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ABSTRACT

Real-time Minimum Jerk Optimal Trajectory Synthesis and Tracking for Ground

Vehicle Applications

NAGA VENKATA MURALI VEERAPANENI, M.S

The University of Texas at Arlington, 2017

Supervising Professor: Kamesh Subbarao

Research on wheeled mobile robots has been an active research field for several

decades with focus on the problems of stability, maneuverability and control. The

trajectory generation for wheeled mobile robots is usually handled by considering a

smooth function satisfying the boundary conditions. Even though this problem is

well posed for several function classes, the real issue occurs in generating a feasible

trajectory for the robot which takes into account the constraints of the system. An-

other problem from the control system perspective is, whether the derived controller

is stable for the entire trajectory span to track the given trajectory.

The purpose of this thesis is to provide a different approach for trajectory gen-

eration and control of an autonomous ground vehicle. The presented trajectory gen-

eration technique takes into account the acceleration constraint of the system by

performing an optimization routine in-order to obtain the final time of the trajec-

tory for a given waypoint. Then, the problem of tracking the desired trajectory is

handled by using a nonlinear backstepping control law which takes into account the

non-holonomic constraints of the robot. The overall experimental setup is based on

v



the cyber-physical system architecture by separating the rover and the ground sta-

tion, which handles all the necessary computation. The time delays associated with

this kind of system architecture is characterized and presented. The presented tra-

jectory generation and control techniques are experimentally verified by using the

cyber-physical system architecture on a real mobile robot equipped with GPS, IMU,

Wheel Encoder and LiDAR sensors.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Autonomous mobile robots have attracted researchers from different fields over

the past years. Various path planning and control algorithms have been developed

over these years, which makes the robot to go from it’s initial configuration to the

final desired configuration to do a specific task. Two main challenges in mobile robot

are path planning and control. Path planning addresses the challenge of making the

robot aware of it’s environment and changing it’s path in real-time, to account for

the environmental constraints. One way to tackle this problem is to use a global

path planner which takes the initial and final GPS co-ordinates and generates a

set of way points for the robot to go through. The global path planner requires

information about it’s environment topology. Another way to solve the path-planning

problem is to use a local path planner. The local path planner discretizes the target

configuration into a subset of intermediate configurations and plans for a successive

subset of configurations. The local planner is more reactive in that it can handle

dynamic obstacles along it’s path. Once the path is computed, a trajectory needs to

be generated. If a mobile robot is required to reach the target position in a specified

amount of time, then the designed path is dependent on time. Even though the

problem of trajectory generation is well defined, the generated trajectory is required

to satisfy the vehicle constraints along it’s path like maximum acceleration, minimum-

turning radius, non-holonomic constraints of the robot, etc.

Another challenge in making an autonomous mobile robot is the stability of
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the robot over it’s entire mission span and the ability to track the reference path or

trajectory as close as possible. As the kinematics of the robot is nonlinear, one might

think to linearize the system around it’s equilibrium and design a linear controller.

The drawback of this technique is, some good nonlinearities were neglected or some

hard nonlinearities were not addressed which would eventually destablitize the system

if operated beyond the robot’s equilibrium point. So, a lot of research is focused on

developing different nonlinear control laws which takes into account the nonlinearities

of the system.

1.2 Related Work

There is an abundance of trajectory generation algorithms which takes into ac-

count the robot dynamical constraints. The main idea of trajectory generation is

to find a necessary polynomial that satisfies pre-specified constraints. Fundamental

methods of generating a suitable polynomial can be found in [1]. Most of the paths

are generated by stitching together straight lines and circular arc segments, which is

obtained by minimizing the path length. Dubins [2], Reeds-shepp [3] showed that the

optimal path between two configurations can be obtained by a series of straight lines

and circular arcs. Even though the dubins path is computationally straight forward,

the main drawback is that the curvature is not continuous when the circle and line

are linked to each other. To handle this drawback a clothoid curve or Cornu or Euler

spiral is used to replace the circular arcs in dubins path. Clothoid is a curve with

a continuous curvature, which varies linearly over the path. The clothoid path was

used as a continuous cyurvature trajectory generation for UAVs[4]. Riesenfeld and

Gordon used B-spline to generate a continuous trajectory [5]. The B-spline is a set of

basis functions that has some properties such as affine invariance, local modification

scheme, convex hull, continuity and differentiability. Because of this local modifica-
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tion property B-spline based trajectory generation is more useful for online obstacle

avoidance while maintaining continuity in trajectory. A convolution-based trajectory

generation method has been suggested in [6, 7] which does not use any polynomial.

The convolution-based method is able to generate an S-curve trajectory within the

allowable physical system limits by applying successive convolution operations. The

main advantage of the convolution based trajectory is, it can be used to generate the

trajectory that satisfies the differential constraints of nth order.

There has also been implementations of nonlinear control designs in a wide vari-

ety of mobile robot applications [8, 9, 10, 11, 12, 13, 14, 15]. Some of the applications

of a nonlinear control to a wheeled robot have only been verified through simulation,

as in [8, 9, 10, 11, 12], while others have been validated by hardware experiments

such as references [13, 14, 15]. Dixon [8] provided a control design based on a virtual

structure approach to follow a simple user defined trajectory. And in [9], an adap-

tive control design is implemented in simulation to control a two wheel like mobile

robot. The adaptive control design is proven to be robust to input saturation and

disturbances [9]. Backstepping control designs for wheeled mobile robots or rovers

are discussed in [10, 11, 12]. The control laws in [10] and [11] apply backstepping to

control the kinematic model directly from the dynamics of the system and torques on

the vehicle are applied as the control inputs. In contrast, the backstepping control

design in [12] accounts for regulation of the rover’s heading angle turn rate and its

forward acceleration.

1.3 Problem Description

This thesis addresses the problem of trajectory generation by considering the

acceleration constraints of the robot to obtain a closed-form analytical solution and at

the same time a new computationally straightforward nonlinear control law is tested

3



to make sure, that the proposed control law provides stability over the entire mission

span. This thesis also validates the use of cyber-physical system architecture for

further research on time-delay control approaches.

1.4 Thesis Outline

This thesis is organized as follows: In Chapter 2, the kinematic model of the

mobile robot is derived and the controllability of the robot is analyzed. Chapter

3 details the design of Minimum-Jerk trajectory design for constrained acceleration

trajectory. Chapter 4, introduces the nonlinear backstepping control and the modified

version that is used to control the mobile robot. In Chapter 5, the experimental

setup for testing the trajectory and control algorithms is presented. Chapter 6 and 7

presents the time-delay analysis and the experimental results. Finally, in Chapter 8,

concluding remarks are stated.
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CHAPTER 2

Modeling and Analysis of the Differential-Drive Robot

2.1 Kinematic Modeling

Kinematic modeling is the study of the motion of mechanical systems without

considering the forces that affects the motion. For the differential-drive mobile robot,

the main objective of the kinematic modeling is to represent the velocities of the

robot as a function of the driving velocities of the wheels by considering the geometric

parameters of the robot.

2.1.1 Coordinate Systems

To determine the position of the mobile robot in its environment, two different

coordinates systems (or) frames need to be defined.

• Inertial Coordinate System: This coordinate frame is fixed in the environment

or the plane in which the mobile robot traverses. It is denoted by {XI , YI , ZI}

• Body Coordinate System: This coordinate frame is fixed to the robot and it

moves along with the robot. This frame denoted by {Xb, Yb, Zb}.

For the derivation of the kinematic model, the Inertial and body frame are

assigned as shown in Fig. 2.1,

• Inertial frame is attached with XI pointing towards local East, YI pointing

towards local North, ZI going up.

• Body frame is attached with Xb pointing robots forward direction, Yb pointing

towards robots left side, Zb going up.

The heading angle, ψ, is positive, counter-clockwise direction about ZI axis.

5



The transformation between the Inertial frame and the body frame is given as,

XI = R(ψ)Xb (2.1)

where

R(ψ) =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1


This transformation can be used to handle motion between the frames,

ẊI = R(ψ)Ẋb (2.2)

Figure 2.1: Inertial (I) and Body (b) coordinate frames

Let the position of the rover in the inertial frame be denoted by {xa, ya} and in

the body frame by {xb, yb}

6



2.1.2 Motion Constraints

The robot motion is characterized by two non-holonomic constraints. These

non-holonomic constraints are obtained by assuming,

• No lateral motion: This constraint implies that the mobile robot can only go

forward or backward but not sideways. This simply means that the velocity at

the center of the vehicle along its lateral axis is zero,

ẏb = 0

By using the Eq. 2.2, the velocity in the inertial frame is obtained as,

−ẋa sinψ + ẏa cosψ = 0 (2.3)

• Pure rolling motion: The pure rolling constraint assumes that each wheel main-

tains a point contact with the ground, without wheel slippage in the longitudinal

axis (Xb) and no skidding in lateral axis (Yb). The linear velocities of the wheels

in the body frame {b} is given as,

Vl = rωl

Vr = rωr

(2.4)

where Vl, Vr are the left and right wheel forward velocity, ωl, ωr are the left

and right wheel angular velocity, r, is the radius of the wheel. These velocities

can be expressed in inertial frame as a function of robots state {xa, ya} as,

ẋr = ẋa + Lψ̇ cosψ

ẏr = ẏa + Lψ̇ sinψ

(2.5)

ẋl = ẋa + Lψ̇ cosψ

ẏl = ẏa + Lψ̇ sinψ

(2.6)
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using the transformation matrix R(ψ), the rolling constraints in body frame is

given as,

ẋl cosψ + ẏl sinψ = rωl

ẋr cosψ + ẏr sinψ = rωr

(2.7)

By combining Eq. 2.3 & 2.7, the final motion constraints of the robot is written

as,

Λ(q)q̇ = 0 (2.8)

where

Λ(q) =


− sinψ cosψ 0 0 0

cosψ sinψ L −r 0

cosψ sinψ −L 0 r

 (2.9)

and

q =

[
ẋa ẏa ψ̇ ωl ωr

]
(2.10)

Eq. 2.8 is characterized as a non-integrable constraint or non-holonomic. If the

equation can be integrated, one can eliminate coordinates by using the equations of

constraints as is in the case of holonomic constraints. As is seen, the systems contain-

ing non-holonomic constraints always require more coordinates for the description of

state than there are degrees of freedom.

