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ABSTRACT

PSEUDO-SPECTRAL METHODS BASED REAL-TIME OPTIMAL PATH

PLANNING FOR UNMANNED GROUND VEHICLES

DENISH KAMLESHKUMAR BAMAN, M.S

The University of Texas at Arlington, 2017

Supervising Professor: Kamesh Subbarao

Real-time optimal trajectory design and tracking for autonomous ground vehi-

cles are maturing technologies with the potential to advance mobility by enhancing

time and energy efficiency in application such as indoor surveillance robots or plane-

tary exploration rovers. Pseudo-spectral methods based trajectory generation frame-

work provides the desired trajectory which minimizes a prescribed objective function

(i.e. minimum time, acceleration, and energy) while satisfying kinodynamics and

various types of constraints (i.e. obstacle avoidance and smooth turning at waypoint

transitions). In this thesis cyber-physical system architecture is used for the commu-

nication between rover-vehicle and the ground station. By using optimal state and

control vector from trajectory generation module and by obtaining the state feedback

values from the cyber-physical system architecture, a backstepping based controller

provides commanded control values to complete the trajectory.

Combination of novel optimal trajectory framework (Guidance), modified back-

stepping controller (control) and cyber-physical system architecture makes the com-

plete guidance navigation and control system. This thesis work elaborates, the efficacy
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of the overall approach by performing several experimental test runs carried out with

the rover vehicle equipped with GPS, compass, and wheel encoders.
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CHAPTER 1

INTRODUCTION

1.1 Background

The Penatory exploration rover, autonomous car, and Wheeled Mobile Robot

(WMR) are vehicles that are capable of sensing the environment and maneuver with-

out any human interference. In an interest to develop robust autonomy; Guidance,

Navigation, and Control for wheeled vehicles have become the core of recent research

efforts. In last three decades, studies to resolve hurdles involved in the making of

autonomous WMR have become the central goal of several research practices. The

first major effort towards the development of autonomous vehicle was carried out

by Carnegie Mellon University (CMU) with Navlab in 1980s [1, 2]. The extended

research in CMU on Navlab series (Navlab 5) was the milestone for first autonomous

long distance drive which was achieved in 1995. It is one of the incidents after which

many auto companies inclined towards increasing autonomy. The DARPA challenge

that was being initiated in 2004 boosted these efforts to achieve fully autonomous

ground vehicles that are capable of substantial off-road driving with the constraint

of limited time. Meanwhile, trajectory optimization techniques were introduced to

achieve a certain level of optimality for autonomous ground vehicle system [3].

1.2 Literature Review

For trajectory optimization problem, a certain level of optimality can be achieved

by analytical optimal control approaches. When the problem includes inequality con-

straints on control variables, the solution can be obtained from the application of
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Pontryagin’s Minimum Principle [4, 5]. In case of linear system, if only the upper

and lower bounds are applied to the controls, then a minimum-time control history

can be determined by bang-bang or hysteresis control behavior, in which the control

value is saturated with discontinuous jumps between the extremes [6, 7]. Further-

more, in the case of complicated nonlinear higher dimensional dynamical systems

with various path constraints, the application of Pontryagin’s Minimum Principle (in

general analytical approach) can become very difficult. As a result, the numerical

method to solve an optimal control problem becomes more reliable. Indirect shooting

method converts the optimal control problem into two point boundary value problem

(TPBVP).

Based on the solution approach numerical methods are divided into two differ-

ent categories: Indirect approach and Direct approach. In an indirect method, the

calculus of variation is employed to obtain the first-order optimality conditions for

the optimal control problem. The indirect approach leads to a TPBVP (for a com-

plex scenario, a multiple-point boundary-value problem). It provides accurate results

for the problems with simple control and system constraints scenario, but in case of

environmental constraints it is too complicated to solve. On the other hand, a direct

method solves the optimal control problem by transcribing an infinite-dimensional

optimization problem (Partial Differential Equation - PDE) to a finite-dimensional

optimization problem (Ordinary Differential Equation - ODE). It obtains the solu-

tion by direct minimization of the performance objective, subject to the constraints

of the optimal control problem. Various approaches using parametric optimization

and direct collocation can be found in [8, 9]. Real-time trajectory generation by

search and interpolation over a large trajectory database trajectory can be found in

Atkeson [10]. Pseudo-Spectral (PS) collocation method is a numerical approach that

extends the direct collocation method to improve the convergence rates by using an

2



adaptive method for selection of collocation points and basis functions [11, 12].

On the other hand, well-known Graph search methods (2D A* or D* algo-

rithm) are capable of providing the feasible trajectory that satisfies the environ-

mental constraints. Due to computational advancements, an algorithm can pro-

vide the updated optimal trajectory in a fraction of the time. But these consist

of straight line segments and are unable to satisfy the system kinematic constraints

without significant modification. During real-time trajectory tracking, WMR can

exclusively execute either strictly translational or rotational movement (i.e. it can

drive straight or turn on the spot) [13, 14, 15, 16]. Incremental search techniques

(Rapidly-exploring Random Trees - RRT) is an efficient method for finding feasible

trajectories for high-dimensional non-holonomic systems. RRT∗ is an algorithm that

extends RRT to provide steeering functions for non-holonomic systems and RRTX

extends RRT∗ algorithm to allow for real-time incremental replanning when obstacle

region changes [17, 18, 19, 20].

1.3 Problem Description and Contribution

There are many challenges involved with the making of an autonomous ground

vehicle and this thesis work will present some theory and experimental results to over-

come some of these issues. The main outcome of the research involves the derivation

of guidance and control algorithms as well as the development of a reliable system

framework to test. The research work addresses the guidance law of a vehicle in

the form of optimal trajectory design, which is followed by the derivation of a stable

nonlinear control law. Then, the implementation of this framework with navigation

sensors will be presented to show that it drives the system along the desired reference

trajectory.
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Figure 1.1: Optimal trajectory framework

Systems governed by differential equations are often encountered in multiple

fields such as astronautics, aeronautics, and robotics. These equations are generated

to describe the dynamics of time-variant systems. From the equations, a designer can

simulate open-loop solutions or closed-loop solution by taking into account uncer-

tainties in order to perform specified tasks and also maintain the desired performance

requirements. Now the goal becomes finding the necessary control input which mini-

mizes the deviation of the states from the optimal states and controls.
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The optimal trajectory and control for any nonlinear dynamical system can be

achieved by following optimal trajectory framework illustrated in Fig. 1.1. The tra-

jectory design discussed in this document will show a formulation that is motivated

by solving an optimal trajectory design problem for a differential drive vehicle. The

trajectory generator designs the reference trajectory from a user-defined initial posi-

tion to goal position. WMR completes the maneuver in the least possible time while

attaining the waypoints (smooth turning at waypoint transition) and avoiding any

obstacles along the path with minimum control effort (smooth vehicle velocity) and

heading angle change (smooth steering). Initial and final states and control (Pulse

Width Modulation - PWM) saturation of WMR can be modified at waypoints based

on the requirement. The user can test the robustness of algorithm by increasing the

constraints (obstacles) or provide challenging waypoint positions.

The trajectory generator will provide the reference control values for a WMR

that can be tracked by the controller. So, the next aspect of this work will address,

is the implementation of a nonlinear controller that will ensure that there is bounded

tracking of the trajectory. The control law is to provide the angular velocity com-

mands to the wheels of the WMR to ease its implementation on the experimental

WMR setup. Therefore, one of the main objectives of this work is to design and

implement the optimal reference trajectory along with the backstepping control law

on an autonomous WMR to travel outdoor through the number of user-defined way-

points and virtual obstacles.

The experimental setup of a WMR which is constructed to function as a cyber-

physical system (CPS) with an embedded system to handle the physical processes on

the WMR and a networked ground station computer to process the system’s informa-

tion. Thus, another contribution of this work is the validation of a CPS architecture
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deployed with the experimental setup and its ability to use the trajectory and control

designs successfully.

1.4 Thesis Outline

The thesis is organized as follows: In Chapter 2, some preliminary concepts

are introduced including formulation of Optimal Control Problem (OCP), trajectory

optimization techniques, vehicle kinematics and other basic definitions. Chapter 3

introduces analytical approaches for trajectory optimization. Chapter 4 provides

detailed information about nonlinear programming (NLP) and different collocation

techniques. Aspects about constraint incorporation and performance index are pro-

vided. Offline trajectories generated using a PS method is simulated and the results

are discussed. Experimental setup and system architecture for real-time implementa-

tion is described in chapter 5. Real time trajectory tracking results are discussed in

Chapter 6. The effect of communication delay and various feedback methods on real

time trajectory tracking are also displayed. Finally, in Chapter 7, concluding remarks

are stated.
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CHAPTER 2

Mathematical Prelimanary and System Description

Optimal control theory deals with the problem of finding a control law for a

given system such that a certain performance objectives is achieved.

