
CRYPTO RANSOMWARE ANALYSIS  

AND DETECTION USING  

PROCESS MONITOR 

by 

 

ASHWINI BALKRUSHNA KARDILE 

 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

MASTER OF SCIENCE IN COMPUTER SCIENCE 

 
 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

December 2017 

  



ii 

Copyright © by Ashwini Balkrushna Kardile 2017 

All Rights Reserved 

 

 
 



iii 

Acknowledgements 

I would like to thank Dr. Ming for his timely guidance and motivation. His insights for this 

research were valuable. I would also like to thank my committee members Dr. David 

Levine and Dr. David Kung for taking out time from their schedule and attending my 

dissertation. I am grateful to John Podolanko; it would not have been possible without his 

help and support. Thank you, John, for helping me and foster my confidence. I would like 

to thank my colleagues for supporting me directly or indirectly.  

Last but not the least; I would like to thank my parents, my family and my friends 

for encouraging me and supporting me throughout my research. 

 

November 16, 2017 
 



iv 

Abstract 
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Supervising Professor: Jiang Ming 

Ransomware is a faster growing threat that encrypts user’s files and locks the computer 

and holds the key required to decrypt the files for ransom. Over the past few years, the 

impact of ransomware has increased exponentially. There have been several reported 

high profile ransomware attacks, such as CryptoLocker, CryptoWall, WannaCry, Petya 

and Bad Rabbit which have collectively cost individuals and companies well over a billion 

dollars according to FBI. As the threat of ransomware has become more prevalent, 

security companies and researchers have begun proposing new approaches for 

detection and prevention of ransomware. However, these approaches generally lack 

dynamicity and are either prone to a high false positive rate, or they detect ransomware 

after some amount of data loss has occurred.  

This research represents a dynamic approach to ransomware analysis and is 

specifically developed to detect ransomware on the user’s data. It starts by generating an 

artificial user environment using Cuckoo Sandbox and monitoring system behavior using 

Process Monitor to analyze ransomware in its early stages before it interacts with the 

user’s files. By utilizing a Cuckoo sandbox with Process Monitor, I can generate a 

detailed report of system activities from which ransomware behavior is analyzed. This 
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model also keeps a record of file access rates and other file-related details in order to 

track potentially malicious behavior. In this paper, I demonstrate the ability of the model 

to identify Ransomware by providing a training set that consist of known ransomware 

families and samples listed on VirusTotal. 
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Chapter 1  

Introduction 

Ransomware is a special type of malicious software, also known as malware, which 

infects a system and limits a user’s access to the system and its files until a ransom is 

paid. It does this by encrypting the user’s files and locking the user’s desktop. 

Ransomware made its first appearances within the last decade and has quickly become 

one of the more critical threats to security. New ransomware programs are showing up 

every day, and they are generating enormous profits for the program authors. While most 

users refuse to pay the ransom, there are enough ransoms being paid to make 

ransomware a billion-dollar industry, and as a result, cybercriminals are exploring and 

acclimating new ways to extort money. In 2017, the ransomware landscape has shifted 

dramatically with the emergence of two new self-propagating threats WannaCry and 

Petya [17]. WannaCry attacked known Windows network vulnerabilities using exploits like 

EternalBlue, which allowed an intruder to execute arbitrary code on a targeted system by 

transmitting customized data packets [17]. WannaCry made global headlines after 

infecting more than 230,000 systems in over 150 countries and causing an estimated $5 

billion in damages [17]. Another example of rapidly growing ransomware that bubbled up 

in Ukraine and in Russia is Bad Rabbit. It started appearing shortly after the WannaCry 

and Petya ransomware families made headlines. Bad Rabbit targeted Ukraines Ministry 

of Infrastructure and Kievs public transport system. 

Compared to typical malware, ransomware shows a significant difference in its 

behavior. For example, traditional malware generally maintains a goal of achieving 

furtiveness so it can create a backdoor, or so it can gather information such as 

credentials for financial websites, keystrokes or a user’s webcam stream and send it to a 

remote command and control server without arousing suspicion. On the other hand, 
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ransomware does not establish backdoors nor collect private information. Rather, 

ransomware simply creates a denial of service of a system to its own user by encrypting 

files and/or locking the desktop.  

Given the rapid growth of ransomware attacks [17], it is important to come up 

with a technique to protect a users system against this malicious software. However, we 

require a low-level understanding of how ransomware interacts with a users system 

before we can build proper defenses in order to protect the user’s files. Many existing 

techniques for ransomware defense focus mainly on their levels of sophistication and 

their incremental improvements over ransomware attacks, but they lack a more practical 

and dynamic approach in ransomware defense techniques by only focusing on keeping 

their signature definitions up-to-date and only performing the most basic of analysis. In 

this paper, I take a much deeper dive into the analysis of the key functionalities of 

ransomware and its effects on a system using dynamic approach. 

Today, behavior-based malware detection can be achieved because of the 

breakthroughs in dynamic analysis. Code-based static analysis analyzes the suspicious 

files by examining its static properties that consist of header details, hashes, packer 

signature, date of creation, etc. A static approach for malware detection is usually 

performed on binary files without executing it and disassembling it using an interactive 

disassembler. In contrast, dynamic analysis is carried out by keenly observing the 

behavior of the malware while executing it on the system. It provides new insights by 

tracking the changes in the system as well as any unusual behavior. In dynamic analysis, 

certain changes in the system should raise a flag alerting the administrator of the files 

that have been modified and/or added and deleted, new processes that are running, 

registry modifications indicating what changes took place in the system, any new services 

or applications that has been installed, and any the modification of certain system 
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settings. While both static and dynamic analysis strives to accomplish the same goal, the 

dynamic approach is often performed in a virtual sandbox environment to prevent the 

malware from actually infecting a real user’s files. By using a sandbox environment, a 

virtual machine can easily be easily rolled back to a previous state once the malware has 

completed and been analyzed. Unfortunately, behavior-based malware detection system 

generally fails to detect ransomware because it is either looking for the placement of 

backdoors or the gathering of private information. It also fails because ransomware 

engages in activity that appears similar to benign applications that use encryption or 

compression. Moreover, many behavior-based systems look for very specific behaviors 

are constantly plagued by misclassification of ransomware as seen in several antiviruses 

[1, 5]. 

