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Abstract

Some New Results for Equilibria of N-Person Games

Ahmad Nahhas

The University of Texas at Arlington, 2017

Supervising Professor: Herbert W. Corley

In this dissertation, we present four journal articles in the area of game theory. In the first

article, we define a generalized equilibrium for n−person normal form games. We prove that the

Nash equilibrium and the mixed Berge equilibrium are special cases of the generalized equilibrium.

In the second article, we study the computational complexity of finding a mixed Berge equilibrium

in n−person normal form games. In particular, we prove that the problem is an NP-complete

problem for n ≥ 3. In the third article, we give an interpretation of mixed strategies via resource

allocation. Finally, in the fourth article, we extend the concept of the mixed Berge equilibrium to

n−person extensive form games.
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Chapter 1

Introduction

Game theory is the study of competitive situations among rational players, who choose their strate-

gies in order to maximize their expected utilities based on their expectations of other players’ be-

haviors. Games can be in normal or extensive form. The most used solution concept in game

theory is the Nash equilibrium (NE). It was introduced in [1] and [2]. The NE assumes that every

player wants to maximize his own expected payoff. The other solution concept we consider in this

dissertation is the Berge equilibrium (BE). The BE, a pure strategy concept, was introduced in

[3] and formally defined in [4]. A BE strategy means that every player other than player i wants

to maximize player i′s expected payoff. The BE was extended to the dual equilibrium (DE) or

the mixed Berge equilibrium (MBE) in [5]. In this dissertation, we present four journal articles to

which the two authors contributed equally.

In Chapter 2, we present the first article. We define a generalized equilibrium for n−person

normal form games. In this article, we address a very important issue in the study of game

theory which is the computation of the equilibrium points. For example, a nonlinear programming

approach was introduced in [6] and [7] to find an NE in 3−person and n−person games respectively.

We extend their approach to the generalized equilibrium. We prove that a generalized equilibrium

exists if and only if the maximum of a nonlinear program is 0. We also prove that both the NE and

the MBE are special cases of the generalized equilibrium.

In the Chapter 3, we present a second article on the computational complexity of finding an

MBE.The computational complexity of finding a Nash equilibrium is a well-studied problem in

literature. The computational complexity of finding a pure BE was studied in [8]. However, in our

article, we prove that finding an MBE is a PPAD-complete problem in the case of a 2−person game

and it is an NP-complete problem when n ≥ 3.

In Chapter 4, we present an article to deal with the difficulties associated with mixed strategies.

The concept of mixed strategies is widely used in game theory. However, the concept of mixed

strategy requires a randomization process. For example see [9]. We show that mixed strategies can

be interpreted as a resource allocation strategy. In other words, we show that a mixed strategy at

an equilibrium is equivalent to each player allocating some resource among different strategies.

In Chapter 5, we present our fourth article. In this article, we extend the concept of the MBE
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to the n−person games in extensive form. Furthermore, we define the concept of a subgame perfect

Berge equilibrium.

In Chapter 6, we give our conclusions.

The references for Chapter 1 are given below, in addition those in the articles of Chapters 2-5.
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Abstract

A generalized equilibrium for finite n−person normal form games is defined as a collection of mixed

strategies with the following property: no player in some subset B of the players can achieve a

better expected payoff if players in an associated set G change strategies unilaterally. A generalized

equilibrium is proved to exist for a game if and only if the maximum objective function value of a

certain nonlinear programming problem is zero, in which case the solution to the nonlinear program

yields a generalized equilibrium.

8



2.1 Introduction

Game theory is the study of mathematical decision making among players who make individual

choices according to their personal notions of rationality and according to their expectations of

the other players actions. For example, a player may act selfishly for his own personal gain or

cooperatively for the benefit of other players. [1] proved, using fixed point theorems, the existence

of a mixed Nash equilibrium (NE ) for all noncooperative games where no player can obtain a better

payoff by unilaterally changing his strategy. In other words in an NE the players are only concerned

with their own self interest. The computation of the NE has been an active area of research. [2]

modeled the problem of finding an NE for bimatrix games as a quadratic programming problem.

[3] modeled the problem of finding an NE for 3−person games as a nonlinear optimization problem,

while [4] did the same for n−person games.

A different solution concept was proposed by [5]. He developed a pure strategy refinement for

the NE that was formalized by [6]. In a Berge equilibrium (BE ) a unilateral change of strategy by

any one player cannot increase another player’s payoff. Many researchers have studied the BE, for

example see [7], [8], and [9]. Existence theorems for a BE were considered in [10], [11], [12], [13],

and [14]. For existence conditions also see [15],[16], [17], and [18]. [19] extended the pure BE to a

mixed Berge equilibrium (MBE ) in normal form n−person games and showed an MBE need not

exist for n > 2.

For computational approaches to finding a BE, see [20] where an algorithm was developed for

computing all BE in normal form games, and [21] who presented an evolutionary approach for

detecting Berge and Nash equilibrium.

In this paper, we present a definition for a mixed generalized equilibrium (GE ) in finite normal

form n−person games for which both the NE and the MBE are special cases. The GE is an exten-

sion of the P /K-equilibrium [5] to mixed strategies. We then extend the nonlinear programming

approach in [4] for both proving the existence and finding a GE for finite n−person games where

each of the players wants to maximize the expected payoff for one or more of the players, including

the cases of only himself or all other players.

This paper is organized as follows. In Section 2, needed notation is given. In Section 3, the GE

is formally defined and the NE and the MBE are shown to be special cases. In Section 4, we give

a nonlinear program for obtaining a GE if one exists. Numerical examples are presented in Section

5.

2.2 Preliminaries

In this paper, let Γ = (I, (Si)i∈I , (ui)i∈I) be an n−person normal form game, where I = {1, . . . , n} is

the set of the n players, and Si = {s1i , . . . , s
mi
i } is the set of mi pure strategies available for player

i. Player i chooses each strategy sji with probability σi(s
j
i ). A mixed strategy for player i is a

probability distribution over the player’s pure strategies set, σi = (σ1i , . . . , σ
mi
i ), where ∑

mi
j=1 σi(s

j
i ) =

1, and σi(s
j
i ) ≥ 0, j = 1, . . . ,mi. Denote the set of mixed strategies for player i by △Si. A pure

9



strategy is a special case of a mixed strategy where a player chooses one strategy with probability

1 and the remaining strategies with probability 0. A strategy profile σ = (σ1, . . . , σn) is the n−tuple

of the n players mixed strategies.

The set of joint pure strategies of all players other than player i, is S−i = {s1−i, . . . , s
m−i
−i },

where m−i = ∏j∈I−imj is the number of joint pure strategies available for all the players other

than player i. The joint probability σ−i(sk−i) is the probability that all players other than player

i play the joint pure strategy sk−i and is the product of the probability that each player in I − i

chooses his corresponding strategy. Note that σ−i = (σ1−i, . . . , σ
m−i
−i ), where ∑

m−i
j=1 σ−i(s

j
−i) = 1 and

σ−i(sj−i) ≥ 0, j = 1, . . . ,m−i. The set of mixed strategies for all players other than player i is △S−i.
Let ui(σi, σ−i) be the expected payoff for player i when player i plays the mixed strategy σi and

the rest of the players play the mixed strategy σ−i.
The following identities represent the expected payoff for player i from [19]. If player i chooses

the mixed strategy σi and the rest of players choose the mixed strategy σ−i, then player’s i expected

payoff is

ui(σi, σ−i) =
mi

∑
j=1

m−i

∑
k=1

σi(s
j
i )σ−i(s

k
−i)ui(s

j
i , s

k
−i),∀i ∈ I.

If player i chooses a pure strategy sji and the rest of players choose the mixed strategy σ−i, then

player’s i expected payoff is

ui(s
j
i , σ−i) =

m−i

∑
k=1

σ−i(sk−i)ui(s
j
i , s

k
−i),∀i ∈ I.

We extend the approach of [12] for the BE and the NE to a GE.

Definition 2.1. Let D be an index set and let {Gd}d∈D be a family of nonempty proper and distinct

subsets of the set of all players I such that ∪d∈DGd = I. Let {Bd}d∈D be a family of nonempty subsets

of the set of all players I such that ∪d∈DBd = I. The players in each of the proper subsets Gd want

to maximize the expected payoff for each individual player in the associated subset Bd.

Note ∪d∈DGd = I and ∪d∈DBd = I; otherwise the game is reduced to one with fewer number of

players. Gd is a proper subset or the problem of finding a GE becomes a series of maximization

problems. Define −Gd = I−Gd to be the set of all players other than the players in the proper subset

Gd. In the case of subsets of players Gd, the joint strategy set is the Cartesian product SGd
= ×i∈Gd

Si

of the individual players in Gd pure strategy sets. The number of joint pure strategies for the players

in the proper subset Gd is denoted by mGd
.

The probability that the players in Gd choose a joint pure strategy is the product of the prob-

ability that each individual player in Gd chooses his corresponding individual strategy. A mixed

strategy for the proper subset Gd is given by the probability distribution σGd
= (σ1Gd

, . . . , σ
mGd
Gd

),

where ∑
mGd
j=1 σGd

(sjGd
) = 1, and σGd

(sjGd
) ≥ 0, j = 1, . . . ,mGd

. The set of mixed strategies for players

in Gd is denoted by △SGd
. Let S−Gd

be the set of the m−Gd
joint pure strategies for all players in

−Gd. As an example, consider a four player game where each player has two strategies. S1 = {s11, s
2
1},
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S2 = {s12, s
2
2}, S3 = {s13, s

2
3}, and S4 = {s14, s

2
4}. Let G1 = {1,2}, note that −G1 = I −G1 = {3,4}. The

number of pure joint strategies for players in G1 is mG1 = m1 ×m2 = 2 × 2 = 4, and the set of pure

strategies for players in G1 is SG1 = {(s11, s
1
2), (s

1
1, s

2
2), (s

2
1, s

1
2), (s

2
1, s

2
2)}. The probability that the

players in G1 choose their first strategy is σG1(s
1
G1

) = σ1(s
1
1) × σ2(s

1
2).

With Gd and −Gd as two individual players, the following identities can be derived from (2.1)

and (2.1). Player’s i expected payoff when players in Gd choose the mixed strategy σGd
and players

in −Gd choose the mixed strategy σ−Gd
is,

ui(σGd
, σ−Gd

) =

mGd

∑
j=1

m−Gd

∑
k=1

σGd
(sjGd

)σ−Gd
(sk−Gd

)ui(s
j
Gd
, sk−Gd

).

Player’s i expected payoff when players in Gd choose their pure joint strategy sjGd
and players in

−Gd choose the mixed strategy σ−Gd
is,

ui(s
j
Gd
, σ−Gd

) =

m−Gd

∑
k=1

σ−Gd
(sk−Gd

)ui(s
j
Gd
, sk−Gd

).

Proposition 2.1. The identities (2.1) and (2.1) are equivalent, as for (2.1) and (2.1).

Proof. Since Gd ∪ −Gd = I, then either i ∈ Gd or i ∈ −Gd. We provide the proof for i ∈ Gd and

it is similar for i ∈ −Gd. From (2.1) and since −Gd = I−Gd, then ui(σGd
, σ−Gd

) = ui(σi, σGd−i, σ−Gd
) =

ui(σi, σ−i). Hence (2.1) and (2.1) are equivalent. Similarly, from (2.1), ui(s
j
Gd
, σ−Gd

) = ui(s
j
i , s

k
Gd−i, σ−Gd

).

But, a pure strategy forGd−i is a special case of a mixed strategy. Hence, ui(s
j
Gd
, σ−Gd

) = ui(s
j
i , σ−i),

and (2.1) and (2.1) are equivalent.

2.3 The Generalized Equilibrium

In this section we define a GE for a normal form n−person game. We then show that both the NE

and the MBE are special cases of the GE.

Definition 2.2. (GE) A strategy σ∗ is a GE if and only if

ui(σ
∗
) ≥ ui(σGd

, σ∗−Gd
),∀σGd

∈△SGd
,∀i ∈ Bd,∀d ∈D.

In Definition 2.2, all players in Gd share the goal of maximizing the individual expected payoff

for each player in the corresponding Bd. Moreover, the definition of a GE implies no player i ∈ Bd

for any d ∈D gets a better expected payoff if any player in the corresponding distinct proper subset

Gd change his strategy unilaterally. For comparison with the GE, we formally define the NE and

the MBE.

Definition 2.3. (NE) A strategy σ∗ is an NE if and only if

ui(σ
∗
) ≥ ui(σi, σ

∗
−i),∀σi ∈△Si,∀i ∈ I.
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In an NE, no player with a unilateral change of strategy can increase his expected payoff.

Definition 2.4. (MBE) A strategy σ∗ is an MBE if and only if

ui(σ
∗
) ≥ ui(σ

∗
i , σ−i),∀σ−i ∈△S−i,∀i ∈ I.

In an MBE, no player with a unilateral change of strategy can increase another player’s expected

payoff. As opposed to the mixed NE which is guaranteed to exist, an MBE exists only when the

intersection of the set of fixed points for n correspondences is not empty. See [19] for topolgical

conditions for the MBE existence. We now show that the NE and the MBE are special cases of

the GE.

Proposition 2.2. Let D = I, Gi = {i} and Bi = {i} ∀i ∈ I, then a GE is an NE.

Proof. From Definition 2.2 a strategy σ∗ is a GE if and only if

ui(σ
∗
) ≥ ui(σGi , σ

∗
−Gi

),∀σGi ∈△SGi ,∀i ∈ I.

Since Gi = {i}, −Gi = {−i}, and Bi = {i}, then

ui(σ
∗
) ≥ ui(σi, σ

∗
−i),∀σi ∈△Si,∀i ∈ I,

so the GE is an NE by Definition 4.1.

Proposition 2.3. Let D = I, Gi = {−i} and Bi = {i} ∀i ∈ I, then a GE is an MBE.

Proof. From Definition 2.2 a strategy σ∗ is a GE if and only if

ui(σ
∗
) ≥ ui(σGi , σ

∗
−Gi

),∀σGi ∈△SGi ,∀i ∈ I.

Since Gi = {−i}, −Gi = {i}, and Bi = {i}, then

ui(σ
∗
) ≥ ui(σ

∗
i , σ−i),∀σ−i ∈△S−i,∀i ∈ I,

so the GE is an MBE by Definition 2.4.

2.4 Existence and Computation

In this section we give necessary and sufficient conditions for the existence of a GE. We then present

a nonlinear program that finds a GE if and only if the maximum of the nonlinear program is 0.

Lemma 2.1. For a game Γ, let β∗ = (β∗1 , . . . , β
∗
n) be the expected payoffs for the n players and let

12



σ∗ = (σ∗1 , . . . , σ
∗
n) be a GE. Then

ui(s
j
Gd
, σ∗−Gd

) =

m−Gd

∑
k=1

σ∗−Gd
(sk−Gd

)ui(s
j
Gd
, sk−Gd

) ≤ β∗i ,

∀sjGd
∈ SGd

, ∀i ∈ Bd, ∀d ∈D.

Proof. Let σ∗ = (σ∗1 , . . . , σ
∗
n) be a GE for the game. Then from Definition 2.2

ui(σ
∗
) = β∗i =

mGd

∑
j=1

m−Gd

∑
k=1

σ∗Gd
(sjGd

)σ∗−Gd
(sk−Gd

)ui(s
j
Gd
, sk−Gd

) ≥

mGd

∑
j=1

m−Gd

∑
k=1

σGd
(sjGd

)σ∗−Gd
(sk−Gd

)ui(s
j
Gd
, sk−Gd

),

∀σGd
∈△SGd

, ∀i ∈ Bd, ∀d ∈D.

