ-, and PQ-DB-SKY,
respectively. Finally, if there are a mixture of one-ended and two-ended range-
predicate attributes but no point-predicate attribute in the database, MQ-DB-SKY
is reduced to a simple revision of RQ-DB-SKY which leverages the availability of
“>” predicates on only attributes that support two-ended ranges.

4.6 Extensions

4.6.1 Anytime Property

An desirable feature shared by all algorithms developed in the paper is their anytime
property - i.e., one can stop the algorithm execution at any time to return a subset of
all skyline tuples. One can see that this property can be very useful for discovering
the skyline over real-world web databases, as many of them enforce a (many times
secret and dynamic) limit on the number of queries that can be issued from an
IP address (or an API account) per day. Without knowing such a limit ahead of

87

time, it becomes extremely important to ensure that the algorithm returns as many
skyline tuples as possible (instead of simply returning a failure message) when the
query limit is triggered.

In SQ-DB-SKY, note that any tuple returned by an issued query is a skyline
tuple. Thus, the property always holds. In RQ-DB-SKY, note if we traverse the tree
in a depth-first fashion, then a tuple returned is either on the skyline or dominated
by one of the already discovered skyline tuple. Thus, the anytime property holds
here as well. In PQ-2D-SKY, just like SQ-DB-SKY, any tuple returned by an
issued query is a skyline tuple - leading to the anytime property. Since PQ-DB-
SKY explores one 2D subspace at a time, so long as we process values of the other
attributes (i.e., those not selected into the 2D subspace) in their preferential order,
all tuples discovered by the algorithm at any time are on the eventual skyline - i.e.,
the anytime property holds. Finally, in the mixed case, the initial call of RQ- or
SQ-DB-SKY satisfies the anytime property, as shown above. The subsequent call
of (a small variation of) PQ-DB-SKY satisfies the property as well, leading to the
anytime property of MQ-DB-SKY

4.6.2 Sky Band

We now consider an extension of the objective from discovering the skyline tuples
to top-h sky band tuples - i.e., those tuples that are dominated by fewer than h
other tuples in the database. One can see that the top-1 sky band is exactly the
traditional skyline. Quite surprisingly, the simplest case discussed above - i.e.,
SQ-DB - becomes the most difficult case for sky band discovery. In the following
discussions, we shall first illustrate how to extend Algorithms RQ- and PQ-DB-
SKY (and thereby MQ-DB-SKY) to discover the top-h sky band, and then discuss
SQ-DB.

Extending RQ-DB-SKY: The extension is enabled by the following simple yet
important observation: for any tuple t2 on the top-2 sky band but not on the
skyline, there must exist a skyline tuple t1 such that when we consider the subspace
dominated by t1 (and the subset of the database in it), henceforth referred to as
t1’s domination subspace, t2 becomes a skyline tuple. Given this observation,

88

discovering the top-2 sky band becomes straightforward: for each skyline tuple
t discovered by RQ-DB-SKY, we run RQ-DB-SKY again, just this time on the
domination subspace of t. It is possible to specify such a subspace through
conjunctive queries because RQ-DB supports two-ended ranges.

We now consider the discovery of top-h sky band. While this seemingly
requires us to consider any size-(h − 1) subset of tuples on the top-(h − 1) sky
band, fortunately this is not the case in reality. To understand why, consider a
tuple t3 which is on the top-3 sky band but not top-2 sky band. Interesting, t3
must be a skyline tuple on the domination subspace of either a skyline tuple of the
entire database or a tuple on its top-2 sky band. For example, suppose that t3 is
dominated by two skyline tuples t and t′. Note that this means t3 must be a skyline
tuple in the domination subspace of t (and that of t′ as well), simply because t′ is
excluded from this subspace. As such, the total number of times we have to run
RQ-DB-SKY to discover the top-h sky band is simply the number of tuples on
the top-(h− 1) sky band plus one (i.e., the original execution for discovering the
skyline).

Extending PQ-DB-SKY: For PQ-DB-SKY, the extension is indeed straightfor-
ward - since the algorithm is eventually reduced to each 2D subspace (and the
1D queries issued within), the only difference here for sky band discovery is the
pruning rule: after issuing a 1D query q which returns t, instead of eliminating the
subspace with x > t[x] and y > t[y] from consideration as in the skyline case, we
have to find the top-h sky band tuples matching q instead. This is simple when
the system returns top-k tuples where k ≥ h - as we can simply take the top-h
returned tuples of q and determine based on the previously retrieved tuples which
of the h tuples are indeed on the top-h sky band, and then perform the pruning
accordingly. If k < h, however, we may have to issue the 0D (base) queries one
by one until finding all possible tuples matching q that are on the top-h sky band.
Once the pruning process is updated, the remaining design remains unchanged.

Extending SQ-DB-SKY: The most difficult case, unfortunately, happens for SQ-
DB which only supports one-ended ranges. Indeed, it might not be possible
to discover even the top-2 sky band without crawling the entire database. To

89

understand why, consider a simple case where the system features a top-1 interface
(i.e., k = 1). Here we note a simple fact: any query consisting solely of < or ≤
predicates will never return a non-skyline tuple t - because this query will always
match the skyline tuple dominating t and return it over t according to the system
ranking function. This essentially requires us to resort to “=” predicates (this is
even assuming we know all the domain values) in order to discover the top-h
(h > 1) sky band. One can see that this easily reduces to crawling the database in
the worst-case scenario.

Having stated the negative result, in practice, it is still possible to efficiently
discover the top-h sky band for SQ-DB, especially when k (as in the top-k interface
offered by the hidden database) is large. To understand why, note the following
critical observation: if among the (up to k) results returned by a query q, say
SELECT *, we can find a tuple t dominated by h − 1 other tuples, then we can
safely conclude that any tuple on the top-h sky band must not be dominated by t.
In other words, we can branch out from the query according to t like what we did
in SQ-DB-SKY for the top-1 tuple returned by q. We know that for any top-h sky
band tuple matching q, it must belong to at least one of them branches, as otherwise
it must be dominated by t and therefore out of the top-h sky band. Of course, as we
drill further down into the tree, there is a decreasing chance for a query to return a
tuple dominated by h−1 others, simply because the appended < predicates narrow
the field to “highly ranked” tuples. Nonetheless, with a large k, many of these deep
queries may already return valid answers, allowing us to safely stop exploring it
further. In the unfortunate case where a query still overflows - and we do not have
any way of further branching it out without losing the comprehensiveness of top-h
sky band discovery - then we have two choices: either to stop exploring this query
and accept partial discovery; or to crawl the entire subspace corresponding to this
query.

90

4.7 Experimental Evaluation

4.7.1 Experimental Setup

In this section, we present the results of our experiments, all of which were run on
real-world data. Specifically, we started by testing a real-world dataset we have
already collected. We constructed a top-k web search interface for it and then
ran our algorithms through the interface. Since we have full knowledge of the
dataset and control over factors such as database size, etc., this dataset enables us
to verify the correctness of our algorithms and test their performance over varying
characteristics of the database. Then, we tested our algorithms live online over
three real-world websites, including the largest online diamond and flight search
services in the world, echoing the motivating examples discussed in Section 4.

Offline Dataset: The offline dataset we used is the flight on-time database pub-
lished by the US Department of Transportation (DOT). It records, for all flights
conducted by the 14 US carriers in January 2015,3, attributes such as scheduled and
actual departure time, taxiing time and other detailed delay metrics. The dataset
has been widely used by third-party websites to identify the on-time performance
of flights, routes, airports, airlines, etc.

The dataset consists of 457,013 tuples over 28 attributes, from which 9 or-
dinal attributes were used as ranking attributes4: Dep-Delay, Taxi-out, Taxi-in,
Actual-elapsed-time, Air-time, Distance, Delay-group-normal, Distance-group,
ArrivalDelay. The domain of the 9 ranking attributes range from 11 to 4,983.
Two of the 9 attributes, Delay-group-normal and Distance-group, were already
discretized by DOT (i.e., “grouped”, according to the dataset description). Thus,
we used them as PQ (point-query-predicate) attributes by default. For a few tests
which call for more PQ attributes, we also consider four other derived attributes,
Taxi-out group, Taxi-in group, ArrivalDelay group, Air-Time group as potential PQ.
The other attributes were used as range-predicate attributes - whether it is SQ or

3from http://www.transtats.bts.gov/DL_SelectFields.asp?
Table_ID=236&DB_Short_Name=On-Time

4The others, such as Flight Number, are considered filtering attributes and not used in the
experiments.

91

http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time

RQ depends on the specific test setup.
For all attributes, we defined the preferential order so that shorter delay/duration

ranks higher than longer values. For non-time attributes, i.e., Distance and
Distance-group, we assigned a higher rank to longer distances than shorter ones,
given that the same amount of delay likely impacts short-distance flights more than
longer ones. We also tested the case where shorter distances are ranked higher,
and found little difference in the performance. To construct the top-k interface, we
also need to define a ranking function it uses. Here we simply used the SUM of
attributes for which smaller values are preferred MINUS the SUM of attributes for
which larger values are preferred.

Online Experiments: We conducted live experiments over three real-world web-
sites: Blue Nile (BN) diamonds, Google Flights (GF), and Yahoo! Autos (YA).

Blue Nile (BN)5 is the largest online retailer of diamonds. At the time of our
tests, its database contained 209,666 tuples (diamonds) over 6 attributes: Shape,
Price, Carat, Cut, Color, Clarity, the last 5 of which have universally accepted
preferential (global) orders, i.e., lower Price, higher Carat, more precise Cut, low
trace of Color and high Clarity. We used these 5 attributes to define skyline tuples.
BN offers two-ended range predicates (RQ) on all five attributes, with the default
ranking function being Price (low to high).

Google Flights (GF) is one of the largest flight search services and offers
an interface called QPX API6. We consider the scenario of a traveler looking to
get away with a one-way flight after a full day of work. We used three filtering
attributes, DepartureCity, ArrivalCity and DepartureDate, and four supported
ranking attributes: Stops, Price, ConnectionDuration, and DepartureTime. Here
the traveler likely prefers fewer Stops, lower Price, shorter ConnectionDuration,
and later DepartureTime. QPX API supports SQ (i.e., single-ended ranges) on
Stops, Price, ConnectionDuration, and RQ (i.e., two-ended) on DepartureTime.
The default ranking function used by GF is price (low to high).

Yahoo! Autos (YA)7 offers a popular search service for used cars. In our

5http://www.bluenile.com/diamond-search
6https://developers.google.com/qpx-express/
7https://autos.yahoo.com/used-cars/

92

http://www.bluenile.com/diamond-search
https://developers.google.com/qpx-express/
https://autos.yahoo.com/used-cars/

experiments, we considered those listed for sale within 30 miles of New York
City, totaling 125,149 cars. We considered three ranking attributes Price (lower
preferred), Mileage (lower preferred), Year (higher preferred), all of which are
supported as two-ended ranges (RQ) by YA, and the ranking function of Price (low
to high).

Algorithms Evaluated: We tested the four main algorithms described in the paper,
SQ-, RQ-, PQ-, and MQ-DB-SKY. We also compared their performance with a
baseline technique of first crawling all tuples from the hidden web database using
the state-of-the-art crawling algorithm in [36], and then extracting the skyline
tuples locally. We refer to this technique as BASELINE.

Performance Measures: As we proved theoretically in the paper, all algorithms
guarantee complete skyline discovery. We confirmed this in all experiments we ran
offline (and have the ground truth for verification). Since precision is not an issue,
the key performance measure becomes efficiency which, as we discussed earlier, is
the number of queries issued to the web database.

1 10 20 30 40 50
101

102

103

104

105

106

K

Q
ue

ry
 C

os
t (

lo
g

sc
al

e)

RQ−DB−SKY
BASELINE

Figure 21: Range Predicates: Impact
of k

0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

500

1000

Q
ue

ry
 C

os
t

Number of Tuples

0

2

4

6

8

10

12

14

16

18

20

N
um

be
r

of
 S

ky
lin

es

Average Cost
SQ−DB−SKY
RQ−DB−SKY
of Skylines

Figure 22: Range Predicates: Impact
of n

93

2 3 4 5 6 7 8 9 10
10

0

10
2

10
4

10
6

10
8

Number of Attributes

Q
ue

ry
 C

os
t

Average Cost
SQ−DB−SKY
RQ−DB−SKY

Figure 23: Range Predicates: Impact
of m

2 4 6 8 10

x 10
4

0

1000

2000

3000

4000

5000

6000

Number of Tuples

Q
ue

ry
 C

os
t

3D
4D
5D

Figure 24: Point Predicates: Impact of
n

4.7.2 Experiments over Real-World Dataset

Interfaces with Range Predicates: We started with testing skyline discovery
through range-query interfaces, i.e., SQ and RQ, over the DOT dataset. Figure 21
compares the query cost required for complete skyline discovery by RQ-DB-SKY
and BASELINE when k (as in top-k offered by the web database) varies from 1
to 50. Note that SQ-DB-SKY is not depicted here because the range-query-based
crawling in BASELINE requires two-ended range support. One can observe from
the figure that, while both algorithms benefit from a larger k as we predicted, our
RQ- algorithm outperforms the baseline by orders of magnitude for all k values.
Given the significant performance gap between BASELINE and our solutions, we
skip the BASELINE figure for most of the offline results, before showing it again
in the online live experiments.

Figure 22 depicts how the query cost of SQ- and RQ-DB-SKY change when
the database size n ranges from 50K to 400K. To test databases with varying sizes,
we drew uniform random samples from the DOT dataset. The figure also shows
the change of |S|, the number of skyline tuples. One can see from the figure
that RQ-DB-SKY is more efficient than SQ- because it uses the more powerful,
two-ended, search interface. Perhaps more interestingly, neither algorithm’s query
cost depend much on n. Instead, they appear more dependent on the number of

94

5 10 15
0

200

400

600

800

1000

Q
ue

ry
 C

os
t

Attributes Domain

Figure 25: Point Predicates: Impact of
Domain Size

2 4 6 8 10

x 10
4

0

500

1000

1500

2000

2500

3000

Q
ue

ry
 C

os
t

Number of Tuples

Figure 26: Mixed Predicates: Impact
of n

skyline tuples |S| - consistent with our theoretical analysis.
Figure 23 varies the number of attributes m. While both RQ- and SQ- require

more queries when there are more attributes, RQ- again consistently outperforms
SQ-DB-SKY. Note that the increase on query cost is partially because of the rapid
increase of the number of skyline tuples with dimensionality [38]. In any case, the
query cost for RQ- and SQ-DB-SKY remain small, compared to the theoretical
bounds, even when the dimensionality reaches 10.

Interfaces with Point Predicates: In the next set of experiments, we tested PQ-
DB-SKY. Figure 24 shows how its query cost varies with n and m. Interestingly,
while the query cost barely changes with n varying from 20,000 to 100,000, it
increases significantly when m changes from 3 to 5, just as predicted by our
theoretical analysis. In Figure 25, we further tested how the query cost changes
with varying domain sizes. To enable this test, for each given domain size (from
v = 5 to 15), we first select all PQ attributes with domain larger than v, and
then remove from the domain of each attribute all but v values (along with their
associated tuples). Then, we randomly selected 100,000 tuples from the remaining
tuples as our testing database. One can see from the result that, while larger
attribute domains do lead to a higher query cost, the increase on query cost is not
nearly as fast as the data space (which grows with vm) - indicating the scalability

95

3 4 5 6
0

2000

4000

6000

8000

10000

12000

14000

Number of Attributes

Q
ue

ry
 C

os
t

Varying Point Predicates
Varying Range Predicates

Figure 27: Mixed Predicates: Varying
Range and Point Predicates

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
0

50

100

150

200

250

Skyline Discovery Progress

Q
ue

ry
 C

os
t

SQ−DB−SKY
RQ−DB−SKY

Figure 28: Anytime Property of SQ
and RQ-DB-SKY

of PQ-DB-SKY to larger domains.

Interfaces with Mixed Predicates: We next tested a more realistic search inter-
face that contains a mixture of range and point predicates. We started with 3
RQ and 2 PQ predicates and evaluated how the query cost varies with database
size. Figure 26 shows that, as expected, the number of tuples only have minimal
impact on query cost. We then tested how varying number of RQ and PQ attributes
affect our performance. The two lines in Figure 27 represent, respectively, (1)
1 PQ attribute with the number of RQ attributes varying from 2 to 5, and (2) 1
RQ attribute with the number of PQ ones from 2 to 5. One can observe from the
figure that the impact on query cost is much more pronounced on an increase of
the number of PQ attributes - consistent with earlier discussions in the paper.

Anytime Property of Skyline Discovery: Recall from §1 that all algorithms in
the paper feature the anytime property, i.e., one can stop the algorithm execution
at any time to return a subset of skyline tuples (over the entire database). Note
that BASELINE does not have this feature, as there is no way for it to determine
if a tuple is truly on the skyline before the entire database is crawled. Figures 28
and 29 trace the progress of SQ-, RQ- and PQ-DB-SKY over 100,000 tuples (5
predicates in RQ-DB and 4 in PQ-DB case) and demonstrate how the number of
discovered skyline tuples changes with query cost.

96

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

500

600
Q

ue
ry

 C
os

t

Skyline Discovery Progress

Figure 29: Anytime Property of PQ-
DB-SKY

0 300 600 900 1200 1500 1800 2100
0

2000

4000

6000

8000

10000

Skyline Discovery Process

A
ve

ra
ge

 Q
ue

ry
 C

os
t

MQ−DB−SKY
BASELINE

Figure 30: Online Experiments: Blue
Nile Diamonds

There are some interesting observations from the two figures. In Figure 28,
note that SQ-DB-SKY could find the first 16 skylines without facing a skyline
twice, leading to identical performance with RQ- up to that point. Afterwards,
however, it started getting the same skyline tuple multiple times, leading to poorer
performance than RQ-DB-SKY when the number of discovered skyline tuples
reaches 23. In Figure 29, note that despite the limitations of PQ, our algorithm
managed to discover all skyline tuples with fewer than 600 queries. The peak
between the 8th and 9th tuples is caused by queries “wasted” for crawling an area
that did not contain any skyline tuple.

4.7.3 Online Demonstration

As discussed earlier, we conducted live online experiments by applying our final
algorithm, MQ-DB-SKY, over three real-world web databases, Blue Nile diamond
search (BN), Google Flights (GF), and Yahoo! Autos (YA), respectively.

Skyline Discovery over Blue Nile (BN): For BN, we discovered a total of 2,149
tuples on the skyline. We compared the performance of MQ-DB-SKY with
BASELINE (k = 50), with the results depicted in Figure 30. Note that we
stopped the execution of BASELINE when its query cost reached 10,000 queries,

97

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

30

35

40

45

Skyline Discovery Progress

A
ve

ra
ge

 Q
ue

ry
 C

os
t

MQ−DB−SKY

Figure 31: Online Experiments:
Google Flights

0 200 400 600 800 1000 1200 1400 1600
0

2000

4000

6000

8000

10000

Skyline Discovery Process

A
ve

ra
ge

 Q
ue

ry
 C

os
t

MQ−DB−SKY
BASELINE

Figure 32: Online Experiments:
Yahoo! Autos

at which time it only managed to discover 1113 skyline tuples8. On the other hand,
our MQ- algorithm discovers the entire skyline with an average query cost of only
3.5 per skyline tuple.

Skyline Discovery over Google Flights (GF): Our experiment setup was as
follows. We randomly chose a pair of airports from the top-25 busiest airports in
USA and a date between November 1 and 30, 2015, and sought to find all skyline
flights on that day. We repeated this process for 50 different pairs and report the
average query cost. The number of skyline flights varied between 4 to 11. Figure 31
shows the results. Note that we did not compare against BASELINE here because
GF offers SQ only for attributes such as Stops, Price, and ConnectionDuration,
while BASELINE requires two-ended range support for crawling. We verified
the correctness of the results by crawling all the flights for the same date and
comparing the results. One can observe that our algorithm is highly efficient even
when k = 1. Specifically, it was able to discover all skyline tuples with query cost
below 50, which is the (free) rate limit imposed per user account per day by GF
(QPX API).

Skyline Discovery over Yahoo! Autos (YA): For YA, we discovered a total of
8Note that, as discussed earlier, BASELINE would not be able to output these skyline tuples

despite of having discovered them because BASELINE lacks the anytime property.

98

1,601 skyline tuples. Figure 32 shows the performance of our MQ- algorithm and
the comparison with BASELINE. Here k = 50. Once again, we had to discontinue
BASELINE at 10,000 queries before it were able to complete crawling. On the
other hand, our MQ-DB-SKY algorithm managed to discover the entire skyline
with an average query cost below 2 per skyline tuple.

4.8 Related Work

Crawling and Data Analytics over Hidden Databases: While there has been
a number of prior works on crawling, sampling, and aggregate estimation over
hidden web databases, there has not been any study on the discovery of skyline
tuples over hidden databases. Crawling structured hidden web databases have
been studied in [36, 39, 40]. [41–43] describe efficient techniques to obtain random
samples from hidden web databases that can then be utilized to perform aggregate
estimation. Recent works such as [44, 45] propose more sophisticated sampling
techniques that reduce variance of aggregate estimation.
Skyline Computation: Skyline operator was first described in [1] and number of
subsequent work have studied it from diverse contexts. [31] and [32] proposed
efficient algorithms with the help of indices and pre-sorting respectively. Online
and progressive algorithms were described in [33,46]. The problem of skyline over
streams [47], partial orders [48], uncertain data [49] and groups [50] have also been
studied. [34, 35] study the problem of retrieving the skyline from multiple web
databases that expose a ranked list of all tuples according to a pre-known ranking
function. Such special access might not always be available for a third party
operator. Our work is the first to study the problem of skyline computation over
structured hidden databases by using only the publicly available access channels.
Applications of Skyline Tuples: Skyline tuples have a number of applications
in diverse contexts. A skyline tuple is not dominated by another tuple while a
K-Skyband tuple is dominated by at most K − 1 tuples in the database. The
top-k tuples of any monotone aggregate function must belong to K-Skyband
where k ≤ K [51]. The numerous applications of top-k queries can be found
in [52]. Other applications of Skyline include nearest neighbor search, answering

99

the preference queries and finding the convex-hull. Recently, the notion of reverse
skyline [53], K-Dominating and K-Dominant [54], and top-K representative
skylines [55] have been investigated with a number of applications including query
re-ranking and product design.

4.9 Final Remarks

In this paper, we studied an important yet novel problem of skyline discovery over
web databases with a top-k interface. We introduced a taxonomy of the search
interfaces offered by such a database, according to whether single-ended range,
two-ended range, or point predicates are supported. We developed efficient skyline
discovery algorithms for each type and combine them to produce a solution that
works over a combination of such interfaces. We developed rigorous theoretical
analysis for the query cost, and also conducted a comprehensive set of experiments
on real-world datasets, including a live online experiment on Google Flights, which
demonstrate the effectiveness of our proposed techniques.

