
FRAMEWORKS, ALGORITHMS, AND SYSTEMS

FOR EFFICIENT DISCOVERY OF DATA-BACKED FACTS

by

GENSHENG ZHANG

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

DECEMBER 2017

Copyright c© by GENSHENG ZHANG 2017

All Rights Reserved

To my wife Changling and my son Maxwell.

ACKNOWLEDGEMENTS

I would like to express my appreciation and thanks to my advisor Professor Dr.

Chengkai Li. I would like thank Dr. Li for constantly being an inspiring/encouraging

mentor during the course of my doctoral study. I would also like to thank Dr. Sharma

Chakravarthy, Dr. Gautam Das, and Dr. Leonidas Fegaras for serving as my com-

mittee members. I would especially like to thank my labmates of the Innovative

Database and Information Systems Research (IDIR) Lab and friends from the Com-

puter Science and Engineering department – Ning Yan, Nandish Jayaram, Naeemul

Hassan, Afroza Sultana, Fatma Arslan, Damian Jimenez, Josue Caraballo, Abolfazl

Asudeh, Sona Hasani, and many others. All of you have been there to support me

and make research fun.

A special thanks to my family for all of the sacrifices that youve made on my

behalf. Words cannot express how grateful I am to my wife, my parents, my brother

and my sisters. You are the people who set the example and who made me who I

am.

SEPTEMBER 22, 2017

iv

ABSTRACT

FRAMEWORKS, ALGORITHMS, AND SYSTEMS

FOR EFFICIENT DISCOVERY OF DATA-BACKED FACTS

GENSHENG ZHANG, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Dr. Chengkai Li

This thesis studies the problem of finding facts from semi-structured and struc-

tured data. The amount of data in our world is exploding, and the proliferation of

data is making them increasingly inaccessible. It is now more challenging than ever

how to efficiently identify useful information where a vast amount of data is available.

This thesis first studies the problem of finding facts in semi-structured data,

specifically, in knowledge graphs. We built Maverick, a general, extensible framework

that discovers exceptional facts about entities in knowledge graphs. We model an

exceptional fact about an entity of interest as a context-subspace pair, in which a

subspace is a set of attributes and a context is defined by a graph query pattern

of which the entity is a match. The entity is exceptional among the entities in

the context, with regard to the subspace. The search spaces of both patterns and

subspaces are exponentially large. Maverick conducts beam search on the patterns

which uses a match-based pattern construction method to evade the evaluation of

invalid patterns. It applies two heuristics to select promising patterns to form the

beam in each iteration. Maverick traverses and prunes the subspaces organized as

v

a set enumeration tree by exploiting the upper bound properties of exceptionality

scoring functions. Maverick demonstrated substantial performance improvement of

the proposed framework over the baselines as well as its effectiveness in discovering

exceptional facts.

This thesis further investigates the problem of finding facts in structured data.

In particular, our objective is to find top-k prominent streaks in multi-dimensional

multi-sequence data. Given a sequence of values, a prominent streak is a long con-

secutive subsequence consisting of only large (small) values, e.g., consecutive games

of outstanding performance in sports. To efficiently discover prominent streaks, we

exploited the properties of local prominent streaks (LPS), which is a superset of promi-

nent streaks. We showed that LPS-based algorithms exhibited orders of magnitude

performance improvement against the baseline method.

This thesis also presents a fact-finding system FactWatcher, which helps journal-

ists identify data-backed, attention-seizing facts which serve as leads to news stories.

FactWatcher discovers three types of facts, including situational facts, one-of-the-few

facts, and prominent streaks, through a unified suite of data model, algorithm frame-

work, and fact ranking measure. Furthermore, FactWatcher provides multiple features

in striving for an end-to-end system, including fact ranking, fact-to-statement trans-

lation and keyword-based fact search.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . x

LIST OF TABLES . xii

Chapter Page

1. Introduction . 1

2. Discovering Exceptional Facts from Knowledge Graphs 6

2.1 Introduction . 6

2.2 Problem Formulation . 11

2.3 Overview of Framework . 18

2.3.1 Context Evaluator . 21

2.4 Exceptionality Evaluator . 23

2.4.1 Finding Top-k Subspaces . 24

2.4.2 Exceptionality Scoring Functions 26

2.4.3 Upper Bound Functions . 28

2.5 Pattern Generator . 31

2.5.1 Search Space of Patterns . 31

2.5.2 Match-based Construction of Patterns 34

2.5.3 Pattern Pruning Strategies . 37

2.5.4 Pattern Selection Heuristics (h) 38

2.6 Experiments . 40

2.6.1 Experiment Setup . 40

vii

2.6.2 Efficiency . 42

2.6.3 Effectiveness . 48

2.6.4 Scalability . 50

2.6.5 User Study for Comparing Exceptionality Scoring Functions . 52

2.6.6 Case Study . 54

2.7 Related work . 56

3. Discovering General Prominent Streaks in Sequence Data 58

3.1 Introduction . 58

3.1.1 Problem Definition . 60

3.1.2 Overview of the Solution . 62

3.1.3 Summary of Contributions and Outline 67

3.2 Related Work . 68

3.3 Discovering Prominent Streaks from Local Prominent Streaks 70

3.3.1 Local Prominent Streak (LPS) 70

3.3.2 LPSk
P and LPSk

Pk
. 72

3.3.3 Non-linear LPS Method . 74

3.3.4 Linear LPS Method . 80

3.4 Monitoring Prominent Streaks . 82

3.5 Discovering General Prominent Streaks 84

3.5.1 Top-k Prominent Streaks . 84

3.5.2 Multi-sequence Prominent Streaks 86

3.5.3 Multi-dimensional Prominent Streaks 87

3.6 Experiments . 97

3.6.1 Experimental Results on Basic Prominent Streak Discovery . . 97

3.6.2 Experimental Results on General Prominent Streak Discovery 104

4. Data In, Fact Out: Automated Monitoring of Facts by FactWatcher 116

viii

4.1 Introduction . 116

4.2 Concepts . 119

4.3 User Interface . 121

4.4 Algorithms . 124

4.5 Usage Scenarios . 127

5. Conclusion and Future Plans . 129

REFERENCES . 132

ix

LIST OF ILLUSTRATIONS

Figure Page

1.1 Examples of knowledge graph and sequence data. 2

1.2 Google’s “Did you know” feature . 4

2.1 An excerpt of a knowledge graph. 6

2.2 Examples of Pattern, Context, and Match 7

2.3 The framework of Maverick. 20

2.4 An excerpt of the search space of patterns 32

2.5 Illustration of how the child patterns of a pattern are constructed . . . 35

2.6 The 7 types of the extra edge in a child pattern P ′ of P 37

2.7 The heat map of χ scores and timestamps of context-subpsace pairs . . 42

2.8 Effect of k and w on the number of evaluated patterns. 43

2.9 Number of evaluated patterns by level and context size. 45

2.10 Time spent on evaluating patterns at different levels. 46

2.11 The pruning power of different pruning strategies. 46

2.12 Effect of subspace pruning (upper bound functions). 48

2.13 Score distributions of top-10 context-subspace pairs. 50

2.14 Average coverage error on 10 entities. Beam width 10. 50

2.15 Execution time of enumerating all candidates. 51

3.1 A Data Sequence and its Prominent Streaks. 60

3.2 Local Prominent Streaks. 70

3.3 From LPS9
P9

to LPS10
P10

. 73

3.4 Detailed Results on SP500, Basic Prominent Streak Discovery. 101

x

3.5 Detailed Results on WC98, Basic Prominent Streak Discovery. 101

3.6 Cumulative Execution Time at Various Positions 103

3.7 Total Execution Time by Reporting Frequencies 103

3.8 Detailed Results on Top-1 vs. Top-5 Prominent Streaks 105

3.9 Number of Prominent Streaks and Execution Time 106

3.10 Execution Time at Various Positions, Top-5 Prominent Streak 106

3.11 Execution Time by Reporting Frequencies, Top-5 Prominent Streak . . 106

3.12 Detailed Results on AAPL, Multi-dimensional Prominent Streak Dis-

covery. 112

3.13 Experiments on Increasing Dimensionality. 113

3.14 Distribution of Prominent Streaks by Length. 114

3.15 Detailed Results on NBA2, General Prominent Streak Discovery 114

4.1 FactWatcher System Architecture . 118

4.2 FactWatcher User Interface . 122

xi

LIST OF TABLES

Table Page

2.1 The frequencies of attribute values in all subspaces for G1 16

2.2 Breakdown of execution time by components. 45

2.3 The effect of beam width (w) on the coverage errors of top-10 context-

subspace pairs of 10 entities. In each cell: the average and the median

coverage errors. Both numbers are the smaller the better. 51

2.4 User study results at different participant quality levels. 53

3.1 Data Sequences Used in Experiments on Basic Prominent Streak Dis-

covery. 97

3.2 Number of Candidate Streaks, Basic Prominent Streak Discovery. . . . 99

3.3 Execution Time (in Milliseconds), Basic Prominent Streak Discovery. 100

3.4 Number of Prominent Streaks and Execution Time (in Milliseconds),

Top-5 Prominent Streaks. 105

3.5 Data Sequences Used in Experiments on Multi-sequence Prominent Streak

Discovery. 108

3.6 Number of Candidate Streaks, Multi-sequence Prominent Streak Dis-

covery. 108

3.7 Execution Time (in Milliseconds), Multi-sequence Prominent Streak

Discovery. 109

3.8 Distribution of Players by Number of Prominent Streaks. 109

3.9 Multi-sequence Prominent Streaks in Datast NBA1. 109

xii

3.10 Data Sequences Used in Experiments on Multi-dimensional Prominent

Streak Discovery. 110

3.11 Number of Candidate Streaks, Multi-dimensional Prominent Streak Dis-

covery. 111

3.12 Execution Time (in Milliseconds), Multi-dimensional Prominent Streak

Discovery. 111

3.13 Data Sequences Used in Experiments on Top-5 Multi-sequence Multi-

dimensional Prominent Streak Discovery. 113

3.14 Number of Candidate Streaks, Top-5 Multi-sequence Multi-dimensional

Prominent Streak Discovery. 113

3.15 Execution Time (in Milliseconds), Top-5 Multi-sequence Multi-dimensional

Prominent Streak Discovery. 114

4.1 A Data Table for the Running Example 119

xiii

CHAPTER 1

Introduction

The amount of data in our world is exploding, and the proliferation of data

is making them increasingly inaccessible. Data produced by an application can be

one of the following three types: unstructured (e.g., text documents), semi-structured

(e.g., XML documents, graphs), and structured (e.g., relational databases). It is un-

structured data the most prevalent type of data.1 Only a very small percentage of

data produced is truly structured. Unstructured data is typically text-heavy, and

difficult to be understood by automated systems as compared to (semi-)structured

data, due to irregularities and ambiguities in texts. Recently, works such as Linked

Open Data (LOD)2 and Open Information Extraction (Open IE)[1] have gained a lot

of traction, which focus on adding/extracting (semi-)structured information in/from

unstructured data. The promising progress of these efforts greatly improves the avail-

ability of public information as structured and semi-structured data.

This thesis mainly investigates finding facts from semi-structured data and

structured data. Both structured and semi-structured data are produced and ac-

cumulated in a rich variety of applications, including search, recommendation, and

business intelligence. In particular, we are interested in knowledge graphs and se-

quence data. Knowledge graphs typical have loosely defined schema mainly for se-

mantic interpretation, which makes them semi-structured data. Knowledge graphs

such as DBpedia [2], Freebase [3], Wikidata [4], and YAGO [5] record properties of

1https: // www. forbes. com/ 2007/ 04/ 04/ teradata-solution-software-biz-logistics-

cx_ rm_ 0405data. html
2http: // linkeddata. org/

1

https://www.forbes.com/2007/04/04/teradata-solution-software-biz-logistics-cx_rm_0405data.html
https://www.forbes.com/2007/04/04/teradata-solution-software-biz-logistics-cx_rm_0405data.html
http://linkeddata.org/

!""#$%

&'#% ()*+

,"-+.'*+/0*%12'$*3")+*'

45

5.'+3")6/

4+*7%)8*.9
5.'+3")6

:'8./;'+8*+#

,*<=*#'+ ,"8<"15"7*%./4+*"+

!"#"$

!"#"$

!"#"$

%&'(")*

%&'(")*
%&'(")*

+&)(,-(

+&)(,-(

.&%#"-&(

$/'%#"-&(0&'(/,,+*$/'%#"-&(
0&'(/,,+*

1$#/2'#"$)

a An excerpt of a knowledge graph.

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

position

v
a

lu
e

SP500

b An excerpt of stock price sequence
(S&P500).

Figure 1.1: Examples of knowledge graph and sequence data.

and relationships between real-world entities. For example, as shown in Fig. 1.1a,

both Page and Brin are founders of Google and alumni of Stanford University, while Page

was born in US, Brin was born in Soviet Union. Sequence data is a type of structured

data, in which tuples are ordered temporally. Sequence data record series of values or

events. Examples include stock quotes, sports statistics, temperature measurement,

Web usage logs, network traffic logs, Web clickstream, customer transaction sequence,

social media statistics. Fig. 1.1b Shows the stock price of S&P500 from June 01, 1960

(position 0) to June 01, 2000.

We call information that is stated in or can be inferred from data data-backed

facts, or simply facts. Based on availability, facts can be roughly categorized into three

types: (1) Primitives. The primitives are the facts that are immediately available.

For example, given a knowledge graph such as Fig. 1.1a, the fact “Page is a founder

of Google” is a primitive, since it is stated in the graph. We assume that the data of

interest contains primitives only. (2) Aggregates. The aggregates are the facts that

can be derived by performing some simple analysis. For example, one can derive a

fact such as “S&P 500 recorded historical high on June 3, 1987.” by applying the

max function on all S&P 500 prices prior to the date. (3) Obscures. Obscures are the

2

facts that may only be unearthed by non-trivial analysis. Consider several factual

statements in published news articles:

1. “Denzel Washington followed Sidney Poitier as only the second black to win the

Best Actor award.” (abcnews.go.com)

2. “This was Brazil’s first own goal in World Cup history ...” (yahoo.com)

3. “Hillary Clinton becomes first female presidential nominee.” (chicagotribune.com)

4. “This month the Chinese capital has experienced 10 days with a maximum temper-

ature in around 35 degrees Celsius – the most for the month of July in a decade.”

(chinadaily.com.cn)

5. “The Nikkei 225 closed below 10000 for the 12th consecutive week, the longest

such streak since June 2009.” (bloomberg.com)

6. “He (LeBron James) scored 35 or more points in nine consecutive games and joined

Michael Jordan and Kobe Bryant as the only players since 1970 to accomplish the

feat.” (nba.com)

7. “Only player in NBA history to average at least 20 points, 10 rebounds and 5

assists per game for 6 consecutive seasons. (Kevin Garnett)” (en.wikipedia.org)

All above statements usually cannot be easily obtained without conducting complex

analysis.

This thesis mainly focuses on finding obscure facts in knowledge graphs and

sequence data. Specifically, we are interested in the facts similar to above statements

1—7. We call statements 1—3 exceptional facts (chapter 2), which reveal extraor-

dinary characteristics about entities in knowledge graphs; and call statements 4—7

prominent streaks (chapter 3), which exhibit sensational properties about streaks in

sequence data. Discovery of exceptional facts and prominent streaks is useful to

important applications such as computational journalism [6, 7], recommendation sys-

tems, and data cleaning. a) In fact-finding [8, 9, 10, 11, 12], journalists are interested

3

http://abcnews.go.com/Entertainment/halle-denzel-make-oscar-history/story?id=101254
http://sports.yahoo.com/blogs/soccer-dirty-tackle/brazil-start-first-match-of-the-world-cup-with-their-first-ever-own-goal-in-the-tournament-202820264.html
http://www.chicagotribune.com/news/opinion/commentary/ct-hillary-clinton-first-woman-nominee-millennials-20160608-story.html
http://www.chinadaily.com.cn/china/2010-07/27/content_11055675.htm
http://www.bloomberg.com/news/2010-08-06/japanese-stocks-fall-for-second-day-this-week-on-u-s-jobless-claims-yen.html
http://www.nba.com/cavaliers/news/lbj_mvp_candidate_060419.html
http://en.wikipedia.org/wiki/Kevin_Garnett

Figure 1.2: Google’s “Did you know” feature displays exceptional facts about entities in
search results. (Google.com)

in monitoring data and discovering attention-seizing factual statements. Examples

include statements 1, 2, and 4–7. These facts help make news stories substantiated

and interesting, and they may even become leads to news stories. b) In fact-check-

ing [13, 14, 15], for vetting the statements made by humans, fact-checkers at news

organizations such as The Washington Post, CNN, and PolitiFact can compare the

statements with automatically-discovered facts. For example, an algorithm may find

that Hillary Clinton is the second female presidential nominee, which contradicts with

the statement 3 above. 3 c) Exceptional facts can help promote friends, news, prod-

ucts, and search results in various recommendation systems. For example, Google’s

“Did you know” feature displays exceptional facts about entities in search results, as

shown in Fig. 1.2. d) When the discovered facts are inconsistent with known truth

or apparent common sense, it reveals incomplete data or data errors. Such insights

aid knowledge base cleaning and completion. For example, the above statement 3

3The first female presidential nominee was Victoria Woodhull, according to http: // www.

snopes. com/ victoria-woodhull-hillary-clinton/ .

4

https://www.google.com/#q=willis+tower
http://www.snopes.com/victoria-woodhull-hillary-clinton/
http://www.snopes.com/victoria-woodhull-hillary-clinton/

may be generated using an incomplete source that misses the nomination of Victoria

Woodhull.

One of the major challenges faced by exceptional fact discovery and prominent

streak discovery is the prohibitively large search space. To tackle the challenges,

we introduce efficient frameworks and algorithms for discovery of exceptional facts

and prominent streaks, such as beam-search based framework Maverick (Chapter 2)

and local prominent streak based algorithms (Chapter 3). We also present system

FactWatcher to demonstrate the effectiveness of the frameworks and algorithms in

Chapter 4.

5

CHAPTER 2

Discovering Exceptional Facts from Knowledge Graphs

2.1 Introduction

This chapter introduces Maverick [16], a framework that, given an entity in

a knowledge graph, discovers exceptional facts about the entity. Informally, such

exceptional facts separate the entity from many other entities. An exceptional fact

consists of three components: an entity of interest, a context, and a set of qualifying

attributes. In each exceptional fact, among all entities in the context, the entity of

interest is one of the few or even the only one that bears a particular value combination

on the qualifying attributes.

Given an entity in a knowledge graph, an integer k, and an exceptionality

scoring function, the objective of exceptional fact discovery is to find the top-k highest

scored pairs of (context, attribute set). The entity is exceptional with regard to

the attributes, while at the same time belonging to the context together with other

entities. This description hinges upon two concepts—context and attribute—which

we explain below.

• The attributes of an entity are the entity’s incoming/outgoing edge labels, and

the attribute values are the entity’s direct neighbors. For example, Fig. 2.1 is an

Figure 2.1: An excerpt of a knowledge graph.

6

a Pattern P1 b Match M1

c Match M2 d Match M3

Figure 2.2: Pattern P1 and variable ?g define a context consisting of all the goals scored
by BRA players; M1, M2, M3 are matches to P1 in Fig. 2.1.

excerpt of a knowledge graph about FIFA World Cup, in which the edge labeled

awarded-to from node G1 to CRO captures the fact that the goal is awarded to the

team Croatia. Entity G1 has two attributes scored-by and awarded-to, with values S1

and CRO, respectively.

• A context is a set of entities sharing some common characteristics defined in a

pattern query. In Fig. 2.2a, pattern P1 and the variable ?g in it define a context C1

of all the goals scored by players of team Brazil. Figs. 2.2b-2.2d show P1’s matches

in Fig. 2.1. For instance, match M1 (Fig. 2.2b) is a subgraph of Fig. 2.1, in which

?g of P1 is mapped to G1. Hence, G1 belongs to context C1. Similarly, G2 and G3

in Fig. 2.1 also belong to C1 based on M2 and M3, while G4 and G5 are not part of

C1.

• With respect to a subspace (i.e., a set of attributes), an entity is exceptional in

a context if its attribute values deviate from the values of other entities in the

same context. For example, the value of attribute awarded-to for G1 is CRO, while

the value is BRA for both G2 and G3. The degree of exceptionality of an entity

varies by different contexts and subspaces. For instance, one interpretation of

statement 1 is that the context is the Academy Award Best Actor winners and the

qualifying attribute is ethnicity; an alternative interpretation is that the context

is all African Americans and the qualifying attribute is the award. Under some

definitions of exceptionality, the second interpretation may render Denzel Washington

7

more exceptional, since there are a lot more African Americans than winners of the

award.

A holistic solution to exceptional fact discovery may be expected to synthesize

whatever types of available data (structured databases, graphs, text, and so on), which

is beyond the scope of this work. Instead, our focus is on knowledge graphs which

are becoming increasingly important to analytics and intelligence applications. To

the best of our knowledge, there is no previous study on discovering exceptional facts

about entities in knowledge graphs. The two most related areas are outlier detection

in graphs [17, 18, 19, 20] and outlying aspect mining [21, 22, 10, 12, 23, 24, 25]. Duan

et al. [24] and Vinh et al. [25] discussed the differences between these two areas. They

achieve different goals. Outlier detection searches for all outlying objects among a set

of objects. Outlying aspect mining, however, focuses on only one given object and

returns the subspaces of attributes in which the object is relatively outlying, regardless

of its true degree of outlyingness. In terms of objectives and problem modeling, the

exceptional fact discovery problem formulated in this chapter is closer to outlying

aspect mining than outlier detection. However, it focuses on graph data. In contrast,

existing outlying aspect mining methods [21, 10, 12, 23] assume a single relational

table. These methods take a tuple as input and returns two disjoint attribute sets.

The first set of attributes define the context, i.e., the tuples having values identical to

that of the input tuple on the attributes. On the second set of attributes, the input

tuple has peculiar values compared to other tuples belonging to the context.

However, these methods for outlying aspect mining cannot be effectively applied

to knowledge graphs, since they are specifically devised for single tables only. A

seemingly plausible idea can be to represent a knowledge graph as a single table and

then to apply the existing methods on the table. Consider the single-table model of

RDF proposed in [26]. When adapting it for a knowledge graph, each tuple (row)

8

is for an entity v and each attribute (column) corresponds to an edge label in the

knowledge graph. The attribute is also associated with an edge direction—either

incoming into or outgoing from v. The value at the junction of the row and the column

is an entity or a set of entities adjacent to v via edges with the label and direction

given by the column. Given this single-table representation of the knowledge graph,

at least a few major problems render the existing outlying aspect mining methods

inapplicable. First, in these methods a context, defined by a set of attributes, consists

of the tuples having values identical to that of the input tuple. In other words, the

context is the result of a conjunctive query over the attributes. For knowledge graphs,

however, a context is defined by a graph pattern query, which cannot be captured by

conjunctive queries on attributes in the aforementioned single-table representation.

More specifically, an edge in the pattern may not be adjacent to the input entity

and thus does not correspond to any of the entity’s attributes. Hence, evaluating

a pattern may involve self-joins of the single-table. Existing outlying aspect mining

methods are not designed to accommodate joins. Second, the aforementioned set

values in the single-table representation are not considered in the existing methods.

An adaptation of the methods will thus require at least joins which, as mentioned

above, are not supported by the methods. Third, due to the heterogeneity and scale

of a large knowledge graph, such a single-table is extremely wide and sparse, which is

well beyond the capacity of the existing methods because of the intrinsic exponential

complexity of the problem’s search space.

To discover the exceptional facts about an entity, we must explore two ex-

tremely large search spaces, one of patterns and the other of attribute subspaces.

Section 2.5.1 shows that the number of patterns is at least exponential in the size of

the graph. It is also clear that the number of subspaces is exponential in the number

of attributes since a subspace is a combination of attributes. It is not computationally

9

feasible to exhaustively enumerate all possible patterns and subspaces. Furthermore,

it is challenging to prune patterns and subspaces, due to the non-existence of down-

ward closure property (i.e., anti-monotone property) on typical exceptionality scoring

functions.

To tackle these challenges, this chapter introduces Maverick, a beam-search

based framework. Given an input entity, Maverick discovers the top-k context-

subspace pairs that give the entity the highest expectionality scores. Maverick allows

an application to plug in any exceptionality scoring function based on the application

needs. Conceptually, Maverick organizes the search space of patterns as a partial

order defined by the subsumption relation on patterns and the search space of at-

tribute subspaces as a set enumeration tree [27]. Intuitively, the search for top-k

context-subspace pairs is performed in a nested-loop fashion in which the outer loop

enumerates patterns and the inner loop enumerates subspaces. Maverick conducts

breath-first beam search [28] on the space of patterns, starting from a pattern with

a single variable node. On each visited pattern, Maverick applies a set of heuristics

to prune its children so that Maverick visits at most w patterns at each level, where

w is the beam width. Each visited pattern is evaluated over the knowledge graph to

obtain the contexts it defines. For each context, Maverick calculates the input entity’s

exceptionality scores in different subspaces. It exploits an upper bound for exception-

ality score to guide the traversal of the subspaces. The supersets of a subspace are

pruned if their upper-bound scores are below the current top-k scores.

This chapter reports the results of experiments on two real-world knowledge

graphs, which verify Maverick’s effectiveness in finding exceptional facts. The ex-

periments compared the performance of a breath-first search method and the beam

search method coupled with different candidate-selection heuristics. The experiment

results establish that, even though the breath-first search method may evaluate more

10

patterns in a fixed time frame than the beam search methods, it is not as effective as

the beam search method using the proposed heuristics. We have also included some

exceptional facts discovered by Maverick to demonstrate its practicality.

2.2 Problem Formulation

In this section we formally define the data model of knowledge graphs, the

concepts of context, attribute, and subspace, and the problem of exceptional fact

discovery.

Knowledge Graphs

A knowledge graph G(VG, EG) is a set of RDF [29] triples with node set VG ⊆ I

and edge set EG ⊆ VG × I × VG, where I is the universe of IRIs.1 In Fig. 2.1, there

are three kinds of entities: goals (e.g., G1), players (e.g., S1), and teams (e.g., BRA).

(Without loss of generality, we use an entity’s name as its identifier (IRI) in the

ensuing examples, assuming entity names are unique.) Three different types of edge

labels represent different relationships: each player plays for a team (play-for), and

each goal is scored by a player (scored-by) and is awarded to a team (awarded-to). For

example, there is an own goal, as G1 is scored by S1, a player of BRA, but awarded

to CRO.

Patterns and Contexts

Definition 1 (Pattern P). A pattern is a weakly connected graph2 P (VP , EP), where

VP ⊆ I ∪ V , EP ⊆ VP × I × VP , and V is the universe of variables. We also denote

by XP ⊆ VP the variables occurring in P . 4
1For the sake of simplicity, we do not consider blank nodes and literals.
2A weakly connected graph is a directed graph of which the corresponding undirected

graph is connected.

11

Definition 2 (Match M). A match M(VM , EM) to a pattern P (VP , EP) is a subgraph

of G (VM⊆VG and EM⊆EG) such that there exists a bijection f : VP→VM satisfying

the following conditions:

• |VM | = |VP |, |EM | = |EP |;

• ∀ (vi, l, vj) ∈ EP ⇒ (f(vi), l, f(vj)) ∈ EM ;

• ∀ (ui, l, uj) ∈ EM ⇒ (f−1(ui), l, f
−1(uj)) ∈ EP ;

• ∀ v ∈ I ⇒ f(v) = v.

In short, a subgraph M of G is a match to pattern P if M is edge-isomorphic to P

and, for each non-variable node v in P , f(v) has the same identifier. 4

Note that the semantics of patterns in our definition is similar to that of basic

graph patterns in [30, 31]. However, there are two main differences. One is that

patterns in this work are weakly connected. The other is that a match to a pattern is

required to be edge-isomorphic to the pattern. Neither of them is enforced in [30, 31].

Definition 3 (Range of Variable RP
x). Let MP be all the matches to pattern P in

a knowledge graph G. (I.e., MP is [[P]]G, the evaluation of P against G, using the

terminology in [30].) For a variable x ∈ XP , the range of x, denoted RP
x , is a set of

entities defined as

RP
x = {f(x) | M ∈MP , f : VP → VM}. 4

For example, P1 in Fig. 2.2a has two variable nodes, ?g and ?s. (To distinguish

variables from entities, the names of variable nodes always start with the symbol ?.)

Figs. 2.2b-2.2d show P1’s matches in Fig. 2.1. RP1
?g = {G1, G2, G3} and RP1

?s = {S1,

S2, S3}.

Definition 4 (Context CP,x
v). Given an entity v, a pattern P , a variable x ∈ XP such

that v ∈ RP
x , the context of v defined by P and x is denoted CP,x

v and CP,x
v =RP

x . 4

12

For example, the context of G1 in the running example—goals scored by BRA

players—is defined by pattern P1 in Fig. 2.2a and variable ?g in the pattern: C
P1,?g
G1

= RP1

?g = {G1, G2, G3}. On the other hand, since G1 /∈ RP1

?s, ?s in P1 does not define a

context of G1. Note that a pattern may define multiple contexts of v, since v may be

mapped to different variables in the pattern. For example, consider pattern P = {(?g,

awarded-to, ?a), (?g, scored-by , ?s), (?s, play-for , ?t)}. It defines two different contexts

of BRA: CP,?a
BRA = {CRO,BRA}, CP,?t

BRA = {ESP,BRA}.

Entity Attributes and Subspaces

Given an entity of interest v, an attribute corresponds to the label of an edge

incoming into or outgoing from v, and its value is the entity at the other end of the

edge. Note that we need to distinguish between incoming attributes and outgoing

attributes since an entity can be both sources and destinations of edges of the same

label. For instance, a person can have a manager and meanwhile be the manager of

someone else.

Definition 5 (Entity Attributes Av). Given an entity v, its attributes Av is the union

of its incoming and outgoing attributes: Av = Ai
v ∪ Ao

v. The incoming attributes are

a set of edge labels Ai
v = {(l,←) | ∃(x, l, v) ∈ EG}. Given an incoming attribute

a = (l,←) ∈ Ai
v, v’s value on attribute a is the set v.a = {x | (x, l, v) ∈ EG}.

Similarly, the outgoing attributes are Ao
v = {(l,→) | ∃(v, l, x) ∈ EG}. Given an

outgoing attribute a = (l,→) ∈ Ao
v, v’s value is v.a = {x | (v, l, x) ∈ EG}. 4

Definition 6 (Subspace A). A subspace A is a subset of v’s attributes, i.e., A ⊆ Av.

The projection of v’s attribute values onto subspace A is denoted v.A, and v.∅ =

null. 4

For example, in Fig. 2.1, Ai
CRO = {(play-for ,←), (awarded-to,←)}; CRO.(awarded-to,←

) = 〈{G1, G4}〉 and Ao
G1 = {(scored-by ,→), (awarded-to,→)}; G1.(awarded-to,→) =

13

〈{CRO}〉. Let subspace A = {(scored-by ,←), (play-for ,→)}. AS1 = A and S1.A =

〈{G1}, {BRA}〉.