2.1.3 Rover Kinematics

As the linear velocity of each driving wheel of the robot, is the linear velocity

of the robot itself, the linear velocity of the robot is given as,

V =
r(ωl + ωr)

2
(2.11)
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Due to the absence of the lateral motion, the robot can only move forward and

not sideways, the forward and lateral velocity is given as,

ẋb =
r(ωl + ωr)

2

ẏb = 0

(2.12)

The change in wheel angular velocity is the change in the angular rate of robot

ψ̇,

ψ̇ =
r(ωr − ωl)

2L
(2.13)

By using the transformation matrix R(ψ), the body velocities are expressed in

inertial frame velocities as,

ẋa =
r(ωl + ωr)

2
cosψ

ẏa =
r(ωl + ωr)

2
sinψ

ψ̇ =
r(ωr − ωl)

2L

(2.14)

Eqs. 2.14 are the robot velocities expressed in inertial frame and can be used

for the stability, controllability analysis.

2.2 Controllability Analysis

Before going on to discuss about planning and control, first we need to make

sure that the system is controllable. A system is said to be controllable, if the rank

of the controllability matrix (C) is same as the number of states of the system i.e,

the controllability matrix is of full rank. For a system of the form,

Ẋ = AX +BU (2.15)

the controllability matrix (C) is defined as,

C =
[
B AB A2B A3B ... An−1B

]
(2.16)
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where n is the order of the system.

Eq.2.14 can be written as,

q̇ = G1(q)ωr +G2(q)ωl (2.17)

with G1 =


r
2

cosψ

r
2

sinψ

r
b

, G2 =


r
2

cosψ

r
2

sinψ

− r
b


and q, is the generalized coordinates with q =

[
ẋa, ẏa, ψ̇

]T
.

The kinematics Eq. 2.14 are nonlinear, driftless and have less control inputs than the

number of generalized coordinates. A driftless system is a system for which no motion

takes place under zero input. The following sections shows the analysis whether the

system can be controllable about a stationary position and also along a trajectory.

2.2.1 Controllability at a point

As the system is driftless, any point corresponds to an equilibrium point pro-

vided that the input is zero.

let qe be the equilibrium point, then the Eq. 2.17 becomes,

∆q = G1(qe)ωr +G2(qe)ωl = G(qe) [ωl, ωr]
T (2.18)

where ∆q = q− qe. From the above equation, we can write A = 0, B = G(qe).

By using A, B, the rank of the controllability gramian is 2 from Eq. 2.19. Hence the

linearized system is not controllable and linear controller won’t work, not even locally

[16].

C =
[
B AB A2B

]
= rank(2) (2.19)
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One way to truly look at the controllability of a driftless nonlinear system is to

evaluate a Lie Algebra rank Condition [17] (nonlinear controllability)

rank

[
G1 G2 [G1, G2] [G1, [G1, G2]] · · ·

]
(2.20)

where [G1, G2] is Lie bracket and is evaluated as,

[G1, G2] =
∂G2

∂q
G1 −

∂G1

∂q
G2 (2.21)

By using the Lie Algebra Rank Condition(LARC), the rank of the system is 3

from Eq. 2.22. This means that the robot is controllable. This also proves that linear

controllability is not a reliable indicator for nonlinear systems.

LARC = [G1 G2 [G1, G2]] =


r
2

cosψ r
2

cosψ − r2

b
sinψ

r
2

sinψ r
2

sinψ r2

b
cosψ

r
b

− r
b

0

 = rank(3) (2.22)

2.2.2 Controllability about a trajectory

Let the desired trajectory for the states be qd(t) = {xd(t), yd(t), ψd(t)} and the

reference control be ωd(t) = {ωdl(t), ωdr(t)}. Linearizing Eq. 2.17 about this reference

trajectory gives,

∆q = A(qd(t), ωd(t))∆q + B(qd(t), ωd(t))∆ωd (2.23)

where,

A(qd(t), ωd(t)) =


0 0 − r

2
sinψd(t)(ωdl(t), ωdr(t))

0 0 r
2

cosψd(t)(ωdl(t), ωdr(t))

0 0 0



B(qd(t), ωd(t)) =


r
2

cosψd(t)
r
2

cosψd(t)

r
2

sinψd(t)
r
2

sinψd(t)

r
b

− r
b


(2.24)
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As the linearized system is a time-varying with the dependence on the time

of the reference trajectory. Because of this the controllability analysis would be too

involved. So as a special case a constant velocity is considered with ψd(t) = ψdo, ωdl =

ωl, ωdr = ωr. So the final A, B matrix will be a linear-time invariant system. As

the rank of the controllability matrix is 3 from Eq. 2.25, the linearized system is

controllable.

C =
[
B AB A2B

]

=


r
2

cosψ r
2

cosψ − r2

2b
sinψ r2

2b
sinψ 0 0

r
2

sinψ r
2

sinψ r2

2b
cosψ − r2

2b
cosψ 0 0

r
b

− r
b

0 0 0 0


= rank(3)

(2.25)

Therefore from Sec. 2.2.1 and Sec. 2.2.2 we can say that the system is control-

lable about a point (or configuration) and about a trajectory.
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CHAPTER 3

Trajectory Generation

3.1 Overview

In this work, trajectory design refers to generation of the position, velocity ac-

celeration profiles corresponding to the given starting and the target position of the

rover [1]. The problem of trajectory generation can be solved by fitting a necessary

order polynomial between the desired initial and final configuration. Even though

the problem of trajectory generation is well defined, the main problem occurs in tra-

jectory continuity and the design of feasible trajectories such that the constraints of

the system are not violated. Constraints of the system can be placed on the veloc-

ity, acceleration, path curvature etc. Various researchers have tackled the curvature

constrained trajectory generation problem by considering a special polynomial that

inherently have the properties of curvature continuity. An example of this kind of

polynomial is the B-spline, which is a set of basis functions, that has these properties.

B-spline polynomials have been used for online trajectory generation with curvature

continuity [5]. The main drawback with B-spline polynomial is that it lacks a closed

form analytical expression which makes it hard for finding a solution for constraining

the velocity and acceleration along the trajectory.

Another example is the Bezier curve, which is also a basis function, and can be

used for online trajectory generation. In-order to use bezier curves for the velocity

and acceleration constrained trajectory generation, the coefficients of the polynomials

have to be determined first. One way to solve for the coefficients(so that the final

polynomial is constrianed upto required differentiable level) is to define an objective
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function and solve for the coefficients [18]. One needs to be careful when working with

bezier curves 1 as the polynomial is unstable for a polynomial order greater than 4 .

Another drawback with bezier curves is that they lack curvature continuity between

trajectory segments.

Some researchers have approached the problem of constrained trajectory gen-

eration by replacing the straight lines and circular arcs in dubins path [2] with a

polynomial to constrain the velocity, acceleration. This method uses clothoid curves

[19] instead of circular arcs so as to have continuous curvature, constrained velocity

and acceleration trajectory.

One of the problems this thesis addresses is the problem of trajectory gener-

ation between a desired set of configurations, such that the acceleration along the

trajectory does not exceed the maximum acceleration of the system.

3.2 Trajectory Generation with Acceleration Constraints

For the problem of constrained trajectory generation, a polynomial of sufficient

order is selected to enforce the boundary conditions. The boundary conditions on

position, velocity and acceleration is used to find the coefficients of the polynomials

in terms of the total trajectory time tf .

Let the position, velocity and acceleration of a point be,

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (3.1)

q̇(t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4 (3.2)

q̈(t) = 2a2 + 6a3t+ 12a4t
2 + 20a5t

3 (3.3)

1Bezier Curves, https://en.wikipedia.org/wiki/Bezier curve
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And let the initial positional coordinate be qinitial and final target coordinate be qfinal.

Let’s also assume that the rover starts with zero velocity, acceleration and ends up

at the target coordinate qfinal with zero final velocity, acceleration.

q(0) = qinitial (3.4)

q(tf ) = qfinal (3.5)

q̇(0) = q̇(tf ) = 0 (3.6)

q̈(0) = q̈(tf ) = 0 (3.7)

where tf = final time. The boundary conditions on the position, velocity and the

acceleration of the rover are used to calculate the coefficients of the polynomials. The

following results by substituting the above boundary conditions into Eqs. 3.1, 3.2

and 3.3,

a0 = q(0) (3.8)

a1 = 0 (3.9)

a2 = 0 (3.10)

qfinal − qinitial = a3t
3
f + a4t

4
f + a5t

5
f (3.11)

0 = 3a3t
2
f + 4a4t

3
f + 5a5t

4
f (3.12)

0 = 6a3tf + 12a4t
2
f + 20a5t

3
f (3.13)

Solving Eqs. 3.11, 3.12 and 3.13, the coefficients a3, a4, a5 are obtained in terms

of the boundary conditions and final time, tf as,

a3 = 10

(
∆q

t3f

)
(3.14)

a4 = −15

(
∆q

t4f

)
(3.15)

a5 = 6

(
∆q

t5f

)
(3.16)
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where ∆q = qfinal − qinitial. The acceleration of the polynomial at each time is

constrained by the maximum attainable acceleration of the system by,

|q̈(t)| ≤ amax (3.17)

where amax is the maximum acceleration. Eq. 3.17 is solved to obtain the final time

of trajectory. So the problem now becomes,

minimize :
1

2
q̈2(t)

subject to : |q̈(t)| ≤ |amax| .
(3.18)

By defining τ = t
tf

, q̈(t) can be written as,

q̈(t) =

∣∣∣∣∣60

(
∆q

t2f

)[
τ(1− 3τ + 2τ 2)

]∣∣∣∣∣ (3.19)

Using the necessary conditions for finding the minimum of a function, we get

d(q̈(t))

dτ
= 0 (3.20)

Then solution for the variable τ can be obtained as

τ =
1

2
± 1√

12
(3.21)

By substituting Eq. 3.21 in Eq. 3.19 the final time tf is obtained in terms of

the maximum acceleration and the boundary conditions as,

tf ≥

√
10√

3

∆q

amax
(3.22)

Therefore, the values for a3, a4 and a5 can be obtained by substituting tf into respec-

tive equations.