100

5 Regret-ratio Minimizing Set: A Compact Maxima
Representative

5.1 Motivation

A maxima query returns a tuple from a large database of n tuples, preferentially
selected and returned according to a ranking/utility function that is used to model
user preferences. Such queries are very useful in application domains where end-
users are interested in multi-criteria decision making, and would like to see the
most important tuples from the potentially huge answer space. Thus, much recent
studies, including online, view-based and index-based techniques such as [56–60]
have focused on this direction.

In many applications, especially in databases containing numeric attributes, the
ranking function used to model user preferences is expressed in the form of a linear
combination of query attributes – i.e.

∑
wiAi. Finding the top houses in a real

estate database based on a linear combination of some criteria such as price and
floor area [61], or finding the best NBA player based on a linear combination of
his performance criteria such as points and assists, are a few examples of this class
of ranking function.

A critical observation is that if the tuples are viewed as points in a high-
dimensional space, the convex hull is the subset of points that can be used to find
the maxima for any linear ranking function [60]. However, in some real world
applications such a convex hull can be overwhelmingly large, and therefore its
performance is greatly reduced because many tuples have to be examined during
query processing [58]. The size of such a set is highly correlated with the number
of attributes, i.e., the number of convex hull tuples radically increases with the
number of attributes/dimensions. Even in the case of two-dimensional database,
the number of convex hull tuples might also be large. As has been studied in [62],
the “curvature” of the shape of a region within which the database tuples are
distributed greatly affects the number of convex hull tuples. As the curvature
increases the number of convex hull tuples increases. For example, when n points

101

are uniformly distributed inside a convex polygon with k sides, the expected
number of the convex hull points is O(k log n), while this value is O(n

1
3) when

points are uniformly distributed inside a circle.
Consequently, it is of interest to develop a set limited to r << n tuples (where

r is an input parameter). Given such a reduced set, for a given ranking function, we
can identify the maximum of the reduced set and return it as the query answer. One
can observe a tradeoff between the size of the set and the accuracy of query answers
(i.e., how the result might differ from the real maximum over the entire table). The
task then is to design the most accurate set, i.e., the subset of r tuples for which the
“user dissatisfaction” over all possible ranking functions is minimized.

Prior works on convex hull discovery in high-dimensions, such as [63, 64],
focus on designing efficient approximate algorithms with small approximate ratios.
Thus, their goal is to discover a set that is as similar to the real convex hull as
possible, rather than resolving the problem of a large convex hull, and usually find a
super-set of the convex hull. There has also been work, such as [65,66], on reducing
the skyline [67] (the maxima representative that applies to more general monotonic
ranking functions rather than just linear functions) size. However, their objective
in ranking the skyline tuples is not minimizing the user dissatisfaction on maxima
queries. For example, [65] relaxes the notion of domination to “k−domination” in
order to increase the chance domination and reduce the skyline.

The problem investigated in this section, which we call the Regret-ratio
Minimizing Set (RRMS) problem, has been studied in prior papers. Nanongkai
et. al. [68] introduced the notion of regret ratio in order to measure the user
dissatisfaction with the top result returned by the representative set. Given a set of
r tuples and a specific ranking/utility function, they define regret ratio as the ratio of
the difference between the scores of the top tuple in the set and the top tuple in the
entire database, divided by score of the top tuple in the entire database. Given a set
(or space) of ranking functions, the maximum regret ratio is the regret ratio with the
largest value. The RRMS problem seeks to find the subset of r tuples that minimizes
the maximum regret ratio. It is known that for arbitrary dimensions, the problem is
NP-hard [69]. The two state of art algorithms for arbitrary dimensions are (a) a

102

greedy heuristic with unproven theoretical guarantees, which is based on executing
O(nr) linear programs in total, and (b) a simple space discretization approach
that produces an approximate regret ratio that is within a fixed distance from the
optimal and has the time complexity of O(nd+ r) [68]. Further investigation on
this problem has also been done by [69] for the special case of two dimensions
(where the problem is not NP-hard), and a quadratic (O(n2r)) algorithm to find the
optimal set has been developed, that leverages the notions of geometric duality and
line arrangements.

5.2 Technical Highlights

In this section, we make several fundamental theoretical as well as practical
advances for the RRMS problem, in both two-dimensional and high-dimensional
databases.

In the case of two-dimensional databases, we develop an innovative dynamic
programming algorithm to find the optimal set by leveraging the total order property
of the tuples that occur in the skyline of the database. Our two-dimensional exact
polynomial time algorithm (2D-RRMS) runs in O(rs log s log c) time, where s
and c are the number of skyline and convex hull tuples in the database respectively.
This is a huge improvement over the O(n2r) algorithm proposed by [69], which is
based on the notions of geometric duality and line arrangements.

Next, as perhaps one of the major results of this section, we develop an
approximation algorithm (HD-RRMS) that guarantees a regret ratio that is within
a small user-controllable distance from the optimal regret ratio. This algorithm is
based on several innovative ideas. First, we model the problem conceptually as an
infinitely large matrix min-max problem [70], where the rows are the tuples and
the (infinitely many) columns correspond to each possible ranking function. Given
an user controlled discretization parameter, we discretize the ranking functions
space into a bounded number of functions (based on the control parameter) in the
polar system. We then take the advantage of the linear-size discretized problem
space in order to find the optimal value for the discretized matrix min-max problem
in O(n log n) time, which is an approximate solution for the original problem.

103

To do so, we convert the problem into linear number of fixed-size instances of
the set-cover problem [71]. Thus, our eventual algorithm is able to guarantee
a regret ratio that is within a user-controllable distance from the optimal regret
ratio. The HD-RRMS algorithm is a theoretical algorithm, because although
it runs in linearithmic time (assuming that the dimensions of the space and the
user controlled parameter are both constants), the proportionality constant in the
running time is large (exponentially dependent on the number of dimensions),
mainly due to the large size of the set cover instances. Therefore, we make an
important practical adaptation to HD-RRMS, by replacing subroutine calls to
an exact set-cover algorithm with calls to the well-known greedy approximate
set-cover algorithm [72].

Beside the theoretical analysis, we also provide extensive experimental results
over three publicly available real-world datasets, i.e., an Airline dataset, Department
of Transportation (DOT), and Basketball dataset (NBA), with sizes up to several
million records. We also used synthetic datasets to evaluate the performance
of the proposed algorithms in the presence of different correlation models, i.e.,
correlated, independent, and anti-correlated. All experimental results confirm that
our algorithms not only are more efficient than the existing solutions, and are
scalable, but also produce representative sets with smaller regret ratios.

5.2.1 Summary of Contributions

In summary, we make the following main contributions:
• For the two-dimensional scenario we propose a linearithmic time dynamic

programming algorithm 2D-RRMS which is much faster than the existing
quadratic time algorithm.
• We develop HD-RRMS, an algorithm for higher dimensions that can approx-

imate the regret ratio to within a user controlled parameter. This algorithm
discretizes the ranking function space and models the problem as a discrete
matrix min-max problem. Although the HD-RRMS algorithm is linearithmic
in theory, it may become inefficient in practice. We propose how to make the
algorithm practical.

104

• We perform a comprehensive set of experiments on synthetic (with different
correlation models) and real datasets of size up to several million records that
demonstrate the efficiency, scalability, and effectiveness of our algorithms.

5.3 Preliminaries

Database Model: Consider a database,D withm numeric attributesA = {A1, . . . , Am}.
Let Dom(Ai) ≥ 0 be the domain of attribute Ai. The database may also have
non-numeric attributes, but since they are usually not part of any ranking function,
they are not considered in our context. We assume there are n distinct tuples in the
database. For a tuple t ∈ D, we use t[Ai] ∈ Dom(Ai) to denote the non-NULL
value of attribute Ai in t.

Consider a ranking function F (·) : D → IR that assigns a score to each tuple t
in the database. The ranking function sorts the tuples based on the scores assigned
to them. Given such a user specified function, the database determines the tuple
with maximum score that should be returned. In this chapter, we assume a tuple
t ∈ D outranks a tuple t′ ∈ D based on F , if F (t) > F (t′). Furthermore, we
follow the existing work [68, 69] and focus on the popular-in-practice [60, 61]
linear ranking functions, defined by Equation 19.

F (t) =
m∑
i=1

wi · t[Ai] (19)

wi ∈ [0, 1], in Equation 19, is the weight of the attribute Ai. Please note that
since we are only restricted to positive weights, everything is confined to the first
quadrant.
We also define the contour of F as the sets of m-attribute-value combinations that
have the same score based on F .

Convex hull: The convex hull is the boundary of the smallest convex region
containing all the tuples in D and is formed by the subset of tuples on the
boundary [60]. In this chapter, we denote the convex hull by C. As proved

105

in [73], C is the minimal subset that can be used to find the maxima for any linear
ranking function9. Formally (considering F as the set of all possible linear ranking
functions):

(i)∀F ∈ F , ∃t ∈ C s.t. ∀t′ ∈ D,F (t) ≥ F (t′) and

(ii)∀t ∈ C,∃F ∈ F s.t. ∀t′ ∈ C\{t}, F (t) > F (t′) (20)

Depending on the number of tuples in D, and their distributions, size of the
convex hull, |C| = c, may be large. As discussed in § 2, even in a two-dimensional
database a large number of tuples, O(n

1
3), may place in the convex hull [62]. If

the convex hull is small, it can be pre-computed, and can then be extremely useful
in efficiently finding the maximum scoring tuple of any user-specified ranking
function, since a linear scan that examines c tuples will suffice rather than having to
examine all n database tuples. The problem with a large C is that the scan becomes
slow. In high dimensional databases, the problem is even worse because when
m increases, more and more tuples belong to C, which results in an exponential
growth in the size of the convex hull [74]. Obviously, when C is a large portion
of D, it loses its power as a representative. Figure 33 shows how c grows with
number of attributes, m, when tuples are uniformly distributed.

Performance Measure: Based on Equation 20, every tuple t in C is the maximum
of at least one linear ranking function. Let Ft be the set of linear ranking functions
for which t is the maximum. If a tuple t is removed from C, the next “best”
alternative (the tuple that outranks all the tuples in C\t) is returned as the maximum
of a ranking function F ∈ Ft.

Consider the example provided in Figure 34, where C = {t1, t2, t3, t4} is the
convex hull. The lines between l1 clockwise to l3 represent Ft3 . If we remove t3
then t2 will be returned as the maximum for the ranking functions from l1 clockwise
to l2, while t4 will be returned for the ones from l3 anti-clockwise to l2. One may

9The maxima representative of more general monotonic ranking functions is skyline [67].
Skyline is the set of non-dominated tuples in the database, where a tuple t dominates a
tuple t′ (t � t′), iff (i)∀A ∈ A, t[A] ≥ t′[A] and (ii) ∃A ∈ A such that t[A] > t′[A].

106

2 3 4 5 6

Number of Attributes (m)

0

2

4

6

8

C
o

n
v
e
x
 h

u
ll
 s

iz
e

#10
4

Figure 33: Impact of the number of
attributes in C

Figure 34: Contour of the ranking
functions in a 2D example.

notice from the figure that as the function gets closer to l2 (from either sides), the
difference between Ft3 and the best alternative increases, i.e. the maximum score
difference happens exactly for the ranking function represented by l2.

In this chapter, we use the maximum regret-ratio defined by [68] in order to
measure the error of removing a tuple t from a database D, formally defined by
Equation 2110 Intuitively, the maximum regret-ratio is the worst-case score (ratio)
difference between the true maximum tuple and the one in the compact set.

∀t ∈ D, E(t,D) = sup
∀F∈Ft

min∀t′∈D\{t}(F (t)− F (t′))

F (t)
(21)

The regret-ratio can be extended to measure the error of removing a set of
tuples T ⊂ D. Specifically, this error is the maximum score-difference ratio of
each tuple in T and its best alternative in the remaining convex hull, formally
defined by Equation 22.

∀T ⊂ D, E(T,D) = max
∀t∈T

(sup
∀F∈Ft

min∀t′∈D\{T}(F (t)− F (t′))

F (t)
) (22)

In the rest of the chapter, for simplicity we use ET as E(T,D).

10We use the notation E(T,D) to show rrD(D\T,L) in [68].

107

5.3.1 Problem Definition

In this chapter, we consider the problem of Regret-ratio Minimizing Set, i.e., given
a database D and an integer r ≥ 1, our objective is to find a set of at most r tuples
such that the regret-ratio is minimum. This problem is formally defined as follows:

REGRET-RATIO MINIMIZING SET PROBLEM (RRMS): Given a database
D and an integer r ≥ 1, find a subset Ĉ ⊆ D such that (1) |Ĉ| ≤ r and (2)
E(D\Ĉ, D) is minimum.

In the following, we propose our efficient algorithms to solve the Regret-ratio
Minimizing Set problem in both two-dimensional and high-dimensional databases.

5.4 2D Regret-ratio Minimizing Set

We start by considering the two-dimensional scenario which, as discussed in the
introduction, not only has significant theoretical implications but also represents
popular use cases in practice.

We show in Theorem 6 that the search space can be reduced to the skyline
tuples rather than in all n tuples in the database.

Theorem 6. Let T be the set of tuples which are removed from D. The maximum
regret-ratio of the optimal solution for the regret-ratio minimizing set problem on S
is the same as the maximum regret-ratio of the optimal solution for the regret-ratio
minimizing set problem on D, i.e., E(T,D) = E(T,S).

Proof. Suppose, ∃t ∈ Ĉ where t /∈ S.

⇒ ∃t′ ∈ D, s.t. t′ � t

Since ∀A ∈ A, t[A] ≥ t′[A] and ∃A ∈ A, t[A] > t′[A], for any ranking function
F :

F (t) =
∑
∀Ai∈A

wi · t[Ai] < F (t′) =
∑
∀Ai∈A

wi · t′[Ai]

It means by replacing twith t′ the size of the set does not change, and the maximum
regret-ratio after the replacement is less than or equal to the maximum regret-ratio

108

before the replacement. Therefore, the maximum regret-ratio of the optimal
solution for the skyline tuples, S, is the same as the maximum regret-ratio of the
optimal solution for all tuples in D.

Considering Theorem 6, we first order all skyline tuples in a two-dimensional
table from top left to the bottom right, i.e. S = {t1, t2, · · · , ts}. We add two
dummy tuples t0 and ts+1 to the left of the top left skyline tuple t1 and to the right of
the bottom right skyline tuple ts respectively. In other words, t0 = (0,max ti[A2]),
and t0 = (max ti[A1], 0), where max ti[Aj] is the maximum value of the Aj in all
skyline tuples. Figure 35 shows a dataset with 5 skyline tuples {t1, t2, · · · , t6}
and two dummy tuples t0 and t7. Next, we propose a graph model for the two-
dimensional Regret-ratio Minimizing Set problem and we propose a polynomial
time algorithm using dynamic programming in order to find the r tuples such that
the maximum regret-ratio is minimum.

5.4.1 Graph Modeling

Reduction to Path Search in Graph We model the two-dimensional Regret-ratio
Minimizing Set problem as a weighted complete graph G = (V,E), where V is
the set of skyline tuples, {t1, t2, · · · , ts}, and two dummy tuples, t0 and ts+1. Edge
weight w(ti, tj) represents the regret-ratio of removing all skyline tuples between
ti and tj . Note that as we proved in the Theorem 6, the optimal solution is a subset
of skyline tuples. Using this graph model, our goal is to find a path from t0 to ts+1

with at most r intermediate tuples such that tuples follow an increasing order of the
subscript in the path and the maximum of the edge weights are minimized. Next,
we discuss how to efficiently compute the edge weight w(ti, tj). Using the graph
model we first discuss the baseline solution for the problem, and then we describe
the detail of the dynamic programming approach.
Edge weight computation Each convex hull tuple is the maximum for a set of
ranking functions. For example in Figure 36, t1 is the maximum for all linear
ranking functions from F ∈ [0, θ1], while t3 is the representative of all linear
ranking functions from F ∈ [θ1, θ2]. Similarly, t4, and t5 are the representatives

109

t1

t5

t6

t0
t2 t3

t4

t7

Figure 35: Dataset with skyline tuples
{t1, t2, · · · t6} and two dummy tuples t0
and t7.

Figure 36: Error of removing {t2, · · · , t5}

of all linear ranking functions of F ∈ [θ2, θ3] and F ∈ [θ3, π/2] respectively.
One may note that moving from the top-left to the bottom-right, the contours of
the all ranking functions where the convex hull tuples are maxima form a sorted
range of the angles from 0 to π/2. For example, in Figure 36, the sorted list
` = [0, θ1, θ2, θ3, π/2] shows all possible linear ranking functions where the convex
hull tuples are the maxima. In other words the ith element of l shows all ranking
functions F ∈ [θi−1, θi] where the ith convex hull tuple is the maximum.

In Theorem 7, we prove that for two-dimensional databases, the function F
that causes the maximum regret-ratio for removing the tuples between two skyline
tuples ti and tj is specified by the line between tuples ti and tj . Intuitively, when
we keep ti and tj while removing all skyline tuples in between, and start tallying
the loss from removing ti+1, ..., tj−1 in order, then the loss (max over all ranking
functions) must first increase and then decrease. Having identified the max-loss
function, we now take the advantage of the sorted angle list (`) and apply binary
search on ` to find the convex hull tuple between ti and tj which is the maximum for
the ranking function represented by the line passing through ti and tj . Algorithm 9
shows the pseudocode of the function ComputeEdgeWeight for the two tuples ti
and tj . Note that if it can not find a convex hull tuple between ti and tj the edge
weight is zero (line 4-5). Clearly since we use binary search on the sorted list l, we
are able to find weight of each edge in O(log c), where c is the size of the convex
hull.

110

Algorithm 9 ComputeEdgeWeight
1: Input: Tuples ti and tj , Sorted list l = [0, θ1, · · · , π/2]
2: Output: Edge weight w(ti, tj)
3: if i = 0 then return t1[A2]− tj[A2]
4: if j = s+1 then return ts[A1]− ti[A1]
5: compute α, where ti and tj are the maxima of all linear ranking functions
F ∈ [0, α].

6: k = Use binary search on l to find the location of α
7: if i ≤ k ≤ j then
w(ti, tj) =

min(Fα(tk)−Fα(ti),Fα(tk)−Fα(tj))
Fα(tk)

8: else w(ti, tj) = 0
9: return w(ti, tj)

Theorem 7. In 2D, after removing the tuples between two skyline tuples ti and
tj , the maximum regret-ratio occurs for the function, F , corresponding to the line
between tuples ti and tj .

Proof. Let F be the ranking function specified by the line between tuples ti and tj .
For a tuple t between ti and tj and a ranking function F ′ ∈ ∪

∀k∈[i,j]
Fk either ti or

tj is the maxima after removing the tuples {tk|i < k < j}. More specifically, if
(the angle of) F ′ < F , ti (and if F ′ > F , tj) will be the maxima. Let us name the
best alternative for F ′ (either ti or tj) as t′. For example in Figure 34, l2 shows the
function F and for any ranking function between l1 and l2, t2 is the best alternative,

Figure 37: Illustration of
the distance of function
scores

Figure 38: Illustration of
maximum growth in 2D.

Figure 39: Illustration of
the cell diameter in 3D.

111

while the best alternative for the functions between l2 and l3 is t4.
Suppose the lines F in Figure 37 is parallel with the line passing though the

points t′ and t′′ (representing the function for which both t′ and t′′ have equal
scores) and let F ′ be a function in Ft for which t′ is the best alternative (the same
analysis is valid for a F ′′ for which t′′ is the best alternative). Since the line tA is
perpendicular to the line t′t′′, F (t)− F (t′) is equal to the distance between t and
A (shown as |tA|). On the other hand, since the lines tB and F ′ are perpendicular,
F ′(t)− F ′(t′) is equal to the distance between t and B (shown as |tB|). Looking
at the figure, |tC| < |tA|. Moreover:

|tC| = tB

cos θ

since cos θ < 1

⇒ F ′(t)− F ′(t′) = |tB| < |tC| < |tA| = F (t)− F (t′)

Now given that F (t)− F (t′) > F ′(t)− F ′(t′), our goal is to prove that:

F (t)− F (t′)

F (t)
>
F ′(t)− F ′(t′)

F ′(t)
(23)

If F (t) ≤ F ′(t), since F (t)− F (t′) > F ′(t)− F ′(t′), then Equation 23 holds.
If F (t) > F ′(t):

F (t)− F (t′) > F ′(t)− F ′(t′)⇒ F (t)− F ′(t) > F (t′)− F ′(t′)

Let σ = F (t′)− F ′(t′) and δ = F (t)− F ′(t)− σ.

⇒F (t) = F ′(t) + σ + δ and F (t′) = σ + F ′(t′)

⇒F (t)− F (t′)

F (t)
=
F ′(t) + σ + δ − σ − F ′(t′)

F ′(t) + σ + δ

=
F ′(t)− F ′(t′) + δ

F ′(t) + σ + δ

112

Since σ ≥ 0 and δ ≥ 0,

⇒ F ′(t)− F ′(t′) + δ

F ′(t) + σ + δ
>
F ′(t)− F ′(t′)

F ′(t)

For example, let us consider the edge between t1 and t5 (representing the
removal of {t2, · · · , t4}). As shown in Figure 36, t1 and t5 will be the representative
of all linear ranking functions F ∈ [0, α]. Using binary search on l, it turns out
that α ∈ (θ1, θ2), i.e., t3 is the tuple which is removed and has the maximum
loss. Therefore, w(t1, t5) = min(Fα(t3)−Fα(t1),Fα(t3)−Fα(t5))

Fα(t3)
= Fα(t3)−Fα(t1)

Fα(t3)
(line 4

in Algorithm 9). As another example let us consider w(t1, t2). Since there are no
convex hull tuples between these two tuples, w(t1, t2) = 0. Nevertheless, t3 is the
maximum for the function represented by the line passing through t1 and t2, which
is not removed by considering the edge t1 to t2.

Next, we discuss a baseline solution for RRMS problem in 2D, based on the
proposed graph modeling.

5.4.2 Baseline Solution

Given the graph model and weight definition, a baseline solution is to compute
all weights of the graph and then enumerate all paths from t0 to ts+1 with at most
r intermediate tuples. Among those paths the one whose maximum edge weight
is the minimum is the solution. Clearly this is inefficient because it takes time
quadratic in the number of skyline tuples (O(r2)) to calculate all edge weights in
the graph. Moreover, it has to enumerate all

∑r
l=0

(
n−2
l

)
paths from t0 to ts+1 with

at most r intermediate tuples, which can take exponential time. Next, we leverage
the locality property of the skyline tuples in order to propose a polynomial time
algorithm 2D-RRMS using a dynamic programming approach.

