
VISUAL LOGGING FRAMEWORK USING ELK STACK

by

RAVI NISHANT

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

Dec 2017

ii

Copyright © by Ravi Nishant, 2017

All Rights Reserved

iii

Acknowledgements

I would like to thank Professor David Levine for the continued support during my thesis design and

implementation. I appreciate the time he allocated throughout the last two semesters. I would also thank

Professor Gergely Zaruba and Professor Vassilis Athitsos for being my committee members and

providing valuable suggestions.

I thank all friends namely Gaurav, Amith, Adhavann and Anil, for support in discussions and

implementation. Lastly, I would like to thank my family for the continuous support during my journey in

UTA.

Nov 16th, 2017

iv

Abstract

VISUAL LOGGING FRAMEWORK USING ELK STACK

Ravi Nishant, MS

The University of Texas at Arlington, 2017

Supervising Professor: David Levine

Logging is the process of storing information for future reference and audit purposes. In software

applications, logging plays a very critical role as a development utility and ensures code quality. It acts as

an enabler for developers and support professionals by providing them capability to see application’s

functionality and understand any issues with it. Data logging has a widespread use in scientific

experiments and analytical systems. Major systems which heavily uses data logging are weather

reporting services, digital advertisement, search engines, space exploration systems to name a few.

Although, data logging increases the productivity and efficiency of a software system, the logging process

itself needs to be an efficient one. A logging system should be highly reliable, should support easy

scalability and must maintain high availability. Logging infrastructure should also be completely decoupled

with the parent system to ensure non-blocking operation. Finally, it should be secure enough to meet the

needs of businesses and government as required.

 In the age of big data, logging systems themselves are a huge challenge for companies, so much

so that few corporations have teams dedicated to providing data services such as data storage, analytics

and security. They use logging frameworks of varying capabilities and as per their need. However, most

of the logging utilities tend to be partially efficient or they face critical challenges like scalability, high

throughput and performance. At present, we have few logging frameworks providing analytical

capabilities along with traditional functionalities of data formatting and storage. As part of this thesis work,

we come up with a logging framework which seeks to solve both functional challenges and problems

related to its efficiency and performance. The system demonstrated here combines best features of

multiple utilities such as messaging brokers like Kafka, event publishing through SQS and data

management and analytics using ELK stack. The system implementation also utilizes efficient design

patterns to tackle nonfunctional challenges such as scalability, performance and throughput.