The resulting optimal trajectory is called Minimum-Jerk trajectory as we are

equating the jerk (derivative of the acceleration) to zero in Eq. 3.20.
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3.3 Simulation Based Verification of Derived Trajectory

In-order to verify the derived analytical result from Eq. 3.22 for the final trajec-

tory time, a maximum acceleration of 0.5 m/sec2 is selected to generate the reference

trajectory from an initial position of (10, 2) to the final position (17, 15). The final

time obtained from Eq. 3.22 is about 17.25 sec. The reference trajectory that was

generated after calculating coefficients by using Eqs. 3.14, 3.15 and 3.16 is shown in

Fig. 3.1.

6m 8m 10m 12m 14m 16m 18m 20m 22m 24m

 X

0m

2m

4m

6m

8m

10m

12m

14m

16m

18m

20m

 Y

 Reference Trajectory from initial to final configuration

 Initial Position
 Final Position
 Reference Trajectory

Figure 3.1: Reference Trajectory from an initial position(10, 2) to final position
(17, 15)
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The acceleration profiles of the 5th order polynomial in individual x and y-

directions is shown in Figs. 3.2, 3.3. From Figs. 3.2 and 3.3 it can be verified

that the acceleration of the polynomial is below the specified maximum acceleration

which is 0.5 m/sec2. And also from Fig. 3.4 it can be verified the resultant reference

acceleration is below the specified acceleration bound which is 0.5 m/sec2.

0 2 4 6 8 10 12 14 16 18

 Time (sec)
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-0.4

-0.2

0

0.2

0.4

0.6

 a
x
 (

m
/s

ec
2
)

 Reference acceleration in X-direction

 Reference acceleration
 Acceleration bound

Figure 3.2: Reference acceleration in X-direction (m/sec2) with a maximum acceler-
ation bound of 0.5 m/sec2
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Figure 3.3: Reference acceleration in Y-direction (m/sec2) with a maximum acceler-
ation bound of 0.5 m/sec2
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Figure 3.4: Resultant reference acceleration (m/sec2) with a maximum acceleration
bound of 0.5 m/sec2

where ares is the resultant acceleration and is given as
√
a2x + a2y.

Therefore from the above figures it is verified that the result given in Eq. 3.22

can be used for generating trajectory with acceleration constraint.

3.4 Circular Trajectory Stitching for Turning

As the constrained acceleration trajectory that was created in previous section

does not take into account the final heading angle of the rover, a circular trajectory

with a constant resultant velocity along the circular path is created to align the

robot towards the next target waypoint. In-order to create the circular trajectory,
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the current heading (ψ0) and the final desired heading (ψf ) is considered. The final

heading angle is calculated by taking the tangent angle between the current waypoint

and the next waypoint. Fig. 3.5 shows the different angles that are extracted from

the current and final heading angle.

Figure 3.5: Angles that were extracted by using current and final heading angle for
circular trajectory stitching

where ψ0R, ψ0L are the angles of the line that is perpendicular to the current

rover path in right and left directions respectively. ψfR, ψfL are the angles of the line

that is perpendicular to the path for the next waypoint in right and left directions

respectively.

Once these angles are calculated, the starting angle, ending angle and the center

for the circle is calculated based on the direction of the turn as shown in Fig. 3.6.
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Figure 3.6: Circular path creation based on the extracted angles

where CfL is the ending angle of the circle for the case of turning towards left

direction and CfR is the ending angle of the circle for the case of turning towards

right direction with starting angle of the circle, C0 for both the cases being the current

heading angle (ψ0) of the rover.
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Different angles and parameters of the circle that are shown in Figs. 3.5, 3.6

are calculated as follows,

ψ0L = ψ0R = ψ0T = α + ψ0 −
π

2

ψfR = ψfL = ψfT = ψf − γ
π

2

CfR = CfL = Cf = γ(ψfT − ψ0T )

LCx = RCx = Xc = Xcurrent +Rmin cos(π − α + ψ0 −
π

2
)

LCy = RCy = Yc = Ycurrent +Rmin sin(π − α + ψ0 −
π

2
)

C0R = ψfT

C0L = ψ0T

(3.23)

where γ is defined as -1 for the right turn (or) +1 for the left turn, α is defined as 0

for the left turn (or) π for the right turn, C0R is the starting angle of the circle for

the right turn, C0L is the starting angle of the circle for the left turn, Rmin is the

minimum turning radius, (Xcurrent, Ycurrent) is the current position of the rover.

By using the angles and the parameters of the circle defined in Eq. 3.23 and

from Eq. 3.24, a circular trajectory is generated and stitched between consecutive

minimum-jerk trajectory segments as shown in Fig. 3.7
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X(t) = Xc +Rmin cos

(
Cf

t

tf
+ C0

)
Y (t) = Yc +Rmin sin

(
Cf

t

tf
+ C0

)
Ẋ(t) = −γRminCf

t

tf
sin

(
Cf

t

tf
+ C0

)
Ẏ (t) = γRminCf

t

tf
cos

(
Cf

t

tf
+ C0

)
Ẍ(t) = −Rmin

(
Cf

t

tf

)2

cos

(
Cf

t

tf
+ C0

)
Ÿ (t) = −Rmin

(
Cf

t

tf

)2

sin

(
Cf

t

tf
+ C0

)

(3.24)

where C0, is selected as C0L for left turn (or) C0R for right turn, tf , is calculated

based on the resultant constant velocity(Vconst) along the path and is given as tf =

RminCf
Vconst

.
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Figure 3.7: Reference path generated by stitching circular segments to minimum-jerk
trajectory with a turn radius of 2 m and a constant velocity of 0.5 m/sec for the
circular segments
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CHAPTER 4

Control Law

4.1 Overview

Traditionally, the control of a mobile robot has been designed by either using

point stabilization [20] or by redefining the problem as a path/trajectory tracking

problem [21]. The path/trajectory tracking control problem is more appropriate, as

the control objectives(time of travel, fuel consumption) can be incorporated into the

path-planning procedure [22, 23]. Many control algorithms are proposed in path/tra-

jectory tracking framework such as PID [24], Lyapunov-based controller design [25],

feedback-linearization technique [16], model predictive controller [26], backstepping

controller[10]. Some of the approaches only guarantee local stability, while others

ensure global stability and convergence under certain assumptions.

Kinematic model based control design is more appropriate if the associated actu-

ator dynamics does not contain a noticeable amount of lag. At the same time dynamic

model based control design is efficient when there is a sufficient lag in the actuators.

In this project a kinematic model is considered for controller design/guidance law.

4.2 The idea of Backstepping

Backstepping is a recursive design technique that gives us the ability to con-

struct both the feedback control laws and associated Lyapunov functions in a nice

systematic manner. The main difference between feedback linearization technique

and the backstepping is that the feedback linearization method cancels all nonlin-

earities in the system. The backstepping method gives the designer the flexibility to
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exploit the so-called “good” nonlinearities while cancelling the “bad” nonlinearities

that destabilizes the system. This is very important as the cancellation of all nonlin-

earities requires precise system models which are very difficult to obtain.

The key idea of backstepping [27], [28] can be explained by considering a “strict-

feedback form” type system:

ẋ1 = f1(x1, x2) (4.1)

ẋ2 = x3 + f2(x1, x2) (4.2)

ẋ3 = u+ f3(x1, x2, x3) (4.3)

The first step is to stabilize x1 at 0. Let’s consider x2 as a virtual control to

stabilize x1 with the feedback law x2 = α1(x1). Let’s also denote that z1 = x1. So

the Eq. 4.1 now becomes,

ż1 = f1(z1, α1(x1)) (4.4)

Now, the designer needs to choose the stabilizing function α1(x1) such that x1

is stable. The function α1(x1) can be chosen by considering a Lyapunov function

candidate for the system ż1,

V1(x1) =
1

2
z21 (4.5)

So, in-order for the system to be considered as stable the derivative of the Lyapunov

function for the corresponding system needs to be negative-definite.

V̇1 = z1ż1 (4.6)

= z1f1(z1, α1(x1)) (4.7)
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The stabilizing function α1(x1) needs to be chosen such that
∂V1
∂z1

f1(z1, α1(x1)) < 0.