Assume players in Gd choose a pure strategy sjGd
. Then σ(sGd

) = (0, . . . ,1, . . . ,0), and

β∗i =
mGd

∑
j=1

m−Gd

∑
k=1

σ∗Gd
(sjGd

)σ∗−Gd
(sk−Gd

)ui(s
j
Gd
, sk−Gd

) ≥

m−Gd

∑
k=1

σ∗−Gd
(sk−Gd

)ui(s
j
Gd
, sk−Gd

).

(2.1)

Since ∑
m−Gd

k=1 σ∗−Gd
(sk−Gd

)ui(s
j
Gd
, sk−Gd

) = ui(s
j
Gd
, σ∗−Gd

), then

ui(s
j
Gd
, σ∗−Gd

) ≤ β∗i ,∀s
j
Gd

∈ SGd
,∀i ∈ Bd,∀d ∈D. (2.2)

This completes the proof.

We next prove necessary and sufficient conditions for the existence of a GE.

Theorem 2.1. For a game Γ, suppose there exists an n−tuple β∗ = (β∗1 , . . . , β
∗
n) and a mixed

strategy profile σ∗ = (σ∗1 , . . . , σ
∗
n) such that

m−Gd

∑
k=1

σ∗−Gd
(sk−Gd

)ui(s
j
Gd
, sk−Gd

) ≤ β∗i , ∀s
j
Gd

∈ SGd
, ∀i ∈ Bd, ∀d ∈D. (2.3)

Then σ∗ is a GE and ui(σ
∗) = β∗i , ∀i ∈ I, if and only if σ∗Gd

(sjGd
) = 0 whenever

m−Gd

∑
k=1

σ∗−Gd
(sk−Gd

)ui(s
j
Gd
, sk−Gd

) < β∗i . (2.4)

13



Proof. Let σ∗ be a GE and ui(σ
∗) = β∗i , ∀i ∈ I, then by Lemma 2.1,

m−Gd

∑
k=1

σ∗−Gd
(sk−Gd

)ui(s
j
Gd
, sk−Gd

) ≤ β∗i ,∀s
j
Gd

∈ SGd
, ∀i ∈ Bd, ∀d ∈D.

Suppose there exists a d ∈D such that for some i ∈ Bd, σ
∗
Gd

(sjGd
) > 0 and

m−Gd

∑
k=1

σ∗−Gd
(sk−Gd

)ui(s
j
Gd
, sk−Gd

) < β∗i .

Then summing over gives

ui(σ
∗
) =

mGd

∑
j=1

m−Gd

∑
k=1

σ∗Gd
(sjGd

)σ∗−Gd
(sk−Gd

)ui(s
j
Gd
, sk−Gd

) < β∗i ,

which is a contradiction. Hence σ∗Gd
(sjGd

) = 0.

Conversely, suppose σ∗Gd
is a probability distribution over the set of the pure strategies for the

players in the proper subset Gd such that (2.3) and (2.4) are satisfied. Then summing over gives

β∗i = ui(σ
∗
) =

mGd

∑
j=1

m−Gd

∑
k=1

σ∗Gd
(sjGd

)σ∗−Gd
(sk−Gd

)ui(s
j
Gd
, sk−Gd

) ≥

mGd

∑
j=1

m−Gd

∑
k=1

σGd
(sjGd

)σ∗−Gd
(sk−Gd

)ui(s
j
Gd
, sk−Gd

),

∀σGd
∈△SGd

,∀i ∈ Bd,∀d ∈D,

which is the same as Definition 2.2. Hence σ∗ is a GE and ui(σ
∗) = β∗i ,∀i ∈ I.

The following nonlinear program P obtains a GE, if one exists, in an n−person normal form

game Γ. It seeks to

(P ) maximize g(σ,β) =
N

∑
i=1

[(
mi

∑
j=1

m−i

∑
k=1

σi(s
j
i )σ−i(s

k
−i)ui(s

j
i , s

k
−i)) − βi].

subject to
m−Gd

∑
k=1

σ−Gd
(sk−Gd

)ui(s
j
Gd
, sk−Gd

) ≤ βi,∀s
j
Gd

∈ SGd
, ∀i ∈ Bd, ∀d ∈D.

mi

∑
j=1

σi(s
j
i ) = 1,∀i ∈ I.

σi(s
j
i ) ≥ 0,∀i ∈ I, j = 1, . . . ,mi.

Lemma 2.2. Let (σ∗, β∗) be a feasible point for the problem P . Then g(σ∗, β∗) ≤ 0.

14



Proof. From (2.5),

m−Gd

∑
k=1

σ∗−Gd
(sk−Gd

)ui(s
j
Gd
, sk−Gd

) ≤ β∗i ,∀s
j
Gd

∈ SGd
, ∀i ∈ Bd, ∀d ∈D.

and
mGd

∑
j=1

σGd
(sjGd

) = 1,

so
mGd

∑
j=1

m−Gd

∑
k=1

σ∗Gd
(sjGd

)σ∗−Gd
(sk−Gd

)ui(s
j
Gd
, sk−Gd

) ≤

mGd

∑
j=1

σ∗Gd
(sjGd

)β∗i = β
∗
i ,

∀i ∈ Bd, ∀d ∈D.

Therefore
mGd

∑
j=1

m−Gd

∑
k=1

σ∗Gd
(sjGd

)σ∗−Gd
(sk−Gd

)ui(s
j
Gd
, sk−Gd

) − β∗i ≤ 0,∀i ∈ Bd, ∀d ∈D. (2.5)

Hence by (2.5), g(σ∗, β∗) ≤ 0.

Lemma 2.3. If g(σ,β) ≠ 0, ∀(σ,β). Then there does not exist a GE for the game Γ.

Proof. Assume g(σ,β) ≠ 0. It follows from Lemma 2.2 that

g(σ,β) < 0, ∀(σ,β).

Thus there exists at least one player i ∈ Bd for some d ∈D such that

m−Gd

∑
k=1

σ−Gd
(sk−Gd

)ui(s
j
Gd
, sk−Gd

) < βi

and

σGd
(sjGd

) > 0,∀σGd
∈△SGd

.

Hence by Theorem 2.1 there does not exist a GE for the game Γ.

Theorem 2.2. Let σ∗ = (σ∗1 , . . . , σ
∗
n) be a strategy profile and β∗ = (β∗1 , . . . , β

∗
n) be the n players’

expected payoffs. Then σ∗ is a GE for the game Γ if and only if g(σ∗, β∗) = 0.

Proof. Let σ∗ = (σ∗1 , . . . , σ
∗
n) be a GE and β∗ = (β∗1 , . . . , β

∗
n) be the n players expected payoffs. By

Theorem 2.1,

g(σ∗, β∗) =
N

∑
i

[(
mi

∑
j=1

m−i

∑
k=1

σ∗i (s
j
i )σ

∗
−i(s

k
−i)ui(s

j
i , s

k
−i)) − β

∗
i ] = 0.

Furthermore, from Lemma 2.1 a GE satisfies constraints (2.5) so it is a feasible point for P .

Conversely let (σ∗, β∗) to be a feasible point for P , so (σ∗, β∗) satisfy constraints (2.5) and by

Lemma 2.2 g(σ∗, β∗) ≤ 0. We distinguish between two cases. The first case, g(σ∗, β∗) < 0. Hence

15



by Lemma 2.3 there does not exist a GE. In the second case, let g(σ∗, β∗) = 0 so

mi

∑
j=1

m−i

∑
k=1

σ∗i (s
j
i )σ

∗
−i(s

k
−i)ui(s

j
i , s

k
−i) − β

∗
i = 0,∀i ∈ I,

and the conditions from Theorem 2.1 are satisfied. Hence σ∗ is a GE.

In the following theorem, we prove if Gd, Bd are nonempty singleton subsets of all players then

there always exists a GE for the game Γ.

Theorem 2.3. Let {Gi}i∈I and {Bi}i∈I be two sets of pairwise distinct singleton sets of the set of

players I such that ∪i∈I {Gi} = I and ∪i∈I {Bi} = I, then the game Γ has a GE.

Proof. Let f ∶ I → I be a bijection, and let Gi = {i} ,∀i ∈ I and Bi = {j} for some j ∈ I such

that f(i) = j. Therefore a GE σ∗ reduces to an NE by replacing player i′s payoffs with player j′s
payoffs,

uj(σ
∗
) ⩾ uj(σi, σ

∗
−i), ∀σi ∈△Si (2.6)

However, an NE is always guaranteed to exist. Hence the game always has a GE to complete the

proof.

The MBE is shown in Proposition 2.3 to be a special case of the GE. Thus if D = I, Gi = {−i},

and Bi = {i}, then P for an MBE becomes

maximize g(σ,β) =
N

∑
i=1

[(
mi

∑
j=1

m−i

∑
k=1

σi(s
j
i )σ−i(s

k
−i)ui(s

j
i , s

k
−i)) − βi]

subject to
mi

∑
j=1

σi(s
j
i )ui(s

j
i , s

k
−i) ≤ βi,∀s

k
−i ∈ S−i,∀i ∈ I.

mi

∑
j=1

σi(s
j
i ) = 1,∀i ∈ I.

σi(s
j
i ) ≥ 0,∀i ∈ I, j = 1, . . . ,mi.

[4] showed that P obtains an NE. The NE is shown in Proposition 2.2 to be a special case of the
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GE. Hence, for D = I, Gi = {i}, and Bi = {i}, P for an NE becomes

maximize g(σ,β) =
N

∑
i=1

[(
mi

∑
j=1

m−i

∑
k=1

σi(s
j
i )σ−i(s

k
−i)ui(s

j
i , s

k
−i)) − βi]

subject to
m−i

∑
k=1

σ−i(sk−i)ui(s
j
i , s

k
−i) ≤ βi,∀s

j
i ∈ Si,∀i ∈ I.

mi

∑
j=1

σi(s
j
i ) = 1,∀i ∈ I.

σi(s
j
i ) ≥ 0,∀i ∈ I, j = 1, . . . ,mi.

2.5 Examples

2.5.1 Example 1

In this example, we have a 3−person game, where each player has two strategies. For simplicity,

we denote the strategies of the three players by p, q, r respectively.

Table 2.1: Example 1.

r1 q1 q2 r2 q1 q2
p1 (9,1,9) (4,9,6) p1 (8,2,1) (7,8,4)

p2 (1,4,2) (6,6,3) p2 (2,3,8) (3,7,7)

We first write P to find an MBE, and then we find an NE. For the MBE,

maximize
p,q,r,β

19p1q1r1 + 19p1q2r1 + 7p2q1r1 + 15p2q2r1

+ 11p1q1r2 + 19p1q2r2 + 13p2q1r2 + 17p2q2r2 − β1 − β2 − β3

subject to

9p1 + 1p2 ≤ β1,4p1 + 6p2 ≤ β1,8p1 + 2p2 ≤ β1,7p1 + 3p2 ≤ β1

1q1 + 9q2 ≤ β2,4q1 + 6q2 ≤ β2,2q1 + 8q2 ≤ β2,3q1 + 7q2 ≤ β2

9r1 + 1r2 ≤ β3,6r1 + 4r2 ≤ β3,2r1 + 8r2 ≤ β3,3r1 + 7r2 ≤ β3

p1 + p2 = 1, q1 + q2 = 1, r1 + r2 = 1, p1, p2, q1, q2, r1, r2 ≥ 0.

Solving P gives a maximum of 0 with p∗1 = p
∗
2 = q

∗
1 = q

∗
2 = r

∗
1 = r

∗
2 = 0.5, as well as β∗1 = β∗2 = β∗3 = 5.
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To obtain an NE, consider a special case of P .

maximize
p,q,r,β

19p1q1r1 + 19p1q2r1 + 7p2q1r1 + 15p2q2r1

+ 11p1q1r2 + 19p1q2r2 + 13p2q1r2 + 17p2q2r2 − β1 − β2 − β3

subject to

9q1 ∗ r1 + 4q2 ∗ r1 + 8q1 ∗ r2 + 7q2 ∗ r2 ≤ β1

1q1 ∗ r1 + 6q2 ∗ r1 + 2q1 ∗ r2 + 3q2 ∗ r2 ≤ β1

1p1 ∗ r1 + 4p2 ∗ r1 + 2p1 ∗ r2 + 3p2 ∗ r2 ≤ β2

9p1 ∗ r1 + 6p2 ∗ r1 + 8p1 ∗ r2 + 7p2 ∗ r2 ≤ β2

9p1 ∗ q1 + 2p2 ∗ q1 + 6p1 ∗ q2 + 3p2 ∗ q2 ≤ β3

1p1 ∗ q1 + 8p2 ∗ q1 + 4p1 ∗ q2 + 7p2 ∗ q2 ≤ β3

p1 + p2 = 1, q1 + q2 = 1, r1 + r2 = 1

p1, p2, q1, q2, r1, r2 ≥ 0.

Solving P gives a maximum 0 with p∗1 = 0.67, p∗2 = 0.33, q∗1 = 0, q∗2 = 1, r∗1 = 0.67, r∗2 = 0.33, as well

as β∗1 = 5, β∗2 = 7.89, β∗3 = 5.

2.5.2 Example 2

In the second example which was presented in [19], it was proven that there is not an MBE for the

game. Consequently, the maximum of P is shown to be negative for any feasible solution.

Table 2.2: Example 2.

r1 q1 q2 r2 q1 q2
p1 (1,1,0) (0,0,0) p1 (0,0,1) (0,0,0)

p2 (0,0,0) (0,0,1) p2 (0,0,0) (1,1,0)

We write P for an MBE.

maximize
p,q,r,β

2p1q1r1 + 0p1q2r1 + 0p2q1r1

+ 1p2q2r1 + 1p1q1r2 + 0p1q2r2 + 0p2q1r2 + 2p2q2r2 − β1 − β2 − β3

subject to

1p1 + 0p2 ≤ β1,0p1 + 0p2 ≤ β1,0p1 + 0p2 ≤ β1,0p1 + 1p2 ≤ β1

1q1 + 0q2 ≤ β2,0q1 + 0q2 ≤ β2,0q1 + 0q2 ≤ β2,0q1 + 1q2 ≤ β2

1r1 + 0r2 ≤ β3,0r1 + 0r2 ≤ β3,0r1 + 0r2 ≤ β3,0r1 + 1r2 ≤ β3

p1 + p2 = 1, q1 + q2 = 1, r1 + r2 = 1

p1, p2, q1, q2, r1, r2 ≥ 0.
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Proposition 2.4. The game in example 2 does not have an MBE.

Proof. Suppose that any player i chooses a pure strategy. We will prove the case of player 1 and

the same argument applies to the other two players. By constraints (2.7) if player 1 chooses p1 = 1,

then β1 = 1. Hence by Theorem (2.1), q1r1 = 1 and by constraints (2.7) β2 = β3 = 1. On the other

hand, by the same argument, if p2 = 1, then q2r2 = 1 and by constraints (2.7) β2 = β3 = 1. Therefore,

if any player chooses a pure strategy, then the other two players must choose a pure strategy by

Theorem (2.1). However, there is no pure strategy such that each player gets a payoff 1. Therefore,

for an MBE to exist, every player must use a fully mixed strategy. However, each player has only

two strategies and note u1(σ1, q1r1) > u1(σ1, q2r1) for any σ1, but both q1r1, q2r1 > 0 by assumption.