In this paper, I present an analysis system which follows a dynamic approach to 

detect ransomware attacks and model its behavior. In this approach, the system 

generates a realistic, artificial user environment in which ransomware samples are 

executed and their interactions with the system environment monitored. Close 

observation of the interaction of the ransomware with the file system permits the system 

to identify cryptographic ransomware behavior. In order for a ransomware attack to 

succeed, ransomware will need to access the user’s system, interfere with the files and 

lock the system leaving it inaccessible. In my approach, many ransomware samples are 

analyzed allowing for detection of ransomware by observing the file system. In addition, 

this approach provides insights on how to differentiate between distinct ransomware 

families such as Cerber, CryptoWall, Crysis, etc. by examining their file system calls. This 

approach utilizes the open-source Cuckoo Sandbox which creates a safe environment for 

executing untrusted and potentially malicious executables that prevent them from 

spreading and doesn’t sacrifice a user’s files or private information. Cuckoo accepts any 
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executable binary file and generates a detailed report drafting the behavior of the file 

when executed in a realistic environment. Once the malicious executable is submitted to 

the Cuckoo environment, a software suite called Process Monitor tracks the changes in 

the system in terms of file system activities, registry modifications, and network 

communication. Process Monitor is an advanced system tool for the Windows operating 

system that monitors and records all the system calls and other file-related activities. 

Process Monitor can be tailored to filter out unwanted information to focus on the 

ransomware behavior. 

In my research, I analyzed 495 of the latest malware samples, and this approach 

was able to correctly identify and detect 479 ransomware samples from multiple 

ransomware families with no false positives. The 96.7% detection rate of this approach 

suggests that it performs better than the current behavior-based analysis systems in 

regard to identifying and detecting ransomware samples expediently [5]. This model can 

easily be deployed and used on any malware analysis system. 
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Chapter 2  

Background 

Like other types of malware, ransomware continues to try new techniques to evade 

detection, new programming language, new naming conventions and more and more 

vehement demand tricks to pressure victims into paying ransom. One of the new 

techniques involves packaging ransomware in RarSFX executable files. Ransomware 

uses a number of different strategies to increase its potentially harmful behavior and 

attack the user. For example, it can corrupt the user’s file in multiple ways; inject a 

process or multiple processes, capture users information to a third party for extortion, 

encrypts users files and make it unreadable and establish a communication with 

command-and-control servers. Command and control servers, known as C&C servers, 

are used by attackers to establish and manage secure transmission with the targeted 

systems within the network. This detection approach expects that the collected samples 

of the ransomware can use all of the techniques and strategies that other malware may 

use, such as lack of user activity can be an indication of a Virtual environment, observing 

system configurations including screen resolution, name of the user, etc. In addition to 

this, the proposed system assumes that a successful ransomware attack performs one or 

more of the following activities [5]. 

Perpetual desktop warning: After the malicious sample submission to Cuckoo sandbox 

is followed by a successful execution of ransomware infection, a malicious program 

typically displays a warning message to the victim. This message, also known as a 

ransom note, informs users that their system has been infected by the ransomware and 

locks the desktop of the system. The contents of this ransom note provide and instruct 

users on how to pay the demanded ransom to regain the access to the system and 

unlock the computer. This ransom note or message can be generated in many different 
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ways. Malware authors can write an HTML code or can create other forms of continual 

Window to display this kind of message. But, a very prominent technique to generate the 

ransom note is to call dedicated API functions such as createDesktop() that creates a 

new desktop. Call this API function to create a new desktop displaying the ransom note 

and make it the persistent and configure a system to lock the victim out of the 

compromised system. Displaying such a ransom note is a usual action in many of the 

ransomware attacks. 

Discriminatory encryption and deletion of users private files based on attributes 

such as size and extension: Rather than deleting users files, some ransomware 

families encrypt the user’s private files selectively. To encrypt the user’s private files in 

more sophisticated manner, the ransomware sample can list the files based on its size 

and can even open an application and look for the recently accessed files. Some of the 

ransomware families can also inject malicious code into any Windows application that 

can be used to read process memory. 

Extensive encryption and deletion of user’s files: Ransomware families such as 

CryptoWall, CryptoLocker, Crysis attacks the system and lists the victims files. It 

contentiously encrypts the user’s private files it discovers and makes it unreadable and 

inaccessible by withholding the decryption key. The user can regain the access once the 

desired ransom is paid off. Encryption is carried out by using an encryption key which is 

either calculated locally by the malware on the targeted system or can be transmitted 

remotely on Command-and-control servers and then delivered to the targeted machine. 

An intruder may use Windows API functions such as DeleteFile, DeleteFileTransacted or 

customized threatening functions to delete the original files of the victim. Ransomware 

often calls DeleteFile function to remove files the user’s file from the system. The attacker 

can also overwrite the user’s files with the encrypted version of a file using Windows API. 



 

7 

 

7
 

In this approach, once the malicious sample file is submitted to the Cuckoo Sandbox [3], 

it restores the virtual machine environment and starts executing the malicious sample 

along with the Process Monitor [4] running at the startup. This process monitor monitors 

and tracks all the system calls, registry alteration, thread activities and network activities. 

Procmon displays customizable columns that consist of the information about individual 

events, the name of the process causing that event, event sequence number and 

timestamp. The result can easily be characterized by its column value. It can utilize one 

of the following features to carry out ransomware analysis and detection. 

Filtering: It is not easy to look for a particular result in Procmon when you have 

thousands of events. That’s where the ability to filter the events plays an important role. 

This feature is specifically useful in malware analysis as it provides a way to filter on 

individual system calls such as CreateFile, WriteFile, RegSetValue or any other 

suspicious calls. 

Processes with Process Explorer: This is an extremely powerful task manager tool 

included in the Process Monitor that must be running when performing dynamic analysis 

of malware. Process Explorer outlines all the active processes, process properties, and 

overall system properties. It shows five columns: Process, Process ID, CPU usage, 

Description and Company Name and updates its view every second. 