113

Figure 40: Dynamic programming approach of 2D-RRMS Algorithm.

5.4.3 Dynamic Programming Algorithm

Let DP (ti, r
′) be the optimal solution, i.e., a path from ti to ts+1 with at most

r′ ≤ r intermediate nodes which minimizes the error. Thus, DP (t0, r) would be
the solution to our problem. The recursive formula for the dynamic programming
is given by Equation 24:

DP (ti, 0) = max(w(t0, ti), w(ti, ts+1))

DP (ti, r
′) = min

∀j>i
(max (w(ti, tj), DP (tj, r

′ − 1))) (24)

Since skyline tuples are ordered, they provide two important properties which
are helpful to efficiently solve the recursive Equation 24:

1. w(ti, tj) ≤ w(ti, tj+1)

2. DP (tj, r
′) ≤ DP (tj−1, r

′).
Figure 40 shows the construction of the dynamic programming algorithm for

DP . It contains t0 and ts+1 at its first and last tuples. Every cell (i, j) in the middle
matrix represents DP (ti, r− j). As shown in the figure, the weights increase from
top to bottom, while DP increases from bottom to top.

In order to find the min value in Equation 24, Algorithm 10 divides the space
between ti and ts+1 into two halves and picks the one in the middle as tm. Note that
the weight computation will be done online as needed. If the edge weight w(ti, tm)

is not previously calculated it will call the function ComputeEdgeWeight in

114

Algorithm 9 (lines 6-16). Then if w(ti, tm) ≥ DP (tm, r
′ − 1), we can ignore the

nodes between tm and ts+1 because, based on property (1), w(ti, tm) is the smallest
among them and those branches will not find a better result (line 14). In this case,
Algorithm 10 continues by dividing the tuples between ti+1 and tm−1. On the other
hand, if w(ti, tm) < DP (tm, r

′ − 1) (line 15), we can ignore the nodes between ti
and tm because, based on property (2), DP (tm, r

′− 1) is the smallest among them.
In this case, Algorithm 10 continues to divide the tuples between tm+1 and ts.

Algorithm 10 2D-RRMS
1: Input: Integer r ≥ 1, Skyline tuples S = {t0, t2, · · · , ts+1}, Sorted list
l = [0, θ1, · · · , π/2]

2: Output: The optimal regret-ratio DP (t0, r)
3: for i from 1 to s do DP (ti, 0) = max(w(t0, ti), w(ti, ts+1))
4: for r′ from 1 to r do
5: for i from 1 to s do
6: low = i+ 1 , high = s
7: while True do
8: if low = high then
9: DP (ti, r

′) = max(w(ti, tlow), DP (tlow, r
′ − 1))

10: break
11: end if
12: Let tm be the middle tuple in {tlow, · · · , thigh}
13: if w(ti, tm) is unknown then

w(ti, tm) = ComputeEdgeWeight(ti, tm, l)
14: if w(ti, tm) ≥ DP (tm, r

′ − 1) then high = m
15: else low = m+ 1
16: end while
17: end for
18: end for
19: return DP (t0, r)

Theorem 8. Time complexity of the algorithm 10 (2D-RRMS) is inO(rs log s log c).

Proof. As shown in Figure 40, DP can get constructed considering a back-track
matrix completion approach from level (column) r to level 0, while the values at

115

level i can get computed from the level i+ 1. The matrix has s rows and r columns.
For each cell of the matrix, a binary search with order of O(log s) is applied for
finding the min value in Equation 24, and at each step of the binary search, if
w(ti, tj) is unknown, it will call the Algorithm 9 to compute the edge weight which
takes O(c). Thus, the overall complexity of 2DEP is O(rs log s log c).

5.5 HD Regret-ratio Minimizing Set

It is well known that the size of convex hull grows exponentially with the data
dimensionality (i.e., the number of attributes) [74] (also shown in Figure 33).
The need for designing a compact representation of high dimensional databases
thus becomes even more pronounced. We address the discovery of regret-ratio
minimizing sets over high-dimensional databases in this section.

Specifically, we start with discussing the deficiency of the existing heuristic
solution. Then, we introduce a conceptual model of the problem as an infinitely
large matrix min-max problem [70]. We “operationalize” such a conceptual
model with a matrix discretization approach that provides a user-controllable
discretization parameter. After discretizing the problem space to a manageable
size, we then construct a reduction to set-cover [71] which solves the min-max
problem deterministically in (theoretically) O(n log n) time, while guaranteeing a
regret ratio within any arbitrarily small user-controllable distance from the optimal
regret ratio. We make this algorithm more practical by incorporating an existing
approximation algorithm for set-cover. Our final algorithm outperforms existing
solutions by an order of magnitude over real-world datasets, as we shall show in
the experimental evaluations.

5.5.1 Problem with Existing Heuristic Solution

Finding r tuples that minimize the regret-ratio over a high-D database has been
proven to be NP-hard [69]. The existing solutions limit to a greedy heuristic
(named as GREEDY) and a simple space discretization approach that produces a
regret ratio within a fixed distance from the optimal, both proposed by Nanongkai

116

et. al. [68]. The basic idea of GREEDY is to start by selecting the point that has the
highest value on the first attribute, and then iteratively selecting the point with the
maximum error from the selected points and adding it to the set. This algorithm is
not designed to provide any approximate-ratio guarantee. In addition, as we shall
show below, it performs quite badly in some cases. Specifically, for any arbitrarily
large value v, we can always find a case in which the regret-ratio of the solution
provided by GREEDY is no better than v times the optimal solution.

Given v > 0, let ε = 1/(2 + v). Consider a 3-dimensional database D which
contains four tuples t0(1, 0, 0), t1(0, 1, 0), t2(0, 0, 1), and t3(1 − ε, 1 − ε, 1 − ε),
along with an arbitrary number of other tuples that are distributed in the region
[0, 1− ε)× [0, 1− ε)× [0, 1− ε). One can see that, when we run GREEDY with
output-size requirement r = 3, GREEDY will pick t0, t1, and t2, while the optimal
solution is t3 together with two of t0, t1, and t2.

To see how bad the regret ratio for GREEDY’s solution is, note that its regret
ratio is equal to the distance between point t2 and the line passing through points
t0 and t1, which is equal to 1 − 2ε. Meanwhile, the regret ratio for the optimal
solution is ε. Thus, the approximate-ratio is (1− 2ε)/ε ≥ v.

5.5.2 Conceptual Model

An intuitive illustration of our conceptual model is shown in Figure 41. Specifically,
consider a matrix M that has the n tuples as its rows, while its columns consist of
all possible linear ranking functions (F). Each cell M [ti, f] of the matrix is the
regret-ratio of ti with regard to the ranking function f - i.e., the regret ratio for f
if we only have ti in the minimizing set. Thus for each tuple ti ∈ C and the set
of ranking functions f ∈ Fti (the set for which ti is the maximum), M [ti, f] is
zero, while this value is greater than zero for other tuples. If we keep r rows of
the matrix, the regret-ratio for each function, is the minimum value (among the
selected rows) on its corresponding column, and the regret-ratio of these r tuples is
the maximum assigned regret-ratio of all columns. We can see the problem cleanly
transforms to a min-max problem over the matrix.

This conceptual model, unfortunately, has an important issue which makes it

117

Figure 41: Illustration of Matrix M . Figure 42: Illustration of space partition-
ing example: m = 3, γ = 3.

impractical: F is continuous and therefore requires an infinite number of columns
to capture! This issue inspires us to develop a matrix discretization approach which
eventually leads to a linearithmic approximate solution that offers a guaranteed
approximation ratio adjustable by a user-controlled parameter.

5.5.3 Matrix Discretization

In order to resolve the aforementioned issues with the conceptual model, we first
discretize F by only considering a subset of all possible linear ranking functions
F ⊂ F as the columns of the matrix M . We take the help of Polar coordinate
system for selecting F . Note that, with help of the polar system, each point
is denoted by one magnitude and m − 1 angles. For example, tuple t(1, 1) is
transformed to t〈

√
2, π/4〉 in polar and t′(1, 0, 1) to t′〈

√
2, 0, π/4〉.

Specifically, we introduce a user-controllable parameter γ which determines
the size of F , by dividing each angle into γ equal-size partitions. Thus, for a given
value γ each angle partition is:

α =
π

2γ
(25)

118

Applying this discretization policy, the total number of selected functions (|F |) is:

|F | = (γ + 1)m−1 (26)

Algorithm 11 shows the pseudo-code of the DISCRETIZE algorithm, that partitions
the ranking function space based on α and selects F . For example, whenm = 3 and
γ = 3, we have α = π/6 according to (25). Figure 42 shows the three-dimensional
function space discretization based on α.

Algorithm 11 DISCRETIZE
1: Input: Control Parameter γ, Number of attributes m
2: Output: Discretized functions F
3: F = {}, α = π

2γ

4: for i from 1 to m− 1 do θ[i] = 0
5: for i from 1 to γm−1 do
6: r = 1

{transforming the function from polar system to scalar}
7: for j from m downto 2 do
8: v[j] = r cos(θ[j − 1]α)
9: r = r sin(θ[j − 1]α)

10: end for
11: v[1] = r
12: F = F ∪ {v}

{finding the next function}
13: for j from 1 until θ[j] < γ do θ[j] = 0
14: θ[j] = θ[j] + 1
15: end for
16: return F

Theorem 9. If a set T of tuples guarantee a regret-ratio threshold of ε for all the
ranking functions in f ∈ F ⊆ F , constructed based on the angle partitioning (α)
in Equation 25, the maximum regret-ratio of those points for any ranking function
f ′ ∈ F is:

ε′ ≤ cε+ (1− c) (27)

119

where c = cos(α′/2) cos(π/4)
cos(π/4−α′/2) and α′ = 2 arcsin(

√
1−cosm−1α

2
).

Proof. We want to see if the regret-ratio of each representative tuple for all ranking
function f ∈ F that are picked is within the ε regret-ratio bound, how much is the
maximum regret-ratio for a missing ranking function. For the simplicity, let us
start with the 2D case where there are two attributes x and y (Figure 38). Since
each missing ranking function is bounded between two selected functions with
angle α, its maximum angle with its closest selected ranking function is at most α

2

(the worst case is when the ranking function is in the middle of two consequent
selected functions). Consider a representative tuple for a ranking function f ∈ F
which is in the ε range of the top representative of f . Again the worst case happens
when the regret-ratio of such tuple is exactly ε for the selected ranking function.
Suppose the top green line and the red line in Figure 38 shows f and the missing
ranking function with angle distance α

2
from it respectively. Any tuple above the

blue perpendicular dashed line with f is within the ε threshold bound for it. As
specified in the figure, the intersection of the dashed blue line and the y-axis (tuple
t′ in the figure) maximizes the distance of the representative of f for f ′. Moreover,
in order to maximize the distance we put the Top-1 for f to be exactly on it, i.e.
tuple t. Thus, the maximum regret-ratio of t′ for f ′ is:

ε′ =
f ′(t′′)− f ′(t′)

f ′(t′′)
=
OC −OD

OC

OC =
f(t)

cos(α/2)

OD =OA cos(π/4), OA =
f(t′)

cos(π/4− α/2)

⇒ OD =
f(t′)

cos(π/4− α/2)
cos(π/4)

120

ε′ =

f(t)
cos(α/2)

− f(t′)
cos(π/4−α/2) cos(π/4)

f(t)
cos(α/2)

=
f(t)− f(t′) cos(α/2) cos(π/4)

cos(π/4−α/2)

f(t)

Let c =
cos(α/2) cos(π/4)

cos(π/4− α/2)

⇒ ε′ =
f(t)− cf(t′)

f(t)
= c

f(t)− f(t′)

f(t)
+ (1− c)

Since 0 < c ≤ q and f(t)−f(t′)
f(t)

≤ ε,⇒ ε′ ≤ cε+ (1− c) ≤ ε+ (1− c).
Now let us extend the computation to the high-dimensional case. As shown in

Figure 42, the space partitioning can be seen as a set of (hyper-)cones originated at
point (0, . . . , 0). Looking from the surface of the cone, each missing function is
covered by a set of selected ranking functions in F which together form a (hyper-
)trapezius around it. Consider the hyper-plane constructed between the origin and
the two points in the diameter of hyper-trapezius, in which the distance between
the two selected points is maximum. One can see that the maximum growth in
the regret-ratio of a point and a missing function happens for the function in the
middle of this hyper-plane (that has the maximum angle distance with the selected
ranking functions). In the following, looking at Figure 39, we compute the distance
d between the two diagonal points, and use it to compute the maximum angle (α′)
between two adjacent ranking functions.

In order to do so, we consider the corners (1,0,. . . ,0), i.e. the point on X-axis
and the point (cosm−1 α, cosm−2 α sinα, cosm−3

α sinα, . . . , sinα). (computed by transforming the coordinates from the polar to
scalar system).

d =
√

(1− cosm−1 α)2 + (cosm−2 α sinα)2 + · · ·+ sin2 α

121

=

√√√√(1− cosm−1 α)2 + sin2 α

m−2∑
i=1

cos2i α

Following the geometric series (while replacing sin2 α with 1− cos2 α),

d =
√

(1− cosm−1 α)2 + (1− cos2(m−1) α)

=
√

2(1− cosm−1α) (28)

Considering the value of d
2
, while knowing that the radius of the hyper-sphere

is 1,

α′ = 2 arcsin(

√
1− cosm−1α

2
) (29)

Now using the same analysis we did for the two-dimensional case:

ε′ ≤ cε+ (1− c) ≤ ε+ (1− c)

where
c =

cos(α′/2) cos(π/4)

cos(π/4− α′/2)

Considering the guarantee provided in Theorem 9, we discuss our approximate
algorithm over the discretized function space in the next section.

5.5.4 HD-RRMS Algorithm

In this section, we first model the problem as the discretized min-max problem.
We then take the advantage of the linear-size discretized problem space in order to
find the optimal value for the discretized matrix min-max problem.
DMM: Discretized min-max Problem Given the (above described) discretized
matrix M , and the value r, find a set of r rows that minimizes the maximum of the

122

minimum values of all columns among the selected r rows. Formally, find:

min
∀R⊆S s.t. |R|=r

max
∀f∈F

min
∀i∈R

(M [i, f]) (30)

If we assume that the number attributes, m, is bounded by a constant, and
the user controlled parameter γ is a constant, then the total number of discrete
functions |F | becomes bounded by a (albeit large) constant. Recall that M is a
matrix with n rows and |F | columns, where each cell shows the regret-ratio. Given
any set of r rows, the solution to the discretized min-max problem is one of the
cell values. The total number of such values is, at most, n.|F |, which since |F | is
bounded by a constant, is in O(n). We consider each distinct value in cells of the
matrix M as a possible ε threshold of the following problem.

MRST: Minimum Rows Satisfying the given Threshold problem: Given the
discretized matrix M and the threshold value ε, find the minimum number of rows
in matrix M such that for each column of matrix M , the minimum value of each
column among the selected rows is less than or equal to ε. Formally:

minimize |R|, ∀R ⊆ S where max
∀f∈F

min
∀i∈R

(M [i, f]) ≤ ε (31)

Consider an oracle that solves the MRST problem. HD-RRMS sorts all the
distinct values in matrix M , and applying the binary search strategy, passes the
cell-values to the oracle to find the set of rows that satisfy the threshold. Based
on the fact that the size of returned set is either less than r or not, it continues the
search in lower/upper half. Algorithm 12 shows the pseudo-code of the HD-RRMS
algorithm in the presence of the MRST oracle.

Suppose TO is the optimal set with the minimum regret-ratio. Note that since
the output of the HD-RRMS algorithm is the optimal solution for a subset of
ranking functions, εmin is less than or equal to the regret-ratio of TO:

εmin ≤ ED\TO (32)

That is because, if there is no subset of tuples with size of at most r that satisfy

123

Algorithm 12 HD-RRMS
1: Input: The discretized matrix M and the value r
2: Output: selected tuples (TA)
3: v = sorted list of distinct values in M
4: TA = {}, εmin =∞
5: low = 0, high = |v|
6: while low < high do
7: mid = low+high

2

8: R = MRST(M , v[mid])
9: if |R| ≤ r then

10: TA = R, εmin = v[mid]
11: high = mid− 1
12: else
13: low = mid+ 1
14: end if
15: end while
16: return TA

the regret-ratio of less than εmin for F (which is a subset of F), no set will
have the regret-ratio of less than εmin for its super-set (F). Moreover, based on
Theorem 9 we knowED\TA ≤ cεmin+(1−c). From Equation 32 cεmin+(1−c) ≤
cED\TO + (1− c). Thus:

ED\TA ≤ cED\TO + (1− c) (33)

Since c ≤ 1, based on Equation 33, the regret-ratio of the set discovered by
HD-RRMS is within (1− c) distance from the regret-ratio of the optimal solution.

MRST Oracle: The only missing part of the algorithm is the MRST oracle. We
model the MRST problem with the set-cover problem [71] by constructing the
matrix M ′ as following:

∀i, f : M ′[i, f] =

0, if M [i, f] > ε

1, otherwise
(34)

M ′ contains constant number of columns and s rows. Since the number of columns

124

is bounded by a constant, there exists at most a constant number (more precisely,
the power-set of |F |) of distinct combinations for the row values of M ′. In the
next step, the algorithm (giving a distinct id to each value-combination of columns)
parses M ′ and removes the duplicate rows. As a result, M ′ becomes a matrix
whose number of rows and columns are bound by constants! Next we transform
the MRST problem to the set-cover problem as follows:
• Each column f in M ′ is an item in the set-cover problem.
• Each row i in M ′ is a set Si in the set-cover problem such that ∀ column f ,
f ∈ Si iff M ′[i, f] = 1.

Now the problem is converted to a set-cover instance with a constant number of
items and constant number of sets. Thus, even though the set-cover problem is NP-
complete in general, an optimal solution for this instance is, theoretically, possible
in constant-time order. MRST uses the set-cover solver to find the minimum
number of sets that cover all the columns and returns its corresponding rows as the
optimal solution for the MRST problem. Algorithm 13 shows the pseudo-code of
MRST oracle.
Time Complexity of the HD-RRMS Algorithm Since the size of the discretized
matrix M is n|F |, the binary search over the possible values of ε takes log(n|F |)
steps. At each step, a set-cover with |F | items and min(2|F |, n) sets is constructed.
Converting M to the set-cover instance takes n|F | time, while solving it takes, at
most, 2min(2|F |,n)|F | time.
Since, |F | = γm, the total time to solve HD-RRMS is:

log(nγm).(nγm + (2min(2γ
m
,n).γm)) (35)

Assuming that γ and m are constants, the running-time of HD-RRMS is, theoreti-
cally, in O(n log(n)).

5.5.5 Practical HD-RRMS Algorithm

Although HD-RRMS is linearithmic in theory, it can be inefficient in practice.
Even with the existence of an efficient set-cover solver (such as [75]), depending

125

Algorithm 13 MRST Oracle
1: Input: The discretized matrix M and the threshold ε
2: Output: The set of tuples satisfying the threshold on M

{constructing the matrix M ′}
3: for i from 1 to s do
4: for f in columns of M do
5: M ′[i, f] = 1 if (M [i, f] ≤ ε) else 0
6: end for
7: end for

{removing the duplicate rows}
8: seen = {}
9: for i in rows of M ′ do

10: if id(M ′[i]) ∈ seen) then
11: M ′.remove(i)
12: else
13: seen = seen ∪{i}
14: end if
15: end for

{constructing the set-cover problem}
16: items={}, sets={}
17: for f in columns of M ′ do items = items ∪{f}
18: for i in rows of M ′ do
19: set={}
20: for f in columns of M ′ do
21: if M ′[i, f] == 1 then set = set ∪{f}
22: end for
23: sets = sets ∪{ set }
24: end for
25: return set-cover(items, sets)

on the values of γ and m, solving this problem may become infeasible.
To make the HD-RRMS Algorithm practical, we solve the set-cover instances

approximately using the well-known greedy approximate algorithm for set-cover [72].
Since this algorithm guarantees a log factor in the approximate-ratio, applying it
adds another level of approximation and increases the set size to up to r log(|F |) =

rm log(γ) (rather than r) tuples, while maintaining the distance from the optimal

126

regret ratio in the bound provided in Theorem 9. Alternatively, one can find a new
value (r′) for set-cover size such that r′ = r

m log(γ)
. In this way, we can make sure

that the set size will not be more than r. However, the distance from the optimal
solution may become larger than what provided in Theorem 9. Applying the greedy
approximate set-cover reduces the running time to:

log(nγm).(nγm + (min(2γ
m

, n).γm))

≤ 2nγm log(nγm) (36)

Given the importance of the choice of γ in Equation 36, we evaluate the impact
of the discretization control parameter (γ) in § 5.7.3 (Figures 59, 60, and 61). On
examining the experiment results, it turns out even though increasing the value γ
increases the running time significantly, the improvement on the quality of results
drops quickly. In our experiments, choosing γ between 4 and 6 seemed to be
appropriate.

5.6 Discussion

5.6.1 Top-k Extension

For enabling efficient computation of Top-k queries (instead of only Top-1 queries)
requires us to extend the compact set for higher values of k > 1, while minimizing
the dissatisfaction of the kth top tuple of the compact set versus the kth tuple of
the actual database, An easy way of adopting the existing algorithms is an iterative
approach with k iterations. At each iteration we discover the maxima set over the
remaining tuples. Then we remove the tuples in the maxima set, as well as the
tuples falling outside of the convex shape formed by the set, and start the next
iteration over the remaining tuples in the database. One can see that this method
will construct k compact layers around the data and can serve for discovering the
Top-k. However, studying the theoretical guarantees of such adaptation requires
further investigation in a future work.

127

5.6.2 Alternative Matrix Discretization

As an alternative for matrix discretization proposed in § 5.5.3, we can change the
algorithm to let the user specify the size of function space as the control parameter
(rather than the value γ) which makes |F | independent from the value of m. Now
the discretization problem is reduced to the problem of evenly distributing |F |
points on the surface of a quarter hyper-sphere (the vector from the origin to a
point on surface represents a function f ∈ F).