Hence by Theorem (2.1) there does not exist an MBE to complete the proof.

We can find a GE for example 2 such that each player wants to maximize the expected payoffs

for the remaining two players. That is,

uj(σ
∗
) ≥ uj(σi, σ

∗
−i),∀σi ∈△Si,∀j ∈ I − i,∀i ∈ I.

Let D = {1,2,3}, G1 = {1}, G2 = {2}, and G3 = {3}. Let B1 = {2,3}, B2 = {1,3}, and B3 = {1,2}.

We write P as

maximize
p,q,r,β

2p1q1r1 + 0p1q2r1 + 0p2q1r1

+ 1p2q2r1 + 1p1q1r2 + 0p1q2r2 + 0p2q1r2 + 2p2q2r2 − β1 − β2 − β3

subject to

1p1 ∗ q1 + 0p1 ∗ q2 + 0p2 ∗ q1 + 0p2 ∗ q2 ≤ β1

0p1 ∗ q1 + 0p1 ∗ q2 + 0p2 ∗ q1 + 1p2 ∗ q2 ≤ β1

1p1 ∗ q1 + 0p1 ∗ q2 + 0p2 ∗ q1 + 0p2 ∗ q2 ≤ β2

0p1 ∗ q1 + 0p1 ∗ q2 + 0p2 ∗ q1 + 1p2 ∗ q2 ≤ β2

1r1 ∗ q1 + 0r1 ∗ q2 + 0r2 ∗ q1 + 0r2 ∗ q2 ≤ β2

0r1 ∗ q1 + 0r1 ∗ q2 + 0r2 ∗ q1 + 1r2 ∗ q2 ≤ β2

0r1 ∗ q1 + 0r1 ∗ q2 + 1r2 ∗ q1 + 0r2 ∗ q2 ≤ β3

0r1 ∗ q1 + 1r1 ∗ q2 + 0r2 ∗ q1 + 0r2 ∗ q2 ≤ β3

1r1 ∗ p1 + 0r1 ∗ p2 + 0r2 ∗ p1 + 0r2 ∗ p2 ≤ β1

0r1 ∗ p1 + 0r1 ∗ p2 + 0r2 ∗ p1 + 1r2 ∗ p2 ≤ β1

0r1 ∗ p1 + 0r1 ∗ p2 + 1r2 ∗ p1 + 0r2 ∗ p2 ≤ β3

0r1 ∗ p1 + 1r1 ∗ p2 + 0r2 ∗ p1 + 0r2 ∗ p2 ≤ β3

p1 + p2 = 1, q1 + q2 = 1, r1 + r2 = 1

p1, p2, q1, q2, r1, r2 ≥ 0.
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Solving P gives a maximum 0 with p∗1 = p
∗
2 = q

∗
1 = q∗2 = r∗1 = r∗2 = 0.5, as well as β∗1 = β∗2 = β∗3 =

0.25. Note that the GE in this example coincidentally is an NE.

2.5.3 Example 3

We now present a third example in which there is no MBE for the game. The analysis is identical

to the analysis of example 2. Thus, the maximum of P is negative for any feasible solution.

Table 2.3: Example 3.

r1 q1 q2 r2 q1 q2
p1 (1,2,1) (1,1,1) p1 (1,1,2) (2,1,1)

p2 (2,1,1) (1,1,2) p2 (1,1,1) (1,2,1)

We write P for finding a GE, as we did in Example 2, where each player wants to maximize the

expected payoffs for all other players,

maximize
p,q,r,β

4p1q1r1 + 3p1q2r1 + 4p2q1r1

+ 4p2q2r1 + 4p1q1r2 + 4p1q2r2 + 3p2q1r2 + 4p2q2r2 − β1 − β2 − β3

subject to

1p1 ∗ q1 + 1p1 ∗ q2 + 2p2 ∗ q1 + 1p2 ∗ q2 ≤ β1

1p1 ∗ q1 + 2p1 ∗ q2 + 1p2 ∗ q1 + 1p2 ∗ q2 ≤ β1

2p1 ∗ q1 + 1p1 ∗ q2 + 1p2 ∗ q1 + 1p2 ∗ q2 ≤ β2

1p1 ∗ q1 + 1p1 ∗ q2 + 1p2 ∗ q1 + 2p2 ∗ q2 ≤ β2

2r1 ∗ q1 + 1r1 ∗ q2 + 1r2 ∗ q1 + 1r2 ∗ q2 ≤ β2

1r1 ∗ q1 + 1r1 ∗ q2 + 1r2 ∗ q1 + 2r2 ∗ q2 ≤ β2

1r1 ∗ q1 + 1r1 ∗ q2 + 2r2 ∗ q1 + 1r2 ∗ q2 ≤ β3

1r1 ∗ q1 + 2r1 ∗ q2 + 1r2 ∗ q1 + 1r2 ∗ q2 ≤ β3

1r1 ∗ p1 + 2r1 ∗ p2 + 1r2 ∗ p1 + 1r2 ∗ p2 ≤ β1

1r1 ∗ p1 + 1r1 ∗ p2 + 2r2 ∗ p1 + 1r2 ∗ p2 ≤ β1

1r1 ∗ p1 + 1r1 ∗ p2 + 2r2 ∗ p1 + 1r2 ∗ p2 ≤ β3

1r1 ∗ p1 + 2r1 ∗ p2 + 1r2 ∗ p1 + 1r2 ∗ p2 ≤ β3

p1 + p2 = 1, q1 + q2 = 1, r1 + r2 = 1

p1, p2, q1, q2, r1, r2 ≥ 0.

Solving P gives a maximum 0 with p∗1 = 1, p∗2 = 0, q∗1 = 1, q∗2 = 0, r∗1 = 1, r∗2 = 0, as well as
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β∗1 = 1, β∗2 = 2, β∗3 = 1, which is not an NE. An NE can be obtained by solving.

maximize
p,q,r,β

4p1q1r1 + 3p1q2r1 + 4p2q1r1

4p2q2r1 + 4p1q1r2 + 4p1q2r2 + 3p2q1r2 + 4p2q2r2 − β1 − β2 − β3

subject to

1q1 ∗ r1 + 1q2 ∗ r1 + 1q1 ∗ r2 + 2q2 ∗ r2 ≤ β1

2q1 ∗ r1 + 1q2 ∗ r1 + 1q1 ∗ r2 + 1q2 ∗ r2 ≤ β1

2p1 ∗ r1 + 1p2 ∗ r1 + 1p1 ∗ r2 + 1p2 ∗ r2 ≤ β2

1p1 ∗ r1 + 1p2 ∗ r1 + 1p1 ∗ r2 + 2p2 ∗ r2 ≤ β2

1p1 ∗ q1 + 1p2 ∗ q1 + 1p1 ∗ q2 + 2p2 ∗ q2 ≤ β3

2p1 ∗ q1 + 1p2 ∗ q1 + 1p1 ∗ q2 + 1p2 ∗ q2 ≤ β3

p1 + p2 = 1, q1 + q2 = 1, r1 + r2 = 1

p1 ≥ 0, p2 ≥ 0, q1 ≥ 0, q2 ≥ 0, r1 ≥ 0, r2 ≥ 0.

Solving P gives a maximum 0 with p∗1 = 0, p∗2 = 1, q∗1 = 0.68, q∗2 = 0.32, r∗1 = 1, r∗2 = 0, as well as

β∗1 = 1.68, β∗2 = 1, β∗3 = 1.32.

2.6 Conclusion

A generalized equilibrium (GE ) for finite n−person normal form games has been defined here as a

collection of mixed strategies such that each player in some subset B of all players cannot achieve

a better expected payoff if players in an associated proper subset of all players G change their

strategies unilaterally. Special cases of GE include the NE and the MBE. We have also developed

a nonlinear program that determines whether a GE exists and obtains one if so.
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Abstract

The mixed Berge equilibrium (MBE) is an extension of the Berge equilibrium (BE) to mixed

strategies. The MBE models mutual support in a k-person noncooperative game in normal form.

An MBE is a mixed-strategy profile for the k players in which every k − 1 players have mixed

strategies that maximize the expected payoff for the remaining player equilibrium strategy. In this

paper, we study the computational complexity of the existence of an MBE in a k-person normal

form game. For a 2-person game, an MBE always exists and the problem of finding an MBE is

PPAD-complete. In contrast to the mixed Nash equilibrium (NE), the MBE is not guaranteed

to exist in games with 3 or more players. Here we prove that determining if an MBE exists in a

k ≥ 3-person normal-form game is an NP-complete decision problem.
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3.1 Introduction

The Nash equilibrium (NE) is a solution concept in game theory introduced by [1], who used fixed-

point theorems to prove that an NE always exists for a finite normal-form game. The computational

complexity of finding an NE in normal-form games has been extensively studied. [2] introduced the

class Polynomial Parity Arguments on Directed graphs (PPAD). The problem of finding an NE in

2 or 3-person games is shown to be PPAD-complete by [3], [4], [5], and [6]. NP-completeness has

been established for more restricted games. For example, [7] showed the problem of determining

whether an NE exists with certain natural properties is NP-complete. [8] showed the problem of

deciding whether (0,1) bimatrix games has more than one NE is NP-complete.

On the other hand, the computational complexity for other solution concepts for noncooperative

games is less well developed. In particular, we consider here the mixed Berge equilibrium (MBE),

which is a mixed-strategy extension of the Berge equilibrium (BE) defined intuitively by [9] as

a refinement for the pure NE. The BE was formally developed by [10]. For more on the Berge

equilibrium, see [11] and [12]. [13] developed polynomial-time algorithm to find all Berge equilibria

in a k−person normal form game. [14] extended the BE, a pure-strategy concept, to a mixed Berge

equilibrium in k-person normal-form games and proved that the MBE may not exist for k ≥ 3. He

also related the NE to the MBE.

The organization of this paper is as follows. In Section 2, we summarize the required notation.

In Section 3, we introduce a reduction from any k-SAT instance, with k ≥ 3, to a k-person game.

In Section 4, we prove that for 3 or more players the problem of finding an MBE is NP-complete,

as opposed to the 2 players case where finding an MBE is a PPAD-complete problem.

3.2 Preliminaries

The following notation is used. Let Γ = (I, (Sp)p∈I , (up)p∈I) be a k-person normal-form game. The

set I = {1, . . . , k} is the set of the k players. Sp is the finite set of the pure strategies available for

player p. Let σp(sp) be the probability that player p chooses the strategy sp ∈ Sp. A mixed strategy

for player p is given by the probability distribution σp, where

∑
sp∈Sp

σp(sp) = 1,

and σp(sp) ≥ 0,∀sp ∈ Sp. Define the set of mixed strategies for player p by △Sp.

Let S−p be the set of pure-strategy profiles for all players other than player p. Similarly, let

S−p−q be the set of pure-strategy profiles for all players other than players p, q. The joint probability

σ−p(s−p) is the probability that all the players other than player p choose the joint pure strategy

s−p. It is the product of the probability that each player in I−p choosing his corresponding strategy.

Note that

∑
s−p∈S−p

σ−p(s−p) = 1,

26



and σ−p(s−p) ≥ 0,∀s−p ∈ S−p. A mixed-strategy profile is the k−tuple σ = (σ1, . . . ,σk) of the mixed

strategies for the k−players. The utility function ui ∶ S → R assigns each player a payoff for each

of the pure strategies. The support for player p′s mixed strategy σp, denoted by suppp(σp) =

{sp ∈ Sp∣σp(sp) > 0} , is the set of player p′s strategies that has a positive probability in the mixed

strategy σp. The same definition applies for −p and −p − q.

The following identities were given by [14] and represent the expected payoff for player p. When

player p′s mixed strategy is σp and the mixed strategy for the remaining players is σ−p, then the

expected payoff for player p is

up(σ) = up(σp,σ−p) = ∑
sp∈Sp

∑
s−p∈S−p

σp(sp)σ−p(s−p)up(sp,s−p). (3.1)

When player p′s mixed strategy is σp and the pure strategy for the remaining players is s−p, then

the expected payoff for player p is

up(σp,s−p) = ∑
sp∈Sp

σp(sp)up(sp,s−p).

With this notation, the mixed Berge equilibrium is now defined.

Definition 3.1. The strategy profile σ∗ is an MBE for Γ if and only if

up(σ
∗
) = max

σ−p∈△S−p
up(σ

∗

p,σ−p), ∀p ∈ I.

The decision problem of this paper is now stated as follows.

Definition 3.2. Given a k-person normal-form game, is there a mixed-strategy profile σ∗ satisfying

Definition 3.1?

It should be noted that for a σ∗ to be an MBE, the I−p players strategies should maximize that

expected payoff for player p′s mixed strategy σp. The following alternative definition was proved

in [14].

Lemma 3.1. The strategy profile σ∗ is an MBE for Γ if and only if

up(σ
∗
) = max

s−p∈S−p
up(σ

∗,s−p), ∀p ∈ I.

Lemma 3.2. The mixed strategy σ∗ is an MBE for Γ if and only if for each s−p ∈ S−p with

σ∗−p(s−p) > 0, then up(σ
∗

p,s−p) = maxs−p∈S−p up(σ∗,s−p), ∀p ∈ I.

Proof. The sufficiency is first established. Suppose that for each s−p ∈ S−p, if σ∗−p(s−p) > 0, then

up(σ
∗

p,s−p) = max
s−p∈S−p

up(σ
∗,s−p), ∀p ∈ I.
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Therefore,

up(σ
∗
) = max

σ−p∈△S−p
up(σ

∗

p,σ−p), ∀p ∈ I.

Hence σ∗ is an MBE by Definition 3.1.

Conversely, let σ∗ be an MBE. By Lemma 3.1

up(σ
∗
) = max

s−p∈S−p
up(σ

∗,s−p), ∀p ∈ I.

However, by (4.2)

up(σ
∗
) = up(σ

∗

p,σ
∗

−p) = ∑
sp∈Sp

∑
s−p∈S−p

σ∗p(sp)σ
∗
−p(s−p)up(sp,s−p).

But if σ∗−p(s−p) > 0, then

up(σ
∗

p,s−p) = max
s−p∈S−p

up(σ
∗

p,s−p), ∀p ∈ I.

Otherwise, σ∗ is not an MBE by Definition 3.1 to complete the proof.

3.3 Reduction

In this section, we develop a reduction from any instance of the k-SAT problem in normal conjunc-

tive form, with k ≥ 3, to a k-person normal-form game. The reduction will be used in Section 4 in

the proof of the NP-completeness of finding an MBE in normal-form k-person games with k ≥ 3.

The k-SAT problem in the conjunctive normal-form consists of a finite number m of clauses.

Each clause consists of exactly k boolean variables called literals or negations of literals. Either

the literal l or its negation ¬l is True. The negation of the negation of a literal is the literal itself

¬¬l = l. Define ¬C to be the negation of each of the k literals in clause C; i.e., assign a True value

for each negation of the k literals in clause C. The k-SAT problem determines whether there is a

truth assignment (True or False) for each of the literals such that all clauses are True.

Definition 3.3. A satisfiable assignment for a k-SAT instance is a truth assignment for all the

literals such that all clauses are True; that is, C1 ∧ . . . ∧Cm = True.