v

Contents

1.1 Motivation Behind the Thesis. ...10

1.2 Challenges ...15

2.1 Massive distributed and parallel log analysis ..17

3.1 Unstructured Schema: ...23

3.2 Strongly Coupled Storage: ..24

3.3 Lack of Visualization Capabilities: ...26

3.4 Handling Data Loss ...27

3.5 Real Time Analytical Capabilities ..28

3.6 Performance Scalability: ..29

4.1 Base Logging Framework ...32

4.2 Centralized Storage ...34

4.3 Non Blocking Execution ..36

4.4 Avoiding Large Number of Thread Spawns ..37

4.5 Data Pipeline using Kafka ...38

4.6 Elasticsearch DB ...39

4.7 Kibana Dashboard ...41

vi

6.1 Storing Logs in S3 Buckets: ..51

6.1.1 AWS S3 Configuration .. 51

6.1.2 S3 Folder Structures ... 52

6.1.3 AWS SDK’s S3 API ... 52

6.1.4 Maintaining Access Policies .. 53

6.2 Schema Structuring: ..53

6.2.1. LogFormatter Class: ... 54

6.2.2. JSON / AVRO Data Format: .. 55

6.2.3 Backward Compatibility For PlainText Logs: .. 56

6.2.4 Resources Field .. 57

6.3 S3 Appender ..57

6.3.1 AppenderSkeleton Class ... 58

6.3.2 Singleton Wrapper... 60

6.3.3 Producer Consumer Pattern .. 61

6.3.4 Graceful Exiting of Logging Threads .. 61

7.1 Structured Log Data ..62

7.2 System Throughput Result ..63

7.3 Demonstration of Debugging Efficiency ..65

7.4 Visualization and Dashboards: ..66

7.5 Backward Compatibility: ..66

vii

List of Illustrations

Figure 1-1 General Large-Scale Logging System [15] .. 11

Figure 1-2 Meaningful Information in form of Visualization ... 13

Figure 1-3 Log4J configuration for log appender... 15

Figure 2-1 Distributed log analysis framework workflow [3] .. 19

Figure 2-2 Three-Level hash map [3] .. 21

Figure 2-3 No. of nodes by time [3] ... 21

Figure 3-1 Unstructured log message [17] .. 23

Figure 3-2 Storage Decoupling [18] ... 25

Figure 3-3 Sample Dashboard ... 26

Figure 3-4 Data Streaming [19] ... 28

Figure 4-1 Log4J Properties Configuration .. 33

Figure 5-1 Logging to S3 (Producing Logs) ... 44

Figure 5-2 Log Consumption and Visualization Pipeline ... 45

Figure 5-3 Design Class Diagram .. 47

Figure 6-1 S3 Configuration ... 52

Figure 6-2 S3 Bucket Policy .. 53

Figure 6-3 LogFormatter Wrapper ... 54

Figure 6-4 Sample XML ... 55

Figure 6-5 Sample JSON ... 56

Figure 6-6 Backward Compatibility .. 56

Figure 6-7 Append Method Implementation .. 59

Figure 6-8 Overriding Close Method.. 60

Figure 7-1 Structured Data Demonstration .. 62

Figure 7-2 Thread Count vs Execution Time ... 64

Figure 7-3 Message Size vs Execution Time .. 64

Figure 7-4 Log Stitching ... 65

Figure 7-5 Visualizations.. 66

viii

Figure 7-6 Backward Compatibility Demonstration ... 67

ix

List of Tables

Table 1 Throughput calculation of a messaging queue system [12] ... 31

Table 2 Test Cases for S3 Appender .. 49

10

Chapter 1

Introduction

1.1 Motivation Behind the Thesis

This thesis aims to cover various aspects of a data logs and logging process.

Data forms the core component of logging which make managing them both important

and challenging. This report covers various aspects of creating, managing and storing

data logs. Other than being stored in a secure manner, logs should be served efficiently

when required with high reliability. This is where data logging process comes into picture.

Logging data should be secure, reliable, scalable and have high availability. We also

cover challenges faced by existing logging systems and ways in which they can be

improved in different aspects. Finally, this thesis demonstrates a proof of concept logging

system which seeks to solve major problems existing logging application face.

Logging data is a critical process in any system development life cycle. From

smaller mobile applications to large software running on mission critical systems, each

one of them implement data logging. Log data are used by developers to analyze the

functional problems in the application. Developers rely heavily on logs in development

process and also during maintenance phase. In most cases, applications are deployed in

places such as hospitals, airports, banks and other commercial sites where professional

don’t have access or are not provided with debugging tools. In these cases, logs help to

localize the problem and provide access to complete spectrum of problem’s root cause.

Logs also helps system admins and operators to oversee any network or

computer problems in an organization. Any system error or network issues generate error

logs which can help a system admin to locate the problem and take corrective actions.

11

Figure 1-1 General Large-Scale Logging System [15]

Logs play a very important role in security domain. Large organizations have

teams focused on IT security. Security logs helps deal with problems such as malware

analysis, network traffic anomaly and unauthorized access monitoring. A fast-growing

movement in IT called DevOps are also heavy users of logs. DevOps are generally a mix

of developers and system administrators and therefore have specific use case for logging

data. Finally, logs are used not just for troubleshooting issues and security. They are also

used for forecasting weather, stock markets and consumer behavior using deep learning

methods.

As a first step in search of an ideal logging system, it is important to characterize

the important qualities it should possess. They can be broadly classified as follows:

12

1.1.1 Ease of Usability

Any system should be easy to use and same is true for logging systems too. An

ideal logging system should be easily pluggable to parent application. A developer need

not use his time and energy in configuring and maintaining a log system. To make it

hassle free a log system should be self-sustainable.