Exceptionality Score

Definition 7 (Exceptionality Scoring Function χ). An exceptionality scoring function

χ(v,A,C) ∈ R measures entity v’s degree of exceptionality with regard to subspace A

in comparison with other entities in context C. Without loss of generality, we assume

the range of χ is [0, 1], with larger χ implying greater exceptionality. We also set

χ(v, A,C)=0 if A 6⊆ Av or v /∈ C, to make χ a total function. 4

The Maverick framework is indifferent to the choice of the exceptionality scoring

function. It can accommodate many different interestingness/outlyingness functions

(see surveys such as [32, 33]). Hence, the focus of this chapter is not on the design,

evaluation and comparison of such exceptionality scoring functions. Rather, the goal

is to develop a general framework for efficiently finding exceptional facts under various

scoring functions. Nevertheless, to make the discussion concrete, we consider several

representative functions, of which one is introduced below and two more are discussed

in Section 2.4.2. To ensure consistency, the discussion uses our own notations and

terminologies in presenting the adaptation of existing functions.

One-of-the-Few χf The one-of-the-few concept is adapted from [9]. The crux of

the idea is that a factual claim about an entity is interesting when equally or more

significant claims can be made about only few other entities. For example, in Fig. 2.1,

it is interesting to claim “G1 is the only own goal among the goals scored by BRA

players”, since such a unique claim cannot be made about any other goal scored by

a BRA player. On the contrary, “G1 is the only goal scored by S1” is not impressive,

because the same kind of claim “Gx is the only goal scored by Sy” can be made for

all 5 goals in Fig. 2.1.

14

The one-of-the-few measure [9] is based on multi-criteria dominance relationship

which is irrelevant to this work. Our adaptation of [9] quantifies the rareness of

attribute values based on frequency. Consider a context C, a subspace A, and any

entity u in the context. We denote by pAS , or simply pS when A is clear, the probability

(or “frequency” as in [21]) of u taking values S in subspace A, i.e.,

pAS = p(u.A = S | u ∈ C) = | {u | u ∈ C, u.A = S} | / | C | . (2.1)

Ranking facts directly by frequency is not robust, regarding which detailed analysis

can be found in [9]. To intuitively understand the insight, consider an extreme ex-

ample. Suppose in an organization everyone has a unique name. Given an particular

individual x, a fact “x is the only person with that name” has high exceptionality

measured by frequency itself. However, it is not truly exceptional since the same kind

of fact can be stated for everyone.

Based on the definition of pAS , the one-of-the-few χf quantifies the exceptionality

of an entity of interest v by the pessimistic rank of the frequency of v.A. Specifically,

the exceptionality of v is:

χf (v,A, C) = | {u | u ∈ C, pu.A > pv.A} | / | C | . (2.2)

For example, consider entity of interest v0 = G1 in Fig. 2.1 and context C defined

by pattern P1 and variable ?g in Fig. 2.2a, i.e., C = CP1,?g

G1 = {G1,G2,G3}. Table 2.1

shows the frequencies of attribute values in all subspaces. According to Table 2.1,

pG2.A = pG3.A = p〈{BRA}〉 = 2
3
> pG1.A = p〈{CRO}〉 = 1

3
. Hence, χf (G1, A, C) =

| {G2.G3} |
| C | = 2

3
. For A = {(awarded-to,→), (scored-by ,→)}, χf (G1, A, C) = 0, since

there exists no u ∈ C such that pu.A > pG1.A.

Definition 8 (Top-k Exceptional Facts Fv). With regard to an entity v, the rank of

a context-subspace pair (C,A) is the number of context-subspace pairs with greater

15

Table 2.1: The frequencies of attribute values in all subspaces for entity of interest G1 with
regard to context C = {G1, G2, G3}.

A v.A : pCv.A G1.A

{(awarded-to,→)} 〈{CRO}〉:1/3, 〈{BRA}〉:2/3 〈{CRO}〉
{(scored-by ,→)} 〈{S1}〉:1/3, 〈{S2}〉:1/3, 〈{S3}〉:1/3 〈{S1}〉

{(awarded-to,→), (scored-by ,→)} 〈{CRO}, {S1}〉:1/3, 〈{BRA}, {S2}〉:1/3, 〈{BRA}, {S3}〉:1/3 〈{CRO}, {S1}〉

exceptionality scores, i.e., rank(C,A) = | {(C ′, A′) ∈ Cv × Av | χ(v, A′, C ′) >

χ(v,A,C)} |. Cv is the universe of v’s contexts: Cv = {CP,x
v | P ∈ P , x ∈ P, v ∈

RP
x }, in which P is the universe of patterns over G, i.e., P = {P (VP , EP) | VP ⊆

X ∪ VG, EP ⊆ (X ∪ VG) × L × (X ∪ VG), P (VP , EP) is weakly connected} where

X is the universe of variables. (C,A) is a top-k exceptional fact if its rank is

lower than k. Hence, the set of top-k exceptional facts about v, Fv, is defined as

Fv = {(C,A) ∈ Cv × Av | rank(C,A) < k}.3 4

Problem Statement Given a knowledge graph G, an entity of interest v0, an

integer k, and an exceptionality scoring function χ, the problem of exceptional fact

discovery is to find Fv0—the top-k exceptional facts about v0.

Continue the running example. With regard to G1, the context-subspace pair

(C
P1,?g
G1 , {(awarded-to,→)}) may be exceptional. The context C

P1,?g
G1 is {G1, G2, G3},

i.e., the goals scored by BRA players. An interpretation of G1’s exceptionality with

regard to the pair is: among all the goals scored by BRA players, G1 is the only own

goal.

Alternative Problem Modeling

There could be other ways of defining context and subspace. Definition 4 allows

contexts based on arbitrary patterns. It is possible to adopt a more simplified and

restricted definition that only allows such patterns to be in certain “shapes” such as

paths, star graphs, and trees. Definition 6 dictates that a subspace must be a set of

entity attributes. In other words, when comparing an entity with other entities in a

3The size Fv may be greater than k due to ties in exceptionality scores and thus ranks.

16

context, the entity stands out with respect to a subspace if it satisfies the conjunctive

condition formed on the attributes in the subspace (i.e., a star query) while most other

entities do not. It is plausible to adopt a more complex and expressive definition that

allows the framework to assess exceptionality of entities using more complex, general

graph queries instead of only star queries.

The current choices of Definitions 4 and 6 are formed based on several consid-

erations related to usability and practicality. Particularly, the exceptionality scoring

functions in this section and Section 2.4.2, adapted from functions in the literature

that define outlyingness of tuples in relational tables, are defined on the aforemen-

tioned star queries. It is thus unclear how to define a scoring function using more

complex graph queries. While such is an interesting question to ponder, it falls out-

side this chapter’s scope. As mentioned earlier, the Maverick framework is indifferent

to the choice of the exceptionality scoring function. The current simple definition of

subspace also eases the task of ensuring the discovered facts can be intuitively ex-

pressed by the system and interpreted by users. On a related note, while conducting

the experiments (Section 2.6) we limited the sizes of the context-defining patterns and

subspaces to be very small, only involving at most a handful of nodes and edges.

There could also be other ways of defining attributes. For example, one can

define an entity’s attributes as a vector of values either independent to or derived

from the graph. For instance, [18, 19] consider, for each node, an associated mini-

table containing information from external sources. A prevalent model of entities

in knowledge graphs is embedding-based [34, 35, 36, 37], in which each entity is

represented by a vector capturing its neighborhood information. Such vectors can

also be used as entities’ attributes. However, the vectors are indecipherable to human

beings. Furthermore, in general knowledge graphs, an entity may have sub-properties,

functional properties, and transitive properties [38, 39]. This work does not consider

17

such models and thus is lack of reasoning capacity based on such properties. Some of

such properties may be leveraged by pre-processing. For example, one may materialize

the transitive properties. This can be an interesting future direction to explore.

2.3 Overview of Framework

We propose Maverick, an iterative framework for exceptional fact discovery. In-

tuitively, the process of discovering context-subspace pairs can be viewed as nested

loops. The outer loop enumerates contexts, while the inner loop enumerates sub-

spaces for each context. Given the entity of interest v0, while subspace enumeration

in the inner loop enumerates the subsets of Av0 , the outer loop enumerates contexts

by patterns, since each context of an entity is defined by a pattern and one of the

pattern’s variables (c.f. Definition 4). Conceptually, Maverick organizes all the possi-

ble contexts as a partial order on patterns, i.e., a Hasse diagram, in which each node

is a pattern and each edge represents the subsumption (subgraph-supergraph) rela-

tionship between the two patterns. The essence of the outer loop is thus a traversal

of the search space of patterns.

Given that the search space of patterns can be extremely large (Section 2.5), it

is impractical to adopt breath-first, depth-first, or heuristic search approaches due to

memory and time constraints [40]. To address this challenge, we propose to traverse

the search space by beam search [41]. Since beam search maintains a “beam” of

heuristically w best nodes and prunes all other nodes, it is not guaranteed to be

complete or optimal. However, good solutions can be found quickly if the heuristic is

sound enough.

Fig. 2.3 and Alg. 1 illustrate the framework of Maverick, which has three main

components: Context Evaluator (CE), Exceptionality Evaluator (EE), and Pattern

Generator (PG). The beam search at the outer loop starts with a pattern P0 with a

18

Algorithm 1: Discovering exceptional context-subspace pairs.

1 FACT-DISCOVER (G, v0, χ, k, w)

Input: G : the knowledge graph; v0 ∈ VG : the entity of interest; χ : the

exceptionality scoring function; k : the size of output; w : the beam

width

Output: H : k most exceptional context-subspace pairs

2 P0 ← (VP0 = {x0}, EP0 = ∅) ; // Initial state. x0 is a variable.

3 B ← {P0} ; // Beam.

4 i← 1 ; // Iteration number.

5 while B 6= ∅ and i ≤ MAX ITERATION do

6 i← i+ 1; Btmp ← ∅;

7 foreach P ∈ B do

// Obtain contexts of v0 and matches to P.

(Section 2.3.1)

8 CPv0 ,MP ← CONTEXT-EVALUATOR(P, v0, G);

9 foreach C ∈ CPv0 do

// Exceptionality Evaluation. (Section 2.4)

10 A ← EXCEPTIONALITY-EVALUATOR(v0, C, k, χ);

11 foreach A ∈ A do H ← H ∪ {(C,A)} ;

// Find Y --- the children of P. (Section 2.5)

12 Y ← PATTERN-GENERATOR(v0, P,MP , w,G);

13 Btmp ← Btmp ∪ Y;

14 B ← top-w of Btmp based on heuristics h ; // Section 2.5.4

15 return top-k pairs in H based on exceptionality scores;

19

Figure 2.3: The framework of Maverick.

single variable node x0 (Lines 2–3 in Alg. 1). The search results in a pattern search

tree, of which the root is P0. At each iteration, Maverick maintains a beam B of a

fixed size w (Lines 6, 13, 14). The beam consists of heuristically the best w patterns

(e.g., P2, P3 in Fig. 2.3 where w = 2) at the visited level of the pattern search tree.

For each pattern P in B, component CE obtains the matches MP to the pattern

and the corresponding contexts CPv0 of v0 (Line 8). For each context C in CPv0 (e.g.

C1 in Fig. 2.3), component EE finds the top-k scored subspaces according to a given

exceptionality scoring function χ (Line 10, and Section 2.4). Component PG finds the

children of the visited pattern based on its matches (Line 12, and Section 2.5). Since

there are usually much more children than what the beam size w allows, PG applies

a set of heuristics (Section 2.5.4) to prune the child patterns. Each child pattern

is given a score that measures how promising it is according to the heuristics. The

best w patterns among all the children of patterns in B will become the new beam

B (Line 14), which is the input to the next iteration, e.g., {P7, P9} in Fig. 2.3. The

process ends when the limit on the number of iterations has reached. The limit is set

to avoid overly-complex patterns which correspond to facts that are only convolutedly

20

interesting. It also practically bounds the resource spent for running the algorithm.

When the algorithm terminates, Maverick returns the k context-subspace pairs with

the highest exceptionality scores (Line 15). Below, we discuss component CE in

Section 2.3.1, EE in Section 2.4, and PG in Section 2.5.

2.3.1 Context Evaluator

The context evaluator (CE, Line 8 in Alg. 1) is responsible for obtaining the

matches to a given pattern as well as the corresponding contexts. Its working is

depicted in Alg. 2. We expect a graph query system to take a pattern as the input

and return all the matches to the pattern (Line 3). The Maverick framework is agnostic

to the choice of the specific query processing system. According to Definition 4, for

each variable in the pattern (x ∈ XP), CE returns its range RP
x as a context if the

entity of interest v0 is in the range (Line 5).

Algorithm 2: Context evaluator.

1 CONTEXT-EVALUATOR (P , v0, G)

2 CPv0 ← ∅ ; // The set of contexts defined by P.

3 MP ← match(G, P) ; // Matches to P.

4 foreach x ∈ XP do

// Refer to Definitions 3 and 4 for RP
x and CP,x

v0 .

5 if v0 ∈ RP
x then CPv0 ← C

P
v0 ∪{C

P,x
v0 } ;

6 return (CPv0 , MP);

For example, consider graph G in Fig. 2.1, the entity of interest v0 = G1, and

the pattern P1 in Fig. 2.2a. MP1 = {M1,M2,M3}, where M1, M2, and M3 are in

Figs. 2.2b–2.2d. P1 has two variables, ?g and ?s. Since G1 ∈ RP1
?g = {G1,G2,G3}

21

and G1 /∈ RP1
?s , P1 defines one and only one context of G1, which is CP1,?g

G1 = RP1
?g .

Therefore, CPG1 = {CP1,?g

G1 }.

Context defined by initial pattern P0 Maverick starts with a trivial pattern

P0 in which the only node x0 is a variable. According to Definition 2, every node

in the knowledge graph G is a match to P0. Therefore, the context defined by P0

includes the nodes of all different types in G. Although Maverick allows such contexts

consisting of heterogeneous entities, it brings two practical challenges. First, since

different types of entities have different attributes, the exceptionality of an entity

could be unrealistically bloated due to the sparsity of attributes that are common to

many entities in the context. Second, the computation of exceptionality scores, of

which the complexity is at least linear to the size of the context, is highly expensive

when the context includes all the nodes in the data graph.

Due to these two reasons related to semantics and efficiency, it is more desirable

that a context is homogeneous, i.e., it only includes entities of the same type. That

imposes a requirement for a type system on the knowledge graph, which can be

either predefined (e.g., DBpedia Ontology, Freebase Schema) or derived from the

data graph. Maverick accommodates both kinds of type systems in knowledge graphs,

which ensures its general applicability. Particularly, when an explicit type system does

not exist, there can be different ways of deriving entity types. Although Maverick is

oblivious to the specific approach for deriving the type system, the particular approach

implemented in our system is as follows. In this approach, two entities u and v both

22

belong to an implicit type if they have at least one common attribute, i.e., Au∩Av 6= ∅

(see Definition 5 for Av).
4 We then define the context CP0,x0

v0
for P0 as:

CP0,x0
v0

= {u ∈ VG|Au ∩ Av0 6= ∅}.

For example, CP0,x0

G1 = {G1,G2,G3,G4,G5}, which excludes team nodes (such as CRO),

player nodes (such as S1), and so on. Note that this way of deriving entity types is

compatible with Freebase’s type system, in which the types of the source/destination

nodes of an edge are determined by the label (i.e., type) of the edge.

2.4 Exceptionality Evaluator

The Exceptionality Evaluator (EE) operates in the inner loop of the Maverick

framework (function EXCEPTIONALITY-EVALUATOR (v0, C, k, χ) at Line 10 of Alg. 1).

For each context C of the entity of interest v, it finds the k subspaces A with the

highest χ(v,A, C) scores. Note that it is sufficient to find these k subspaces, since the

eventual output of Maverick is the top-k context-subspace pairs across all contexts of

v. A naive solution of EE can exhaustively enumerate all possible subspaces of Av

and calculate the exceptionality score of v in each subspace. The apparent O(2|Av |)

complexity of this approach renders it prohibitively expensive since many entities may

have a lot of attributes. For instance, Denzel Washington has more than 40 attributes

in the August 9, 2015 Freebase graph. It is thus crucial for Maverick to have an

efficient subspace enumeration method in order to discover more exceptional context-

subspace pairs. Section 2.4.1 discusses how Maverick uses a set enumeration tree to

avoid exhaustively enumerating subspaces. Specifically, Maverick exploits the upper

bound properties of exceptionality scoring functions to guide the traversal of the set

4By this definition, a type is similar to a cluster of entities, and the clustering is non-

exclusive, i.e., an entity can belong to multiple types.

23

enumeration tree. Section 2.4.2 introduces three representative exceptionality scoring

functions along with their upper bound functions.

2.4.1 Finding Top-k Subspaces

EE applies a set enumeration tree (SE-tree) [27] to avoid exhaustively enumer-

ating subspaces. Each node in the tree is a subspace—a subset of v’s attributes Av.

The children of a node correspond to various supersets of the node’s associated at-

tributes. Formally, let r be an (arbitrary) total order on Av. The root of an SE-tree

for Av is the empty set. The children of a node A ⊂ Av in the tree form the set

{A ∪ {a} | a ∈ Av \ A,∀a′ ∈ A, a′ <r a}. An SE-tree for Av = {a1, a2, a3} is shown

in Fig. 2.3. The gist is to explore the set enumeration tree using heuristic search

methods such as best-first search and to prune branches that are guaranteed to not

contain highly-scored subspaces.

What is particularly challenging is that an exceptionality scoring function χ

usually does not have the downward closure property with respect to subspace inclu-

sion, i.e., χ(v, A,C) can be greater than, less than, or equal to χ(v, A′, C) for any

A′ ⊇ A. As a matter of fact, none of the three representative functions that will be

introduced in Section 2.4.2 satisfies the property (proof omitted). The lack of down-

ward closure property makes it infeasible to prune the set enumeration tree based on

exact exceptionality scores.

EE uses upper bounds on the exceptionality scoring function χ to allow for

pruning of the set enumeration tree. Alg. 3 presents its pseudo code. The set enu-

meration tree nodes (i.e., subspaces) are visited in the descending order of their upper

bounds (Line 6). If the upper bound score of a node is not greater than the score of

the current k-th ranked subspace, the node and all its children are pruned (Line 12).

Otherwise, the exact exceptionality score of the node is calculated (Line 13). The

24

Algorithm 3: Exceptionality evaluator.

1 EXCEPTIONALITY-EVALUATOR (v, C, k, χ)

// CS: current subspace; UA: attributes to visit; Tk: top-k

subspaces.

2 CS ← ∅; UA ← Av; Tk ← ∅;

3 return EXPLORE-SUBSPACE(v, C, k, χ, CS, UA, Tk);

4 EXPLORE-SUBSPACE (v, C, k, χ, CS, UA, Tk)

5 while UA 6= ∅ do

// Calculate upper bounds.

6 amax ← arg maxa∈UA upper(v, CS ∪ {a}, C);

7 Amax ← CS ∪ {amax}; uppermax ← upper(v,Amax, C);

8 UA← UA \ {amax};

9 if |Tk| < k then

// −1 indicates the top-k list Tk is not full.

10 scoremin ← −1; Amin ← ∅;

11 else (Amin, scoremin)← arg min(A,score)∈Tk score ;

12 if uppermax > scoremin then

13 score← χ(v,Amax, C);

14 if score > scoremin then

15 if scoremin ≥ 0 then

16 Tk← Tk \ {(Amin, scoremin)};

17 Tk← Tk ∪ {(Amax, score)};

// Explore children subspaces.

18 Tk← EXPLORE-SUBSPACE(v, C, k, χ,Amax, UA, Tk);

19 return Tk;

25

subspace is used to purge the current k-th subspace if its exact score is still greater

(Lines 14–17). Regardless of whether the node makes into the top-k list, its children

are enumerated recursively (Line 18).

The general upper bound function upper in Alg. 3 is defined as follows. By the

definition, it is sound to prune a node and all its children if the condition in Line 12

is not satisfied.

Definition 9 (Upper bound of an exceptionality scoring function upper). Given an

exceptionality scoring function χ, an upper bound of χ is a function that, for any

entity v, context C, and subspace A ⊆ Av, bounds the exceptionality score of v with

respect to C and any superset of A, i.e.,

upper(v,A, C) ≥ maxA⊆A′⊆Av χ(v, A′, C). 4

The general upper bound function upper must be instantiated for specific ex-

ceptionality scoring functions χ. The Maverick framework expects an application

developer to supply upper while specifying χ. Various outlying aspect mining meth-

ods [21, 22, 24] also devise upper bound functions for pruning set enumeration tree.

They operate on the single-table data model and are thus inapplicable for graphs, as

explained in Section 2.1. EE must use different scoring functions and upper bound

functions designed for knowledge graphs. The ensuing discussion in this section en-

tails that.

2.4.2 Exceptionality Scoring Functions

As mentioned in Section 2.2, the general Maverick framework accommodates

different exceptionality scoring functions beyond the one-of-the-few function χf . We

discuss two more representative functions in this section.

26

Outlyingness χo This measure, adopted from [21], is based on the distribution of

attribute values. An entity receives a high score if it has rare attribute values while

a lot of other entities share common attribute values. It quantifies the rareness of

attribute values by pAS = p(u.A = S | u ∈ C) (the same as for χf). Let SA be all

possible attribute values on subspace A and in context C, i.e., SA = {u.A | u ∈ C}.

The outlyingness score of an entity v is given by:

χo(v, A,C) =
∑

S∈SA
pS × (pS − pv.A)× 1(pS > pv.A) (2.3)

where 1(·) is the indicator function that returns 1 for a true condition and 0 other-

wise. Essentially, the outlyingness score is the area above the accumulated frequency

histogram of the context C with respect to the subspace A, starting from the fre-

quency of v.A. The score is designed to quantify the “degree of unbalance” between

the frequencies of entities in the context [21].

For instance, consider the same example used in explaining χf : v0 = G1,

C = CP1,?g

G1 = {G1,G2,G3}, and A = {(awarded-to,→)}. According to Table 2.1,

χo(G1, {(awarded-to,→)}, C) = p〈{CRO}〉 × (p〈{CRO}〉 − p〈{CRO}〉) × 0 + p〈{BRA}〉 ×

(p〈{BRA}〉−p〈{CRO}〉)×1 = 2
3
(2

3
− 1

3
) = 2

9
. Another example is, for A = {(awarded-to,→

), (scored-by ,→)}, χo(G1, A, C) = 0 since there exists no u ∈ C such that pu.A > pG1.A.

Isolation Score χi The isolation score χi is inspired by iForest [42] and iPath [25].

Both iForest and iPath are applicable on real value attributes. By randomly choosing

a pivot in the range of an attribute, both methods iteratively split a set of entities

into two disjoint subsets, until the entities in each set have an identical value. The

iForest score and iPath score are defined using the number of splits applied. iPath only

iteratively splits the subsets containing the entity of interest. The entity’s score is the

number of splits until the entity has the same value as other entities in its subsuming

set. iForest splits all subsets. Essentially, both iForest and iPath follow the minimum

27

description length principle, and both scores are functions of the estimated description

length of the entity’s attribute value, which is the number of splits. Inspired by iForest

score, we define isolation score χi as follows:

χi(v, A,C) = 1− 2
− − log2 pv.A
−

∑
S∈SA (pS×log2 pS) (2.4)

where the numerator in the exponent is the description length of v’s attribute value,

while the denominator is the average description length of attribute values in subspace

A. Intuitively, if v.A is peculiar, then the description length of v.A is longer than

average and χi(v, A,C) is closer to 1.

For example, let the conditions be the same as the ones used in explaining χo

and χf : v0 = G1, C = CP1,?g

G1 = {G1,G2,G3}, and A = {(awarded-to,→)}. According

to Table 2.1, −
∑

S∈{〈{BRA}〉,〈{CRO}〉}(pS × log2 pS) = −(1
3
× log2

1
3

+ 2
3
× log2

2
3
) =

log2 3 − 2
3

= 0.91, − log2 pG1.A = 1.58, then χf (G1, A, C) = 0.7. Similarly, χf (G1,

{(awarded-to,→), (scored-by ,→)}, C) = 0.

2.4.3 Upper Bound Functions

In this section we devise upper bound functions for the three representative

exceptionality functions introduced in Section 2.2 (χf) and Section 2.4.2 (χo and χi).

We prove that these designs satisfy Definition 9 and thus ensure the soundness of

Alg. 3, with regard to any given entity v, context C, and subspaces A ⊆ A′ ⊆ Av.

Recall that we denote by pAS , or simply pS, the frequency of entity’s attribute value

S in subspace A (Eq. (2.1)).

Theorem 1 (Upper bound of χf). upperf (v,A, C) ≥ χf (v, A′, C), given the following

definition in which Cv=C \ {v}:

upperf (v, A,C) = | {u | u ∈ Cv, pu.A > 1/| C |} |
/
| C | (2.5)

28

The theorem holds because 1
| C | ≤ pu.A′ ≤ pu.A for any A′ ⊇ A. We omit the

detailed proof here.

Theorem 2 (Upper bound of χo). uppero(v, A,C) ≥ χo(v, A
′, C), given the following

definition where SA = {u.A | u ∈ C}:

uppero(v, A,C) =
∑

S∈SA
(pS)2 − (2 pv.A + 1)× | C | − 2

| C |2
. (2.6)

Proof. Let {pv.A, pS1 , · · · , pSN
} be the probability distribution of attribute values in

subspace A. According to [21], for any A′ ⊇ A, χo(v, A
′, C) is maximized when the

additional attributes in A′\A preserve the current attribute value distribution, except

that the additional attributes make v different from all other entities, i.e., the optimal

distribution of attribute values in subspace A′ is {pv.A′ , pv.A−pv.A′ , pS1 , · · · , pSN
},

where pv.A′=
1
| C | . (Note that pS≥ 1

| C | for any S.) In other words, the entities having

value v.A on subspace A are partitioned into v itself (having value v.A′ on subspace

A′) and the rest (having identical value on A′). Based on Eq. (2.3), after a few

polynomial manipulations, which we omit here, we have χo(v, A
′, C)≤

∑
S∈SA pS

2 −
(2 pv.A+1)×| C |−2

| C |2 .

Theorem 3 (Upper bound of χi). upperi(v,A, C) ≥ χi(v, A
′, C), given the following

definition:

upperi(v, A,C) = 1− 2
−

− log2
1
| C |

−qv.A−
∑

S∈SA\{v.A}
(pS×log2 pS) (2.7)

where qv.A = 1
| C | × log2

1
| C | + (pv.A − 1

| C |)× log2(pv.A − 1
| C |).

Proof. By Eq. (2.4), χi(v, A
′, C) is maximized when the denominator in the expo-

nent is minimized and the numerator is maximized. Let {pv.A, pS1 , · · · , pSN
} be the

probability distribution of attribute values in subspace A. Similar to the proof of The-

orem 2, we prove that χi(v, A
′, C) is maximized when the distribution in subspace

A′ is {pv.A′ , pv.A−pv.A′ , pS1 , · · · , pSN
}, where pv.A′=

1
| C | . Partition the entities having

29

value S in A into two disjoint subsets that have values S1 and S2 in A′, respectively,

i.e., PA
S = PA′

S′ + PA′

S′′ . Without loss of generality, assume PA′

S′ ≤ PA′

S′′ . We have

1. −pA′S′ log2 p
A′

S′ − pA
′

S′′ log2 p
A′

S′′ ≥ −pAS log2 p
A
S ,

2. −pA′S′ log2 p
A′

S′ − pA
′

S′′ log2 p
A′

S′′ ≥

−pA′v.A′ log2 p
A′

v.A′− (pAS − pA
′

v.A′) log2(pAS − pA
′

v.A′).

They can be derived by

1. −pA′S′ log2 p
A′

S′ − pA
′

S′′ log2 p
A′

S′′ ≥ −pA
′

S′ log2 p
A′

S′′ − pA
′

S′′ log2 p
A′

S′′

= −(pA
′

S′ + pA
′

S′′) log2 p
A′

S′′ = −pAS log2 p
A′

S′′ ≥ −pAS log2 p
A
S ,

2. Let pAS = n pA
′

v.A′ = n
| C | , p

A′

S′ = m pA
′

v.A′ = m
| C | , then 1 ≤ m < n, −pA′S′ log2 p

A′

S′ −

pA
′

S′′ log2 p
A′

S′′ − (−pA′v.A′ log2 p
A′

v.A′ − (pAS−pA
′

v.A′) log2(pAS−pA
′

v.A′)) = −m pA
′

v.A′ log2m pA
′

v.A′−

(n pA
′

v.A′−m pA
′

v.A′) log2(n pA
′

v.A′−m pA
′

v.A′)+p
A′

v.A′ log2 p
A′

v.A′+(n pA
′

v.A′−pA
′

v.A′) log2(n pA
′

v.A′−

pA
′

v.A′) = pA
′

v.A′((n−1) log2(n−1)−mlog2m−(n−m)log2(n−m)) = pA
′

v.A′ log2
(n−1)(n−1)

mm(n−m)(n−m)

≥ pA
′

v.A′ log2 min((n−1)(n−1)

11(n−1)(n−1) ,
(n−1)(n−1)

(n−1)(n−1)(n−(n−1))(n−(n−1))) = 0.

As a result, since − log2 pv.A′ ≥ log2 pi for any pi ≥ pv.A′ , by dividing pv.A to pv.A′

and pv.A − pv.A′ , χi(v,A
′, C) is maximized. In other words, the optimal distribution

in subspace A′ is {pv.A′ , pv.A−pv.A′ , pS1 , · · · , pSN
}.

Subspace pruning across contexts Since Maverick only needs to return top-

k context-subspace pairs, the Exceptionality Evaluator (Alg. 3) employs a simple

optimization that uses the current top-k context-subspace pairs H to prune the

subspaces in a new context. Specifically, a subspace in a context is pruned if its

upper bound exceptionality score is lower than the score of the k-th best context-

subspace pair in H. This optimization is simply implemented by modifying the

function EXCEPTIONALITY-EVALUATOR in Alg. 3 to accept an additional argument H

and changing Line 2 from Tk ← ∅ to Tk ← H. The experiment results reported in

Section 2.6 already reflect this optimization.

30

Our final note is that an upper bound function may have limited pruning power

when it gives loose bounds on exceptionality scores, resulting in exponential complex-

ity in subspace enumeration. Our empirical results in Section 2.6.2, though, verified

that the several upper bound functions proposed in this chapter (Eqs. (2.6)–(2.7))

substantially reduced the overhead of subspace enumeration.

2.5 Pattern Generator

The Pattern Generator (PG) is used in Line 12 of Alg. 1 in the Maverick frame-

work. Its pseudo code is in Alg. 4. At each iteration of the beam search on patterns,

it finds the children of each visited pattern P (Line 3, see Alg. 5) in the current beam.

A child pattern, if not pruned (see Section 2.5.3), is given a score that measures how

promising it is according to a few heuristics (Line 5, see Section 2.5.4). Among all the

children of the patterns in the current beam, the w children with the highest scores

are returned to form the new beam (Line 14 in Alg. 1), where w is the predefined

beam width. The new beam becomes the input to the next iteration. This section

first describes the search space of patterns (Section 2.5.1) and then discusses how to

efficiently explore the space by applying pruning rules (Section 2.5.3) and selection

heuristics (Section 2.5.4).

2.5.1 Search Space of Patterns

The search space of patterns is a Hasse diagram of valid patterns, where a pat-

tern is valid if it contains at least one variable node and it has a match (Definition 2)

in the knowledge graph G. We exclude invalid patterns since they cannot lead to

relevant facts. For example, pattern {(?g, scored-by , ?s1), (?g, scored-by , ?s2)} does not

have a match and is thus invalid because no goal is scored by more than one player.

Formally, the search space of patterns is a Hasse diagram P(VP, EP), where VP is the

31

Algorithm 4: Pattern generator.

1 PATTERN-GENERATOR (v0, P ,MP , w, G)

2 Y ← ∅ ; // Promising children of P.

// Find P’s children, see Alg. 5.