In this work, I address all these features and scenarios where an attacker has 

already compromised the targeted system with the malicious code and is able to initiate 

frivolous ransomware related operations on the user’s system. 
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Chapter 3 

Related Works 

In [9], Malone et al. propose using hardware performance counters to detect malicious 

program modifications at load time and runtime by acting as dynamic integrity checkers. 

The main benefit of this is that it incurs almost no hardware cost since they are built into 

most processors. The authors claim that hardware performance counters are very 

efficient at detecting program modifications.  

The biggest limitation to the research in [9] is that they tested their approach on programs 

running solo instead of in a dynamic environment where multiple programs are running 

simultaneously. Also, this only serves to protect benign programs and does nothing to 

detect standalone malware. Given that ransomware is generally standalone [12], this 

approach would require significant modification before it could expand its capabilities. 

In [11], Tang et al. continue previous works on hardware performance counters and use 

them to detect anomaly-based malware by looking at micro-architectural execution 

patterns. The author’s approach goes beyond that of recent works in behavior-based 

malware detection to detect a much wider range of malware to include zero-day by using 

machine learning to establish a baseline of benign program executions and use them to 

detect deviations, and the detector can be used in complement to existing signature-

based detections. 

Because the approach of using hardware performance counters for malware 

detection is a relatively new idea, it is still far from production ready. It is prone to a high 

false-positive rate, and it also requires baselines for every individual program on a 

computer to detect anomalies in the benign programs themselves in the event they are 

exploited or are under attack. This doesn’t do much for standalone malware detection. 
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The feasibility of building a malware detector in hardware using data from existing 

hardware performance counters is examined by Demme et al. in [12]. In this paper, the 

authors find that they can detect multiple variations of malware within families with ease 

given a small control set. They also propose modifications in hardware which allow the 

malware detector to run smoothly beneath the system software which is a great 

improvement over and fewer buggies than existing software-based antivirus solutions. 

When used in combination with software-based antivirus, the authors claim that their 

approach advances the state of the art in online malware detection. 

This paper provides a lot of solid insight and can serve as a foundation on which 

many future works can be built. As with anyone who develops malware-fighting solutions, 

the author’s voice concern over the potential for malware authors to once again adapt 

their programs to combat even hardware-based approaches such as the one discussed 

in their paper, but on the other hand it is good to see the hardware community finally join 

the fight against malware because it forces malware authors to step into a new arena in 

which they lose the advantage they have had over the anti-malware developers in the 

software arena since Brain was first discovered. 

In [6], Kharraz et al. view the evolution of ransomware in the wild from 2006-2014 and 

determine that the sophisticated destructive capabilities of most ransomware families lack 

growth despite the improvements of encryption, deletion and communications techniques 

in general. They insist that stopping advanced ransomware attacks is not as complex as 

commonly believed and that defenses involving file system monitoring can be practical 

and effective because ransomware generates file system requests much differently than 

benign programs. While the file system monitoring approach is indeed practical as 

evidenced by my own research, it alone is not enough due to the overwhelming 

percentage of ransomware samples analyzed by the authors that produced some amount 
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of data loss before being detected. Other than that, their analysis of the destructiveness 

of ransomware is thorough and was very useful in developing my own approach to 

combating ransomware. 

Kharraz et al. take this work even further in [5] by focusing on the difference 

between ransomware and all other existing families of malware. In the malware arena, 

ransomware stands alone in comparison with all the rest which is why nearly all generic 

malware detection systems are losing the fight against ransomware. The authors create a 

dynamic analysis system called UNVEIL which is designed to specifically detect 

ransomware and is to be used in combination with other malware detection systems. 

UNVEIL essentially generates a honeypot environment and detects ransomware as soon 

as it interacts with the user’s data. UNVEIL also monitors the desktop to detect any 

ransomware-like behavior such as a lock screen preventing the user from accessing their 

files. The authors boast that UNVEIL greatly improves upon the state of the art by 

demonstrating its capability to identify known evasive ransomware currently immune to 

detection by existing antivirus systems. 

This paper really does improve upon the state of the art given a zero false-

positive rate from over 13,000 samples and detects superficial and sophisticated as well 

as zero-day ransomware attacks. One limitation of the paper is the potential for 

ransomware to detect the artificially generated environment to avoid it. While it certainly 

raises the bar of difficulty for the ransomware author to circumvent, it is not infeasible. 

The other limitation is that most ransomware samples still incur some amount of data loss 

before detection. 

In [8], Kolodenker et al. propose a new system, PayBreak, to effectively combat 

ransomware and prevent any data loss. It does this by essentially creating a key escrow 

inaccessible to ransomware that holds every key used in encryption in a secure manner 
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thus allowing the decryption of any files encrypted by ransomware. PayBreak 

demonstrates the ability to restore all files lost to twelve different ransomware families, 

and it does so with negligible performance overhead. While complete data recovery or 

complete prevention of data loss is the ideal result of combating ransomware, PayBreak 

only manages to effectively work with only 60% of all ransomware families leaving eight 

common families of ransomware that can decimate a users system to go uninhibited. 

PayBreak also lacks a basic robustness allowing it to be evaded simply by ransomware 

authors rolling back to older versions of crypto libraries or through basic obfuscation and 

evasion techniques as stated by the authors themselves. Their approach was essentially 

just a proof-of-concept, and it is uncertain whether the authors will pursue any future work 

on PayBreak or not. 
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Chapter 4 

System Design 

In this chapter, I describe the techniques for detecting ransomware attacks. The 

malicious samples belong to distinct ransomware families. The ultimate goal of the 

proposed system is to detect the ransomware attack. As the system is built on the top of 

Cuckoo Sandbox, it is highly impossible to experience any data loss (which I have 

created for generating realistic user environment) as the Sandbox used here reverts back 

to its clean state once the malicious sample execution is completed. Detailed information 

about the system design and its approach and is described in this chapter.  

I first describe the need for creating an artificial, realistic user environment in 

each malicious sample run. Then, I mention how to capture the file system call traces and 

record the I/O access using the Process Monitor and describe how the proposed system 

manipulate the output of the Process monitor to detect and analyze the ransomware. 