1.1.2 Low Resource Usage

A log system almost always runs along with a main or parent application. It takes

messages from parent application and forwards it to logging infrastructure. It is very

important for it to not hinder with working of parent application. For instance, if we

consider an online video streaming application, it is quite evident that the application will

be a resource intensive one. In this case, the ideal supporting log system would be one

which does not use much of resource for logging process and leave them available for

parent application to perform business critical tasks.

1.1.3 Information from logs

A log is in essence, a pile of data generated by machine. It normally is huge in

size and difficult to comprehend and analyze. It may not follow a standardized structure in

many cases which further reduces its readiness. An ideal logging system should try to

minimize these problems. Not being able to read and analyze data quickly defeats the

purpose of using logging as an overhead to parent application. It also does not expose

many critical information which developers can use to fix imminent bugs or an

organization can use to make business development decisions. Analysis of logs can also

boost team confidence by serving as an audit of how well the main application functions.

13

Figure 1-2 Meaningful Information in form of Visualization

1.1.4 Providing generalized solution

There are many logging frameworks available today. Most of them are used by

large organizations and they serve the purpose well. However, there are only few

frameworks which provide a generalized solution. Most of the times, logging frameworks

needs to be tweaked for usage in different environments. They cannot adapt to different

storage solution with ease. It is also quite difficult to adapt to a different data format with

ease and with minimal configuration changes.

1.1.5 Ability to scale:

Software applications needs to scale and so is the case with logging frameworks.

Logging systems in today’s world often deals with large amount of data every day.

Companies like Netflix and LinkedIn have reported over a million message points per

second. Scaling logging infrastructure is so important that Kafka, the most resilient

messaging system currently available was developed to solve the issue of logging big

14

data. Scaling a system also benefits with increased performance and lesser rework in

refactoring efforts.

1.1.6 Security

Log data comprises of application logs as wells as user information. Application

logs are critical information that no organization would want leaked. For example, an

online video streaming company would not want to have its application logs leaked to

competitors. This leak can provide a third-party access to their system architecture

information. User information are another important data because they belong to

customers. A person’s critical information such as bank account number, social security

number, address if leaked can be used for identity fraud and financial fraud. A recent

event of Equifax data breach is an example of how securing information is very critical for

any software system.

15

1.2 Challenges

1.2.1 Varying Logging Requirements:

Logging has various use case in current software ecosystem. Its usage can vary

widely from collecting information for storing purpose to analyzing user information for

business development. Companies providing streaming services such as YouTube and

Netflix use log information to enhance user experience depending on user’s location

around the world. Since there are many ways and requirement in which these systems

need to fit in, it is very difficult to have a generic solution to logging problems. Often, they

require extensive configuration for different environments and systems they are used

with.

Figure 1-3 Log4J configuration for log appender

1.2.2 Resource Intensive Operation

Almost all log data needs to be stored at some centralized location as it is not

feasible to store large data in a single computer system. This is because logs grow in

16

size linearly with time and with scale of parent system. It is not difficult to imagine that

larger the log data size, more time it will be needed to upload log file to a centralized

storage. Not only size, but the number of log fragments also determine the performance

of the logging system. Larger the number of log fragment files, lower will be the

performance as cpu will be used inefficiently for creating and initializing new files on disk.

1.2.3 Backward Compatibility

Another big challenge is providing backward compatibility to existing client

systems. This is important as not every system may want to upgrade to use the new

logging framework. In such a case, the proposed logging system should not break any

functionality of the parent application. Providing backward compatibility sometimes

require lot of unnecessary junk code which clutters the system.

17

Chapter 2

Related Work

2.1 Massive distributed and parallel log analysis

2.1.1 Introduction

Security log analysis is necessary for detecting anomalies and intrusions. But

with the great volume of log data, new frameworks and security, computing techniques

are required. The evaluation of the massive distributed and parallel log analysis for

organizational security demonstrates the efficiency of a cloud based framework in

analysis of large scale logs.