One way for doing so, is to adopt the force-directed drawing algorithms [76],
such as the Barycentric algorithm [77], for evenly distributing the points. Suppose
each point (bound to exist on the surface of the hyper-sphere) is a particle with a
fixed positive charge. The idea is that if we throw |F | particles on the hyper-sphere,
they start moving (based on the average of forces between them) until they form an
even distributed in which the superposition of forces is zero. The algorithm thus is
as following: until the superposition of forces on all the points has not converged
to zero, compute the force on each point and move it on the hyper-sphere based on
the direction and the magnitude of it. Another alternative is relaxing the notion of
an even distribution of the points to the randomly at uniform distribution. Thus, we
can uniformly (at random) select each functions, in the polar space, by specifying
the value of each angle uniformly at random between 0 and Π/2. Now, we can
compute the expected angle distance between the two neighboring functions which
specifies a expected bound based on Theorem 9.

5.7 Experiments

5.7.1 Experimental Setup

Hardware and Platform: All our experiments were performed on a Core-I7 ma-
chine running Ubuntu 14.04 with 8 GB of RAM. The algorithms were implemented
in Python.

Real-world Datasets: We used three publicly available real-world datasets, i.e.,
Airline dataset, Department of Transportation (DOT), and Basketball dataset

128

(NBA).
• Airline dataset11: The 2008 Airline dataset has 5, 810, 463 records with 13

attributes, out of which two of them (namely Actual Elapsed Time and Distance)
are ordinal. We used this dataset to test the performance of the two-dimensional
algorithms over a large dataset.
• DOT dataset12: The flight on-time dataset is published by the US Department

of Transportation. It records, for all flights conducted by the 14 US carriers in
January 2015, attributes such as scheduled and actual departure time, taxiing
time and other detailed delay metrics. The dataset consists of 457,013 tuples
over 28 attributes with 7 ordinal attributes Dep-Delay, Taxi-out, Taxi-in, Actual-
elapsed-time, Air-time, Distance, ArrivalDelay.
• NBA dataset13: This basketball dataset contains the points for the combination

of player/team/season up to 2009. It contains 21, 961 tuples and 17 ordinal
attributes: gp, minutes, pts, oreb, dreb, reb, asts, stl, blk, turnover, pf, fga, fgm,
fta, ftm, tpa, tpm.

Synthetic Data: We also used synthetic data to evaluate the performance of our
algorithms in the presence of different kind of correlations between attributes. Note
that such correlations affect the performance of baseline solutions, e.g., the size
of the skyline, as the more correlated all attributes are, the smaller the skyline
becomes. Moreover, the correlations could affect the regret ratio of our outputs
too. Specifically, we used the method proposed in [67] to generate three datasets
with correlated, independent, and anti-correlated attributes. Each dataset has 10M

tuples with 10 attributes.

Algorithms Evaluated: For the two-dimensional case, we evaluated the per-
formance of our two-dimensional algorithm, 2D-RRMS, and compared its per-
formance with the two-dimensional Sweeping-Line algorithm proposed in [69].
Sweeping-Line is a quadratic algorithm that considers the points in the dual space

11http://kt.ijs.si/elena_ikonomovska/datasets/airline/
2008_14col.data.bz2

12http://www.transtats.bts.gov/DL_SelectFields.asp?Table_
ID=236&DB_Short_Name=On-Time

13http://www.databasebasketball.com/

129

http://kt.ijs.si/elena_ikonomovska/datasets/airline/2008_14col.data.bz2
http://kt.ijs.si/elena_ikonomovska/datasets/airline/2008_14col.data.bz2
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
http://www.databasebasketball.com/

and covers the function space using a sweeping line while updating the regret-ratio
of the points, as their corresponding lines intersect. We used the Nested Block
Loop algorithm [67] in order to compute the skylines for our 2D-RRMS algorithm.

We also evaluated the performance of the high-dimensional algorithm discussed
in § 5.5, namely GREEDY [68] and HD-RRMS (Algorithm 12). In the practical
implementation of HD-RRMS algorithm, we applied the greedy approximate
solution to solve the set-cover problem [71]. Nonetheless, to be fair in comparing
the algorithms’ performance, we only accept the set-cover result if its size is
at most r. Note that our HD-RRMS algorithm features two main ideas: One
is the conceptual model (of matrix min-max problem) along with its practical
discretization, and the other is the reduction to set-cover and the corresponding
approximation algorithm. To test the effectiveness of these two ideas separately,
we devised another greedy algorithm called HD-GREEDY, which simply applies
an iterative greedy approach over the discretized matrix generated by the first
idea (i.e., as explained in § 5.5.3). Specifically, HD-GREEDY iteratively picks
a tuple that minimizes the max of the min value of the columns for the selected
set of tuples. The complexity of HD-GREEDY is O(rn), because each iteration
requires passing through the matrix once, while computing the reduction in the
matrix max column value only takes O(1). As one can see, HD-GREEDY uses
only the (discretized version of the) conceptual model, but not our second idea
of reduction to set-cover. As we shall show latter in the section, the performance
of HD-GREEDY almost always falls in between GREEDY and HD-RRMS, thus
demonstrating the effectiveness of both of our ideas.

The previous studies on approximating high-dimensional convex hulls [63]
and relaxing skyline definitions [65] differ in objective from our paper (which
aims to minimize the user dissatisfaction on maxima queries). Nonetheless, in
order to provide a broader context for the efficacy of our algorithms, we still
implemented both [63] and [65], and studied the possibility of applying them for
regret minimization.

Performance Measures: For the two-dimensional case, since our 2D-RRMS
algorithm always guarantees optimality in terms of regret ratio, we focus our

130

evaluations on the execution time. Specifically, to be fair to the sweeping-line
algorithm, we considered the execution time of our 2D-RRMS algorithm to be the
SUM of the execution time of both the skyline computation process (we used the
skyline computation algorithm in [67]) and the actual execution of 2D-RRMS. For
the high-dimensional case, we used both the regret-ratio and the overall execution
time of an algorithm measure its performance - naturally, the shorter the execution
time and the smaller the regret ratio, the better.

10
4

10
5

10
6

10
7

n (log scale)

10
0

10
2

10
4

T
im

e
 (

S
e

c
)

Sweeping-Line

2DRRMS

Figure 43: 2D, Impact of dataset size
(n) on correlated, independent, and
anti-correlated datasets

3 4 5 6 7 8 9 10

r

10
-1

10
0

T
im

e
 (

S
e

c
)

Sweeping-Line

2DRRMS

Figure 44: 2D, Impact of output size
(r) on correlated, independent, and
anti-correlated datasets

1000 3000 5000 7000 9000 11000

Skyline size

0

1

2

3

4

T
im

e
 (

S
e

c
)

2DRRMS

Sweeping-Line

Figure 45: 2D, Impact of skyline size
(n) on skyline-only datasets

104 105 106 107

n (log scale)

0

1000

2000

3000

4000

5000

6000

T
im

e
 (

S
e

c
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
R

e
g

re
t-

ra
ti

o
 (

E
)

HD-GREEDY

HD-RRMS

GREEDY

Figure 46: HD, Impact of dataset size
(n) on Anti-correlated dataset

131

1 1.5 2 2.5 3 3.5 4 4.5 5

n #106

101

102

103

104

T
im

e
 (

S
e

c
)

2DRRMS

Sweeping-Line

Figure 47: 2D, Airline dataset, varied
the dataset size (n)

104 105 106 107

n (log scale)

0

500

1000

1500

2000

2500

T
im

e
 (

S
e

c
)

0

0.01

0.02

0.03

0.04

0.05

0.06

R
e

g
re

t-
ra

ti
o

 (
E

)

HD-GREEDY

HD-RRMS

GREEDY

Figure 48: HD, Impact of dataset size
(n) on correlated dataset

104 105 106 107

n (log scale)

0

500

1000

1500

2000

2500

3000

3500

T
im

e
 (

S
e

c
)

0

0.05

0.1

0.15

0.2

0.25

R
e

g
re

t-
ra

ti
o

 (
E

)

HD-GREEDY

HD-RRMS

GREEDY

Figure 49: HD, Impact of dataset size
(n) on independent dataset

104 105 106 107

n (log scale)

0

1000

2000

3000

4000

5000

6000
T

im
e

 (
S

e
c

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
e

g
re

t-
ra

ti
o

 (
E

)

HD-GREEDY

HD-RRMS

GREEDY

Figure 50: HD, Impact of dataset size
(n) on Anti-correlated dataset

5.7.2 Two-dimensional Experimental Result

Figures 43 and 44 show the performance of our 2D-RRMS algorithm (circle
marker) and the Sweeping-Line algorithm proposed in [69] (triangle marker).
We tested both algorithms over the correlated, independent, and anti-correlated
synthetic datasets. In these figures, green dotted line, blue dashed line, and red
solid line are used for the correlated, independent, and anti-correlated synthetic
datasets respectively.

Impact of the dataset size (n): In these set of experiments, we varied the dataset
size from 5K to 10M for each of correlated, independent, and anti-correlated
synthetic datasets. Figure 43 shows the execution time of each algorithm. From
the figure, one can see that 2D-RRMS algorithm outperforms the Sweeping-Line

132

10
4

10
5

10
6

10
7

n (log scale)

10
2

10
4

10
6

S
k

y
li

n
e

 s
iz

e

Anti-correlated

Independent

Correlated

Figure 51: HD, skyline size when
varying the dataset size (n)

4 5 6 7 8 9 10

m

0

500

1000

1500

2000

T
im

e
 (

S
e

c
)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

R
e

g
re

t-
ra

ti
o

 (
E

)

HD-GREEDY

HD-RRMS

GREEDY

Figure 52: HD, Impact of number of
attributes (m) on correlated dataset

algorithm by orders of magnitude. As expected, the performance of the Sweeping-
Line algorithm does not depend on the correlation of the attributes because it
considers all the joins between points in the dual environment. The 2D-RRMS
algorithm performs better for the correlated and independent datasets because the
anti-correlated case generates a larger skyline which affects the performance of the
Nested Block Loop algorithm [67] used for skyline discovery. Note that, while
utilizing more efficient skyline algorithms will reduce the measured execution
algorithm of 2D-RRMS, we did not further pursue this direction as it is orthogonal
to our research. In addition, 2D-RRMS already outperforms the sweeping-line
algorithm by an order of magnitude even in the anti-correlated case.

Impact of the output size (r): Next, we fixed the dataset size to 40K, and varied
the output size (r) from 3 to 10 (Figure 44). Again in all experiments, 2D-RRMS
algorithm significantly outperforms the Sweeping-Line algorithm. Since the time
complexity of the Sweeping-Line algorithm, O(rn2), is quadratic in dataset size
and linear in output size, varying r does not affect the performance of the algorithm.
The execution time of our 2D-RRMS algorithm also does not change by varying
r. The reason is actually not because the execution time of our algorithm has no
dependency on r, but because the pre-processing step (skyline discovery) actually
dominates the overall running time, and this pre-processing step is independent to
r.

Experiment on the skyline-only datasets: To test the skyline-size effect on the

133

performance of our algorithm, we generated synthetic, “skyline-only” datasets
(i.e., in which every tuple is on the skyline), with varying sizes. We did so by
drawing uniformly at random from all points inside the 2D unit circle, and then
iteratively removing a point if it is dominated by others. We generated 6 such
skyline-only datasets of sizes 1212, 2431, 3782, 5335, 8488, and 12032 (skyline)
tuples, respectively. Figure 45 shows the performance of the algorithms. We
can see that in all cases 2D-RRMS outperformed the sweeping line algorithm
significantly. Indeed, the improvement is even more pronounced when the skyline
size becomes larger.

Real datasets: Figure 47 show the total execution time of the two-dimensional
algorithms over Airline dataset (by only considering Air-time and ArrivalDelay
attributes). We used the Airline dataset to evaluate the performance of the algo-
rithms over a large real dataset. Figure 47 shows their performance when we varied
the dataset size (n) from 1M to 5M. In both experiments, 2D-RRMS algorithm
outperforms the Sweeping-Line algorithm by the orders of magnitude. For example,
2D-RRMS algorithm executed in less than 10 seconds in the Airline dataset for
n =5M, while Sweeping-Line algorithm took tens of thousand seconds!

4 5 6 7 8 9 10

m

0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
 (

S
e

c
)

0

0.1

0.2

0.3

0.4

0.5

R
e

g
re

t-
ra

ti
o

 (
E

)

HD-GREEDY

HD-RRMS

GREEDY

Figure 53: HD, Independent, Impact
of number of attributes (m) on
independent dataset

4 5 6 7 8 9 10

m

0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
 (

S
e

c
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
e

g
re

t-
ra

ti
o

 (
E

)

HD-GREEDY

HD-RRMS

GREEDY

Figure 54: HD, Impact of number
of attributes (m) on Anti-correlated
dataset

134

3 4 5 6 7 8 9 10

m

10
2

10
3

10
4

S
k

y
li

n
e

 s
iz

e

Anti-correlated

Independent

Correlated

Figure 55: HD, skyline size when
varying the number of attributes (m)

2 3 4 5 6 7

r

0

200

400

600

800

1000

1200

T
im

e
 (

S
e

c
)

0

0.05

0.1

0.15

0.2

0.25

R
e

g
re

t-
ra

ti
o

 (
E

)

HD-GREEDY

HD-RRMS

GREEDY

Figure 56: HD, Correlated, Impact of
output size (r) on correlated dataset

2 3 4 5 6 7

r

0

200

400

600

800

1000

1200

T
im

e
 (

S
e

c
)

0

0.1

0.2

0.3

0.4

0.5

R
e

g
re

t-
ra

ti
o

 (
E

)

HD-GREEDY

HD-RRMS

GREEDY

Figure 57: HD, Independent, Impact
of output size (r) on independent
dataset

2 3 4 5 6 7

r

0

200

400

600

800

1000

1200

1400

1600
T

im
e

 (
S

e
c

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
e

g
re

t-
ra

ti
o

 (
E

)

HD-GREEDY

HD-RRMS

GREEDY

Figure 58: HD, Impact of output size
(r) on Anti-correlated dataset

5.7.3 High-dimensional Experimental Result

The performance of the HD algorithms (§ 5.5) is studied under three correlation
models, i.e., correlated, independent, and anti-correlated, on synthetic datasets
created based on [67]. The default values for the dataset size, number of attributes,
output size, and the control parameter to n = 10K, m = 4, r = 5, and γ = 4

respectively. We studied the impact of each parameter individually as well. Note
that in all HD Figures 13 to 28 the left (blue) y-axis shows the execution time
of the algorithms while the right (orange) y-axis shows the regret-ratio (E). The
triangle, rectangle, and circle line markers represent GREEDY, HD-GREEDY, and
HD-RRMS algorithms respectively, while blue solid lines shows the execution

135

2 4 6 8 10 12 14

.

0

50

100

150

200

T
im

e
 (

S
e

c
)

0

0.02

0.04

0.06

0.08

0.1

R
e

g
re

t-
ra

ti
o

 (
E

)

HD-GREEDY

HD-RRMS

Figure 59: HD, Impact of number of
partitions (γ) on correlated dataset

2 4 6 8 10 12 14

.

0

50

100

150

200

T
im

e
 (

S
e

c
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
e

g
re

t-
ra

ti
o

 (
E

)

HD-GREEDY

HD-RRMS

Figure 60: HD, Impact of number of
partitions (γ) on independent dataset

2 4 6 8 10 12 14

.

0

50

100

150

200

T
im

e
 (

S
e

c
)

0

0.1

0.2

0.3

0.4

0.5

R
e

g
re

t-
ra

ti
o

 (
E

)

HD-GREEDY

HD-RRMS

Figure 61: HD, Impact of number
of partitions (γ) on Anti-correlated
dataset

1 1.5 2 2.5 3 3.5 4

n #105

0

0.5

1

1.5

2

T
im

e
 (

S
e

c
)

#104

0

0.2

0.4

0.6

0.8

1

R
e

g
re

t-
ra

ti
o

 (
E

)

HD-GREEDY

HD-RRMS

GREEDY

Figure 62: HD, DOT dataset, varied
the dataset size (n)

time and dashed orange lines represent the regret-ratio.

Impact of the dataset size (n): In these set of experiments, we varied the size
of the dataset (n) from 5K to 10M and evaluated the performance of the three
aforementioned algorithms on the synthetic datasets. Figures 48, 49, and 50 show
the results for correlated, independent, and anti-correlated datasets respectively.
We have compared both the execution time and the regret-ratio of the algorithms to
evaluate their performance.

As explained in § 5.5, the GREEDY algorithm suffers from running n LP
optimizations before picking a single tuple, which lead to high execution time. As
shown in these figures (48, 49, and 50) the GREEDY algorithm did not scale in any

136

3 4 5 6

m

0

1000

2000

3000

4000

5000

6000

T
im

e
 (

S
e

c
)

0

0.2

0.4

0.6

0.8

1

R
e

g
re

t-
ra

ti
o

 (
E

)

HD-GREEDY

HD-RRMS

GREEDY

Figure 63: HD, DOT dataset, varied
the number of attributes (m)

0.5 1 1.5 2

n #104

0

500

1000

1500

2000

T
im

e
 (

S
e

c
)

0.011

0.012

0.013

0.014

0.015

0.016

R
e

g
re

t-
ra

ti
o

 (
E

)

HD-GREEDY

HD-RRMS

GREEDY

Figure 64: HD, NBA dataset, varied
the dataset size (n)

3 4 5 6

m

0

200

400

600

800

T
im

e
 (

S
e

c
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
e

g
re

t-
ra

ti
o

 (
E

)

HD-GREEDY

HD-RRMS

GREEDY

Figure 65: HD, NBA dataset, varied
the number of attributes (m)

2 3 4 5 6 7

r

10
-1

10
0

10
1

T
im

e
 (

s
e

c
)

Anti-correlated

Independent

Correlated

Figure 66: Adopting the k-dominant
skyline

of the experiments, e.g., it required several thousands of seconds for n = 20K. On
the other hand, the other two algorithms, namely HD-GREEDY and HD-RRMS
scaled perfectly in all the experiments as their performances were less dependent
on the dataset size. Yet among the two algorithms, HD-RRMS algorithm performs
better than HD-GREEDY algorithm, both in time and regret-ratio.

The fluctuation in the regret-ratio of the output of the GREEDY algorithm
in Figure 49 confirms the fact that it cannot guarantee the output quality. Since
HD-GREEDY algorithm deals with the discretized subset of function F ∈ F
and runs the greedy approach on top of it (while GREEDY applies the greedy
manner on the whole set of function, F) one expect that the output quality of the
GREEDY algorithm should be better than the HD-GREEDY algorithm. However,

137

in Figure 49 and part of the Figure 48, the regret-ratio of the output of the HD-
GREEDY algorithm is better than that of the GREEDY algorithm. This is due to
the starting point selected by the GREEDY algorithm, where it does not select the
first point greedily and simply picks the maximum on the first dimension. Since
the latter points are selected based on the initial point, a bad selection of it may
highly propagate to the final quality of the output. On the other hand, this problem
cannot easily get fixed in the GREEDY algorithm; because in order to construct
the LPs, the GREEDY algorithm needs a non-empty set of so far selected points –
i.e. it cannot start the greedy optimization without pre-selecting at least one point!
One way to resolve this, is to run the algorithm with all possible choices of initial
point, which multiplies the algorithm complexity with n. Applying the set-cover
idea, the output of the HD-RRMS algorithm had less regret-ratio than the outputs
of the both GREEDY and HD-GREEDY algorithms.

Additionally, the skyline size for each of these experiments is reported in
Figure 51. As expected, in anti-correlated dataset, most of the tuples are skyline,
while the size is less in the two other datasets. Despite of such differences, however,
our HD-RRMS algorithm significantly outperforms the competitors in all these
cases.

Impact of the number of attributes (m): In these set of experiments, we varied
the number of the attributes (m) from 4 to 10 for all the three synthetic datasets,
setting the dataset size, and output size to n = 10K and r = 5 respectively.
Figures 52, 53, and 54 show the results for the correlated, independent, and
anti-correlated datasets respectively. As expected for all three datasets the HD-
RRMS algorithm outperforms the GREEDY and HD-GREEDY algorithms both
in execution time and regret-ratio. While the execution time of the HD-GREEDY
algorithm is almost similar to the HD-RRMS algorithm, it outperforms the Greedy
algorithm. The regret-ratio of the output of the HD-GREEDY algorithm is better
in Figure 53 and part of Figure 54, which is, as explained, due to the bad initial
point selected by the GREEDY algorithm.

The skyline sizes are reported in Figure 55. After 6 dimensions, almost all
the tuples in anti-correlated database and most of the tuples in the independent

138

dataset are skyline. Once again, HD-RRMS algorithm significantly outperforms
the competitors even when almost all tuples are on the skyline.

Impact of the output size (r): Figures 56, 57, and 58 show the results for
correlated, independent, and anti-correlated datasets, where the output size (r)
is varied from 2 to 7, and dataset size and number of attributes are set to n = 10K
and m = 4 respectively. As expected, in these set of experiments, also, HD-RRMS
algorithm outperforms the HD-GREEDY and GREEDY algorithms in both time
and regret-ratio, while the execution time of the HD-GREEDY algorithm is almost
similar. The regret-ratio of the output of the HD-GREEDY algorithm is better than
the GREEDY algorithm in Figures 56, 57, and part of 58, due to the bad initial
point selection in GREEDY algorithm. One interesting fact in these figures is the
bad performance of the GREEDY algorithm for the small output sizes (especially
2 and 3). This is due to the fact that the first point was not selected greedily and
the other point(s) was selected with maximum (regret-ratio) distance to it, which
(together with the initial point) may not be a good selection. However, as the
algorithm picks more points, the effect of the initial point reduces.

Impact of the discretization control parameter (γ): In these set of experiments,
we studies the effect of the value of γ in the performance of the HD-RRMS and
HD-GREEDY algorithms. Figures 59, 60, and 61 show the performance of the
algorithms for correlated, independent, and anti-correlated datasets respectively.
While increasing the value of γ does not highly affect the performance of the
HD-GREEDY algorithm, it highly affects on the performance of the HD-RRMS
algorithm. On the other hand, increasing the value of γ increases the number of
columns of the discretized matrix by γm and directly affects on the running time of
the algorithms. Looking at the figures, at least in these experiments, selecting γ
between 4 and 6 seems appropriate, as it seems to reach a point of saturation where
increasing γ benefits little in terms of execution time.

Real datasets: We also evaluated the performances of the high-dimensional
algorithms over the DOT and NBA real datasets. We set the default values of
the number of attributes, number of outputs and discretization control parameter to
m = 4, r = 5, and γ = 6 respectively. We set the default dataset size of NBA and

139

DOT to n = 10K and n = 100K respectively.
In the first set of the experiments we varied the dataset size (n) from 100K to

400K for DOT and from 5K to 20K for NBA dataset. Figures 62 and 64 show
the performance of the algorithms for the DOT and NBA respectively. Similar to
the synthetic experiments, in both experiments the HD-RRMS and HD-GREEDY
algorithms run faster in the order of magnitude, while the the GREEDY algorithm
does not perform well as the input size (n) increased, e.g., it requires more than
20, 000 seconds for n = 400K in DOT. From the regret-ratio point of view the
HD-RRMS algorithm outperforms the other two algorithms. The HD-GREEDY
algorithm has a better output quality than the GREEDY algorithm for some of the
cases.