3 children← FIND-CHILDREN(v0, P,MP , G);

4 foreach child ∈ children do

5 score ← h(v0, child); // See Section 2.5.4 for h.

6 Y ← Y ∪ {(child, score)};

7 return top-w of Y based on score;

Figure 2.4: An excerpt of the search space of patterns over Fig. 2.1. Edge labels: a:
awarded-to, p: play-for , s: scored-by .

set of valid patterns and EP ⊆ VP × VP is the set of edges. There exists an edge from

parent pattern Pi to child pattern Pj if Pi is an immediate subgraph of Pj, i.e., Pi

has exactly one edge less than Pj. A pattern can have multiple children and multiple

parents. Fig. 2.4 shows an excerpt of the search space of patterns over the data graph

in Fig. 2.1. In the figure, P6 and P7 are the children of P2, and both P2 and P3 are

the parents of P7.

One may realize already that P can be extremely large. We prove in Theorem 4

that the order of P (i.e., the cardinality of VP) is exponential to the orders of G’s

32

weakly connected components (WCCs).5 Given that knowledge graphs are all well

connected, it is impossible to exhaustively enumerate the patterns. For example,

according to Theorem 4, the data graph in Fig. 2.1 has at least 213+1− 2− 13 + 13 =

16, 382 patterns. (The graph itself is the only WCC, with 13 nodes.) Note that

Theorem 4 only provides a loose bound. In practice, the number is even much larger,

exacerbating the challenge. Section 2.6.2 shows that the tiny graph has more than

69, 000 patterns with merely no more than 5 edges.

Theorem 4. Let W be the set of WCCs in a knowledge graph G, a lower bound on

P’s order is:

| VP | ≥
∑

W∈W
(2| VW |+1 − 2)− | VG |+ max

W∈W
| VW |.

Proof. Given a WCC W ∈ W , it has at least one subgraph of order i, for every

i ∈ [1, |VW |]. For each subgraph of size i, there are 2i corresponding patterns that

can be constructed by replacing some nodes with variables. Hence, for each W , there

are at least
∑|VW |

i=1 2i = 2|VW |+1 − 2 patterns. Since every such pattern is isomorphic

to a subgraph of W , it is guaranteed to be valid. Note that two patterns of the same

order constructed from two subgraphs in two different WCCs can be equivalent if all

their nodes are variables. Therefore, each W ∈ W has at most | VW | patterns that

are equivalent to others. There are at least maxW |VW | unique patterns in which all

nodes are variables. Thus, after excluding double-counted patterns,

| VP | ≥
∑

W
(2|VW |+1 − 2)−

∑
W
|VW |+ max

W
|VW |

=
∑

W
(2|VW |+1 − 2)− |VG|+ max

W
|VW |.

5A weakly connected component is a maximal subgraph of a directed graph, in which

every pair of vertices are connected, ignoring edge direction.

33

2.5.2 Match-based Construction of Patterns

Given the current beam of patterns, Maverick finds top context-subspace pairs

using its context evaluator (Section 2.3.1) and exceptionality evaluator (Section 2.4).

Among the child patterns of the evaluated patterns, the promising ones are chosen

to form the new beam for the next iteration. While Section 2.5.4 discusses how to

select the promising patterns, this section proposes an efficient way of generating

the child patterns. Note that the aforementioned Hasse diagram of patterns is not

pre-materialized. Rather, the patterns need to be constructed before we can evaluate

them.

To construct the child patterns of an evaluated pattern P , a simple approach

is to enumerate all possible ways of expanding P by adding one more edge. A major

drawback of this approach is it may construct many invalid patterns that do not have

any match. Some invalid patterns can be easily recognized by referring to the schema

graph of the data. However, chances are most of the schema-abiding patterns are

still invalid because they do not have matching instances in the data graph, given the

sheer diversity of a knowledge graph. The system will evaluate such patterns in vain

to get empty results in order to realize they are invalid.

To avoid evaluating invalid patterns, we propose a match-based pattern con-

struction method. Instead of constructing the child patterns by directly expanding

P , this method expands the matches of P and constructs the child patterns from

the expanded matches. It guarantees to construct only valid patterns and evade the

evaluation of invalid patterns. The method is based on the following theorem.

Theorem 5. Suppose P ′ is a child of P ∈ P, i.e., (P, P ′) ∈ EP and thus P ′ is a valid

pattern with matches. Given any match M ′ to P ′, there exists a match M to P that

is a subgraph of M ′, i.e., ∀M ′ ∈MP ′ , ∃M ∈MP s.t. VM ⊆ VM ′ and EM ⊆ EM ′ .

34

Figure 2.5: Illustration of how the child patterns of a pattern are constructed. P10 and
P11 are obtained based on M10 and edge e. P12 and P13 can be obtained based on M11 and
edge e′, but they are pruned based on rules in Section 2.5.3.

Proof. Since P ′ is a child of P , P ′ has one edge more than P . Suppose (u, l, w) = EP ′\

EP , and f ′ is the bijection f ′ : VP ′ → VM ′ . We prove the theorem by constructing M .

More specifically, let EM = EM ′ \ {(f ′(u), l, f ′(w))}, and VM = ∪(vi,l′,vj)∈EM
{vi, vj}.

We can construct a bijection f : VP → VM such that f(u) = f ′(u) for any u ∈ VP .

Since f ′ satisfies the edge isomorphism, f also satisfies it, i.e., ∀(vi, l′, vj) ∈ EP ,

(f(vi), l
′, f(vj)) ∈ EM , and vice versa. By Definition 2, M is a match to P .

Based on Theorem 5, the method that constructs the child patterns of P is

illustrated in Alg. 5. For a match M of P , it finds each of its weakly connected

supergraphs by adding an edge that exists in the data graph G and is adjacent to a

node in M (Line 6). Given each such resulting supergraph M ′, let (u, l, w) = EM ′\EM

and, without loss of generality, assume u ∈ VM . If w ∈ VM , then the only child of P

obtained from M ′ is P + (f−1(u), l, f−1(w)) (Line 13). 6 If w /∈ VM , then two child

patterns are obtained: P + (f−1(u), l, w) and P + (f−1(u), l, z), where z is a variable

and z /∈ XP (Line 17; Line 21 for the symmetric case). Fig. 2.5 shows an example of

obtaining a pattern’s children. For instance, P10 can be obtained by adding e1, which

is obtained by replacing S1 of edge e with variable ?s.

6For brevity, we denote by P + e the supergraph of P by adding edge e.

35

Algorithm 5: Find all the children of a given pattern.

1 FIND-CHILDREN (v0, P,MP , G)

2 D ← ∅; // The set of P’s children.

3 M←{M∈MP | f :VP→VM and ∃x∈XP s.t. f(x)=v0} ; // Rule 1

4 foreach M ∈M do

5 Let f be the bijection f : VP → VM ;

6 EM = {(u, l, w) ∈ EG \ EM | u ∈ VM or w ∈ VM};

7 foreach (u, l, w) ∈ EM do

8 z ← a new variable and z /∈ XP ;

9 if @ x ∈ XP s.t. f(x) = u or f(x) = w then

10 continue; // Rule 2

11 else if u ∈ VM and w ∈ VM then

12 x← f−1(u), y ← f−1(w);

13 P1 ← P + (x, l, y);

14 D ← D ∪ {P1} ;

15 else if w /∈ VM then // ∃ x ∈ XP s.t. f(x) = u

16 x← f−1(u);

17 P1 ← P + (x, l, w); P2 ← P + (x, l, z);

18 D ← D ∪ {P1, P2};

19 else // ∃ y ∈ XP s.t. f(y) = w

20 y ← f−1(w);

21 P1 ← P + (u, l, y); P2 ← P + (z, l, y);

22 D ← D ∪ {P1, P2};

23 return D;

36

(1) (x, l, y) (2) (x, l, z) (3) (x, l, w) (4) (u, l, y) (5) (u, l, z)
(6) (u, l, v) (7) (u, l, w)

Figure 2.6: Consider a pattern P and its child pattern P ′. The 7 types of the extra
edge e = EP ′ \ EP . x, y, z are variables, x, y ∈ XP , z /∈ XP . u, v, w are non-variables,
u, v ∈ VP ∩ I, and w ∈ VG \ VP .

2.5.3 Pattern Pruning Strategies

The search space P of patterns as defined in Section 2.5.1 and constructed

using the match-based pattern construction method in Section 2.5.2 has an enormous

size. To ensure efficiency, the Pattern Generator (PG) employs two pruning rules to

exclude irrelevant patterns from P and to avoid repeated constructions of patterns

from certain type of parent patterns.

Rule 1 (RelevantOnly). Exclude a pattern if it does not define any context for the

entity of interest v0.

The rational behind Rule 1 is, for discovering exceptional facts about v0, a

pattern is relevant only if it defines a context for v0. By this rule, the match-based

pattern construction method only expands a match in which v0 is an image of a

variable in P . It is guaranteed that the patterns obtained define v0’s contexts.

Rule 2 (VarOnly). Expand a pattern only if the new edge has at least one variable.

Let P ′ be a child pattern of P . The extra edge in P ′, i.e., e=EP ′\EP , belongs

to one of the 7 types in Fig. 2.6. Rule 2 avoids constructing P ′ from P if e belongs

to types 6-7. This rule is based on Theorem 6. Simply put, enforcing Rule 2 will not

miss any contexts of v0.

Theorem 6. Let P ′ be a child of P ∈ P, e = EP ′ \ EP , CP
v0

be all the contexts of

v0 defined by P : CP
v0

= {RP
x′ |x′ ∈ XP , v0 ∈ RP

x′}, then CP ′
v0

= CP
v0

, if e belongs to

types 6-7.

Proof. Since both ends of e are entities, we have XP = XP ′ . By Theorem 5, ∀M ′ ∈

MP ′ , there exists M ∈MP which is a subgraph of M ′. Let e′ = EM ′\EM , then e′ = e

37

by Definition 2. Therefore, ∀x ∈ XP ′ , R
P ′
x ⊆ RP

x . Similarly, ∀M ∈ MP , the graph

M+e is a match to P ′. As a result, ∀x ∈ XP , RP
x ⊆ RP ′

x . In sum, ∀x ∈ XP , RP
x = RP ′

x ,

and CP
v0

= {RP
x′ |x′ ∈ XP , v0 ∈ RP

x′} = {RP ′

x′ |x′ ∈ XP ′ , v0 ∈ RP ′

x′ } = CP ′
v0

.

2.5.4 Pattern Selection Heuristics (h)

Even with the rules proposed in Section 2.5.3, there are still too many patterns.

In this section, we propose two scoring heuristics for selecting promising patterns to

visit, to substantiate the function h in Line 5 of Alg. 4. A heuristic gives each pattern

a score, based on which the w patterns with the highest scores form the beam for the

next iteration of beam search.

Heuristic 1 (Optimistic). Given a pattern P , the entity of interest v0, let CPv0 be the

set of contexts defined by P , i.e., CPv0 = {CP,x
v0
|x ∈ XP , v0 ∈ RP

x }, then

hopt(v0, P) = max
C∈CPv0

upper(v0,∅, C)

where upper(v0,∅, C) is a upper bound of χ with regard to C for any subspace (see

Defintion 9).

hopt simply uses the exceptionality score upper bound of P . It optimistically

assumes the ideal case for each pattern, where the entity of interest is most excep-

tional among the entities in a context defined by the pattern. In Section 2.4, we

discussed the upper bound functions for various exceptionality functions. Note that

we have pv0.∅ = 1 (Eq. (2.1)) since v.∅ = null (Definition 6) and we consider all

null values equal, uppero(v0,∅, C) = 1 − 3×| C |−2
| C |2 , upperf (v0,∅, C) = 1 − 1

| C | , and

upperi(v0,∅, C) = 1− 2−|C| log2 |C| / (|C| log2 |C|−|C−1|−1) log2(|C−1|)). In sum, all the three

upper bounds increase when the context size increases. In other words, hopt selects

the patterns that define large contexts. However, a large context may contain many

entities of different characteristics, which may actually make the entity of interest less

38

exceptional. Note that, since hopt depends on context size |C|, all the child patterns

of P need to be evaluated in order to get |C|. It is also required for heuristic hconv

below for the same reason.

Heuristic 2 (Convergent). Consider a pattern P and the entity of interest v0. Given

P ′, a parent of P in the pattern search tree, we define rx = |CP,x
v0
|
/
|CP ′,x

v0
| . The

score of P is

hconv(v0, P) =

max
(P ′,P)∈EP and P ′∈B,CP ′,x

v0
∈CP ′v0

[
rx × maxA⊆Av0

χ(v0, A, C
P ′,x
v0

)

+ (1− rx) × upper(v0,∅, CP,x
v0

)
]

The hconv score of P is a weighted sum of the upper bound of P (for any

subspace) and the best score of the parent pattern P ′. Note that Maverick performs

a beam search and the patterns visited form a pattern search tree. P could be

constructed from different parent patterns in the current beam B. The above equation

thus uses the best score across all such parents. For this reason, the edge adjacent to

P in the pattern search tree comes from the parent P ′ that gives it the best score.

If P ′ posses some highly-scored context-subspace pairs, hconv gives favorable score

to P if P and P ′ define similar contexts; otherwise, hconv favors a P that defines

smaller contexts. Compared with hopt, hconv is potentially both more efficient and

more effective. It can be more efficient since it may favor child patterns that define

smaller contexts. Such child patterns usually can be evaluated more efficiently since

they have less matches. It can be more effective since it discards child patterns that

define contexts where the entity of interest may not be exceptional, based on the

highest score of the context-subspace pairs for the parent pattern. When hconv is

used for choosing patterns to form the beams, the sizes of the contexts defined by the

39

patterns in a path of the tree may gradually become smaller and eventually converge.

We thus call hconv Convergent.

Complexity Analysis of the Beam Search Method We present a brief analysis

of the complexity of our beam search method. Let w be the beam size, if Maverick

stops at level l of the Hasse diagram P, which is the search sapce of patterns, then

it evaluates exceptionality in at least (l − 1)w + 1 contexts (patterns). For each

context, the complexity of computing exceptionality is O(2|Av0 |), as we discussed in

Section 2.4. Assume the average degree of an entity is d, the average number of

variables in a pattern of size k is k
2
, then a pattern of size k has (d + 1)k/2 children.

For each child, Maverick needs to compute h scores for selecting promising candidates

(Section 2.5.4). The main computational cost of h scores is the calculation of context

sizes, which requires pattern evaluation. Given a pattern of size k, its evaluation can

be done in O(|E(G)|k), since it may require k self-join operations on EG. In sum,

the estimated complexity is O((w(l − 1) + 1)(2|Av0 | +
∑l

k=0(d + 1)k/2 × |E(G)|k)) =

O(2|Av0 | + dl |E(G)|l).

2.6 Experiments

2.6.1 Experiment Setup

The framework and algorithms of Maverick are implemented in Python. The

experiments were conducted on a 16-core, 32GB-RAM node in Stampede—a cluster

of the Extreme Science and Engineering Discovery Environment (XSEDE: https:

// www. xsede. org).

Datasets7 The experiments used the following two real-world graphs:

7All graphs in experiments are available in Neo4j format at https: // goo. gl/ vavMcK .

40

https://www.xsede.org
https://www.xsede.org
https://goo.gl/vavMcK

• WCGoals. It was constructed by crawling data from the FIFA World Cup website

(http: // www. fifa. com/ worldcup/ index. html). It consists of 49, 078 nodes, 158, 114

edges, 13 different edge labels, and 11 entity types: WorldCup, RoundCategory, Round,

Stadium, Team, Game, Group, Player, Bibnum, Participant, and Goal.

• OscarWinners. This is a subgraph of Freebase. It has 42, 148 nodes, 63, 187 edges,

24 distinct edge labels, and 13 entity types including Person, FilmCrew, AwardWon,

FilmCharacter, AwardCategory, Performance, Genre, Award, Film, Country, FilmCrewRole, Cer-

emony, and SpecialPerformanceType. Each film in the graph has won at least one

Academy Award (Oscar).

The two graphs were stored using Neo4j (https: // neo4j. com) graph database.

The patterns are expressed in Neo4j’s query language Cypher. The experiment re-

sults using the two graphs and different expectionality scoring functions are similar.

Therefore, we only report our findings on WCGoals and exceptionality function χo,

except that Section 2.6.6 reports the discovered exceptional facts using both WCGoals

and OscarWinners.

Methods Compared The experiments compared the performance of a breadth-first

search method and several beam search methods (Section 2.3) coupled with different

heuristics (Section 2.5.4):

• Beam-Rdm: Beam search that randomly selects child patterns.

• Beam-Opt: Beam search using hopt in selecting child patterns.

• Beam-Conv: Beam search using hconv in selecting child patterns.

• Breadth-First: The breadth-first search method that enumerates all possible pat-

terns.

The family of beam search methods and Breadth-First differ in two ways. Firstly,

beam search only visits a fixed number of patterns at each level of the pattern search

41

http://www.fifa.com/worldcup/index.html
https://developers.google.com/freebase/
https://neo4j.com

0 100
Timestamp (sec.)

0.0

0.5

1.0

χ o

Beam-Rdm

0 100
Timestamp (sec.)

0.0

0.5

1.0

χ o

Beam-Opt

0 100
Timestamp (sec.)

0.0

0.5

1.0

χ o

Beam-Conv

0 100
Timestamp (sec.)

0.0

0.5

1.0

χ o

Breadth-First

101

102

103

Figure 2.7: The heat map of exceptionality scores (χo) and timestamps of all the discovered
context-subpsace pairs during 2-minute runs for 10 entities of interest (v0) in WCGoals
(k = 10, w = 10).

tree, whereas Breadth-First visits all. Secondly, beam search visits the patterns by

the decreasing order of their scores, whereas Breadth-First does not assume any order.

The experiment results establish that, even though Breadth-First may evaluate more

patterns than the beam search methods in a fixed time frame, it is not as effective

as Beam-Conv which discovers more highly-scored context-subspace pairs using less

time.

2.6.2 Efficiency

We measured how fast Maverick discovers highly-scored context-subspace pairs

and how fast it explores the search space of patterns. We executed Maverick for

multiple 2-minute runs and recorded a) the scores of discovered context-subspace

pairs; b) the time when each context-subspace pair was discovered; and c) the number

of visited patterns in the outer loop of the framework.

42

1 2 3 4 5 6 7 8 9 10
Output size (k)

102

#p
at
te
rn

s e
va

lu
at
ed

Beam-Rdm
Beam-Opt

Beam-Conv
Breadth-First

a Varying k, fixing w = 10.

3 4 5 6 7 8 9 10
Beam width (w)

101

102

#p
at

te
rn

s e
va

lu
at

ed

Beam-Rdm
Beam-Opt

Beam-Conv
Breadth-First

b Varying w, fixing k = 10.

Figure 2.8: Effect of k and w on the number of evaluated patterns.

Fig. 2.7 shows the heat map of the context-subspace pairs’ exceptionality scores

by their timestamps. It includes all the discovered context-subspace pairs during the

2-minute runs for 10 entities of interest in WCGoals. We run 10 times per entity

for all the methods, since Beam-Rdm selects child patterns randomly. Both the

output size k and the beam width w were set to 10. The 10 entities were randomly

chosen from those that have highly-scored context-subspace pairs. Each bucket in

the figure corresponds to a particular range of scores and a 8-second time frame in

the 2-min run. The color of the bucket reflects how many context-subspace pairs

(from all 100 runs for the 10 entities) discovered during the time frame fall into

the corresponding score range. Intuitively, if the upper left portion of a heat map

is more populated, the corresponding method performs better, since it means the

method discovers highly-scored pairs faster. If the upper portion of a heat map is

more populated, it means the method discovers more highly-scored pairs. The figure

shows that Beam-Conv is both efficient and effective in discovering highly-scored

context-subspace pairs. In contrast, Beam-Opt performed poorly. The results confirm

the analysis in Section 2.5.4: preferring patterns that produce large contexts (hopt)

43

degrades not only the efficiency but also the effectiveness of Maverick. It is because

such patterns are usually more expensive to evaluate and the produced contexts may

include more varieties of entities, which makes the entity of interest less exceptional.

With regard to Breadth-First, since it enumerates candidate patterns exhaustively,

it may discover some highly-scored pairs that reside in the low levels of the pattern

search tree. For example, some highly-scored pairs for entity Goal(46683) were found

using the 2-edge pattern in Fig. 2.2a. Given that the number of patterns with no more

than 2 edges is small (more details in the discussion of results regarding pruning

strategies), Beam-Rdm is likely to hit such small patterns that define contexts in

which the entity of interest is exceptional.

Fig. 2.8 shows the impact of output size k and beam width w on how many

patterns Maverick can manage to evaluate, in other words, how many nodes in P it

can manage to visit. The y-axis is the average number of evaluated patterns across

the aforementioned 10 runs. Since we observed similar results on the 10 entities from

WCGoals, the figure only depicts the results on Goal(46683). Fig. 2.8a shows that

varying k from 1 to 10 (fixing w at 10) barely had any impact on the number of eval-

uated patterns. Since k controls the number of context-subspace pairs that Maverick

returns, it mainly affects EE, which is responsible for finding top-k subspaces with

regard to each context. Thus k needs to be very large in order to have a significant

impact on the number of evaluated patterns, since EE is the least time-consuming

component, as explained as follows. Table 2.2 provides the breakdown of execution

time of different search methods into the three components in the workflow—Context

Evaluator (CE), Exceptionality Evaluator (EE), and Pattern Generator (PG). The

results are the average of the runs which are the same as in Fig. 2.7. (The summation

in each column is slightly less than 100%, since we do not include operations such

as framework initialization in the breakdown.) Another observation from Table 2.2

44

Table 2.2: Breakdown of execution time by components.

Beam-Rdm Beam-Opt Beam-Conv Breadth-First

CE 25.52% 1.56% 1.90% 28.36%
EE 0.41% 0.65% 0.32% 2.79%
PG 61.49% 97.69% 95.92% 53.89%

0

10
Beam-Rdm

0

10
Beam-Opt

0

10
Beam-Conv

0 5 10
Level (|EP|)

0
250

Breadth-First

#p
at

te
rn

s e
va

lu
at

ed

a By level.

0

25
Beam-Rdm

0
5

Beam-Opt

0
5

Beam-Conv

101 102 103

Context size (|C|)

0

200
Breadth-First

#p
at

te
rn

s e
va

lu
at

ed

b By context size.

Figure 2.9: Number of evaluated patterns by level and context size.

is that the execution time of PG dominates more substantially in Beam-Opt and

Beam-Conv than in Beam-Rdm and Breadth-First. The reason is PG in both Beam-

Opt and Beam-Conv needs to compute h for each child pattern based on the pattern

selection heuristics, which entails evaluating the child patterns to obtain the context

sizes. In fact, on average, PG in Beam-Opt and Beam-Conv spent more than 99%

and 96% of its time on applying the heuristics.

Fig. 2.8b depicts the results when w varied from 3 to 10 and k was fixed at 10.

It shows the number of evaluated patterns increased by w in the three beam search

methods. When w increases, the methods evaluate more patterns from lower levels in

the pattern search tree, which have less edges and can be evaluated more efficiently

45

0 5 10
Level (|EP|)

0

1

2

Ti
m

e
(s

ec
.)

Figure 2.10: Time spent by Context
Evaluator (Alg. 2) on evaluating patterns
at different levels.

0 2 4
Level (|EP|)

101

102

103

104

105

#p
at

te
rn

s v
is

ite
d

RelevantOnly+VarOnly
RelevantOnly

VarOnly
None

Figure 2.11: The pruning power of dif-
ferent pruning strategies.

than those from higher levels. In a fixed time frame, the methods can then evaluate

more patterns in total, as shown in the figure. Fig. 2.10 shows the average time that

Context Evaluator (Alg. 2) spends on pattern evaluation increases when the level of

pattern (i.e., the number of edges) increases. Since Breadth-First does not need to

calculate scores for patterns and does not have a limit on the number of patterns to

visit at each level, it tends to evaluate more patterns but may only evaluate patterns

at low levels. Fig. 2.9a compares the numbers of patterns evaluated at different levels

by the four methods, when both k and w stayed at 10. Breadth-First evaluated

patterns up to level 3 and spent most of its time on level 3. On the contrary, the

beam search methods evaluated at most 10 patterns at each level and covered more

levels.

Fig. 2.8b also suggests that Beam-Rdm evaluated more patterns than Beam-

Conv and Beam-Opt. It is because Beam-Rdm (like Breadth-First) does not compute

scores for child patterns, which is expensive. Since Beam-Opt favors patterns that

define larger contexts, it evaluated the fewest patterns since it spent more time to

calculate the sizes of the contexts. On the other hand, Beam-Conv prefers patterns

defining smaller contexts, which allowed it to evaluate more patterns. This is verified

46

in Fig. 2.9b, which shows the numbers of evaluated patterns with different context

sizes, when k and w were both 10.

Effect of pruning strategies We examined the effectiveness of the two pruning

rules from Section 2.5.3 by comparing the following pruning strategies. In order to

comprehensively compare these strategies, we used Breath-First as the search method

since it exhaustively enumerates all possible candidate patterns at all levels.

• None: No child pattern pruning rule is applied;

• RelevantOnly (Rule 1);

• VarOnly (Rule 2);

• RelevantOnly+VarOnly: Apply both RelevantOnly and VarOnly.

Fig. 2.11 shows the number of patterns visited by Breath-First on the data

graph in Fig. 2.1. The figure reveals that both rules can significantly reduce the

number of candidate patterns. For instance, there are 69, 582 candidate patterns at

level 5 when no pruning rule is applied (None). The number is reduced to 12, 740

and 6, 963 by following RelevantOnly and VarOnly, respectively. It is further reduced

to 1, 448 with both rules applied (RelevantOnly+VarOnly). The figure also shows

that the number of patterns still grows exponentially to the level of the pattern

search tree even with both pruning rules applied, which suggests an enormous search

space of patterns. Since VarOnly is stricter than RelevantOnly, as VarOnly only

allows expanding on variable nodes, the growth rate of VarOnly can be smaller than

RelevantOnly. Fig. 2.11 also confirms that.

Effect of upper bound of exceptionality functions Fig. 2.12 depicts the effect

of using upper bound functions in pruning subspaces (Section 2.4.3). It shows the

time and the number of subspaces visited for Game(903)—one of the 10 entities used

in Fig. 2.7—with/without applying upper bound functions under varying k. (Results

47

0 20 40 60
Output size k

0.50

0.75

1.00

1.25

1.50

Ex
ec
ut
io
n
tim
e
(s
ec
.)

w/o upper bound
w/ upper bound

0 20 40 60
Output size k

20

30

40

50

60

#s
ub
sp
ac
es
 v
is
ite
d

w/o upper bound
w/ upper bound

Figure 2.12: Effect of subspace pruning (upper bound functions).

for the other 9 entities are similar.) The measures are averages of 10 runs. The figure

verifies that the upper bound functions significantly improve the performance of ex-

ceptionality score calculations. Under relatively small k (e.g. 10), the execution time

was reduced by more than half when the upper bound was applied. As k increased,

the upper bound function’s pruning power gradually diminished. Eventually, it was

no longer able to prune any subspaces after k = 60.

2.6.3 Effectiveness

Section 2.6.6 reports a few examples of discovered exceptional facts using both

WCGoals and OscarWinners. We also conducted experiments to verify if Maverick

can effectively discover highly-scored context-subspace pairs. Fig. 2.13 shows the

score distributions of the top-10 context-subspace pairs for the same 10 entities in

Section 2.6.2. There were 10 2-minute runs per entity. Both k and w were set to 10.

The results in Fig. 2.13 are averaged over all entities and all runs. The last row are

the results when Maverick uses patterns mined by a frequent pattern (FP) mining

48

algorithm [43] as candidate patterns, instead of the ones discovered in P. We set the

minimum support to be 1, 000, as lower value leads to excessive execution time.8

The results show that the output of Beam-Rdm mainly consists of pairs scored

low. It is expected because the chance of hitting a promising pattern by a random

method is very low due to the large search space of patterns. It is not surprising either

to observe Beam-Opt performed badly as explained in Section 2.6.2. In contrast,

Beam-Conv significantly outperformed other beam search methods, as it found much

more highly-scored context-subspace pairs. It also found substantially more highly-

scored pairs than Breadth-First in score range [0.8− 1.0]. This observation confirms

that a wide pattern search tree hinders Breadth-First’s performance. Using FPs was

not effective in discovery of exceptional facts. There are mainly two reasons. 1) Due to

practical considerations such as efficiency and resources, FP mining techniques usually

consider only node types (e.g., Team) but not node IDs (e.g., BRA). 2) An FP mining

algorithm is not designed for individual entities. This leads to two consequences. One

is that there may be no FP that defines some context for a given entity. The other is

that the exceptionality of the entity may not be revealed in the contexts defined by

the FPs. In fact, the experiments on WCGoals yielded only 12 FPs and all of them

are about only two node types: Participant and Goal.

We also use a variation of coverage error [44] to measure the effectiveness of

the four methods. For each method, we evaluated the result of its 2-minute run,

using the result of its 10-hour run as the ground truth. The ground truth is the

list of discovered context-subspace pairs during the 10-hour run, ranked by their

exceptionality scores. Given the set of discovered context-subspace pairs in a 2-minute

run, H, the coverage error is the average rank position of the pairs in the ground truth,

8The algorithm did not finish after more than 10 hours on graph WCGoals when the minimum

support was set to 500.

49

0

600 Beam-Rdm

0

500 Beam-Opt

0

250 Beam-Conv

0.0 0.5 1.0
Exceptionality χo

0

500 Breadth-First

#c
on
te
xt
-s
ub
sp
ac
e

pa
irs

Figure 2.13: Score distributions of top-10
context-subspace pairs for 10 entities, 10 2-
minute runs per entity.

2 4 6 8 10
Output size (k)

103

104

105

A
ve

ra
ge

 c
ov

er
ag

e
er

ro
r (

C
ov

)

Beam-Rdm
Beam-Opt

Beam-Conv
Breadth-First

Figure 2.14: Average coverage error on 10
entities. Beam width 10.

defined by Cov = 1
| H |

∑
(C,A)∈H rank(C,A). Fig. 2.14 reports the average coverage

error of each method under varying output size k. Table 2.3 shows the average and

median coverage errors under varying beam width w. In Fig. 2.14, the coverage error

of Beam-Conv is less than other methods by orders of magnitude, which suggests

that Beam-Conv found highly-scored context-subspace pairs. Table 2.3 shows that

coverage error decreases when beam width increases. The reason is that a wider beam

leads to more patterns visited at every level and thus a better coverage of patterns.

It is especially beneficial when highly-scored pairs reside in patterns at lower levels.

2.6.4 Scalability

To test the scalability of Maverick, we generated synthetic graphs using a bench-

mark data generator BSBM 9 about products, vendors, consumers, and reviews. We

varied the number of products from 100 to 2, 000, which resulted in graphs of or-

der |V (G)| from 14, 195 to 215, 895. Fig. 2.15 shows how the execution time of all

9http: // wifo5-03. informatik. uni-mannheim. de/ bizer/ berlinsparqlbenchmark/

spec/ BenchmarkRules

50

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/BenchmarkRules
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/BenchmarkRules

0.250.500.751.001.251.501.752.002.25
|V(G)| ×105

0

1000

2000

3000

T
im

e
(s
ec

.)

Breadth-First
Beam-Conv
Beam-Opt

Beam-Rdm
A*-Opt
A*-Conv

Figure 2.15: Execution time of enumerating all candidates up to level 2 by different orders
of graphs.