A k-SAT instance can be reduced to a k-person game called here the literal game Γl. We assume,

without a loss of generality, that the m clauses are combinations of literals or negations of literals

indexed 1,2, . . . ,N. Let Sp = {l1,¬l1, l2,¬l2, . . . , lN ,¬lN} , p = 1, . . . , k, be the set of the 2N pure

strategies available for the k players. Each literal and negation of a literal represent a pure strategy

for each of the players. A literal in the support of a mixed strategy of a player means assigning a

True value to that literal. Each literal and its negation have the same index. For example, l1 and

¬l1 have the same index 1. Define ip to be the index of the literal that represents player p′s pure

strategy sp. In this paper, we ignore the clauses that have both a literal and the negation of that
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literal since such a clause is satisfied no matter how the True values are assigned to the literals.

In a 3-SAT instance, for example, the clause (l1 ∨ l2 ∨ ¬l1) is True for any truth assignment. We

assume that N > 1, because if N = 1, then all the k literals in the m clauses will be l1 or ¬l1, which

is a trivial case.

Definition 3.4. We assign each player a payoff for all strategies s = (s1, . . . , sk) ∈ S using the

following method. If s = ¬Cd, d = 1, . . . ,m, or if any player’s strategy is a negation of any other

player’s strategy, then at least one player gets a payoff 0 as follows.

1. If the player p − 1 is odd-numbered and his strategy is a literal, then player p gets a payoff 0.

2. If the player p − 1 is even-numbered and his strategy is a negation of a literal, then player p

gets a payoff 0.

3. If all even-numbered players’ strategies are literals and all the odd-numbered players’ strategies

are negations of literals, then all players get a payoff 0.

For all other payoffs, let uinitial = (N,1,N,1, . . . ,N) if k is odd, and uinitial = (N,1,N,1, . . . ,1) if

k is even. Let u(s) = uinitial+((i1−1)+⋅ ⋅ ⋅+(ik −1))(1, . . . ,1). Therefore for any strategy s, to get

the payoffs for k players, add a k−vector of 1′s to the initial payoff vector for ((i1−1)+⋅ ⋅ ⋅+(ik−1))

times such that N + 1 = 1. Note that player p′s payoff is the pth element in the vector u(s).

Remarks 3.1, 3.2, and 3.3 follow immediately from Definition 3.4.

Remark 3.1. For any pure-strategy profile s, up(s) = r if p is an odd-numbered player and up(s) =

r + 1 if p is even-numbered player, where r = ((i1 − 1) + (i2 − 1) + ⋅ ⋅ ⋅ + (ik − 1)) modulo N. When

r = 0, then r is updated to N.

Remark 3.2. Whenever each odd-numbered player gets a payoff N, each even-numbered player

gets a payoff 1. Whenever each even-numbered player gets a payoff N, each odd-numbered player

gets a payoff N − 1.

Remark 3.3. For any player p, there exists a pure strategy s−p such that up(sp,s−p) > 0,∀sp ∈ Sp.

Furthermore, for any sp ∈ Sp, there exists a pure strategy s−p such that up(sp,s−p) = a for any

a = 1, . . . ,N.

3.4 Computational complexity of the mixed Berge equilibrium

In this section, we study the computational complexity of the existence of an MBE in a k-person

normal-form game. For k = 2, the complexity of finding an MBE is easily shown to be PPAD-

complete. [14] showed that for k = 2, there is a one-to-one correspondence between an MBE and a

corresponding NE by simply interchanging the payoffs. Hence, finding an MBE is computationally

equivalent to finding an NE, a problem that [6] showed was PPAD-complete. Thus the following

remark follows immediately.
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Remark 3.4. For k = 2, finding an MBE is PPAD-complete.

The proof of the NP-completeness of finding an MBE in a k-person normal-form game with

k ≥ 3 is based on the conventional approach of [15]. We first prove that the finding an MBE for

k ≥ 3 is in NP.

Theorem 3.1. Let k ≥ 3, the problem of finding an MBE in k-person games is in NP.

Proof. Let σ∗ be a strategy profile. From Definition 3.1, σ∗ is an MBE for Γ if and only if

up(σ
∗
) = max

s−p∈S−p
up(σ

∗

p,s−p),∀p ∈ I. (3.2)

The equations (3.2) clearly can be checked in polynomial time, so finding an MBE in k-person

games with k ≥ 3 is in NP.

We now establish a sequence of lemmas to show that an MBE for a k-person game reduced

from any k-SAT instance is a satisfactory assignment for the k-SAT problem. We also show that

any satisfactory assignment for a k-SAT instance is an MBE for the reduced k-person game.

Lemma 3.3. Let σ∗ be an MBE for Γl, if σ∗p(sp) > 0 and up(sp,s−p) = 0, then σ∗−p(s−p) = 0.

Proof. Let σ∗ be an MBE. Suppose up(sp,s−p) = 0 and σ∗p(sp) > 0. By Remark 3.3 there exists a

strategy s
′

−p such that up(sp,s
′

−p) > 0,∀sp ∈ Sp. Therefore, up(σ
∗

p,s
′

−p) > up(σ
∗

p,s−p). However, for

σ∗ to be an MBE, up(σ
∗

p) = maxs−p∈S−p up(σ∗,s−p), ∀p ∈ I, and σ∗−p(s−p) = 0 by Lemma 3.2.

Lemma 3.4. For σ∗ to be an MBE for Γl, if li ∈ suppp(σ
∗

p) for some i = 1, . . . ,N, then ¬li ∉

suppq(σ
∗

q) for any q ∈ I − p.

Proof. From Definition 3.4, at least one player gets a payoff 0 if the strategy of any player is a

negation of any other player’s strategy no matter what other players’ strategies are. Hence by

Lemma 3.3, in order for σ∗ to be an MBE for Γl, we have either a literal or a negation of a literal

– but not both – in suppp(σ
∗

p) and suppq(σ
∗

q) for any p, q ∈ I.

Lemma 3.5. Let σ∗ be an MBE for Γl, then no player chooses just one pure strategy and hence

there is no pure BE, except for the trivial case where N = 1.

Proof. Let σ∗ be an MBE for Γl. If any player p chooses one pure strategy, then by Remark 3.3,

up(σ
∗) = maxs−p∈S−p up(σ∗

p,s−p) = N. On the other hand, also by Remark 3.3, players I − p must

choose a pure strategy such that p gets a payoff N, but from Remark 3.2 there is no strategy such

that all odd-numbered and even-numbered players get a payoff N except when N = 1. Therefore,

there exists a player q where

uq(σ
∗
) ≠ max

s−q∈S−q
uq(σ

∗

q ,s−q) = N. (3.3)

Hence σ∗ is not an MBE as a contradictory result.
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Lemma 3.6. If σ∗ is an MBE for Γl, then σ∗p(sp) = σ∗p(s
′

p) for any sp, s
′

p with different indices

such that sp, s
′

p ∈ suppp(σ
∗

p).

Proof. Let σ∗ be an MBE for Γl. Suppose player p chooses some strategies with non-equal positive

probabilities. Therefore there exists sp, s
′

p ∈ suppp(σ
∗

p) such that σ∗p(sp) > σ∗p(s
′

p). Hence by Def-

inition 3.1 up(sp,s−p) > up(s
′

p,s−p),∀s−p ∈ supp−p(σ∗

−p). Pick q to be any even-numbered player

if p is an odd-numbered player and vice versa. Remark 3.2 implies that uq(s
′

p,σ
∗

−p) > uq(sp,σ
∗

−p).

Hence by Definition 3.1 sp ∉ suppp(σ
∗

p) to yield a contradiction.

We have established that for σ∗ to be an MBE, each player p′s strategies in the support of σ∗

p

have an equal probability. We next show that each player chooses N strategies, in which case if

σ∗ is an MBE, then each player assigns a literal or its negation a probability of 1
N . The intuition

behind our proof is that in an MBE (or any equilibrium) each player chooses a strategy that makes

the other players indifferent about which strategies they use.

Lemma 3.7. If σ∗ is an MBE for Γl, then for i = 1, . . . ,N,∀p ∈ I, either

σ∗p(li) =
1

N
and σ∗p(¬li) = 0 (3.4)

or

σ∗p(li) = 0 and σ∗p(¬li) =
1

N
. (3.5)

Hence each player chooses the same literals or negations of literals with a 1
N probability.

Proof. Let σ∗ be an MBE for Γl. Suppose player q is any even-numbered player and he chooses

a strategy such that for some i = 1,2, . . . ,N, both +li,¬li ∉ suppq(σ
∗

q). Hence for any s−q ∈

supp−q(σ∗

−q), uq(+li,s−q) = 1 and uq(¬li,s−q) = 1. Otherwise there exists a s−q that gives player q

a higher expected payoff for his strategy σ∗

q . But from Remark 3.2 any odd-numbered player p gets a

payoffN only when even-numbered players get a payoff 1. Therefore up(σ
∗) ≠ maxs−p∈S−p up(σ∗

p,s−p),

a result that means σ∗ is not an MBE to give a contradiction. The same argument applies if q is

an odd-numbered player and p is an even-numbered player.

From Lemma 3.4, on the other hand, if σ∗ is an MBE, then no two players choose a literal

and the negation of that literal with a positive probability. Hence each player chooses with equal

probability the same N strategies from the 2N strategies of Sp defined following Definition 3.3.

Therefore either (3.4) or (3.5) holds since each player chooses either li or ¬li, i = 1, . . . ,N with a 1
N

probability.

Theorem 3.2. For k ≥ 3, a k-SAT instance is satisfiable if and only if there is an MBE for the

reduced k-person game Γl. Therefore, finding an MBE for k ≥ 3-person games is NP-hard.

Proof. Let σ∗ be an MBE for Γl. From Lemma 3.6 and Lemma 3.7 each player chooses the same N

literals or negations of literals with a probability 1
N . Furthermore, σ∗ is an MBE. Hence by Lemma

3.3 no player gets a payoff 0 for any strategy chosen with a positive probability. It follows that
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no strategy in the support of the k players is a negation of any clause and k-SAT is satisfiable.

On the other hand, suppose there is no MBE for the reduced game and every player chooses the

same strategies with a probability 1
N , then there exists at least one p ∈ I such that for any strategy

profile σ

up(σ) ≠ max
s−p∈S−p

up(σp,s−p).

Hence for at least one strategy that is chosen with a positive probability by the k players, player

p gets a payoff 0. Therefore, all strategies result in at least one unsatisfied clause, so there is no

satisfiable truth assignment for the k-SAT instance.

Conversely, any satisfiable truth assignment guarantees that all clauses are True. Moreover,

only the literal or its negation is assigned a True value. Hence, to obtain an MBE the literals or

negations of literals that are True can be assigned a probability 1
N , and

up(σ
∗
) = max

s−p∈S−p
up(σ

∗

p,s−p) =
1

N
(1 + ⋅ ⋅ ⋅ +N) =

N + 1

2
,∀p ∈ I.

Therefore σ∗ is an MBE for Γl.

Lemma 3.8. For k ≥ 3, any instance of the k-SAT problem can be reduced to a k-person game in

polynomial time in respect to the input.

Proof. Any instance of the k-SAT problem with m clauses has a size of km. Since each player has

2N strategies, it is clear to see that m ≤ (2N)k. Furthermore, N ≤ km. For the reduction to a

k-person game we check (2N)k cases and compare them with the m clauses and for each case there

are k(k−12 ) steps to check if any two players strategies’ are negations of each other. Hence for any

k-SAT problem the reduction has a time complexity of O((2N)2k), but N ≤ km so the reduction

can be done in O((2km))2k. However, k is a constant for any k-SAT problem and does not change

among instances where the size of an instance changes only with m. Thus a k-SAT instance is

reducible to a k-person game in polynomial time with respect to the input.

Theorem 3.3. For k ≥ 3, the decision problem of finding an MBE is NP-complete.

Proof. The problem is in NP by Theorem 3.1. Moreover, by Theorem 3.2 and Lemma 3.8, the

problem is NP-hard. Hence it is NP-complete.

Theorem 3.3 obviously refers to the worst-case scenario since a problem with a pure BE may

be solvable in polynomial time as shown in [13].

Example 1. Consider the following 3-SAT instance consisting of 2 clauses: (l1 ∨ l2 ∨ l3) ∧ (¬l1 ∨

¬l2 ∨ ¬l3). In this example, S1 = S2 = S3 = {l1,¬l1, l2,¬l2, l3,¬l3} . The payoffs for the three players

are shown in Table 3.1.

An MBE can be attained by assigning a probability 1
3 for any combination of the literals and

negations of literals such that not all literals nor all negations of literals have a positive probability.
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For example, one MBE is,

σp(¬l1) = σp(l2) = σp(l3) =
1

3
, p = 1,2,3

and

up(σ
∗
) = 2, p = 1,2,3.

Hence, l1 = False, l2 = l3 = True, which represents a satisfiable assignment for the 3−SAT instance.
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Table 3.1: Example 1

l1 l1 ¬l1 l2 ¬l2 l3 ¬l3

l1 (3,1,3) (0,0,0) (1,2,1) (1,2,1) (2,3,2) (2,3,2)

¬l1 (3,0,0) (3,0,3) (1,0,0) (1,0,1) (2,0,0) (2,0,2)

l2 (1,2,1) (0,0,0) (2,3,2) (0,0,0) (3,1,0) (3,1,3)

¬l2 (1,2,1) (1,0,1) (2,0,0) (2,3,2) (3,1,3) (3,1,3)

l3 (2,3,2) (0,0,0) (3,1,0) (3,1,3) (1,2,1) (0,0,0)

¬l3 (2,3,2) (2,0,2) (3,1,3) (3,1,3) (1,0,0) (1,2,1)

¬l1 l1 ¬l1 l2 ¬l2 l3 ¬l3

l1 (0,1,0) (0,1,3) (0,2,0) (0,2,1) (0,3,0) (0,3,2)

¬l1 (0,0,0) (3,1,3) (1,2,1) (1,2,1) (2,3,2) (2,3,2)

l2 (0,2,0) (1,2,1) (2,3,2) (0,3,2) (3,1,3) (3,1,3)

¬l2 (0,0,0) (1,2,1) (0,0,0) (2,3,2) (3,1,3) (0,0,3)

l3 (0,3,0) (2,3,2) (3,1,3) (3,1,3) (1,2,1) (0,2,1)

¬l3 (0,0,0) (2,3,2) (3,1,3) (0,0,3) (0,0,0) (1,2,1)

l2 l1 ¬l1 l2 ¬l2 l3 ¬l3

l1 (1,2,1) (0,0,0) (2,3,2) (0,0,0) (3,1,0) (3,1,3)

¬l1 (1,0,0) (1,2,1) (2,3,2) (2,0,2) (3,1,3) (3,1,3)

l2 (2,3,2) (2,3,2) (3,1,3) (0,0,0) (1,2,1) (1,2,1)

¬l2 (2,0,0) (2,0,2) (3,0,0) (3,0,3) (1,0,0) (1,0,1)

l3 (3,1,0) (3,1,3) (1,2,1) (0,0,0) (2,3,2) (0,0,0)

¬l3 (3,1,3) (3,1,3) (1,2,1) (1,0,1) (2,0,0) (2,3,2)

¬l2 l1 ¬l1 l2 ¬l2 l3 ¬l3

l1 (1,2,1) (0,2,1) (0,3,0) (2,3,2) (3,1,3) (3,1,3)

¬l1 (0,0,0) (1,2,1) (0,0,0) (2,3,2) (3,1,3) (0,0,3)

l2 (0,3,0) (0,3,2) (0,1,0) (0,1,3) (0,2,0) (0,2,1)

¬l2 (2,3,2) (2,3,2) (0,0,0) (3,1,3) (1,2,1) (1,2,1)

l3 (3,1,3) (3,1,3) (0,2,0) (1,2,1) (2,3,2) (0,3,2)

¬l3 (3,1,3) (0,0,3) (0,0,0) (1,2,1) (0,0,0) (2,3,2)

l3 l1 ¬l1 l2 ¬l2 l3 ¬l3

l1 (2,3,2) (0,0,0) (3,1,0) (3,1,3) (1,2,1) (0,0,0)

¬l1 (2,0,0) (2,3,2) (3,1,3) (3,1,3) (1,2,1) (1,0,1)

l2 (3,1,0) (3,1,3) (1,2,1) (0,0,0) (2,3,2) (0,0,0)

¬l2 (3,1,3) (3,1,3) (1,0,0) (1,2,1) (2,3,2) (2,0,2)

l3 (1,2,1) (1,2,1) (2,3,2) (2,3,2) (3,1,3) (0,0,0)

¬l3 (1,0,0) (1,0,1) (2,0,0) (2,0,2) (3,0,0) (3,0,3)
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Table 3.1: Example 1

¬l3 l1 ¬l1 l2 ¬l2 l3 ¬l3

l1 (2,3,2) (0,3,2) (3,1,3) (3,1,3) (0,2,0) (1,2,1)

¬l1 (0,0,0) (2,3,2) (3,1,3) (0,0,3) (0,0,0) (1,2,1)

l2 (3,1,3) (3,1,3) (1,2,1) (0,2,1) (0,3,0) (2,3,2)

¬l2 (3,1,3) (0,0,3) (0,0,0) (1,2,1) (0,0,0) (2,3,2)

l3 (0,2,0) (0,2,1) (0,3,0) (0,3,2) (0,1,0) (0,1,3)

¬l3 (1,2,1) (1,2,1) (2,3,2) (2,3,2) (0,0,0) (3,1,3)

Example 2. Consider the following 3-SAT instance consisting of 8 clauses:

(l1 ∨ l2 ∨ l3) ∧ (l1 ∨ l2 ∨ ¬l3) ∧ (l1 ∨ ¬l2 ∨ l3) ∧ (l1 ∨ ¬l2 ∨ ¬l3)∧

(¬l1 ∨ l2 ∨ l3) ∧ (¬l1 ∨ l2 ∨ ¬l3) ∧ (¬l1 ∨ ¬l2 ∨ l3) ∧ (¬l1 ∨ ¬l2 ∨ ¬l3).