In the second set of experiments, we varied the number of attributes (m) from 3

to 6. In both experiments, the HD-RRMS algorithm has the best running time, while
the HD-GREEDY algorithm performs similarly. While the HD-RRMS algorithm
has the best output quality in both experiments, the GREEDY algorithm provides
better output quality for NBA and the output of the HD-GREEDY algorithm is
better for the DOT dataset.

Adopting the state-of-the-art: In order to test whether one could achieve a
reasonable regret-ratio by selecting a subset according to existing techniques
that were not designed to optimize the regret-ratio, we implemented a number of
existing algorithms for related problems. First, we tested the partitioning-based
approximate convex hull method proposed in [63]. As expected, since the goal
of this algorithm is efficiently discovering a set which is as similar to the real
convex hull as possible, the method is not adoptable here. For example, in these
experiments, the size of the discovered set was always larger than the original
convex hull, defeating the purpose of generating a more compact representation of
the original data.

In another set of experiments, we considered the existing technique of finding
the k-dominant skyline [65]. Once again, minimizing the dissatisfaction on maxima
query is not its objective - testing it here is solely to demonstrate that it should not
be used for the purpose of minimizing regret-ratio. k-dominant skyline is a subset

140

of the skyline when we relax the definition of dominance to k-dominance (i.e., a
tuple t k-dominates a tuple t′ if there are k ≤ m attributes in which t is better than
or equal to t′ and is better in at least one of these k attributes). k-dominant skyline
is the set of tuples are not k-dominated by any other points in the database.

In order to adopt the k-dominant skyline for finding a set of at most r tuples,
we do a binary search over the value of k and at each iteration, if the size of the
discovered set is larger than r, we increase the value of k and reduce it otherwise.
Somewhat surprisingly, we found a major problem with this adaptation - the chance
of returning the empty set is high! To understand it, let us consider the case where
m = 2 and the tuples are distributes inside a circle. The expected number of
convex hull points (a subset of skyline) is O(n

1
3) [62], meaning that having k = 2

would often lead to too large an output. However, if we reduce k from 2 to 1, the
output size will most likely become zero because, for every skyline point, there
is very likely a point that is better on either x or y! Indeed, we ran an experiment
on n = 10000 m = 4 over the three synthetic datasets - in all experiments, the
returned set was empty. Figure 66 shows the running time of the algorithm over
each of the datasets.

5.8 Related Work

Top-k discovery algorithms: These algorithms can be divided into on-demand
query processing and index construction. On-demand Top-k algorithms focus on
the data access methods. For example, NRA [56] considers the existence of one
sorted list of tuples for each attribute, and finds the Top-k only by exploring the lists,
while TA [57] applies both random and sorted access. CA [57], Upper/Pick [78],
and [79] are the more advanced algorithms in this category. Besides, methods
like PREFER [58] and LPTA [59], employ the materialized views to increase the
efficiency of Top-k discovery process. While the first class of Top-k algorithms
focuses on efficiently answering the queries on demand, the other set of works
aims toward indexing the data beforehand, such that they can answer future queries
fast. For example, ONION [60] constructs k layers of convex hull that can serve as
the representative for linear ranking functions. [61] adds the notion of robustness

141

as the set that performs the best in the worst case scenario.

Approximate convex hull and skyline reduction algorithms:
Given the complexity of convex hull discovery algorithms, especially in high-
dimensions, designing effective approximate algorithms, with tight approximate-
ratios, for finding the convex hull has attracted many researchers. For example, J.
L. Bently et. al. [63] propose a FPTAS ε-approximate convex hull algorithm for
the two-dimensional algorithms and extend it to high-dimensions. Similarly, [64]
partitions the space of skyline tuples into several subregions and finds the convex
hull in each sub-region, which will result in finding a super-set of convex hull.
The objective here is to approximately find a set which is as similar to the original
convex hull, not reducing the size of it. On the other hand, a set of work, such
as [65, 66], aim toward reducing the skyline size. For example, Chan et. al. [65]
relax the notion of domination to “k−domination” in order to increase the chance
domination and reduce the skyline size. However, their objective in ranking the
skyline tuples is not minimizing the user dissatisfaction on maxima queries.

Regret-ratio minimizing problem: The authors in [68, 69] focused on regret
minimization of a database to support multi-criteria decision making. Regret-ratio
and Regret-ratio minimizing problem were first introduced in [68] in order to
minimize the maximum user dissatisfaction of a Top-k query. They proposed the
so called CUBE algorithm to provide an upper-bound guarantee for the regret-ratio
of the optimal solution and more importantly they showed it is independent of the
input size (n). They also provided the GREEDY heuristic for the problem that runs
O(nr) linear programs and picks the points greedily. Chester et.al. [69] extended
the regret-ratio notion to k-regret ratio which measures how far from a kth “best”
tuple is the “best” tuple in a subset. They propose k-regret minimizing sets problem
and proved that it is NP-hard in a high-dimensional database. They also proposed
the quadratic Sweeping-Line algorithm for the two-dimensional scenario. Kessler
et. al. [80] extended the k-regret minimizing notion to nonlinear functions. The
focus of this paper is designing efficient algorithms for the regret-ratio minimizing
problem proposed in [68]. In two-dimensional case, compared to quadratic existing
Sweeping-Line, we propose the linearithmic dynamic programming algorithm

142

2D-RRMS, while for the high-dimensional case we provide the linearithmic HD-
RRMS that guarantees a user controllable distance from the optimal solution.

5.9 Final Remarks

In this chapter, we made several fundamental theoretical as well as practical
advances in developing a compact maxima representative. We studied both two-
dimensional as well as high-dimensional databases to find a set limited to only r
tuples that minimizes the maximum regret-ratio. In the case of two-dimensional
databases, we have developed an innovative dynamic programming algorithm to
build the optimal index that runs in linearithmic time. We developed an innovative
linearithmic algorithm that guarantees a regret ratio that is within a user-controllable
distance from the optimal regret ratio. Our comprehensive set of experiments
on synthetic (with different correlation models) and real datasets of size up to
several million records confirm the efficiency, scalability, and effectiveness of our
algorithms.

143

6 Query Reranking As A Service

Motivation: The ranked retrieval model has rapidly replaced the traditional
Boolean retrieval model as the de facto way for query processing in client-server
(e.g., web) databases. Unlike the Boolean retrieval model which returns all tuples
matching the search query selection condition, the ranked retrieval model orders
the matching tuples according to an often proprietary ranking function, and returns
the top-k tuples matching the selection condition (with possible page-turn support
for retrieving additional tuples).

The ranked retrieval model naturally fits the usage patterns of client-server
databases. For example, the short attention span of clients such as web users
demands the most desirable tuples to be returned first. In addition, to achieve a
short response time (e.g., for web databases), it is essential to limit the length of
returned results to a small value such as k. Nonetheless, the ranked retrieval model
also places more responsibilities on the web database designer, as the ranking
function design now becomes a critical feature that must properly capture the need
of database users.

In an ideal scenario, the database users would have fairly homogeneous
preferences on the returned tuples (e.g., newer over older product models, cheaper
over more expensive goods), so that the database owner can provide a small
number of ranking functions from which the database users can choose to fulfill
their individual needs. Indeed, the database community has developed many
ranking function designs and techniques for the efficient retrieval of top-k query
answers according to a given ranking function.

The practical situation, however, is often much more complex. Different users
often have diverse and sometimes contradicting preferences on numerous factors.
Even more importantly, many database owners simply lack the expertise, resources,
or even motivation (e.g., in the case of government web databases created for policy
or legal compliance purposes) to properly study the requirements of their users
and design the most effective ranking functions. For example, many flight-search
websites, including Kyak, Google Flights, Sky Scanner, Expedia, and Priceline
offer limited ranking options on a subset of the attributes, that, for example, does

144

not help ranking based on cost per mileage. Similar limitations apply to the
websites such as Yahoo! Autos (resp. Blue Nile), if we want to rank the results, for
example, based on mileage per year (resp. summation of depth and table percent).
As a result, there is often a significant gap, in terms of both design and diversity,
between the ranking function(s) supported by the client-server database and the
true preferences of the database users. The objective of this paper is to define
and study the query re-ranking problem which bridges this gap for real-world
client-server databases.

Query Re-Ranking: Given the challenge for a real-world database owner to
provide a comprehensive coverage of user-preferred ranking functions, in this paper
we develop a third-party query re-ranking service which uses nothing but the public
search interface of a client-server database to enable the on-the-fly processing of
queries with user-specified ranking functions (with or without selection conditions),
no matter if the ranking function is supported by the database or not.

This query re-ranking service can enable a wide range of interesting appli-
cations. For example, one may build a personalized ranking application using
this service, offering users with the ability to remember their preferences across
multiple web databases (e.g., multiple car dealers) and apply the same personalized
ranking over all of them despite the lack of such support by these web databases.
As another example, one may use the re-ranking service to build a dedicated
application for users with disabilities, special needs, etc., to enjoy appropriate
ranking over databases that do not specifically tailor to their needs.

There are two critical requirements for a solution to the query re-ranking
service: First, the output query answer must precisely follow the user-specified
ranking function, i.e., there is no loss of accuracy and the query re-ranking service
is transparent to the end user as far as query answers are concerned. Second, the
query re-ranking service must minimize the number of queries it issues to the
client-server database in order to answer a user-specified query. This requirement
is crucial for two reasons: First is to ensure a fast response time to the user query,
given that queries to the client-server database must be issued on the fly. Second
is to reduce the burden on the client-server database, as many real-world ones,

145

especially web databases, enforce stringent rate limits on queries from the same IP
address or API user (e.g., Google Flight Search API allows only 50 free queries
per user per day).

Problem Novelty: While extensive studies have focused on translating an unsup-
ported query to multiple search queries supported by a database, there has not
been research on the translation of ranking requirements of queries. Related to our
problem here includes the existing studies on crawling client-server databases [36],
as a baseline solution for query re-ranking is to first crawl all tuples from the
client-server database, and then process the user query and ranking function locally.
The problem, however, is the high query cost. As proved in [36], the number of
queries that have to be issued to the client-server database for crawling ranges from
at least linear to the database size in the best-case scenario to quadratic and higher
in worse cases. As such, it is often prohibitively expensive to apply this baseline to
real-world client-server databases, especially those large-scale web databases that
constantly change over time.

Another seemingly simple solution is for the third-party service to retrieve
more than k tuples matching the user query, say h · k tuples by using the “page-
down” feature provided by a client-server database (or [81] when such a feature is
unavailable), and then locally re-rank the h ·k tuples according to the user-specified
ranking function and return the top-k ones. There are two problems with this
solution. First, since many client-server databases choose not to publish the design
of their proprietary ranking functions (e.g., simply naming it “rank by popularity”
in web databases), results returned by this approach will have unknown error unless
all tuples satisfying the user query are crawled. Second, when the database ranking
function differs significantly from the user-specified one, this approach may have
to issue many page-downs (i.e., a large h) in order to retrieve the real top-k answers
according to the user-specified ranking function.

Finally, note that our problem stands in sharp contrast with existing studies on
processing top-k queries over traditional databases using pre-built indices and/or
materialized views (e.g., [58, 60]). The key difference here is the underlying data
access model: Unlike prior work which assume complete access to data, we are

146

facing a restricted, top-k, search interface provided by the database.

Outline of Technical Results: We start by considering a simple instance of the
problem, where the user-desired ranking function is on a single attribute, and
developing Algorithm 1D-RERANK to solve it. Note that this special, 1D, case
not only helps with explaining the key technical challenges of query reranking, but
also can be surprisingly useful for real-world web databases. For example, a need
often arising in flight search is to maximize or minimize the layover time, so as
to either add a free stopover for a sightseeing day trip or to minimize the amount
of agonizing time spent at an airport. Unfortunately, while flight search websites
like Kayak offer the ability to specify a range query on layover time, it does not
support ranking according to the attribute. The 1D-RERANK algorithm handily
addresses this need by enabling a “Get-Next” primitive - i.e., upon given a user
query q, an attribute Ai, and the top-h tuples satisfying q according to Ai, it finds
the “next”, i.e., (h+ 1)-th ranked, tuple.

In the development of 1D-RERANK, we rigidly prove that, in the worst-case
scenario, retrieving even just the top-1 tuple requires crawling of the entire database.
Nonetheless, we also show that the practical query cost tends to be much smaller.
Specifically, we found a key factor (negatively) affecting query cost to be what
we refer to as “dense regions” - i.e., a large number of tuples clustering together
within a small interval (on the attribute under consideration). The fact that a dense
region may be queried again and again (by the third-party query reranker) for the
processing of different user queries prompts us to propose an on-the-fly indexing
idea that detects such dense regions and proactively crawls top-ranked tuples in it
to avoid the waste on processing future user queries. We demonstrate theoretically
and experimentally the effectiveness of such an index on reducing the overall query
cost.

To solve the general problem of query reranking for any arbitrary user-desired
ranking function (rather than just 1D), a seemingly simple solution is to directly
apply a classic top-k query processing algorithm that leverages sorted access
to each attribute, e.g., Fagin’s or TA algorithm [56], by calling the “Get-Next”
primitive provided by 1D-RERANK as a subroutine. The problem with this simple

147

solution, however, is that it incurs a significant waste of queries when applied
to client-server databases, mainly because it fails to leverage the multi-predicate
(conjunctive) queries supported by the underlying database. We demonstrate in the
paper that this problem is particularly significant when a large number of tuples
satisfying a user query feature extreme values on one or more attributes.

To address the issue, we develop MD-RERANK (i.e., Multi-Dimensional
Rerank), a query re-ranking algorithm that identifies a small number of multi-
predicate queries to directly retrieve the top-k tuples according to a user query.
We note a key difference between the 1D and MD cases: In the 1D case, a single
query is enough to cover the subspace outranking a given tuple, while the MD case
requires a much larger number of queries due to the more complex shape of the
subspace. We develop two main ideas, namely direct domination detection and
virtual tuple pruning, to significantly reduce the query cost for MD-RERANK. In
addition, like in the 1D case, we observe the high query cost incurred by “dense
regions”, and include in MD-RERANK our on-the-fly indexing idea to reduce the
amortized cost of query re-ranking.

Our contributions also include a comprehensive set of experiments on real-
world web databases, both in an offline setting (for having the freedom to control
the database settings) and through online live experiments over real-world web
databases. Specifically, we constructed a Top-k web search interface in the offline
experiment, and evaluated the performance of the algorithms in different situations,
by varying the parameters such as database size, system-k, and system ranking
function. In addition we also tested our algorithms live online over two popular
websites, namely Yahoo! Autos and and Blue Nile, the largest diamond online
retailer. The experiment results verify the effectiveness of our proposed techniques
and their superiority over the baseline competitors.

148

6.1 Preliminaries

6.1.1 Database Model

Database: Consider a client-server database D with n tuples over m ordinal
attributes A1, . . . , Am. Let the value domain of Ai be V (Ai) = {vi1, . . . , vi|V (Ai)|}.
The database may also have other categorical attributesB1, . . . , Bm′ . But since they
are usually not part of any ranking function, they are not the focus of our attention
for the purpose of this paper. We assume each tuple t to have a none-NULL value
on each (ordinal) attributeAi, which we refer to as t[Ai] (t[Ai] ∈ V (Ai)). Note that
if NULL values do exist in the database, the ranking function usually substitutes
it with another default value (e.g., the mean or extreme value of an attribute). In
that case, we simply consider the occurrence of NULL as the substituted value. In
most part of the paper, we make the general positioning assumption [82], before
introducing a simple post-processing step that removes this assumption in § 6.4.

Query Interface: Most client-server database allow users to issue certain “sim-
plistic” search queries. Often these queries are limited to conjunctive ones with
predicates on one or a few attributes. Examples here include web databases, which
usually allows such conjunctive queries to be specified through a form-like web
search interface. Formally, we consider search queries of the form

q: SELECT * FROM D WHERE Ai1 ∈ (vi1 , v
′
i1

) AND · · · AND Aip ∈ (vip , v
′
ip)

AND conjunctive predicates on B1, . . . , Bm′ ,

where {Ai1 , . . . , Aip} ⊆ {A1, . . . , Am} is a subset of ordinal attributes, and
(vij , v

′
ij

) ⊆ V (Aij) is a range within the value domain of Aij .
A subtle issue here is that our definition of q only includes open ranges (x, y),

i.e., x < Ai < y, while real-world client-server databases may offer close ranges
[x, y], i.e., x ≤ Ai ≤ y, or a combination of both (e.g., (x, y]). We note that these
minor variations do not affect the studies in this paper, because it is easy to derive
the answer to q even when only close ranges are allowed by database: One simple
needs to find a value arbitrarily close to the limits, say x + ε and y − ε with an
arbitrarily small ε > 0, and substitute (x, y) with [x+ ε, y − ε]. In the case where

149

the value domains are discrete, substitutions can be made to the closest discrete
value in the domain.

As discussed in § ??, once a client-server database receives query q from a user,
it often limits the number of returned tuples to a small value k. Without causing
ambiguity, we use q to refer to the set of tuples actually returned by q, R(q) to
refer to the the set of tuples matching q (which can be a proper superset of the
returned tuples q when there are more than k returning tuples, and |R(q)| to refer
to the number of tuples matching q. When |R(q)| > k, we say that q overflows
because only k tuples can be returned. Otherwise, if |R(q)| ∈ [1, k], we say that
q returns a valid answer. At the other extreme, we say that q underflows when it
returns empty, i.e., |R(q)| = 0.

System Ranking Function: In most parts of the paper, we make a conservative
assumption that, when |R(q)| > k, the database selects the k returned tuples from
R(q) according to a proprietary system ranking function unbeknown to the query
reranking service. That is, we make no assumption about the system ranking
function whatsoever. In § 6.4, we also consider cases where the database offers
more ranking options, e.g., ORDER BY according to a subset of ordinal attributes.

6.1.2 Problem Definition

The objective of this paper is to enable a third-party query reranking service
which enables a user-specified ranking function for a user-specified query q, when
the query q is supported by the underlying client-server database but the ranking
function is not.

User-Specified Ranking Functions: We allow a user of the query reranking
service to specify a user-specified ranking function S(q, t) which takes as input the
user query q and one or more ordinal attributes (i.e., A1, . . . , Am) of a tuple t, and
outputs the ranking score for t in processing q. The smaller the score S(q, t) is, the
higher ranked t will be in the query answer, i.e., the more likely t is included in
the query answer when R(q) > k. Without causing ambiguity, we also represent
S(q, t) as S(t) when the context (i.e., the user query being processed) is clear.

150

We support a wide variety of user-specified ranking functions with only one
requirement: monotonicity. Given a user query q, a ranking function S(t) is
monotonic if and only if there exists an order of values for each attribute domain,
which we represent as ≺ with v1 ≺ v2 indicating v1 being higher-ranked than v2,
such that there does not exist two possible tuple values t1 and t2 with S(t1) < S(t2)

yet t2[Ai] ≺ t1[Ai] for all i ∈ [1,m].
Intuitively, the definition states that if t1 outranks t2 according to S(·), then

t1 has to outrank t2 on at least one attribute according to the order ≺. In other
words, t1 cannot outrank t2 if it is dominated [4] by t2. Another interesting note
here is that we do not require all user-specified ranking functions to follow the
same attribute-value order≺. For example, one ranking function may prefer higher
prices while the other prefers lower prices. We support both ranking functions so
long as each is monotonic according to its own order of attribute values.

Performance Measure: To enable query reranking, we have to issue a number of
queries to the underlying client-server database. It is important to understand that
the most important efficiency factor here is the total number of queries issued to
the database, not the computational time. The rational behind it is that almost many
client-server databases, e.g., almost all client-server databases, enforce certain
query-rate limit by allowing only a limited number of queries per day from each IP
address, API account, etc.

Problem Definition: In this paper, we consider the problem of query reranking in
a “Get-Next”, i.e., incremental processing, fashion. That is, for a given user query
q, a user-specified ranking function S , and the top-h tuples satisfying q according
to S, we aim to find the No. (h + 1) tuple. When h = 0, this means finding the
top-1 for given q and S. One can see that finding the top-h tuples for q and S can
be easily solved by repeatedly calling the Get-Next function. The reason why we
define the problem in this fashion is to address the real-world scenario where a user
first retrieves the top-h answers and, if still unsatisfied with the returned tuples,
proceeds to ask for the No. (h+ 1). By supporting incremental processing, we can
progressively return top answers while paying only the incremental cost.

151

QUERY RERANKING PROBLEM: Consider a client-server database D
with a top-k interface and an arbitrary, unknown, system ranking function.
Given a user query q, a user-specified monotonic ranking function S , and
the top-h (h ≥ 0 can be greater than, equal to, or smaller than k) tuples
satisfying q according to S, discover the No. (h + 1) tuple for q while
minimizing the number of queries issued to the client-server database D.

6.2 1D-RERANK

We start by considering the simple 1D version of the query reranking problem
which, as discussed in the introduction, can also be surprisingly useful in practice.
Specifically, for a given attribute Ai, a user query q, and the h tuples having the
minimum values of Ai among R(q) (i.e., tuples satisfying q), our goal here is to
find tuple t(q, Ai, h+ 1), which satisfies q and has the (h+ 1)-th smallest value on
Ai among R(q), while minimizing the number of queries issued to the underlying
database.

6.2.1 Baseline Solution and Its Problem

1D-BASELINE
Baseline Design: Since our focus here is to discover t(q, Ai, h + 1) given q, Ai
and h, without causing ambiguity, we use th+1 as a short-hand representation of
t(q, Ai, h+ 1). A baseline solution for finding th+1 is to start with issuing to the
underlying database query q1: SELECT * FROM D WHERE Ai > th[Ai] AND
Sel(q), where Sel(q) represents all selection conditions specified in q. If h = 0,
this query simply becomes SELECT * FROM D WHERE Sel(q).

Note that the answer to q1 must return non-empty, because otherwise it means
there are only h tuples matching q. Let a1 be the one having minimum Ai among
all returned tuples. Given a1, the next query we issue is q2: WHERE Ai ∈
(th[Ai], a1[Ai]) AND Sel(q). In other words, we narrow the search region on Ai to
“push the envelop” and discover any tuple with even “better” Ai than what we have
seen so far.