2.1 General Formulation of Optimal Control Problem

Optimal control theory deals with the input of the dynamic system that opti-

mizes (i.e. minimize or maximize) a specific objective function while satisfying various

constraints on the system. General formulation of optimal control problem has been

extensively discussed in [21, 4] that included.

2.1.1 Nonlinear Dynamics

The dynamic constraints or equations of motion (differential equations that

describe the system dynamics) are allowed to take the form of general nonlinear

differential equations,

Ẋ(t) = f (X(t),U(t), t; P) , (2.1)

where X(t) ∈ Rn is the state vector, U(t) ∈ Rm is the control vector, and P ∈ Rl is

the parameters of the system. The time is t, initial time t0 and final time tf .

2.1.2 Performance Index

Performance index is the measure of the ‘quality’ of the path or trajectory [21].

It shall be function of terminal condition, terminal constraints and the integral of

7



some function of states, controls, system parameters and time evaluated over entire

time domain. Consider the Bolza cost function J given as,

J = Φ (X(t0), t0,X(tf ), tf ; P) +

∫ tf

t0

L (X(t), U(t), t; P) dt, (2.2)

where the terms Φ and L are terminal objective (endpoint or Mayer cost) and La-

grangian (Lagrange function) respectively. In function minimization problem, lower

J gives better results; conversely, in function maximization problem, higher J gives

good results.

2.1.3 Endpoint Constraints

The states and time domain may be constrained at initial and final condition

by providing upper and lower bounds to general function,

φ0
min ≤ φ (X(t0), t0) ≤ φ0

max

φfmin ≤ φ (X(tf ), tf ) ≤ φfmax

(2.3)

It is also known as boundary condition or terminal condition.

2.1.4 Path Constraints

Based on performance objectives, there may be some constraints that should

not be violated along the trajectory. These constraints may be related to states,

controls or system parameters on which states and controls depends are called as

path constraint. Path constraint may be enforced through upper and lower bounds,

gmin ≤ g[X(t),U(t), t; P] ≤ gmax, (2.4)

Path constraints are in general inequality constraints and thus may not be active (i.e.

nearly equal to zero) at the optimal solution. If the problem is initialized with bounds

then it is called as Box constraint. Box constraints and Path constraints both are
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similar function.

The state vector, control vector and system parameters vector can be written

by

X(t) =



x1(t)

.

.

.

xn(t)


U(t) =



u1(t)

.

.

.

um(t)


P(t) =



p1(t)

.

.

.

pl(t)


Before approaching the trajectory optimization problem, we have to discern the

difference between the terms trajectory optimization and optimal control as defined in

Ref. [21]. These terms are almost the same and more often used interchangeably. The

problem where the inputs to the system are static parameters, the task is to determine

the values of these parameters and the trajectory that optimizes a given performance

index also known as trajectory optimization. It is applicable to higher-dimensional

path problems such as satellite, ground vehicle or robotic arms with more degrees

of freedom. In contrast, the problem where the inputs to the system are themselves

functions and the task is to determine the particular input function and trajectory

that optimize a given performance index also known as an optimal control. It is ap-

plicable to lower-dimensional problems such as two-dimensional vehicles, where the

control can be a function of time or state.

Certain class of trajectory optimization are easily solved by analytical optimal

control. When problem consists of inequality constraints or is based on higher di-

mensional dynamical system then the numerical approaches are the best way to solve

the problem. Fig. 2.1 illustrates different approaches to solve the optimal control

problem [6, 21]. In this chapter, we will talk about different approaches to solve the

particular trajectory optimization problem.
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Figure 2.1: Trajectory optimization methods

2.2 Numerical methods

Numerical methods for solving optimal control problems took a leap nearly

around the 1950s with the work of mathematician Richard Bellman. A significant

contribution of Richard Bellman is a “necessary condition” for optimality associated

with the mathematical optimization method known as dynamic programming also

known as Bellman equation. Initially, Bellman equation was applied to engineering

control theory and applied mathematics, which later became an important tool in
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the field of Economic Theory [4, 21, 22, 23]. From that time to the present, the

complexity of methods and variety of applications has increased tremendously making

optimal control a discipline that is relevant to many branches of engineering and other

disciplines.

Various numerical methods are available in the littrature for solving optimal

control problems[4, 5, 21]. Numerical methods to solve optimal control problems are

divided into two different categories: Indirect method and Direct method.

In an indirect method, the calculus of variation is employed to obtain the first-

order optimality conditions of the optimal control problem. The indirect approach

leads to a TPBVP (for a complex scenario, a multiple-point boundary-value problem).

The boundary-value problem can be solved by taking derivative of a Hamiltonian.

Thus, the resulting dynamic system is of the form

Ẋ =
∂H

∂λ

λ̇ =
∂H

∂λ

(2.5)

where,

H = L + λT f − µTg (2.6)

is augmented Hamiltonian. L is Lagrangian. µ ∈ Rg is Lagrange multipliers as-

sociated with path constraint. Indirect methods use costate or adjoint λ ∈ Rf to

eliminate the control variable U. The co-states will introduce additional boundary

value problems and algorithms such as “shooting” methods are available to solve the

problem. This method works better for problems with simple control and no path

constraints.

In a direct method, the state vector X and control vector U of the optimal con-

trol problem is discretized using some technique (i.e. state or control parameterization
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technique). The approach is known as a nonlinear optimization problem or NPL. The

NLP is then solved using well known optimization techniques (i.e. SNOPT, NPSOL,

KNITRO, fmincon) [21, 24, 25, 26]. The direct method is mainly used by researchers,

who are interested in trajectory optimization or optimal control techniques.

Based on Indirect and Direct philosophy, several methods are derived and used

to solve optimal control problems are as follows:

2.2.1 Indirect Method

There are many type of indirect methods, but we are only concerned with the

shooting method. In shooting method, an initial guess for endpoint boundary condi-

tion is used with some initial condition to integrate the trajectory (forward integration

t0 to tf or backward integration tf to t0). The integration loop tries to achieve de-

sired terminal condition. If the integrated terminal conditions differ from the known

terminal conditions by a specified tolerance, then unknown initial conditions are ad-

justed and the process is repeated until the difference becomes lesser than a specified

threshold.

2.2.2 Direct Methods

Direct Shooting Method

Shooting method is a basic method to solve the optimal control problem using the

direct approach. Direct shooting method also known as control parametrization tech-

nique,where the control vector is parametrized using a specified functional form,

U(t) ≈
m∑
i=1

aiζi(t) (2.7)

where ζ(t) is known function and ai are the parameters to be determined from the

optimization. The dynamics are satisfied by integrating the differential equations us-

12



ing a time marching algorithm. The cost function is determined using a quadrature

approximation that is consistent with the numerical integrator used to solve the dif-

ferential equations. It can minimize the cost subject to any path and interior-point

constraints.

Differential Inclusion

Differential inclusion is a strictly direct method. The method of differential inclu-

sions enforces the equation of motion at each discrete node by applying inequality

constraints on the state derivatives. These inequality constraints are obtained by

substituting the upper and lower bound on the control vector. When the inequality

constraints are satisfied, the state vector at each node is said to lie in an attainable

set.

Direct Collocation Method

Direct collocation methods are the most powerful methods for solving the general

optimal control problem. It transcribes the dynamic optimization problem into the

nonlinear parameter optimization problem. It is a state and control parameterization

method where the state and control are approximated using a special function form.

We will discuss direct collocation in detail in later chapters.

Pseudo Spectral Method

PS methods are a class of numerical methods used in applied mathematics and scien-

tific computing for the solution of partial differential equations, also known as discrete

variable representation (DVR) methods. Initially, it was developed to solve problems

in Computational Fluid Dynamics (CFD) [21, 27]. Over last three decades, due

the improvement in the computational power and improved convergence rates of PS

methods compared to basic approaches, it has acquired high prestige among the nu-

merical solution techniques applied to the optimal control problem.

A PS method is a global form of orthogonal collocation [11, 21, 28, 29], which is

13



similar to direct collocation method (a local solution), that transcribes optimal con-

trol problem to a NLP and searches for a global solution. It parametrizes the state

and control using global polynomial and collocates the differential-algebraic equations

at nodal points.
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Figure 2.2: Pseudo-spectral collocation points

During the 1990s, PS methods were introduced for OCP with the basis func-

tions of Chebyshev polynomial (Chebyshev Points) which is given in the Ref. [30, 31].