However we can achieve x2 = α1(x1) only with an error of z2 = x2−α1(x1). Therefore,

Eq. 4.1, 4.2 now becomes,

ż1 = f1(z1, α1(z1)) + z2Ψ1(z1, z2) (4.8)

ż2 = x3 + f2(z1, z2 + α1(z1))− α̇1 (4.9)

where Ψ1(z1, z2) in Eq. 4.8 is obtained by expressing f1 as,

f1(z1, z2 + α1(z1)) = f1(z1, α1(z1)) + z2Ψ1(z1, z2) (4.10)

It should also be noted that α̇1 is also known explicitly,

α̇1 =
∂α

∂x1
ẋ1 (4.11)

=
∂α

∂x1
f1(x1, x2) (4.12)

=
∂α

∂z1
f1(z1, z2 + α1(z1)) (4.13)

In the second step we will now use state x3 as a virtual control to drive the

f2(x1, x2) system to 0 with a feedback law x3 = α2(z1, z2). Now, again the the

stabilizing function α2 need to be determined so as to satisfy the Lyapunov stability

for the system z2. The Lyapunov function candidate be,

V2 = V1(z1) +
1

2
z22 (4.14)

Now, we want to make V̇2 negative-definite,

V̇2 =
∂V1
∂z1

f1(z1, α1(z1))

+ z2

(
∂V1
∂z1

Ψ1(z1, z2) + α2 + f2(z1, z2 + α1(z1, z2))

)
As the first term in the above equation was made negative in step 1, we only need to

choose α2 to make the expression negative. So, by choosing the α2 as,

α2 = −z2 −
∂V1
∂z1

Ψ1(z1, z2) − f2(z1, z2 + α1(z1)). (4.15)
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the expression for V̇2 now becomes,

V̇2 =
∂V1
∂z1

f1(z1, α1(z1))− z22 (4.16)

Again, since we cannot achieve x3 = α2(z1, z2) perfectly, there is an error z3 =

x3 − α2(z1, z2) and the expression for V̇2 now becomes,

V̇2 =
∂V1
∂z1

f1(z1, α1(z1))− z22 + z2z3 (4.17)

Finally we know the relationship between z1, z2, z3 and x1, x2, x3. Therefore,

the system can be written as

ż1 = f1(z1, α1(z1)) + z2Ψ(z1, z2) (4.18)

ż2 = z3 + α2(z1, z2) + f2(z1, z2 + α1(z1))− α̇1 (4.19)

ż3 = u+ f3(z1, z2 + α1(z1), z3 + α2(z1, z2))− α̇2 (4.20)

In the final step, no virtual control is needed as the actual control(u) is available.

Now, a feedback law for u need to be selected to make the derivative of the Lyapunov

function for the third cascaded system(ż3) be negative-definite

V3 = V2 +
1

2
z33 (4.21)

V̇3 =
∂V1
∂z1

f1(z1, α1(z1))− z22 + z2z3 + z3(u+ f3(z1, z2, z3, α1, α2)− α̇2) (4.22)

So the control law u is selected as

u = −z3 − f3 + α̇2 − z2 (4.23)

this guarantees that V̇3 < 0 for all nonzero z1, z2, z3. This results in global asymptotic

stability property with equilibrium at 0. This designed feedback law can now be

expressed as a function of x1, x2, x3.

From the above derivation it can be seen that the design of a feedback control
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law by using the backstepping control law tells us about the stability of the system

in the design phase itself. So, the designer can use this idea to exploit the desired

behavior that’s needed. The above example of strict-feedback form is only used to

motivate the discussion and the explained backstepping control law can be used for

any type of system that’s not necessarily of strict-feedback form and not necessarily

be feedback linearizable.

4.3 Design of nonlinear control-law for differential-drive robot

The kinematic model of the rover is illustrated in Fig. 2.1. It is evident that

the only way to control the position and orientation of the robot is by changing the

wheel speed. So, the low level controllers on the rover will directly command wheel

RPM based on a PWM voltage input.

Let the error in position in both x and y directions be,

ex = xact − xref (4.24)

ey = yact − yref (4.25)

where subscript (act) represents actual state of the rover and subscript (ref) repre-

sents reference trajectory.

Let the time derivative of the position tracking errors are taken as

ėx = ẋact − ẋref (4.26)

ėy = ẏact − ẏref (4.27)

The desired heading angle and velocity signals, ψdes and v̂ respectively, are

defined such that there is exponentially stable position tracking errors, i.e.

ėx = −λxex (4.28)

ėy = −λyey (4.29)
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for any λx > 0, andλy > 0. It follows that

v̂ cos (ψdes) = ẋref − λxex

v̂ sin (ψdes) = ẏref − λyey.
(4.30)

Then, by using the information in Eq. 4.30, the desired heading and velocity signals

for exponentially stable position tracking are defined as

ψdes = tan−1
(
yref − λyey
xref − λxex

)
, (4.31)

v̂ =

√
(ẋref − λxex)2 + (ẏref − λyey)2. (4.32)

It should be noted that Eq. 4.32 for the desired translational velocity, v̂, can be

written in terms of the wheel speed commands as

v̂ =
r

2
(ωL + ωR) .

Therefore, an additive relation for the wheel commands is given by

ωL + ωR =
2

r

√
(ẋref − λxex)2 + (ẏref − λyey)2. (4.33)

It is also desired that the heading angle tracking error, eψ = ψact − ψref , be

asymptotically stable. In other words, it is prescribed that ėψ = −λψeψ. The time

derivative for the heading angle tracking error is given by ėψ = ψ̇−ψ̇d. Combining the

kinematic equations in Eq. 2.14 with the heading angle tracking error derivative and

the prescribed condition leads to another equation in terms of the wheel commands

as

ωR − ωL =
b

r

(
ψ̇d − λψeψ

)
. (4.34)

The ψ̇des term can be derived by taking the time derivative of Eq. 4.31, which leads

to

ψ̇des =
1

v̂
[cos (ψdes) (ÿref − λy (v̂ sin (ψ)− ẏref ))− sin (ψdes) (ẍref − λx (v̂ cos (ψ)− ẋref ))]

(4.35)
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where the cos (ψdes) and sin (ψdes) terms come from the formulation in Eq. 4.30.

Solving Eq. 4.33 and 4.34 simultaneously leads to the following functions for

the left and right wheel speeds as

ωR =
1

2

[
2

r
v̂ +

b

r

(
ψ̇des − λψeψ

)]
,

ωL =
1

2

[
2

r
v̂ − b

r

(
ψ̇des − λψeψ

)]
,

It is important to note that as v̂ approaches zero in Eq. 4.35, the value for

ψ̇d is not defined. In order to avoid this, an algorithm for singularity avoidance is

employed. In general, the value of ψ̇d is defined to be zero if v̂ ≤ ε, for some ε � 1.

Thus, the algorithm assumes that ψd is held constant as a reference value based on

which waypoints the rover is traveling in-between. Formally, the following algorithm

is used to modify the wheel input speeds and avoid the singularities.

if (t > 0) and (v̂ ≤ ε) then

ωL + ωR =
2

r

√
(ẋref − λxex)2 + (ẏref − λyey)2

ψref = tan−1
(

∆y

∆x

)
ωR − ωL = −λk(ψ − ψref )

end if

A Lyapunov-stability analysis for the proposed control law is given in Appendix

A

4.3.1 Control-Gain Selection

As the proposed controller is based on the exponential decay of error which

in-turn dependent on the control gains (λx, λy, λψ) by choosing appropriate control

gains good trajectory tracking can be achieved. A simulation based gain selection

and its performance is already shown in [29]. But when an experimental setup is

considered for tracking the reference trajectory, a static gain is not sufficient for
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bounded error tracking. Because of the cyber-physical system architecture, there

will be network communication delay which results in data loss and communication

blackouts. So there will be an unbounded increase in error. In-order to reduce this

error, a relationship between the gains and error is desired, where an increase in error

will increase the gain associated with it to preserve the exponential error decay. With

that in mind, Eq. 4.36 gives a relationship between the error and associated gain,

ė = −λe. (4.36)

The differential equation in Eq. 4.36 is solved and the following relation is obtained

λ (t) =
ln
(
e(t)
e0

)
t− t0

, (4.37)

where e0 is the initial condition error and t0 is the initial time.

As the rover starting position is considered as the origin(0,0) for the local reference

frame and the reference trajectory is created from the origin, Eq. 4.37 is modified to,

λ (t) = k ln

(
|e (t)|
0.1

+ 0.1

)
. (4.38)

Therefore, Eq. 4.38 is used to calculate the required gain based on the error.

The value for k is selected by doing some experiments on the rover vehicle. The

constant k selected were kx = 0.1, ky = 0.1, kψ = 2.
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CHAPTER 5

Experimental Setup

To test the minimum-jerk trajectory from Chap. 3 and the modified back-

stepping controller from Chap. 4 an experimental differential-drive robot was built

from the ground-up. The final assembly of the rover is shown in Fig. 5.1. The

differential-drive robot is equipped with several sensors for navigation and to sense

it’s environment. Together, these sensors give the rover the ability to test the derived

algorithms in real-time in a constrained environment.

Figure 5.1: Differential-drive robot built at Aerospace Systems Laboratory, UTA
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5.1 On-board Sensors

The differential-drive robot shown in Fig. 5.1 is equipped with different sensors

to localize the rover position in either a global reference frame or a local reference

frame. These sensors are explained in following subsections.

5.1.1 Pixhawk

Pixhawk is an high-performance autopilot suitable for any robotic platform

that can move. The pixhawk internally contains autopilot software which can be

used for autonomous navigation. At the same time, the data from the sensors inside

pixhawk can be accessed and routed to other software modules. This makes it ideal for

testing custom algorithms on the fly without re-writing the internal pixhawk firmware.

Pixhawk internally contains a 3-axis gyroscope, 3-axis accelerometer, magnetometer

and different types of communication ports [30].

Figure 5.2: Pixhawk-Autopilot used on the ASL-Gremlin-Rover
Source: https://pixhawk.org/modules/pixhawk
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5.1.2 GPS/Compass

The GPS (Global Positioning System) sensor is a device which gives the current

position of the user/robot on earth in a global frame, in terms of Latitude, Longitude,

and Altitude on Earth.

The Compass is a device which gives the current bearing angle of the user with

respect to the magnetic north of the Earth at the current position. Together GPS

and Compass is an indispensable tool when it comes to navigation of an robot in

outdoor environments.

The purpose of the GPS and compass in this project is to get the global position

of the rover and also it’s current bearing angle. This information helps us to localize

the rover in a local reference frame.

Figure 5.3: 3DR u-blocx GPS/Compass used on the ASL-Gremlin-Rover
Source: http://ardupilot.org/copter/docs/common-installing-3dr-ublox-gps-

compass-module.html

5.1.3 Micro-Controller

A micro-controller is a small computer on a single integrated circuit. Micro-

controllers can be used for digital signal processing and voltage manipulation to con-

trol the real hardware. In the case of a differential-drive robot, the micro-controller

is used for converting the commanded PWM(Pulse-Width-Modulation) signal to the
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motor input voltage which in-terms controls the speed of the motor. The micro-

controller used on our experimental rover is from the Arduino stack, which is shown

below.