152

If q2 returns empty, then th+1 = a1. Otherwise, we can construct and issue q3,
q4, . . ., in a similar fashion. More generally, given aj being the tuple with minimum
Ai returned by qj , the next query we issue is qj+1: WHERE Ai ∈ (th[Ai], aj[Ai])

AND Sel(q). We stop when qj+1 returns empty, at which time we conclude
th+1 = aj . Algorithm 14, 1D-BASELINE, depicts the pseudo-code of this baseline
solution.

Leveraging History: An implementation issue worth noting for 1D-BASELINE
is how to leverage the historic query answers we have already received from the
underlying client-server database. This applies not only during the processing of a
user query, but also across the processing of different user queries.

During the process of user query q, for example, we do not have to start with
the range of Ai ∈ (th[Ai],∞) as stated in the basic algorithm design. Instead, if
we have already “seen” tuples in R(q) that have Ai > th[Ai] in the historic query
answers, then we can first identify such a tuple with the minimum Ai, denoted
by t′, and then start the searching process with Ai ∈ (th[Ai], t

′), a much smaller
region that can yield significant query savings, as shown in the query cost analysis
below.

More generally, this exact idea applies across the processing of different user
queries. What we can do is to inspect every tuple we have observed in historic
query answers, identify those that match the user query being processed, and order
these matching tuples according to the attribute Ai under consideration. By doing
so, the more queries we have processed, the more likely we can prune the search
space for th+1 based on historic query answers, and thereby reduce the query cost
for re-ranking.

Negative Result: Lower Bound on Worst-Case Query Cost
While simple, 1D-BASELINE has a major problem on query cost, as it depends

on the correlation between Ai and the system ranking function which we know
nothing about and has no control over. For example, if the system ranking function
is exactly according to Ai, then the query cost of finding th+1 is 2: q1 returns th+1

and q2 returns empty to confirm that th+1 is indeed the “next” tuple. On the other
hand, if the system ranking function is the exact opposite to Ai (i.e., returning

153

Algorithm 14 1D-BASELINE
1: th+1 = argmint[Ai]{t ∈ history | t[Ai] > th[Ai]}
2: T = Top-k(WHERE th+1[Ai] > Ai > th[Ai] AND Sel(q))
3: while T is overflow do
4: th+1 = argmint[Ai]{t ∈ T}
5: T = Top-k(WHERE th+1[Ai] > Ai > th[Ai] AND Sel(q))
6: end while
7: return th+1

tuples with maximalAi first), then the query cost for the baseline solution is exactly
|R(q)|+ 1 in the worst-case scenario (when k = 1), because every tuple satisfying
q will be returned before th+1 is revealed at the end. Granted, this cost can be
“amortized” thanks to the leveraging-history idea discussed above, because the
|R(q)|+ 1 queries indeed reveal not just the top-(h+ 1) but the complete ranking
of all tuples matching q. Nonetheless, the query cost is still prohibitively high
when q matches a large number of tuples.

While it might be tempting to try to “adapt to” such ill-conditioned system
ranking functions, the following theorem actually shows that the problem is not
fixable in the worst-case sense. Specifically, there is a lower bound of n/k on the
query cost required for query reranking given the worst-case data distribution and
worst-case system ranking function.

Theorem 10. ∀n > 1, there exists a database of n tuples such that finding the
top-ranked tuple on an attribute through a top-k search interface requires at least
n/k queries that retrieve all the n tuples.

Proof. Without loss of generality, consider a database with only one attribute A
and an unknown ranking function. Let (v0, v∞) be the domain of A. Note that
this means (1) the query re-ranking algorithm can only issue queries of the form
SELECT * FROM D WHERE A ∈ (v1, v2), where v0 ≤ v1 < v2 ≤ v∞, (2) the
returned tuples will be ranked in an arbitrary order, and (3) the objective of the
query re-ranking algorithm is to find the tuple with the smallest A.

For any given query re-ranking algorithm R, consider the following query
processing mechanism Q for the database: During the processing of all queries,

154

we maintain a min-query-threshold vq with initial value v∞. If a query q issued
byR has lower bound not equal to v0, i.e., q: WHERE A ∈ (v1, v2) with v1 > v0,
Q returns whatever tuples already returned in historic query answers that fall into
range (v1, v2). It also sets vq = min(vq, v1).

Otherwise, if q is of the form WHERE A ∈ (v0, v2) with v2 > v0, then Q
returns an overflowing answer with k tuples. These k tuples include those in the
historic query answers that fall into (v0, v2). If more than k such tuples exist in the
history, we choose an arbitrary size-k subset. If fewer than k such tuples exist, we
fill up the remaining slots with arbitrary values in range ((v0 + vq)/2, vq)

14. We
also set vq to be (v0 + vq)/2.

There are two critical observations here. First is that for any query sequence
q1, . . . , qh with h ≤ n/k, we can always construct a database D of at most n tuples,
such that the query answers generated by Q are consistent with what D produces.
Specifically, D would simply be the union of all tuples returned. Note that our
maintenance of vq ensures the consistency.

The second critical observation is that no query re-ranking algorithm R can
find the tuple with the smallest A without issuing at least n/k queries. The reason
is simple: since n/k − 1 queries cannot reveal all n tuples, we can add a tuple t
with A = (v0 + vq)/2 to the database, where vq is its value after processing all
n/k − 1 queries. One can see that the answers to all n/k − 1 queries can remain
the same. As such, for any n > 1, there exists a database containing n tuples such
that finding the top-ranked one for an attribute requires at least n/k queries, which
according to [36] is sufficient for crawling the entire database in a 1D space.

6.2.2 1D-RERANK

Given the above result, we have to shift our attention to reducing the cost of finding
th+1 in an average-case scenario, e.g., when the tuples are more or less uniformly
distributed on Ai (instead of forming a highly skewed distribution as constructed
in the proof of Theorem 10). To this end, we start this subsection by considering

14Note that any factor here (besides 2) works too. So in general the range can be ((v0+vq) ·α, vq)
so long as α > 0.

155

a binary-search algorithm. After pointing out the deficiency of this algorithm
when facing certain system ranking functions, we introduce our idea of on-the-fly
indexing for the design of 1D-RERANK, our final algorithm for query reranking
with a single-attribute user-specified ranking function.

1D-BINARY and its Problem
The binary search algorithm departs from 1D-BASELINE on the construction

of q2: Given a1, instead of issuing q2: WHERE Ai ∈ (th[Ai], a1[Ai]) AND Sel(q),
we issue here

q′2 : WHERE Ai ∈ (th[Ai], (a1[Ai] + th[Ai])/2) AND Sel(q).

This query has two possible outcomes: If it returns non-empty, we consider the
returned tuple with minimum Ai, say a2, and construct q′3 according to a2. The
other possible outcome is for q′2 to return empty. In this case, we issue q′′2 : WHERE
Ai ∈ [(a1[Ai] + th[Ai])/2, a1[Ai]) AND Sel(q), which has to return non-empty as
otherwise th+1 = a1. In either case, the search space (i.e., the range in which th+1

must reside) is reduced by at least half. Algorithm 15, 1D-BINARY, depicts the
pseudocode.

Algorithm 15 1D-BINARY
1: th+1 = argmint[Ai]{t ∈History | t[Ai] > th[Ai]}
2: repeat
3: q′ = WHERE Ai ∈ (th[Ai], (th+1[Ai] + th[Ai])/2) AND Sel(q)
4: T = Top-k(q′)
5: if T is underflow then
6: q′ = WHERE Ai ∈ [(th+1[Ai] + th[Ai])/2, th+1[Ai]) AND Sel(q)
7: T = Top-k(q′)
8: end if
9: if T is not underflow then

10: th+1 = argmint[Ai]{t ∈ T}
11: end if
12: until T is not overflow
13: return th+1

156

Query Cost Analysis: While the design of 1D-BINARY is simple, the query-cost
analysis of it yields an interesting observation which motivates the indexing-based
design of our final 1D-RERANK algorithm. Let

εk = th+k+1[Ai]− th+1[Ai]. (37)

An important observation here is that the execution of 1D-BINARY must conclude
when the search space is reduced to width smaller than εk, because no such range
can cover th+1[Ai] while matching more than k tuples. Thus, the worst-case query
cost of 1D-BINARY is

O(min(log2(|V (q, Ai)|/εk), |R(q)|/k)), (38)

where |V (q, Ai)| is the range ofAi among tuples satisfying q - i.e., maxt∈R(q) t[Ai]−
mint∈R(q) t[Ai]. Note that the second input to the min function in (38) is because
every pair of queries issued by 1D-BINARY, i.e., q′j and q′′j , must return at least k
tuples never seen before that satisfies q.

The query-cost bound in (38) illustrates both the effectiveness and the potential
problem of Algorithm 1D-BINARY. On one hand, one can see that 1D-BINARY
performs well when the tuples matching q are uniformly distributed on Ai, because
in this case the expected value of εk becomes k · |V (q, Ai)|/|R(q)|, leading to a
query cost of O(log2(|R(q)|/k)).

On the other hand, 1D-BINARY still incurs a high query cost (as bad as
Ω(|R(q)|/k), just as indicated by Theorem 10) when two conditions are satisfied:
(1) the system ranking function is ill-conditioned, i.e., negatively correlated with
Ai, and (2) Within R(q) there are densely clustered tuples with extremely close
values on Ai, leading to a small εk. Unfortunately, once the two conditions are
met, the high query cost 1D-BINARY is likely to be incurred again and again
for different user queries q, leading to an expensive reranking service. It is this
observation which motivates our index-based reranking idea discussed next.

Algorithm 1D-RERANK: On-The-Fly Indexing
Oracle-based Design: According to the above observation, densely clustered

157

tuples cause a high query cost of 1D-BINARY. To address the issue, we start by
considering an ideal scenario where there exists an oracle which identifies these
“dense regions” and reveals the tuple with minimum Ai in these regions without
costing us any query. Of course, no such oracle exists in practice. Nevertheless,
what we shall do here is to analyze the query cost of 1D-BINARY given such an
oracle, and then show how this oracle can be “simulated” with a low-cost on-the-fly
indexing technique.

Specifically, for any given region [x, y] ∈ V (Ai), we call it a dense region
if and only if it covers at least s tuples and y − x < |V (Ai)| · (s/n)/c, where c
and s are parameters. In other words, the density of tuples in [x, y] is more than
c times higher than the uniform distribution (which yields an expected value of
E(y − x) = |V (Ai)| · (s/n)). The setting of c and s is a subtle issue which we
specifically address at the end of this subsection. Given the definition of dense
region, the oracle functions as follows: Upon given a user query q, an attribute Ai,
and a range [x, y] ⊆ V (Ai) as input, the oracle either returns empty if [x, y] is not
dense, or a tuple t which (1) satisfies q, (2) has Ai ∈ [x, y], and (3) features the
smallest Ai among all tuples satisfying (1) and (2).

With the existence of this oracle, we introduce a small yet critical revision to
1D-BINARY, by terminating binary search whenever the width of the search space
becomes narrower than the threshold for dense region, i.e., εk < |V (Ai)| · (s/n)/c.
Then, we call the oracle with the remaining search space as input. Note that doing
so may lead to two possible returns from the oracle:

One is when the region is indeed dense. In this case, the oracle will directly
return us th+1 with zero cost. The other possible outcome is an empty return,
indicating that the region is not really dense, instead containing more than k

(otherwise 1D-BINARY would have already terminated) but fewer than s tuples.
Note that this is not a bad outcome either, because it means that by following the
baseline technique (1D-BASELINE) on the remaining search space, we can always
find th+1 within O(s/k) queries.

Algorithm 16 depicts the pseudocode of 1D-RERANK, the revised algorithm.
The following theorem shows its query cost, which follows directly from the above

158

discussions.

Algorithm 16 1D-RERANK
1: th+1 = argmint[Ai]{t ∈History | t[Ai] > th[Ai]}
2: while (th+1[Ai]− th[Ai]) < |V (Ai)| · (s/n)/c do
3: q′ = WHERE Ai ∈ (th[Ai], (th+1[Ai] + th[Ai])/2) AND Sel(q)
4: T = Top-k(q′)
5: if T is underflow then
6: q′ = WHERE Ai ∈ [(th+1[Ai] + th[Ai])/2, th+1[Ai]) AND Sel(q)
7: T = Top-k(q′)
8: end if
9: if T is not underflow then

10: th+1 = argmint[Ai]{t ∈ T}
11: end if
12: if T is valid then break
13: end while
14: if T is valid then
15: look up th+1 at ORACLE(Ai,(th[Ai], th+1[Ai]),q)
16: end if
17: return th+1

Theorem 11. The query cost of 1D-RERANK, with the presence of the oracle, is
O(log(c · n/s) + s/k).

Proof. The query cost of of 1D-RERANK, with the presence of the oracle, is the
summation of the following costs:
• c1: the query cost of following 1D-BINARY, until the search space becomes

narrower than the dense region threshold,
• c2: the query cost of discovering th+1 in the remaining region, using the oracle.

Following 1D-BINARY takes O(log2(|V (q, Ai)|/εk)) queries. Because εk <
|V (Ai)| · (s/n)/c, c1 is in the order of O(log(c · n/s)). As discussed previously,
if the oracle does not include the remaining region, the region is not dense and
contains fewer than s tuples. Then, following 1D-BASELNE, at most s/k queries
are requires to discover th+1, i.e. c2 is O(s/k). Consequently, the query cost of
1D-RERANK, with the presence of the oracle, is O(log(c · n/s) + s/k).

159

On-The-Fly Indexing: Our idea for simulating the oracle is simple: once 1D-
RERANK decides to call the oracle with a range (x, y), we invoke the 1D-
BASELINE algorithm on SELECT * FROM D WHERE Ai ∈ (x, y) to find
the tuple t with smallest Ai in the range. If t satisfies the user query q being
processed, then we can stop and output t. Otherwise, we call 1D-BASELINE on
WHEREAi ∈ (t[Ai], y) to find the No. 2 tuple, and repeat this process until finding
one that satisfies q. All tuples discovered during the process are then added into
the “dense index” that is maintained throughout the processing of all user queries.

Algorithm 17 depicts the on-the-fly index building process. Note that the index
we maintain is essentially a set of 3-tuples

〈Ai, (x, y), D(Ai, x, y))〉, (39)

where Ai is an attribute, (x, y) is a range in V (Ai) (non-overlapping with other
indexed ranges of Ai), and D(Ai, x, y) contains all (top-ranked) tuples we have
discovered that have Ai ∈ (x, y).

Algorithm 17 ORACLE
1: if ORACLE(Ai,x, y) exists then
2: return argmint[Ai]{t ∈ D(Ai, x, y))| t matches Sel(q)}
3: end if
4: t=1D-BASELINE(WHERE Ai ∈ (x, y))
5: add t to D(Ai, x, y)
6: while t does not satisfy Sel(q) do
7: t=1D-BASELINE(WHERE Ai ∈ (t[Ai], y))
8: add t to D(Ai, x, y)
9: end while

10: return t

Note that this simulation does differ a bit from the ideal oracle. Specifically,
it does not really determine if the region is dense or not. Even if the region is not
dense, this simulated oracle still outputs the correct tuple. What we would like to
note, however, is that this difference has no implication whatsoever on the query
cost of 1D-RERANK. Specifically, what happens here is simply that the on-the-fly

160

indexing process pre-issues the queries 1D-RERANK is supposed to issue when
the oracle returns empty. The overall query cost remains exactly the same.

Another noteworthy design in on-the-fly indexing is the call of 1D-BASELINE
on SELECT * FROM D WHERE Ai ∈ (x, y), a query that does not “inherit” the
selection conditions in the user query q being processed. This might appear like a
waste as 1D-BASELINE could issue fewer queries with a narrower input query.
Nonetheless, we note that rationale here is that a dense region might be covered
by multiple user queries repeatedly. By keeping the index construction generic to
all user queries, we reduce the amortized cost of indexing as the dense index can
make future reranking processes more efficient.

Parameter Settings: To properly set the two parameters for dense index, c and s,
we need to consider not only the query cost derived in Theorem 11, but also the
cost for building the index, which is considered in the following theorem:

Theorem 12. The total query cost incurred by on-the-fly indexing (for processing
all user queries) is at most

n−s−1∑
h=1

c(h) (40)

where c(h) = 1 if there exists j ∈ [h− s, h], such that

t(∗, Ai, j + s+ 1)[Ai]− t(∗, Ai, j)[Ai] <
s · |V (Ai)|

c · n
, (41)

and 0 otherwise. Here t(∗, Ai, j) refers to the j-th ranked tuple according to Ai in
the entire database.

Proof. The discovery of every tuple in the dense region takes at most the amortized
cost of one query. That is because 1D-BASELINE assures the discovery on k
unseen tuples by every non-underflowing query, i.e. every tuple in the dense region
is discovered by one and only one query. Thus the query cost is at most equal to
the number of tuples in the dense regions. Each tuple t is in the dense region with
regard to the dimension Ai, if, sorting the tuples on Ai, we can construct a window

161

containing t, with size less than the dense region threshold, that has at least s tuples.
Suppose t is ranked h-th based on Ai. Equation 41 checks the existence of such
a window around it. The total cost thus, is at most the number of the tuples for
which this equation is true. This is reflected in Equation 40.

One can see from the above theorem and Theorem 11 how c and s impacts
the query cost: the larger c is, the fewer dense regions there will be, leading to a
lower indexing cost. On the other hand, the per-query reranking cost increases at
the log scale with c. Similarly, the larger s is, the fewer dense regions there will
be (because a larger s reduces the variance of tuple density), while the per-query
reranking cost increases linearly with s. Given the different rate of increase for
the per-query reranking cost with c and s, we should set c to be a larger value to
leverage its log-scale effect, while keep s small to maintain an efficient reranking
process.

Specifically, we set c = n and s = k · log n. One can see that the per-query
reranking cost of 1D-RERANK in this case is O(log n). While the indexing cost
depends on the specific data distribution (after all, we are bounded by Theorem 10
in terms of worst-case performance), the large value of c = n makes it extremely
unlikely for the indexing cost to be high. In particular, note that even if the density
surrounding each tuple follows a heavy-tailed scale-free distribution, the setting
of c = n still makes the number of dense regions, therefore the query cost for
indexing, a constant.We shall verify this intuition and perform a comprehensive
test of different parameter settings in the experimental evaluations.

6.3 MD-RERANK

In this section, we consider the generic query reranking problem, i.e., over any
monotonic user-specified ranking function. We start by pointing out the problem
of a seemingly simple solution: implementing a classic top-k query processing
algorithm such as TA [56] by calling 1D-RERANK as a subroutine. The problem
illustrates the necessity of properly leveraging the conjunctive queries supported by
the search interface of the underlying database. To do so, we start with the design

162

t

rank-contour of t

qvy

vx

Figure 67: Illustration of problem with TA over 1D-RERANK

of MD-BASELINE, a baseline technique similar to 1D-BASELINE. Despite of the
similarity, we shall point out a key difference between two cases: MD-BASELINE
requires many more queries because of the more complex shape of what we refer to
as a tuple’s “rank-contour” - i.e., the subspace (e.g., a line in 2D space) containing
all possible tuples that have the same user-defined ranking score as a given tuple
t. To reduce this high query cost, we propose Algorithm MD-BINARY which
features two main ideas, direct domination detection and virtual tuple pruning.
Finally, we integrate the dense-region indexing idea with MD-BINARY to produce
our final MD-RERANK algorithm.

6.3.1 Problem with TA over 1D-RERANK

A seemingly simple solution to solve the generic query reranking problem is to
directly apply a classic top-k query processing algorithm, e.g., the threshold (TA)
algorithm [56], over the Get-Next primitive offered by 1D-RERANK. While we

163

refer readers to [56] for the detailed design of TA, it is easy to see that 1D-RERANK
offers all the data structure required by TA, i.e., a sorted access to each attribute.
Note that the random access requirement does not apply here because, as discussed
in the preliminary section, the search interface returns all attribute values of a tuple
without the need for accessing each attribute separately. Since TA supports all
monotonic ranking functions, this simple combination solves the generic query
reranking problem defined in § 6.1.

While simple, this solution suffers from a major efficiency problem, mainly
because it does not leverage the full power provided by client-server databases.
Note that, by exclusively calling 1D-RERANK as a subroutine, this solution focuses
on just one attribute at a time and does not issue any multi-predicate (conjunctive)
queries supported by the underlying database (unless such predicates are copied
from the user query). The example in Figure 67 illustrates the problem: In the
example, there is a large number of tuples with extreme values on both attributes
(i.e., tuples on the x- and y-axis). Since this TA-based solution focuses on one
attribute at a time, these extreme-value tuples have to be enumerated first even
when the system ranking function completely aligns (e.g., equals) the user-desired
ranking function. In other words, no matter what the system/user ranking function
is, discovering the top-1 reranked tuple requires sifting through at least half of the
database in this example.

On the other hand, one can observe from the figure the power bestowed by the
ability to issue multi-predicate conjunctive queries. As an example, consider the
case where the system ranking function is well-conditioned and returns t as the
result for SELECT * FROM D. Given t, we can compute its rank-contour, i.e.,
the line/curve that passes through all 2D points with user-defined score equal to
S(t), i.e., the score of t. The curve in the figure depicts an example. Given the
rank-contour, we can issue the smallest 2D query encompassing the contour, e.g.,
q in Figure 67, and immediately conclude that t is the No. 1 tuple when q returns t
and nothing else (assuming k > 1). This represents a significant saving from the
query cost of implementing TA over 1D-RERANK.

164

6.3.2 MD-Baseline

Discovery of Top-1
To leverage the power of multi-predicate queries, we start with developing a

baseline algorithm similar to 1D-BASELINE. The algorithm starts with discovering
the top-1 tuple t according to an arbitrary attribute, say A1. Then, we compute the
rank-contour of t (according to the user ranking function, of course), specifically
the values where t’s rank-contour intersects with each dimension, i.e.,

`(Ai) = max{v ∈ V (Ai)|S(t) ≤ S(0, . . . , 0, v, 0, . . . , 0)}. (42)

Figure 68 depicts an example of `(Ai) for the two dimensions, computed according
to t.

We now issue m queries of the form

q1 : A1 < t[A1] & A2 < `(A2) & · · · & Am < `(Am)

q2 : A1 ∈ [t[A1], `(A1)) & A2 < t[A2] & A3 < `(A3) & · · ·
& Am < `(Am)

qm : A1 ∈ [t[A1], `(A1)) & · · · & Am−1 ∈ [t[Am−1,

`(Am−1)) & Am < t[Am] (43)

Again, Figure 68 shows an example of q1 and q2 for the 2D space.
One can see that the union of these m (mutually exclusive) queries covers in

its entirety the region “underneath” the rank-contour of t. Thus, if none of them
overflows, we can safely conclude that the No. 1 tuple must be either t or one of
the tuples returned by one of the m queries. If at least one query overflows and
returns t′ with score S(t′) < S(t), i.e., t′ that ranks higher than t, we restart the
entire process with t = t′.