However, Chebyshev polynomial is not able to satisfy the isolation property, which

leads to more complicated collocation conditions. As a result, use of Lagrange poly-

nomials as basis functions for PS trajectory become popular as given in Ref [21].

Based on Lagrange polynomial and extended Gauss quadratures, most popular PS

methods are Lagrange Gauss (LG), Lagrange Gauss Radau (LGR), and Lagrange
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Gauss Lobatto (LGL) methods. LG quadrature points are distributed on the interior

of the interval but do not include the endpoints. On the other hand, LGR quadrature

points include one endpoint and LGL quadrature points include both endpoints of

the interval [11, 12].

Based on the type of direct method used, the length of the optimization problem

can be small (i.e. as in a direct shooting or Quasi-linearization method), medium (i.e.

PS method [32]) or may be large (i.e. a direct collocation method) [26].

Several previous work that provide the basic understanding of trajectory optimiza-

tion, optimal control and PS method had been published in open literature [26, 32].

2.3 Vehicle Kinematics

The kinematic model of differential drive vehicle is used for the optimal tra-

jectory generation problem. The motion of systems considered without the external

forces affected to the system. The system kinematics is illustrated in Fig. 2.3.

� Inertial reference frame and point: N is inertial reference point and (xinertial, yinertial,

zinertial) is inertial reference frame. xinertial, yinertial, zinertial are directed towards

east, north and upward respectively.

� Body frame: (xbody, ybody, zbody) is body frame. xbody, ybody, zbody are directed

towards front, left side and upward to the vehicle respectively.

� The heading angle, ψ is positive, anti-clockwise direction about zinertial axis.

� The transformation from the inertial frame to the body frame is given as,

RN
B =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 (2.8)

where RN
B is rotational matrix from inertial frame to body frame.
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� The nonlinear differential equations that governs the WMR:

ẋ =
r

2
(ωr + ωl) cos(ψ)

ẏ =
r

2
(ωr + ωl) sin(ψ)

ψ̇ =
r

b
(ωr − ωl)

(2.9)

where r is the wheel radius and b is the base length of the vehicle.

Figure 2.3: Vehicle kinematics

� The state vector of the rover model is defined as the Cartesian position in x

and y coordinates and its heading angle ψ, i.e. X = [x y ψ]T .

� The control vector for the system is the PWM of the right and left wheels,

i.e. U = [Ur Ul]
T . ωL and ωR are the wheel speeds for the left and right
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wheels, which are calculated from angular velocity and motor PWM relationship

described in Sec. 5.3.
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CHAPTER 3

Analytical Approch

The trajectory optimization problem can be solved by using an analytical ap-

proach to achieve a certain level of optimality. Different methods to find optimal

trajectory are summarized in following sections:

3.1 Minimum Time Optimal Trajector

One objective is to design a path for WMR to maneuver from an arbitrary initial

position to a final position in least possible time. The cost function for this problem

is

J =

∫ tf

t0

dt, (3.1)

The differential equation that governs the dynamical system is given in Eq.

2.9. As the system needs to reach the goal position, the deviation between the state

at final time and the goal position has to be minimized. So, the final performance

objective after adding the terminal objective function is,

J = Φ (X(tf ), tf ,P) +

∫ tf

t0

(1 + λT f (X(t),U(t), t,P)) dt, (3.2)

As the path needs to respect the system kinematics, the Lagrange multipliers is

introduced. In some cases, the Lagrange multipliers may eliminate the control vector

to simplify the problem. The Hamiltonian H for this case is defined as,

H = 1 + λT f (X(t),U(t), t,P) ,

As per the fundamental theorem of calculus of variation, for a trajectory to

be considered an extremized solution, the first order variation of the cost (δJ) for
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all admissible variation in states (δX) , control (δU) and Lagrange multiplier (δλ)

around the trajectory has to be zero. This results in,

HT
X = −λ̇,

called the adjoint equation,

HT
U = 0,

called the control equations, and

HT
λ = Ẋ,

called the traversability condition. Where, HX ∈ Rn, HU ∈ Rm and Hλ ∈ Rn are

a vectors of partial derivatives with respect to X,U and λ. The necessary condition

provides six differential equations,

ẋ = υ cos(ψ)

ẏ = υ sin(ψ)

ψ̇ = ω

λ̇x = 0

λ̇y = 0

λ̇ψ = υ(λx sinψ − λy cosψ)

(3.3)

and the six boundary conditions to solve this equations are

x(t0) = x0

y(t0) = y0

ψ(t0) = θ0

λx(tf ) = 2(xV (tf )− xG)

λy(tf ) = 2(yV (tf )− yG)

λψ(tf ) = ζ

(3.4)
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where, ζ is the heading angle at time tf , xV (tf ) and yV (tf ) are the position of the

vehicle at final time, xG and yG denote the desired goal position . The Lagrange

multiplier for the final time is derived from the following terminal constraint equation,

Φf = (xV (tf )− xG)2 + (yV (tf )− xG)2 + ζ ψV (tf ), (3.5)

From the differential equations given in Eq. (3.3), boundary conditions given in

Eq. (3.4) and terminal constraint given in Eq. (3.5), we can solve for the minimum

time optimal trajectory for a differential drive robot using Pontryagin’s minimum

principle. If in contrast the control values are bounded then the resulting solution

will be a bang-bang type control law.

Similarly, we can derive the trajectory optimization problem for a minimum

control effort objective function.

3.2 Minimum Control effort

The objective here is to design a path for WMR to maneuver from an arbitrary

initial position to a final position by using minimum control effort. By enforcing cost

on the actuator rate, a minimum control effort can be achieved. The cost function is,

J =
1

2

∫ tf

t0

UTUdt, (3.6)

As the system need to reach the goal position, the deviation between the state

at final time and the goal position has to be minimized. By enforcing the cost on the

control input, the objective to minimum energy trajectory can be achieve. The final

performance objective after adding the terminal objective function is,

J = Φ (X(tf ), tf ,P) +

∫ tf

t0

1

2
UTU dt + λT f (X(t),U(t), t,P) dt, (3.7)

The Hamiltonian H for this case is defined as,

H =
1

2
UTU + λT f (X(t),U(t), t; P) ,
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By following same approach used in Sec. 3.1, the boundary condition and

differential equation can be found. In this case, as control values are directly involved

in the objective function. We can replace the control vector with Lagrange multipliers

in differential equations by solving for necessary conditions. After solving for the

necessary condition, control values can eliminate by Lagrange multipliers using Eq.

(3.8).

υ = − (λx cosψ + λy sinψ)

ω = − λψ
(3.8)

By using differential equations Eq. (3.3) and boundary conditions (initial and final

value of states) Eq. (3.4), the solution states and Lagrange multipliers can be obtained

by posing the problem as TPBVP.

3.3 Simulation Results

In this section, simulation results for a reference trajectory (with minimum

control effort objective function) generated using analytical approach derived in Sec.

3.2 and reference trajectory generated using numerical approach described in ch. 4

are shown. To analyse the performance of the algorithms, trajectory generation with

various boundary conditions are described in following section.

Note that by providing a good initial guess of the state vector and Lagrange

multipliers convergence rate for finding the solution can be increased.

For the first test case, simple trajectory from an initial state (x0 = 0, y0 =

0, ψ0 = 90◦) to a final state (xf = 10, yf = 0, ψf = 0◦) using the analytical and nu-

merical approach is generated. A safe zone of a meter diameter is considered around

the waypoint.

The reference trajectory from initial position to the goal position using ana-
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lytical and numerical approach are depicted in Figs. 3.1 and 3.2 respectively. Both

trajectories have smooth maneuver from the initial position to the goal position.

 Optimal Trajectory
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Figure 3.1: Simulated optimal trajectory using analytical approach
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Figure 3.2: Simulated optimal trajectory using numerical approach
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Node points shown in Fig. 3.2 refers to the point at which the optimizer tries to

satisfies the objective functions and constraints in order to generate the optimal tra-

jectory. Further details about the trajectory generated using the numerical approach

are described in ch. 4.
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Figure 3.3: Heading angle using analytical approach

The change in heading angle during the entire trajectory is shown in Figs.

3.3 and 3.4 for respective analytical and numerical approaches. In the case of the

analytical approach, heading angle of WMR quickly changed to -5◦ from 90◦ in the

first 7 seconds and stays constant at -5◦ uptill last 3 seconds and changed to 0◦ at

the end to satisfy the boundary condition. In contrast,with the numerical approach,

the heading angle of WMR is gradually changing during the entire trajectory which

help to reduce jerk on the system.
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Heading angle
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Figure 3.4: Heading angle using numerical approach

The required control input to achieve the desired trajectory is shown in Fig.