Figure 5.4: Arduino-Mega micro-controller used on the ASL-Gremlin-Rover
Source: https://store.arduino.cc/usa/arduino-mega-2560-rev3

5.1.4 Motors

A high-power, 6V brushed DC motor combined with a gearbox and a quadra-

ture encoder on the motor shaft is used to rotate the wheels. The quadrature encoder

attached on the motor shaft is used to calculate the angular velocity of the wheel.

This helps us to localize the rover based on the technique of dead-reckoning.

The main disadvantage of the dead reckoning method is that the position infor-

mation of the rover will drift because of wheel-slippage, wheel-tire flattening etc.
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Figure 5.5: Brushed DC Motor with quadrature encoder used on the ASL-Gremlin-
Rover

Source: https://www.pololu.com/product/2275

5.1.5 Odroid-XU4

The Odroid-XU4 is a high-performance, on-board computer which is used by re-

searchers all over the world for online image processing, hardware interfacing, etc. On

this rover, the Odroid-XU4 is used to collect the sensor data from pixhawk autopilot,

send commanded voltage signals to the arduino micro-controller, etc.

Figure 5.6: On-board computer on ASL-Gremlin-Rover
Source: http://www.hardkernel.com/main/products/prdt_info.php
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5.2 Data Transfer Between Rover Components

Once all the necessary components are connected to pixhawk and the sensors

are calibrated based on the instructions given on the ardupilot website1, the next

step is to get the sensor data from the pixhawk to the on-board computer. The

sections below describes the data transfer configuration between different sensors and

components on-board the rover. The software framework called Robot Operating

System (ROS) [31], is used to setup the data transfer between the components and

explained in Appendix B.

5.2.1 Communication Setup between Pixhawk and On-board Computer

There are two ways to get the sensor data from Pixhawk to the on-board com-

puter. One way is to use the Serial port or the Telemetry port of the Pixhawk and

write a serialization software module to re-route the data from the sensors to the

computer. This requires the knowledge of writing serial software modules. Another

way is to use the Mavlink enabled software packages that already performs the seri-

alization with minimalistic configuration. In this work the second approach is used.

The reason to use the Mavlink enabled software packages is that, Pixhawk internally

uses the Mavlink supported firmware which reduces incompatible message type er-

rors. The package called MAVROS [32], which is an open-source software package

from ROS (Robot Operating System) is designed to communicate between Pixhawk

and the computer that the Pixhawk is connected. In-order to send(or get) the data

from the Pixhawk to Odroid, the Telem2 port of the Pixhawk needs to be connected

to the Odroid via a FTDI-cable. Even though the Pixhawk’s USB port can be used

for data transfer, the use of the USB port is not suggested because of data loss and

connection loss while the Pixhawk is in operation. The connection between Odroid

1Ardupilot, http://ardupilot.org/copter/docs/common-pixhawk-wiring-and-quick-start.html
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and Pixhawk is shown in Fig. 5.7. After the wiring is done, the setup, given in

Appendix B.1 can be used to get the data from Pixhawk to Odroid.

Once the setup is done, all the Pixhawk sensor data is available in the form of ROS

topics, which can be used to access the data.

Figure 5.7: Connection between pixhawk and odroid that was used on ASL-Gremlin-
Rover

5.2.2 Communication Setup between Arduino and On-board Computer

Data from the Arduino can be transferred to the Odroid by opening a serial

communication from arduino. This way, data from different sensors connected to the

Arduino can be accessed by the Odroid and at the same time data can be sent to

the Arduino from the computer. Since the ROS framework is being used for data

transfer, it’ll be helpful if our Arduino is also registered with the ROS architecture.

To do this, the Arduino-ROS package [33] called ROSSERIAL is used. ROSSERIAL

is a library which extends the abilities of the Arduino by wrapping standard ROS

serialized messages and multiplexing multiple topics and services over a character
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device such as a serial port or network socket.

This way the Arduino will act as a node in the ROS architecture and the cor-

responding data can be accessed by any other ROS nodes as well. The configuration

given in Appendix B.2 is used to setup rosserial.

Figure 5.8: Connection between arduino and odroid that was used on ASL-Gremlin-
Rover

5.2.3 Communication Setup between Arduino and Motors

The speed of the DC motor can be controlled by changing the input voltage to

the motor. One way to set the speed of the motor is by sending a PWM signal to the

arduino with a value of 0 being no speed and a value of 255 being the motor running

at full speed. These PWM signals will be translated to a voltage signal in range 0 V

- 5 V with 0 V corresponds to a PWM of 0 and 5 V corresponds to a PWM of 255.

Now, the voltage signal in range 0 V to 5 V needs to be translated to the

operating voltage of the motor. In-order to have this capability, a motor-bridge is

used to translate the voltage signal in range 0 V - 5 V to the motor input voltage.

The motor bridge can also be used to set the direction of the wheel by reversing the

motor polarity.

For the present case a dual Vnh2sp30 driver shown in Fig. 5.9 is used which is

capable of driving the two motors in either direction at the same time.
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Figure 5.9: Motor driver for driving the DC motor
Source: https://www.pololu.com/product/2275

In-order to change the direction of rotation of the DC motor, the pins 1INA,

1INB for 1st motor or pins 2INA, 2INB for the second motor need to be set. By

setting pin 1INA to HIGH and pin 1INB to LOW the corresponding motor will turn

in a FORWARD direction. Similarly, by setting pin 1INA to LOW and pin 1INB to

HIGH the corresponding motor will turn in a REVERSE direction. The final wiring

diagram between Arduino, motor bridge and motors is shown in Fig. 5.10

Figure 5.10: Wiring connection between arduino, motor bridge and motors
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5.2.4 Communication Setup between Motor Encoders and Arduino

The quadrature encoders mounted on to the motor shaft is connected to the

same Arduino that sends the PWM signals to the motors. Since the quadrature

encoder gives the speed of the motor in terms of number of encoder pulses per wheel

rotation, the task at hand is to increment/decrement the encoder ticks based on

the speed and direction of the motor. In-order to increment/decrement the encoder

ticks, the algorithm given in Appendix B.3 is used. The wiring diagram between the

Arduino and a single encoder is shown in Fig. 5.11.

Figure 5.11: Wiring diagram of arduino and quadrature encoder
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By following the above sections, the data transfer between different components

on the rover is achieved and Fig. 5.12 shows the top-view of all the components on

the rover.

Figure 5.12: Top-view of the ASL-Gremlin-Rover with all the components

5.2.5 Data Flow Layout on the Rover

The on-board computer (Odroid) will act as a main communicating device for

all other components on the rover. The sensor data from the Pixhawk is stored

or processed by the Odroid and the pixhawk configuration commands are sent to
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Pixhawk from Odroid. The commanded PWM signal from the controller is sent from

Odroid to Arduino, which sets the required motor voltage via the motor bridge (dual

Vnh2sp30). The encoder pulses from the quadrature encoders, attached to the motor

shaft are sent from Arduino to Odroid for further processing. The whole layout of

the data flow is shown in Fig. 5.13.

Figure 5.13: Data flow between on-board computer and different components on the
Rover
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5.2.6 Communication setup between Rover and Ground Station

Once the configuration/setup is completed as discussed in the earlier sections,

the minimum-jerk trajectory and the backstepping controller can be tested. One

way to test these methods is to write the entire trajectory generation and the con-

troller design in C++/Python (as ROS accepts these two languages) and port it on

to the on-board computer which is a time-consuming process. So, to rapidly test the

proposed algorithms, a cyber-physical system based architecture is used. A cyber-

physical architecture is a framework where a decentralized machine(ground station)

handles all the computation and the control signals are sent to the rover based on the

sensor feedback obtained from the rover. The communication between the rover and

the ground-station can be handled via a network connection, Radio signals, satellite

uplink etc. The advantage of this architecture is that the robot only has to handle

limited amounts of computation. Another advantage is that any kind of high-sensitive

information won’t be lost when the robot is being operated under constrained envi-

ronment.

To setup the cyber-physical system architecture, the network communication

framework provided by ROS [31] is used. The reason to use the ROS network setup

is that it requires minimal configuration to create the network communication. The

configuration for the network communication setup is given in Appendix B.4.

A laptop2 which runs MATLAB/SIMULINK along with the Robotics Systems

ToolBox [34] from MATLAB is used as a ground station. This approach is used

because the Robotics Systems Toolbox has a built-in ROS support. This gives the

ability to directly use the modules that was tested based on a software simulation in

SIMULINK to directly test on a real hardware by simply replacing the output signal

blocks with the ROS blocks from the Robotics Systems Toolbox. The ROS network

2an intel i5 5th gen dual core cpu with a frequency 2.3 GHz and a RAM of 4GB
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configuration for the ground station is given in Appendix B.5.

Once the network setup is done, the data from the rover can be accessed directly by

SIMULINK and vice versa. The final communication diagram based on the cyber-

physical system architecture between the ground station and the rover is shown in

Fig. 5.14.
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Figure 5.14: Cyber-Physical system architecture for sending and receiving data be-
tween rover and ground station
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CHAPTER 6

Communication Delay Characterization and Tracking Performance Analysis

6.1 Communication Delay Characterization

There will be few pitfalls to overcome with the cyber-physical system (CPS)

based architecture employed on the rover. Chief among them is the presence of

network communication delays. These kind of difficulties arise due to the strength of

the network being used and the capabilities of the hardware involved.

In-order to measure the network communication delay between the rover and the

ground station, GPS pseudo-range based technique is used. All the data before being

sent to the ground station is time-stamped which says the time-of-sent for a signal.

And when a signal reaches the ground station, a time-of-arrival of signal is recorded.