Table 2.3: The effect of beam width (w) on the coverage errors of top-10 context-subspace
pairs of 10 entities. In each cell: the average and the median coverage errors. Both numbers
are the smaller the better.

w Beam-Rdm Beam-Opt Beam-Conv Breadth-First
3 3375.7/2636.9 2151.0/1071.5 49.7/12.5 383.0/390.5
4 3293.2/1607.3 2675.7/1622.1 52.1/12.5 383.0/390.5
5 2743.2/1871.2 2418.3/1550.8 30.2/26.0 383.0/390.5
6 2890.9/1809.2 2288.7/1259.7 20.6/1.0 383.0/390.5
7 2821.4/1398.9 1789.3/1259.7 21.8/1.0 383.0/390.5
8 2646.4/1818.6 1721.5/1168.8 78.3/3.0 383.0/390.5
9 2262.8/1653.4 1365.5/1107.3 36.6/4.2 383.0/390.5
10 2720.8/1619.9 1365.5/1107.3 58.4/22.1 383.0/390.5

algorithms increased along with the order of the graphs. Given that Beam-Conv

and Beam-Rdm need less computation in candidate selection, both scaled much more

gracefully than others. The figure also shows the execution time of two A* algorithms

guided by hopt and hconv, respectively. The results confirmed that computing hopt is

more expensive than hconv. This is because computing hopt requires examining all the

variables in a pattern, while computing hconv only requires that for context-defining

variables in the parent. Due to the overhead of computing h scores, the A* algorithms

are shown more expensive than Breadth-First.

51

2.6.5 User Study for Comparing Exceptionality Scoring Functions

We conducted a user study to assess the quality of four different exceptionality

scoring functions χf (one-of-the-few, Section 2.2), χo (outlyingness, Section 2.4.2), χi

(isolation score, Section 2.4.2), and frequency rank (Eq. (2.1)). The measure frequency

rank is simply to rank the exceptionality of entities in context C with respect to

subspace A based on their attribute value frequency Pv.A, as defined in Eq. (2.1).

The lower the frequency, the more exceptional it is. We compared the rankings of

exceptional facts based on these functions as well as actual user preferences.

The user study participants were asked to choose a fact from a pair of facts

that they deemed to be more exceptional. For quality assurance we manually crafted

a set of trivial facts that are clearly non-exceptional or dull. We then formulated test

pairs, of which each is composed of a regular fact and a trivial fact. The participants

are expected to choose the regular fact as more exceptional. A participant’s quality

is thus gauged by their accuracy on the test pairs, which were mixed together with

regular pairs without disclosure to the participants.

We used 10 regular facts and thus 45 pairs of these facts. We randomly selected

10 entities from graph OscarWinners, and run Maverick using Beam-Conv to discover

exceptional facts of the entities. The exceptionality scoring function used in the

discovery was outlierness (χo). Among all the facts discovered by Maverick, 10 facts

are picked so that the scores of facts are roughly evenly distributed in [0, 1]. For each

selected fact, χf , χi, and frequency rank are also calculated. We crafted 8 trivial

facts and formulated 8 test pairs by pairing up these trivial facts with regular ones.

Hence a participant responded to at most 53 pairs. The facts were presented to the

participants in their natural language descriptions which we manually generated in

the form of one-of-the-few facts. The study was conducted on line, for which the

52

Table 2.4: User study results at different participant quality levels.

of pairs # of χi χf χo frequency
correct (≥) participants rank

0 84 0.370 0.564 0.295 0.429
1 84 0.370 0.564 0.295 0.429
2 78 0.392 0.585 0.317 0.412
3 74 0.410 0.597 0.335 0.400
4 66 0.449 0.642 0.378 0.338
5 53 0.491 0.649 0.422 0.377
6 43 0.614 0.730 0.558 0.283
7 22 0.738 0.831 0.696 0.061
8 9 0.750 0.864 0.711 −0.007

participants were solicited from computer science graduate students in the authors’

institution. 4, 212 responses from 84 participants were recorded in total.

For each exceptionality scoring function, we constructed a vector X of 45

values corresponding to the 45 pairs of regular facts. For each pair, the value

in X is the difference between the two facts’ ranks according to the scoring func-

tion. We also constructed another vector Y , in which a value is the difference be-

tween how many participants favored one fact versus another in the corresponding

pair. The correlation between the scoring function and the participants is calcu-

lated using the Pearson Correlation Coefficient (PCC) which is defined as (E(XY)−

E(X)E(Y))/(
√

E(X2)− (E(X))2
√

E(Y 2)− (E(Y))2). A PCC value in the ranges of

[0.5,1.0], [0.3,0.5) and [0.1,0.3) indicates a strong, medium and small positive corre-

lation, respectively [45].

The results of the user study are presented in Table 2.4, in which each row shows

the PCC values calculated using participants at a different quality level (measured

by number of test pairs the participants got correct, i.e., the first column in the

table). We can make a few observations on the results. 1) As the quality level

increases the number of participants that are accounted for at that level decreases,

53

showing that the test pairs were successful in filtering out low performing participants.

2) For scoring functions χi, χf and χo, the correlation with participants steadily

increases when the participants’ quality increases. 3) In general, the scoring function

that performed the best was χf , followed by χi and χo. The results show a strong

correlation between these three functions and high-quality human participants, which

suggests these functions are effective in ranking the facts. The observation that χf

performed the best could be due to a bias: the natural language descriptions of the

facts were in the form of one-of-the-few facts. (On a side note, this suggests a strength

of χf related to usability, as there is no clear way of directly expressing facts in line

with χi and χo.) 4) On the contrary, frequency rank displayed a decrease in correlation

as participant quality increases and its correlation was never strong. We reason that

this could be due to low performing participants directly using frequency to hastily

assess whether a fact is exceptional or not, without carefully examining the nature of

the fact. The fact that frequency rank attains stronger correlation with lower-quality

participants verifies that it cannot be used as a robust exceptionality scoring function,

as explained in Section 2.2.

2.6.6 Case Study

To illustrate the effectiveness of Maverick, we present below some examples of

exceptional facts discovered by Maverick in both graph WCGoals and graph Oscar-

Winners.

© Goal(46683) is the only own goal in Brazil’s World Cup history.

Exceptionality χo = 0.986

Subspace {(awared-to,→)}

Context CP,x0

Goal(46683)
, where P = {(x0, scored-by , x1), (x1, play-for , BRA)}

54

Indeed, among all the 221 goals that were scored by Brazil players in the FIFA

World Cup Finals tournaments, Goal(46683), which was awarded to Croatia, was the

only goal not awarded to Brazil. This exceptional fact has a very high score.

© Among all the crew members of Oscar winning films, Paul J. Franklin

(FilmCrew(7674)) is the only crew member with role Computer Animation.

Exceptionality χf = 0.784

Subspace {(film-crew-role,→)}

Context CP0,x0

FilmCrew(7674)

This example demonstrates the utility of Maverick in revealing data errors,

as motivated in Section 2.1. While investigating why this entity is exceptional, an

analyst will realize the exceptional fact is due to a data error. An edge mistakenly

links from node Paul J. Franklin to a genre node Computer Animation which is incorrectly

used in this case as a role node. The correct crew role node should have been Computer

Animator.

© Goal(23464) is the only goal awarded to Paraguay, among all the goals

scored in matches hosted in Mexico City that had at least two goals.

Exceptionality χf = 0.983

Subspace {(awared-to,→)}

Context CP,x1

Goal(24227)
, where P = {(x0, goal , x1), (x0, goal , x2), (x0, venue,

Mexico City)}

There are in total 62 goals scored in matches hosted in Mexico City, among

which 58 were scored in 18 multiple-goal matches. These 58 goals were awarded to

12 different teams. Paraguay is the only team that was awarded only one of the 58

goals.

55

© Game(899) is one of the only two games in which the home team

was Senegal, among all the games where there was a player wearing the

number 21 shirt.

Exceptionality χf = 0.959

Subspace {(home,→)}

Context CP,x1

Game(899)
, where P = {(x0, bibnum, Bibnum(21)), (x0, participate-in,

x1)}

In 761 games some player wore number 21. Game(899) is one of the only two

such games in which the home team was Senegal.

© Among the Oscar winning films produced in the United States, The

Lord of the Rings: The Return of the King (Film(31768)) is one of the only 7

films that were also produced in New Zealand.

Exceptionality χo = 0.676

Subspace {(country ,→)}

Context CP,x0

Film(31768)
, where P = {(x0, country , USA)}

There are in total 662 Oscar winning films produced in the United States, of

which 545 were produced solely in the United States. Only 7 of the co-produced films

were co-produced in New Zealand. However, the score of this fact is not as high as

that of the last two facts, because China, Brazil, and a few other countries co-produced

even less films.

2.7 Related work

In exceptional fact discovery, the output context-subspace pairs can be viewed

as a way of explaining outliers. Most conventional outlier detection solutions, includ-

ing those for graphs, focus on finding outliers but do not explain why they are outly-

56

ing. For example, CODA [18] finds a list of community outliers, and FocusCO [19]

clusters an attributed graph and then discovers outliers in the clusters. Besides the

limitation that both approaches are only suitable for homogeneous graphs, it is up

to users to figure out the explanations of the outliers. Although these two systems

make such explanations easier by providing the communities or clusters in which

the outliers reside, it still requires substantial expertise to summarize the commu-

nities/clusters’ characteristics. A few works improve the interpretation of outliers’

outlyingness [20, 46, 47]. For instance, systems such as [46] and [47] use visualization

to help users identify outliers and potentially discover their outlying aspects.

Although most existing outlying aspects mining approaches focus on finding

global outlying aspects and do not consider contexts [24, 25], there are a few at-

tempts to find contextual outlying aspects [22, 21, 10, 23]. The general Maverick

framework allows users to adopt any exceptionality measure in the literature such as

outlierness [21]. Although Maverick focuses on categorical attributes at this stage, it

can be extended for numerical attributes so that measures such as skyline points [10],

promotiveness [23], outlierness [22], outlyingness rank [24], and z-score [25] can be

adopted in the framework.

Trummer et al. [48] developed the SURVEYOR system to mine the dominant

opinion on the Web regarding whether a subjective property (e.g., “safe cities”) ap-

plies to an entity. This is useful for populating a knowledge base with ground truth

for answering subjective queries. While they focus on deriving entities’ hidden prop-

erties which may or may not be exceptional, Maverick focuses on finding exceptional

entities using existing data in knowledge graphs.

57

CHAPTER 3

Discovering General Prominent Streaks in Sequence Data

3.1 Introduction

This chapter is on the problem of prominent streak discovery in sequence data.

A piece of sequence data is a series of values or events. This includes time-series

data, in which the data values or events are often measured at equal time inter-

vals. Sequence and time-series data is produced and accumulated in a rich variety of

applications. Examples include stock quotes, sports statistics, temperature measure-

ment, Web usage logs, network traffic logs, Web clickstream, customer transaction

sequence, social media statistics. Given a sequence of values, a prominent streak is a

long consecutive subsequence consisting of only large (small) values. Examples of such

prominent streaks include consecutive days of high temperature, consecutive trading

days of large stock price oscillation, consecutive games of outstanding performance

in professional sports, consecutive hours of high volume of TCP traffic, consecutive

weeks of high flu activity, consecutive days of frequent mentioning of a person in

social media, and so on.

It is insightful to investigate prominent streaks since they intuitively and suc-

cinctly capture extraordinary subsequences of data. Consider several example ap-

plication scenarios: (1) Business analysts may be interested in prominent streaks in

social media usage logs, e.g. streaks of re-tweeting a tweet, streaks of hashtagging a

topic, and so on. (2) A security auditing may be performed after a streak of excessive

login attempts is detected. (3) A cooling system can be started when a streak of

days with high temperature has been discovered. (4) For disease outbreak detection,

58

we can identify prominent streaks in time series of aggregated disease case counts.

Previous works on outbreak detection focus on conventional data mining tasks such

as clustering and regression [49]. The concept of prominent streaks has not been

studied before.

Prominent streak discovery can be particularly useful in helping journalists to

identify newsworthy stories when data sequences evolve, investigators to find suspi-

cious phenomena, and news anchors and sports commentators to bring out attention-

seizing factual statements. Therefore it will be a key enabling technique for compu-

tational journalism [50]. In fact, we witness the mentioning of prominent steaks in

many real-world news articles as shown in Chapter 1, where statements 4—7 indicate

that general prominent streaks can have a variety of constraints. A streak can be on

multiple dimensions (e.g., 〈point, rebound, assist〉), its significance can be with regard

to a certain period (e.g., “since June 2009”) or a certain comparison group (e.g., “the

month of July”), and we may be interested in not only the most prominent streaks

but also the top-k most prominent ones (e.g., “LeBron James joined Michael Jordan

and Kobe Bryant as the only players”, which means LeBron James’s scoring streak

mentioned above is among the top-3 streaks.)

Given its real-world usefulness and variety, the research on prominent streaks in

sequence data opens a spectrum of challenging problems. In an earlier work [51], we

proposed the concept of prominent streak and studied the problem of discovering the

simplest kind of prominent streaks, i.e., those without the aforementioned constraints.

In this chapter, we extend the work to discovering general multi-dimensional and top-

k prominent streaks from multiple sequences, which shall substantially broaden the

applicability of our study in real-world scenarios, as evidenced by the above stories

in news articles.

59

Figure 3.1: A Data Sequence and its Prominent Streaks.

3.1.1 Problem Definition

Definition 10 (Streak and Prominent Streak). Given an n-element sequence P =

(p1, · · · , pn), a streak is an interval-value pair 〈[l, r], v〉, where 1≤l≤r≤n and v =

minl≤i≤r pi.

Consider two streaks s1 = 〈[l1, r1], v1〉 and s2 = 〈[l2, r2], v2〉. We say s1 dominates

s2, denoted by s1�s2 or s2≺s1, if r1−l1≥r2−l2 and v1>v2, or r1−l1>r2−l2 and v1≥v2.

For example, 〈[1, 2], 3〉 ≺ 〈[4, 7], 6〉 and 〈[1, 2], 3〉 ≺ 〈[3, 4], 5〉, while 〈[1, 2], 3〉 and

〈[7, 8], 3〉 do not dominate each other.

With regard to P = (p1, ...pn), the set of all possible streaks is denoted by SP .

A streak s∈SP is a prominent streak if it is not dominated by any streak in SP , i.e.,

@s′ s.t. s′∈SP and s′�s. The set of all prominent streaks in P is denoted by PSP .

Problem Statement: The prominent streak discovery problem is to, given a se-

quence P , produce PSP .

Figure 3.1 is our running example which shows the assists made by an NBA

player in 10 consecutive games P = (3, 1, 7, 7, 2, 5, 4, 6, 7, 3). There are 5 prominent

streaks in P– 〈[1, 10], 1〉, 〈[3, 10], 2〉, 〈[6, 10], 3〉, 〈[6, 9], 4〉, 〈[3, 4], 7〉. Each streak is

represented by a horizontal segment, which crosses the minimal-value points in the

60

streak and runs from the left end to the right end of the corresponding interval.

For instance, 〈[6, 9], 4〉 is a prominent streak of minimal value 4, whose interval is

from p6 to p9. It captures the fact that the NBA player made at least 4 assists in

4 consecutive games (game 6 − game 9). 〈[1, 10], 1〉, the whole data sequence, is

also a trivial prominent streak because no other streak can possibly dominate the

sequence itself. The streak 〈[8, 9], 6〉 is an instance of non-prominent streaks because

it is dominated by 〈[3, 4], 7〉.

Definition 10 focuses on the simplest type of prominent streaks. The concept of

prominent streak can be extended in several ways. First, we may be interested in top-k

prominent streaks which are dominated by less than k other streaks. Second, we may

need to compare streaks from not only the same sequence but also multiple different

sequences (e.g., sequences corresponding to different NBA players, cities, stocks, etc.)

Third, the data points in a sequence can be multi-dimensional, leading to the pursuit

of multi-dimensional prominent streaks. We have seen examples of all such general

prominent streaks at the beginning of Section 3.1 and their combinations naturally

exist. The focus of our following discussion will first be on the simplest prominent

streak discovery problem. In Section 3.5, we discuss how to discover general prominent

streaks.

Definition 10 and the problem statement focus on finding streaks of large values.

To find streaks of small values (e.g., a stock index below 10000 for 12 consecutive

weeks, described in the aforementioned second news article), two changes should be

made. First, a streak should be captured by its interval length and the maximal

value (instead of the minimal value) in the interval, i.e., v = maxl≤i≤r pi. Second,

the dominance relation between streaks should be defined to prefer smaller values.

More specifically, s1 dominates s2 if r1−l1≥r2−l2 and v1<v2 (instead of v1>v2), or

r1−l1>r2−l2 and v1≤v2 (instead of v1≥v2). Given that the new definition would be

61

exactly symmetric to Definition 10, finding streaks of large and small values become

the same problem. Hence, we only consider finding streaks of large values in the rest

of this chapter.

3.1.2 Overview of the Solution

A brute-force method for discovering prominent streaks is not appealing. One

can enumerate all possible streaks and decide if each streak is prominent by comparing

it with every other streak. Given a sequence P with length n, there are |SP | =
(
n+1

2

)
streaks in total. Thus the number of pair-wise streak comparison would be

(|SP |
2

)
=

n4+2n3−n2−2n
8

. Given a sequence of length 10000, the brute-force approach enumerates

108 streaks and performs 1016 comparisons. Many real-world sequences can be quite

long. The sequence of daily closing prices for a stock with 40-year history has about

10000 values. A one-year usage log for a Web site has 8760 values at hourly interval.

Prominent streaks are in fact skyline points [52] in two dimensions– streak

interval length (r− l) and minimum value in the interval (v). A streak is a prominent

streak (skyline point) if it is not dominated by any point, i.e., there exists no streak

that has both longer interval and greater minimum value.

Based on this observation, our solution hinges upon the idea to separate the

two steps of prominent streak discovery– candidate streak generation and skyline

operation over candidate streaks. In candidate generation, we prune a large portion

of non-prominent streaks without exhaustively considering all possible streaks. For

skyline operation, we apply efficient algorithms from the rich literature on this topic,

e.g., [52, 53, 54, 55]. The effectiveness of pruning in the first step is critical to overall

performance, because execution time of skyline algorithms increases superlinearly by

the number of candidate points [52].

Candidate streak generation

62

Algorithm 6: Baseline Method

Input: Data sequence P=(p1, ..., pn)

Output: Prominent streaks skyline

1 skyline← empty

2 for r = 1 to n do

3 min value←∞

4 for l = r downto 1 do

5 min value← min(pl,min value)

6 s← 〈[l, r],min value〉 // candidate streak

7 skyline← skyline update(skyline, s)

We considered three methods with increasing pruning power in candidate generation–

a baseline method, a non-linear LPS (local prominent streak)-based method, and a

linear LPS-based method. The baseline method exhaustively enumerates SP , all pos-

sible streaks in a sequence P , by a nested-loop over the values in P . Thus, the baseline

method does not have pruning power. The sketch of this method is in Algorithm 6. It

produces quadratic (n(n+1)
2

) candidate streaks. We then propose the concept of local

prominent streak (LPS) for substantially reducing the number of candidate streaks

(Section 3.3). The intuition is, given a prominent streak s, there cannot be a super-

sequence of s with greater or equal minimal value. In other words, s must be locally

prominent as well. Hence we only need to consider LPSs as candidates. The algorithm

sequentially scans the data sequence and maintains possible LPSs. The non-linear

LPS-based method finds a superset of LPSs as candidates, while the linear LPS-based

method guarantees to find only LPSs.

Skyline operation

63

Algorithm 7: Update Dynamic Skyline (skyline update)

Input: Dynamic skyline skyline, new candidate streak s = 〈[l, r], v〉

Output: Updated dynamic skyline skyline

1 Find the largest i in skyline s.t. vi ≤ v

2 if s ≺ si or s ≺ si+1 then

3 return skyline

4 while s � si and i > 0 do

5 Delete si from skyline

6 i← i− 1

7 Insert s into skyline

8 return skyline

To couple candidate streak generation with skyline operation, Algorithm 6

maintains a dynamic skyline and updates it whenever a new candidate streak is

produced. The updating procedure skyline update is in Algorithm 7.

Our focus is not to compare various skyline algorithms. Many existing algo-

rithms can be adopted. What matters is the number of candidate streaks produced

by the candidate generation step. This is also verified by our experiments which show

that, under various skyline algorithms, the candidate streak generation methods in

Section 3.3 perform and compare consistently.

We can use a sorting-based method for finding the skyline points in a two-

dimensional space [52]. If the candidate streak generation step does not prune streaks

effectively, we cannot hold all candidate streaks in memory. The memory overflow

can be addressed by external-memory sorting.

64

Another approach is to progressively update a dynamic skyline with candidate

streaks, based on the nested-loop method in [52]. The outline of this approach is

shown in Algorithm 7. We use skyline to denote the dynamic skyline. When a new

candidate streak s is generated, s is inserted into skyline if it is not dominated by any

point in skyline. The algorithm also checks if some points in skyline are dominated

by s and eliminates them from skyline.

The dominance relationship can be efficiently checked, given that the streaks

have only two dimensions– interval length (r − l) and minimum value (v). The key

idea is that the lengths of streaks monotonically decrease as their minimal values

increase (except that there can be identical points, i.e., streaks with equal lengths

and equal minimal values.) Hence the streaks in skyline are ordered by v (or by

r− l). Suppose the candidate streak is s = 〈[l′, r′], v′〉. We find in skyline a pivoting

streak si = 〈[li, ri], vi〉 such that i is the largest index with vi ≤ v′, i.e., vi ≤ v′ <

vi+1. The following Property 1 says that s must be dominated by si or si+1 if it is

dominated by any point in skyline and Property 2 says that s can only dominate si

and its immediate neighbors with smaller v values. (For concise presentation, in these

properties, we omit the discussion of boundary cases, i.e., i = 0 or i = |skyline|.) For

quickly finding si and its neighbors, we use a balanced binary search tree (BST) on

v to store skyline. (Thus we call it the BST-based skyline method.)

Property 1. A candidate streak s = 〈[l′, r′], v′〉 is dominated by some points in

skyline if and only if s is dominated by si or si+1, in which si = 〈[li, ri], vi〉 and i is

the largest index such that vi ≤ v′, i.e., vi ≤ v′ < vi+1.

Proof. We first prove that, if there exists j < i such that sj = 〈[lj, rj], vj〉 � s, then

si � s. Since i is the largest index such that vi ≤ v′, we have vj ≤ vi ≤ v′. Given

65

that sj � s, we know vj = vi = v′ and rj−lj > r′−l′. From vj = vi, we know that

rj−lj = ri−li, otherwise they cannot both exist in skyline. Therefore si � s.

We then prove that, if there exists j > i+1 such that sj = 〈[lj, rj], vj〉 � s, then

si+1 � s. Since the points in skyline are ordered by v, vi+1 ≤ vj and ri+1−li+1 ≥

rj−lj. We already know that v′ < vi+1 and rj−lj ≥ r′−l′ (since sj � s). Therefore

si+1 � s.

Property 2. If s = 〈[l′, r′], v′〉 dominates totally k streaks in skyline, then the k

streaks are si, si−1, . . ., si−k+1.

Proof. Since the points in skyline are ordered by v, we know that vi ≤ vj and

ri−li ≥ rj−lj if i < j. s cannot dominate any sj such that j > i. The reason is that

v′ < vi+1 ≤ vj. If s dominates si, then v′ ≥ vi and r′−l′ ≥ ri−li. Since vi decreases

by i and ri−li increases by i, the k streaks dominated by s must be consecutively

ordered.

In comparison with the sorting-based method, the above BST-based skyline

method saves both memory space and execution time. It avoids memory overflow be-

cause the number of streaks in the dynamic skyline in most cases remains small enough

to fit in memory. Hence no streak needs to be read from/written to secondary mem-

ory. The small size of dynamic skyline in real data is verified by our experiments in

Section 3.6. After all, prominent streaks (and skyline points in general) are supposed

to be minority, otherwise they cannot stand out to warrant further investigation.

Furthermore, even if the dynamic skyline grows large, a method such as the block

nested-loop based method in [52] can be applied to fall back on secondary memory.

The small size of dynamic skyline also means small number of streak comparisons.

Intuitively, given c candidate streaks, a fast comparison-based sorting algorithm (say

quicksort) requires O(c log c) comparisons, while the BST-based method only requires

66

O(c log s) comparisons, where s is the maximal size of the dynamic skyline during

computation. Experiments in Section 3.6 show that s is typically much smaller than

c.

Monitoring Prominent Streaks

A desirable property of a prominent streak discovery algorithm is the capability

of monitoring new data entries as the sequence grows continuously and always keeping

the prominent streaks up-to-date. The aforementioned algorithms naturally fit into

such monitoring scenario, with only minor modification. The details are given in

Section 3.4.

3.1.3 Summary of Contributions and Outline

To summarize, our work makes the following contributions:

• We define the problem of prominent streak discovery. The simple concept is useful

in many real-world applications. To the best of our knowledge, there has not been

study along this line except our prior work [51].

• We propose the solution framework to separate candidate streak generation and

skyline operation during prominent streak discovery. Under this framework, we

designed efficient algorithms for candidate streak generation, based on the concept

of local prominent streak. Both the non-linear LPS-based method (NLPS) and the

linear LPS-based method (LLPS) produce substantially less candidate streaks than

the quadratic number of candidates produced by a baseline method. LLPS further

guarantees a linear number of candidate streaks.

• We extend the solution framework to discovering general prominent streaks. While

the extensions to top-k and multi-sequence prominent streaks are simple, the ex-

tension to multi-dimensional prominent streak is non-trivial. These extensions

significantly broaden the real-world application scenarios of the work.

67

• We conduct experiments over multiple real datasets. The results verified the effec-

tiveness of our methods and showed orders of magnitude performance improvement

over the baseline method. We also showed some insightful prominent streaks dis-

covered from real data, to highlight the practicality of this work.

The rest of the chapter is organized as follows. In Section 3.2 we review related

work. Section 3.3 presents the NLPS and LLPS methods for candidate streak genera-

tion. Section 3.4 discusses how to adapt the algorithms to monitor prominent streaks

when data sequence continuously grows. Section 3.5 extends the concept of promi-

nent streak and the algorithms for finding general prominent streaks. Experiment

setup and results are reported in Section 3.6.

3.2 Related Work

Data mining on sequence and time-series data has been an active area of re-

search, where many techniques are developed for similarity search and subsequence

matching in sequence and time-series databases [56, 57, 58, 59], finding sequential

patterns [60, 61, 62, 63, 64], classification and clustering of sequence and time-series

data [65, 66, 67, 68], biological sequence analysis [69, 70], etc. However, we are

not aware of prior work on the prominent streak discovery problem proposed in this

chapter.

The skyline of a set of tuples is the subset of tuples that are not dominated

by any tuple. A tuple dominates another tuple if it is equally good or better on

every attribute and better on at least one attribute. The notion of skyline is useful

in several applications, including multi-criteria decision making. Skyline query has

been intensively studied over the last decade. Kung et al. [71] first proposed in-

memory algorithms to tackle the skyline problem, which they called the “maximal

vector problem”. Börzsönyi et al. [52] considered the problem in database context

68

and integrated skyline operator into database system. They also invented a block-

nested-loop algorithm (BNL) and extended the divide-and-conquer algorithm (DC)

from [71]. Chomicki et al. presented the Sort-Filter-Skyline algorithm (SFS) [72],

which improves upon BNL by pre-sorting tuples with a function compatible with the

skyline criteria. We apply skyline algorithms over candidate streaks but our methods

are orthogonal to specific choices of skyline algorithms.

A dataset may have too many skyline tuples, especially when the dimensionality

of the data is high. Various approaches have been proposed to alleviate this problem.

For example, Pei et al. [73] and Tao et al. [74] proposed to perform skyline analysis

in subspaces instead of the original full space. Several methods were designed to find

the representatives among a large number of skyline points [75, 76, 77, 78].

Progressive skyline algorithms optimize the efficiency in returning initial skyline

points while producing more results progressively. Various algorithms developed along

this line include the bitmap-based algorithm and the index-based algorithm [53], the

nearest neighbor search algorithm [54], and the branch-and-bound skyline algorithm

(BBS) [55]. Other variants of skyline queries have also been studied, including skyline

cube which aims to answer skyline queries over any combination of dimensions [73, 79].

Jiang et al. [80] studied the problem of interval skyline queries on time-series.

Given a set of time series and a time interval, they find the time series that are

not dominated by others in the interval. A time series dominates another one if its

value at every position is at least equal to the corresponding value in the other time

series and it is at least larger at one position. The point-by-point equi-length interval

comparison is clearly different from our problem.

The plateau of a time series is the time interval in which the vlaues are close

to each other (within a given threshold) and are no smaller than the values outside

69

Figure 3.2: Local Prominent Streaks.

the interval [81]. The plateau problem is not concerned about comparing different

intervals.

3.3 Discovering Prominent Streaks from Local Prominent Streaks

For an n-element sequence P , the baseline method (Algorithm 6) produces

n(n+1)
2

candidate streaks. In this section, based on the concept of local prominent

streak (LPS) we propose the non-linear LPS-based (NLPS) and linear LPS-based

(LLPS) methods. Both drastically reduce the number of candidate streaks in practice.

LLPS further guarantees only a linear number of candidate streaks.

3.3.1 Local Prominent Streak (LPS)

Definition 11 (Local Prominent Streak). Given a sequence of data values P =

(p1, · · · , pn), we say a streak s = 〈[l, r], v〉 ∈ SP is a local prominent streak (LPS) or

locally prominent if there does not exist any other streak s′ = 〈[l′, r′], v′〉 ∈ SP such

that [l′, r′] ⊃ [l, r] and s′ � s. (I.e., there does not exist such s′ that [l′, r′] ⊃ [l, r]

and v′ ≥ v.) The symbol ⊃ denotes the subsumption check between two intervals,

i.e., [l′, r′] ⊃ [l, r] if and only if l′ ≤ l ∧ r′ > r or l′ < l ∧ r′ ≥ r. We denote the set of

local prominent streaks in sequence P as LPSP .

70

Figure 3.2 shows all the local prominent streaks found in our running example.

All other streaks are not locally prominent. For example, 〈[6, 8], 4〉 is not locally

prominent since it is dominated by 〈[6, 9], 4〉 and [6, 9] ⊃ [6, 8]. In the following we

give several important properties of local prominent streaks.

Property 3. Every prominent streak is also a local prominent streak, i.e., PSP ⊆

LPSP .

Proof. Suppose there is a prominent streak that is not locally prominent, i.e., ∃s ∈

PSP s.t. s /∈ LPSP . By Definition 11, there exists some streak s′ such that [l′, r′] ⊃

[l, r] and s′ � s. That is contradictory to Definition 10 which says s is not dominated

by any other streak. Therefore a streak cannot be prominent if it is not even locally

prominent.

The above Property 3 is illustrated by Figure 3.2, as all the prominent streaks

in Figure 3.1 also appear in Figure 3.2. However, the reverse of Property 3 does not

hold– local prominent streaks are not necessarily prominent streaks. For example,

〈[8, 9], 6〉 is an LPS but is dominated by 〈[3, 4], 7〉 and therefore is not in Figure 3.1.

Lemma 1. Suppose s = 〈[l, r], v〉 and s′ = 〈[l′, r′], v′〉 are two different local prominent

streaks in P , i.e., s, s′ ∈ LPSP , l 6= l′ or r 6= r′. For any k ∈ argmini∈[l,r]pi and

k′ ∈ argmini∈[l′,r′]pi, we have k 6= k′. I.e., argmini∈[l,r]pi ∩ argmini∈[l′,r′]pi = ∅.