There is no satisfiable assignment for the 3-SAT instance since making any of the clauses True

would make one of the other clauses False.

In the reduced game shown in Table 3.2, S1 = S2 = S3 = {l1,¬l1, l2,¬l2, l3,¬l3} . Note that

assigning positive probabilities for any combination of the three literals 1,2, and 3 or their negations,

results in at least one of the players getting a payoff 0 for some strategy s that has a positive

probability. Therefore,

up(σ
∗
) = max

s−p∈S−p
up(σ

∗,s−p), ∀p ∈ I,

for at least one of the three players. Hence there is no MBE by Lemma 3.1.
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Table 3.2: Example 2

l1 l1 ¬l1 l2 ¬l2 l3 ¬l3

l1 (3,1,3) (0,0,0) (1,2,1) (1,2,1) (2,3,2) (2,3,2)

¬l1 (3,0,0) (3,0,3) (1,0,0) (1,0,1) (2,0,0) (2,0,2)

l2 (1,2,1) (0,0,0) (2,3,2) (0,0,0) (3,1,0) (0,0,0)

¬l2 (1,2,1) (1,0,1) (2,0,0) (2,3,2) (3,0,0) (3,0,3)

l3 (2,3,2) (0,0,0) (3,1,0) (0,0,0) (1,2,1) (0,0,0)

¬l3 (2,3,2) (2,0,2) (3,0,0) (3,0,3) (1,0,0) (1,2,1)

¬l1 l1 ¬l1 l2 ¬l2 l3 ¬l3

l1 (0,1,0) (0,1,3) (0,2,0) (0,2,1) (0,3,0) (0,3,2)

¬l1 (0,0,0) (3,1,3) (1,2,1) (1,2,1) (2,3,2) (2,3,2)

l2 (0,2,0) (1,2,1) (2,3,2) (0,3,2) (0,1,0) (0,1,3)

¬l2 (0,0,0) (1,2,1) (0,0,0) (2,3,2) (0,0,0) (0,0,3)

l3 (0,3,0) (2,3,2) (0,1,0) (0,1,3) (1,2,1) (0,2,1)

¬l3 (0,0,0) (2,3,2) (0,0,0) (0,0,3) (0,0,0) (1,2,1)

l2 l1 ¬l1 l2 ¬l2 l3 ¬l3

l1 (1,2,1) (0,0,0) (2,3,2) (0,0,0) (3,1,0) (0,0,0)

¬l1 (1,0,0) (1,2,1) (2,3,2) (2,0,2) (3,0,0) (3,0,3)

l2 (2,3,2) (2,3,2) (3,1,3) (0,0,0) (1,2,1) (1,2,1)

¬l2 (2,0,0) (2,0,2) (3,0,0) (3,0,3) (1,0,0) (1,0,1)

l3 (3,1,0) (0,0,0) (1,2,1) (0,0,0) (2,3,2) (0,0,0)

¬l3 (3,0,0) (3,0,3) (1,2,1) (1,0,1) (2,0,0) (2,3,2)

¬l2 l1 ¬l1 l2 ¬l2 l3 ¬l3

l1 (1,2,1) (0,2,1) (0,3,0) (2,3,2) (0,1,0) (0,1,3)

¬l1 (0,0,0) (1,2,1) (0,0,0) (2,3,2) (0,0,0) (0,0,3)

l2 (0,3,0) (0,3,2) (0,1,0) (0,1,3) (0,2,0) (0,2,1)

¬l2 (2,3,2) (2,3,2) (0,0,0) (3,1,3) (1,2,1) (1,2,1)

l3 (0,1,0) (0,1,3) (0,2,0) (1,2,1) (2,3,2) (0,3,2)

¬l3 (0,0,0) (0,0,3) (0,0,0) (1,2,1) (0,0,0) (2,3,2)

l3 l1 ¬l1 l2 ¬l2 l3 ¬l3

l1 (2,3,2) (0,0,0) (3,1,0) (0,0,0) (1,2,1) (0,0,0)

¬l1 (2,0,0) (2,3,2) (3,0,0) (3,0,3) (1,2,1) (1,0,1)

l2 (3,1,0) (0,0,0) (1,2,1) (0,0,0) (2,3,2) (0,0,0)

¬l2 (3,0,0) (3,0,3) (1,0,0) (1,2,1) (2,3,2) (2,0,2)

l3 (1,2,1) (1,2,1) (2,3,2) (2,3,2) (3,1,3) (0,0,0)

¬l3 (1,0,0) (1,0,1) (2,0,0) (2,0,2) (3,0,0) (3,0,3)
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Table 3.2: Example 2

¬l3 l1 ¬l1 l2 ¬l2 l3 ¬l3

l1 (2,3,2) (0,3,2) (0,1,0) (0,1,3) (0,2,0) (1,2,1)

¬l1 (0,0,0) (2,3,2) (0,0,0) (0,0,3) (0,0,0) (1,2,1)

l2 (0,1,0) (0,1,3) (1,2,1) (0,2,1) (0,3,0) (2,3,2)

¬l2 (0,0,0) (0,0,3) (0,0,0) (1,2,1) (0,0,0) (2,3,2)

l3 (0,2,0) (0,2,1) (0,3,0) (0,3,2) (0,1,0) (0,1,3)

¬l3 (1,2,1) (1,2,1) (2,3,2) (2,3,2) (0,0,0) (3,1,3)

3.5 Conclusion

The MBE extends the BE to mixed strategies. In this paper, we study the computational complexity

of finding an MBE for a k-person normal-form game. For a 2-person normal-form game, an MBE

always exists, and the problem of finding an MBE is PPAD-complete. The MBE may not exist for

games with k ≥ 3 players. However, we proved in this paper that the problem of finding an MBE in

k ≥ 3-person normal-form games is an NP-complete problem. In other words, if in the worst-case

scenario there exists a polynomial-time algorithm that finds an MBE, then P=NP. The proof of

the NP-completeness was based on a polynomial-time reduction from the k-SAT problem.
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Abstract

In this paper we give an interpretation of mixed strategies in normal form games via resource

allocation games. We define a game in normal form such that each player allocates to each of his

pure strategies a fraction of the maximum resource he has available. However, the total amount

he allocates does not necessarily equal to his maximum resource. The payoff functions in the

resource allocation games vary with how each player allocates his resource. We prove that a Nash

equilibrium always exists in mixed strategies for n−person resource allocation games. On the other

hand, we show that a mixed Berge equilibrium may not exist in such games.

40



4.1 Introduction

Game theory is the study of mathematical decision making among multiple players. Each player

makes an individual choice according to his notion of rationality and to his expectations of the

other players’ choices. The concept of the Nash equilibrium (NE) was introduced in [1] and [2].

The proof of the existence was based on the Kakutani and the Brouwer fixed point theorems [3].

Another solution concept, the Berge equilibrium, was introduced in [4] and formalized by [5]. A

strategy is considered to be a Berge equilibrium if all players other than player i cannot increase

the expected payoff for player i by changing their strategy. The Berge equilibrium was extended

to mixed strategies in [6], where it was also shown that a mixed Berge equilibrium may not exist.

The computation of equilibria points is an essential component of game theory research and

is well studied in literature. For example, a nonlinear programming approach to find an NE for

three player games was developed in [7] and for n−person games in [8]. The nonlinear programming

approach for finding an NE was extended in [9] to find a generalized equilibrium that includes the

case of an MBE.

The purpose of this paper is to deal with the difficulties associated with mixed strategies.

See [10] for an extensive literature review on the concept of mixed strategies, which require a

randomizing process as described in [11] and [12]. According to [13], randomization lacks behavioral

support. [14] gives two interpretations for mixed strategies. The first is based on the purification

theorem of [15]. Purification refers to how mixed strategies reflect the player’s lack of knowledge of

other players’ information and decision-making process. The second interpretation is that a mixed

strategy represents the fraction of a large population that adapts each of the pure strategies.

In this paper we construct resource allocation games (RAGs) such that the equilibria strategies

represent the fraction of a resource each player allocates to each of his pure strategies. In particular,

we consider the NE and the MBE. The purpose of RAGs is to give an interpretation of the concept

of mixed strategies. This interpretation is as follows. The probability that a player chooses a pure

strategy equals the fraction of the resource the player allocates to that pure strategy over the total

amount of the the resource the player allocates to all his pure strategies.

A related notion was studied in [16] for infinitely repeated noncooperative games played at

discrete instants called stages. The payoffs in [16] were linear in the frequency that they had been

played previously. Our approach differs significantly. For example, here a mixed strategy may or

may not maximize the payoff functions for each player.

The organization of this paper is as following. In Section 2 we present the notation used. In

Section 3 we prove the existence of an NE using Brouwer fixed point theorem. In Section 4 we

present a nonlinear program to find an NE analytically. In Section 5 we consider the case of the

MBE and present a nonlinear program to find one if one exists. In Section 6 we give some numerical

examples and show that an MBE may not exist. In Section 7 we state our conclusions.
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4.2 Preliminaries

In this section we define the notation used. Let the RAG Γ =< I, (Si)i∈I , (fi)i∈I > be an n−person

resource allocation game in normal form. The set I = 1, ..., n is the set of the n−players. Let Ri be

the resource available for player i and the n−tuple R = (R1, . . . ,Rn) represents the amount of the

resource each player has available. Define Rmini > 0 to be the minimum amount of the resource Ri

player i needs to allocate and αmini =
Rmin

i

Ri
. The set of the mi pure strategies available for player i

is Si = (s1i , . . . , s
mi
i ).

Each player player i allocates from his resource Ri the fraction αji to his pure strategy sji , j =

1, . . . ,mi. The set of all possible allocations for each player i is

△i =

⎧⎪⎪
⎨
⎪⎪⎩

αi = (α1
i , . . . , α

mi
i ) ∶ αji ≥ 0, j = 1, . . . ,mi, α

min
i ≤

mi

∑
j=1

αji ≤ 1

⎫⎪⎪
⎬
⎪⎪⎭

.

Note that △i is compact and convex for each player i ∈ I. Let △−i =△1×⋅ ⋅ ⋅△i−1×△i+1× ⋅ ⋅ ⋅×△n and

△ =△1×⋅ ⋅ ⋅×△n. The probability the player i chooses strategy sji is
αj
i

∑mi
j=1 α

j
i

. Hence A mixed strategy

for player i is the mi−tuple (
α1
i

∑mi
j=1 α

j
i

, . . . ,
α
mi
i

∑mi
j=1 α

j
i

), where αmini ≤ ∑
mi
j=1 α

j
i ≤ 1, and αji ≥ 0, j = 1, . . . ,mi.

A pure strategy j is an allocation αmini ≤ αji ≤ 1 where the player i allocates αji to his pure strategy j

and allocates 0 to the rest of his pure strategies. The payoff function for each player is f j,ki (α). Here

we have α = (α1, . . . ,αn) and α−i = (α1, . . . ,αi−1,αi+1, . . . ,αn). The payoff functions f j,ki (α), j =

1, . . . ,mi, k = 1, . . . ,m−i, are assumed to be continuous in αji ∈ [0,1], j = 1, . . . ,mi,∀i ∈ I.

The set of joint pure strategies of all players other than player i, is the Cartesian product of the

sets of pure strategies of all players other than player i, S−i = ×j∈I−{i}(Sj) and is denoted by S−i =

{s1−i, . . . , s
m−i
−i }, where m−i =∏j∈I−{i}mj . The joint probability αk−i =∏p∈I−{i}

αk
p

∑mp
j=1 α

j
p
, k = 1, . . . ,m−i

is the probability that all the players other than player i choose the joint pure strategy sk−i. It is

the product of the fraction that each player in I − {i} = {1, . . . , i − 1, i + 1, . . . , n} allocates to his

corresponding strategy.

We extend the identities proved in [6] to Γ. The following identities represent the expected

payoff for player i. If player i allocates αmini ≤ αji ≤ 1 to his strategy j and he allocates 0 to his

other pure strategies while the rest of players choose the allocation α−i is

F ji (α) =
m−i

∑
k=1

αk−if
j,k
i (α). (4.1)

If player i chooses the mixed allocation αi and the rest of players choose the allocation α−i, then

the expected payoff for player i is

Fi(α) =
mi

∑
j=1

m−i

∑
k=1

αji

∑
mi
j=1 α

j
i

αk−if
j,k
i (α). (4.2)

Table 4.1 shows an example of a 2−person RAG.
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Table 4.1: Example 1

s12 s22

s11 f1,11 (α1
1R1, α

1
2R2),f

1,1
2 (α1

1R1, α
1
2R2) f1,21 (α1

1R1, α
2
2R2),f

1,2
2 (α1

1R1, α
2
2R2)

s21 f2,11 (α2
1R1, α

1
2R2),f

2,1
2 (α2

1R1, α
1
2R2) f2,21 (α2

1R1, α
2
2R2),f

2,2
2 (α2

1R1, α
2
2R2)

In this paper, we consider the following two cases.

1. Case 1. Each player i allocates all of his resource Ri. In other words, ∑
mi
j=1 α

j
i = 1,∀i ∈ I. In

this case, each player i chooses strategy j with the probability αji .