So the delay between the rover and the ground station is the difference between the

time-of-sent and time-of-arrival of a particular signal. This method requires that both

the clocks (on the ground station and on the rover) need to be in sync, which is not

possible because of the time-drift in systems. So, at a fixed time-interval the local

clock offset between the ground station and the rover is measured. Then, by adding

or subtracting the local clock offset to the time-of-arrival of signal, an approximation

of the communication delay is obtained. This procedure is shown in Fig. 6.1.
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Figure 6.1: Illustration of time-delay calculation in getting the signal from rover to
ground station

Fig. 6.2 shows the communication delay between the rover and the ground-

station when an indoor-wifi is used with the technique shown in Fig. 6.1.
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Figure 6.2: Network communication delay between the rover and ground station with
indoor-wifi
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Figure 6.3: Network communication delay between the rover and ground station with
4G-LTE mobile hotspot in outdoor
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6.2 Tracking Performance Analysis of Controller with Communication Delay

Figure 6.4: Closed loop control system with communication delay, where τc = control
signal delay and τf = feedback signal delay

From Fig. 6.3, it can be said that the delays in the network can be much worse

if there occurs an communication blackout. So, to observe the effect of the commu-

nication delays on the trajectory tracking performance, an artificial communication

delay is generated between the controller and the rover model in simulation. A com-

munication delay in range 0.1 sec to 0.8 sec is selected for both the control signal and

feedback signal. Fig. 6.5 shows the results obtained from simulation, where 1 in the

table represents rover reached the goal and 0 represents rover didn’t reached the goal

even though it went through some waypoints in between. As shown in Fig. 6.5, when

the delay in the signal is more than 0.6 sec the performance of the system degrades

due to system instability.
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Figure 6.5: Tracking performance analysis with different combination of delays, where
1 represents vehicle reached goal and 0 represents vehicle didn’t reached the goal.
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CHAPTER 7

Experimental Results

This chapter discusses the experimental results by using the minimum-jerk tra-

jectory from Chap. 3 for reference trajectory generation, backstepping controller from

Chap. 4 for tracking the generated reference trajectory and the communication ar-

chitecture from Sec. 5.2.6 for sending control signals to rover.

For generating the minimum-jerk trajectory a maximum acceleration of 0.1m/sec2

is selected and the final time for the trajectory is calculated based on that. The ground

station handles the tasks like generating reference trajectory, calculating control sig-

nals and processing the encoder readings. The computer on-board the rover handles

tasks like processing GPS measurements, and time-stamping sensor readings for time-

delay analysis.

The IMU inside the pixhawk has an update rate of 25 Hz, GPS/Compass con-

nected to pixhawk has an update rate of 5 Hz, and encoders attached to motors

connected through arduino has an update rate based on the motor speed as hardware

interrupts on micro-controller is used to get the encoder pulses. So the ground station

is maintained at an update of 10 Hz if the encoders are used for rover localization

and 5 Hz if the GPS readings are used for rover localization.

To get the position feedback from the rover vehicle, three different feedback

methods were used mainly GPS-Compass, Encoder-Compass, and with just GPS. The

GPS readings obtained from the rover has a covariance of 0.5 m2 under clear skies and

2 to 3 m2 under cloudy skies. On the other hand, encoders has good accuracy for short

distances but is expected to drift linearly with time for long distances especially when
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the rover turns. These state-feedback techniques are discussed in-detail in Appendix

C.

The following sections present the experimental results that were obtained for

two types of test cases. For the results, a proximity region, or a safe-zone, of radius

2 m is considered around the waypoint. So, when the rover is within this proximity

region for a particular waypoint, then trajectory is generated from the current position

to next waypoint.

For the first test case, four waypoints are selected which form a square with a

side length of 20 m, shown in Fig. 7.1. In the second test, the waypoints are selected

to form an polygon shape with a radius of 20 m, depicted in Fig. 7.2.
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Figure 7.1: Reference path for the rover to follow for test case-1
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Figure 7.2: Reference path for the rover to follow for test case-2

The following subsections shows the trajectory tracking of the controller ex-

plained in Chap. 4 using the three different state-feedback techniques.

7.1 With GPS and compass

Figs. 7.3 and 7.4 shows the trajectory tracking of the rover for two test cases

by using the backstepping controller from Chap. 4. It can be clearly observed that

the rover follows the reference trajectory even though there are communication delays

between the ground station and the rover. The nominal error between the reference

trajectory and the actual rover trajectory is about 0.8 to 1 m can be seen from Figs.

7.5a, 7.5b. Since there is communication delay, the position feedback obtained from
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the rover is not from the previous simulation time step but from some other time step

given in Eq. 7.1,

E(t) = Xactual(t− δd)−Xreference(t), (7.1)

where δd, is the time delay of the signal to reach the ground station from the rover.

Therefore, the position error from Fig. 7.12a is much greater than what is

observed from Figs. 7.3 and 7.4. At time t = 145 sec there is a sudden increase in

the position error in Fig. 7.5b. This occurs because the position measurement from

the previous time-step (X(t− δd)) has arrived at the current time instant because of

the communication delay.
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Figure 7.3: Reference and actual path of the rover for test case-1 with GPS and
compass for state-feedback
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Figure 7.4: Reference and actual path of the rover for test case-2 with GPS and
compass for state-feedback

The trajectory tracking of the rover in x, y direction is shown in Figs. 7.6,

7.7. As the trajectory for the next waypoint is created when the rover reaches the

proximity region of the current waypoint. At the waypoint transition, the error

in position decreases and the error in the heading angle increases. The decrease

in position error at the waypoint transition is because the trajectory for the next

waypoint is generated from the current position of the rover. So, for the initial time

instant of the trajectory generation, the position error is smaller. The increase in

heading angle error around the waypoint transition is illustrated in Fig. 7.8.
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Figure 7.5: Error in position between reference and actual trajectory of the rover
with GPS and compass for state-feedback
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Figure 7.6: Reference and actual trajectory of the rover in X-direction with GPS and
compass for state-feedback
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(b) Test case-2

Figure 7.7: Reference and actual trajectory of the rover in Y-direction with GPS and
compass for state-feedback
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Because of the communication delay at time t = 145 sec, there is a sudden

increase in position error as the signal from some other elapsed time-step reached at

the current time-instant.

The error in heading angle increases around the waypoint transition point seen in Fig.

7.8. In-order to reduce that error, the proposed controller automatically commands

necessary angular velocities to the wheels such that the rover aligns itself towards

the required heading direction. The commanded angular velocities by the controller

around the waypoint transition to align the rover is shown in Figs. 7.9 and 7.10.
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(a) Test case-1
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(b) Test case-2

Figure 7.8: Reference and actual heading angle of the rover with GPS and compass
for state-feedback

The actual angular velocity of the vehicle is calculated by using the encoders and

Eq. C.8. As the minimum jerk trajectory from Chap. 3 is used to create the reference

trajectory, the maximum velocity in reference trajectory occurs at time
tfinal

2
. This

can be seen from Figs. 7.9a, 7.10a, where the angular velocity is maximum at time

tfinal
2

for a given trajectory segment. It can be seen that the actual angular velocity of

the rover is approximately equal to the commanded angular velocity by the controller,

which enables the rover to track the reference trajectory.
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Figure 7.9: Commanded and actual angular velocity (rad/s) of left-wheel GPS and
compass for state-feedback
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(b) Test case-2

Figure 7.10: Commanded and actual angular velocity (rad/s) of right-wheel GPS and
compass for state-feedback
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7.2 With Encoder and compass

This section presents the results obtained for the two cases shown in Fig. 7.1

and 7.2, with position feedback through the encoders (given in Appendix C) and the

heading feedback from the compass. The encoder based position feedback is obtained

by assuming that there is no wheel slippage, wheels are rigid.

Fig. 7.11 shows the trajectory tracking of the rover for both the test cases by

using the encoders and compass for state-feedback. It also shows the drift in encoder

readings by comparing the encoder reported position to the actual GPS readings.

Even though the encoder says that the rover reached the goal position and tracked

the reference trajectory, the GPS readings however, shows the actual path that the

rover tracked. This made the rover reach a location which is 6 to 8 m away from the

goal. The rover however, ended up making a square trajectory due to the heading

reference gathered from the compass. This allowed the rover to correct it’s heading

angle despite the growing position errors.
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Figure 7.11: Comparison between GPS and Encoder reported position with encoder
and compass for state-feedback
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(b) Test case-2

Figure 7.12: Error in position between reference and actual trajectory of the rover
with encoder and compass for state-feedback
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The trajectory tracking of the rover in x, y direction is shown in Fig. 7.13, 7.14.

There is an increase in position error at some instants because of the communication

delays. As the error in position increases in Fig. 7.13a, the controller tries to minimize

the error by increasing the angular velocity of the wheels. At time t = 50 sec from

Fig. 7.13a there is an increase in position error. So, as the position error increases at

t = 50 sec, the commanded angular velocity depicted in Figs. 7.16a and 7.17a also

increased in-order to minimize the error.

As the error in heading angle increases around the waypoint transition, the

controller commands the necessary angular velocity in-order to align the rover towards

the required heading angle. The commanded angular velocity by the controller around

the waypoint transition can be seen clearly in Figs. 7.16 and 7.17.
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(b) Test case-2

Figure 7.13: Reference and actual trajectory of the rover in X-direction with encoder
and compass for state-feedback
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(a) Test case-1

0 100 200 300 400

 Time (sec)

-20m

-15m

-10m

-5m

0m

5m

10m

15m

20m

 Y

 Reference and actual trajectory of WMR in Y-direction

Y-reference Y-actual-Encoder

0 100 200 300 400

 Time(sec)

-1m

0m

1m

2m

3m

4m

5m

 E
rr

o
r

 Error in Y-direction
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Figure 7.14: Reference and actual trajectory of the rover in Y-direction with encoder
and compass for state-feedback
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(b) Test case-2

Figure 7.15: Reference and actual heading angle of the rover with encoder and com-
pass for state-feedback
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Figure 7.16: Commanded and actual angular velocity (rad/s) of left-wheel with en-
coder and compass for state-feedback
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(b) Test case-2

Figure 7.17: Commanded and actual angular velocity (rad/s) of right-wheel with
encoder and compass for state-feedback
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7.3 With only GPS

For this case, GPS measurements are converted to the ENU frame using the

same method discussed in Appendix C. To get the heading angle feedback, the tangent

angle between the previous GPS measurement and the current GPS measurement is

taken, which gives the angle in ENU co-ordinates.