Proof. If [l, r] ∩ [l′, r′] = ∅, i.e., the two intervals do not overlap, it is obvious that

k 6= k′. Now consider the case when [l, r] ∩ [l′, r′] 6= ∅, i.e., l ≤ l′ ≤ r or l′ ≤ l ≤ r′.

By definition of argmin, pk = v = mini∈[l,r]pi and pk′ = v′ = mini∈[l′,r′]pi. Suppose

there exist such k and k′ that k = k′. Thus v = v′ = pk. By Definition 10, we have

pi ≥ v for every i ∈ [l, r] and every i ∈ [l′, r′]. Since the two intervals [l, r] and [l′, r′]

71

overlap, their combined interval corresponds to a new streak s′′ = 〈[l, r] ∪ [l′, r′], v〉. 1

It is clear s′′�s and s′′�s′. That is a contradiction to the precondition that both s

and s′ are LPSs. Thus, this lemma holds.

Lemma 1 indicates that two different LPSs cannot reach their minimal values

at the same position. Therefore each value position in sequence P can correspond to

the minimal value of at most one LPS. What immediately follows is that there are at

most n LPSs in an n-element sequence. Formally we have the following property.

Property 4. |LPSP | ≤ |P |.

From Property 3 we know that LPSP is a sufficient candidate set for PSP , i.e.,

we can guarantee to find all prominent streaks if we only consider local prominent

streaks. Property 4 further shows how small LPSP is and thus how good it is as a

candidate set. Specifically, the size of LPSP is at most |P |, the length of the sequence,

in contrast to the all |P |(|P |+1)
2

possible streaks considered by the baseline method

(Algorithm 6). Thus, LPSP helps to prune most streaks from further consideration.

In the following sections we present efficient algorithms for computing a superset of

LPSP and LPSP itself exactly.

3.3.2 LPSk
P and LPSk

Pk

To facilitate our discussion, we first define a new notation, LPSk
P .

Definition 12. LPSk
P is the set of local prominent streaks in P that end at position

k, i.e., LPSk
P = {s|s ∈ LPSP and s = 〈[l, k], v〉}.

There are two key components in the definition of LPSk
P . The first is the upper

script k, which fixes the right end of every interval in the set. It is clear that LPS1
P ,

LPS2
P , . . . , LPS |P |P is a natural partition of LPSP . We use this partition scheme in

1The two intervals can overlap in four different ways. Thus [l, r] ∪ [l′, r′] = [l, r] or [l, r′] or [l′, r]

or [l′, r′].

72

a LPS9
P9

b LPS10
P10

c l-v plot of LPS9
P9

d l-v plot of LPS10
P10

Figure 3.3: From LPS9
P9

to LPS10
P10

.

the design of our algorithms. Specifically, we show how each LPSk
P in this partition

is calculated in a sequential and progressive way.

The second key component in the definition of LPSk
P is the lower script P , which

provides the scope for local prominent streaks. By generalizing this component we

define LPSk
Pk

. We denote the sequence with the first k entries of P as Pk. Then

LPSPk
is the set of local prominent streaks with regard to sequence Pk (instead of

P) and LPSk
Pk

are those LPSs in LPSPk
that end at k. Due to the change of scope,

LPSk
Pk

is a superset of LPSk
P . Formally, we have the following property.

Property 5. LPSk
P ⊆ LPSk

Pk
.

Proof. Consider any streak s ∈ LPSk
P . By Definition 12, s = 〈[l, k], v〉 and s ∈ LPSP .

Therefore by Definition 11, there does not exist any s′ = 〈[l′, r′], v′〉 in P such that

73

s′ � s and [l′, r′] ⊃ [l, k]. Since Pk is a prefix of P , i.e., the first k values in P , it

follows that there does not exist any such s′ in Pk either. Therefore s ∈ LPSk
Pk

.

Consider the running example again. Figure 3.3a shows LPS9
P9

, including

〈[1, 9], 1〉, 〈[3, 9], 2〉, 〈[6, 9], 4〉, 〈[8, 9], 6〉, 〈[9, 9], 7〉. As shown in Figure 3.2, LPS9
P con-

tains 〈[6, 9], 4〉, 〈[8, 9], 6〉, 〈[9, 9], 7〉. Streaks 〈[1, 9], 1〉 and 〈[3, 9], 2〉 do not belong to

LPSP , thus do not belong to LPS9
P , since they are locally dominated by 〈[1, 10], 1〉

and 〈[3, 10], 2〉, respectively. By contrast, 〈[1, 9], 1〉 and 〈[3, 9], 2〉 are part of LPS9
P9

because they are not locally dominated by any streak of P9, which only contains the

first 9 values of P .

3.3.3 Non-linear LPS Method

By Property 5 and the fact that LPS1
P , · · · ,LPS

|P |
P is a partition of LPSP , we

have

LPSP =
⋃

1≤k≤|P |

LPSk
P ⊆

⋃
1≤k≤|P |

LPSk
Pk

(3.1)

Thus, we can use
⋃

1≤k≤|P | LPS
k
Pk

as our candidate set for prominent streaks. Al-

though its size can be greater than that of LPSP , in practice it does substantially

reduce the size of candidate streaks, verified by the experimental results in Section 3.6.

Along this line, Algorithm 8 presents the method to compute candidate streaks.

Since the number of candidates may be super-linear to the length of data sequence,

we call it the non-linear LPS method (NLPS). The algorithm iterates k from 1 to |P |,

progressively computes LPSk
Pk

from LPSk−1
Pk−1

when the k-th element pk is visited,

and includes them into candidate streaks. The details of updating from LPSk−1
Pk−1

to

LPSk
Pk

are in Algorithm 9, which is based on the following Lemma 2. For convenience

of discussion, we first define the right-end extension of a streak and a streak set.

74

Algorithm 8: Non-linear LPS Method (NLPS)

Input: Data sequence P = (p1, · · · , pn)

Output: Prominent streaks skyline

1 skyline← empty

2 for k = 1 to n do

3 Compute LPSk
Pk

by Algorithm 9

4 for each streak s in LPSk
Pk

do

5 skyline← skyline update(skyline, s)

Definition 13. If s = 〈[l, r], v〉 is a streak in an n-element data sequence P and

r < n, the right-end extension of s is streak 〈[l, r + 1], v′〉, where v′ = min{v, pr+1}.

The extension of a streak set S is the set which consists of extensions of all the streaks

in S.

Lemma 2. If s1 = 〈[l, k], v1〉 ∈ LPSk
Pk

and l 6=k, then the streak s2 = 〈[l, k − 1], v2〉

∈ LPSk−1
Pk−1

.

Proof. First, note that v2 = minl1≤i≤k−1 pi and v1 = min{v2, pk}. We prove by

contradiction. Suppose s2 = 〈[l1, k−1], v2〉/∈LPSk−1
Pk−1

. By Definition 12, s2 /∈LPSPk−1
.

Further by Definition 11, there exists s3 = 〈[l3, r3], v3〉∈SPk−1
such that [l3, r3] ⊃

[l1, k − 1] and s3 � s2. Given any s = 〈[l, r], v〉∈SPk−1
, we have r ≤ k − 1. Therefore

r3 = k − 1, l3 < l1 and v3 ≥ v2. The right-end extension of s3 is s4 = 〈[l3, k], v4〉,

where v4 = min{v3, pk}≥min{v2, pk} = v1. Therefore s4 � s1, which contradicts with

the pre-condition that s1∈LPSk
Pk

. The property holds.

Lemma 2 indicates that, except 〈[k, k], pk〉, for each streak in LPSk
Pk

, its prefix

streak is in LPSk−1
Pk−1

. Hence, to produce LPSk
Pk

, we only need to consider the right-

75

Algorithm 9: Progressive Computation of LPSk
Pk

Input: LPSk−1
Pk−1

and pk

Output: LPSk
Pk

// When it starts, stack lps consists of streaks in LPSk−1
Pk−1

.

1 pivot← null

2 while ! lps.isempty() do

3 if lps.top().v < pk then

4 break

5 else

6 pivot← lps.pop()

7 if pivot == null then

8 lps.push(〈[k, k], pk〉)

9 else

10 pivot.v ← pk

11 lps.push(pivot)

// Now, lps contains all the streaks in LPSk
Pk

.

end extension of LPSk−1
Pk−1

. Beyond that, we only need to consider one extra streak

〈[k, k], pk〉 since it may belong to LPSk
Pk

as well.

In order to articulate how to derive LPSk
Pk

from LPSk−1
Pk−1

, we partition LPSk−1
Pk−1

into two disjoint sets, namely,

LPSk−1
Pk−1

<
= {s|s = 〈[l, k − 1], v〉 ∈ LPSk−1

Pk−1
, v < pk}, (3.2)

LPSk−1
Pk−1

≥
= {s|s = 〈[l, k − 1], v〉 ∈ LPSk−1

Pk−1
, v ≥ pk}. (3.3)

It is clear that LPSk−1
Pk−1

is the disjoint union of these two sets, i.e., LPSk−1
Pk−1

=

LPSk−1
Pk−1

< ∪ LPSk−1
Pk−1

≥
, and LPSk−1

Pk−1

< ∩ LPSk−1
Pk−1

≥
= ∅. Use the running example

76

again. For LPS9
P9

in Figure 3.3a, since p10 = 3, the two sets are LPS9
P9

<
= {〈[1, 9], 1〉,

〈[3, 9], 2〉}, LPS9
P9

≥
= {〈[6, 9], 4〉, 〈[8, 9], 6〉, 〈[9, 9], 7〉}.

We consider how to extend streaks in LPSk−1
Pk−1

<
and LPSk−1

Pk−1

≥
, respectively.

For simplicity of presentation, we omit the formal proofs when we make various

statements below.

• LPSk−1
Pk−1

<
: We use S1 to denote the right-end extension of LPSk−1

Pk−1

<
. Since

every streak in LPSk−1
Pk−1

<
has a minimal value less than pk, the corresponding

extended new streak has the same minimal value. Hence all the new streaks belong

to LPSk
Pk

. For the running example, corresponding to LPS9
P9

<
, we have S1 =

{〈[1, 10], 1〉, 〈[3, 10], 2〉}.

• LPSk−1
Pk−1

≥
: We use S2 to denote the right-end extension of LPSk−1

Pk−1

≥
. Since every

streak in LPSk−1
Pk−1

≥
has a minimal value greater than or equal to pk, the minimal

value of every streak in S2 equals pk. Hence, the longest streak in S2, denoted

as S2∗, dominates all other streaks in S2 and it is the only streak in S2 that

belongs to LPSk
Pk

. In other words, we only need to extend the longest streak in

LPSk−1
Pk−1

≥
to form a new candidate streak. Furthermore, since every streak in S2

has the same r value (the right end of the interval), i.e., k, S2∗ is the streak with

the minimal l value (the left end of the interval) in S2. Clearly there cannot be

another streak in S2 with the same length. For the running example, corresponding

to LPS9
P9

≥
, we have S2 = {〈[6, 10], 3〉, 〈[8, 10], 3〉, 〈[9, 10], 3〉}. The longest streak

in S2 is 〈[6, 10], 3〉. It is clear that 〈[6, 10], 3〉 dominates other streaks in S2. Hence

it belongs to LPS10
P10

.

• LPSk−1
Pk−1

≥
= ∅: If LPSk−1

Pk−1

≥
is empty, a new streak 〈[k, k], pk〉 belongs to LPSk

Pk
.

(Otherwise, it is dominated by S2∗.)

The above discussion is captured by the following Property 6.

77

Property 6. LPSk
Pk

= S1 ∪ {S2∗} if S2 6= ∅ and LPSk
Pk

= S1 ∪ {〈[k, k], pk〉} if

S2 = ∅.

We use Figure 3.3 to explain the above procedure of producing LPSk
Pk

from

LPSk−1
Pk−1

. Figure 3.3a and 3.3b show LPS9
P9

and LPS10
P10

, respectively. Figure 3.3c

and 3.3d also show LPS9
P9

and LPS10
P10

, by using a different presentation– l-v plot. All

the streaks 〈[l, r], v〉 in LPSk−1
Pk−1

share the same value of r, which is k− 1. Therefore

we plot the streaks by l (x-axis) and v (y-axis). In Figure 3.3c, the 5 points represent

the 5 streaks in LPS9
P9

: 〈[1, 9], 1〉, 〈[3, 9], 2〉, 〈[6, 9], 4〉, 〈[8, 9], 6〉, 〈[9, 9], 7〉. The dotted

line represents the 10-th data entry p10 = 3. It bisects LPS9
P9

into LPS9
P9

≥
(3 hollow

points above the line) and LPS9
P9

<
(2 filled points below the line). We produce

new candidate streaks LPS10
P10

by extending the right ends of streaks in LPS9
P9

to

10. The streaks extended from LPS9
P9

<
all belong to LPS10

P10
. They are the 2 filled

points in Figure 3.3d, corresponding to 〈[1, 10], 1〉 and 〈[3, 10], 2〉. Among the streaks

extended from LPS9
P9

≥
, only the one with the smallest l (the longest one) belongs

to LPS10
P10

. It is the hollow point in Figure 3.3d, corresponding to 〈[6, 10], 3〉. Hence

LPS10
P10

= {〈[1, 10], 1〉, 〈[3, 10], 2〉, 〈[6, 10], 3〉}.

The details of the algorithm are shown in Algorithm 9. We use a stack lps

to maintain LPSk
Pk

. Since the streaks 〈[l, r], v〉 in LPSk
Pk

have the same r value

which equals k, we do not need to store r in lps. Hence each item in lps has two

data attributes, v and l. The items in the stack are ordered by v (and l). More

specifically, their v and l values both strictly monotonically increase, from the bottom

of the stack to the top. The monotonicity on l is obvious since they are different

streaks of the same r value. The monotonicity on v thus is also clear because their

lengths monotonically decreases due to monotonically increasing l and they must not

dominate each other. In fact, Figure 3.3c and 3.3d visualize all items in lps, before

78

and after p10 is encountered, respectively. In each figure, the leftmost point denotes

the bottom of the stack (with the smallest v), while the rightmost point denotes the

top of the stack (with the largest v). After data entries p1, ..., pk−1 are encountered,

lps contains LPSk−1
Pk−1

. Given data entry pk, we popped from the stack all the streaks

whose v values are greater than or equal to pk. Among the popped streaks, the

leftmost one (with the smallest l and v) is pushed back into the stack, with v value

replaced by pk and r extended from k − 1 to k. (Again, the r value is not explicitly

stored in the stack.) If no streak was popped, then 〈[k, k], pk〉 is pushed into the

stack. The remaining streaks in the original stack are kept, with their v and l values

unchanged and r extended from k − 1 to k.

Algorithm 8 computes candidate streaks for an n-element sequence P . It invokes

Algorithm 9 n times.2 In each invocation, exactly 1 item is pushed into the stack.

Therefore in total there are n insertions and thus at most n deletions. Hence, the

amortized time complexity of Algorithm 9 is O(1).

In each iteration of Algorithm 8, we compute LPSk
Pk

and include them into

candidate streaks. Thus, for an n-element sequence, the total number of candidate

streaks considered is
∑n

k=1 |LPS
k
Pk
|. In the worst case, we may have a strictly in-

creasing sequence and the candidate streaks include all possible streaks. This is as

bad as the exhaustive baseline method in Algorithm 6. For example, given sequence

(10, 20, 30), we have LPS1
P1

= {〈[1, 1], 10〉}, LPS2
P2

= {〈[1, 2], 10〉, 〈[2, 2], 20〉} and

LPS3
P3

= {〈[1, 3], 10〉, 〈[2, 3], 20〉, 〈[3, 3], 30〉}.
2With regard to the first data element p1, 〈[1, 1], p1〉 is pushed into the stack. It is the only

prominent streak and local prominent streak for P1.

79

Algorithm 10: Linear LPS Method(LLPS)

Input: Data sequence P = (p1, . . . pn)

Output: Prominent streaks skyline

1 skyline← empty

2 for k = 1 to n do

3 Compute LPSk−1
P and LPSk

Pk
by Algorithm 11

4 for each streak s in LPSk−1
P do

5 skyline← skyline update(skyline, s)

6 LPSn
P ← LPSn

Pn

7 for each streak s in LPSn
P do

8 skyline← skyline update(skyline, s)

3.3.4 Linear LPS Method

Now we present the linear LPS (LLPS) method (Algorithm 10), which guaran-

tees to produce a linear number of candidate streaks even in the worst case. Similar

to Algorithm 8, this method iterates through the data sequence and computes LPSk
Pk

from LPSk−1
Pk−1

when the k-th data entry is encountered, for k from 1 to n. However,

different from Algorithm 8, it also computes LPSk−1
P from LPSk−1

Pk−1
. Computation

of both LPSk
Pk

and LPSk−1
P is done in Algorithm 11, which is a simple extension of

Algorithm 9. It is worth noting that, since Pn = P , LPSn
P and LPSn

Pn
are identical.

To produce LPSk−1
P from LPSk−1

Pk−1
given the k-th entry pk, Algorithm 11 is

based on the following Property 7. Its intuition is as follows. Recall that the minimal

value of any streak in LPSk−1
Pk−1

≥
(Equation (3.3)) is not smaller than pk. It follows

that if the minimal value of a streak in LPSk−1
Pk−1

≥
is greater than pk, the streak cannot

grow into a longer local prominent streak without changing the minimal value. Hence,

80

Algorithm 11: Computing LPSk−1
P and LPSk

Pk

Input: LPSk−1
Pk−1

and pk

Output: LPSk−1
P and LPSk

Pk

// Insert the following line before Line 1 in Algorithm 9.

1 LPSk−1
P ← ∅

// Insert the following two lines after Line 6 in Algorithm 9, in the same

else branch as Line 6.

2 if pivot.v > pk then

3 LPSk−1
P ← LPSk−1

P ∪ {pivot}

the streak itself is a local prominent streak. To summarize, LPSk−1
P is the same as

LPSk−1
Pk−1

≥
. The only exception is the longest streak in LPSk−1

Pk−1

≥
, i.e., the streak

with the smallest l and thus the smallest minimal value v. If its minimal value is

equal to pk, then it does not belong LPSk−1
P , because it can be right-extended and

included in LPSk′

P for some k′ ≥ k.

Lemma 3. For an n-entry sequence P , a streak s = 〈[l, r], v〉 is a local prominent

streak if and only if (l = 1 or v>pl−1) and (r = n or v>pr+1).

Proof. We prove by contradiction. Consider l > 1. If v ≤ pl−1, then s is dominated

by 〈[l − 1, r], v〉, which contradicts with s being a local prominent streak. Consider

r < n. Similarly if v ≤ pr+1, then s is dominated by 〈[l, r + 1], v〉, which contradicts

with s being locally prominent.

Property 7. Given an n-entry sequence P , for any position 1<k≤n, LPSk−1
P =

{s|s = 〈[l, k − 1], v〉 ∈ LPSk−1
Pk−1

≥
and v > pk}.

81

Proof. Proof of the equality from left to right: Suppose streak s = 〈[l, k − 1], v〉 ∈

LPSk−1
P . By Property 5, s ∈ LPSk−1

Pk−1
, and by Lemma 3 v > pk. By the concept of

LPSk−1
Pk−1

≥
in Equation (3.3), s ∈ LPSk−1

Pk−1

≥
.

Proof of the equality from right to left: Suppose streak s = 〈[l, k−1], v〉 satisfies

s ∈ LPSk−1
Pk−1

≥
and v > pk. Then s is a local prominent streak in the scope of LPSk−1

Pk−1
,

which means, by Lemma 3, l = 1 or v > pl−1. Since v > pk, by Lemma 3 s is a local

prominent streak in P . Therefore s ∈ LPSk−1
P .

Continue the running example. LPS9
P = LPS9

P9

≥
= {〈[6, 9], 4〉, 〈[8, 9], 6〉, 〈[9, 9], 7〉}.

Note that LPS9
P9

≥
and LPS9

P are identical because the minimal values for the streaks

in LPS9
P9

≥
are all greater than p10.

Similar to Algorithm 9, Algorithm 11 has an amortized time complexity of O(1).

With regard to candidate streaks, LLPS is different in that it only needs to consider

the streaks in LPSk−1
P as candidates. Consequently, LLPS reduces the total number

of candidate streaks to
∑n

k=1 |LPS
k
P |, i.e., |LPSP | (Equation (3.1)). By Property 4,

|LPSP | is n at most, thus LLPS guarantees to produce only a linear number of

candidate streaks even in worst case.

3.4 Monitoring Prominent Streaks

One desirable property of a prominent streak discovery algorithm is the capa-

bility of monitoring new data entries as the sequence grows continuously and always

keeping the prominent streaks up-to-date. For example, a network administrator may

check the prominent streaks in the network traffic of a Web server till any particular

moment. Formally, given a continuously growing data sequence P (such as a data

stream), the k-th data entry that has just come is denoted by pk and the sequence

82

so far is denoted by Pk. At this moment, if the user requests PSPk
, the prominent

streaks of Pk, our method should efficiently discover them.

With regard to skyline operation, the BST-based method progressively updates

the dynamic skyline with new candidate streaks, thus can be applied for monitoring

prominent streaks without modification.

With regard to candidate streak generation, all three methods (baseline, NLPS,

LLPS) use one-pass sequential scan of the data sequence, therefore they all naturally

fit into the monitoring scenario. Specifically, the new data point pk corresponds to

the next iteration of the outer loop in Algorithm 6, 8, and 10. The baseline method

exhaustively lists all streaks ending at pk and updates the skyline with these streaks.

The NLPS method updates LPSk−1
Pk−1

to LPSk
Pk

, and updates the skyline with the

streaks in LPSk
Pk

.

The adaptation of LLPS is a bit more complex, as shown in Algorithm 12. This

algorithm records the last position when the user requested the prominent streaks.

When pk arrives, LPSk−1
P and LPSk

Pk
are dynamically computed by Algorithms 11.

The skyline is updated with the candidate streaks in LPSk−1
P , only if PSPk−1

was

not requested by the user when pk−1 was visited. Note that if PSPk−1
was requested,

the skyline has already been updated with the streaks in LPSk−1
Pk−1

. Since LPSk−1
P ⊆

LPSk−1
Pk−1

, we do not need to update the skyline with LPSk−1
P again. Finally, if

the user requests PSPk
, the skyline has to be updated with LPSk

Pk
since all the

local prominent streaks (with regard to Pk) ending at pk must be considered. In

Section 3.6 we will show the significant superiority of this adaptation of LLPS over

other methods.

Note that this algorithm degrades to NLPS (Algorithm 8) if the user requests

the prominent streaks at every data entry. On the other hand, if the prominent

83

Algorithm 12: Continuous Monitoring of Prominent Streaks

Input: The new data entry pk

1 Compute LPSk−1
P and LPSk

Pk
by Algorithms 11

2 if last requested position < k − 1 then

3 for each streak s in LPSk−1
P do

4 skyline← sklyine update(skyline, s)

5 if PSPk
is requested then

6 for each streak s in LPSk
Pk

do

7 skyline← sklyine update(skyline, s)

8 last requested position ← k

9 // Now, skyline contains all prominent streaks in PSPk

streaks are only requested at pn, i.e., the last entry in the sequence, it becomes the

same as LLPS (Algorithm 10).

3.5 Discovering General Prominent Streaks

In this section, we extend the concept of prominent streak and the algorithms

introduced in previous sections to general cases. Specifically, we investigate how to

discover top-k, multi-sequence, and multi-dimensional prominent streaks.

3.5.1 Top-k Prominent Streaks

Definition 14 (Top-k Prominent Streak). With regard to a sequence P = (p1, ...pn)

and its local prominent streaks LPSP , a streak s∈LPSP is a top-k prominent streak if

it is not dominated by k or more streaks in LPSP , i.e.,
∣∣{s′|s′ ∈LPSP and s′�s}

∣∣<k.

The set of all top-k prominent streaks in P is denoted by KPSP . Note that there

can be more than k top-k prominent streaks.

84

Top-k prominent streaks are those local prominent streaks dominated by less

than k other local prominent streaks, by Definition 14. This definition has two impli-

cations. First, a top-k prominent streak must be locally prominent. For instance, a

streak does not qualify even if it is only dominated by 1 subsuming streak and k > 1.

Second, a streak can qualify even if it is dominated by k or more other streaks, as

long as less than k of those dominating streaks are local prominent streaks.

Consider a sequence P = (20, 30, 25, 30, 5, 5, 15, 10, 15, 5), corresponding to the

points made by a basketball player in all his games. The streak 〈[3, 4], 25〉, though

only dominated by 〈[2, 4], 25〉, is a sub-streak of the latter, and hence is not a top-2

prominent streak. The intuitive explanation is that, 〈[3, 4], 25〉 is within the interval

of 〈[2, 4], 25〉, therefore we do not consider it important. On the other hand, the

streak 〈[7, 9], 10〉 is a top-2 prominent streak. Although it is dominated by 3 streaks

〈[1, 4], 20〉, 〈[1, 3], 20〉, and 〈[2, 4], 25〉, the dominating streaks are all from the same

period and only 1 of the 3 is a local prominent streak.

The candidate streak generation methods discussed in previous sections are

applicable in discovering top-k prominent streaks. We only need several small changes

on skyline operation. For LLPS, since the candidates produced are guaranteed to be

local prominent streaks only, we simply need to maintain a counter for each current

skyline point in the dynamic skyline. The counter of a point records the number of

its dominators in the skyline. When a candidate is compared against current skyline

points, it is inserted into the skyline if it has less than k dominators. A current

skyline point is removed if its counter reaches k. With regard to the baseline method

and NLPS, they may produce candidates that are not local prominent streaks. A

candidate must be pruned if another candidate streak dominates it and subsumes it.

(Note that they both produce candidates with the same right-end of interval at the

85

same time. Therefore a candidate cannot be locally dominated by existing points in

the current skyline.)

3.5.2 Multi-sequence Prominent Streaks

Definition 15 (Multi-sequence Prominent Streak). Given multiple sequences P =

{P 1, ..., Pm} and their corresponding sets of streaks SP 1 , ..., SPm , a streak s ∈ SP i

is a multi-sequence prominent streak in P if there does not exist a streak in any

sequence that dominates s. More formally, @s′, j s.t. s′∈SP j , and s′�s. The set of

all multi-sequence prominent streaks with regard to P is PSP .

As an example, consider 3 sequences corresponding to the points made by 3

basketball players in all their games—P1 = (20, 30, 25, 30, 5, 5, 15, 10, 15, 5), P2 =

(10, 5, 30, 35, 21, 25, 5, 15, 5, 25), and P3 = (5, 10, 15, 5, 25, 10, 20, 5, 15, 10). The streak

〈[1, 4], 20〉 of P1 is a prominent streak within P1 itself, but is dominated by 〈[3, 6], 21〉

in P2. Hence it is not a multi-sequence prominent streak.

The extension from single-sequence algorithms (baseline, NLPS, LLPS) to multi-

sequence algorithms is simple. We process individual sequences separately by the

single-sequence algorithms and use a common dynamic skyline to maintain their

prominent streaks. That is, when a local prominent streak within a sequence Pi is

identified, it is compared with current streaks in the dynamic skyline, which contains

prominent streaks from all sequences.

86

3.5.3 Multi-dimensional Prominent Streaks

Definition 16 (Multi-dimensional Prominent Streak). In an n-entry d-dimensional

sequence P = (~p1, · · · , ~pn), a point ~pi is a d-dimensional vector of data values. A

streak s in P is an interval-vector pair 〈[l, r], ~v〉, where

~v = (min
l≤i≤r

~pi[1], · · · , min
l≤i≤r

~pi[d]), (3.4)

~pi[j] is the j-th dimension of ~pi, and 1 ≤ l ≤ r ≤ n.

A d-dimensional vector ~v = (~v[1], · · · , ~v[d]) dominates another vector ~v′ =

(~v′[1], · · · , ~v′[d]), denoted by ~v � ~v′, if and only if ~v(1) ≥ ~v′[1], · · · , ~v[d] ≥ ~v′[d]

and ∃j such that ~v[j] > ~v′[j]. Moreover, we use ~v � ~v′ to denote the case when ~v

dominates or equals ~v′.

A streak s = 〈[l, r], ~v〉 dominates another streak s′ = 〈[l′, r′], ~v′〉, denoted by

s � s′, if and only if r − l ≥ r′ − l′ and ~v � ~v′, or r − l > r′ − l′ and ~v � ~v′.

The set of all possible streaks is denoted by SP . A streak s∈SP is a prominent

streak if it is not dominated by any streak in SP , i.e., @s′ s.t. s′∈SP and s′�s. The

set of all multi-dimensional prominent streaks in P is denoted by PSP .

For a running example in this section, consider a two-dimensional sequence P =

((10, 10),(40, 20),(40, 30),(30, 40),(50, 30),(20, 30)). By the above definition, there are

8 prominent streaks in P– 〈[1, 6], (10, 10)〉, 〈[2, 3], (40, 20)〉, 〈[2, 5], (30, 20)〉, 〈[2, 6], (20, 20)〉,

〈[3, 5], (30, 30)〉, 〈[3, 6], (20, 30)〉, 〈[4, 4], (30, 40)〉, 〈[5, 5], (50, 30)〉. Other streaks are

not prominent. For instance, 〈[2, 4], (30, 20)〉 is dominated by 〈[3, 5], (30, 30)〉.

In finding prominent streaks from a d-dimensional sequence, skyline operations

perform dominance relationship test on d + 1 dimensions—d dimensions for data

values and one special dimension for streak length. We maintain a KD-tree [82, 83]

on current skyline points. Given a candidate streak, we use a range query on the KD-

tree to efficiently find its dominating points in the current skyline and another ranger

87

Algorithm 13: Update Dynamic Skyline for Multi-Dimensional Sequences

(skyline update)

Input: Dynamic skyline skyline, new candidate streak s = 〈[l, r], ~v〉

Output: Updated dynamic skyline skyline

1 dominating ← Find streaks in skyline that dominate s, by a range query

on the KD-tree over skyline

2 if dominating 6= ∅ then

3 return skyline

4 dominated← Find streaks in skyline that are dominated by s, by another

range query on the KD-tree

5 Remove dominated from skyline

6 Insert s into skyline

7 return skyline

query to find its dominated points in the current skyline. Specifically, Algorithm 7 is

replaced by Algorithm 13 for multi-dimensional sequences. We do not further discuss

how to answer range queries by multi-dimensional index structures such as KD-tree

since it is well studied.

With regard to candidate streak generation, the brute-force baseline method

does not require change, except that min value and its calculation in Algorithm 6

are replaced according to the definition of vector ~v in Equation (3.4). Our focus in

the rest of this section is to extend the concept of local prominent streak and its

properties, in order to adapt NLPS and LLPS for multi-dimensional data sequence.

Note that Property 3, Property 5 and Lemma 2 still hold, and can be proven in the

same way as for single-dimensional sequence. We thus will use the result directly

88

without tediously showing the proof. With the adaptation of NLPS and LLPS for

multi-dimensional sequences, the continuous monitoring approach in Algorithm 12

works in the same way.

Definition 17. For a multi-dimensional sequence P , a streak s = 〈[l, r], ~v〉 ∈ SP is

a local prominent streak (LPS) if and only if there does not exist any other streak

s′ = 〈[l′, r′], ~v′〉 ∈ SP , s.t. [l′, r′] ⊃ [l, r] and s′ � s. (I.e., there does not exist such s′

that [l′, r′] ⊃ [l, r] and ~v′ � ~v.) We use LPSP to denote the set of all local prominent

streaks in P .