Generating artificial user environment: It is important to prevent the malware analysis 

environment against the fingerprinting techniques. Sophisticated malware writers 

capitalize on and manipulate the static features inside the malware analysis systems 

such as the name of the computer, IP address of the computer, etc. and launch 

exploration attack to copy and use both public as well as private malware analysis 

systems. One static feature that can have a compelling impact on the effectiveness of the 

malware analysis systems is the user data that can be used efficiently to fingerprint the 

analysis environment. That is, in some tricky environments, where simple gimmicks such 

as virtualization checks are impossible, an impractical user environment can be a 

common sign that the code is running in a malware analysis system.  

A potential approach to address such exploration attacks is to create the user 

environment in such a way that the user data is real, persuasive and non-deterministic in 
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malicious sample execution. This automatically generated user environment serve as an 

appealing target machine to boost the ransomware to tamper user files and attack the 

user’s data while at the same time, prohibiting the feasibility of being recognized by the 

attacker. Apparently, generating a user environment is an important factor to be 

considered, especially if this is to be done automatically. This is treated as a non-trivial 

problem because the content generator should not permit the malware writer to capture 

the automatically generated user data resided in the malware analysis environment as 

well as demonstrate that it does not belong to a real user. In this approach, Cuckoo 

Sandbox provides four classic ways to prepare the guest machines such as VMware 

Workstation, KVM, XenServer and Virtual machine. I describe how to automatically 

generate a realistic yet artificial user environment for ransomware execution in each 

malware sample submission in Chapter 6. 

Monitoring file system activities: The file system monitor in the proposed system has 

direct access to the data buffers involved in I/O patterns, permitting the analysis system 

full control of the file system alterations. Every I/O operation contains process name, 

process ID, operation type, file system path, offset and the result of the I/O events carried 

out by each malware run. There are multiple ways to read, write, or list files in kernel 

mode and all of these functions are conclusively converted to a sequence of I/O requests. 

Procmon monitors all the system calls it can gather as soon as it is run. As 

multiple system calls exist on the Windows machine, it’s normally unreasonable to trace 

them all at once. Therefore, Process Monitor provides various features to perform file 

system activity trace. In this malware analysis system, procmon is run at the startup of 

each malicious sample execution as soon as the execution starts. As mentioned earlier, 

Procmon exhibits the configurable columns that contain information about the events 
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caused by the process. Figure 1 shows a collection of procmon events caused by a 

process that captured on a Virtual machine running a suspicious file. 

 

Figure 4-1 Process Monitor Sample Run 

Reading the operation column, one can easily read the information about the currently 

running process, operations that are performed on the system including registry access 

and file system access. There are multiple entries to look for which makes it difficult to 

identify the specific entry. Procmon can be set to filter the events caused by the running 

process, individual system calls, registry activities or other suspicious calls. It filters 

through all the recorded events when filtering is turned on. Procmon also provides four 

automatic filters on its toolbar: 

 File system: Analyzing the file system interactions can exhibit all the files that are 

created and used by malware. 

 Registry: By reviewing registry operations, self-propagating malware and self-

installing malwares can be identified. 

 Process activity: Malware spawned processes can be determined by observing 

the process activity. 
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 Network: Network connection analysis can exhibit the ports that malware is 

listening on. 

File system activities in Procmon set callbacks on I/O request to the file system. I 

considered the access pattern in terms of I/O traces such that T is an access pattern of tn 

and tn = (F;O; P;E) where: 

 F is files available in the system 

 O is the sequence of I/O access pattern 

 P is the processes running at each execution  

 E is the entropy of data buffers 

For each of the ransomware family, I observed that the malicious samples display 

distinctive yet repetitive I/O traces. Thus, this strategy to read, write, delete or deny/grant 

access to the file is reflected in the form of I/O access patterns. Therefore, these file 

access patterns can be treated as a different I/O sequence for a particular family. It is 

important to note that, the proposed system mainly considers read, write and delete file 

access. 

Calculating Shannon Entropy: Entropy is a classic indicator that provides information 

about the ambiguity of data. Encrypted or compressed data has high-value entropy 

whereas; normal user data has comparatively low-value entropy. For every read and 

write access request to a file is recorded in the I/O pattern. Generally, a successful 

ransomware attack outlines a consistently high-value entropy output as the malware 

reads the user’s files and writes the encrypted contents to the files. The system uses 

Shannon entropy for this computation as correlating the entropy value of read and write 

I/O requests serve a magnificent indicator of crypto-ransomware behavior. Assuming a 

uniform random distribution of bytes in the user’s file, Shannon entropy can be calculated 

[4, 7]. 
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Figure 4-2 System Architecture 

Access Patterns: For every execution, once the Procmon collects I/O access traces for 

the running sample, the system extract the I/O access pattern for each file submitted to 

the analysis system and check which processes accessed the file. This allows observing 

the repetition of I/O access patterns generated on behalf of the malicious sample in the 

run. The specific detection benchmark used by the system to detect the ransomware 

samples is mainly to identify write and delete operations in I/O pattern in each sample 

execution. Typical ransomware attack aims to encrypt, overwrite or delete the user’s file 

in order to tamper the user’s data. Such I/O request patterns are detected as suspicious 

file system activity. I studied and examined ransomware samples of different ransomware 

families, which shows that these attacks can be very different in their tampering 

strategies such as connecting to Command-and-Control servers, key generation, etc. 
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Figure 4-3 High-level access patterns for various ransomware samples 

Figure 4-3 exhibits the high-level access patterns for various ransomware samples. The 

access pattern shown in the figure is displaying I/O sequence of CryptoWall. Its access 

pattern remains persistent with respect to the ransomware family. I observed the similar 

I/O file access activity for samples in the Cerber family as well. While both of these 

families are classified as two different ransomware families, they have similar I/O access 

patterns while running malicious samples, since they use the same encryption functions 

to encrypt the user’s files.  