From Fig. 7.18, it can be observed that the controller tracks the reference tra-

jectory closely. As there is a presence of network communication delays, asynchronous

data processing for error calculation is observed and given by Eq. 7.1. So, the nominal

position error is about 1.8 m shown in Fig. 7.19.
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Figure 7.18: Reference and actual path of the rover with only GPS for state-feedback
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(b) Test case-2

Figure 7.19: Error in position between reference and actual trajectory of the rover
with only GPS for state-feedback
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As there will be a small jumps in GPS measurements, the heading angle that is

calculated from GPS measurements will also have a small jumps. So, as the calculated

heading angle jumps, the control signals generated by the controller will also have

jumps, to minimize the error. The jumps in heading angle can be seen in Fig. 7.22a

and the commanded angular velocity by the controller can be seen in Figs. 7.23a and

7.24a where it is evident that the controller is trying to minimize the heading error.
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(a) Test case-1
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Figure 7.20: Reference and actual trajectory of the rover in X-direction with only
GPS for state-feedback
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(a) Test case-1
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(b) Test case-2

Figure 7.21: Reference and actual trajectory of the rover in Y-direction with only
GPS for state-feedback
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(a) Test case-1
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Figure 7.22: Reference and actual heading angle of the rover with only GPS for
state-feedback
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(a) Test case-1
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(b) Test case-2

Figure 7.23: Commanded and actual angular velocity (rad/s) of left-wheel with only
GPS for state-feedback
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Figure 7.24: Commanded and actual angular velocity (rad/s) of right-wheel with
only GPS for state-feedback
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7.4 Using Circular Trajectory Segments for Turning

For this test case, a constant velocity circular trajectory explained in Sec. 3.4

is used to align the rover towards the next target waypoint when the rover reaches

the current waypoint proximity. In-order to create the circular trajectory, a turning

radius of 2 m and a constant resultant velocity of 0.5 m/sec is considered. Fig. 7.25

shows the trajectory tracking of the rover and the circular trajectory stitching for the

test case-1.

-5m 0m 5m 10m 15m 20m 25m

 X

0m

5m

10m

15m

20m

 Y

 Desired and Actual Trajectory

Reference Waypoints Actual-GPS SafeZone (2meters)

Figure 7.25: Reference and actual path of the rover for the test case-1 with GPS and
compass along with circular trajectory stitching
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From Fig. 7.25 we can see the stitched circular trajectory at the waypoint

transition. As the circular trajectory is created to align the rover towards the next

waypoint, the rover followed the circular trajectory and turned gradually rather than

turning in-place as this is the case in previous results. The trajectory tracking of the

rover in x, y direction is shown in Figs. 7.26, 7.27. From Fig. 7.28 we can see that as

the circular trajectory segments are used to align the rover towards the next desired

heading, there is a gradual change in the heading angle. Because of this the rover

was able to turn smoothly and reach the goal position at the end.
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Figure 7.26: Reference and actual trajectory of the rover in X-direction with GPS
and compass along with circular trajectory stitching
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Figure 7.27: Reference and actual trajectory of the rover in Y-direction with GPS
and compass along with circular trajectory stitching
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Figure 7.28: Reference and actual heading angle of the rover with GPS and compass
along with circular trajectory stitching
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Figure 7.29: Commanded and actual angular velocity (rad/s) of the wheels with GPS
and compass along with circular trajectory stitching
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CHAPTER 8

Summary, Conclusions and Future Work

8.1 Summary and Conclusions

This thesis presents a novel optimal trajectory generation scheme based on the

constraints of the system. The trajectory generation scheme was analyzed experi-

mentally for different acceleration bounds. As the motors that were used on the rover

are of high-torque and low speed this sets the physical limits on the rover. So, when

an acceleration bounds of more than 0.3 m/sec2 were used, the final time that was

obtained was not enough to track the trajectory as this requires more velocity than

the existing motors can provide. This can be rectified by increasing the final time for

the trajectory or using more powerful motors. As increasing the final time for the

trajectory corresponds to selecting a lower acceleration bound, an acceleration bound

below 0.3 m/sec2 was selected to generate the reference trajectory.

The nonlinear guidance law was verified experimentally. The gains associated

with the guidance law were tuned based on the trajectory tracking performance and

it was observed that higher gains are needed for reducing the heading angle error

than to reduce the positional error. It was observed that when the gains associated

with minimizing the position errors are more than 0.5, the commanded wheel speeds

are saturated.

The time-delays associated with the cyber-physical system framework which was

used to test the trajectory generation and guidance law were thoroughly investigated.

It was noticed that the minimum time-delay associated with the network communi-

cation in the outdoor environment was about 150 milliseconds. The control scheme
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was tested with different time-delays and was found to be robust to network delays

of upto 350 milliseconds, without loss in performance. The performance degradation

in terms of waypoint proximity was observed to be similar for delays larger than 600

milliseconds.

8.2 Future Work

The work presented in this thesis can be used as a foundation for the future

research on unmanned ground vehicles. The communication architecture developed

for the rover can be used to test various Guidance, Navigation, and Control laws.

Some future studies include,

• Design and verify continuous trajectory generation with system constraints

• Vehicle-to-vehicle communication for co-operative mission planning

• Design of control law to account for time-delays
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Appendix A

Lyapunov Stability Analysis

For a function to be considered a valid Lyapunov function it must be positive

definite, its derivative must be negative definite and both the function and its deriva-

tive must be equal to zero at the equilibrium points (i.e. the origin of the system)

[35].

With that in mind, a candidate Lyapunov function is chosen as

V =
1

2

(
e2x + e2y + e2ψ

)
, (A.1)

which is positive definite and is only equal to zero at the origin. The time derivative

of V then is

V̇ = exėx + eyėy + eψėψ. (A.2)

The stability of the system will be shown in two parts. First, stability will be shown

without the singularity avoidance algorithm. Then, stability of the system with the

singularity avoidance values will be given.

Proof. No singularity avoidance: When ||v̂|| > ε, for some ε� 1, and using the wheel

commands given in Eq. 4.36 and 4.36, it follows that the heading angle error term in

equation A.2 simplifies to

eψėψ = eψ

(
ψ̇ − ψ̇des

)
= eψ

[r
b

(ωR − ωL)− ψ̇des
]

= eψ

[
r

b

(
b

r

(
ψ̇des − λψeψ

))
− ψ̇des

]
= −λψe2ψ.
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This dictates that ψ → ψdes as t → ∞. Therefore, as ψ → ψdes, the position error

terms in Eq. A.2 simplify to

exėx = ex

(r
2

(ωL + ωR) cos (ψdes)− ẋr
)

= ex (v̂ cos (ψdes)− ẋr)

= ex ((ẋr − λxex)− ẋr)

= −λxe2x,

and

eyėy = ey

(r
2

(ωL + ωR) sin (ψdes)− ẏr
)

= ey (v̂ sin (ψdes)− ẏr)

= ey ((ẏr − λyey)− ẏr)

= −λye2y.

Hence, the result in Eq. A.2 becomes

V̇ = −λxe2x − λye2y − λψe2ψ, (A.3)

which is negative definite and only equal to zero at the origin. Therefore, Eq. A.1

is a valid Lyapunov function. Furthermore, the system given in Eq. 2.14 with the

wheel commands in Eq. 4.36 and 4.36 is stable and the errors will converge to zero

as t→∞ [35].

Proof. With singularity avoidance: When the value of ||v̂|| ≤ ε, for some positive

ε � 1, the singularity avoidance algorithm is implemented. From the candidate

Lyapunov function derivative and the wheel commands, the heading angle error terms

simplify to

eψėψ = eψ

(
ψ̇ − ψ̇des

)
= eψ

[r
b

(ωR − ωL)− 0
]

= eψ

[
r

b

(
b

r
(0− λψeψ)

)
− 0

]
= −λψe2ψ,
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since ψ̇des = 0 by definition in the algorithm. This dictates that ψ → ψdes where

ψdes is the reference value ψref by definition. Furthermore as ψ → ψdes, the position

tracking errors reduce to

exėx = ex

(r
2

(ωL + ωR) cos (ψdes)− ẋref
)

= ex (v̂ cos (ψdes)− ẋref )

= ex ((ẋref − λxex)− ẋref )

= −λxe2x,

and

eyėy = ey

(r
2

(ωL + ωR) sin (ψdes)− ẏref
)

= ey (v̂ sin (ψdes)− ẏref )

= ey ((ẏref − λyey)− ẏref )

= −λye2y.

Thus, the result in Eq. A.2 becomes

V̇ = −λxe2x − λye2y − λψe2ψ, (A.4)

which is negative definite and equal to zero at the origin. Therefore, the system is

stable and the errors will converge to zero as t→∞.
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Appendix B

Software Configuration For Data Transfer Between Components On The Rover

Before going further into the setup and configuration, first we need to discuss

about the framework that is used for the setup, which is called Robot Operating

System (ROS). ROS is a flexible framework for writing robot software. It is a frame-

work with collection of tools, libraries, and conventions that aim to simplify the

task of creating complex and robust robot behavior across a wide variety of robotic

platforms. The following mentioned concepts are needed before going forward and

in-depth understanding can be found in [36].

• ROS File-System:

� Packages: These are the basic unit of the ROS software. it contains all the

runtime processes called nodes, libraries, package configuration etc.

� Messages: Messages are the type of information that is sent from one ros

process to other ros process. These are usually located inside ros package

with the file extension “.msg”. These files are located inside the package

as,

ros_package_name/msg/<message-name>.msg

� Services: Services are kind of a request/reply interaction between pro-

cesses. The service information is usually stored with the file extension

“.srv”. These files are located inside the package as,

ros_package_name/srv/<service-name>.srv
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• ROS Computation-Graph Level: This the framework that ROS uses for han-

dling all the computation and talking between other processes. The main con-

cepts in the computation graph are,

� Nodes: These are the processes that performs the computation.