3.5 for the analytical approach and in Fig. 3.6 for the numerical approach. With the

analytical approach, the control vectors are eliminated by using Lagrange multipliers

from the systems differential equation in order to simplify the problem. Once the

optimal trajectory is created, the time history for the control is obtained by back-

substituting using Eq. (3.8). As control vectors are not part of trajectory generation,

still we can reduce the change in the control effort by reducing change in states

but we cannot put constraints (i.e terminal constraint) on it. As a result, linear and

angular velocity of WMR starts and ends at any values which is difficult to incorporate

while implementing the trajectory on real-hardware. In contrast, with the numerical

approach the controls bounds along with the initial and final control values can be

specified while solving for optimal control. As control inputs have constraints at

initial and final time, the control history starts and ends at the specified values.
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Figure 3.5: Control inputs using analytical approach
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Figure 3.6: Control inputs using numerical approach
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To evaluate the capability of the analytical method, another trajectory with

initial state (x0 = 0, y0 = 0, ψ0 = 0◦) to final state (xf = 10, yf = 10, ψf = 45◦) is

generated.

 Optimal Trajectory
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Figure 3.7: Simulated optimal trajectory using analytical approach

The reference trajectory for the second test case is depicted in Figs. 3.7 and

3.8. The results reveals that both the approaches are capable of generating feasible

trajectories for various boundary conditions.
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Figure 3.8: Simulated optimal trajectory using numerical approach

As seen in the first test case, the heading angle generated using analytical ap-

proach has turns quickly as shown Fig. 3.7. While with the numerical approach, as

the trajectory changes heading angle and time history to achieve the trajectory are

also varies in order to maintain smooth steering of WMR as shown in Fig. 3.8.

Similarly, the control input history to achieve desired trajectory is shown in Fig.

3.11 and 3.12 for the respective analytical and numerical approaches.

27



Heading Angle

0 5 10 15 20 25 30

Time (sec)

0°

5°

10°

15°

20°

25°

30°

35°

40°

45°

50°

 
 

Figure 3.9: Heading angle
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Figure 3.10: Simulated optimal trajectory using analytical method
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Figure 3.11: Control inputs using analytical approach
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Figure 3.12: Control inputs using numerical approach
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3.4 Summary

This chapter shows the capability of the analytical method to achieve a feasible

trajectory given a particular objective function. For the case optimal trajectory with

bounds on the applied control input, numerical approach is best option. Moreover, it

is difficult to find a good initial condition for different trajectories using the analyt-

ical approach and when using inequality constraints it becomes difficult to solve the

problem using the analytical approach. All this problem can be resolved by using the

numerical approach which is described in the next chapter.
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CHAPTER 4

Collocation Methods based Trajectory Optimization

This chapter presents an different collocation techniques and how NLP plays

a key role to solve the trajectory optimization problem. This following sections will

presents how to pose the NLP problem using different collocation methods.

Initially, general formulation of the NLP is presented. Then the classification of

the different collocation methods and improved integration technique to increases the

computation time and convergence rate to solve the trajectory optimization problem

is described. At the end, the offline trajectory optimization framework to design the

reference trajectory for WMR is proposed.

4.1 Nonlinear optimization

The main challenge in solving for OCP is to solve the NLP. NLP is the process

of solving an optimization problem defined by a system of equalities and inequalities,

collectively termed as constraints, over a set of unknown real variables, along with an

objective function to be maximized or minimized, where some of the constraints or the

objective function are nonlinear [33] . General formulation of the NLP is following:

the decision vector X(t) ∈ Rn that minimizes the cost function J(X) subjected to

the algebraic constraints,

g(X) = 0

h(X) ≤ 0

(4.1)

where g(X) ∈ Rm and h(X) ∈ Rp and the cost function is,

J(Xi+1) ≤ J(Xi) +K αi ∇JsT (Xi) pi (4.2)
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where K is a parameter between 0 and 1, i is index, pi is minimization or maximization

search direction and αi is the step size. From search direction and step size, Xi+1 can

be determined.

Xi+1 = Xi + αipi (4.3)

The most popular solution methods for NLP problem are the interior-point(IP) and

the sequential quadratic programming (SQP).

4.2 Collocation method

The collocation method uses a polynomial approximation technique. It tran-

scribes the dynamic optimization problem into the nonlinear parameter optimization

problem. This conversion process is also known as transcription, and hence a collo-

cation method is also called a transcription method [9, 12, 21]. In collocation, the

entire trajectory is divided into the nodes called interval or nodal points, where the

state and control are approximated using piecewise continuous functions. The con-

trol is approximated using a piecewise continuous linear function and the states use

piecewise continuous cubic polynomials.

Collocation points are the point at which system kinematic equations are en-

forced through interpolation or quadrature rule. Depending on the integration method,

the collocation points are either set at the mid points of the nodal points (Direct Col-

location method) or they are exactly at nodal points (PS method). Fig. 4.1 shows the

nodal point and collocation points where state and control values are approximated.
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Figure 4.1: Collocation methods

Collocation methods are summarised into two group of techniques: Direct col-

location and PS collocation. In next section we will discuss general formulation of the

direct collocation method and how it transcribe the dynamic optimization problem

into NLP.

4.3 Direct collocation method

Direct collocation is one of the simplest and effective collocation technique. It

discretizes the entire trajectory into equally spaced nodes in time. Now, the entire

problem becomes a coefficient search problem for piecewise continuous functions which

satisfy the boundary conditions between each successive node.

Let us descritize the entire problem into N nodes,

0 = ti < ti+1 < ti+2 < . . . < tN = tf

where ti, ti+1, . . . , tf are the times at nodes i, i+1, . . . ,N respectively and tf is the final

time. The state vector and the control vector are also discretized into N parameters at
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N grid points along with a final time tN , which will be the parameters for a non-linear

program,

NLP = (X(ti),X(ti+1), . . . ,X(tN),U(ti),U(ti+1), . . . ,U(tN), tN) (4.4)

For each interval from i to i + 1, the control value is chosen as the piecewise linear

interpolating function,

U(t) = U(ti) +
t− ti
ti+1 − ti

(U(ti+1)−U(ti)) (4.5)

The state alue is chosen as the piecewise continuous cubic polynomial between Xi

and Xi+1,

X(t) = co + c1t+ c2t
2 + c3t

3 (4.6)

To calculate the polynomial coefficients between i and i+ 1,

X(ti) = co + c1ti + c2t
2
i + c3t

3
i

Ẋ(ti) = c1 + 2c2ti + 3c3t
2
i

X(ti+1) = co + c1ti+1 + c2t
2
i+1 + c3t

3
i+1

Ẋ(ti+1) = c1 + 2c2ti+1 + 3c3t
2
i+1

(4.7)

where, X(ti) and X(ti+1) are obtained from the node points and Ẋ(ti), Ẋ(ti+1) are ob-

tained from the differential equation given in Eq. (2.9) by substituting X(ti), X(ti+1)

respectively. Then the coefficients can be obtained by solving

co

c1

c2

c3


=



1 ti t2i t3i

0 1 2ti 3t2i

1 ti+1 t2i+1 t3i+1

0 1 2ti+1 3t2i+1



−1 

X(ti)

Ẋ(ti)

X(ti+1)

Ẋ(ti+1)


(4.8)

with the boundary conditions Xi at ti and Xi+1 at ti+1.
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4.3.1 Residual error

At collocation points, the states approximated using the differential equations

and the change in the states approximated using the cubic polynomial have to be

equal. The process to approximate the state at collocation point is known as the

residual error or state error approximation.

The approximating functions of the states have to satisfy the differential equa-

tions at the grid point ti, where i = 1, . . . , N . The assumed approximation of X(ti)

must satisfy the differential equations at the grid point ti. To fulfill residual error

condition at each iteration, it can be placed as a constraint (equality constraint) in

nonlinear programming problem setup. The residual error at the collocation point

should be driven to zero.

f(X,U, tc)− Ẋc = 0 (4.9)

where, tc is mid point of ti and ti+1,

tc =
(ti+1 − ti)

2
, (4.10)

state at collocation point,

Xc =
Xi+1 + Xi

2
, (4.11)

and the polynomial approximated at collocation point

Ẋc = c1 + 2c2tc + 3c3t
2
c , (4.12)

Based on the interpolation of polynomials and modification in the integration

rules, direction collocation technique can also called PS method.
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4.4 Constraints

In trajectory optimization problem there are two types of constraints to deal

with, input constraints and state constraints. In many control system problems, input

variables have such limitation that they cannot be arbitrarily large, such as magnitude

limits. Also because of the system kinematics and for the safety reasons states must

be bounded.