Otherwise, for each query qi that overflows, we “partition” it further into m+ 1

queries. Let ti be the tuple returned by qi. We compute for each attribute Aj a

165

q1

t
t2 q3

q4
q5

q2

A1

A2

rank-contour
of t

Figure 68: Example of MD-BASELINE

value b(Aj) such that

b(Aj) = min{v ∈ V (Aj)|S(t) ≤
S(ti[A1], . . . , ti[Aj−1], b(Aj), ti[Aj+1], . . . , ti[Am])}. (44)

Intuitively, b(Aj) can be understood as follows: In order for a tuple t′ to outrank t,
the highest-ranked tuple discovered so far, it must either “outperform” b(Aj) on at
least one attribute, i.e., ∃Aj with t′[Aj] < b(Aj), or it must dominate ti. Examples
of b(A1) and b(A2) are shown in Figure 68.

Note that, while any monotonic (user-defined) ranking function yields a unique
solution for b(Aj), the complexity of computing it can vary significantly depending
upon the design of the ranking function. Nonetheless, recall from § 6.1 that
our main efficiency concern is on the query cost of the reranking process rather
than the computational cost for solving b(Aj) locally (which does not incur any
additional query to the underlying database). Furthermore, the most extensively
studied ranking function in the literature, a linear combination of multiple attributes,

166

features a constant-time solver for b(Aj).
Given b(Aj), we are now ready to construct the m+ 1 queries we issue. The

first m queries qi1, . . . , qim cover those tuples outperforming b(A1), . . . , b(Am) on
A1, . . . , Am, respectively; while the last one covers those tuples dominating ti.
Specifically, qij (j ∈ [1,m]) is the AND of qi and

(A1 ≥ b(A1)) AND · · · AND (Aj−1 ≥ b(Aj−1))

AND (Aj < b(Aj)) (45)

The last query is the AND of qi and A1 ≤ ti[A1] AND · · · AND Am ≤ ti[Am], i.e.,
covering the space dominating ti.

Once again, at anytime during the process if a query returns t′ with S(t′) <

S(t), we restart the entire process with t = t′. Otherwise, for each query that
overflows, we “partition” it into m+ 1 queries as described above.

In terms of query cost, recall from § 6.1 our idea of leveraging the query
history by checking if any previously discovered tuples match the query we are
about to issue. Given the idea, each tuple will be retrieved at most once by MD-
BASELINE. Since each tuple we discover triggers at most m+ 1 queries which
are mutually exclusive with each other, one can see that the worst-case query cost
of MD-BASELINE for discovering the top-1 tuple is O(m · n).

Discovery of Top-k
We now discuss how to discover the top-k (k > 1) tuples satisfying a given

query. To start, consider the discovery of No. 2 tuple after finding the top-1 tuple
t1. What we can do is to pick an arbitrary attribute, say A1, and partition the search
space into two parts: A1 < t1[A1] and A1 > t1[A1]. Then, we launch the top-1
discovery algorithm on each subspace. Note that during the discovery, we can
reuse the historic query answers - e.g., by starting from the tuple(s) we have also
retrieved in each subspace that have the smallest S(·). One can see that one of the
two discovered top-1s must be the actual No. 2 tuple t2 of the entire space.

Once t2 is discovered, in order to discover the No. 3 tuple, we only need to
further split the subspace from which we just discovered t2 (into two parts). For

167

example, if we discovered t2 from A1 > t1[A1], then we can split it again into
A1 ∈ (t1[A1], t2[A1]) and A2 > t2[A1]. One can see that the No. 3 tuple must be
either the top-1 of one of the two parts or the top-1 of A1 < t1[A1], which we
have already discovered. As such, the discovery of each tuple in top-k, say No. h,
requires launching the top-1 discovery algorithm exactly twice, over the two newly
split subspaces of the subspace from which the No. h − 1 tuple was discovered.
Thus, the worst-case query cost for MD-BASELINE to discover all top-k tuples is
O(m · n · k).

6.3.3 MD-Binary

Problem of MD-Baseline
A main problem of MD-Baseline is its poor performance when the system

ranking function is negatively correlated to the user-desired ranking function.
To understand why, consider how MD-Baseline compared with the 1D-Baseline
algorithm discussed in § 6.2. Both algorithms are iterative in nature; and the
objectives for each iteration are almost identical in both algorithms: once a tuple t
is discovered, find another tuple t′ that outranks it according to the input ranking
function. The difference, however, is that while it is easy to construct in 1D-
Baseline a query that covers only those tuples which outranks t (for the attribute
under consideration), doing so in the MD case is impossible.

The reason for this difference is straightforward: observe from Figure 69 that,
when there are more than one, say two, attributes, the subspace of tuples outranking
t is roughly “triangular” in shape. On the other hand, only “rectangular” queries
are supported by the database. This forces us to issue at least m queries to “cover”
the subspace outranking t (without covering, and returning, t itself).

The problem for this “coverage” strategy in MD-Baseline, however, is that the
rectangular queries it issues may match many tuples that indeed rank lower (i.e.,
have larger S(·))) than t according to the desired ranking function. For example,
half of the space covered by q2 in Figure 69 is occupied by tuples that rank lower
than t. This means that, when the system ranking function is negatively correlated
with our desired one, queries like q2 in Figure 69 are most likely going to return

168

q1
q2

t

t’rank-contour
of t

Figure 69: Illustration of problem with MD-Baseline

tuples that rank lower than t. This outcome has two important ramifications on
the efficiency of MD-Baseline: First, it significantly slows down the process of
iteratively finding a tuple that outranks the previous one. Second, within each
iteration, it slows down the pruning of the search space. For example, observe from
Figure 69 that, after q2 returns t′, the pruning effect on the space covered by q2 is
minimal, i.e., only the dark subspace on the top-right corner of q2.

Design of MD-Binary
We propose two ideas in MD-Binary to address the two ramifications of MD-

Baseline, respectively:

Direct Domination Detection: The intuition of this idea can be stated as follows:
When a query such as q2 returns a tuple t′ that ranks lower than t, we attempt to
“test” whether this is indeed caused by the absence of higher-ranked tuples in q2, or
by the ill-conditioned nature of the system ranking function. As discussed above,
there is no way to efficiently cover the subspace of tuples outranking t. Thus, what

169

we do here is to find the single query which (1) is a subquery of q2, (2) only covers
the subspace outranking t, and (3) has the maximum volume among all queries
that satisfy (1) and (2).

t

t’

q3

v’

q4

q5

rank-contour
of t

Figure 70: Design of MD-Binary: Example 1

For example, when q2 in Figure 69 returns t′, we issue q3 (marked in green)
in Figure 70 which covers roughly half of the “triangular” subspace underneath
the rank-contour of t in q2. As another example, if q1 in Figure 68 returns a tuple
with lower rank than t, then we the max-volume tuple would be q7 in Figure 71,
which covers almost all of the subspace outranking t in q1. One can see from these
examples that, if the returning of t′ is caused by the ill-conditioned system ranking
function while there are abundant tuples outranking t, then q3 and/or q7 are likely
to return such a tuple and successfully push MD-Binary to the next iteration. If,
on the other hand, q3 returns empty, we use the next idea to further partition q2, in
order to determine whether there is any tuple in it that outranks t.

Virtual Tuple Pruning: We now address the second problem of MD-Baseline, i.e.,

170

the lack of pruning power when the system ranking function is negatively correlated
with the desired one. To this end, our idea is to prune the search space according to
not the returned tuple, but a virtual tuple created for the purpose of minimizing the
pruned subspace. Figure 70 illustrates an example: Instead of partitioning q2 with
t′ like in Figure 69 which results in minimal pruning, we “create” a virtual tuple v′

which maximizes the reduction of search space as marked in gray in Figure 70.

q7

t

t’

v’

q4

q5

q6

rank-contour
of t

Figure 71: Design of MD-Binary: Example 2

Figure 70 represents one possible outcome of virtual tuple pruning, when v′

happens to dominate the tuple t′ returned by q2. The other possible outcome is
depicted in Figure 71, where v′ does not dominate t′. In this case, if we still split
q2 as in Figure 70, then one of the subspace (i.e., x ∈ (t[x], v′[x]) AND y < t[y])
would return t′, making the query answer useless. As such, we split q2 into three
pieces in this scenario, as shown in Figure 71.

The more general design of virtual tuple pruning for an m-D database is shown
in Algorithm 18. The algorithm also depicts the direct domination detection idea.

171

Note from the algorithm that, depending on the values of t′ and v′ on the m
attributes, the number of split subspaces can range from m, when v′ dominates t′,
to 2m− 1, when t′ dominates v′ on all but one attribute.

Algorithm 18 MD-BINARY
1: apply 1D-RERANK on A1 to t and set threshold=s(t)
2: add the queries in Equation 43 to the empty queue
3: while queue is not empty do
4: q′=queue.delete
5: T = Top-k(q′);t = argmins(t){t ∈ T}
6: if s(t) <threshold then
7: threshold=s(t);
8: goto Line 2
9: end if

10: if T is valid then continue
11: v′ = argmaxvol(v){v ∈ contour(t)}
12: T = Top-k(∀A ∈ A, A ≤ v′[A])
13: if T is not underflow then
14: t=argmins(t){t ∈ T}
15: threshold=s(t)
16: goto Line 2
17: end if
18: for ∀Ai ∈ A do
19: if t[Ai] ≥ v′[Ai] add the following query to the queue

q1 : q′ AND Ai < v′[Ai] AND {∀i−1j=1Aj >= v′[Aj]}

20: else add the following queries to the queue

q1 : q′ AND Ai < t[Ai] AND {∀i−1j=1Aj >= v′[Aj]}
q2 : q′ AND Ai < v′[Ai] AND Ai+1 < bt(Ai+1) AND {∀i−1j=1Aj >= v′[Aj]}

21: end for
22: end while
23: return t

One can see from the design that virtual tuple pruning does not affect the

172

correctness of the algorithm: so long as S(v′) ≥ S(t), the union of the split
subspaces still cover q2. On the other hand, the benefit of the idea can be readily
observed from Figure 70: instead of having only a small reduction of the search
space like in Figure 69, now we can prune half of the space in q2 that rank below
t (in this 2D case, of course). The experimental results in § 6.5 demonstrate the
effectiveness of virtual tuple pruning.

6.3.4 MD-RERANK

Just like the 1D case, the query cost of MD-Binary may increase significantly when
there is a dense cluster of tuples right above the rank-contour of the top-1 tuple. In
this case, the split in MD-Binary may have to continue for a large number of times
before all tuples in the cluster are excluded from the search space. Once again,
our solution to this problem is index-based reranking. Like in the 1D case, we
proactively record as an index densely located tuples once we encounter them, so
that we do not need to incur a high query cost every time a query q triggers visits
to the same dense region.

More specifically, MD-RERANK follows MD-Binary until a remaining search
space (1) is covered by an already crawled region in the index; or (2) has volume
smaller than |V | · (s/n)/c, where |V | is the volume of the entire data space, and s
and c are the same as in 1D. In the earlier case, since the search space has been
crawled already, we can directly reuse the crawled tuples. In the latter case, we
follow the same procedure as in 1D-RERANK, i.e., we crawl the space and, if it
indeed turns out to be dense (by containing at least s tuples), we include the crawled
tuples into the index. Algorithm 19 depicts the pseduocode of MD-RERANK.

6.4 discussions

General Positioning Assumption: In previous discussions, we made the general
positioning assumption, i.e., each tuple has a unique value on each attribute, for the
simplicity of discussions. We now consider the removal of this assumption. Note
that the removal of this assumption for MD-RERANK is extremely simple: the only

173

Algorithm 19 MD-RERANK
1: follow MD-BINARY
2: while processing query q′ do
3: if V (q′) < |V | · (s/n)/c then
4: q′ = remove Sel(q)} from q′
5: if ORACLE(q′) exists then
6: return argmins(t){t ∈ D(q′))| t matches Sel(q)}
7: end if
8: t=MD-BASELINE(q′)
9: add t to temp

10: while t does not satisfy Sel(q) do
11: t1 = MD-BASELINE(q′ AND A1 < t[A1])
12: t2 = MD-BASELINE(q′ AND A1 > t[A1])
13: t=min(t1 , t2)
14: add t1 and t2 to temp
15: end while
16: add temp to D(q′)
17: end if
18: end while

tuple(s) that can be missed by MD-RERANK are those that have the exact same
value on every single attribute. Thus, the only post-processing step required for
removing the assumption is to form a fully specified query according to No. h tuple
just discovered. If more than one, say i, tuples are returned, they become the No. h
to No. (h+ i− 1) top-ranked tuples. Removing the assumption for 1D-RERANK
is slightly more complex. For example, if we are running it over attribute A1, the
removal of the general positioning assumption means query SELECT * FROM
D WHERE A1 = t[A1] might overflow. In this case, our solution is to call the
crawling algorithm [36] to discover, one at a time, tuples satisfying A1 = t[A1], as
all of these tuples have the same rank for the purpose of 1D-RERANK.

Multiple/Known System Ranking Functions: Another interesting issue aris-
ing in practice is when the client-server database offers more than one ranking
functions, often times allowing ranking over a specific attribute. For example,
Amazon.com offers not only a proprietary rank by “popularity”, the design of
which is unknown, but also ranking by price, which is an attribute usually involved

174

in the user-specified ranking function. An interesting implication of such a “public”
ranking function is that it might boost the performance of the TA-1D algorithm
discussed in the beginning of § 6.3. Specifically, since now TA can simply use the
public ranking function on the attribute instead of calling 1D-RERANK, it may
have a even lower query cost than MD-RERANK when the user-desired ranking
function aligns well with the system one.

Point Predicates: In this paper, we focused on cases where attributes involved
in the ranking function are numeric attributes that support range queries. While
this is often the case in practice (as evidenced in real-world websites such as the
aforementioned Blue Nile where all attributes such as price, carat, clarity, etc., are
available as range predicates), there are also cases where a ranking attribute with
only a small number of domain values can only be specified as a point predicate
(i.e., of the form Ai = v) in the database search interface. For 1D-RERANK, this
is often a blessing because it simplifies the task to querying the attribute values in
the preference order (plus the crawling-based provision as in the discussion for
the general positioning assumption). On the other hand, it makes MD-RERANK
much more costly, because now a conjunctive query covers a much smaller space
than the range case. Thus, an intuition here is to prefer the TA-1D algorithm over
MD-RERANK when a large number of attributes are searchable as point predicates
only. Due to space limitations, we leave a comprehensive study of this issue to
future work.

6.5 Experimental Evaluation

6.5.1 Experimental Setup

In this section, we present our experimental results over a number of several real-
world datasets, offline and online. We started with the offline case by testing
over a real-world dataset we have already collected. Specifically, we constructed
a top-k web search interface over it, and then executed our algorithms through
the interface. This offline setting enabled us to not only verify the correctness
of our algorithms, but also investigate how the performance of query reranking

175

changes with various factors such as the database size, the system ranking function,
settings of the system search interface, etc. We followed the offline tests with
online, live, experiments over two real-world web databases, including the largest
online diamond retailer and a popular auto search website. In all these experiments,
we applied the extensions described in § 6.4 to resolve the general positioning
assumption which may not hold in practice.
Offline Dataset: We used the flight on-time dataset published by the US Depart-
ment of Transportation (DOT)15. A wide range of third-party websites use this
dataset to identify on-time performance of flights, routes, airports, airlines, etc.
It consists of 457,013 flight records of 14 US carriers during the month of May
2015. It has 28 attributes, out of which we selected the following 8 attributes
for ranking: Dep-Delay, Taxi-Out, Taxi-In, Arr-Delay-New, CRS-Elapsed-Time,
Actual-Elapsed-Time, Air-Time, and Distance. The domain sizes are 1988, 180, 180,
1971, 718, 724, 676, and 5000, respectively. For the purpose of the experiments,
we considered two system ranking functions: 0.3 AIR-TIME + TAXI-IN (SR1) and
-0.1 DISTANCE - DEP-DELAY (SR2). In general, SR1 has a positive correlation
with the user-specified ranking functions we tested, while SR2 has a negative one.
We set SR1 as the default ranking function in the experiments. The value of k
offered by the database is set to 10 by default.
Online Experiments: We conducted live experiments over two real-world web-
sites: Blue Nile (BN) and Yahoo! Autos (YA).
Blue Nile16 is the largest diamonds online retailer in the world. At the time of
our experiments, its catalog had 117,641 diamonds. We considered Carat, Depth,
LengthWidthRatio, Price, and Table as the ranking attributes, and Clarity, Color,
Cut, Fluorescence, Polish, Shape, and Symmetry for filtering. The domains for the
ranking attributes are [0.23,22.74], [0.45,0.86], [0.49,0.89], [$220,$4506938] and
[0.75,2.75], respectively. BN allows multiple ranking functions - ordering based
on each attributes individually as well as by the derived attribute price-per-carat.

15downloaded from http://www.transtats.bts.gov/DL_SelectFields.asp?
Table_ID=236&DB_Short_Name=On-Time

16http://www.bluenile.com/diamond-search

176

http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
http://www.bluenile.com/diamond-search

Yahoo! Autos is a popular website for buying used cars17. We considered the 13,169
cars listed for sale within 30 miles of New York city. We treated Price, Milage and
Year as the ranking attributes, and BodyStyle, DriveType, Transmission, Name and
Model as the filtering attributes. The cars had a price range between $0 and $50,000,
mileage between 0 and 300,000, and were manufactured between 1993 and 2016.
The default ranking function is “distance from a predefined location” (which is not
monotonic). Additionally, it supports ranking by each of the numerical attributes
individually.
Performance Measures: As explained in § 6.1, our algorithms always return the
precise query answer. After verifying the correctness in all offline experiments, we
turn our attention to the key performance measure, efficiency, which is measured
by the number of queries issued to the web database.

2 4 6 8 10

x 10
4

1

2

3

4

5

6

7

8

Number of Tuples

Q
ue

ry
 C

os
t

1D−BASELINE
1D−BINARY
1D−RERANK

Figure 72: 1D: Impact of n (SR1)

2 4 6 8 10

x 10
4

0

5

10

15

20

25

Number of Tuples

Q
ue

ry
 C

os
t

1D−BASELINE
1D−BINARY
1D−RERANK

Figure 73: 1D: Impact of n (SR2)

6.5.2 1D Experiments

Constructing Workload of User Preference Queries: We tested a diverse set of
user-specified queries of the form SELECT * FROM D WHERE Sel(q) ORDER
BY Ai. Specifically, we randomly selected different subsets of filtering attributes
for the WHERE clause, while choosing the (1D) ranking attribute uniformly at

17https://autos.yahoo.com/used-cars/

177

https://autos.yahoo.com/used-cars/

2 4 6 8 10
0

5

10

15

20

25

Top−k

Q
ue

ry
 C

os
t

system−k=1
system−k=4
system−k=7
system−k=10

Figure 74: 1D: Impact of System-k

10 klog(n) klog^2(n) klog^3(n) n n^2
2.5

3

3.5

4

4.5

s (c) values

Q
ue

ry
 C

os
t

varying c, s=n
varying s, c=k*log(n)

Figure 75: 1D: Impact of s and c

random. This approach has a number of appealing properties. First, it covers
diverse cases that include ideal, worst-case and typical scenarios. Second, since
1D-RERANK uses on-the-fly indexing to amortize the cost between different user-
issued queries, our diverse query workload simulates a real-world scenario where
the service is used by multiple users. For each experimental configuration, we
execute each of the queries and report the average query cost. Specifically, for the
DOT dataset, we constructed 32 queries of which 25% do not have any filtering
condition. For BN, we constructed a set of 20 queries, of which 4 have no filtering
conditions, while these values are 15 and 2 for YA, respectively.

Experiments over the Real-world Dataset
Impact of Database Size and System Ranking Function: We started by testing the
impact of database size on our algorithms for the two system ranking functions
SR1 and SR2. To test databases of varying sizes, we drew 10 simple random
samples of a given size from the DOT dataset, and measured the average query
cost for the entire workload over these 10 small databases. Figures 72 and 73
show the average query cost for retrieving the top-1 tuple over SR1 and SR2,
respectively. As expected, the database size has negligible impact on the query cost.
Also note from the figures that, consistent with our theoretical analysis, Algorithm
1D-RERANK outperformed both 1D-BASELINE and 1D-BINARY significantly.
One can also note that the change in system ranking function has a major impact

178

on the performance comparison between 1D-BASELINE and 1D-BINARY, yet has
a negligible impact on that of 1D-RERANK, again consistent with our theoretical
discussions.

2 4 6 8 10

x 10
4

0

1

2

3

4

5

Number of Tuples

Q
ue

ry
 C

os
t

genral to special
random
special to general

Figure 76: 1D: Impact of Query order
in 1D-RERANK

20 40 60 80 100
5

10

15

20

25

30

35

Top−k

Q
ue

ry
 C

os
t

1D−BASELINE
1D−BINARY
1D−RERANK

Figure 77: 1D: Topk Query Cost (BN)

20 40 60 80 100

5

10

15

20

25

30

35

40

45

50

55

Top−k

Q
ue

ry
 C

os
t

1D−BASELINE
1D−BINARY
1D−RERANK

Figure 78: 1D: Topk Query Cost (YA)

2 4 6 8 10

x 10
4

2

4

6

8

10

12

14

Number of Tuples

Q
ue

ry
 C

os
t

TA over 1D−RERANK
MD−BASELINE
MD−BINARY
MD−RERANK

Figure 79: MD: Impact of n (SR1)

Impact of Value of k: Figure 74 shows the average (accumulative) query cost for
retrieving top-1 to top-10 tuples when the system k varies from 1 to 10. There
are two key observations from the figure: First, our query cost increases (about)
linearly with the number of desired top answers, demonstrating its scalability to a

179

2 4 6 8 10

x 10
4

10

15

20

25

30

35

Number of Tuples

Q
ue

ry
 C

os
t

TA over 1D−RERANK
MD−BASELINE
MD−BINARY
MD−RERANK

Figure 80: MD: Impact of n (SR2)

2 4 6 8 10
0

5

10

15

20

Top−k

Q
ue

ry
 C

os
t

system−k=1
system−k=4
system−k=7
system−k=10

Figure 81: MD: Impact of System-k

20 40 60 80 100
0

10

20

30

40

50

Top−k

Q
ue

ry
 C

os
t

MD−RERANK
TA over 1D−RERANK

Figure 82: MD: Topk Query Cost (BN)

20 40 60 80 100
0

5

10

15

20

25

30

35

40

Top−k

Q
ue

ry
 C

os
t

MD−RERANK
TA over 1D−RERANK

Figure 83: MD: Topk Query Cost (YA)

large desired answer size. Second, the query cost ,as expected, decreases when the
system offers a larger k.
Impact of 1D-RERANK parameters s and c: Recall from § 6.1 that the performance
of 1D-RERANK can be parameterized by s and c. We conducted two experiments
to empirically verify the impact. In the first experiment, we fixed the value of s to n
and varied c between 10 and n2. In the other one, we fixed the value of c to k log2 n

and varied the value of s from 10 to n2. Figure 75 shows the average query cost
for both settings. As our theoretical results suggest, setting c = k log2 n and s = n

resulted in the (almost) optimal performance. One can see that further reducing c

180

or increasing s does not have much affect on query cost, yet significantly increases
the index size.
Impact of Query Order on 1D-RERANK: Recall that 1D-RERANK constructs the
index on the fly. As such, when queries are issued in different order, the index
being maintained may differ. To test whether the order of user queries have a major
effect on the performance of 1D-RERANK, we ran an experiment using SR1 with
three query-issuing orders: (1) from low to high selectivity (i.e., from more general
to narrower queries), (2) from high to low selectivity, and (3) in a random order.
Figure 76 shows that the query issuance order has a negligible effect on the query
cost of 1D-RERANK.