2.1.2 Why log analysis?

Computing systems, networks and other processes have various rich data for

security analysis. This data is used to detect deviations, errors and to reveal previous and

current anomalies. Unexpected network actions are identified by the system

administrators using the network log analysis. Unauthorized file creation is detected by

file system log analysis.

2.1.3 Challenges faced and Issue to be addressed

The above-mentioned logs are large in number and they become a burden to

corporations and organizations when they come from various security systems.

Organizations face a big challenge when it comes to economically and efficiently store

and analyze the enormously growing logs. The existing security log analysis solutions

assume centralized computing and information storage which is not scalable. The current

systems are based on distributed file system which minimizes performance of the system

mainly when the environment is realized on Network File System with a single pool. This

18

paper addresses the question of how to analyze the huge number of logs in a timely

manner.

2.1.4 Approaches followed

To speed up the analysis, the workload has to be distributed to multiple nodes and

then harvest and sum up the results. Distributed log analysis model is considered to

process a large number of logs in this paper. This model varies from MapReduce.

MapReduce assumes a specific file system for information storage whereas this model

elaborates a common cloud storage. The logs are created and stored in the cloud with

the services being outsourced to the cloud. This framework supports counting, pattern

matching of security analysis and correlation activities. Below are the design goals from

this lightweight framework,

1. Usability- For streaming log and task support, ease in use.

2. Lightweight- Framework’s minimal overhead.

3. Cloud Compatibility- Cloud computing benefits.

4. Scalability- Efficient performance with numerous cloud instances.

2.1.5 Model Design

The design comprises of a two-level master slave model, appending file feature,

computation on demand cloud environment and Amazon EC2 and Simple Storage

Service (S3). The two assumptions in the environment are that logs are created and

stored in cloud and the deployment environment enables a complete interface to handle

computation resources.

• Entities and Components: The basic unit of the distributed framework is called a

node which is a physical or virtual machine. There are three types of nodes

namely the master (nm), storage slave (nss) and computation slave node (ncs)

19

1. Master node is the control and command node. It provides interface to the

user, programs log segmentation of each computation slave node and

retrieves log data from storage slave nodes.

2. Computation slave nodes are required for parallel log analysis activities.

Master nodes send tasks to these nodes and later the log segments are

retrieved from storage nodes based on the tasks and then the logs are

analyzed.

3. Storage slave nodes are used for logs storage. This node is used to read the

latest log from the native file system and respond to the network request.

• Framework operation and architecture:

Figure 2-1 Distributed log analysis framework workflow [3]

20

RETRIEVEMETA (nss; lm)- Communication step in which the metadata of logs are

retrieved from storage slave nodes by the master node. Metadata contains the URL of

the stored log, count, range and average size of log entries,

1. nm SCHEDULE (tu; lm; ncs)- Task separation into task units and task

assignment to the computation slave node by the master node

2. nm DISTRIBUTE tu - Responsible for creation of computation slave nodes and

distribute cloud instances to them.

3. ncs RETRIEVEDATA d(tu) - Computation slave node retrieves log segments

stored at the storage slave nodes

4. ncs ANALYZE (l; tu) - The logs are analyzed using the analysis executable.

Multithreading is implemented and the thread result is then merged with the

result of the node.

5. nm HARVEST ncs – Master node harvests results from the computation slave

node. The global result is then given to the user.

2.1.6 Analysis App

The first step in identifying the security status of a system is to count the security

events. The HTTP connection logs are analyzed and a group of connections are

specified with the destination IP addresses as target. The algorithm is parallelized by

separating the count onto various computation slave nodes. A three level hash map

design is used in this model, master hash map, slave and thread hash map. This helps to

effectively count the event occurrences with large tasks. Every hash map consists of key

and record pair. Key contains the IP address of the destination and record consists of

data needed to summarize the entries. Each key is mapped to a record. After the thread

finishes the job, the slave hash map gets the merged result.

21

The image below shows the pictorial representation of the three-level hash map.