2. Case 2. Each player i does not necessarily allocate all of his resource Ri. Hence αmini ≤

∑
mi
j=1 α

j
i ≤ 1,∀i ∈ I. In this case, each player i chooses strategy j with the probability

αj
i

∑mi
j=1 α

j
i

, j =

1, . . . ,mi.

Ri,∀i ∈ I, is considered fixed in these two cases. However, in the second case each player i may not

use all of his resource. Note that the first case is a special case of the second case. In particular if

Rmini = Ri, then the second case becomes the first case. We formalize this previous statement as

follows.

Lemma 4.1. ∀i ∈ I let Rmini = Ri. Then Case 1 and Case 2 are equivalent.

Proof. Let Rmini = Ri,∀i ∈ I. Hence αmini = 1 and ∑
mi
j=1 α

j
i = 1. It follows immediately that Case 2

reduces to Case 1.

4.3 Existence

In this section we prove the existence of an NE in Case 1 and Case 2 above. Hence we seek to find a

mixed strategy such that a player i chooses strategy j with a probability
αj
i

∑mi
j=1 α

j
i

, j = 1, . . . ,mi,∀i ∈ I.

We next restate the definition of an NE in terms of allocation.

Definition 4.1. (NE) A strategy α∗ is an NE if and only if

Fi(α
∗
) = max

j=1,...,mi

F ji (α
∗
),∀αi ∈△i,∀i ∈ I. (4.3)

In an NE for the game Γ, no player can improve his expected payoff with a unilateral change

in strategy, i.e., a unilateral reallocation of his previously allocated resource level.

In the following theorem, we prove the existence of an NE in a finite n−person Γ. It suffices to

prove the existence for case 2 since it subsumes case 1 by Lemma 4.1 when Rmini = Ri.

The proof of the next theorem is similar to the proof of the existence of an equilibrium in [2].

Let △i = {αi ∶ α
j
i ≥ 0, j = 1, . . . ,mi, α

min
i ≤ ∑

mi
j=1 α

j
i ≤ 1} and △ =△1 × ⋅ ⋅ ⋅ ×△n. The set △ is compact
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and convex since the number of player is finite and each player has a finite number of strategies.

Define the function φ = (φ1, . . . , φn) ∶ △→△ where φi = (φ1i , . . . , φ
mi
i ) and

φji =
αji +max{0, F ji (α) − Fi(α)}

1 +∑
mi
j=1max{0, F ji (α) − Fi(α)}

, i = 1, . . . , n, j = 1, . . . ,mi. (4.4)

The functions φji are continuous since we assume that the f j,ki (α) are continuous in αji ∈ [0,1], j =

1, . . . ,mi,∀i ∈ I. Therefore by Brouwer fixed point theorem there exists fixed points

αji =
αji +max{0, F ji (α) − Fi(α)}

1 +∑
mi
j=1max{0, F ji (α) − Fi(α)}

, i = 1, . . . , n, j = 1, . . . ,mi. (4.5)

We now prove the existence of an NE in every finite Γ.

Theorem 4.1. Every finite RAG Γ has an NE in mixed strategies.

Proof. Let α be an NE. Then no player has an incentive to change his strategy based on the alloca-

tion α. Note that the function max{0, F ji (α) − Fi(α)} represent player’s i gain by choosing his pure

strategy j given the previous allocation α. Hence max{0, F ji (α) − Fi(α)} = 0, j = 1, . . . ,mi,∀i ∈ I.

Thus α is a fixed point.

Conversely, let α be a fixed point. Then for each i let l be a pure strategy such that αli > 0, and

F li (α) = minj=1,...,mi F
j
i (α). Therefore, max{0, F ji (α) − Fi(α)} = 0, since F ji (α) ≤ Fi(α). Note

that from Equation 4.5, the right hand side is αji only when the denominator equals 1. Hence,

∑
mi
j=1max{0, F ji (α) − Fi(α)} = 0. Hence no player has an incentive to change his strategy, and so

α is an NE allocation to complete the proof.

We now show how a standard n−person game in normal form with constant von Neumann-

Morgenstern (VNM) utility functions is a special case of an allocation game as defined in this

paper.

Theorem 4.2. The payoff matrix for a standard normal form game is a special case of the payoff

matrix for a normal form allocation game.

Proof. Let ui(s
j
i , s

k
−i) = cj,ki , j = 1, . . . ,mi, k = 1, . . . ,m−i,∀i ∈ I, be constant VNM utilities for a

normal form game. It suffices to show that for any player i the VNM utilities can be written as the

payoffs for player i in an allocation game Γ. To do so simply let f j,ki (α) = cj,ki ×Ri,Ri = 1,∀i ∈ I.

It follows that a standard normal form game with constant VNM utilities is a special case of the

game Γ to complete the proof.

In other words, for Ri = 1,∀i ∈ I, the payoff functions for each player i need not vary with the

fraction each player allocates to each of his pure strategies. It follows that for any equilibrium,

say an NE or an MBE, a normal form game with VNM utilities is a special case of an associated
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allocation game Γ. In the next section we consider the computation of an NE. The computation of

an MBE will be considered in Section 5.

4.4 The Computation of an NE

In this section we extend the nonlinear program in [8] to find an NE for the game Γ. Therefore an

allocation α is an NE if and only the maximum of the following nonlinear program is zero.

Theorem 4.3. α∗ is an NE for Γ if and only if the maximum of the following nonlinear program

is 0 ∶

maximize g(α,β) =
n

∑
i=1

[Fi(α) − βi]

subject to
m−i

∑
k=1

αk−if
j,k
i (α) ≤ βi, j = 1, . . . ,mi,∀i ∈ I,

αji ≥ 0, j = 1, . . . ,mi,∀i ∈ I,

αmini ≤
mi

∑
j=1

αji ≤ 1,∀i ∈ I.

(4.6)

Proof. Let α∗ be an NE where each player i allocates ∑
mi
j=1 α

j∗

i of his total resource Ri. Then

Fi(α
∗) = maxj F

j
i (α

∗) = β∗i . Therefore g(α∗,β∗) = 0. Furthermore, all constraints (4.6) are satisfied

since from Definition 4.1 β∗i = maxj=1,...,mi F
j
i (α

∗).

Conversely, let α∗,β∗ be a feasible point such that g(α∗,β∗) = 0. It can easily be checked

by the constraints (4.6) and equation (4.2) that Fi(α
∗) ≤ β∗i . Hence it must be the case that

Fi(α
∗) = β∗i . Otherwise g(α∗,β∗) ≠ 0 which yields a contradiction. Moreover, from the constraints

4.6 β∗i = maxj=1,...,mi F
j
i (α

∗). Therefore α∗ is a NE by Definition 4.1.

It is worth noting that the payoff functions at an NE may not be maximized. To maximize

the payoff functions one needs to find an allocation such that the fraction each player i allocates

to each strategy maximizes each of the player i′s payoff functions. We discuss here the case where

the payoff functions are monotonically nondecreasing functions in the fraction of the resource αji .

Hence each of the payoff functions is maximized when the total resource Ri is allocated to that

strategy. In other words, F ji (α
j
i = 1,α−i) ≥ F

j
i (αi,α−i), j = 1, . . . ,mi,∀αi ∈△i,∀i ∈ I.

Lemma 4.2. Let f j,ki (α) be monotonically increasing functions in αji , j = 1 . . . ,mi,∀i ∈ I. Then

the optimal strategy for each player is an NE if and only if the maximum of the following nonlinear
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program is 0.

maximize g(α,β) =
n

∑
i=1

[Fi(α) − βi]

subject to

F ji (α
j
i = 1,α−i) ≤ βi, j = 1, . . . ,mi,∀i ∈ I,

αji ≥ 0,∀i ∈ I, j = 1, . . . ,mi,
mi

∑
j=1

αji = 1,∀i ∈ I.

(4.7)

Proof. Let α∗ be an NE where the payoff is maximized. Then

β∗i = max
j=1,...,mi

F ji (α
j∗

i = 1,α−i).

However, α∗ is an NE. Hence from Theorem 4.3 the maximum of the nonlinear program is 0.

Conversely, let α∗,β∗ be a feasible point such that the maximum of (4.7) is 0. The functions

f ji are monotonically nondecreasing in αji ,∀i ∈ I, j = 1, . . . ,mi. Therefore, there exists a solution

that zero-maximizes the objective function and satisfies all the conditions of the nonlinear program

in Theorem 4.3. Hence the solution is an NE. Furthermore, the solution maximizes the expected

payoff for each player of over all payoff functions and the proof is complete.

4.5 The Computation of an MBE

In this section, we consider the MBE. We only present a computational approach similar to (4.6),

since example 2 of section 6 illustrates that an MBE may not exist for n ≥ 3. A strategy is an MBE

when all players other than player i cannot increase player i′s expected payoff. The following is the

definition of an MBE.

Definition 4.2. A strategy α∗ is an MBE for Γ if and only if

Fi(α
∗
) = max

k=1,...,m−i

mi

∑
j=1

αj
∗

i

∑
mi
j=1 α

j∗

i

f j,ki (α∗
),∀α−i ∈△−i,∀i ∈ I. (4.8)

In an MBE for the game Γ, no player has an incentive of a unilateral change of his strategy

based on how he allocates his resource. In other words, any unilateral change of strategy results in

a less expected payoff to at least one of the remaining players. We extend the nonlinear program

presented in [9] to the game Γ.

Theorem 4.4. α∗ is an MBE for Γ if and only if the maximum of the following nonlinear program
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is 0 ∶

maximize h(α,β) =
n

∑
i=1

[Fi(α) − βi]

subject to

mi

∑
j=1

αji

∑
mi
j=1 α

j
i

f j,ki (α) ≤ βi, k = 1, . . . ,m−i,∀i ∈ I,

αji ≥ 0,∀i ∈ I, j = 1, . . . ,mi,

αmini ≤
mi

∑
j=1

αji ≤ 1,∀i ∈ I.

(4.9)

Proof. Let α∗ be an MBE allocation. Then each player allocates to each strategy a fraction αj
∗

i of

his resource that equals to the probability that the player uses that strategy. From Definition 4.2

one can check that Fi(α
∗) = β∗i = maxk=1,...,m−i

F ki (α
∗),∀i ∈ I. Hence all constraints are satisfied.

Moreover, h(β∗, α∗) = 0.

Conversely, let (α∗, β∗) be a feasible solution such that h(α∗, β∗) = 0. From (4.9), it is easy

to see that Fi(α
∗) ≤ β∗i ,∀i ∈ I. But h(α∗,β∗) = 0, so it must be that Fi(α

∗) = β∗i ,∀i ∈ I and

β∗i = maxk=1,...,m−i
F ki (α). Therefore, Fi(α

∗) = maxk=1,...,m−i
F ki (α

∗), and hence α∗ is an MBE by

Definition 4.2.

4.6 Examples

In this section we present three examples. The first example is a 2−person RAG, while the second

and third are 3−person RAGs.

Example 1.

In this 2−person RAG each player has 2 strategies. Player 1 has a resource R1 = 30 and player

2 has a resource R2 = 50. The payoff matrix for each player is shown in Table 4.2. For this game,

Table 4.2: Example 1

s12 s22
s11 (3 + α1

1 × 30,5 + α1
2 × 50) (2 + α1

1 × 30,8 + α2
2 × 50)

s21 (2 + α2
1 × 30,6 + α1

2 × 50) (5 + α2
1 × 30,4 + α2

2 × 50)

we consider Case 1 and Case 2 from section 2. In the first case, each player uses his maximum
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resource. The following NLP finds an NE for Gamma for Case 1.

(P1) maximize g(α,β) =
α1
1

α1
1 + α

2
1

α1
2

α1
2 + α

2
2

(3 + α1
1 × 30 + 5 + α1

2 × 50)

+
α1
1

α1
1 + α

2
1

α2
2

α1
2 + α

2
2

(2 + α1
1 × 30 + 8 + α2

2 × 50)

+
α2
1

α1
1 + α

2
1

α1
2

α1
2 + α

2
2

(2 + α2
1 × 30,6 + α1

2 × 50)

+
α2
1

α1
1 + α

2
1

α2
2

α1
2 + α

2
2

(5 + α2
1 × 30,4 + α2

2 × 50) − β1 − β2

subject to

α1
2

α1
2 + α

2
2

(3 + α1
1 × 30 +

α2
2

α1
2 + α

2
2

(2 + α1
1 × 30 ≤ β1

α1
2

α1
2 + α

2
2

(2 + α2
1 × 30 +

α2
2

α1
2 + α

2
2

(5 + α2
1 × 30 ≤ β1

α1
1

α1
1 + α

2
1

(5 + α1
2 × 50) +

α2
1

α1
1 + α

2
1

(6 + α1
2 × 50) ≤ β2

α1
1

α1
1 + α

2
1

(8 + α2
2 × 50) +

α2
1

α1
1 + α

2
1

(4 + α2
2 × 50) ≤ β2

α1
1 + α

2
1 = 1

α1
2 + α

2
2 = 1.

One solution to (P1) with g(α∗, β∗) = 0 and hence an NE is α1∗

1 = 0.52, α2∗

1 = 0.48, α1∗

2 =

0.51, α2∗

2 = 0.49, β∗1 = 17.99, β∗2 = 30.77.

In Case 2 when each player allocates at least 0.4 of his resource, the following NLP finds an NE

strategy for this problem.

(P2) maximize g(α,β) =
α1
1

α1
1 + α

2
1

α1
2

α1
2 + α

2
2

(3 + α1
1 × 30 + 5 + α1

2 × 50)

+
α1
1

α1
1 + α

2
1

α2
2

α1
2 + α

2
2

(2 + α1
1 × 30 + 8 + α2

2 × 50)

+
α2
1

α1
1 + α

2
1

α1
2

α1
2 + α

2
2

(2 + α2
1 × 30,6 + α1

2 × 50)

+
α2
1

α1
1 + α

2
1

α2
2

α1
2 + α

2
2

(5 + α2
1 × 30,4 + α2

2 × 50) − β1 − β2

subject to
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α1
2

α1
2 + α

2
2

(3 + α1
1 × 30 +

α2
2

α1
2 + α

2
2

(2 + α1
1 × 30 ≤ β1

α1
2

α1
2 + α

2
2

(2 + α2
1 × 30 +

α2
2

α1
2 + α

2
2

(5 + α2
1 × 30 ≤ β1

α1
1

α1
1 + α

2
1

(5 + α1
2 × 50) +

α2
1

α1
1 + α

2
1

(6 + α1
2 × 50) ≤ β2

α1
1

α1
1 + α

2
1

(8 + α2
2 × 50) +

α2
1

α1
1 + α

2
1

(4 + α2
2 × 50) ≤ β2

0.4 ≤ α1
1 + α

2
1 ≤ 1

0.4 ≤ α1
2 + α

2
2 ≤ 1.

One solution to (P2) with g(α∗, β∗) = 0 and hence an NE is α1∗

1 = 0.45, α2∗

1 = 0, α1∗

2 = 0.23, α2∗

2 =

0.17, β∗1 = 15.94, β∗2 = 16.5.

However, the MBE may not exist as shown in [6]. The interpretation here is that there may not exist

an allocation such that every player other than player i allocates to each strategy a fraction equals

to the probability of using that strategy that maximizes player i′s payoff. In the next example, an

MBE does not exist, However, an NE exists by Theorem 4.1.

Example 2.

In this 3−person RAG each player has 2 strategies with R1 = R2 = R3 = 1 and needs to allocate

at least 0.2 of his maximum resource. The payoff matrix for each player is shown in Table 4.3.