Online Experiments
We also conducted two live experiments over Blue Nile and Yahoo! Autos,

aiming to retrieve the top-100 tuples for each of the user query in the workload.
The default system-k for BN and YA are 30 and 15, respectively, with the system
ranking function being the default for each website, i.e., descending value of price
per carat for BN and distance from the pre-defined location for YA. Figures 77
and 78 show the average query cost for retrieving top-h tuples. As expected,
1D-RERANK significantly outperforms the other algorithms for both websites.
For BN, while 1D-BINARY performed well in the beginning, it required higher
query cost for large values of h. That is because the binary search approach keeps
dividing the search area in half until the issued query underflows, thus it is likely
to end up with an underflowing query that contains fewer tuples, leading to less
saving in the query cost. For YA, note that 1D-BINARY does not benefit much
from the savings and is hence outperformed by 1D-BASELINE.

6.5.3 MD Experiments

In this subsection, we compare the performance of MD-RERANK against three
baseline methods: the aforementioned “TA over 1D-RERANK”, as well as MD-
BASELINE and MD-BINARY. Once against, we tested both offline and online
settings.
Constructing Workload of User Preference Queries: The workload is con-

181

structed using a process similar to one described in § 6.5.2. However, the ranking
functions are constructed by selecting a subset from the set of all ranking attributes
and choosing different weights between 0 and 1 for each of them. The workload
consists of 32, 12 and 10 queries for DOT, BN and YA, respectively, of which 8, 3
and 2 do not have any filtering conditions.

Experiments over the Real-world Dataset
Impact of Database Size and System Ranking Function: The experimental setup
was similar to the 1D experiments in § 6.5.2. We evaluated our algorithms for
different database sizes and system ranking functions SR1 and SR2. Figures 79
and 80 shows the results for SR1 and SR2 respectively. In both cases, the algorithm
MD-RERANK significantly outperformed all three competing baselines. One
may notice an increase in the query cost of the algorithms when n increases in
Figures 80, and a decrease in Figures 79. That is because when system and
user-specified ranking function are anti-correlated, the more tuples database has,
the more queries are required to find top tuples for the user-specified ranking
function (since more tuples are ranked higher than them based on SR2). The case
is vice-verse for SR1.
Impact of System-k: We then varied k, the number of tuples returned by the web
database and measured the average query cost to retrieve top-10 tuples for the query
workload. Figure 81 shows the results. As expected, higher values of system-k
required lesser query cost to obtain the top-10 tuples. When k = 1, our algorithms
were not able to use the savings by valid queries resulting in a substantial query
cost.

Online Experiments
We applied MD-RERANK, as well as TA over 1D-RERANK, to retrieve the

top-100 tuples for each query in the workload. Figure 82 shows the average query
cost for the BN experiment. As shown in the figure, MD-RERANK outperformed
TA significantly. The results for YA experiment is reflected in Figure 83. The
substantial difference in query cost of the algorithms can be explained by the
observation by the negative correlation between the ranking tuples in YA queries
(for example the cars with higher mileage are probably cheaper). Hence TA

182

algorithm had to issue many GetNext operations before it finds the top tuples.

6.6 Related Work

Top-k discovery methods can get divided in three main categories: (sorted/random)
access-based methods, layering-based approaches, and view-based techniques.
The first series of algorithms take the advantage of the data access methods. For
example, NRA [56] assumes the existence of one sorted list of tuples for each
attribute, and finds the Top-k only by exploring the lists, while TA [56] applies
both random and sorted access. The more advanced algorithms in this category
are CA [56], Upper/Pick [78], and [79]. The next category is the set of algorithms,
such as ONION [60] and [61], that pre-process the data and index the layers of
extremum tuples that gaurantee including the Top-k. View-based methods such
as PREFER [58] and LPTA [59], employ the materialized views to increase the
efficiency of Top-k discovery process. While prior work focused on minimizing
the storage overhead of indices/materialized views and the computational overhead
of processing top-k queries, we have to focus on minimizing the number of queries
issued to the underlying database. This fundamentally different data access model
also leads to a different cost model. For example, many prior work, such as [56]
and [83], assume a separate cost for accessing each attribute and/or evaluating
each predicate in the top-k query, while in our problem all attributes of a tuple are
returned at once.
Hidden Databases Most of the prior works on the hidden databases relate to
sampling, crawling the database, and aggregate estimation. Prior works such
as [42,45] propose efficient algorithms for collecting unbiased low-variance random
samples of a given hidden databasee and [84, 85] provide unbiased aggregate
estimators. While [36,39,40] aim toward crawling the whole hidden database, [86]
only crawls the maxima index.
Top-k queries over Hidden Databases As the best of our knowledge, this is the
first paper on reranking the query results of a hidden database. The only prior
work about Top-k in hidden databases is [87]. Assuming the full knowledge of the
system ranking function and attribute domains, its goal is to go beyond the Top-k

183

limitation of the database interface, by partitioning the query space.

6.7 Final Remarks

In this paper, we introduced a novel problem of query reranking, a third-party
service that takes a client-server database with a proprietary ranking function
and enables query processing according to any user-specified ranking function.
To enable query reranking while minimizing the number of queries issued to
the underlying database, we develop 1D-RERANK and MD-RERANK for user-
specified ranking functions that involve only one attribute and any arbitrary set of
attributes, respectively. Theoretic analysis and extensive experimental results on
real-world databases, in offline and online settings, demonstrate the effectiveness
of our techniques and their superiority over baseline solutions.

184

7 Publications Relevant to the Dissertation

1. Abolfazl Asudeh, Azade Nazi, Nan Zhang, and Gautam Das. Efficient Compu-
tation of Regret-ratio Minimizing Set: A Compact Maxima Representative, in
SIGMOD 2017.

2. Abolfazl Asudeh, Nan Zhang, and Gautam Das. Query Reranking As A Service,
in PVLDB 2016, Vol. 9.

3. Abolfazl Asudeh, Saravanan Thirumuruganathan, Nan Zhang, and Gautam Das.
Discovering the Skyline of Web Databases, in PVLDB 2016, Vol. 9.

4. Abolfazl Asudeh, Gensheng Zhang, Naeemul Hassan, Chengkai Li, and Gergely
V. Záruba, Crowdsourcing Pareto-Optimal Object Finding by Pairwise Compar-
isons, in CIKM 2015.

185

References

[1] S. Borzsony, D. Kossmann, and K. Stocker, “The skyline operator,” in ICDE,
2001.

[2] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee, “Comparing
and aggregating rankings with ties,” in PODS, 2004.

[3] W. Kießling, “Foundations of preferences in database systems,” in VLDB,
2002, pp. 311–322.

[4] J. Chomicki, “Preference formulas in relational queries,” TODS, vol. 28, no. 4,
2003.

[5] D. Sacharidis, S. Papadopoulos, and D. Papadias, “Topologically sorted
skylines for partially ordered domains,” in ICDE, 2009.

[6] C.-Y. Chan, P.-K. Eng, and K.-L. Tan, “Stratified computation of skylines
with partially-ordered domains,” in SIGMOD, 2005.

[7] N. Sarkas, G. Das, N. Koudas, and A. K. Tung, “Categorical skylines for
streaming data,” in SIGMOD, 2008, pp. 239–250.

[8] S. Zhang, N. Mamoulis, D. W. Cheung, and B. Kao, “Efficient skyline
evaluation over partially ordered domains,” in VLDB, 2010.

[9] C. Lofi, K. El Maarry, and W.-T. Balke, “Skyline queries in crowd-enabled
databases,” in EDBT, 2013, pp. 465–476.

[10] L. L. Thurstone, “A law of comparative judgment,” Psychological Review,
vol. 34, pp. 273–286, 1927.

[11] P. G. Ipeirotis, F. Provost, and J. Wang, “Quality management on amazon
mechanical turk,” in HCOMP, 2010, pp. 64–67.

[12] “Technical Report. Details omitted for double-blind reviewing. Anonymized
version can be made available upon the request of the program committee.”

186

[13] M. E. Rorvig, “The simple scalability of documents,” Journal of the American
Society for Information Science, vol. 41, no. 8, pp. 590–598, 1990.

[14] B. Carterette, P. N. Bennett, D. M. Chickering, and S. T. Dumais, “Here or
there: Preference judgments for relevance,” in ECIR, 2008.

[15] X. Chen, P. N. Bennett, K. Collins-Thompson, and E. Horvitz, “Pairwise
ranking aggregation in a crowdsourced setting,” in WSDM, 2013, pp. 193–
202.

[16] V. Polychronopoulos, L. de Alfaro, J. Davis, H. Garcia-Molina, and
N. Polyzotis, “Human-powered top-k lists,” in WebDB, 2013.

[17] S. B. Davidson, S. Khanna, T. Milo, and S. Roy, “Using the crowd for top-k
and group-by queries,” in ICDT, 2013, pp. 225–236.

[18] K. J. Arrow, Social choice and individual values. Yale University Press,
1951.

[19] N. N. Liu, M. Zhao, and Q. Yang, “Probabilistic latent preference analysis
for collaborative filtering,” in CIKM, 2009, pp. 759–766.

[20] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “BPR:
Bayesian personalized ranking from implicit feedback,” in UAI, 2009, pp.
452–461.

[21] J. Yi, R. Jin, S. Jain, and A. K. Jain, “Inferring users’ preferences from
crowdsourced pairwise comparisons: A matrix completion approach,” in
HCOMP, 2013.

[22] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collaborative
filtering to weave an information tapestry,” CACM, vol. 35, no. 12, pp. 61–70,
1992.

[23] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and
G. Hullender, “Learning to rank using gradient descent,” in ICML, 2005, pp.
89–96.

187

[24] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon, “Adapting ranking
SVM to document retrieval,” in SIGIR, 2006, pp. 186–193.

[25] C. J. C. Burges, R. Ragno, and Q. V. Le, “Learning to Rank with Nonsmooth
Cost Functions,” in NIPS, 2006, pp. 193–200.

[26] T.-Y. Liu, “Learning to rank for information retrieval,” Foundations and
Trends in Information Retrieval, vol. 3, no. 3, pp. 225–331, Mar. 2009.

[27] M. Braverman and E. Mossel, “Noisy sorting without resampling,” in SODA,
2008, pp. 268–276.

[28] K. G. Jamieson and R. D. Nowak, “Active ranking using pairwise
comparisons,” in NIPS, 2011, pp. 2240–2248.

[29] N. Ailon, “Active learning ranking from pairwise preferences with almost
optimal query complexity,” in NIPS, 2011, pp. 810–818.

[30] S. Negahban, S. Oh, and D. Shah, “Iterative ranking from pair-wise
comparisons,” in NIPS, 2012, pp. 2483–2491.

[31] K.-L. Tan, P.-K. Eng, B. C. Ooi, et al., “Efficient progressive skyline
computation,” in VLDB, 2001.

[32] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with presorting,” in
ICDE, 2003.

[33] D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky: An online
algorithm for skyline queries,” in VLDB, 2002.

[34] W.-T. Balke, U. Güntzer, and J. X. Zheng, “Efficient distributed skylining for
web information systems,” in EDBT, 2004.

[35] E. Lo, K. Y. Yip, K.-I. Lin, and D. W. Cheung, “Progressive skylining over
web-accessible databases,” Data & Knowledge Engineering, 2006.

188

[36] C. Sheng, N. Zhang, Y. Tao, and X. Jin, “Optimal algorithms for crawling a
hidden database in the web,” VLDB, 2012.

[37] B. Arai, G. Das, D. Gunopulos, and N. Koudas, “Anytime measures for top-k
algorithms,” in VLDB, 2007.

[38] C. Buchta, “On the average number of maxima in a set of vectors,”
Information Processing Letters, vol. 33, no. 2, 1989.

[39] S. Raghavan and H. Garcia-Molina, “Crawling the hidden web,” VLDB, 2000.

[40] J. Madhavan, D. Ko, Ł. Kot, V. Ganapathy, A. Rasmussen, and A. Halevy,
“Google’s deep web crawl,” VLDB, 2008.

[41] A. Dasgupta, N. Zhang, and G. Das, “Turbo-charging hidden database
samplers with overflowing queries and skew reduction,” in EDBT, 2013.

[42] A. Dasgupta, G. Das, and H. Mannila, “A random walk approach to sampling
hidden databases,” in SIGMOD, 2007.

[43] A. Dasgupta, N. Zhang, and G. Das, “Leveraging count information in
sampling hidden databases,” in ICDE, 2009.

[44] T. Liu, F. Wang, and G. Agrawal, “Stratified sampling for data mining on the
deep web,” Frontiers of Computer Science, vol. 6, no. 2, pp. 179–196, 2012.

[45] F. Wang and G. Agrawal, “Effective and efficient sampling methods for deep
web aggregation queries,” in EDBT, 2011.

[46] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progressive
algorithm for skyline queries,” in SIGMOD, 2003.

[47] X. Lin, Y. Yuan, W. Wang, and H. Lu, “Stabbing the sky: Efficient skyline
computation over sliding windows,” in ICDE, 2005.

[48] A. Asudeh, G. Zhang, N. Hassan, C. Li, and G. Zaruba, “Crowdsourcing
pareto-optimal object finding by pairwise comparisons,” ser. CIKM, 2015.

189

[49] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic skylines on uncertain
data,” in VLDB, 2007.

[50] N. Zhang, C. Li, N. Hassan, S. Rajasekaran, and G. Das, “On skyline groups,”
TKDE, vol. 26, no. 4, 2014.

[51] Z. Gong, G.-Z. Sun, J. Yuan, and Y. Zhong, “Efficient top-k query algorithms
using k-skyband partition,” in Scalable Information Systems. Springer, 2009.

[52] I. F. Ilyas, G. Beskales, and M. A. Soliman, “A survey of top-k query
processing techniques in relational database systems,” ACM Computing
Surveys (CSUR), vol. 40, no. 4, 2008.

[53] E. Dellis and B. Seeger, “Efficient computation of reverse skyline queries,” in
VLDB, 2007.

[54] M. L. Yiu and N. Mamoulis, “Efficient processing of top-k dominating queries
on multi-dimensional data,” in VLDB, 2007.

[55] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang, “Selecting stars: The k most
representative skyline operator,” in ICDE, 2007.

[56] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” Journal of Computer and System Sciences, vol. 66, no. 4, pp.
614–656, 2003.

[57] R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,” SIAM
Journal on Discrete Mathematics, vol. 17, no. 1, pp. 134–160, 2003.

[58] V. Hristidis and Y. Papakonstantinou, “Algorithms and applications for
answering ranked queries using ranked views,” The VLDB Journal, vol. 13,
no. 1, pp. 49–70, 2004.

[59] G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis, “Answering top-k
queries using views,” in VLDB, 2006.

190

[60] Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and J. R. Smith,
“The onion technique: indexing for linear optimization queries,” in SIGMOD,
2000.

[61] D. Xin, C. Chen, and J. Han, “Towards robust indexing for ranked queries,”
in VLDB, 2006.

[62] S. Har-Peled, “On the expected complexity of random convex hulls,” arXiv
preprint arXiv:1111.5340, 2011.

[63] J. L. Bentley, F. P. Preparata, and M. G. Faust, “Approximation algorithms for
convex hulls,” Communications of the ACM, vol. 25, no. 1, pp. 64–68, 1982.

[64] S.-Y. Ihm, K.-E. Lee, A. Nasridinov, J.-S. Heo, and Y.-H. Park, “Approximate
convex skyline: a partitioned layer-based index for efficient processing top-k
queries,” KBS, 2014.

[65] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. K. Tung, and Z. Zhang, “Finding
k-dominant skylines in high dimensional space,” in SIGMOD, 2006.

[66] A. Vlachou and M. Vazirgiannis, “Ranking the sky: Discovering the
importance of skyline points through subspace dominance relationships,”
DKE, vol. 69, no. 9, 2010.

[67] S. Borzsony, D. Kossmann, and K. Stocker, “The skyline operator,” in ICDE,
2001.

[68] D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. Xu, “Regret-
minimizing representative databases,” VLDB, vol. 3, 2010.

[69] S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides, “Computing k-regret
minimizing sets,” VLDB, vol. 7, no. 5, 2014.

[70] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards, Artificial
intelligence: a modern approach. Prentice hall Upper Saddle River, 2003,
vol. 2.

191

[71] U. Feige, “A threshold of ln n for approximating set cover,” J. ACM, 1998.

[72] V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathematics
of operations research, vol. 4, no. 3, pp. 233–235, 1979.

[73] G. B. Dantzig, Linear programming and extensions. Princeton university
press, 1998.

[74] W. Weil and J. Wieacker, “Stochastic geometry, handbook of convex geometry,
vol. a, b, 1391–1438,” 1993.

[75] P. Nobili and A. Sassano, “A separation routine for the set covering polytope,”
in IPCO, 1992.

[76] S. G. Kobourov, “Force-directed drawing algorithms,” 2004.

[77] W. T. Tutte, “How to draw a graph,” Proc. London Math. Soc, vol. 13, no. 3,
pp. 743–768, 1963.

[78] N. Bruno, S. Chaudhuri, and L. Gravano, “Top-k selection queries over
relational databases: Mapping strategies and performance evaluation,” TODS,
2002.

[79] A. Marian, N. Bruno, and L. Gravano, “Evaluating top-k queries over web-
accessible databases,” ACM Trans. Database Syst., vol. 29, no. 2, 2004.

[80] T. Kessler Faulkner, W. Brackenbury, and A. Lall, “k-regret queries with
nonlinear utilities,” VLDB, vol. 8, no. 13, 2015.

[81] S. Thirumuruganathan, N. Zhang, and G. Das, “Rank discovery from web
databases,” VLDB, 2013.

[82] P. B. Yale, Geometry and symmetry. Courier Corporation, 1968.

[83] K. C.-C. Chang and S.-w. Hwang, “Minimal probing: supporting expensive
predicates for top-k queries,” in SIGMOD. ACM, 2002.

192

[84] A. Dasgupta, X. Jin, B. Jewell, N. Zhang, and G. Das, “Unbiased estimation
of size and other aggregates over hidden web databases,” in SIGMOD, 2010.

[85] W. Liu, S. Thirumuruganathan, N. Zhang, and G. Das, “Aggregate estimation
over dynamic hidden web databases,” VLDB, 2014.

[86] A. Asudeh, S. Thirumuruganathan, N. Zhang, and G. Das, “Discovering the
skyline of web databases,” VLDB, 2016.

[87] S. Thirumuruganathan, N. Zhang, and G. Das, “Breaking the top-k barrier of
hidden web databases,” in ICDE. IEEE, 2013.

193

	Abstract
	Introduction
	Pareto-Optimal Object Finding by Pairwise Comparisons
	Discovering the Skyline of Web Databases
	Regret-ratio Minimizing Set
	Query Reranking Service

	Pareto-Optimal Object Finding by Pairwise Comparisons
	General Framework
	Question Selection
	Resolving Unusual Contradictions in Question Outcomes

	Micro-Ordering in Question Selection
	Random Question (RandomQ)
	Random Pair (RandomP)
	Pair with Fewest Remaining Questions (FRQ)

	Experiments
	Efficiency and Scalability
	Experiments Using a Real Crowdsourcing Marketplace

	Related Work
	Final Remarks

	Discovering the Skyline of Web Databases
	Preliminaries
	Model of Hidden Database
	Taxonomy of Attribute Search Interface
	Problem Definition

	Skyline Discovery for SQ-DB
	Key Idea: Algorithm SQ-DB-SKY
	Query-Cost Analysis

	Skyline Discovery for RQ-DB
	Key Idea: Algorithm RQ-DB-SKY
	Query-Cost Analysis

	Skyline Discovery for PQ-DB
	2D Case
	Higher-D Case: Negative Results
	Algorithm PQ-DB-SKY

	Skyline Discovery for Mixed-DB
	Overview
	Details for Leveraging Two-Ended Ranges
	Algorithm MQ-DB-SKY

	Extensions
	Anytime Property
	Sky Band

	Experimental Evaluation
	Experimental Setup
	Experiments over Real-World Dataset
	Online Demonstration

	Related Work
	Final Remarks

	Regret-ratio Minimizing Set: A Compact Maxima Representative
	Motivation
	Technical Highlights
	Summary of Contributions

	Preliminaries
	Problem Definition

	2D Regret-ratio Minimizing Set
	Graph Modeling
	Baseline Solution
	Dynamic Programming Algorithm

	HD Regret-ratio Minimizing Set
	Problem with Existing Heuristic Solution
	Conceptual Model
	Matrix Discretization
	HD-RRMS Algorithm
	Practical HD-RRMS Algorithm

	Discussion
	Top-k Extension
	Alternative Matrix Discretization

	Experiments
	Experimental Setup
	Two-dimensional Experimental Result
	High-dimensional Experimental Result

	Related Work
	Final Remarks

	Query Reranking As A Service
	Preliminaries
	Database Model
	Problem Definition

	1D-RERANK
	Baseline Solution and Its Problem
	1D-RERANK

	MD-RERANK
	Problem with TA over 1D-RERANK
	MD-Baseline
	MD-Binary
	MD-RERANK

	discussions
	Experimental Evaluation
	Experimental Setup
	1D Experiments
	MD Experiments

	Related Work
	Final Remarks

	List of Publications