Figure 2-2 Three-Level hash map [3]

2.1.7 Evaluation

 This prototype is easily usable. The user has to prepare the master node with

access key pair creation and a security group created in the Amazon cloud. Then the

master node creates the computation slave node. Three sizes of HTTP logs, 100M, 200M

and 300M are used in the evaluations. The evaluation results are shown below.

Figure 2-3 No. of nodes by time [3]

22

The speedup advantage is apparent on large dataset as expected. This system

is designed to analyze large count of logs. The instance initialization is measured on the

master node and hence this overhead is mitigated. The downloading overhead can be

mitigated by using multiple storage slave nodes.

2.1.8 How this model differs from others?

This work differs from other antivirus systems with respect to the analyzing

methods and objects. Elastic stream cloud identifies the gap between an application’s

streaming property and the standard cloud services. This design addresses the issue that

occurs in streaming logs. As compared to the other distributed computing frameworks,

this lightweight framework provides an easy and empirical way to deploy security

frameworks with less distributing overhead.

2.1.9 Improvements and Conclusion

A lightweight distributed framework is implemented in this model. It contains

minimum components and specifically designed for analyzing security logs. The

framework is realized in Amazon EC2 and S3 environments for efficiency and easy use

of the prototype. The improvements would be based on supporting complex log analysis

and extending the framework.

23

Chapter 3

Existing Problem and Requirements

3.1 Unstructured Schema

 Logs are more often viewed as a debug information useful in system

maintenance. There was lack of sufficient use cases for logs to be properly structured

and organized. For example, a log file which stores api session data just need to record

the type of Http Method, Status Code, Error Message and any additional header

parameter. Traditionally a raw log which above mentioned information served the

purpose. In today’s world, almost all systems produce lots of information. Not only that,

now we also have sufficient capability to make sense of these data in order to benefit

business operation or even improve the system performance or scale the system.

Achieving this is not plausible if data chaos in form of unstructured data is not handled.

Figure 3-1 Unstructured log message [17]

24

 Logs which are unorganized can be problems to both the parent application and

application which consumes these logs. For example, it would be difficult to come up with

a generic solution to process large amount to unstructured logs. It would also be a

nightmare when trying to relate log messages to one another when debugging a code

flow. Lastly, it may lead to degraded performance for application as logging libraries may

strain in logging these large unstructured data.

3.2 Strongly Coupled Storage

 Logs need to be stored for future reference. Type of storage used plays a big

role in determining the usability and scalability of a logging system. Storage should

provide better accessibility for logs. It is not worth while maintaining logs if they are not

easily accessible. Fast retrieval and easy access is the primary purpose of having any

logs. If logs cannot be retrieved fast, it will be almost impossible to have a real-time data

analysis. Real time data analysis is in widespread use today. Almost all large and small

companies use real time data analysis to create business growth strategies. E-

Commerce companies such as Amazon and Alibaba uses real time data analysis to

provide on spot offers and recommendation to customers. Weather forecast systems,

mission critical in-flight system and many others use these data to perform critical core

tasks. It is not difficult to imagine the problems an inflight system would face if weather

data is not available to it in a timely manner.

From an implementation perspective, a logging system should have loosely

coupled storage. Consider for instance, a system using relational database such as SQL

as its storage option. If the same code base is used across different environment, the

logging system would face incompatibility issues. For example, android does not have

full-fledged support for SQL but uses a lighter version called SQLite. For embedded

25

systems database like Firebird and HQL works better. It is evident from this that

portability of application would become a problem due to storage bottleneck.

Figure 3-2 Storage Decoupling [18]

Lastly, decoupling storage from any system is imperative if the system needs to

scale. A system with small number of user base may use a relational database for

storage purpose. However, as system starts catering to larger number of users, a NoSQL

storage might become a better option. A tightly coupled logging system would be difficult

to scale in this case whereas a loosely coupled system would migrate easily from

relational database to a NoSQL database. Speaking succinctly, a storage component for

a logging system should be a pluggable component.

26

3.3 Lack of Visualization Capabilities

Logs are very important piece of information depending on how they are used.