4.4.1 Input constraints

Input constraint follows a general form,

Ulb ≤ Ui ≤ Uub, i = 1, ..., N − 1 (4.13)

where Ulb is lower bound and Uub is upper bound. As per the motor calibration test,

the lower and higher control bounds are depicted in Fig. 5.3. The trajectories are

designed to go forward and WMR have capability to turn, so anti clock rotation of

motor are also bounded using input constraints.

4.4.2 Environmental constraints

Environmental constraints are the inequality constraints on state vector or con-

trol vector during the entire trajectory. The generalize form to pose the environmental

constraint is,

g(X(ti),U(ti), ti) ≥ 0, i = 1, . . . , N (4.14)

where, g is function of state and control at nodal points. By providing proximity

distance (rp), which is a minimum distance vehicle has to maintain from the obstacle

position. The obstacle constraint can be set as,

r2p − ((xV (i)− xO(k))2 + (yV (i)− yO(k))2) ≤ 0 (4.15)
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where, (xV , yV ) and (xO, yO) are denoted as vehicle and obstacle position in cartesian

coordinates respectively , i = 1, . . . , N is number of nodes and k = 1, . . . ,M is number

of obstacles.

4.4.3 Endpoint constraints

For stable maneuver, system has to be in equilibrium at the last nodal point.

The state vector and control vector of the vehicle can be set at specific values which

makes the system stable at the end. However, to achieve a smooth stop at the end,

the system has to be decelerate near the goal position. Hence, by implementing an

endpoint constraint, we can achieve a smooth stop at the goal position.

υ((tf − 5)→ tf ) = 0 (4.16)

In case of multiple waypoint trajectory, vehicle has to maintain same state and control

values during the waypoint switching to achieve continuous trajectory. By adding the

modified endpoint condition for the waypoint switching, continues turning trajectory

can be achieve. The endpoint condition for waypoint switching is,

υ((tf − 5)→ tf )− 0.5 = 0 (4.17)

where, υ is

υ =
√
ẋ2V + ẏ2V (4.18)

the speed of vehicle.

4.5 Performance index

4.5.1 Goal objective function

Achieving the goal position is a primary objective for most of the trajectory

optimization problem. Performance objective can be satisfied if we enforce magnitude
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of last nodal point of vehicle to be a goal position in objective function. The objective

function to achieve goal becomes,

Jgoal = βgoal((xV (N)− xG)2 + (yV (N)− yG)2) (4.19)

where, (xG, yG) is goal position in Cartesian coordinates and βgoal is the weighting

factor to achieve the goal position.

4.5.2 Final time minimization

Minimum time optimal trajectory can be achieved by reaching the goal position

as quickly as possible. This objective can be satisfy by enforcing final time as an

additional objective function to the overall performance objective. The objective

function for minimum time trajectory,

Jtf = βtimetf (4.20)

where, βtime is the weighting factor to complete the trajectory in a minimum time.

4.5.3 Heading angle constraint

To achieve a smooth desired trajectory, deviation in the heading angle has to

be minimum. As shown in Eq. (2.9) change in the heading angle of vehicle is based

on the vehicle angular velocity. A sudden change in the heading angle will cause a

jerk in the system. Performance objective can be satisfied by enforcing summation

of change in the heading angle as an objective function. The cost which reduces the

change in the heading angle during entire trajectory,

Jψ = βψ

N−1∑
i=1

(ψi+1 − ψi)2 (4.21)

where βψ is the weighting factor to reduce a change in the heading angle.
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4.5.4 Actuator rate constraints

The WMR motor often functions similar to a first order system and sudden

changes can cause damage to WMR or onboard equipment. Hence, constraints on a

rate of change of the actuator inputs are necessary. The change in angular velocity of

wheels is constrained at nodal points by doing a summation of change in the angular

velocity. The cost which reduces change in the angular velocity of wheel during the

entire trajectory,

Jcontrol = βcontrol

N−1∑
i=1

(U(i+ 1)−U(i))2 (4.22)

where, βcontrol is the weighting factor to reduce the change in the angular velocity.

Using above constraints and performance indices, main performance objective of tra-

jectory optimization problem is,

min
(U, tf )

: J(X, U, tf )

Subject to : r2p − ((xV (i)− xO(k))2 + (yV (i)− yO(k))2) ≤ 0

υ((tf − 5)→ tf ) = 0

Performance Index : J = Jtf + JG + Jψ + Jcontrol

4.5.5 System constraints

By incorporating actuator rate and heading angle constraints, we can reduce the

sudden change in states and controls. Still to achieve desire trajectory, we have to tune

the weights on objective functions. In order to reduce that hassle, we can indirectly

enforce the constraint on control through the linear and angular acceleration of the

system. The linear and angular acceleration constraint can be set as,

aV − amax ≤ 0 (4.23)

αV − αmax ≤ 0 (4.24)
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Relationship between states, linear acceleration and angular acceleration is shown

in Eq. (4.25) can derived by differentiating the vehicle kinematics Eq. (2.9), which

shows that the constraint on linear and angular acceleration are directly effective to

reduce the sudden change in vehicle position and heading angle.

ẍ = − υ sin(ψ) ω + υ̇ cos(ψ)

ÿ = υ cos(ψ) ω + υ̇ sin(ψ)

ψ̈ = ω̇

(4.25)

where, aV is linear acceleration of the vehicle

υ̇ = aV =
υi+1 − υi
ti+1 − ti

, (4.26)

and αV is angular acceleration of the vehicle

ω̇ = αV =
ωi+1 − ωi
ti+1 − ti

(4.27)

4.6 Trajectory Optimization problem setup

By combining the different components ( system kinematics, NLP, constrints,

objective function) to solve the trajectory optimization problem, the generalize offline

trajectory optimization framework is shown in Fig. 4.2. As shown in the framework,

providing system kinematics, constraints, and performance index with some initial

guess to the NLP, we can solve for optimal trajectory and optimal control input.

Moreover, continuous multiple waypoint trajectories can be achieved by providing

current and next waypoint position and current control input to the interior point

solver.
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Figure 4.2: Offline trajectory optimization framework

As optimizer is solving trajectory optimization problem using collocation method

with different constraints and objective functions, the generalize form to calculate the

total number of problems solved at each iteration are as follows :

� As the state vector state vector X = [x y ψ]T can be calculated using the control

vector U = [ωr ωl]
T from system kinematic Eq. (2.9), so the number of states

are 3 denoted by ‘States’, the number of control are 2 denoted by ‘Control’

� The trajectory is divided into n number of nodes denoted as,

Node = n,

so that the number collocation points becomes,

c =
n+ 1

2
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� Control vector is approximated at the nodes as well as at the collocation point,

so the number of control points becomes,

m = 2n+ 1

� Let the number of obstacle be k

� C1 be the constraint for the states and controls at initial and at the goal position

given as,

C1 = Stateinitial + Controlinitial + Stategoal + Controlgoal

� State vector approximated at collocation points is called as residual error, which

is posed as equality constraint. So the number of state errors approximated at

single iteration becomes,

C2 = c State

� Based on system configuration, bounds on the control vector is enforced as an

input constraint at all control points. The number of input constraints becomes,

C3 = m Control

� As per user defined number of obstacles, obstacle constraints are incorporated

at each nodal point in order to achieve smooth collision free trajectory. The

number of obstacle constraint becomes,

C4 = n k

� To achieve smooth stop at goal position, endpoint constraint is enforced for the

last ‘i’ number of nodes. The number of endpoint constraint for the velocity of

vehicle becomes,

C5 = i υ
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� To achieve smooth trajectory, constraints on linear and angular acceleration are

posed at each nodal points. The number of system constraints become,

C6 = n aV + n αV

� Based on performance objective, the cost function to be satisfied is given by,

J = Jtf + JG + Jψ + Jcontrol

Total number of problems solved at each iteration for particular test case is shown

in table. Based on number of nodes and number of obstacles, the problem solved at

each iteration varies.

Case
No.