Considering another example, in Petya ransomware family, the ransomware 

creates a new file, reads the data from the user’s file, generates an encrypted version 

and simply write the encrypted data to the newly generated file without removing the 

original file from the disk storage. Such ransomware attacks have a high possibility of 

recovering the user’s files. In another type, the ransomware sample creates a new file 
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and overwrites the file with the encrypted version based on the original file and then 

deletes the user’s file securely using customized overwriting implementations or using 

standard Windows APIs such as DeleteFile. 
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Chapter 5 

Experimental Setup and Evaluation 

Since ransomware attacks user’s files, the prototype is built on the top of Cuckoo 

Sandbox in order to carry out the ransomware analysis and detection without fearing of 

any data loss and file encryption. Cuckoo is a tool that allows performing sandboxed 

malware analysis. Cuckoo Sandbox typically provides basic services such as malicious 

sample submission, performing classic human interaction tasks during analysis, 

managing multiple Virtual Machines and simulating command line user input. It can 

record and achieve following results [3]: 

 Screenshots taken during the execution of the malicious sample. 

 Logs all the system calls carried out by all the processes produced by malware. 

 Files that are being created or deleted by the malware being executed. 

As mentioned earlier, Cuckoo Sandbox is an improved and commutable design- it can be 

used standalone or can be integrated with any other large framework. It can analyze 

distinct file types such as PDF documents, generic Windows executables, compressed 

files, PHP/Python script, etc along with untrusted URLs and untrusted websites. 

However, fundamentally, the proposed system could be implemented using any other 

dynamic analysis system, for example, NorMan Sandbox, Anubis, BitBlaze, etc. 

I evaluated my approach using two virtual machines running Windows 7 (64-bit) 

on Ubuntu that uses Linux kernel. While, particularly Windows 7 (64 bit) is not required to 

perform the ransomware analysis and detection, it was chosen because Cuckoo 

Sandbox works well along with Windows 7. Each of the two virtual machines has more 

than one NTFS drives that provide security to local and network along with some 

additional features such as fault tolerance, compression, maximum file and partition size, 

etc. I considered the popular tricks used by the malware writers to change the IP address 
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range and MAC addresses of the virtual machines to prevent the configured virtual 

machines from being identified by the malware and took antievasion measures such as 

configuring DHCP to obtain fixed IP address using default gateway. Furthermore, I 

permitted bounded and controlled access to the network by specifying a host-only 

adapter rather than using NAT for the internet access. Network bandwidth was restricted 

to lessen likely to cause DoS attacks. However, the filtered host-only adapter network 

setting granted limited DNS, IRC and HTTP traffic so that the malicious samples could 

communicate with command-and-control servers making it look like a genuine network 

bridge. In order to manage destructive network traffic such as Spam during the execution 

of the malicious samples, SMTP traffic was redirected to local honeypot well-supported 

by and configured in Cuckoo Sandbox [3]. 

The operating system environment mounted on the proposed ransomware 

analysis system consists of generic user data such as valid browsing history, saved 

valuable credentials and other related files and customizations. I also ran some startup 

programs in each malware run and emulated basic user activity during the execution. 

Such a user interaction was arbitrarily generated, but it was constant across each run of 

the malicious sample. Each sample was then executed in the analysis environment for a 

stipulated time required for the malicious sample to execute; I believe that the required 

time given for the malicious sample for its execution is sufficient for almost all of the 

ransomware samples to model their ransomware-like malicious behavior. As described in 

the earlier chapters, artificial user environment was generated for each ransomware 

sample run; file system I/O accesses were recorded and execution screenshots were 

captured. All these results were sent back and stored in the Cuckoo Sandbox 

segregating its types like screenshots, reports, network activity, etc. After each sample 

execution, the entire system that is, virtual machine environment is rolled back to its 
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clean state to hinder any interference across any other execution. All experiments of 

executing distinct ransomware families and analyzing the ransomware were performed 

according to well-established experimental guidelines for judicious malware analysis [10]. 

These guidelines include: 

 Correct database: Check whether training dataset and evaluation or test dataset 

should have different ransomware families. 

 Transparency: Acknowledge the ransomware family names and explain the 

selection of ransomware sample families. Mention the name of the system and 

its configuration used during the execution. 

 Realism: Allow considerate internet connectivity for the malware to communicate 

with the command and control server and perform real world executions using 

relevant ransomware families. 

 Safety: Expand and mention well-designed containment policies compliment 

realistic experiments while reducing the potential harm. 

Labeled Database: In this experiment, collecting a ransomware dataset was a crucial 

part of my research. I collected numerous samples of distinct ransomware families from 

VirusTotal. VirusTotal is a free service that analyzes files and URLs for viruses, untrusted 

websites and other malicious contents. To obtain defined and exact labeled ransomware 

samples, I cross checked the list of MD5 hashes with VirusTotal [1]. Being cautious about 

the ransomware malware sample selection, I considered a malware to be ransomware if 

at least four antivirus agencies identified it as belonging to the mentioned classification. 

To get the family names, I considered the commonly used naming conventions and 

schemes followed by most of the antivirus vendors to assign malware labels and selected 

the most common label. I captured 782 samples in total. These 782 samples were tested 

on cloud-based analyzer known as VMRay analyzer [2]. This analyzer also follows 
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dynamic analysis approach to perform malware analysis and produce the result in a tree-

like structure indicating process and thread activities carried out by a malicious sample 

submitted to the VMRay. I ran all of 782 ransomware samples in VMRay to make sure 

that these samples were certainly active ransomware. Out of which, I confirmed 715 

samples to be active ransomware instances. 

After executing each sample, I observed and analyzed the file system activities, 

registry activities and other file related traces of each sample for any signals of attacks on 

user’s files. I looked for the screenshots captured to check whether running the sample 

displayed a message or ransom note on the user’s desktop. Furthermore, in order to 

mitigate biased outcomes due to polymorphic techniques as well as to conduct a 

balanced experiment over ransomware families, I performed this analysis not only based 

on families and different alternatives per family but also based on individual samples.  

Table 5-1 Number of Ransomware Samples per family 

Family Samples 

Cerber 94 

Jaff 30 

WannaCry 64 

Petya 33 

CryptoWall 53 

Sage 64 

TeslaCrypt 64 

Spora 39 

Locky 44 

Total 495 



 

23 

Table 5-1 shows the total number of samples as well as different variants in each 

of the selected ransomware family. 