For a multi-dimensional sequence, Property 3 still holds. Hence, every promi-

nent streak in a multi-dimensional sequence P is also a local prominent streak, i.e.,

PSP ⊆ LPSP , and thus we can still find LPSP and use it as the set of candidate

streaks. Computing local prominent streaks in a multi-dimensional sequence is quite

similar to that in a single-dimensional sequence. The concepts of LPSk
P and LPSk

Pk

remain the same, except that the ~v in each streak 〈[l, r], ~v〉 is a multi-dimensional vec-

tor instead of a single numeric value. Property 5 also holds. Therefore, the essential

ideas of NLPS and LLPS algorithms remain unchanged. NLPS iterates k from 1 to

|P |, progressively computes LPSk
Pk

from LPSk−1
Pk−1

when the k-th element ~pk is vis-

ited, and includes LPSk
Pk

into candidate streaks. LLPS does not immediately include

all of LPSk
Pk

into candidate streaks. Instead, it waits till seeing ~pk+1, then computes

LPSk
P (in addition to LPSk+1

Pk+1
) from LPSk

Pk
, and only includes LPSk

P into candidate

streaks. Hence, LLPS only considers local prominent streaks (LPSP =
⋃n

k=1 LPS
k
P)

as candidates, while NLPS needs to consider more candidates (
⋃n

k=1 LPS
k
Pk

), since

LPSk
P is subsumed by LPSk

Pk
according to Property 5.

89

3.5.3.1 Key Ideas

Our following discussion focuses on how to compute LPSk
Pk

and LPSk−1
P from LPSk−1

Pk−1
,

when the k-th element ~pk arrives. To facilitate the discussion, we partition LPSk−1
Pk−1

into two disjoint sets LPSk−1
Pk−1

�
and LPSk−1

Pk−1

�
, as shown below, which are similar

to LPSk−1
Pk−1

<
and LPSk−1

Pk−1

≥
in Equations (3.2) and (3.3). LPSk−1

Pk−1

�
is the set of

streaks, for which the value at any dimension of the vector ~v is not greater than the

corresponding value in ~pk. LPSk−1
Pk−1

�
is the set of streaks, for which ~v is greater than

~pk on at least one dimension.

LPSk−1
Pk−1

�
= {s|s = 〈[l, k − 1], ~v〉 ∈ LPSk−1

Pk−1
, ~v � ~pk}, (3.5)

LPSk−1
Pk−1

�
= {s|s = 〈[l, k − 1], ~v〉 ∈ LPSk−1

Pk−1
,∃j ∈ [1, d] s.t. ~v[j] > ~pk[j]}. (3.6)

For the running example, LPS5
P5

is divided into LPS5
P5

�
={s1=〈[1, 5], (10, 10)〉}

and LPS5
P5

�
={s2=〈[2, 5], (30, 20)〉, s3=〈[3, 5], (30, 30)〉, s4=〈[5, 5], (50, 30)〉}.

• Compute LPSk−1
P from LPSk−1

Pk−1
:

We can prove that LPSk−1
P is equivalent to LPSk−1

Pk−1

�
, given by the following

property.

Property 8. LPSk−1
P = LPSk−1

Pk−1

�
.

Proof. Since Property 5 still holds, LPSk−1
P ⊆LPS

k−1
Pk−1

. Furthermore, LPSk−1
Pk−1

�
and

LPSk−1
Pk−1

�
disjointly partition LPSk−1

Pk−1
, i.e., LPSk−1

Pk−1
= LPSk−1

Pk−1

�∪LPSk−1
Pk−1

�
and

LPSk−1
Pk−1

�∩LPSk−1
Pk−1

�
= ∅. Therefore we only need to prove that (1) none of the

streaks in LPSk−1
Pk−1

�
is in LPSk−1

P and (2) all streaks in LPSk−1
Pk−1

�
are in LPSk−1

P .

(1) ∀s ∈ LPSk−1
Pk−1

�
, s /∈ LPSk−1

P . Suppose s = 〈[l, k − 1], ~v〉. Its right-end

extension is s′ = 〈[l, k], ~v′〉, where ~v′[j] = min(~v[j], ~pk[j]) for j ∈ [1, d]. Since ~v � ~pk

90

(by Equation (3.5)), it follows that ~v′ = ~v and thus s′ � s. Hence, s cannot be a local

prominent streak in P .

(2) ∀s ∈ LPSk−1
Pk−1

�
, s ∈ LPSk−1

P . We prove this by contradiction. Suppose s =

〈[l, k − 1], ~v〉. Assume s /∈ LPSk−1
P , i.e., there exists s′ � s such that s′ = 〈[l′, r′], ~v′〉,

[l′, r′] ⊃ [l, k − 1] and ~v′ � ~v. By Equation (3.6), ∃j ∈ [1, d] such that ~v[j] > ~pk[j].

Therefore r′ = k − 1, otherwise r′ = k and ~v′[j] <= ~pk[j] < ~v[j], which contradicts

with ~v′ � ~v. From [l′, r′] ⊃ [l, k − 1] and r′ = k − 1, we get l′ < l which, along with

s′ � s, contradicts with s ∈ LPSk−1
Pk−1

. The contradictions prove that s ∈ LPSk−1
P .

• Compute LPSk
Pk

from LPSk−1
Pk−1

:

We note that Lemma 2 still holds under multi-dimensional sequence, i.e., except

〈[k, k], ~pk〉, for each streak in LPSk
Pk

, its prefix streak is in LPSk−1
Pk−1

. Hence, to

produce LPSk
Pk

, we only need to consider the right-end extension of LPSk−1
Pk−1

and

one extra streak 〈[k, k], ~pk〉 which may belong to LPSk
Pk

as well. Again, we consider

the two disjoint partitions of LPSk−1
Pk−1

, LPSk−1
Pk−1

�
and LPSk−1

Pk−1

�
, respectively.

(1) The right-end extensions of all streaks in LPSk−1
Pk−1

�
belong to LPSk

Pk
, by

the property below.

Property 9. ∀s ∈ LPSk−1
Pk−1

�
, its right-end extension s′ ∈ LPSk

Pk
.

Proof. We prove by contradiction. Suppose s = 〈[l, k− 1], ~v〉. Its right-end extension

is s′ = 〈[l, k], ~v′〉, where ~v′[j] = min(~v[j], ~pk[j]) for j ∈ [1, d]. Since s ∈ LPSk−1
Pk−1

�
,

~v � ~pk. Therefore ~v′ = ~v. If s′ /∈ LPSk
Pk

, then there exists s′′ = 〈[l′′, k], ~v′′〉 such that

s′′ � s′, i.e., l′′ < l, and ~v′′ � ~v′. Since s′′ and s′ have the same right end of interval

and l′′ < l, ~v′′ � ~v′. Therefore ~v′′ = ~v′ = ~v. Consider s′′′ = 〈[l′′, k − 1], ~v′′′〉, i.e., s′′ is

the right-end extension of s′′′. ~v′′′ � ~v′′ by definition of right-end extension. Therefore

~v′′′ � ~v and thus s′′′ � s (since l′′ < l). This contradicts with s ∈ LPSk−1
Pk−1

.

91

(2) Given a streak in LPSk−1
Pk−1

�
, its right-end extension does not always belong

to LPSk
Pk

.

For a single-dimensional sequence, LPSk−1
Pk−1

was similarly partitioned into LPSk−1
Pk−1

<

and LPSk−1
Pk−1

≥
. Among the streaks in LPSk−1

Pk−1

≥
, the right-end extension of the

longest streak belongs to LPSk
Pk

. If LPSk−1
Pk−1

≥
is empty, then 〈[k, k], pk〉 belongs to

LPSk
Pk

.

For a multi-dimensional sequence, multiple but not necessarily all streaks in

LPSk−1
Pk−1

�
can be right-extended to streaks in LPSk

Pk
. This can be simply proven

by using the running example. Recall that LPS5
P5

�
= {s1 = 〈[1, 5], (10, 10)〉} and

LPS5
P5

�
= {s2 = 〈[2, 5], (30, 20)〉, s3 = 〈[3, 5], (30, 30)〉, s4 = 〈[5, 5], (50, 30)〉}. Since

~p6 = (20, 30), the right-end extensions of s2, s3 and s4 are s′2 = 〈[2, 6], (20, 20)〉,

s′3 = 〈[3, 6], (20, 30)〉 and s′4 = 〈[5, 6], (20, 30)〉, respectively. It is clear s′2, s
′
3 ∈ LPS6

P6

and s′4 /∈ LPS6
P6

since s′3 � s′4.

3.5.3.2 Efficient Computation

Based on the discussion in Section 3.5.3.1, in computing LPSk
Pk

and LPSk−1
P from

LPSk−1
Pk−1

, the key is to partition LPSk−1
Pk−1

into LPSk−1
Pk−1

�
(which equals LPSk−1

P) and

LPSk−1
Pk−1

�
. The right-end extensions of all streaks in LPSk−1

Pk−1

�
belong to LPSk

Pk
,

and all remaining streaks in LPSk
Pk

are formed by right-end extensions of streaks

in LPSk−1
Pk−1

�
. Below we discuss an efficient method of partitioning LPSk−1

Pk−1
and

identifying streaks in LPSk−1
Pk−1

�
that should be extended to streaks in LPSk

Pk
.

• Partition LPSk−1
Pk−1

into LPSk−1
Pk−1

�
and LPSk−1

Pk−1

�
:

Suppose there are m streaks in LPSk−1
Pk−1

, which are s1 = 〈[l1, k − 1], ~v1〉, . . .,

sm = 〈[lm, k − 1], ~vm〉, where l1<· · ·<lm. We can prove that there exists t such that

92

LPSk−1
Pk−1

�
= {s1, . . . , st} and LPSk−1

Pk−1

�
= {st+1, . . . , sm}. (Two special cases are

LPSk−1
Pk−1

�
= ∅ (i.e., t = 0) and LPSk−1

Pk−1

�
= ∅ (i.e., t = m).) The proof is sketched

as follows. Since l1<· · ·<lm, for any dimension j, the value ~vi[j] monotonically in-

creases by i (not necessarily strictly increasing), i.e., ~v1[j] ≤ ~v2[j] ≤ · · · ≤ ~vm[j]. It

follows that ~v1 ≺ ~v2 ≺ · · · ≺ ~vm. (Note that ~vi 6= ~vi+1 for any i, otherwise si would

dominate si+1, which contradicts with that they all are local prominent streaks in

Pk−1.) Given si1 ∈ LPSk−1
Pk−1

�
and si2 ∈ LPSk−1

Pk−1

�
, it must be that i1 < i2, otherwise

i1 > i2, ~vi1 � ~vi2 and thus ∀j, ~vi1 [j] ≥ ~vi2 [j], which contradicts with Equations (3.5)

and (3.6).

• Identify streaks in LPSk−1
Pk−1

�
that should be extended to streaks in LPSk

Pk
:

To find all those right-end extensions of streaks in LPSk−1
Pk−1

�
that belong

to LPSk
Pk

, consider the aforementioned partitioning of LPSk−1
Pk−1

into LPSk−1
Pk−1

�
=

{s1, . . . , st} and LPSk−1
Pk−1

�
= {st+1, . . . , sm}, where the m streaks sm, . . . , s1 are de-

creasingly ordered by the left ends of their intervals. For each si = 〈[li, k − 1], ~vi〉 ∈

LPSk−1
Pk−1

�
, its right-end extension is s′i = 〈[li, k], ~v′i〉. The following important prop-

erty tells us that if s′i ⊀ s′i−1, then s′i belongs to LPSk
Pk

.

Property 10. For each streak si = 〈[li, k−1], ~vi〉 ∈ LPSk−1
Pk−1

�
, its right-end extension

is s′i = 〈[li, k], ~v′i〉. s′i ∈ LPSk
Pk

if and only if s′i ⊀ s′i−1.

Proof. It is apparent that if s′i ≺ s′i−1 then s′i /∈ LPSk
Pk

. Thus our focus is to prove

s′i ∈ LPSk
Pk

if s′i ⊀ s′i−1, by contradiction. Assume s′i ⊀ s′i−1 but s′i /∈ LPSk
Pk

. Hence,

∃j < i − 1 and s′j � s′i (and thus ~v′j � ~v′i). Since lj < li, ~v′j � . . . � ~v′i−1 � ~v′i.

Therefore ~v′j = . . . = ~v′i−1 = ~v′i. Hence s′i−1 � s′i which contradicts with s′i ⊀

s′i−1.

Based on the properties discussed in Section 3.5.3.1 and 3.5.3.2 so far, we design

an efficient method to compute LPSk
Pk

and LPSk−1
P from LPSk−1

Pk−1
. The current sky-

93

line points (prominent streaks) after the (k−1)-th element is encountered are stored in

the aforementioned KD-tree index structure. The streaks in LPSk−1
Pk−1

, sm, . . . , s1, are

stored in memory by the decreasing order of the left ends of their intervals. Since they

have the same right ends of intervals, only the left ends and the corresponding vectors

are stored. When the k-th element ~pk arrives, this method considers the streaks si

and their right-end extensions s′i, starting from i = m + 1 and iteratively decreasing

i by 1. (For i = m + 1, the special streak in consideration is s′m+1 = 〈[k, k], ~pk〉.)

According to Property 10, the method only requires comparing s′i with its predeces-

sor s′i−1. If s′i ≺ s′i−1, then si is removed from the memory. Otherwise s′i belongs to

LPSk
Pk

and thus si is updated to s′i in memory. More specifically, the vector ~vi of

si needs to be updated to ~v′i, by ~v′i[j] = min(~vi[j], ~pk[j]) for j ∈ [1, d]. The method

goes on until i = t such that ~vt � ~pk. At that moment, the method will take the

following actions.

• The streaks scanned so far (sm, . . . , st+1) form LPSk−1
Pk−1

�
which is equivalent to

LPSk−1
P . All remaining streaks in LPSk−1

Pk−1
(st, . . . , s1) form LPSk−1

Pk−1

�
.

• The streaks in LPSk−1
P are candidate prominent streaks. They are compared with

current skyline points by the aforementioned range queries over the KD-tree on the

skyline points. Non-dominated candidates are inserted into the KD-tree.

• For all remaining streaks in the memory (i.e., LPSk−1
Pk−1

�
), their right-end extensions

belong to LPSk
Pk

. Since their vectors are all dominated by or equivalent to ~pk,

their corresponding vectors do not need to be updated. At this moment, all streaks

of LPSk
Pk

are stored in memory by the decreasing order of the left-ends of their

intervals.

More concretely, Algorithms 8 and 10 remain unchanged, and Algorithms 9

and 11 are replaced by Algorithms 14 and 15, respectively.

94

Algorithm 14: Progressive Computation of LPSk
Pk

on Multi-Dimensional

Sequences

Input: LPSk−1
Pk−1

and ~pk

Output: LPSk
Pk

// When it starts, stack lps consists of streaks in LPSk−1
Pk−1

.

1 temp stack ← an empty stack

2 while ! lps.isempty() do

3 if lps.top().~v � ~pk then

4 break

5 else

6 s = 〈[ls, k − 1], ~vs〉 ← lps.pop()

7 s′ ← 〈[ls, k], ~v′s〉, where ~v′s = (min(~vs[1], ~pk[1]), . . . ,min(~vs[d], ~pk[d]))

//right-end extension of s

8 if lps.isempty() then

9 temp stack.push(s′)

10 else

11 q = 〈[lq, k − 1], ~vq〉 ← lps.top()

12 q′ ← 〈[lq, k], ~v′q〉, where

~v′q = (min(~vq[1], ~pk[1]), . . . ,min(~vq[d], ~pk[d])) //right-end

extension of q

13 if q′ � s′ then

14 temp stack.push(s′)

15 while ! temp stack.isempty() do

16 lps.push(temp stack.pop())

17 if lps.isempty() or lps.top().~v � ~pk then

18 lps.push(〈[k, k], ~pk〉)

// Now, lps contains all the streaks in LPSk
Pk

.
95

Algorithm 15: Computing LPSk−1
P and LPSk

Pk
on Multi-Dimensional Se-

quences

Input: LPSk−1
Pk−1

and ~pk

Output: LPSk−1
P and LPSk

Pk

// Insert the following line before Line 1 in Algorithm 14.

1 LPSk−1
P ← ∅

// Insert the following line after Line 6 in Algorithm 14.

2 LPSk−1
P ← LPSk−1

P ∪ {s}

3.5.3.3 A Note on “Curse of Dimensionality”

For a single-dimensional sequence with n elements, LLPS produces at most n can-

didates (i.e., local prominent streaks), according to Property 4. This upper-bound

guarantees LLPS to be an efficient linear-time algorithm. However, the same property

does not hold for multi-dimensional sequences. Consider an extreme case which is a

2-dimensional n-element sequence (~p1, . . . , ~pn), where ~pi = (i, n − i). It is not hard

to prove that all n(n+1)
2

possible streaks in this sequence are prominent streaks and

thus automatically local prominent streaks. This represents the worst case, in which

nothing beats the brute-force baseline method.

While the worst case indicates the rather notorious “curse of dimensionality”,

our empirical results on multiple datasets are much more encouraging. The results

show that the number of prominent streaks and the execution time of LLPS do not

increase exponentially by the dimensionality of data. This is mainly due to that data

values fluctuate and are correlated. We investigate these results in more details in

Section 3.6.

96

Table 3.1: Data Sequences Used in Experiments on Basic Prominent Streak Discovery.

name length # prominent streaks description
Gold 1074 137 Daily morning gold price in US dollars, 01/1985-03/1989.
River 1400 93 Mean daily flow of Saugeen River near Port Elgin, 01/1988-12/1991.
Melb1 3650 55 The daily minimum temperature of Melbourne, Australia, 1981-1990.
Melb2 3650 58 The daily maximum temperature of Melbourne, Australia, 1981-1990.
Wiki1 4896 58 Hourly traffic to http: // en. wikipedia. org/ wiki/ Main_ page ,

04/2010-10/2010.
Wiki2 4896 51 Hourly traffic to http: // en. wikipedia. org/ wiki/ Lady_ gaga ,

04/2010-10/2010.
Wiki3 4896 118 Hourly traffic to http: // en. wikipedia. org/ wiki/ Inception_

(film) , 04/2010-10/2010.
SP500 10136 497 S&P 500 index, 06/1960-06/2000.
HPQ 12109 232 Closing price of HPQ in NYSE for every trading day, 01/1962-

02/2010.
IBM 12109 198 Closing price of IBM in NYSE for every trading day, 01/1962-02/2010.
AOL 132480 127 Number of queries to AOL search engine in every minute over three

months.
WC98 7603201 286 Number of requests to World Cup 98 web site in every second,

04/1998-07/1998.

3.6 Experiments

We report and analyze experimental results in this section. The algorithms

were implemented in Java. The experiments were conducted on a server with four

2.00GHz Intel Xeon E5335 CPUs running Ubuntu Linux. The limit on the heap size

of Java Virtual Machine (JVM) was set at 512MB. We discuss the results on basic and

general prominent streak discovery in Section 3.6.1 and Section 3.6.2, respectively.

3.6.1 Experimental Results on Basic Prominent Streak Discovery

We used multiple real-world datasets, including time series data library,3 Wikipedia

traffic statistics dataset,4 NYSE exchange data,5 AOL search engine log,6 and FIFA

World Cup 98 web site access log.7 These datasets cover a variety of application

scenarios, including meteorology, hydrology, finance, web log, and network traffic.

3http: // robjhyndman. com/ TSDL/
4http: // dammit. lt/ wikistats/
5http: // www. infochimps. com/ datasets/ nyse-daily-1970-2010-open-close-high-low-

and-volume
6http: // gregsadetsky. com/ aol-data/
7http: // ita. ee. lbl. gov/ html/ contrib/ WorldCup. html

97

http://en.wikipedia.org/wiki/Main_page
http://en.wikipedia.org/wiki/Lady_gaga
http://en.wikipedia.org/wiki/Inception_(film)
http://en.wikipedia.org/wiki/Inception_(film)
http://robjhyndman.com/TSDL/
http://dammit.lt/wikistats/
http://www.infochimps.com/datasets/nyse-daily-1970-2010-open-close-high-low-and-volume
http://www.infochimps.com/datasets/nyse-daily-1970-2010-open-close-high-low-and-volume
http://gregsadetsky.com/aol-data/
http://ita.ee.lbl.gov/html/contrib/WorldCup.html

Table 3.1 shows the information of 12 data sequences from these data sets that we

used in experiments. For each data sequence, we list its name, length, and the number

of prominent streaks in the sequence. Each data sequence was stored in a data file.

Examples of Interesting Prominent Streaks Discovered:

From 1985 to 1989, there had been more than one thousand consecutive trading

days with morning gold price greater than $300. During this period, there had been

a streak of four hundred days with price more than $400, though the $500 price only

lasted two days at most.

In Melbourne, Australia, during the years between 1981 and 1990, the weather

had been pleasant. There had been more than two thousand days with minimal

temperature above zero, and the streak was not ending. (We do not have data

beyond 1990.) The longest streak during which the temperature hit above 35 degrees

Celsius is six days. It was in the summer of the year 1981.

More than half of the prominent streaks we found in the traffic data of the Lady

Gaga Wikipedia page were around September 12th, when she became a big winner

in the MTV Video Music Awards (VMA) 2010. During that time, the page had been

visited by at least 2000 people in every hour for almost four days.

Number of Candidate Streaks:

The three algorithms for candidate streak generation, namely Baseline (Algo-

rithm 6), NLPS (Algorithm 8), and LLPS (Algorithm 10), differ by the ways they

produce candidates and thus the numbers of produced candidates. Table 3.2 shows

the total number of candidate streaks considered by each algorithm on each data

sequence. The baseline algorithm produces an extremely large number of candidates

since it enumerates all possible streaks, e.g.,
(

7603202
2

)
=2.89 × 1013 for WC98. By

contrast, NLPS only needs to consider
⋃

1≤k≤|P | LPS
k
Pk

, which is a superset of the

real prominent streaks PSP but a much smaller subset of all possible streaks SP . For

98

Table 3.2: Number of Candidate Streaks, Basic Prominent Streak Discovery.

name Baseline NLPS LLPS
Gold 5.77× 105 6.04× 104 1.05× 103

River 9.81× 105 2.18× 104 1.33× 103

Melb1 6.66× 106 4.47× 104 3.50× 103

Melb2 6.66× 106 4.28× 104 3.49× 103

Wiki1 1.20× 107 7.16× 104 4.79× 103

Wiki2 1.20× 107 5.77× 104 4.75× 103

Wiki3 1.20× 107 7.31× 104 4.70× 103

SP500 5.14× 107 1.69× 106 9.98× 103

HPQ 7.33× 107 5.24× 105 1.08× 104

IBM 7.33× 107 6.97× 105 1.13× 104

AOL 8.78× 109 3.53× 106 1.20× 105

WC98 2.89× 1013 1.78× 108 6.69× 106

instance, the number of candidate streaks by NLPS is 1.78×108 for WC98, which is 5

orders of magnitude smaller than what Baseline considers. LLPS further significantly

educes the number of candidates by only considering LPSs. For example, there are

6.69×106 LPSs in WC98, which is about 30 times smaller than 1.78×108. Note that

the number of LPSs for LLPS is bounded by sequence length (Property 4), which is

verified by Table 3.2.

Execution Time:

The number of candidate streaks directly determines the efficiency of our algo-

rithms. In Table 3.3 we report the execution time of our algorithms using the three

candidate streak generation methods (Baseline, NLPS, LLPS), for all 12 data se-

quences. For skyline operation, we implemented the sorting-based, external-memory

sorting-based, and BST-based skyline methods mentioned in Section 3.1. Under these

different skyline methods, Baseline, NLPS, and LLPS perform and compare consis-

tently. Therefore in Table 3.3 we only report the results for implementations based

99

Table 3.3: Execution Time (in Milliseconds), Basic Prominent Streak Discovery.

name Baseline NLPS LLPS
Gold 183 122 13
River 126 84 19
Melb1 385 101 36
Melb2 384 101 35
Wiki1 670 105 46
Wiki2 646 97 46
Wiki3 632 126 48
SP500 4453 789 116
HPQ 6285 338 101
IBM 4228 377 135
AOL 290744 752 201

WC98 > 1 hour 38999 3012

on the BST-based skyline method, due to space limitations. The reported execution

time is in milliseconds and is the average of five runs.

When reporting the execution time of these algorithms, we excluded data load-

ing time, i.e., the time spent on just reading each data file. This is because data

loading time is dominated by processing time of the algorithms once the data file gets

large. In our experiments, WC98 cost 1 second to load while the loading time of all

other datasets was below 30ms.

In Table 3.3 we use ‘>1 hour’ to denote the execution time when an algorithm

could not finish within one hour (i.e., 3600000ms). This lower bound is sufficient in

showing the performance difference of the various algorithms.

With regard to the comparison of Baseline, NLPS, and LLPS, it is clear from

Table 3.3 that LLPS outperforms NLPS, and both NLPS and LLPS are far more

efficient than Baseline. This is exactly due to the large gap in the number of candidate

streaks (shown in Table 3.2), which in turn determines the number of comparisons

performed during skyline operations.

100

0 2000 4000 6000 8000 10000
position

0

400

800

1200

1600
va
lu
e

SP500

a Data Sequence

0 2000 4000 6000 8000 10000
streak length (days)

0

400

800

1200

1600

m
in

im
a
l

va
lu

e

SP500

b Prominent Streaks

c Number of Candidate Streaks

0 2000 4000 6000 8000 10000
position

0

100

200

300

400

500

si
ze

SP500

Baseline, NLPS
LLPS

d Size of Dynamic Skyline

Figure 3.4: Detailed Results on SP500, Basic Prominent Streak Discovery.

0 10 20 30 40 50 60 70
position

0

1000

2000

3000

4000

va
lu
e

WC98

×105

a Data Sequence

0 100 101 102 103 104 105 106

streak length (seconds)

0

1000

2000

3000

4000

5000

m
in

im
a
l

va
lu

e

WC98

b Prominent Streaks

c Number of Candidate Streaks

0 10 20 30 40 50 60 70
position

0

50

100

150

200

250

300

350

si
ze

WC98

Baseline, NLPS
LLPS

×105

d Size of Dynamic Skyline

Figure 3.5: Detailed Results on WC98, Basic Prominent Streak Discovery.

101

A Closer Look:

To have a better understanding of the experimental results, we take a close look

at the SP500 data sequence. Figure 3.4a shows the data sequence itself. We see that

the sequence is almost monotonically increasing at the coarse grain level. Due to

that, the number of prominent streaks found in SP500 (497, as shown in Table 3.1)

is the most among all the data sequences. We also visualize the prominent streaks

in SP500 in Figure 3.4b, where the x-axis is for interval length and the y-axis is for

minimal value in the interval.

In Table 3.2 we have seen the huge difference among Baseline, NLPS and LLPS

in total number of candidate streaks. These three algorithms all generate candidates

progressively. Therefore in Figure 3.4c we show, for each algorithm, the number of new

candidate streaks produced at every value position of the data sequence. The figure

clearly shows the superiority of LLPS since it always generates orders of magnitude

less candidates at each position.

The BST-based skyline method maintains a dynamic skyline, as a binary search

tree, in memory. The size of this tree affects the efficiency of tree operations, such

as inserting and deleting a streak. Figure 3.4d shows the size of the dynamic skyline

along the sequence of SP500 by each algorithm. The curves for Baseline and NLPS

overlap since they both store PSPk
, at every position k, in the dynamic skyline. On

the contrary, LLPS does not need to store some streaks in PSPk
, hence the tree size

is much smaller than that for Baseline/NLPS when the sequence is almost constantly

growing in the second half of SP500.

In Figure 3.5 we show the detailed results on WC98 data, which are similar

to the results on SP500 but are also different on several aspects. The data sequence

fluctuates. Hence there are less candidate streaks by NLPS and LLPS, which makes

the gap between them and Baseline much bigger. For the same reason, the size of the

102

0

200

400

600

800

1000

0 4 8 12

ti
m

e
(m

s)

position

x 104

AOL

LLPS-1, NPLS

LLPS-2

LLPS-4

LLPS-8

LLPS-16

a AOL

0

1

2

3

4

5

0 2 4 6 8

ti
m

e
(m

s)

x 104

position

x 106

WC98

LLPS-1, NPLS

LLPS-2

LLPS-4

LLPS-8

LLPS-16

b WC98

Figure 3.6: Cumulative Execution Time at Various Positions, for Different Reporting
Frequencies, Basic Prominent Streak Discovery.

0

200

400

600

800

1 10 100 1000

to
ta

l
ti

m
e

(m
s)

length of the interval

AOL

a AOL

0

1

2

3

4

5

1 10 100 1000

to
ta

l
ti

m
e

(m
s)

x 104

length of the interval

WC98

b WC98

Figure 3.7: Total Execution Time by Reporting Frequencies, Basic Prominent Streak
Discovery.

dynamic skyline is almost identical for the three algorithms. Note that Figure 3.5b

uses logarithmic scale on x-axis, because the very long streaks would otherwise make

most other streaks cluttered to the left if linear scale is used.

Monitoring Prominent Streaks:

In Section 3.4 we discussed how to monitor the prominent streaks as a data

sequence evolves and new data values come. The adaptation of LLPS for monitoring

purpose was shown in Algorithm 12. This algorithm can control at which positions

the prominent streaks (so far) need to be reported.

103

Take AOL and WC98 as examples. Figure 3.6 shows the execution time of

Algorithm 12. The x-axis represents the sequence position, and the y-axis is for the

total execution time by that position. There are five curves in each figure, corre-

sponding to five different frequencies of reporting prominent streaks. For instance,

LLPS-1 means that, whenever a new data entry comes, all the prominent streaks so

far are reported; LLPS-16 means the prominent streaks are requested at every 16 data

entries. As discussed in Section 3.4, LLPS-1 is identical to NLPS (Algorithm 8), and

LLPS-n is identical to LLPS (Algorithm 10), where n is the sequence length when it

does not evolve anymore. Figures 3.6a and 3.6b clearly show that the total execution

time of LLPS-i increases as the reporting frequency increases (i.e., reporting interval

i decreases). Figures 3.7a and 3.7b further show how the total execution time changes

along different reporting intervals. We can see that the execution time drops rapidly

at the beginning and quickly reaches near-optimal value even when the frequency is

still fairly high (e.g., reporting the prominent streaks at every 16 entries.)

3.6.2 Experimental Results on General Prominent Streak Discovery

In this section, we discuss the results on top-k, multi-sequence, and multi-

dimensional prominent streak discovery. At the end of this section, we also present

the results from an experiment that put together these different extensions.

Top-k Prominent Streaks:

The experiments on top-k prominent streaks were conducted on the same datasets

discussed in Section 3.6.1. For each dataset, Table 3.4 shows the number of top-5

prominent streaks (i.e., KPSP in Definition 14) and the execution time of the ex-

tended Baseline, NLPS and LLPS algorithms. Note that the number of candidate

streaks shown in Table 3.2 remains the same, since the same candidate streak gener-

ation methods are used for top-k prominent streaks, as discussed in Section 3.5.1.