Test
Case

C1 C2 C3 C4 C5 C6
Performance
Objective

Total

1
n = 31
k = 0

3+2+3+2
= 10

16 × 3
= 48

63 × 2
= 126

31 × 0
= 0

5 × 1
= 5

31 × 2
= 62

1+1+1+1
= 4

255

2
n = 31
k = 2

3+2+3+2
= 10

16 × 3
= 48

63 × 2
= 126

31 × 2
= 62

5 × 1
= 5

31 × 2
= 62

1+1+1+1
= 4

317

3
n = 33
k = 3

3+2+3+2
= 10

17 × 3
= 51

67 × 2
= 134

31 × 3
= 93

5×1=
5

33 × 2
= 66

1+1+1+1
= 4

363

Table 4.1: Trajectory Optimization Problem count

4.7 Offline Simulation Results

Results presented in this chapter uses the offline trajectory optimization frame-

work proposed in Fig. 4.2 to generate the reference trajectory to arrive at a desired

goal position while avoiding obstacles. To analyze the performance of the optimization

algorithm, various trajectories with different sets of waypoints and obstacle position

are described in the following section.

Note that providing a good initial guess of the state vector, control vector, and

final time to reach at goal will increase the convergence rate of the optimizer to achieve
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desired results. The weight on the a particular objective function(like Minimum time,

actuator rate, etc) can be tuned to emphasize a specific objective function.1

Optimal Trajectory
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 X 
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20m

25m

30m

 Y
 

node points safe zone way points

Figure 4.3: Simulated optimal trajectory for isosceles triangle

For the first test case three waypoints which form an isosceles triangle of re-

spective side length 30-15-15 meters and for the second test case 4 waypoints which

form a parallelogram of a respective length of 15 meters provided to an optimizer.

The safe zone of a 1-m diameter is considered around the waypoint.

The reference trajectory which traverse through all waypoints obtained from op-

1The effect of weight on a particular cost function can be analyzed by performing optimization

with different weights. Then the respective weight can be selected based on desired performance.
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timizer are depicted in Figs. 4.3 and 4.4, where minimum control effort and minimum

change in heading angle are shown in Figs. 4.5, 4.6, and 4.7 respectively.

Optimal Trajectory
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Figure 4.4: Simulated optimal trajectory test for parallelogram
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Figure 4.5: Heading angle of WMR

As shown in Fig. 4.5, heading angle of WMR changes smoothly varied during

the entire maneuver. As we assumed that the vehicle has differential drive steering

which can change heading angle at its current position, there is a sudden change in

heading angle at waypoint transition point. Even though there is a sudden change

in heading angle at waypoint transition, there is little fluctuation in control as WMR

has to maintain a nominal speed of 0.1 m/sec at waypoint transition. We can see

that in Figs. 4.6 and 4.7 for respective cases.
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Figure 4.6: Simulated optimal control test for isosceles triangle

Figs. 4.3 and 4.4 illustrates the efficiency of the optimal trajectory generator

to design desired reference trajectories under terminal constraints.

Moreover, Figs. 4.8 and 4.9 reveals that the optimizer is also proficient in gen-

erating the desired reference trajectory under the presence of an additional obstacle

constraint. For both cases, obstacles have a 1.5 m diameter along with the additional

proximity of the 0.5 m diameter.
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Figure 4.7: Simulated optimal control test for parallelogram
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Figure 4.8: Simulated optimal trajectory with obstacles test for isosceles triangle
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As shown in Figs. 4.8 and 4.9, the optimal trajectory generation algorithm

starts to incorporate each obstacle starting from the initial node, while in the case

of no obstacles the trajectory moves directly towards the waypoint. As the distance

between vehicle and obstacle decreases the optimizer starts generating a reference

trajectory which can avoid the obstacle with considering the proximity region.

Optimal Trajectory
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Figure 4.9: Simulated optimal trajectory with obstacles for parallelogram

The WMR can make a sudden change in heading angle at the waypoint tran-

sition. However, due to the objective function, the trajectory generator enforce the

WMR to turn smoothly.
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Figure 4.10: Heading angle of WMR
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Figure 4.11: Simulated optimal control test for isosceles triangle
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Figure 4.12: Simulated optimal control for parallelogram

As per the comparison of test cases with and without obstacle from Figs. 4.6,

4.7, 4.11, and 4.12, the trajectory with obstacles has little fluctuations in angular

velocity and it also takes extra time for trajectory completion compared to trajectory

without obstacles, which can be expected for additional obstacle avoidance constraint.

As illustrated in the Figs. 4.13 and 4.14, the desired reference trajectory designed

for a case with more obstacles condition proves the robustness of the algorithm. The

optimizer is proficient enough to design the desired reference trajectory between the

wall of obstacles without collision while satisfying all constraints. Analyzing the

reference trajectories, the optimizer has created different reference trajectories for all

the cases. As the number of obstacles varies, we find that the optimizer varies the

trajectories by considering all obstacles during the whole maneuver.
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Figure 4.13: Simulated optimal trajectory with obstacles for isosceles triangle
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Figure 4.14: Simulated optimal trajectory with obstacles for parallelogram
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In a challenging condition of 10 and 13 obstacles for respective test cases, the

heading angle and trajectory control consistently meets the performance criteria.
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Figure 4.15: Heading angle of WMR
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Figure 4.16: Simulated optimal ccontrol test for isosceles triangle
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Figure 4.17: Simulated optimal control test for parallelogram

All optimization trajectories shown in this section has minimal control effort

and change in heading angle, which can be implementable on a real system.

4.8 Summary

The main objective of offline trajectory planning algorithm is to develop optimal

trajectory and control input that can be used in real time onboard implementation.

While we run different trajectory with various environmental conditions such as dif-

ferent waypoint position and obstacle position, we see how wheel speed changes with

environmental conditions to satisfy the performance objective and help to understand

the need for an online solution.
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CHAPTER 5

Experimental Setup and System Architecture

5.1 Experimental Steup

Figure 5.1: WMR built at Aerospace System Laboratory, UTA

The vehicle used to conduct the experiments presented within this research was

designed as a modified version of the MantisTM off road rover chassis. The design

has a motor actuator attached to each wheel making it four wheel drive and is made

with aluminum shock absorbing suspension making it able to travel through different

types of terrain. An illustration of the finished vehicle is given in Fig. 5.1.

The main components on-board the rover consists of a single-board computer
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(Odroid-XU4), a Pixhawk autopilot and an Arduino Mega micro-controller board.

The sensors used by the system are an inertial measurement unit (IMU), Global

positioning system (GPS) receiver and compass which are connected through the

Pixhawk autopilot as well as Quadrature encoders mounted on the wheels that are

connected through the Arduino Mega. There are also four actuated motors that are

controlled through the Arduino interface. The information on-board the rover itself

like pixhawk sensor data, encoder data is passed through the Odroid computer which

is then transmitted to a ground station computer where it is processed. The ground

station computer is connected to the rover system through a wireless network and

is used to handle the computations needed for localization and control of the rover.

The information flow chart for the rover system is displayed in Fig. 5.2.

5.2 CPS architecture

CPS shown in Fig. 5.2 depicts how the system on the rover manages the physi-

cal processes involved and communicates with a network connected ground station to

process the data. The communication between the devices included in the system ar-

chitecture is handled through the Robot Operating System (ROS)1. This open source

framework facilitates the communication of information between different components

through network connections. Therefore, it renders the CPS architecture incorporated

in this design possible.

There will be a few pitfalls to overcome with the CPS based architecture em-

ployed on the rover. Chief among them is the presence of network communication

delays shown in Sec. 5.4. These kinds of difficulties arise due to the strength of the

1http://www.ros.org/about-ros/
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network being used and the capabilities of the hardware involved. The results will

demonstrate the effects of these delays and any other issues that can arise.

Figure 5.2: CPS architecture for the communication between rover and ground station

The experiments are conducted in an outdoor environment with user-defined

waypoints. The network used for communication will be a 4G mobile hotspot with
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the system architecture depicted in Fig. 5.2. Additionally, the localization of the

rover will be handled through the encoder readings and GPS measurements. And the

orientation of the rover will be handled with the compass. The overall objective and

contribution of this work will be to validate the CPS architecture as described on the

rover vehicle and its application to handling some basic tasks.

Ground station shown in Fig. 5.2 uses MATLAB/SIMULINK along with ‘Robotics

System Toolbox’ for processing the incoming data. Trajectory generation, calculating

control signals and processing encoder readings are done on ground station. Process-

ing GPS measurements, calculating network communication delays, etc. are handled

on rover vehicle and sent to ground station through network.

The IMU inside pixhawk has an update rate of 25 Hz, GPS and compass con-

nected to pixhawk has an update rate of 5 Hz, and encoders attached to motors

connected through Arduino has an update rate based on the motor speed as hard-

ware interrupts on micro-controller is used to get the encoder pulses. So the ground

station is maintained at an update of 10 Hz if the encoders are used for rover lo-

calization and 5 Hz if the GPS readings are used for rover localization. The results

presented in the subsequent sections uses Earth-North-Up (ENU) based local navi-

gation frame for rover localization with rover starting position as ENU frame origin

(0,0).