They can be used to scale system in terms of performance or business coverage. They

can be used for devising business development strategies such as user retention, user

recommendation, etc. However, raw data is of least significance, especially if these data

are in terms of gigabytes or even more. From elementary mathematics level itself, it is

clear how graph and charts prove to be more meaningful as compared to raw information

or even data tables. It follows similarly for log analysis too. Logs are beneficial and a

powerful tool only when they can be comprehended easily and effectively. It is nearly

impossible to analyze huge logs in form of raw data.

Figure 3-3 Sample Dashboard

Visualization solves this problem by expressing raw data in terms of figures and

graphs and charts. They can be easily understood and any decision can be taken much

faster when referring to visualizations as compared to plain raw data. Another advantage

27

of visualization over raw data is that, they make sense to almost any one in the

organization. A person need not be technically sound like a developer to understand and

decode a visualization as is the case with raw log data which needs more technical

expertise to decode and understand. Many companies have dedicated team to convert

these raw log data into visualization which can then be delivered to higher management

or marketing teams for their specific tasks.

 Not every logging system comes with a visualization capability built in. In fact,

currently visualization system such as Splunk are used together with logging frameworks

like log4J to produce meaningful visualization. Other examples include loggly,

Elasticsearch-Logstash-Kibana stack and grayLog2 as an alternative to Splunk.

3.4 Handling Data Loss

Logs are basically data that are produced at one site and consumed at another.

Almost, all logging systems implement some kind of data flow mechanism to ensure that

logs are transmitted to the required destination and stored properly. On the other hand,

clients who consume these logs also rely on their transmission from storage site to

current location. Most of the time logging is synchronous, which means as long as parent

system works, data will be logged without any problem.

28

Figure 3-4 Data Streaming [19]

However, as data to be logged becomes huge, synchronous processing of logs

no longer works. Many logging system, such as loggly uses asynchronous processing.

This ensures that logging process does not degrades the performance of parent

application. Asynchronous processing however is dangerous in terms of maintaining

consistency in operation. Consider the example of video streams, almost all of which are

asynchronous data streaming. It is not hard to notice the jitters and lags associated with

any media streaming. Asynchronous log processing also comes with similar problems.

There is a possibility of data loss for example when producing code produces data but

consuming code delays consumption. Data may fall off the pipeline after delay reaches a

threshold. Systems such as RabbitMQ are very efficient and fast in data transfer,

however due to lack of their own temporary storage, they do not guarantee data

consistency.

3.5 Real Time Analytical Capabilities

An organization having tools to analyze user and system data is definitely at

higher advantage than organizations who do not have such capabilities. However, to be

29

at even higher advantage these capabilities should be near real time. An ecommerce

website can run a batch job every day on users visiting their site and build

recommendations to be shown in future. On observing closely this is not how large e-

commerce organizations like amazon provide recommendation. Based on a user’s

current search he is provided with other product recommendations. Even YouTube

provide recommendations just after user finishes watching a video. This would not be

possible if user data is not processed almost instantaneously.

Real time analytical capabilities are difficult to achieve by using existing logging

and visualization frameworks. This would need multiple systems working in sync with

each other. This synchronization would cover stages such as logs transfer and storage,

log retrieval and raw data processing, application of analytical algorithms and finally

feeding data to visualization.

3.6 Performance Scalability

The amount of logging required for an application solely depends on business

requirement. For example, an internal service needs to log only application specific logs.

A client facing application may also log user data to study their behavior which may help

in developing business strategies. Normally these clients facing systems need to scale

themselves as their user base grows. This also means that the logging systems the

application uses needs to scale too. Scaling all applications are quite a challenge for the

teams working on it. It is possible only with futuristic design and early thought on how

components of the system would need to be modified as user base grows. Scaling

logging systems are also equally challenging as they deal with multiple components such

as storage, messaging queues, flow algorithm and visualization service.