� Master: The ROS Master provides the registration and lookup to the rest

of the nodes. Nodes will not be able to find each other, exchange messages,

or invoke services without a ROS Master.

� Parameter Server: The parameter server allows you to keep the data to be

stored in a central location. This is part of the ROS Master.

� Topics: Each message in ROS is transported using named buses called

topics. When a node sends a message through a topic, then we can say

the node is publishing a topic. When a node receives a message through a

topic, then we can say that the node is subscribing to a topic.

� Bags: Bags are a format for saving and playing back ROS message data.

Bags are an important mechanism for storing data, such as sensor data,

which can be difficult to collect but is necessary for developing and testing

robot algorithms.

B.1 Configuration for data transfer between Pixhawk and Odroid

Once the Mavros software is installed from the ROS respository(MAVROS) and

after connecting the on-board computer to the pixhawk using an FTDI cable, the next

step is to configure the Mavros package as follows,

• Get the port number that the pixhawk is connected to, let’s say that the port

number is /dev/ttyUSB0.
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• Connect the pixhawk to the Mission planner and change the baudrate of the

TELEM2 port to 921600(this can be done by setting SERIAL1_baud under con-

figuration -> Full Parameter List)

• Now open the file “apm2.launch” by going to the launch folder of the Mavros

package, and change the fcu_url parameter to /dev/ttyUSB0:921600

• Now launch the apm2.launch to connect to pixhawk and access the data.

B.2 Setup for data transfer between Arduino and Odroid

Once the Arduino IDE is installed on the odroid, the ROS package rosserial

needs to be installed. The installation procedure is given on clearpath-robotics web-

site(rosserial).

After that running the following command will connect the odroid to arduino using

ROS framework.

1 rosrun rosserial_python serial_node.py /dev/ttyACM0

where /dev/ttyACM0 is the port to which arduino is connected to.

B.3 Reading quadrature encoders using Arduino

Before going on to the problem of how to read the quadrature encoders off the

motors, one needs to know how the quadrature encoders works. Quadrature encoders

are a kind of rotary encoders where the direction of rotation of the motor can be

determined. Quadrature encoders consists of two channels, channel A and channel B.

The output from both the channels will either be HIGH(5 V) or LOW(0 V). Usually

channel B has a phase lag of 90o compared to A. So when the signal from channel A

leads channel B, it says that the motor is rotating in FORWARD(clockwise) direction.

Similarly when the signal from channel B leads channel A, it represents that the motor
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is rotating in REVERSE(anti-clockwise) direction. And the speed of the motor can

be obtained by looking at the rate of the change of these signals from HIGH to LOW.

Fig. B.1 shows the signals state of channel A and B when the motor is turning in

both the directions.

Figure B.1: Signal state of the quadrature encoder based on the direction of the motor
movement

Now to increment/decrement the encoder count based on the speed of the mo-

tor, we need a way to increment/decrement count whenever a signal change occurs in

either of the channels. To account for this the “Hardware Interrupts” functionality

available inside arduino mega is used. The main advantage of using hardware inter-

rupts is that, it eliminates the need for manual signal polling to check whether the

signal state is changed. So whenever a signal change occurs in either of the channels

the hardware interrupt calls a predefined function and based on the previous signal

state of the channels, the encoder count is either incremented or decremented. The

algorithm that was used to increment/decrement the encoder count is given in Table.

B.1.
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Previous signal state Current signal state
Count

A B A B
0 0 1 0 +1
0 0 0 1 - 1
1 0 1 1 +1
1 0 0 0 - 1
1 1 0 1 +1
1 1 1 0 - 1
0 1 0 0 +1
0 1 1 1 - 1

Table B.1: Algorithm to increment/decrement encoder ticks based on the motor
direction, where 1 represents signal is HIGH and 0 represents signal is LOW

In this case whenever the signal change occurs the count of the encoder in

incremented/decremented based on the motor turning direction and the state of the

channels A,B based on the Table B.1

B.4 Network Communication Setup

ROS gives us the ability to communicate between different nodes over-the-

network with a very minimalistic configuration. let’s say that we want two system(two

robots or a robot and a computer) needed to be connected so that the data from the

computer can be sent to robot and the data on the rover can be accessed by com-

puter. Let the tow systems be system1 and system2 . For generality let’s say that

the system1 network IP address is system1-IP and the system2 network IP address is

system2-IP. Before proceeding further we need to select one of the system as a Master

so that the ROS Master will be running on that machine. Let the Master system in

this case be system1, so other systems will be connected to system1.

Before launching the “roscore” two variables needed to be set on all the machines.

They are,
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• ROS MASTER URI: IP address where the ROS Master should run or is

running and the syntax for setting this variable is,

1 export ROS_MASTER_URI=http://<MASTER -IP >:11311

• ROS IP: IP address of the current machine. The syntax for setting this variable

is,

1 export ROS_IP=<system -IP >

Example: For connecting system1 and system2 with the ROS-Master running

on system1,

On System1

1 export ROS_IP=<system1 -IP >

2 export ROS_MASTER_URI=http://<system1 -IP >:11311

On System2

1 export ROS_IP=<system2 -IP >

2 export ROS_MASTER_URI=http://<system1 -IP >:11311

Once the above procedure is followed, the communication between system1 and

system2 will be established and both the systems will be able to access the data on

each other machines.

B.5 Network Communication setup between Rover and MATLAB

As the MATLAB is being used for simulating control signals and sending it to

the rover, the MATLAB needed to be connected to the ROS-Master on the rover. The

command “rosinit” in MATLAB needed to be run to start the ROS on MATLAB.

To connect MATLAB to existing ROS-Master the IP address of the machine where

ROS-Master is running need to be specified to “rosinit”.

Example: To connect to ROS-Master at IP address <ROS-Master-IP>,
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1 rosinit(’ROS -Master -IP’)
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Appendix C

Obtaining state-feedback from different sensors

C.1 Converting global GPS co-ordinates to local cartesian co-ordinates of rover

Since GPS gives the position information of the rover in the global co-ordinate

frame, these measurements need to be transformed to local navigation frame(ENU)

in-order to localize the rover. To transform these GPS measurements to ENU frame,

the GPS measurements are first transformed to Earth-Centered-Earth-Fixed(ECEF)

frame by using WGS-84 ellipsoidal model given by Eq’s. C.1-C.4. Then by taking the

first ECEF co-ordinate as a starting position, these ECEF co-ordinates are tranformed

to ENU frame using Eq’s. C.5-C.6.

N =
a√

1− e2 sin2 φ
(C.1)

XECEF = (N + h) cosφ cosλ (C.2)

YECEF = (N + h) cosφ sinλ (C.3)

ZECEF = (N(1− e2) + h) sinφ (C.4)

PNED =


− sinφ cosλ − sinφ sinλ cosφ

− sinλ cosλ 0

− cosφ cosλ − cosφ sinλ − sinφ

∆ECEF (C.5)

PENU = RENU
NED PNED (C.6)

where N is the length of the normal to the ellipsoid, XECEF is the X co-ordinate

of the rover in ECEF frame, YECEF is the Y co-ordinate of the rover in ECEF frame,
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ZECEF is the Z co-ordinate of the rover in ECEF frame, φ, λ, h are the latitude,

longitude and altitude at the current rover position, a is the semi-major axis of the

earth(6, 378, 137.0 m), b is the semi-minor axis of earth(6, 356, 752.3142 m), e is the

eccentricity of the earth, RENU
NED is the rotation matrix from NED to ENU frame,

PNED = [XNED, YNED, ZNED]T , PENU = [XENU , YENU , ZENU ]T and ∆ECEF =

[ECEFcurrent − ECEFini].

C.2 Relationship between wheel angular velocity to motor PWM

In-order to command the motors, an appropriate relationship between the an-

gular velocity and motor PWM voltage signals is required. To get this relationship,

a series of PWM values are selected. Then these selected PWM values are applied to

motors with the rover on the ground for a time span of δt and the traveled distance by

rover is measured. By using PWM and the distance traveled, the angular velocity of

the wheel(ω) is calculated using equation C.7 and the obtained relationship between

the angular velocity of the wheels to motor PWM signal is illustrated in figure C.1.

ω =
∆s

rδt
. (C.7)

where ∆s is the distance travelled.

Fig. C.1 shows the relationship between the angular velocity of the wheels to motor

PWM signal.
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Figure C.1: Obtained relationship between angular velocity of wheel and motor PWM

C.3 Converting motor encoder count to local cartesian position of rover

In-order to determine the position of the rover using the wheel encoders, first

the actual angular velocity of the wheels need to be determined. Position from the

quadrature encoders is obtained by counting the number of encoder pulses and inte-

grating the state differential equations defined in Eq. C.9 using the initial condition

of the rover(x0, y0, ψ0). It should be noted that the encoders have a tendency to drift

linearly with time because of wheel slippage or micro-controller hangups or wheels

are not perfectly rigid. Because of this reason encoders were not too reliable, espe-

cially when the rover has to travel long distances. However, for short distances, a

position accuracy of 1 cm can be achieved. This technique is popularly known as

dead reckoning.
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The actual angular velocity of the vehicle is calculated by using the encoders

and Eq. C.8,

ωactual =
(δET )

rγET δt
, (C.8)

where r is the radius of the wheel (m), δET is the number of ticks that is elapsed

since the last known encoder measurement, γET is the number of encoder ticks that

would obtained if the rover travels for a distance of 1 m, and δt is the time elapsed

since the last known encoder measurement.

Ẋact =
r

2
(ωr{act} + ωl{act}) cosψact

Ẏact =
r

2
(ωr{act} + ωr{act}) sinψact

(C.9)

where, ωr{act}, ωl{act} are the right and left actual wheel angular velocities re-

spectively and ψact is the actual heading angle of the rover.
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