5.3 Relationship between Angular velocity and Motor PWM

To design an optimal trajectory that satisfies given objective functions, optimal

control input is required. For the equations of motion proposed in Eq. 2.9, angular

velocity is a control input for the desired rotation of wheels. In-order to supply

the control signal to physical systems such as the motor which requires PWM, an

appropriate relationship between the angular velocity and motor PWM voltage signals
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are required. The PWM is considered as the control input for the trajectory design

instead of the wheel speeds in order to apply realistic actuator constraints.

To get the relationship, selected PWM signals are supplied to motors with a

rover on the ground for a particular timespan of δt and the distance travelled by rover

is measured. By using PWM signals and distance travelled (∆S) measurements, an

angular velocity of the wheel (ω) is calculated using Eq. 5.1,

ω =
∆S

r δt
(5.1)

Relationship between the angular velocity of the wheels and motor PWM signal

is depicted in Fig. 5.3.
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Figure 5.3: Obtained relationship between angular velocity of wheel and motor PWM
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5.4 Communication Delay Characterization

In-order to measure the network communication delay between the rover and

the ground station, GPS pseudo-range based technique is used. All the data before

being sent to ground station is time-stamped which says the time-of-sent of a signal.

And when a signal reaches the ground station, a time-of-arrival of signal is recorded.

So the delay between the rover and the ground station is the difference between the

time-of-sent and time-of-arrival of a particular signal. This method requires that both

the clocks (on ground station and on rover) need to be in synchronization. As this is

not possible because of the time-drift in systems, at a fixed time-interval (5 sec) the

local clock offset between the ground station and the rover is measured. By adding

or subtracting the local clock offset to the time-of-arrival of signal, approximate com-

munication delay is calculated. The communication delay between rover and ground

station in indoor and outdoor environment is shown in Figs. 5.4 and 5.5.
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Figure 5.4: communication delay between the rover and ground station using
wifi(indoor)
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Figure 5.5: communication delay between the rover and ground station using 4G-
LTE(outdoor)
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CHAPTER 6

Trajectory Tracking Results

6.1 Trajectory tracking framework

Figure 6.1: Real-time trajectory tracking framework

Real-time trajectoruy tracking framework is shown in Fig. 6.1.The optimal tra-

jectory generator proposed in chapter. 4 and the back-stepping controller proposed

in [34, 35] are respectively used to design and track a desired reference trajectory

with waypoints and obstacles. To get the position feedback from the rover vehicle,

different feedback methods were used i.e. GPS-Compass and Encoder-Compass. The

GPS readings obtained from the rover has a covariance of about 0.5 m2 under clear

skies and about 2 to 3 m2 under cloudy skies. On the other hand, encoders have good

accuracy for short distances but are expected to drift with time for long distances

especially when the rover turns. Moreover, compass gives accurate results during
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the smooth trajectory, but sometimes due to sudden change in heading angle near

wapoint switching it we get jerky behaviour.

In this section the experimental results of WMR which tracks the desired refer-

ence trajectory are shown. Obstacles, proximity region, waypoints, and safe zone are

same as described in Sec. 4.7. During trajectory tracking, when the rover is within

this safe-zone of a particular waypoint, then it starts to generate the reference tra-

jectory form current position to next waypoint.

For the test cases, reference trajectories generated in Sec. 4.7 portrayed in Fig.

4.13 and 4.14 are selected.

6.2 Methode 1 : With GPS and Compass

As GPS gives the position information of the rover in global co-ordinate frame,

these measurements need to be transformed to local navigation frame(ENU) in-order

to localize the rover. To transform these GPS measurements to ENU frame, the GPS

measurements are first transformed to Earth-Centered-Earth-Fixed (ECEF) frame by

using WGS-84 ellipsoidal model given by Eq. 6.1. Then by taking the first ECEF

co-ordinate as a starting position, these ECEF co-ordinates are tranformed to ENU

frame using Eq’s. 6.2 and 6.3.

N =
a√

1− e2 sin2 φ

XECEF = (N + h) cosφ cosλ

YECEF = (N + h) cosφ sinλ

ZECEF = (N(1− e2) + h) sinφ

(6.1)
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rNED =


− sinφ cosλ − sinφ sinλ cosφ

− sinλ cosλ 0

− cosφ cosλ − cosφ sinλ − sinφ

 [ECEFcurrent − ECEFini](6.2)

rENU = RENU
NEDrNED (6.3)

where N, is the length of the normal to the ellipsoid.

XECEF , is the X co-ordinate of the rover in ECEF frame.

YECEF , is the Y co-ordinate of the rover in ECEF frame.

ZECEF , is the Z co-ordinate of the rover in ECEF frame.

φ, λ, h are the latitude, longitude and altitude at the current rover position.

semi-major axis of earth(a) = 6, 378, 137.0m, semi-minor axis of earth (b) = 6, 356, 752.3142m.

e, is the eccentricity of the earth.

RENU
NED, is the rotation matrix from NED to ENU frame.

E(t) = ract(t− δd)− rref (t) (6.4)

where, E is error between actual position (ract) and reference position (r), and δd is

the time delay of the signal to reach the ground station from the rover.
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 Trajectory tracking
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Figure 6.2: Real time trajectory tracking using GPS for isosceles triangle

The reference trajectory with multiple waypoints and obstacles designed in

Sec. 4.7 tracked by WMR for different test cases using backstepping controller pro-

posed in [34, 35] are illustrated in Fig. 6.2 and 6.3. It shows that the WMR tracked

the reference trajectory well although a presence of the network communication delay

was between the ground station and the WMR. In test case 1, real time trajectory

deviates from the reference trajectory, around 0.9 m. The reference trajectory does

pass through the final waypoint, this minor deviation is acceptable in presence of

communication delay and other uncertainties.

Similarly in test case 2, the actual trajectory deviates from the path due to dif-
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ferent initial heading angle and/or communication delay, apart from that it tracked

the reference trajectory very well. In both test cases, trajectory tracking has nominal

error is around 0.9 m as shown in Fig. 6.4.
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Figure 6.3: Real time trajectory tracking using GPS for parallelogram
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Figure 6.4: Error in position between reference and actual trajectory of the WMR
with GPS and Compass for state-feedback
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Figure 6.5: Trajectory tracking in X - direction using GPS for isosceles triangle
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The trajectory tracking and error of the rover in x, y direction are shown in Fig.

6.5, 6.6, 6.7, and 6.8. When the vehicle enters into the safe zone of a waypoint, the

trajectory generator starts to create the trajectory for next waypoint. As the new

trajectory starts from the current position of the rover, the position error of the rover

at the waypoint transition is less.
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Figure 6.6: Trajectory tracking in X - direction using GPS for parallelogram

During the obstacle avoidance, errors in the x, y direction is varies about

−0.4 to 0.8 m, which is expected. This error might be due to certain issues,such

as different heading angle at initial node or GPS signal loss or the network commu-

nication delay.
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 Reference and Actual Trajectory in Y-direction
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Figure 6.7: Trajectory tracking in Y - direction using GPS for isosceles triangle
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Figure 6.8: Trajectory tracking in Y - direction using GPS for parallelogram
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In test case 1, initial heading angle error was around 20◦ between reference and

actual trajectory, due to difference in initial states of WMR and reference trajectory.

The controller tries to track the reference trajectory properly, but sometime in com-

plex scenario i.e. wall of obstacles and also presence of mechanical error i.e. compass

drift and wheel drift or communication delay there are some peaks in the error time

histories. Moreover, due to sudden waypoint switching there are peaks in heading

angle error time histories.
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Figure 6.9: Heading angle using GPS and Compass for isosceles triangle
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Figure 6.10: Heading angle using GPS and Compass for parallelogram

The actual angular velocity of the vehicle is calculated using the motor encoders

readings and Eq. 6.5,

ωactual =
(δet)

rηetδt
(6.5)

As desired reference trajectory requires minimum control effort, angular velocity

of WMR smoothly increase to a maximum at number of nodes
2

and gradually decrease

at come nearer to final node point.