30

While scaling a logging system, the primary components to keep in mind are

storage and messaging queues. Storage is responsible for storing the logs in various

format as specified by the business requirement. Some storage medium is good at

handling large volume of data while others are not. Some other storage solution provides

better searching while cannot handle very large data. For example, relational databases

such as MySQL are very efficient in data search using their easy to write queries. They

also are good at fast data retrieval by indexing techniques. However, they are not

preferred database solutions when storing user log data as this can proliferate easily and

relational databases may not be able to support it. On the other hand, NoSQL databases

such as mongo DB and Elastic search are very efficient in storing large amount of data.

They can theoretically store infinite amount of data and since they store data in file

format, their capacity is limited only by the machine’s storage.

Messaging queues are responsible to act as a temporary in memory buffers

which aids in transportation of logs from creation site to persistent storage. Not all

messaging queues handles large data volume efficiently. The need to deal with high data

in memory when the consumer is busy or is down. They also need to deal with

concurrency problem when a data pulled by one consumer from the queue is no longer

available to another consumer waiting for same data. Messaging queues have limited life

time from an application perspective. Once they are past due this lifetime threshold, they

drop data from temporary buffer which results in data loss. Finally, most messaging

queue do not have data replay feature which can be used to minimize data loss.

31

Table 1 Throughput calculation of a messaging queue system [12]

32

Chapter 4

Solution Design and Components

4.1 Base Logging Framework

Even if trying to build a logging system which expands over traditional logging

feature to provide numerous other features as discussed before, logging data remain the

core component of the system. Logging data seems to just print message in console or

file. However, a lot of complexity goes on in building a logging framework. Instead of

reinventing the wheel we can use existing frameworks such as log4j, Logback or java

logging libraries. It is important to analyze however, which solution fits the purpose. It

would be better to have a logging framework that serves exactly the data logging purpose

without any overhead of additional features. We would be using Log4J for our purpose as

it is the minimalistic framework and quite stable one.

 Log4J is around for quite some time now. Its first version was released in 2005

as per maven central data and it has matured through last decade. It is one of the most

trusted and most used logging framework in java ecosystem today. It provides all the

required logging levels namely debug, info, error, critical and all. It supports multiple

logging mechanism such as console logging where log messages are pushed to

application console or ide console window. Another mechanism is file appender where it

is possible to specify the file name where log messages needs to be pushed. The most

popular one and which makes log usability most easy is the rotating file appender. In this

mechanism logs are appender to file as in file appender mode but with a difference.

Based on log4j configuration of maximum file size, log4j framework will create a new file

automatically and start logging new messages here, once the previous file has reached

the size limit. This is quite beneficial as it avoids the problem of having a single text file of

33

humungous size. Another feature provided by log4j is the layout configuration where user

can provide message layout and the messages will be logged in the required format.

Figure 4.1 shows example of a log4J configuration file.

Figure 4-1 Log4J Properties Configuration

• Root Category – This property determines the logging level of logs. In the above

case, logging level is debug which means all the logs of type debug, info, error,

critical will be logged. Another parameter to this property states that system will

be using a rotating file mechanism.

• aLayout – This property determines the type of layout being used for logging. In

this case it is pattern layout. Another type of layouts is AbstractStringLayout,

CsvParameterLayout, HtmlLayout and JsonLayout among many others.

• Max Size – This property specifies after what size the log4j system need to

switch to logging into a new file. This size is specified in bytes.

• Custom Property – User can also specify their own property which are not meant

to be used by log4j framework directly. For example, it can be specified that

which micro service is the current system under run.

• File Extension – This property can specify the extension of files that are created

by log4j framework. These extensions can be “.txt”, “.log”, etc.

34

• Conversion Pattern – Here user can specify the formatter for log messages. The

formatter specified in above example will print log messages in the format below.

<Date> <Priority> <category of logging event> <Line Number> <Message>

4.2 Centralized Storage

Storage is an important component of a logging system as it plays a key role in

determining the performance and efficiency of the system. It also determines the ease

with which the system can be scaled when required. Having a good storage solution is

important, but if the storage is centralized it adds a lot to the existing benefits. Having a

centralized storage like AWS S3 removes the burden of maintaining in house storage

solutions. Since, the servers are acquired from AWS, the business can save a lot in

terms of maintenance, support staff, on site facilities and real estate. The major benefit

however, is cost of usage and scaling. AWS S3 enables us to pay for what we use.