104

Table 3.4: Number of Prominent Streaks and Execution Time (in Milliseconds), Top-5
Prominent Streaks.

name # prominent
streaks

Baseline NLPS LLPS

Gold 147 1884 348 44
River 144 6.81× 104 275 57
Melb1 160 6.06× 107 572 96
Melb2 160 3.01× 106 445 150
Wiki1 181 3.68× 107 1369 140
Wiki2 115 1.88× 107 565 172
Wiki3 172 1.05× 106 473 136
SP500 516 7.09× 106 13700 270
HPQ 251 > 10 hours 3211 178
IBM 232 > 10 hours 5914 229
AOL 250 > 10 hours 26000 798
WC98 409 > 10 hours > 10 hours 13300

100 101 102 103 104

streak length (days)

101

102

103

104

m
in

im
a
l

va
lu

e

SP500

K=1
K=5

a Prominent Streaks

100 101 102 103 104 105

streak length (days)

0
100

101

102

103

104

m
in

im
a
l

va
lu

e

AOL

K=1
K=5

b Prominent Streaks

0 2000 4000 6000 8000 10000
position

0

100

200

300

400

500

600

si
ze

SP500

Baseline, NLPS (K=1)
Baseline, NLPS (K=5)
LLPS (K=1)
LLPS (K=5)

c Size of Dynamic Skyline

0 20000 40000 60000 80000 100000120000
position

0

300

600

900

si
ze

AOL

Baseline, NLPS (K=1)
Baseline, NLPS (K=5)
LLPS (K=1)
LLPS (K=5)

d Size of Dynamic Skyline

Figure 3.8: Detailed Results on SP500 and AOL, Top-1 vs. Top-5 Prominent Streaks.

105

100 101 102 103 104 105

K

0

3

6

9

12
#

 o
f

p
ro

m
in

e
n

t
st

re
a
k
s SP500×103

a Number of Prominent Streaks

100 101 102 103 104 105

K

0

1

2

3

to
ta

l
ti

m
e
(m

s)

SP500×103

b Execution Time

Figure 3.9: Number of Prominent Streaks and Execution Time, LLPS on SP500,
Top-k Prominent Streaks, Varying k.

0 2000 4000 6000 8000 10000
position

0

3

6

9

12

15

18

21

ti
m
e
(m

s)

SP500
LLPS-1, NLPS
LLPS-2
LLPS-4
LLPS-8
LLPS-16

×103

a SP500

0 2 4 6 8 10 12
position

0

1

2

3

4
ti
m
e
(m

s)
AOL

LLPS-1, NLPS
LLPS-2
LLPS-4
LLPS-8
LLPS-16

×104

×104

b AOL

Figure 3.10: Cumulative Execution Time at Various Positions, for Different Reporting
Frequencies, Top-5 Prominent Streak Discovery.

100 101 102 103

length of the interval

0

10

20

30

40

to
ta

l
ti

m
e
(m

s)

SP500×103

a SP500

100 101 102 103

length of the interval

0

4

8

12

16

20

to
ta

l
ti

m
e
(m

s)

AOL×103

b AOL

Figure 3.11: Total Execution Time by Reporting Frequencies, Top-5 Prominent
Streak Discovery.

106

As Table 3.4 shows, in comparison with the execution time in Table 3.3 (i.e., the

time of discovering top-1 prominent streaks), the execution time of Baseline increased

by one or more orders of magnitude, while the performance of NLPS and LLPS was

degraded by less than one order of magnitude in most cases. This is explained as

follows. Finding top-k prominent streaks incurs higher cost of skyline operation

than finding top-1 prominent streaks. More specifically, the cost of skyline operation

is determined by the number of dominance comparisons between candidate streaks

and streaks in the dynamic skyline. Therefore the number of comparisons increases

by both the number of candidate streaks and the size of the dynamic skyline. In

comparison with top-1, finding top-k prominent streaks requires maintaining local

prominent streaks with as many as k − 1 dominators, which increases the size of

dynamic skyline and thus incurs larger cost. For example, a dominator search for a

candidate cannot terminate until the number of dominators reaches k, whereas the

search terminates immediately in top-1 algorithms once a dominator is found. The

more candidate streaks there are, the larger the increment of skyline operation cost

(from top-1 to top-k) grows. This further explains why the performance of Baseline

was degraded the most.

Figure 3.8 shows some interesting detailed results on two different sequences.

Since sequence SP500 increases almost monotonically, a local prominent streak that is

not globally prominent most likely has a relatively large number of dominators. Hence,

the size of dynamic skyline in top-5 prominent streak discovery is only slightly larger

than that in top-1. This explains Figure 3.8c. On the contrary, for sequence AOL, the

size of dynamic skyline for top-5 is about twice the size for top-1 (igure 3.8d). This is

because sequence AOL fluctuates. The prominent streaks have different right ends of

intervals due to the fluctuation. This also explains why the sizes of dynamic skylines

in Baseline, NLPS and LLPS do not differ much from each other in this sequence.

107

Table 3.5: Data Sequences Used in Experiments on Multi-sequence Prominent Streak
Discovery.

name # sequences average length # prominent streaks description
NBA1 1225 281 28 Points scored by all NBA players from

1991-2004
Wiki 8 14454 59 Hourly traffic to the Wikipedia pages of

Ivy League universities

Table 3.6: Number of Candidate Streaks, Multi-sequence Prominent Streak Discovery.

name Baseline NLPS LLPS
NBA1 9.41× 107 1.23× 106 3.31× 105

Wiki 8.36× 108 1.23× 106 1.86× 105

However, as Table 3.4 shows, their differences on execution time are still significant

because NLPS and LLPS generate much less candidates than Baseline does.

By Definition 14, PSP ⊆ KPSP , i.e., all prominent streaks are also top-k

prominent streaks. This is clearly shown in Figures 3.8a and 3.8b. Furthermore,

KPSP ⊆ LPSP , i.e., top-k prominent streaks must be local prominent streaks too.

Therefore, the set KPSP grows by k and stops growing after k reaches a certain

value, when all streaks in LPSP are included in KPSP . This is demonstrated by

Figure 3.9a in which the number of prominent streaks in sequence SP500 increases

by k until k reaches about 10, 000. As a result, total execution time also changes in

sync with the number of prominent streaks, as shown in Figure 3.9b.

We also experimented with monitoring top-k prominent streaks. The results

are shown in Figure 3.10 and Figure 3.11, which exhibit patterns of execution time

similar to the patterns in Figure 3.6 and Figure 3.7 for monitoring top-1 prominent

streaks.

Multi-sequence Prominent Streaks:

108

Table 3.7: Execution Time (in Milliseconds), Multi-sequence Prominent Streak Dis-
covery.

name Baseline NLPS LLPS
NBA1 3436 310 292
Wiki 33537 275 190

Table 3.8: Distribution of Players by Number of Prominent Streaks.

number of prominent
streaks

number of players

0 1215
1 6
3 1
4 1
5 1
10 1

Table 3.9: Multi-sequence Prominent Streaks in Datast NBA1.

length minimal value players
1 71 David Robinson
2 51 Allen Iverson; Antawn Jamison
4 42 Kobe Bryant
9 40 Kobe Bryant
13 35 Kobe Bryant
14 32 Kobe Bryant
16 30 Kobe Bryant
17 27 Michael Jordan
27 26 Allen Iverson
34 24 Tracy McGrady
45 21 Allen Iverson
57 20 Allen Iverson
74 19 Shaquille O’Neal
94 18 Shaquille O’Neal
96 17 Karl Malone
119 16 Karl Malone
149 15 Karl Malone
159 14 Karl Malone
263 13 Karl Malone
357 12 Karl Malone
527 11 Karl Malone
575 10 Karl Malone
758 7 Karl Malone
858 6 Shaquille O’Neal
866 2 Karl Malone
932 1 John Stockton
1185 0 Jim Jackson

109

Table 3.10: Data Sequences Used in Experiments on Multi-dimensional Prominent
Streak Discovery.

name length # prominent streaks # dimensions description
Malone 986 640 6 1991-2004 game log of Karl Malone (minutes,

points, rebounds, assists, steals, blocks)
Crashes 3287 1493 5 2003-2011 Texas Motor Vehicle Crash Statis-

tics (Crashes and Injuries by Date)
AAPL 6411 2616 3 NASDAQ stock data of Apple Inc. from 1970

to 2010, on daily values of opening price,
change ratio ((open−close)/open×100%) and
trading volume

We used two datasets for experiments on multi-sequence prominent streak dis-

covery. One (Wiki) is the hourly traffic to Ivy League universities’ Wikipedia pages,8

one sequence per university. The other dataset (NBA1) contains 1225 sequences, one

sequence per NBA player. Each sequence lists the scores of a player in all the games

he played from 1991 to 2004. 9 The characteristics of these two datasets are shown in

Table 3.5, including the number of sequences, average sequence length and the number

of prominent streaks. Tables 3.6 and 3.7 show the number of candidate streaks and

the execution time, respectively, for Baseline, NLPS and LLPS. The results are very

similar to that in Tables 3.2 and 3.3. This is because the process of multi-sequence

prominent streak discovery is not very different from its single-sequence counterpart.

For dataset NBA1, Table 3.8 shows the distribution of players by the number of

prominent streaks contributed by them. All 29 prominent streaks, i.e., NBA scoring

records in the period of 1991 to 2004, come from merely 10 different players. Table 3.9

shows the detailed records. One interesting observation from the table is that Karl

Malone and John Stockton, two of the healthiest NBA players, had scored in two

longest streaks of games. Another example is that Allen Iverson is the only one who

scored at least 20 points in more than 50 consecutive games.

Multi-dimensional Prominent Streaks:

8http: // dammit. lt/ wikistats/
9http: // www. databasebasketball. com/ index. htm

110

http://dammit.lt/wikistats/
http://www.databasebasketball.com/index.htm

Table 3.11: Number of Candidate Streaks, Multi-dimensional Prominent Streak Dis-
covery.

name Baseline NLPS LLPS
Malone 4.87× 105 1.27× 104 4.47× 103

Crashes 5.40× 106 6.95× 105 1.82× 104

AAPL 2.06× 107 4.77× 105 4.08× 105

Table 3.12: Execution Time (in Milliseconds), Multi-dimensional Prominent Streak
Discovery.

name Baseline NLPS LLPS
Malone 4575 336 180
Crashes 1.08× 105 1113 326
AAPL 5.65× 105 9997 557

We used three datasets for experiments on multi-dimensional prominent streak

discovery, listed in Table 3.10. The first dataset is the game log of NBA player Karl

Malone, from 1991 to 2004 seasons.10 This is a sequence of 986 elements, each of which

represents Malone’s performance in a game on 6 performance dimensions. The sec-

ond dataset is the 2003-2011 Texas Motor Vehicle Crash Statistics,11 a 5-dimensional

sequence of 3287 elements, where each element is for one day and represents the daily

counts of crashes, injuries, fatalities, and so on. The last dataset is the historical

NASDAQ stock data of Apple Inc. from 1970 to 2010.12 In this 6411-element se-

quence, each element is for a trading day and contains the opening price, change

ratio, and trading volume of the stock of Apple Inc. on that day.

The number of candidate streaks and the execution time by Baseline, NLPS,

and LLPS are shown in Tables 3.11 and 3.12. Figure 3.12 further shows detailed

10http: // www. databasebasketball. com/ index. htm
11http: // www. dot. state. tx. us/ txdot_ library/ drivers_ vehicles/ publications/

crash_ statistics/ default. htm
12http: // www. infochimps. com/ datasets/ nasdaq-exchange-daily-1970-2010-open-

close-high-low-and-volume

111

http://www.databasebasketball.com/index.htm
http://www.dot.state.tx.us/txdot_library/drivers_vehicles/publications/crash_statistics/default.htm
http://www.dot.state.tx.us/txdot_library/drivers_vehicles/publications/crash_statistics/default.htm
http://www.infochimps.com/datasets/nasdaq-exchange-daily-1970-2010-open-close-high-low-and-volume
http://www.infochimps.com/datasets/nasdaq-exchange-daily-1970-2010-open-close-high-low-and-volume

0 1000 2000 3000 4000 5000 6000
position

0

100

101

102

103

104

#
 o

f
c
a
n

d
id

a
te

s

AAPL

Baseline
NLPS
LLPS

a Number of Candidate Streaks

0 1000 2000 3000 4000 5000 6000
position

0

500

1000

1500

2000

2500

3000

si
ze

AAPL

Baseline, NLPS
LLPS

b Size of Dynamic Skyline

0 1000 2000 3000 4000 5000 6000
position

0

3

6

9

12

ti
m
e
(m

s)

AAPL
LLPS-1, NLPS
LLPS-2
LLPS-4
LLPS-8
LLPS-16

×103

c Cumulative Execution Time at Various
Positions, for Different Reporting Fre-
quencies

100 101 102 103

length of the interval

0

4

8

12

to
ta

l
ti

m
e
(m

s)

AAPL×103

d Total Execution Time by Reporting
Frequencies

Figure 3.12: Detailed Results on AAPL, Multi-dimensional Prominent Streak Dis-
covery.

experimental results on dataset AAPL. The observations made on these results are

similar to those for basic, top-k, and multi-sequence prominent streak discovery.

We also investigated how number of prominent streaks and total execution

time of LLPS increase by the dimensionality of data, using dataset Malone. As

the boxplots in Figure 3.13 show, these measures do not increase exponentially by

data dimensionality, at least under small dimensionality such as 6. This indicates

that, while the “curse of dimensionality” can raise concerns, the empirical results

are much more encouraging. It is partly due to that data values fluctuate and thus

the appearance of a small value terminates many prominent streaks. Furthermore,

data values are correlated, which practically reduces data dimensionality. Finally, the

results are for at most 6 dimensions. We note that arguably the prominent streaks

112

1 2 3 4 5 6
of dimensions

0

100

200

300

400

500

600

700

#
 o

f
p

ro
m

in
e
n

t
st

re
a
k
s Malone

a Number of Prominent Streaks

1 2 3 4 5 6
of dimensions

0

40

80

120

160

200

240

to
ta

l
ti

m
e
(m

s)

Malone

b Execution Time of LLPS

Figure 3.13: Experiments on Increasing Dimensionality.

Table 3.13: Data Sequences Used in Experiments on Top-5 Multi-sequence Multi-
dimensional Prominent Streak Discovery.

name # sequences average length # dimensions # prominent streaks description
NBA2 1185 290 6 10867 1991-2004 game log of all

NBA players (minutes,
points, rebounds, assists,
steals, blocks)

found in the real world, such as the ones in Section 3.1, mostly would not have more

than 6 dimensions.

Putting it Together: Top-k Prominent Streaks on Multiple Multi-dimensional

Sequences:

We also used dataset NBA2 (Table 3.13) for experiments on discovering top-k

prominent streaks from multiple multi-dimensional sequences. This dataset contains

1185 6-dimensional sequences, each of which corresponds to the game log of an NBA

player from 1991 to 2004. One of the sequences is the aforementioned dataset Malone.

Figure 3.14 shows that distribution of prominent streaks by length. It is clear

that the distribution follows the power law. The reason is that the minimal value

Table 3.14: Number of Candidate Streaks, Top-5 Multi-sequence Multi-dimensional
Prominent Streak Discovery.

name Baseline NLPS LLPS
NBA2 9.41× 107 2.98× 106 8.76× 105

113

Table 3.15: Execution Time (in Milliseconds), Top-5 Multi-sequence Multi-
dimensional Prominent Streak Discovery.

name Baseline NLPS LLPS
NBA2 1.39× 107 4.33× 105 1.14× 105

100 101 102 103

length of streak

100

101

102

103

104
n

u
m

b
e
r

o
f

st
re

a
k
s

NBA2

Figure 3.14: Distribution of Prominent Streaks by Length.

a Number of Candidate Streaks

0 1 2 3
position

0

2

4

6

8

10

12

si
ze

NBA2

Baseline, NLPS
LLPS

×103

×105

b Size of Dynamic Skyline

0 10 20 30
position

0

10

20

30

40

50

ti
m
e
(m

s)

NBA2
LLPS-1, NLPS
LLPS-2
LLPS-4
LLPS-8
LLPS-16

×104

×104

c Cumulative Execution Time at Various
Positions, for Different Reporting Fre-
quencies

100 101 102 103

length of the interval

10

20

30

40

50

to
ta

l
ti

m
e
(m

s)

NBA2×104

d Total Execution Time by Reporting
Frequencies

Figure 3.15: Detailed Results on NBA2, Top-5 Multi-sequence Multi-dimensional
Prominent Streak Discovery.

114

vector for a streak takes the minimal value on each dimension from all elements.

The longer a streak is, the smaller the values in its minimal value vector become.

Therefore it is difficult for a long streak to stand out as prominent. Figure 3.15 shows

detailed experimental results on this dataset which show similar patterns to those

observed for aforementioned experiments.

115

CHAPTER 4

Data In, Fact Out: Automated Monitoring of Facts by FactWatcher

4.1 Introduction

Computational journalism [84, 85] is a young field that assists journalism using

computing. One of its objectives is to find news leads backed up by hard, factual data.

In the last several years, our research in this thrust has been focused on automatic

and algorithmic fact finding by database and data mining techniques [86, 87, 88, 89].

Specifically, we studied how to monitor three types of facts that can be expressed as

the following factual statements:

Situational fact [88] “The social world’s most viral photo ever generated

3.5 million likes, 170,000 comments and 460,000 shares by Wednesday afternoon.”

(http: // www. cnbc. com/ id/ 49728455) A situational fact is about a contextual skyline

object within a certain context (e.g., all photos posted to Facebook) with regard to

several measures (e.g., number of “likes”, number of “comments”, and number of

“shares”), i.e., the object is not dominated by any object in the context when they

are compared by the measures.

One-of-the-few [87] “Victor Oladipo scored 30 points and handed out 14

assists ... only three other rookies have recorded at least 30 points and 14 assists

in a game ...” (http: // espn. go. com/ espn/ elias? date= 20140222) This statement

is about a one-of-the-four object, which is only dominated by at most three other

objects.

Prominent streak [86, 89] “This month the Chinese capital has experienced

10 days with a maximum temperature in around 35 degrees Celsius—the most for the

116

http://www.cnbc.com/id/49728455
http://espn.go.com/espn/elias?date=20140222

month of July in a decade.” (http: // www. chinadaily. com. cn/ china/ 2010-07/ 27/

content_ 11055675. htm) A prominent streak is a long consecutive subsequence (e.g.,

10 days of temperature) consisting of only large (small) values (e.g., all above a value

close to 35 degrees) within a sequence of values (e.g., daily maximum temperature of

Beijing).

Automatic fact finding is helpful in multiple news domains, as factual state-

ments similar to the above ones can be found from not only social media, sports and

weather data, but also criminal records, government records and stock data. Several

more examples are 1) situational fact: “There were 35 DUI arrests and 20 collisions in

city C yesterday, the first time in 2013.” 2) one-of-the-few: “Rick Perry is one of the

only three candidates in the 2012 US federal election cycle to have received at least

$600k from ‘lawyers & lobbyists’ (an interest group that is usually pro-Democrat) and

$400k from ‘energy & natural resources’ (usually pro-Republican).” and 3) prominent

streak: “The Nikkei 225 closed below 10000 for the 12th consecutive week, the longest

such streak since June 2009.”

This chapter demonstrates FactWatcher, a system for automated monitoring

of the aforementioned three types of facts. Figure 4.1 illustrates the components

of FactWatcher. Given an ever-growing database, upon the arrival of a new tuple

t, FactWatcher checks if t triggers any new situational facts, one-of-the-few facts,

and prominent streaks. It is impossible (especially with a manual approach) to

exhaustively check all possible facts upon the arrival of every new tuple in a large

database, due to the large search space. The systematic and efficient algorithms

in FactWatcher thus enable a practical tool that assists journalists in identifying

newsworthy stories. This is particularly valuable when we consider the diminishing

readership and resources that traditional news media is facing.

117

http://www.chinadaily.com.cn/china/2010-07/27/content_11055675.htm
http://www.chinadaily.com.cn/china/2010-07/27/content_11055675.htm

!"#$%#"&'%()%*#+ !"#$#$%&'($)*+,$-./01

,'-.&/.#0-.)-1 !"23-456$##($)*+,$7-./01

23&4"'-'# !#3-%5+ !"23-456$##($)*+,01

)%*#+

"6 7(%8-3 #-%4 9 7#+ 3-: 9

+8 '5-95- :;<**.-, = 8> ? =

+> '5-95- :;<**.-, = @ 88 =

= = = = = = =

+A B3C,. B.5+ = @ D =

+@ '5-95- :;<**.-, = 8E 88 =

;(<&3"#04+

=%'5"'<>3%'+(%#"&'

!#&3"-+

=$(-+?@?>-47(%#-+

!"#$%#"&'%(?)%*#+

F373+G.-7*;5H.-7,I3-.4793-.7*+, 5647-./ 5J5<6,+7%&'7+G56723-456
,'-.&/.#0-.)-1

23-4567,I3-.478E7*+, K78E7-./L7M6;H7N73+G.-,7G5O.7,<9<;5-7*.-P3-956I.
23&4"'-'#?!#3-%5+

23-4567,I3-.47@Q7*+, <67R7I36,.IC+<O.7J59.,

!-%3*0

A+-3

Figure 4.1: FactWatcher System Architecture

FactWatcher is an integrated system beyond the piecemeal algorithms in [86,

87, 88, 89]. It incorporates all three types of facts into a unified suite of data model,

algorithm framework and fact ranking measure. It enables monitoring one-of-the-few

facts in all different subspaces of dimension and measure attributes, which was not

considered in [87]. It also supports a novel measure for ranking all types of facts

by the elapsed time since their last comparable facts were discovered. Furthermore,

FactWatcher provides multiple features in striving for an end-to-end system. By

using rules and templates, the discovered facts are translated into textual news leads

and presented to users; it allows users to customize the system by choosing which

attributes in the database to consider and which measures to employ in ranking facts;

it also supports keyword-based search of facts.

118

Table 4.1: A Data Table for the Running Example

id player team opposition team pts ast reb
t1 Lamar Odom Clippers Nets 12 9 13
t2 Lamar Odom Clippers Lakers 8 11 6
t3 Lamar Odom Clippers Lakers 9 9 7
t4 Eddie House Heat Nets 9 7 8
t5 Lamar Odom Heat Nets 10 11 12
t6 Eddie House Clippers Nets 10 11 10
t7 Eddie House Heat Wizards 8 6 9

t8 Lamar Odom Clippers Lakers 10 11 11

4.2 Concepts

Consider an append-only table R(D;M), where D={d1, . . . , dn} is a set of

dimension attributes and M = {m1, . . . ,mq} is a set of measure attributes. A

constraint C is a conjunctive expression of the form d1=v1∧ . . .∧ dn=vn (also written

as 〈v1, v2, . . . , vn〉 for simplicity), where vi∈dom(di)∪{∗} and dom(di) is the value

domain of dimension attribute di. The set of all possible constraints is denoted C.

Given a constraint C ∈ C, σC(R) is the relational algebra expression that chooses all

tuples in R that satisfy C.

Given a measure subspace M⊆M and two tuples t, t′∈R, t dominates t′ with

respect to M , denoted by t�M t
′ or t′≺M t, if t is not worse than t′ on any measure

attribute in M and t is better than t′ on at least one measure attribute. Let δM(R, t)

denote the number of tuples in R that dominate t with regard to M . The k-skyband

(k≥1) of R in M , denoted λkM(R), is the set of tuples in R dominated by fewer than

k other tuples, i.e., λkM(R)={t∈R | δM(R, t)<k}. The 1-skyband (λ1
M(R), or simply

λM(R)) is known as the skyline of R. Given a user-specified threshold τ ≥ 1, the top-τ

skyband of R in M , denoted τM(R), is the k̂-skyband where k̂=max{k | τ ≥ |λkM(R)|},

i.e., k̂ is the largest such integer that the k̂-skyband has no more than τ tuples. (For

rigor, we say λ0
M(R)=0.)

When a new tuple t is appended to R, FactWatcher discovers three types of

interesting facts about t, as follows.

119

Situational fact FactWatcher finds St={(C,M) | C∈C, M ⊆M, t∈λM(σC(R

))}—the set of constraint-measure pairs (C,M) such that t is in the corresponding

contextual skyline, i.e., the skyline of those objects satisfying C with regard to M .

Consider Table 4.1, where D={player, team, opposition team} and M={pts, ast,

reb}. The last appended tuple t8 belongs to the contextual skylines for several

constraint-measure pairs, including (〈*, *, Lakers〉, {pts, ast}) and (〈Lamar Odom, Clippers, * 〉,

{ast}).

One-of-the-few FactWatcher discovers F t={(C,M) | C ∈C, M⊆M, t∈τM(σC(R))}—

the set of such constraint-measure pairs (C,M) that t is in the corresponding top-τ

skyband. Consider Table 4.1 again. For constraint-measure pair (〈Lamar Odom, *, * 〉,

{pts, reb}), the skyline, 2-skyband and 3-skyband are {t1}, {t1, t5} and {t1, t5, t8},

respectively. Hence, t8 belongs to the top-3 skyband but not the top-2 skyband of

this constraint-measure pair.

Prominent streak Given a set of object identification attributes I⊆D, G={I∪

S | S∈2D−I} defines all considered ways of grouping tuples. In Table 4.1, if I={player},

then G={{player}, {player, team}, {player, opposition team}, {player, team, oppo-

sition team}}. Given grouping attributes G∈G, the corresponding group-by and

aggregation operation is denoted seq γG(R). seq is an aggregate function that, for

each distinct value g of G (i.e., a group), produces an ordered sequence Pg=te1 . . . teu

consisting of all tuples in the group, i.e., ∀1≤i≤u, tei [G]=g. The tuples are ordered

by their unique timestamps—∀1≤i<j≤u, tei was inserted into R before tej , i.e., the

real-world event for tei happened before that for tej .

A streak s in a sequence Pg=te1 . . . teu is any consecutive subsequence tel . . . ter .

We use s.len to denote the length of s (i.e., r−l+1). We use s.~v to denote the vector

containing the minimal value in s on every measure attribute, i.e., s.~v=(minl≤i≤rtei [m1],

. . . , minl≤i≤r tei [mq]), where {m1, ...,mq} forms the set of all measure attributes M.

120

Given a set of streaks S and a measure subspace M⊆M, s∈S is prominent if s is not

dominated by any other streak (i.e., s is a skyline streak in S), where the dominance

relation is based on streaks’ lengths and the projections of their minimal value vectors

on M . Hence, we use λ{len}∪M(S) to denote the set of all prominent streaks in S with

regard to M .

Upon arrival of the latest tuple t, FactWatcher discovers P t= {(G,M) | G∈G,

M⊆M, ∃ s∈λ{len}∪M(S(Pt[G])) s.t. s= . . . t}, where S(Pt[G]) denotes the set of all

streaks in sequence Pt[G]. In other words, with regard to G and M , the arrival

of t establishes one or more new prominent streaks that end at t. Suppose the

tuples in Table 4.1 are ordered by their ids. Consider I={player}, G={player,

team} and group g for player=Lamar Odom, team = Clippers. Before arrival of

t8, Pg=t1t2t3 and thus S(Pg)= {t1, t2, t3, t1t2, t2t3, t1t2t3}. The prominent streaks

with regard to M={pts, ast} are λ{len,pts,ast} (S(Pg))={t1, t2, t1t2t3}. Note that steak

s=t1t2 (s.len=2, s.~v=(8, 9)) is not prominent because it is dominated by streak

s′=t1t2t3 (s′.len=3, s′.~v=(8, 9)). Upon arrival of t8, Pg = t1t2t3t8, and the prominent

streaks λ{len,pts,ast} (S(Pg)) become {t1, t8, t1t2t3t8}. There are more than one new

prominent streaks ending at t8, corresponding to facts related to t8.

4.3 User Interface

Figure 4.2 shows FactWatcher’s customized GUI for NBA (National Basketball

Association) data, where new tuples—players’ statistics in individual games—come

into the database when a game is over. The GUI’s structure is dataset-agnostic as long

as the data table is modeled by R(D;M) as given in Section 4.2. For instance, for data

analytics of a social network service, suppose the dimension attributes are D={user

age, user city, post type, timestamp} and the measure attributes areM={number of

likes, number of comments, number of shares}. FactWatcher finds facts such as “no

121

Figure 4.2: FactWatcher User Interface

one in Dallas has posted a photo that gets as many likes, comments and shares.” The

GUI consists of four areas, as follows.

1. Stories This area shows a ranked list of textual news leads (stories)

translated from facts that have ever been discovered and are still valid. It also allows

users search for translated stories by keywords. The translation is guided by a set of

templates and rules. For example, if t8 in Table 4.1 triggers a situational fact with

regard to constraint-measure pair (〈*, Clippers, Lakers〉, {pts, ast, reb}), the story is

“Lamar Odom had 10 points, 11 assists and 11 rebounds to become the first Clippers

player with a 10/11/11 (points/ assists/ rebounds) game against the Lakers.”

If a story is clicked, FactWatcher shows below it more stories for the same

constraint-measure pair (C,M) or grouping-measure pair (G,M), as illustrated in

Figure 4.2. It also presents bar charts to compare the stories by their values on M .

2. Ranking FactWatcher allows users to choose from several ways of ranking

facts and their corresponding stories.

122

Recentness This default option simply orders facts by their triggering tuples’ times-

tamps.

Popularity This option ranks facts by the frequencies of facts appearing in search

results within the last x months, where x can be controlled using a slidebar.

Interestingness This option ranks facts by the elapsed time since their last compa-

rable facts were discovered. Suppose tuple t triggers a new situational fact f1 with

regard to constraint-measure pair (C,M) and a new prominent streak f2 with regard

to grouping-measure pair (G,M). The interestingness of f1 (f2) is the elapsed time

since the last fact was discovered in (C,M) ((G,M)). The longer the elapsed time

is, the more interesting a fact is, since a long elapsed time indicates the fact does not

come by easily.

3. Exploration This area presents a faceted interface for exploring the

stories. Each facet corresponds to a dimension or measure attribute. Under the facet

for a dimension attribute, the attribute values are associated with and ordered by

numbers, which indicate how many facts involve the values. For instance, Figure 4.2

shows that there are 31 facts for such (C,M) that the constraint C has a conjunct

player=Lamar Odom. FactWatcher places a checkbox beside each attribute value. A

user can select/unselect the checkboxes across multiple facets. The selected values

within one facet correspond to a disjunctive condition, and the disjuncts from different

facets form a conjunctive condition. They together correspond to multiple constraints.

Each fact (story) displayed in the “stories” area must satisfy one such constraint.

Beside the facet for a measure attribute, FactWatcher presents a slidebar and

a button. A user can click the button to enable or disable a measure attribute.

Accordingly the “stories” area displays such stories whose corresponding measure

subspaces M only involve one or more enabled measure attributes. The user can

also use the slidebar to set the minimum and maximum desired values on an enabled

123

attribute mi. Accordingly the displayed facts (stories) must have values on mi within

the range.

4. Analytics This area visualizes statistics on facts related to objects selected

by a user. The “stories” area highlights the objects (values on object identification

attributes) in stories, e.g., Allen Iverson, Lamar Odom, etc. in Figure 4.2. When a

user clicks on an object, it is added to the object list in the middle of the “analytics”

area. The user can remove an object by clicking the crossmark beside it. The top

part of the “analytics” area is a line chart, which shows one line per selected object

that represents the number of facts (among the displayed facts in the “stories” area)

triggered by the object over each time period. When the user hovers the mouse on

a data point, a pop-up box shows, for each measure attribute, the number of facts

whose measure subspaces contain the measure attribute. The bottom part of this

area is a radar chart, which shows one polygon per selected object that represents

how many facts triggered by the object are related to each measure attribute.

4.4 Algorithms

Situational fact

In finding situational facts upon the arrival of a new tuple t, a brute-force

approach would compare t with all existing tuples to determine whether t is domi-

nated, repeatedly for each constraint C satisfied by t in each measure subspace M .

This approach is clearly exhaustive due to comparison with every tuple, for every

constraint, and in every measure subspace. The algorithms in FactWatcher respond

to these inefficiencies by the following ideas.