Non-ransomware samples were also collected in addition to the known and 

labeled ransomware dataset. I again cross checked the non-ransomware samples in 

VMRay as well as in VirusTotal to make sure that the selected samples are benign 

executables including applications that have ransomware-like behavior such as 

compression, encryption, secure deletion, etc. Table 5-2 shows a list of benign 

applications. 

Table 5-2 List of benign applications and relevant I/O access patterns 

Sample Capability Operation Description 

7-zip Compression Read 

Write 

Read data from file 

Write data to file 

Eraser Secure Delete Write 

Delete 

Write data to file 

Delete the file safely 

 

I also tested few non-ransomware malware samples from distinct malware families to 

calculate the false positive rate of the proposed system. Table 5-3 shows an example of 

system calls traces Petya ransomware and NotPetya non-ransomware malware. It 

indicates that victim’s file is first read and then overwritten with an encrypted version by 

making the API function calls ReadFile and QueryInformation. The file access system 

calls for NotPetya are similar to that of the Petya ransomware. The main difference is that 

the Petya ransomware takes an encrypted copy of master boot record and overwrites it 

with its own malicious code that displays a ransom note, leaving the system unable to 

boot. However, NotPetya does not keep a copy of overwritten master boot record rather it 

removes all the files from the targeted system [17]. 
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Table 5-3 Example of file system traces and I/O access 

Sample Operation Description 

Petya Read 

Write 

Read data from file 

Write data to file 

NonPetya Read 

Delete 

Read data from file 

Delete the file 

 

System calls trace genuine applications with possible ransomware-like behavior: 

The very first goal of this approach is to examine and describe how malicious process 

interacts with the file system and other related files when a targeted system under the 

compromised network is experiencing ransomware attack. To achieve this goal, I 

investigate the trivial characteristics of the ransomware attacks from a file system 

viewpoint regardless of the technical differences that these attacks expose to, such as 

the system infection and the key generation techniques. While achieving this goal, one 

question that pops up is that whether genuine applications such as compression, 

encryption or secure deletion can generate similar system calls and other file related I/O 

accesses, resulting in false positives. It is important to note that in case of the benign 

applications, the original file content is evaluated carefully as the ultimate goal of such 

applications is to generate an encrypted version of the original file rather than limiting the 

access to the file. Therefore, the default operation in these applications is that the original 

files remain untouched even after encryption or compression process. If automatic 

deletion is willfully activated by the user after the encryption, it possibly results in a false 

positive. 

However, in this approach, I assume that the original data is preserved and the 

normal default behavior is displayed. This is a legitimate assumption, believing that this 
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approach is a malware analysis system that focuses on analyzing potentially suspicious 

samples collected and submitted for analysis. Moreover, I/O access sequence is 

inspected and displayed in Table 5-4. Considering the contents of Table 5-4, it indicates 

that the benign programs exhibit distinct I/O access patterns. 

Table 5-4 File system calls of benign applications 

Sample Operation Description 

7-zip Read 

Write 

Create 

Read data from file 

Write data to file 

Create a new file 

Eraser Write 

Delete 

Write/Overwrite data to file 

Delete the file safely 

 

It is not required that the genuine applications must perform encryption or deletion on the 

user’s files, but it can modify the contents of the files. For example, altering the contents 

of a Microsoft document and modifying a Microsoft PowerPoint file (by inserting or 

deleting an image, etc.) generates I/O patterns similar to the ransomware. However, the 

main difference is that such applications normally generate I/O request pattern for a 

particular file at a time and iteration of a same I/O requests does not occur over multiple 

files owned by the user. Also, it is important to note that, benign applications generally do 

not encrypt, delete, modify or compress the random files but it needs refined user input 

such as a filename or other options. Therefore, most of the genuine applications would 

expect some user input or simply perform exit operation when executed in the proposed 

system.  

Evaluation of false positives: As I used the same dataset for detecting false positives, it 

is less possible to get an accurate precision-recall analysis. It makes the verification of 
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the detection result real challenging. Re-submitting the samples while checking for false 

positives is not worth while in all cases as although the dataset contains latest samples, 

there is a possibility that samples may have become inactive at the time of re-analysis. 

Therefore, detection results are verified manually. That is, the samples that provided 

ransom note on the desktop of the targeted machine, manual verification of such 

detection result is done using post execution screenshots. Using this, I confirmed that the 

proposed system correctly reported 479 samples that delivered a ransom note at the end 

of the sample analysis and execution.  

It is important to note that, the proposed system is only based on the I/O access 

sequence and the file system calls. It does not take into account the changes in entropy 

in the detection phase rather it is only considered for the evaluation. For every sample in 

the collected database, I keep track of I/O access patterns and the other file related 

activities. If there are multiple write or delete I/O request patterns for the same user files 

and there is an exponential increase in the entropy or creation of the new entropy which 

is way higher than that of the original files, it was confirmed that the detection as a true 

positives. The generation of new entropy file based on user file is a solid insight into the 

ransomware detection. For example, a malicious sample that carries out secure deletion 

techniques may first overwrite the files and such files may have low entropy value. On the 

contrary, malicious encryption application first needs to encrypt the original file and then 

overwrite it with high entropy value. In either case, generating high entropy raises a flag 

in this evaluation. 

By applying these two approaches and analyzing the results of these 

approaches, I did not find any false positives during the evaluation. There were a few 

sample runs that had noticeable modifications in the execution environment such as 

desktop exhibited a nonfunctional dialogue box with some unreadable characters or the 
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malicious program generated a large window having nothing to display on it. However, 

after careful investigation and observation, it was clear that the extracted text within the 

dialogue box was not related to any ransomware activity, the proposed system termed it 

as a non-ransomware sample. 

Evaluation of false negatives: Determining the false negative rate is a challenging 

since manually checking each and every ransomware sample is not feasible. The 

proposed system of ransomware detection using the labeled dataset, false negatives 

mainly occurred in samples that make constant alterations on the desktop of the targeted 

system. From malicious ransomware samples, I eliminated the samples that were not 

detected as malware by any of the antivirus scanners in VirusTotal and in VMRay after 

multiple resubmissions. Although the number was very less, by applying this strategy, I 

could reduce the number of samples up to some extent to check for the false negative.  