Note, where r is radius of the wheel (m). δet are the number of ticks that

elapsed since the last known encoder measurement. ηet is number of encoder ticks

that would be obtained if rover travels 1m. Time elapsed since the last known encoder

measurement is denoted as δt.
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 Reference and Actual Angular Velocity of right-wheel
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Figure 6.11: Angular acceleration of right wheel using GPS
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Figure 6.12: Control of the WMR
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6.3 Method 2: With Encoder and compass

In this subsection , quadrature encoders and compass are used for position and

heading angle feedback respectively. The quadrature encoder has a resolution of 4500

pulses/wheel rotation (or ticks/wheel rotation). The position of WMR is calculated,

by integrating the state differential equation using the count of encoder pulses. Wheel

slippage introduces some measurement noise, while update rate of micro-controller

due to high wheel speed introduces some bias. This measurement noise and bias cre-

ates linear drift in encoder reading. Due to that for long distance trajectory, position

measurement with encoder reading is not much reliable while for short distance its

somewhat accurate.
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Figure 6.13: Real time trajectory tracking using Encoder and Compass for isosceles
triangle
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In simulation the trajectory tracking of the rover for both the test cases by using

encoders and compass for state-feedback is depicted in Fig. 6.13 and 6.14. It seems

that the rover followed the reference trajectory without penetrating the obstacles and

travels with less drift. But in the actual test the scenario was different, rover drifted

a lot during the maneuver and finished the trajectory 4 to 6 m away from the goal.

The rover reached the waypoints even though there was drift in position, because a

magnetic compass was used for heading angle reference.
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Figure 6.14: Real time trajectory tracking using Encoder and Compass for parallelo-
gram

Fig. 6.15 and 6.4 reveals that trajectory tracking using encoder reading has

more trajectory error compared to GPS reading, still encoder measurements help to
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complete the multiple waypoints trajectory without colliding with obstacles. There

are some peaks in the error trajectory, which is due to the communication delay.
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Figure 6.15: Error in position between reference and actual trajectory of the WMR
with GPS and Compass for state-feedback
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Figure 6.16: Trajectory tracking in X - direction using Encoder for isosceles triangle
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The trajectory tracking and error of the rover in x, y direction are shown in

Fig. 6.16, 6.18, 6.17 6.19. For both cases X-Y direction trajectory nicely tracked the

reference trajectory. There are some peaks, which is mainly due to communication

delay.
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Figure 6.17: Trajectory tracking in Y - direction using Encoder for isosceles triangle

Moreover, when the vehicle enters into the safe zone of a waypoint, trajectory

generator starts to create the trajectory for next waypoint. As the new trajectory

starts from the current position of the rover, the position error of the rover at waypoint

transition become less. On the other side, heading angle error increases due to the

sudden switch of the waypoint.
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 Reference and Actual Trajectory in X-direction
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Figure 6.18: Trajectory tracking in X - direction using Encoder for parallelogram
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Figure 6.19: Trajectory tracking in Y - direction using Encoder for parallelogram
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Comparing Fig. 6.9, 6.10, 6.20, and 6.21, we see that heading angle errors were

almost same in bound of ± 20◦. At initial node, error is high due to initial heading

difference, and due to communication delay and sudden change of waypoint, we see

some peaks in the middle of the trajectory.
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Figure 6.20: Heading angle using Encoder and Compass for isosceles triangle

Fig. 6.22 and 6.23 describe the right and left wheel angular velocity for both

cases. The plots shows some peaks at similar time-stamps noted in trajectory error

plot. After sudden increase or drop in measurements due to the communication delay,

controller tries to reduce the states error by modifying commanded control inputs.
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Figure 6.21: Heading angle using Encoder and Compass for parallelogram
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Figure 6.22: Angular acceleration of left wheel using Encoder

80



 Rference and Actual Angular Velocity of left-wheel

0 50 100 150 200

 Time (sec)

-2

0

2

4

6

8

10

12

14

 
r (

ra
d

/s
ec

)

 Reference  Actual

 Rference and Actual Angular Velocity of left-wheel

0 50 100 150 200 250

 Time (sec)

-10

-5

0

5

10

15

Figure 6.23: Angular acceleration of left wheel using Encoder

6.4 Special Test case:

In this section trajectory tracking with more communication delay and GPS

data drop is shown. Figs. 6.24 and 6.25 depicts the trajectory tracking for 3 way-

points with 11 obstacles. The plots reveal that both trajectories reached at goal

position without colliding with obstacles and traverse through all waypoints. But

during the test, a trajectory with encoder and compass feedback has more drift and

rover ends up 2 m apart from the actual goal position. While in case of GPS and

compass feedback, the rover has communication delay and GPS data drop. In this

assiduous condition, rover reached to the actual goal position without colliding with

obstacles. But trajectory had more jerky behaviour as seen from angular velocity

plots Figs. 6.33 and 6.34.
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Figure 6.24: Real time trajectory tracking using Encoder and Compass for special
case
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 Trajectory tracking
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Figure 6.25: Real time trajectory tracking using Encoder and Compass for special
case

Fig. 6.26 shows that trajectory tracking with encoder-compass feedback has

more trajectory tracking error then GPS-Compass feedback, while less jerk during

the maneuver. Error in trajectory tracking in case of encoder compass feedback, due

to drift in encoder reading. Contrary in case of GPS-Compass, an error is due to

GPS jump and communication delay.
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 Special Test case with Encoder and Compass feedback

0 50 100 150

 Time (sec)

0m

0.5m

1m

1.5m

2m

2.5m

 E
rr

o
r

 Special Test case with GPS and Compass feedback

0 50 100 150

 Time (sec)

0m

0.5m

1m

1.5m

Figure 6.26: Error in position between reference and actual trajectory of the WMR
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Figure 6.27: Trajectory tracking in X - direction using Encoder
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 Reference and Actual Trajectory in X-direction
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Figure 6.28: Trajectory tracking in X - direction using Encoder for test case 2
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Figure 6.29: Trajectory tracking in Y - direction using Encoder for test case 2
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Figure 6.30: Trajectory tracking in Y - direction using Encoder for special case
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Figure 6.31: Heading angle using Encoder and Compass for special case
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Figure 6.32: Heading angle using GPS and Compass

 Reference and Actual Angular Velocity of right-wheel
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Figure 6.33: Angular acceleration of left wheel using Encoder for special case
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Figure 6.34: Angular acceleration of left wheel using Encoder for special case

6.5 Summary

This section illustrates that the desired reference trajectory generated using

Pseudo-Spectral methods can be successfully implemented using cyber-physical sys-

tem architecture and nonlinear control law. Different test cases shows the robustness

of controller to track the trajectory. As there is communication delay and GPS signal

drop during the test sometime WMR not able to maintain proximity distance from

the obstacles as shown in special case.
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CHAPTER 7

Summary, Conclusions and Future Work

7.1 Summary and Conclusions

The purpose of this research was to develop an optimal trajectory framework

that is suitable to create desired path for unmanned ground vehicles. The developed

scheme was extended to track the desired path in real-time using a cyber-physical

system architecture and a nonlinear guidance law.

Pseudo-spectral collocation method was found to be robust enough to generate

the optimal trajectory which accommodates constraint (i.e. virtual obstacles) by sat-

isfying performance objectives (i.e go to goal, minimum final time, smooth heading

change in angle and minimum actuator rate). In order to satisfy all performance

objectives, some weights are added to objective functions. Weight tuning becomes

sensitive in complicated scenario. By enforcing constraints on the linear and angular

acceleration, we can reduce the amount of gain tuning and also satisfy the perfor-

mance objective. The desired trajectory generated using the trajectory optimization

satisfies the performance objectives and is implementable.

The reference trajectory is implemented in real-time on the WMR using a

cyber-physical system architecture. The backstepping controller uses the reference

trajectory and state feedback (GPS and Compass or Encoder and Compass) provides

commanded inputs to reduce the deviation in trajectory tracking.
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7.2 Future Work

� The next step is to extend this work by generating collision free trajectories for

cooperative mission handling using multiple ground vehicles.

� Faster real-time trajectory generation using orthogonal polynomials and plan

for dynamic obstacles.
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APPENDIX A

Acronym
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CFD Computational Fluid Dynamics

CPS Cyber-Physical System

DVR Discrete variable Representation

ECEF Earth Centred Earth Fixed

ENU East North Up

GPS Global Positioning System

IMU Inertial Measurement Unit

IP Interior Point

LG Lagrange Gauss

LGR Lagrange Gauss Radau

LGL Lagrange Gauss Lobatto

NED North East Down

NLP Nonlinear Programming

OCP Optimal Control Problem

ODE Ordinary Differential Equation

PDE Partial Differential Equation

PS Pseudo Spectral

PWM Pulse Width Modulation

ROS Robot Operating System

RRT Rapidly-exploring Random Tree

SQP Sequential Quadratic Programming

TPBVP Two Point Boundary Value Problem

WMR Wheeled Mobile Robot
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