Table 4.3: Example 2

s13 s12 s22

s11 (1 + α1
2 + α

1
3,1 + α

1
1 + α

1
3,0) (0,0,0)

s21 (0,0,0) (0,0,1 + α2
1 + α

2
2)

s23 s12 s22

s11 (0,0,1 + α1
1 + α

1
2) (0,0,0)

s21 (0,0,0) (1 + α2
2 + α

2
3,1 + α

2
1 + α

2
3,0)
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We now write the following NLP to find an MBE:

(P3) maximize h(α,β) =
α1
1

α1
1 + α

2
1

α1
2

α1
2 + α

2
2

α1
3

α1
3 + α

2
3

(1 + α1
2 + α

1
3 + 1 + α1

1 + α
1
3 + 0)

+
α1
1

α1
1 + α

2
1

α1
2

α1
2 + α

2
2

α2
3

α1
3 + α

2
3

(1 + α1
1 + α

1
2)

+
α2
1

α1
1 + α

2
1

α2
2

α1
2 + α

2
2

α1
3

α1
3 + α

2
3

(1 + α2
1 + α

2
2)

+
α2
1

α1
1 + α

2
1

α2
2

α1
2 + α

2
2

α2
3

α1
3 + α

2
3

(1 + α2
2 + α

2
3 + 1 + α2

1 + α
2
3) − β1 − β2 − β3

subject to

α1
1

α1
1 + α

2
1

(1 + α1
2 + α

1
3) +

α2
1

α1
1 + α

2
1

(0) ≤ β1

α1
1

α1
1 + α

2
1

(0) +
α2
1

α1
1 + α

2
1

(0) ≤ β1

α1
1

α1
1 + α

2
1

(0) +
α2
1

α1
1 + α

2
1

(1 + α2
2 + α

2
3) ≤ β1

α1
2

α1
2 + α

2
2

(1 + α1
1 + α

1
3) +

α2
2

α1
2 + α

2
2

(0) ≤ β2

α1
2

α1
2 + α

2
2

(0) +
α2
2

α1
2 + α

2
2

(0) ≤ β2

α1
2

α1
2 + α

2
2

(0) +
α2
2

α1
2 + α

2
2

(1 + α2
1 + α

2
3) ≤ β2

α1
3

α1
3 + α

2
3

(1 + α2
1 + α

2
2) +

α2
3

α1
3 + α

2
3

(0) ≤ β3

α1
3

α1
3 + α

2
3

(0) +
α2
3

α1
3 + α

2
3

(0) ≤ β3

α1
3

α1
3 + α

2
3

(0) +
α2
3

α1
3 + α

2
3

(1 + α1
1 + α

1
2) ≤ β3

αji ≥ 0,∀i ∈ I, j = 1, . . . ,mi

0.2 ≤
mi

∑
j=1

αji ≤ 1,∀i ∈ I.

In this problem, an MBE does not exist. Note that there is not any pure Berge equilibrium because

whenever players 1 and 2 gets a positive payoff, player 3 gets a payoff 0 and vice versa. Furthermore,

if any mixed strategy is used then for at least one player i, the players −i will choose with a positive

probability a strategy where at least one player i gets a payoff 0. Hence the maximum of (P3)

cannot be 0, and there is no MBE by Theorem 4.4. In contrast to the MBE, an NE always exists
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by Theorem 4.1. The following is the nonlinear program to find an NE for this game.

(P4) maximize g(α,β) =
α1
1

α1
1 + α

2
1

α1
2

α1
2 + α

2
2

α1
3

α1
3 + α

2
3

(1 + α1
2 + α

1
3 + 1 + α1

1 + α
1
3 + 0)

+
α1
1

α1
1 + α

2
1

α1
2

α1
2 + α

2
2

α2
3

α1
3 + α

2
3

(1 + α1
1 + α

1
2)

+
α2
1

α1
1 + α

2
1

α2
2

α1
2 + α

2
2

α1
3

α1
3 + α

2
3

(1 + α2
1 + α

2
2)

+
α2
1

α1
1 + α

2
1

α2
2

α1
2 + α

2
2

α2
3

α1
3 + α

2
3

(1 + α2
2 + α

2
3 + 1 + α2

1 + α
2
3) − β1 − β2 − β3

subject to

α1
2

α1
2 + α

2
2

α1
3

α1
3 + α

2
3

(1 + α1
2 + α

1
3) ≤ β1

α2
2

α1
2 + α

2
2

α2
3

α1
3 + α

2
3

(1 + α2
2 + α

2
3) ≤ β1

α1
1

α1
1 + α

2
1

α1
3

α1
3 + α

2
3

(1 + α1
1 + α

1
3) ≤ β2

α2
1

α1
1 + α

2
1

α2
3

α1
3 + α

2
3

(1 + α2
1 + α

2
3) ≤ β2

α2
1

α1
1 + α

2
1

α2
2

α1
2 + α

2
2

(1 + α2
1 + α

2
2) ≤ β3

α1
1

α1
1 + α

2
1

α1
2

α1
2 + α

2
2

(1 + α1
1 + α

1
2) ≤ β3

α1
1, α

2
1, α

1
2, α

2
2, α

1
3, α

2
3 ≥ 0,∀i ∈ I, j = 1, . . . ,mi

0.2 ≤ α1
1 + α

2
1 ≤ 1

0.2 ≤ α1
2 + α

2
2 ≤ 1

0.2 ≤ α1
3 + α

2
3 ≤ 1.

One solution to (P4) with g(α∗, β∗) = 0 and hence an NE is α1∗

1 = α2∗

1 = α1∗

2 = α2∗

2 = α1∗

3 = α2∗

3 =

0.1, β∗1 = β∗2 , β
∗
3 = 0.3.

Example 3.

In this 3−person RAG each player has 2 pure strategies with R1 = R2 = R3 = 1 and each player

needs to allocate at least 0.2 of his maximum resource. The payoff matrices are shown in Table 4.4.
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Table 4.4: Example 3

s13 s12 s22

s11 (2 + α1
2 + α

1
3,1 + α

1
1 + α

1
3,2 + α

1
1 + α

1
2) (1 + α2

2 + α
1
3,2 + α

1
1 + α

1
3,1 + α

1
1 + α

2
2)

s21 (1 + α1
2 + α

1
3,2 + α

2
1 + α

1
3,1 + α

2
1 + α

1
2) (2 + α2

2 + α
1
3,1 + α

2
1 + α

1
3,2 + α

2
1 + α

2
2)

s23 s12 s22

s11 (1 + α1
2 + α

2
3,2 + α

1
1 + α

2
3,1 + α

1
1 + α

1
2) (2 + α2

2 + α
2
3,1 + α

1
1 + α

2
3,2 + α

1
1 + α

2
2)

s21 (2 + α1
2 + α

2
3,1 + α

2
1 + α

2
3,2 + α

2
1 + α

1
2) (1 + α2

2 + α
2
3,2 + α

2
1 + α

2
3,1 + α

2
1 + α

2
2)

This example has an MBE. The following NLP finds an MBE.

(P5) maximize h(α,β) =
α1
1

α1
1 + α

2
1

α1
2

α1
2 + α

2
2

α1
3

α1
3 + α

2
3

(2 + α1
2 + α

1
3 + 1 + α1

1 + α
1
3 + 2 + α1

1 + α
1
2)

+
α1
1

α1
1 + α

2
1

α2
2

α1
2 + α

2
2

α1
3

α1
3 + α

2
3

(1 + α2
2 + α

1
3 + 2 + α1

1 + α
1
3 + 1 + α1

1 + α
2
2)

+
α2
1

α1
1 + α

2
1

α1
2

α1
2 + α

2
2

α1
3

α1
3 + α

2
3

(1 + α1
2 + α

1
3 + 2 + α2

1 + α
1
3 + 1 + α2

1 + α
1
2)

+
α2
1

α1
1 + α

2
1

α2
2

α1
2 + α

2
2

α1
3

α1
3 + α

2
3

(2 + α2
2 + α

1
3 + 1 + α2

1 + α
1
3 + 2 + α2

1 + α
2
2)

+
α1
1

α1
1 + α

2
1

α1
2

α1
2 + α

2
2

α2
3

α1
3 + α

2
3

(1 + α1
2 + α

2
3 + 2 + α1

1 + α
2
3 + 1 + α1

1 + α
1
2)

+
α1
1

α1
1 + α

2
1

α2
2

α1
2 + α

2
2

α2
3

α1
3 + α

2
3

(2 + α2
2 + α

2
3 + 1 + α1

1 + α
2
3 + 2 + α1

1 + α
2
2)

+
α2
1

α1
1 + α

2
1

α1
2

α1
2 + α

2
2

α2
3

α1
3 + α

2
3

(2 + α1
2 + α

2
3 + 1 + α2

1 + α
2
3 + 2 + α2

1 + α
1
2)

+
α2
1

α1
1 + α

2
1

α2
2

α1
2 + α

2
2

α2
3

α1
3 + α

2
3

(1 + α2
2 + α

2
3 + 2 + α2

1 + α
2
3 + 1 + α2

1 + α
2
2) − β1 − β2 − β3

subject to
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α1
1

α1
1 + α

2
1

(2 + α1
2 + α

1
3) +

α2
1

α1
1 + α

2
1

(1 + α1
2 + α

1
3) ≤ β1

α1
1

α1
1 + α

2
1

(1 + α2
2 + α

1
3) +

α2
1

α1
1 + α

2
1

(2 + α2
2 + α

1
3) ≤ β1

α1
1

α1
1 + α

2
1

(1 + α1
2 + α

2
3) +

α2
1

α1
1 + α

2
1

(2 + α1
2 + α

2
3) ≤ β1

α1
1

α1
1 + α

2
1

(2 + α2
2 + α

2
3) +

α2
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2 + α

2
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α1
2

α1
2 + α

2
2
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1 + α

1
3) +
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2
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2 + α

2
2
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1 + α

1
3) ≤ β2

α1
2

α1
2 + α

2
2

(2 + α2
1 + α

1
3) +

α2
2

α1
2 + α

2
2

(1 + α2
1 + α

1
3) ≤ β2

α1
2

α1
2 + α

2
2

(2 + α1
1 + α

2
3) +

α2
2

α1
2 + α

2
2

(1 + α1
1 + α

2
3) ≤ β2

α1
2

α1
2 + α

2
2

(1 + α2
1 + α

2
3) +

α2
2

α1
2 + α

2
2

(2 + α2
1 + α

2
3) ≤ β2

α1
3

α1
3 + α

2
3

(2 + α1
1 + α

1
2) +

α2
3

α1
3 + α

2
3

(1 + α1
1 + α

1
2) ≤ β3

α1
3

α1
3 + α

2
3

(1 + α1
1 + α

2
2) +

α2
3

α1
3 + α

2
3

(2 + α1
1 + α

2
2) ≤ β3

α1
3

α1
3 + α

2
3

(1 + α2
1 + α

1
2) +

α2
3

α1
3 + α

2
3

(2 + α2
1 + α

1
2) ≤ β3

α1
3

α1
3 + α

2
3

(2 + α2
1 + α

2
2) +

α2
3

α1
3 + α

2
3

(1 + α2
1 + α

2
2) ≤ β3

αji ≥ 0,∀i ∈ I, j = 1, . . . ,mi

0.2 ≤
mi

∑
j=1

αji ≤ 1,∀i ∈ I.

One solution to (P5) with h(α∗, β∗) = 0 and hence an MBE is α1∗

1 = α2∗

1 = α1∗

2 = α2∗

2 = α1∗

3 =

α2∗

3 = 0.125, β∗1 = β∗2 , β
∗
3 = 1.75.

4.7 Conclusion

In this paper we gave an interpretation for the mixed via resource allocation games in normal form.

In these games, a mixed strategy is an allocation. Each player chooses a pure strategy with a

probability that equals to the fraction of the maximum available resource allocated to that pure

strategy over the total fraction of the the resource the player allocates to all his pure strategies.

We proved by Brouwer fixed point theorem the existence of an NE in these games. Furthermore,

we showed that an MBE may not exist in a resource allocation game unless there exists a strategy

yielding zero for the associated nonlinear program.
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Abstract

In this paper we apply the concept of a mixed Berge equilibrium to finite n−person games in

extensive form. We study the mixed Berge equilibrium in both perfect and imperfect information

finite games. In addition, we define the notion of a subgame perfect mixed Berge equilibrium

and show that for a 2−person game, there always exists a subgame perfect Berge equilibrium.

Thus there exists a mixed Berge equilibrium for any 2−person game in extensive form. For games

with 3 or more players, however, a mixed Berge equilibrium and a subgame perfect mixed Berge

equilibrium may not exist. In summary, this paper extends extensive form games to include players

acting altruistically.
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5.1 Introduction

The Berge equilibrium (BE) is a solution concept in game theory introduced in [1] and formally

defined in [2]. It was extended to mixed strategies (MBE) in [3]. The Berge equilibrium represents

a strategy that is mutually cooperative. In other words, at a Berge equilibrium player i cannot gain

a better payoff if any other player changes his strategy unilaterally. In effect, an MBE represents

the situation where every n−1 players choose the best joint mixed strategy for the remaining player.

In this paper, we apply the concept of an MBE to finite extensive form games, where players make

decisions sequentially. We consider here finite n−person extensive form games both with complete

information and incomplete information. In a complete information game, each player is aware of

the actions of the other players. In imperfect information games, however, players are not aware of

the actions that other players choose.

The paper is organized as follows. In Section 2, we give the needed notation and definitions.

In Section 3, we study the existence of an MBE in extensive form games. In Section 4, we give

examples, and then give conclusions in Section 5.

5.2 Preliminaries

We use here a notation similar to that of [4]. An extensive form game G is written as G =

(N,H,P, I), where N is the set of the players, H is the set of histories, P is a function assigning a

player to each non-terminal history, and I represents an information set.

Each history h is a sequence of actions (ak)k=1,...,K . In this paper, we assume that all the

sequences of actions are finite. Hence the game is finite. Each history h ∈ H ends with a terminal

node which gives the utility value for each of the n−players. Each non-terminal node belongs to

an information set Ii for a player i such that P (h) = i. The set of all information sets for player i

is τi. If each information set has only one node, then the game is a perfect information game. In

an imperfect information game, two or more nodes belong to some information set. If two or more

nodes belong to the same information set, then they are connected with a dotted line. The idea

is that if an information set includes only one decision node, then a player knows the actions that

led to that node so the game is a perfect information game. An example of a 2−person extensive

form game is show in Figure 5.1. In this game, player 1 makes a decision s1 or t1. Next, player 2

makes a decision. After that, either the game is finished or player 1 makes a decision with imperfect

information. The label above a node (i ∶ j) means information set j for player i.

Each game in extensive form can be represented as a game in normal form [5]. The set of pure

strategies Si = {×Ai∣Ai ∈ Ii, Ii ∈ τi} for each player i is the Cartesian product over the actions player

i has at each of his information sets. A mixed strategy σi for a player i is a probability distribution

over his set of pure strategies. The set of all mixed strategies for player i is △Si. The support of a

mixed strategy for player i is supp(σi) = {si ∈ Si∣σi(si) > 0} . A pure strategy for player i is a special

case of the mixed strategy where a player chooses exactly one action at each of his information sets.