After each run, I checked for system calls traces and I/O access patterns and 

verified whether any process has demanded an access to write to the user’s files. Along 

with I/O patterns, I also checked the entropy values. If there is an indication of a write 

access to the user’s files with high increase in the entropy data than the entropy data of 

the read access, the detection of false negative occurs. By using these two factors, I 

confirmed that this ransomware analysis and detection system does not have any false 

negatives. 

Decision Model: Manual analysis process of all the captured file system activities is time 

consuming and may lead human errors if a large dataset is considered. For a large 

dataset that contains thousands of ransomware samples, it is required to automate the 

process of analyzing such I/O accesses and file system activities. It not only speeds up 

the analysis but also helps to mitigate human errors and interactions, turning out to be an 

effective outcome in terms of providing early detection of a ransomware. To automate the 
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file system activities analysis process, I observed and analyzed the results produced by 

procmon and Cuckoo Sandbox such as reports and analysis logs. Considering the file 

system activities carried out in the first minute from the execution start time, I came up 

with the numerical values that back up the decision model and generate decision metrics. 

Based on the analysis result, the threshold value is considered. This threshold plays an 

important role in the ransomware detection as a metric value exceeding the threshold 

results into ransomware detection in the system. 

 

Figure 5-1 Decision Metrics 

By applying above decision metrics, I analyzed the ransomware sample execution report 

and analysis logs and could get with following numerical values.  

Depending on the number of files accessed in time t, threshold value 183 is 

calculated for WannaCry ransomware family whereas, the threshold value 53 is 

calculated for Cerber ransomware family. Any metrics exceeding these thresholds would 

result in the ransomware detection. Table 5-5 shows the decision metrics result for 

WannaCry and Cerber ransomware family samples. 
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Table 5-5 Decision metrics result 

Ransomware 

sample 

      Decision Model 

Time(t) 

 

   Number of files accessed(n) 

WannaCry 20 183 

Cerber 20 53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

30 

Chapter 6 

Implementation 

In this chapter, I describe the implementation details of the proposed system for 

ransomware analysis and detection for the Windows platform. The malware analysis 

system mainly focuses on detecting the ransomware through monitoring the file system 

access and I/O traces. The combination of these indicators provides a strong measure of 

suspiciousness of the process currently running in the system. The proposed system is 

implemented on the Windows platform as it is currently the main target of ransomware 

attacks. I explain how to generate realistically artificial user environments for malicious 

sample run, how the file system access and I/O traces monitoring was implemented 

using Process Monitor and how to setup Cuckoo Sandbox along with Virtual machine 

configuration. 

Generating realistic user environment: The user environment is set up in the Windows 

7 platform installed in the virtual machine. At every malicious sample execution, this user 

environment is made of distinct file contents that include digital images, audio files, and 

other pdf and Microsoft documents. These contents can be accessible during each 

execution. To generate an artificial user environment, a set of files with different 

extensions are created. However, the number of files in each extension group is sampled 

uniformly to obtain accurate Shannon entropy value. Each set of files belong to a 

particular extension type such .pdf, .docx. .jpg, etc forms a document space for the user 

environment to execute the ransomware sample. These document spaces that are 

generated for each set of files are identical to the original user data. The ransomware 

sample can potentially use following properties to identify the user environment. 
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File paths: Malware sample looks for the user’s files at particular locations in the 

compromised system. Such locations are usually the Windows registry, directories, etc. 

Malware authors potentially look for a specific file path or a registry path. If the user’s files 

are stored abnormally at a random location in any execution environment, currently 

running malware founds it fishy or a virtual user environment and terminates the 

execution of malicious sample without injecting the malicious code into the system. Thus, 

the system associates the files of certain types with standard locations in the Windows 

directory structure. For example, the system does not create document files in a directory 

with image or media files, rather creates it under My Documents. Furthermore, the length 

of the path of the user files is also randomly selected and even exhibit different path for 

the same set of documents. Moreover, the paths to the user files can have variable 

depths relative to the root folder as a folder may have a set of sub-folders. 

Valid contents: According to the observation of successful ransomware attacks, 

common categories of the files that the malicious sample tries to look for and encrypts 

are documents, software licenses and authenticity provider keys, file archives and media. 

Document extensions include doc, docx, txt, ppt, pptx, pdf and py. Keys and license 

contains extensions such as .pem, .crt, .cer, etc. Compression class has various 

extensions such as .zip, .rar files. And media contents are a wide variety of audio and 

video data files with extensions like mp3, mp4, avi along with image files extensions such 

as .png, .jpg, .jpeg, etc. In order to have the valid and genuine file contents, I collected 

approximately 8300 sentences by querying 25 meaningful English words in Google. For 

every submitted word, I collected a meaning text from the search result. These formed 

sentences were used to generate the content for the user files and named the user files 

with valid dictionary words. The file names are of variable lengths that do not appear 

random as it serves some meaning. Moreover, the problem with random file name such 
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that asdfgh.pdf is that the malware author or the attacker can programmatically calculate 

the entropy of the file names and its contents to tamper the user data. Therefore, using 

the files that have meaningful contents, I make it difficult for the attacker to fingerprint the 

targeted system. 

Monitoring file system activities using Process Monitor: Various techniques are 

developed and used to monitor malicious sample file system activity and I/O access in 

malware analysis environments. The file system activities exhibit significant changes 

when the ransomware successfully attacks targeted system. A keen observation of MFT 

(Master File Table) can be useful to detect the creation, encryption or deletion activities 

carried out on a file. For instance, significant number of status modifications occurs in a 

very little timestamp in MFT entries if the system is under the ransomware attack. For 

encrypted files, MFT entries have a large number of encrypted content. Furthermore, the 

classifier can be trained on genuine and tampered MFT entries to detect abnormal file 

system activities when the system is under the ransomware attack [6]. 