Tuple reduction Instead of comparing t with every previous tuple, it is sufficient to

only compare with current skyline tuples. This is based on the simple property that,

if any tuple dominates t, there must exist a skyline tuple that also dominates t. For

124

example, in Table 4.1, if the context is the whole table (i.e., no constraint) and the

measure subspace M={pts, reb}, the contextual skyline has one tuple—t1. When the

new tuple t8 comes, with regard to the same constraint-measure pair, it suffices to

compare t8 with t1 only.

Constraint pruning If new tuple t is dominated by another tuple t′ in a measure

subspace M , then t does not belong to the contextual skyline of (C,M) for any con-

straint C satisfied by both t and t′. For example, since t8 is dominated by t1 in the full

measure spaceM, it is not in the contextual skylines of (〈Lamar Odom, Clippers, * 〉,

{M}), (〈Lamar Odom, *, * 〉, {M}), (〈*, Clippers, * 〉, {M}), and (〈*, *, * 〉, {M}).

Based on this, FactWatcher examines the constraints satisfied by t in a certain order,

and comparisons of t with skyline tuples associated with already examined constraints

are used to prune remaining constraints.

Sharing computation across measure subspaces FactWatcher considers the full mea-

sure spaceM first and prunes various constraints for measure subspaces. For instance,

after comparing t8 with t6 in M, it realizes that t8 has equal value on pts and

smaller value on ast and thus t8 is dominated by t6 in {pts, ast} and {ast} under the

constraints satisfied by both tuples.

Based on these ideas, the algorithms in FactWatcher efficiently maintain contex-

tual skylines for all constraint-measure pairs. Upon the arrival of a new tuple t, for all

measure subspaces starting from M, constraints satisfied by t (which form a lattice

based on subsumption relation between constraints and their corresponding contexts)

are visited in either a bottom-up or a top-down order. The new tuple is compared

with current skyline tuples associated with the constraints. Various constraints are

pruned based on above ideas. Skylines for all constraint-measure pairs are maintained

to include t and/or purge current skyline tuples if necessary.

One-of-the-few

125

While situational facts are about skyline objects, one-of-the-few facts are about

top-τ skyband objects. For each constraint-measure pair (C,M), the algorithms

maintain the k̂-skyband λk̂M(σC(R)) for such a dynamic k̂ that λk̂M(σC(R)) equals the

top-τ skyband τM(σC(R)), i.e., k̂=max{k | τ ≥ |λkM(σC(R))|}. A dominated tuple

cannot be immediately discarded. Instead, a counter should be maintained to record

δM(σC(R), t) for tuple t. Below is the core idea of maintaining top-τ skyband for a

particular (C,M).

Let R′ denote the relation after inserting a new tuple t′ into relation R. Sup-

pose t′ satisfies constraint C. For any t∈σC(R), t′ may increase δM(σC(R), t) by

at most 1. Hence, if τM(σC(R)) is equal to λk̂M(σC(R)), τM(σC(R′)) must be (i)

λk̂M(σC(R′)), (ii) λk̂−1
M (σC(R′)), or (iii) λk̂+1

M (σC(R′)). To support incremental compu-

tation, we maintain λk̂+1
M (σC(R)) (instead of λk̂M(σC(R))) and compute λk̂+1

M (σC(R′))

from λk̂+1
M (σC(R)). There are two cases, depending on how many tuples in σC(R)

dominate t′:

I. δM(σC(R), t′)≥k̂. By definition, t′ 6∈τM(σC(R′)), as it cannot dominate any tuple

t∈τM(σC(R)). In this case, τM(σC(R′))= λk̂M(σC(R′))=λk̂M(σC(R)).

II. δM(σC(R), t′)<k̂. In this case, update δM(σC(R′), t) for t∈ λk̂+1
M (σC(R)), and check

if k̂′ should be k̂, k̂ − 1, or k̂ + 1 for τM(σC(R′)).

Prominent streak

Upon a new tuple t, FactWatcher discovers new prominent streaks for all grouping-

measure pairs (G,M). To share computation across different M , a data-cube style

data structure and exploration space is adopted. Below we outline the key ideas of

how to incrementally monitor prominent streaks for a particular (G,M).

Our solution hinges upon the idea to separate two steps—candidate streak

generation which generates a small number of candidate streaks ending at the new

tuple without exhaustively considering all possible streaks, and skyline operation

126

which maintains a dynamic set of prominent streaks by performing dominance com-

parison between existing prominent streaks and candidate streaks. The effectiveness

of pruning in the first step is critical to overall performance, because execution time

of skyline algorithms increases superlinearly by number of candidates.

A brute-force approach to candidate streak generation would enumerate all

n(n+1)
2

possible streaks in an n-tuple sequence as candidates. We proposed the concept

of local prominent streak (LPS) for substantially reducing candidate streaks. The

intuition is, given a prominent streak s, there cannot be a super-sequence of s whose

minimal value vector dominates s.~v. In other words, s must be locally prominent as

well. Hence we only need to consider LPSs as candidates, the number of which is at

most n—the length of the sequence. The algorithm incrementally maintains possible

LPSs while new tuples keep getting appended to the database.

4.5 Usage Scenarios

FactWatcher is currently built upon several datasets, including an NBA dataset

and a weather dataset. The NBA dataset has 317,371 tuples of NBA box scores from

1991-2004, on 8 dimension and 7 measure attributes. The weather dataset has 7.8

million daily weather forecast records for 5,365 locations of UK from Dec. 2011 to

Nov. 2012. It has 7 dimension attributes and 7 measure attributes. When we explain

the usage scenarios below, we refer to the GUI in Figure 4.2 and its corresponding

NBA scenario.

Stories When a user visits FactWatcher, FactWatcher shows a list of stories

in area “stories” of Figure 4.2. The user enters a keyword query in the search box.

The list of stories will be updated. The faceted interface in area “exploration” and

the line chart and radar chart in area “analytics” will change accordingly. The user

127

then clicks a particular story. Similar stories will be shown below it, with bar charts

to compare the stories.

Ranking By default, the stories are ordered by recentness. The user explores

other ranking schemes by choosing the radio button for interestingness or popularity

in area “ranking”. When popularity is chosen, the user further uses the slidebar beside

it to control the period for assessing popularity of stories.

Exploration The user uses the faceted interface in area “exploration” to

explore stories. The user checks Lamar Odom, Allen Iverson and some others under

player and 2003-2004, 2004-2005 under season. The area “stories” will show stories

related to any of the selected players when they played for or against any team (as

she did not select anything under team) during 2003-2004 or 2004-2005 season. The

user further uses the slidebars for measure attributes to adjust the ranges of values

on these attributes. The area “stories” will only show those stories whose measure

attribute values do not fall out of the ranges. If the user wants to exclude a measure

attribute from the filtering criteria, she can click the button beside its slidebar to

disable it, e.g., Turnover in Figure 4.2.

Analytics When the user reads the stories, she can click on any underlined

objects, i.e., players. After a while, the user has clicked on multiple objects, which are

shown in the box in the middle of area “analytics”. The top line chart and bottom

radar chart in that area visualize the statistics on facts related to these objects, as

described in Section 4.3. If the user is not interested in an object anymore, she

can remove the object from comparison by clicking the “X” beside the object in the

middle box.

128

CHAPTER 5

Conclusion and Future Plans

In this thesis, we study the problem of discovering exceptional facts about

entities in knowledge graphs and discovering prominent streaks in sequence data.

Each exceptional fact consists of a pair (context, subspace). To tackle the challenge

of exploring the exponential large search spaces of both contexts and subspaces, we

propose a beam search based framework, Maverick, which applies a set of heuristics

during the discovery. A prominent streak is a long consecutive subsequence consisting

of only large (small) values. We propose efficient methods based on the concept

of local prominent streaks (LPS). The experiment results show that the proposed

framework Maverick and the LPS based methods are both efficient and effective for

discovering exceptional facts and prominent streaks, respectively.

Interesting future work on Maverick can be pursued along several directions

on both efficiency and usability. With regard to efficiency, the current system fo-

cuses on finding exceptional facts given a specific entity. What is more appealing

is a discovery mode in which the system automatically finds facts for all entities.

Straightforwardly applying the system on a large knowledge graph will thus lead to

exhaustive and repetitive computations for a huge number of entities. Devising algo-

rithms for sharing computations across different entities can significantly increase the

system’s capability over large knowledge graphs. For example, entities of the same

type usually share context-subspace pairs. It is feasible to avoid repetitive computa-

tion by materializing the intermediate results such as frequencies of subspace values

and contexts. Furthermore, the system currently considers a static knowledge graph

129

which in reality constantly evolves and grows. To produce up-to-date facts, one has

to repeatedly apply the system, which is not practical given the sheer size and change

frequency of real-world knowledge bases. Hence, another substantial improvement of

the system will be adding incremental exceptional fact discovery algorithms. With re-

gard to usability, how to present exceptional facts poses intriguing challenges related

to user interface, data visualization, and exceptionality measures. For instance, it is

appealing for the system to produce natural language descriptions of the facts. While

exceptionality measures such as one-of-the-few may lend itself to simple template-

based translations, it is much more challenging to precisely convey facts ranked by

more complex measures such as outlyingness and isolation score. Moreover, while

our user study helps gain insights into different exceptionality scoring functions, to

thoroughly understand their strengths and limitations, a more comprehensive and

larger scale user study is worth doing.

Prominent streak discovery provides insightful data patterns for data analysis

in many real-world applications and is an enabling technique for computational jour-

nalism. Given its real-world usefulness and complexity, the research on prominent

streaks in sequence data opens a spectrum of challenging problems. Here we briefly

outline several future directions. (1) More general concept of prominent streak can

be pursued. For instance, finding conditional prominent streaks is about discovering

constraints that make streaks prominent, e.g. “since June 2009” and “the month of

July” for the motivating example streaks in Section 3.1. (2) Prominent streaks can be

incorporated with the model of data cube [90]. Specifically, given a multi-dimensional

sequence, the goal is to discover prominent streaks in not only the full space but also

all possible subspaces. For example, given the NBA2 dataset used in our experiments,

we may want to find prominent streaks in spaces (points, rebounds), (points, assists,

blocks), and so on. (3) When there are many prominent streaks, it is important to

130

rank them by their interestingness, so that a user can focus on the top-ranked promi-

nent streaks. Some important ranking criteria to consider include streak length, the

number of similar prominent streaks in the dataset, values of prominent streaks and

so on. FactWatcher has made some attempts to address the challenge. For example,

it takes into account the rarity of the values of prominent streaks to compute the in-

terestingness score for a multi-dimensional prominent streak. However, the solution

is still less-than-ideal based on our observation.

131

REFERENCES

[1] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni, “Open

information extraction from the web.” in IJCAI, vol. 7, 2007, pp. 2670–2676.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “DBpe-

dia: A nucleus for a web of open data,” in ISWC, 2007.

[3] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: a

collaboratively created graph database for structuring human knowledge,” in

SIGMOD, 2008, pp. 1247–1250.

[4] D. Vrandečić and M. Krötzsch, “Wikidata: a free collaborative knowledgebase,”

Communications of the ACM, vol. 57, no. 10, pp. 78–85, 2014.

[5] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic knowl-

edge,” in WWW, 2007, pp. 697–706.

[6] S. Cohen, J. T. Hamilton, and F. Turner, “Computational journalism,” Com-

munications of the ACM, vol. 54, no. 10, pp. 66–71, Oct. 2011.

[7] S. Cohen, C. Li, J. Yang, and C. Yu, “Computational journalism: A call to arms

to database researchers,” in CIDR, 2011, pp. 148–151.

[8] X. Jiang, C. Li, P. Luo, M. Wang, and Y. Yu, “Prominent streak discovery in

sequence data,” in KDD, 2011, pp. 1280–1288.

[9] Y. Wu, P. K. Agarwal, C. Li, J. Yang, and C. Yu, “On “one of the few” objects,”

in KDD, 2012, pp. 1487–1495.

[10] A. Sultana, N. Hassan, C. Li, J. Yang, and C. Yu, “Incremental discovery of

prominent situational facts,” in ICDE, 2014, pp. 112–123.

132

[11] G. Zhang, X. Jiang, P. Luo, M. Wang, and C. Li, “Discovering general prominent

streaks in sequence data,” TKDD, vol. 8, no. 2, pp. 9:1–9:37, June 2014.

[12] N. Hassan, A. Sultana, Y. Wu, G. Zhang, C. Li, J. Yang, and C. Yu, “Data in, fact

out: Automated monitoring of facts by FactWatcher,” PVLDB, demonstration

description, vol. 7, no. 13, pp. 1557–1560, 2014.

[13] Y. Wu, P. K. Agarwal, C. Li, J. Yang, and C. Yu, “Computational fact checking

through query perturbations,” TODS, vol. 42, no. 1, pp. 4:1–4:41, Jan. 2017.

[14] N. Hassan, B. Adair, J. T. Hamilton, C. Li, M. Tremayne, J. Yang, and C. Yu,

“The quest to automate fact-checking,” in Proceedings of the 2015 Computa-

tion+Journalism Symposium, 2015.

[15] N. Hassan, G. Zhang, F. Arslan, J. Caraballo, D. Jimenez, S. Gawsane, S. Hasan,

M. Joseph, A. Kulkarni, A. K. Nayak, et al., “Claimbuster: The first-ever end-

to-end fact-checking system,” Proceedings of the VLDB Endowment (PVLDB),

demonstration description, vol. 10, no. 7, 2017.

[16] G. Zhang, D. Jimenez, and C. Li, “Discovering exceptional facts from knowledge

graphs.” in Proceedings of the 2018 ACM SIGMOD International Conference on

Management of Data (SIGMOD), 2018, p. To appear.

[17] X. Wang and I. Davidson, “Discovering contexts and contextual outliers using

random walks in graphs,” in ICDM, 2009, pp. 1034–1039.

[18] J. Gao, F. Liang, W. Fan, C. Wang, Y. Sun, and J. Han, “On community outliers

and their efficient detection in information networks,” in KDD, 2010, pp. 813–

822.

[19] B. Perozzi, L. Akoglu, P. I. Sánchez, and E. Müller, “Focused clustering and

outlier detection in large attributed graphs,” in KDD, 2014.

133

[20] H. Tong and C.-Y. Lin, “Non-negative residual matrix factorization: problem

definition, fast solutions, and applications,” Statistical Analysis and Data Min-

ing, vol. 5, no. 1, pp. 3–15, 2012.

[21] F. Angiulli, F. Fassetti, and L. Palopoli, “Detecting outlying properties of ex-

ceptional objects,” TODS, vol. 34, no. 1, pp. 7:1–7:62, Apr. 2009.

[22] F. Angiulli, F. Fassetti, G. Manco, and L. Palopoli, “Outlying property detection

with numerical attributes,” DMKD, pp. 1–30, 2016.

[23] T. Wu, D. Xin, Q. Mei, and J. Han, “Promotion analysis in multi-dimensional

space,” PVLDB, vol. 2, no. 1, pp. 109–120, 2009.

[24] L. Duan, G. Tang, J. Pei, J. Bailey, A. Campbell, and C. Tang, “Mining outlying

aspects on numeric data,” DMKD, vol. 29, no. 5, pp. 1116–1151, 2015.

[25] N. X. Vinh, J. Chan, S. Romano, J. Bailey, C. Leckie, K. Ramamohanarao, and

J. Pei, “Discovering outlying aspects in large datasets,” DMKD, vol. 30, no. 6,

pp. 1520–1555, 2016.

[26] M. A. Bornea, J. Dolby, A. Kementsietsidis, K. Srinivas, P. Dantressangle,

O. Udrea, and B. Bhattacharjee, “Building an efficient RDF store over a re-

lational database,” in SIGMOD, 2013.

[27] R. Rymon, “Search through systematic set enumeration,” Technical Reports

MS-CIS-92-66, Department of Computer and Information Science, University

of Pennsylvania, 1992.

[28] Y. Xu and A. Fern, “On learning linear ranking functions for beam search,” in

ICML, 2007, pp. 1047–1054.

[29] R. Cyganiak, D. Wood, and M. Lanthaler, “Rdf 1.1 concepts and abstract syn-

tax,” W3C Recommendation, 2014.

[30] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity of sparql,”

TODS, vol. 34, no. 3, p. 16, 2009.

134

[31] S. Harris and A. Seaborne, “Sparql 1.1 query language,” W3C recommendation,

vol. 15, 2013.

[32] L. Geng and H. J. Hamilton, “Interestingness measures for data mining: A

survey,” ACM Computing Surveys (CSUR), vol. 38, no. 3, p. 9, 2006.

[33] H.-P. Kriegel, P. Kröger, and A. Zimek, “Outlier detection techniques,” in KDD,

2010.

[34] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Trans-

lating embeddings for modeling multi-relational data,” in NIPS, 2013, pp. 2787–

2795.

[35] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding by

translating on hyperplanes.” in AAAI, 2014, pp. 1112–1119.

[36] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation

embeddings for knowledge graph completion.” in AAAI, 2015, pp. 2181–2187.

[37] M. Zhou, C. Zhang, X. Han, Y. Ji, Z. Hu, and X. Qiu, “Knowledge graph

completion for hyper-relational data,” in International Conference on Big Data

Computing and Communications, 2016, pp. 236–246.

[38] D. Brickley and R. Guha, “Rdf schema 1.1,” W3C Recommendation, 2014.

[39] M. Dean, G. Schreiber, S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks,

D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein, “Owl web ontology

language reference,” W3C Recommendation, 2004.

[40] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach (3rd Edi-

tion). Prentice Hall, 2010.

[41] R. Bisiani, “Beam search,” in Encyclopedia of Artificial Intelligence, 2nd ed.,

S. C. Shapiro, Ed. Wiley-Interscience, 1992, pp. 1467–1468.

[42] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in ICDM. IEEE,

2008, pp. 413–422.

135

[43] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis, “Grami: Frequent

subgraph and pattern mining in a single large graph,” Proceedings of the VLDB

Endowment, vol. 7, no. 7, pp. 517–528, 2014.

[44] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining multi-label data,” in Data

mining and knowledge discovery handbook. Springer, 2009, pp. 667–685.

[45] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. Lawrence

Erlbaum Associates, 1988.

[46] L. Akoglu, M. McGlohon, and C. Faloutsos, “Oddball: Spotting anomalies in

weighted graphs,” in PAKDD, 2010, pp. 410–421.

[47] U. Kang, J.-Y. Lee, D. Koutra, and C. Faloutsos, “Net-ray: Visualizing and

mining billion-scale graphs,” in PAKDD, 2014, pp. 348–361.

[48] I. Trummer, A. Halevy, H. Lee, S. Sarawagi, and R. Gupta, “Mining subjective

properties on the web,” in SIGMOD, 2015, pp. 1745–1760.

[49] W.-K. Wong, “Data mining for early disease outbreak detection,” Ph.D. disser-

tation, Pittsburgh, PA, USA, 2004.

[50] S. Cohen, C. Li, J. Yang, and C. Yu, “Computational journalism: A call to

arms to database researchers,” in Proceedings of the 5th Biennial Conference on

Innovative Data Systems Research (CIDR), 2011, pp. 148–151.

[51] X. Jiang, C. Li, P. Luo, M. Wang, and Y. Yu, “Prominent streak

discovery in sequence data,” in Proceedings of the 17th ACM SIGKDD

international conference on Knowledge discovery and data mining, ser. KDD

’11. New York, NY, USA: ACM, 2011, pp. 1280–1288. [Online]. Available:

http:// doi.acm.org/ 10.1145/ 2020408.2020601

[52] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline operator,” in Data

Engineering, 2001. Proceedings. 17th International Conference on, 2001, pp. 421–

430.

136

http://doi.acm.org/10.1145/2020408.2020601

[53] K.-L. Tan, P.-K. Eng, and B. C. Ooi, “Efficient progressive skyline

computation,” in Proceedings of the 27th International Conference on

Very Large Data Bases, ser. VLDB ’01. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 2001, pp. 301–310. [Online]. Available:

http:// dl.acm.org/ citation.cfm?id=645927.672217

[54] D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky: an online

algorithm for skyline queries,” in Proceedings of the 28th international conference

on Very Large Data Bases, ser. VLDB ’02. VLDB Endowment, 2002, pp. 275–

286. [Online]. Available: http:// dl.acm.org/ citation.cfm?id=1287369.1287394

[55] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline computation in

database systems,” ACM Trans. Database Syst., vol. 30, no. 1, pp. 41–82, Mar.

2005. [Online]. Available: http:// doi.acm.org/ 10.1145/ 1061318.1061320

[56] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient similarity search in sequence

databases,” pp. 69–84, 1993. [Online]. Available: http:// dx.doi.org/ 10.1007/ 3-

540-57301-1 5

[57] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subsequence match-

ing in time-series databases.” College Park, MD, USA: University of Maryland

at College Park, 1993.

[58] R. Agrawal, K.-I. Lin, H. S. Sawhney, and K. Shim, “Fast similarity

search in the presence of noise, scaling, and translation in time-

series databases,” in Proceedings of the 21th International Conference on

Very Large Data Bases, ser. VLDB ’95. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 1995, pp. 490–501. [Online]. Available:

http:// dl.acm.org/ citation.cfm?id=645921.673155

137

http://dl.acm.org/citation.cfm?id=645927.672217
http://dl.acm.org/citation.cfm?id=1287369.1287394
http://doi.acm.org/10.1145/1061318.1061320
http://dx.doi.org/10.1007/3-540-57301-1_5
http://dx.doi.org/10.1007/3-540-57301-1_5
http://dl.acm.org/citation.cfm?id=645921.673155

[59] B.-K. Yi, H. Jagadish, and C. Faloutsos, “Efficient retrieval of similar time se-

quences under time warping,” in Data Engineering, 1998. Proceedings., 14th

International Conference on, 1998, pp. 201–208.

[60] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proceedings of the

Eleventh International Conference on Data Engineering, 1995, pp. 3–14.

[61] R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations

and performance improvements,” pp. 1–17, 1996. [Online]. Available:

http:// dx.doi.org/ 10.1007/ BFb0014140

[62] M. Zaki, “Spade: An efficient algorithm for mining frequent sequences,”

Machine Learning, vol. 42, no. 1-2, pp. 31–60, 2001. [Online]. Available:

http:// dx.doi.org/ 10.1023/ A:1007652502315

[63] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and

M.-C. Hsu, “Mining sequential patterns by pattern-growth: The prefixspan

approach,” IEEE Trans. on Knowl. and Data Eng., vol. 16, no. 11, pp. 1424–1440,

Nov. 2004. [Online]. Available: http:// dx.doi.org/ 10.1109/ TKDE.2004.77

[64] X. Yan, J. Han, and R. Afshar, “CloSpan: Mining closed sequential patterns

in large datasets,” in Proceedings of SIAM International Conference on Data

Mining, 2003, pp. 166–177.

[65] P. Smyth et al., “Clustering sequences with hidden markov models.” Citeseer,

1997, pp. 648–654.

[66] T. Oates, L. Firoiu, and P. Cohen, “Clustering time series with hidden markov

models and dynamic time warping,” in Proceedings of the IJCAI-99 Workshop on

Neural, Symbolic and Reinforcement Learning Methods for Sequence Learning,

1999, pp. 17–21.

138

http://dx.doi.org/10.1007/BFb0014140
http://dx.doi.org/10.1023/A:1007652502315
http://dx.doi.org/10.1109/TKDE.2004.77

[67] T. W. Liao, “Clustering of time series data-a survey,” Pattern Recogn.,

vol. 38, no. 11, pp. 1857–1874, Nov. 2005. [Online]. Available: http:

// dx.doi.org/ 10.1016/ j.patcog.2005.01.025

[68] Y.-I. Shin and D. Fussell, “Parametric kernels for sequence data analysis,” in

Proceedings of the 20th international joint conference on Artifical intelligence,

ser. IJCAI’07. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

2007, pp. 1047–1052. [Online]. Available: http:// dl.acm.org/ citation.cfm?id=

1625275.1625445

[69] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, “Basic local alignment

search tool,” Journal of molecular biology, vol. 215, no. 3, pp. 403–410, 1990.

[70] L. Rabiner, “A tutorial on hidden markov models and selected applications in

speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[71] H. T. Kung, F. Luccio, and F. P. Preparata, “On finding the maxima of a set

of vectors,” J. ACM, vol. 22, no. 4, pp. 469–476, Oct. 1975. [Online]. Available:

http:// doi.acm.org/ 10.1145/ 321906.321910

[72] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with presorting,” in

Data Engineering, 2003. Proceedings. 19th International Conference on, 2003,

pp. 717–719.

[73] J. Pei, Y. Yuan, X. Lin, W. Jin, M. Ester, Q. Liu, W. Wang, Y. Tao, J. X.

Yu, and Q. Zhang, “Towards multidimensional subspace skyline analysis,”

ACM Trans. Database Syst., vol. 31, no. 4, pp. 1335–1381, Dec. 2006. [Online].

Available: http:// doi.acm.org/ 10.1145/ 1189769.1189774

[74] Y. Tao, X. Xiao, and J. Pei, “Subsky: Efficient computation of skylines

in subspaces,” in Proceedings of the 22nd International Conference on Data

Engineering, ser. ICDE ’06. Washington, DC, USA: IEEE Computer Society,

2006, pp. 65–. [Online]. Available: http:// dx.doi.org/ 10.1109/ ICDE.2006.149

139

http://dx.doi.org/10.1016/j.patcog.2005.01.025
http://dx.doi.org/10.1016/j.patcog.2005.01.025
http://dl.acm.org/citation.cfm?id=1625275.1625445
http://dl.acm.org/citation.cfm?id=1625275.1625445
http://doi.acm.org/10.1145/321906.321910
http://doi.acm.org/10.1145/1189769.1189774
http://dx.doi.org/10.1109/ICDE.2006.149

[75] Z. Zhang, X. Guo, H. Lu, A. K. H. Tung, and N. Wang, “Discovering strong

skyline points in high dimensional spaces,” in Proceedings of the 14th ACM

international conference on Information and knowledge management, ser. CIKM

’05. New York, NY, USA: ACM, 2005, pp. 247–248. [Online]. Available:

http:// doi.acm.org/ 10.1145/ 1099554.1099610

[76] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang,

“On high dimensional skylines,” in Proceedings of the 10th international

conference on Advances in Database Technology, ser. EDBT’06. Berlin,

Heidelberg: Springer-Verlag, 2006, pp. 478–495. [Online]. Available: http:

// dx.doi.org/ 10.1007/ 11687238 30

[77] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang, “Selecting stars: The k most repre-

sentative skyline operator,” in Data Engineering, 2007. ICDE 2007. IEEE 23rd

International Conference on, 2007, pp. 86–95.

[78] Y. Tao, L. Ding, X. Lin, and J. Pei, “Distance-based representative skyline,”

in Proceedings of the 2009 IEEE International Conference on Data Engineering.

Washington, DC, USA: IEEE Computer Society, 2009, pp. 892–903. [Online].

Available: http:// portal.acm.org/ citation.cfm?id=1546683.1547325

[79] T. Xia and D. Zhang, “Refreshing the sky: the compressed skycube with

efficient support for frequent updates,” in Proceedings of the 2006 ACM

SIGMOD international conference on Management of data, ser. SIGMOD

’06. New York, NY, USA: ACM, 2006, pp. 491–502. [Online]. Available:

http:// doi.acm.org/ 10.1145/ 1142473.1142529

[80] B. Jiang and J. Pei, “Online interval skyline queries on time series,” in

Proceedings of the 2009 IEEE International Conference on Data Engineering,

ser. ICDE ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.

1036–1047. [Online]. Available: http:// dx.doi.org/ 10.1109/ ICDE.2009.70

140

http://doi.acm.org/10.1145/1099554.1099610
http://dx.doi.org/10.1007/11687238_30
http://dx.doi.org/10.1007/11687238_30
http://portal.acm.org/citation.cfm?id=1546683.1547325
http://doi.acm.org/10.1145/1142473.1142529
http://dx.doi.org/10.1109/ICDE.2009.70

[81] M. Wang and X. S. Wang, “Finding the plateau in an aggregated time series,”

in Proceedings of the 7th international conference on Advances in Web-Age

Information Management, ser. WAIM ’06. Berlin, Heidelberg: Springer-Verlag,

2006, pp. 325–336. [Online]. Available: http:// dx.doi.org/ 10.1007/ 11775300 28

[82] J. L. Bentley, “Multidimensional binary search trees used for associative

searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sept. 1975. [Online].

Available: http:// doi.acm.org/ 10.1145/ 361002.361007

[83] ——, “Multidimensional binary search trees in database applications,” Software

Engineering, IEEE Transactions on, vol. SE-5, no. 4, pp. 333–340, 1979.

[84] S. Cohen, J. T. Hamilton, and F. Turner, “Computational journalism,” Commun.

ACM, vol. 54, no. 10, pp. 66–71, October 2011.

[85] S. Cohen, C. Li, J. Yang, and C. Yu, “Computational journalism: A call to arms

to database researchers.” in CIDR, 2011, pp. 148–151.

[86] X. Jiang, C. Li, P. Luo, M. Wang, and Y. Yu, “Prominent streak discovery in

sequence data,” in KDD, 2011, pp. 1280–1288.

[87] Y. Wu, P. K. Agarwal, C. Li, J. Yang, and C. Yu, “On one of the few objects,”

in KDD, 2012, pp. 1487–1495.

[88] A. Sultana, N. Hassan, C. Li, J. Yang, and C. Yu, “Incremental discovery of

prominent situational facts,” in ICDE, 2014, pp. 112–123.

[89] G. Zhang, X. Jiang, P. Luo, M. Wang, and C. Li, “Discovering general prominent

streaks in sequence data,” ACM TKDD, vol. 8, no. 2, pp. 9:1–9:37, June 2014.

[90] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,

F. Pellow, and H. Pirahesh, “Data cube: A relational aggregation

operator generalizing group-by, cross-tab, and sub-totals,” Data Min.

Knowl. Discov., vol. 1, no. 1, pp. 29–53, Jan. 1997. [Online]. Available:

http:// dx.doi.org/ 10.1023/ A:1009726021843

141

http://dx.doi.org/10.1007/11775300_28
http://doi.acm.org/10.1145/361002.361007
http://dx.doi.org/10.1023/A:1009726021843

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	Introduction
	Discovering Exceptional Facts from Knowledge Graphs
	Introduction
	Problem Formulation
	Overview of Framework
	Context Evaluator

	Exceptionality Evaluator
	Finding Top-k Subspaces
	Exceptionality Scoring Functions
	Upper Bound Functions

	Pattern Generator
	Search Space of Patterns
	Match-based Construction of Patterns
	Pattern Pruning Strategies
	Pattern Selection Heuristics (h)

	Experiments
	Experiment Setup
	Efficiency
	Effectiveness
	Scalability
	User Study for Comparing Exceptionality Scoring Functions
	Case Study

	Related work

	Discovering General Prominent Streaks in Sequence Data
	Introduction
	Problem Definition
	Overview of the Solution
	Summary of Contributions and Outline

	Related Work
	Discovering Prominent Streaks from Local Prominent Streaks
	Local Prominent Streak (LPS)
	LPS[k](P[k]) and LPS[k](P[k]**k)
	Non-linear LPS Method
	Linear LPS Method

	Monitoring Prominent Streaks
	Discovering General Prominent Streaks
	Top-k Prominent Streaks
	Multi-sequence Prominent Streaks
	Multi-dimensional Prominent Streaks

	Experiments
	Experimental Results on Basic Prominent Streak Discovery
	Experimental Results on General Prominent Streak Discovery

	Data In, Fact Out: Automated Monitoring of Facts by FactWatcher
	Introduction
	Concepts
	User Interface
	Algorithms
	Usage Scenarios

	Conclusion and Future Plans
	REFERENCES