Similarly, a mixed strategy for all players other than player i is a probability distribution σ−i
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(1 ∶ 1)

(2 ∶ 1)
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x1

(1,3)

y1

t2

t1

Figure 5.1: Example of a two-person extensive form game

over the set of the Cartesian product of all the pure strategies for all players other than player

i. Hence ∑s−i∈S
−i
σ−i(s−i) = 1, σ−i(s−i) ≥ 0, where σ−i(s−i) is the that product of the probabilities

that each player other than player i chooses the strategy s−i. The set of all mixed strategies for

all players other than player i is △S−i. The support of a mixed strategy for all players other than

player i is supp(σ−i) = {s−i ∈ S−i∣σ−i(s−i) > 0} .

The following identities were derived in [3]. Player i′s expected payoff for strategy si for player

i and strategy σ−i for the remaining players is

ui(si, σ−i) = ∑
s−i∈S−i

σ−i(s−i)ui(si, s−i). (5.1)

Player i′s expected payoff for strategy σi for player i and strategy s−i for the remaining players is

ui(σi, s−i) = ∑
si∈Si

σi(si)ui(si, s−i). (5.2)

Player i′s expected payoff for strategy σi for player i and strategy σ−i for the remaining players is

ui(σi, σ−i) = ∑
si∈Si

∑
s−i∈S−i

σi(si)σ−i(s−i)ui(si, s−i). (5.3)

We now define the NE.

Definition 5.1. A strategy σ∗ is an NE if and only if

max
si∈Si

ui(si, σ
∗
i ) = ui(σ

∗
i , σ

∗
−i) ≥ ui(σi, σ

∗
−i),∀σi ∈△Si,∀i ∈ N. (5.4)

In an NE, no player can increase his expected payoff by changing his strategy unilaterally. We

can similarly define an MBE.
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Definition 5.2. A strategy σ∗ is an MBE if and only if

max
s−i∈S−i

ui(σ
∗
i , s−i) = ui(σ

∗
i , σ

∗
−i) ≥ ui(σ

∗
i , σ−i),∀σ−i ∈△S−i,∀i ∈ N. (5.5)

In an MBE all players other than player i cannot increase the expected payoff for player i by

changing their strategies. Hence no player can increase other player’s expected payoff by changing

his strategy unilaterally.

The subgame perfect Nash equilibrium (SPNE) is an important concept in extensive games since

it always exists. An SPNE can be obtained using backward induction. The following definition of

a subgame is from [4].

Definition 5.3. An extensive form subgame is a sequence of actions h
′

after a history h such that

(h,h
′

) ∈H.

We extend the concept of the SPNE to a subgame perfect MBE (SPMBE). We prove that one

exists for every 2−person game. However, we show that one may not exist for n ≥ 3.

Definition 5.4. A strategy σ∗ is an SPNE if and only if for every nonterminal history h with

P (h) = i, then

ui(σ
∗
i ∣h, σ

∗
−i∣h) ≥ ui(σi, σ

∗
−i∣h),∀σi ∈△Si,∀i ∈ N. (5.6)

An SPNE, is an NE for some subgame. Furthermore, no player can increase his expected payoff

by changing his strategy unilaterally at any information node and history h such that P (h) = i.

We now give the definition of an SPMBE. Note the difference in history as opposed to Definition

5.4.

Definition 5.5. A strategy σ∗ is an SPMBE if and only if for every non-terminal history h with

P (h) ≠ i, then

ui(σ
∗
i ∣h, σ

∗
−i∣h) ≥ ui(σ

∗
i ∣h, σ−i),∀h ∈H,P (h) ≠ i,∀σ−i ∈△S−i,∀i ∈ N. (5.7)

Thus an SPMBE is a subgame concept where a strategy is an MBE for some subgame. Further-

more, players other than player i cannot increase player i′s expected payoff by unilaterally changing

their strategies at any information node with a non-terminal history h for which P (h) ≠ i.

5.3 MBE Existence in Extensive Form Games

We now consider the existence of an MBE in an extensive form game. The following theorem from

[5] is used.

Theorem 5.1. Every game in extensive form has a subgame perfect NE.

Next we define a 2−person game G
′

in extensive form. Each player has the same set of actions

as he has in the game G. However, the two players payoffs are swapped.
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Definition 5.6. The game G
′

is a 2−person game where each player has the same actions as in

the game G. The payoffs for player 1 in G are the payoffs for player 2 in G
′

and vice versa.

Lemma 5.1. Let G be a 2−person normal form game. Then any NE for the game G
′

is an MBE

for G.

Proof. Let σ∗ be an NE for G
′

. Then,

u1(σ
∗
1 , σ

∗
2) ≥ u1(σ

∗
1 , σ2),∀σ2 ∈△S2, (5.8)

and

u1(σ
∗
1 , σ

∗
2) ≥ u1(σ

∗
1 , σ2),∀σ2 ∈△S2. (5.9)

Thus σ∗ is an MBE by Definition 5.5 to complete the proof.

The following remark follows immediately from Theorem 5.1 and Lemma 5.1.

Remark 5.1. Every 2−person game G has an SPMBE. Hence every 2−person game in extensive

form has an MBE.

Proof. Let G be a 2−person game and G
′

is the game with the swapped payoffs for the two players.

By Theorem 5.1, G
′

always has an SPNE σ∗ for some subgame in G
′

. Therefore by Lemma 5.1, σ∗

is an MBE for the same subgame in G. Hence the game G has an SPMBE. Moreover, by Definition

5.5 an SPMBE is an MBE for the game G, and the proof is complete.

In the following lemma, we give necessary and sufficient conditions for the existence on an MBE.

Lemma 5.2. A strategy σ∗ is an MBE for G if and only if σ∗−i(s−i) = 0 when

ui(σ
∗
i , s−i) < max

s−i∈S−i
ui(σ

∗
i , s−i). (5.10)

Proof. Let σ∗ be an MBE for G. Suppose that there exists a strategy s−i such that ui(σ
∗
i , s−i) <

maxs−i∈S−i ui(σ
∗
i , s−i) and σ−i(s−i) > 0. Hence by Equation 5.3 ui(σ

∗
i , σ

∗
−i) < maxs−i∈S−iui(σ

∗
i , s−i).

Therefore, by Definition 5.5 the strateg σ∗ is not an MBE to yield a contradiction.

Conversely, suppose σ∗ is a strategy such that if

ui(σ
∗
i , s−i) < max

s−i∈S−i
ui(σ

∗
i , s−i), (5.11)

then σ∗−i(s−i) = 0. Hence

ui(σ
∗
i , σ

∗
−i) = max

s−i∈S−i
ui(σ

∗
i , s−i),∀i ∈ I. (5.12)

Thus σ∗ is an MBE by Definition 5.5.

We now use a counterexample to prove that an MBE may not exist in n−person extensive form

games with n ≥ 3.
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t3

t2
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Figure 5.2: Three-Person Game with No MBE

Theorem 5.2. An MBE may not exist when n ≥ 3.

Proof. The proof of this theorem is by a counterexample. Consider the following example of Figure

5.2. We claim that there is not an MBE for this game. Suppose there exists an MBE σ∗ for the

game. Let σ∗1 be the strategy of player 1. Note that from Figure 5.2

max
s−1∈S−1

u1(σ
∗
1 , s−1) = 1. (5.13)

Moreover, σ∗ is an MBE. Hence players 2 and 3 choose with positive probabilities their pure

strategies that gives player 1 a payoff 1. Hence player 2 would only choose strategy s2, t2. However,

whenever player 2 wants to maximize player 1′s payoff there exists a pure strategy for player 3 such

that for some pure strategy for player 1 in supp(σ∗1),

max
s−2∈S−2

u2(σ
∗
2 , s−2) = 1. (5.14)

Any strategy chosen by player 3 can only maximize either player 1′s or player 2′s expected payoff,

but not both. Hence σ∗ cannot be an MBE by Lemma 5.2 to yield a contradiction.

5.4 Examples

In this section we give two examples. In the first example we consider a 3−person game with

imperfect information. We show that the game does not have an MBE. If we consider the same

game with perfect information, then it has an MBE. However, the game does not have an SPMBE

even with perfect information.

Example 1

We now show an example of an imperfect information game. Consider the 3−person game shown in

Figure 5.3. The game shown in Table 5.1 is the normal form representation for the game in Figure

5.3. However, it was proven in [3] that an MBE does not exist for this game. We now consider the
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t2
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Figure 5.3: Three-Person Game with Imperfect Information

Table 5.1: Normal Form Representation

s3 s2 t2 t3 s2 t2
s1 (1,1,0) (0,0,0) s1 (0,0,1) (0,0,0)

t1 (0,0,0) (0,0,1) t1 (0,0,0) (1,1,0)

same game but with perfect information as shown in Figure 5.4. An interesting result is that the

game has multiple MBEs in the case of perfect information.

The strategies for player 1 are simply s1 and t1. However, player 2 has 4 pure strategies and

player 3 has 16 pure strategies, as shown in Tables 5.2 and 5.3 respectively.

For this game, player 3 has 16 different strategies as shown in Table 5.3. For example strategy

1 means that if player 1 chooses s1, and player 2 chooses s2, then player 3 chooses s3. If player 1

chooses s1, and player 2 chooses t2, then player 3 chooses s3. If player 1 chooses t1, and player 2

chooses s2, then player 3 chooses s3. If player 1 chooses t1, and player 2 chooses t2, then player 3

chooses s3.

One BE for this game is that player 1 chooses s1, player 2 chooses s2, s2, and player 3 chooses

strategy s3, s3, t3, t3. Note that for this BE, player 3 gets a payoff 0. However, players 1 and 2

cannot increase player 3′s payoff regardless of their strategies. Moreover, they want to maximize

Table 5.2: Player 2’s Strategies

Player 2′s pure strategies s1 t1
Strategy 1 If player 1 chooses s1, then s2. If player 1 chooses t1, then s2.

Strategy 2 If player 1 chooses s1, then s2. If player 1 chooses t1, then t2.

Strategy 3 If player 1 chooses s1, then t2. If player 1 chooses t1, then s2.

Strategy 4 If player 1 chooses s1, then t2. If player 1 chooses t1, then t2.
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Figure 5.4: Three-Person Game with Perfect Information

the expected payoff for each other. Hence the strategy is an MBE.

Note that even with perfect information, the game does not have an SPMBE. Using backward

induction, regardless of whether player 3 chooses s3 or t3, then player 1 alone can increase player

3′s expected payoff. However that would result in reducing player 2′s expected payoff. A symmetric

result holds for player 1 if player 2 increases player 3′s payoff. Hence the game cannot have an

SPMBE. The next remark follows immediately.

Remark 5.2. An MBE for the game G is not necessarily an SPMBE.

Example 2

We now a give an example of a 2−person Bayesian game. Bayesian games with different types

have been considered in literature; e.g., see [5]. In this example, we consider a 2−person game in

extensive form. Each player has two strategies cooperate (C) and defect (D). We assume that there

is a probability distribution over the types of player 1. The first type is an altruistic type. This type

wants to maximize player 2′s expected payoff. The second type chooses the strategy Tit-for-Tat of

[6]. The second type will cooperate with player 2 only if player 2 chooses to cooperate with player

1. The third type is selfish and wants to maximize his own expected payoff. In this example, let

the probability of each type be P [Type 1] = p1, P [Type 2] = p2, and P [Type 3] = p3. The game is

an imperfect information game. We assume that the game is repeated and not a one-stage game.

At each stage, player 1 can be from any type and player 2 only knows the probability distribution

over the types. Player 2 next chooses his action. Then player 1 chooses his action without knowing

what action player 2 chose. The payoffs for each are shown in Figure 5.5.
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Table 5.3: Player 3′s Strategies

Player 3′s pure strategies s1, s2 s1, t2 t1, s2 t1, t2
Strategy 1 s3 s3 s3 s3
Strategy 2 s3 s3 s3 t3
Strategy 3 s3 s3 t3 s3
Strategy 4 s3 t3 s3 s3
Strategy 5 s3 s3 t3 t3
Strategy 6 s3 t3 t3 s3
Strategy 7 s3 t3 s3 t3
Strategy 8 s3 t3 t3 t3
Strategy 9 t3 s3 s3 s3
Strategy 10 t3 s3 s3 t3
Strategy 11 t3 s3 t3 s3
Strategy 12 t3 t3 s3 s3
Strategy 13 t3 s3 t3 t3
Strategy 14 t3 t3 t3 s3
Strategy 15 t3 t3 s3 t3
Strategy 16 t3 t3 t3 t3

Table 5.4: Two-Person Bayesian Game in Normal Form

s2 t2
s1 (4 × p1 + 8 × p2 + 4 × p3,4) (5 × p1 + 0 × p2 + 1 × p3,5)

t1 (1 × p1 + 0 × p2 + 5 × p3,1) (2,2)

Type

(2 ∶ 1)

(1 ∶ 1)

(4,4)

C

(1,1)

D

C
(1 ∶ 1)

(5,5)

C

(2,2)

D

D

1

(2 ∶ 1)

(1 ∶ 1)

(8,4)

C

(0,5)

D

C
(1 ∶ 1)

(0,5)

C

(2,2)

D

D

2
(2 ∶ 1)

(1 ∶ 1)

(4,4)

C

(5,1)

D

C
(1 ∶ 1)

(1,5)

C

(2,2)

D

D

3

Figure 5.5: Two-Person Bayesian Game in Extensive Form

The normal form representation of the game in Figure 5.5 is shown in Table 5.4.

Note that for p1 ≥ 0.9 an NE for the game would be (C,D). Hence player 2 would always defect.
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In the case that p3 ≥ 0.9, an NE would be (D,D). However, when p2 ≥ 0.9, then an NE for the

game is (C,C). In all three cases, player 2 is selfish and concerned with his own payoff. Hence he

would rather defect unless there is a high probability for the Tit-for-Tat type where player 2 can

maximize his expected payoff by cooperating if the game is repeated.

5.5 Conclusion

The MBE is a solution concept in game theory that represents mutual cooperation among players

and extends the BE to mixed strategies. In this paper, we extended extensive form games to include

players acting altruistically. In particular, we applied the concept of an MBE to finite n−person

games in extensive form. We showed how an MBE always exists for 2−person games. However, we

showed that an MBE may not exist in an n−person extensive form games with n ≥ 3. We extended

the definition of the subgame perfect equilibrium to include the case of the MBE. Moreover we

proved that an SPMBE may not exist for n ≥ 3.
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Chapter 6

Conclusion

Game theory is the study of competitive situations among rational players, who choose their strate-

gies in order to maximize their expected utilities based on their expectations of other players’ be-

haviors. In this dissertation, we explored some theoretical, computational, and practical aspects of

equilibria in n−person games. We presented four journal articles.

In the first article, we defined a generalized equilibrium for n−person games in normal form.

The Nash equilibrium and the Mixed Berge equilibrium are both special cases of the generalized

equilibrium. We proved that the generalized equilibrium exists if and only if the maximum of a

nonlinear program is zero.

In the second article, we studied the computational complexity of finding a mixed Berge equi-

librium in normal form n−person games. We proved that for the 2−person games, finding a mixed

Berge equilibrium is a PPAD-complete problem. However, for games with 3 or more players, we

proved that finding a mixed Berge equilibrium is an np-complete problem.

In the third paper, we gave a new interpretation of mixed strategies for the Nash and the mixed

Berge equilibria. The interpretation is that a mixed strategy represents an allocation of the single

resource of each player. The purpose of our approach is to avoid the ambiguities associated with

the standard approach to mixed strategies.

In the fourth article, we extended the concept of a mixed Berge equilibrium to n−person games

in extensive form. We defined a subgame perfect mixed Berge equilibrium and proved that it always

exists in 2−person games. However, a mixed Berge equilibrium may not exist in games with 3 or

more players.
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