Another possible approach to monitor file system activity is hooking a list of 

related system calls or file system API functions using System Service Descriptor Table 

(SSDT) [6]. These API functions hooking can be bypassed simply copying a DLL that has 

the required code and dynamically loading it into the process address space with a 

different name. (E.g. Stolen Code, Sliding Calls) Moreover, the ransomware can make 

use of personalized cryptosystems neglecting the standard APIs to sidestep API hooking 

to encrypt user files. Hooking the system calls via the SSDT can also be prevented on 

64-bit operating system using Kernel Patch Protection. Furthermore, many SSDT 

functions are subject to change depending on the versions of Windows as well as it lacks 

the proper documentation. Therefore, these approaches are not suitable for the proposed 

ransomware analysis and detection system [7]. 
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Instead of API functions or system calls hooking, this system monitors file system 

activities and I/O access patterns using the Sysinternals advanced process monitoring 

tool called as Process Monitor. It is an advanced file system monitoring tool that achieves 

system wide file system monitoring in various Windows versions. Process monitor has 

various features which are essential for monitoring the files system access along with 

capturing registry access and network communications occur between the targeted 

system and the command and control server under compromised network. Each and 

every event is logged by the process monitor that resides in the startup of the user 

environment mounted on the virtual machines. Once the malicious sample is submitted to 

the Cuckoo Sandbox, Virtual machines are restored and the execution is started. It runs 

the procmon in the background accepting the request to capture the file access and 

monitor file activities. Procmon starts capturing the I/O traces for the submitted sample. It 

identifies the currently running process instantiated by the malicious sample from the 

ransomware family and records all the I/O requests performed by the current process 

based on its type. I/O requests can be any of the types read, write, delete or create. 

Process Monitor exhibits the output depending on the settings provided to it. Destructive 

filters can filter the results based on Registry activities, File system activities and Network 

activities. 
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Chapter 7 

Performance and Limitations 

Chapter 5, Experimental Setup, demonstrates that the proposed malware analysis 

system accomplishes meaningful, practical and advantageous detection results for the 

experiment that is carried out on a real-world dataset of latest ransomware families. 

Unfortunately, malware writers deliberately look for defensive techniques and alter the 

attack strategies. In this chapter, I elaborate the limitations of the proposed malware 

analysis system and possible strategies to escape. There is always a potential chance for 

the attackers to find out the ways to fingerprint the artificially generated user environment 

and terminate the execution process. However, it comes at a high cost and increases the 

difficulty for the attacker to programmatically identify the artificially generated execution 

environment. However, implementing these approaches to detect the ransomware can 

possibly make the detection much easier because these strategies require hooking 

particular functions in the Operating system. In addition, these approaches delay 

commencing the attack by injecting the malicious code or by encrypting the files that 

increase the risk of being detected by antivirus scanners on the targeted system before a 

successful attack occurs. 

Although I have not come across any sample with another potential behavior that 

can be observed is, the malware might only encrypt a specific portion of the user’s file 

instead of encrypting the entire file. It can also disorder the file contents using a definite 

pattern to make it unreadable. Developing such ransomware is quite possible for the 

malware author. The main idea is that in order to carry out such activities, the malicious 

ransomware sample should access the users file with write permission and handle the file 

contents. In this approach, there is no way possible that in the generated user 

environment, the genuine software will need to open a random file with write permission. 
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Thus, if a malicious program accesses the files, Process monitor will log this activity and 

such behavior can be tested and ransomware can be detected in such cases as well. 

Precisely, there is always the possibility that an attacker will be able to tamper the 

dynamic approach and the malware analysis environment. For example, stalling code 

has gained a lot of popularity to delay the launching, masquerade the behavior and 

prevent dynamic analysis of a sample [13]. Table 6-1 shows the overall performance of 

the proposed system. 

Table 6-1 Overall performance of the proposed system 

Evaluation Results 

Analyzed Samples 715 

Detection Rate 96.7% 

False Positives 0.0% 

 

Another example that counters the dynamic approach is that the malware 

authors use sleep calls. Using sleep calls, malware refrains from suspicious behavior 

during the monitoring process. Such code takes a longer time to execute giving an 

attacker the privilege to actively look for indicators of dynamic analysis. Therefore, the 

proposed malware analysis system uses Sandbox that is more immune to such kind of 

evasion techniques. The ultimate contribution of this system is the introduction of new 

techniques for the automated detection of the ransomware using dynamic approach and 

not just the dynamic analysis of malware. This system aims to detect the user-level 

ransomware by monitoring the file access and I/O traces. As a result, there is a risk that 

ransomware may run at the kernel level and counter some hooks which may be used by 

Process monitor to capture registry access activities and to monitor the file system 
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activities. However, this would require the ransomware to run with root privileges to 

exploit kernel vulnerability. 
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Chapter 8 

Conclusion 

In this paper, I presented a classic approach for analysis and detection of the latest 

ransomware. This system specifically identifies the general behavior of ransomware such 

as malicious encryption of the user files. This behavior is difficult for the malicious 

program to obscure or alter. The evaluation of the system exhibits that the approach 

followed in the malware analysis was able to correctly detect 479 ransomware samples 

from multiple distinct families in a real-world data feed with zero false positives. In fact, 

this system outruns all existing antivirus scanners and a modern industrial sandboxing 

technology in detecting both trivial and technically and programmatically sophisticated 

ransomware attacks. With the help of Cuckoo sandbox with Process Monitor, I could 

generate a detailed report of system activities from which ransomware behavior is 

analyzed. In this approach, the classification of the ransomware attack was based on 495 

ransomware samples of distinct 9 ransomware families that have emerged recently. 

Outcomes of this system show that a significant number of ransomware families share 

similar features and file system access along with I/O records in the core portion of the 

ransomware attack, but it still has the shortcoming of reliable destructive functions that 

successfully target the user’s file. 

This paper also describes how a malicious sample interacts with the file system 

when a targeted system is under a ransomware attack. I noticed that malicious file 

system activity of distinct ransomware families can be monitored using Process monitor. 

While looking at the I/O traces of the ransomware execution recorded by procmon, I 

observed distinguishable files system activities and I/O patterns of malicious code and 

benign applications. I propose a typical methodology that allows us to detect a compelling 
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number of ransomware attacks without making any assumptions on how the malicious 

program infects user’s data.  
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