Therefore, we end up not wasting resource as in case of in-house solution where even

for low usage entire storage has to be setup. Second benefit is scalability of storage

solution when required. Scaling an in-house storage solution is costly and required

additional maintenance as oppose to S3 which can scale on demand.

We choose AWS S3 as our centralized storage solution for following reasons:

• Ease of Integration: One of the best feature of AWS S3 is its easy integration

using Amazon’s Restful API with any third-party application. AWS SDK is

available in almost all modern programming languages such as Java, C#,

Python, Ruby and others. The AWS documentation is quite self-explanatory and

has an ever-evolving ecosystem of developers and maintainers.

35

• On-demand Scalability: AWS Services such as S3 can be easily scaled as

demand increases. Not only that, the scaling of services do not even require

manual intervention and they can be done automatically using alerts which

notifies the system of increasing or decreasing load to tune the system

accordingly. Normally an in-house solution can only be scaled up, however, AWS

services can be scaled up and down continuously depending on the

requirements.

• Trust and Security: AWS Services are built of a very secure model of IAM

(Identity Access Management) roles and policies. The stringent security is

maintained on S3 buckets using bucket policy. Also, the security is implemented

in AWS S3 by a file by file model using SSL.

• Content Storage: AWS S3 stores data in file format which makes its model

content independent. It is theoretically possible to store any type of file and of

any size. This way AWS S3 can also form a basis for content distribution

systems.

• Amazon QuickSight UI: AWS new service QuickSight offers big data analytics

feature on top of data stored in AWS S3. In the world of big data analytics where

organizations have to deal with multiple technology stack AWS provide the

storage and analytics solution all under one hood.

• Backup and Disaster Recovery: Amazon provides great tool for backup and

disaster recovery in event of any failures. This is achieved using amazon’s CCR

(Cross Region Replication) technology where S3 bucket. Can be replicated

across any number of amazon’s world-wide data centers.

36

• Free Usage and Pricing: In consistency with many other AWS Services, S3 also

provides a flexible pricing model. A user can select a free S3 tier to get started

and this is sufficient for most of the individual contributors. In the free tier AWS

S3 provides 5 gigabytes of storage which includes 20000 GET request, 2000

PUT requests and 15 gigabytes of data transfer quota per month. The pricing for

advanced usage is also quite reasonable and can be easily scaled.

4.3 Non-Blocking Execution

Logging is not itself a business requirement but it provides support to the

business in various ways. It is therefore important to understand that logging should

never become a bottleneck to the parent application. A code to log some data should not

hinder the application run in any way. Consider the example of an exception thrown while

trying to log a message. This exception will then propagate to the parent application entry

point (normally main() method) and the application would terminate with an exception. It

needs to be ensured that logging code runs in mutual exclusion with parent application

code and any state modification of this system should be independent of parent

application.

 Generally, all asynchronous operations are thought as a non-blocking operation

which is however a misconception. It is important to understand the difference between

these two before a correct implementation can fall in place. Any asynchronous call made

from the calling site is expected to return later at some point if time with some response

data. This data is then consumed and application progresses. However, at this point the

parent code is terminated and put on to the stack and the control is transferred to the

calling site of asynchronous call. This in itself is a blocking scenario. In a non-blocking

execution however, a call is issued and is expected to be taken care at its independent

37

pace and the parent application execution continues immediately. In this case, after a call

is made it never returns with any response and the calling site is not aware of what is

happening or has happened at the called site.

 From the figure below, the application shows two threads, the producer thread

which can be a main application thread, and the consumer thread which can be an

independent thread on its own. Once the producer thread pushes a message onto the

queue, it is the responsibility of consumer thread to listen to the queue and read the

messages. However, it is clear from the figure that main code which is the producer

Figure 4-2 Producer Consumer Threads with Shared Queue [13]

thread continues at its own pace after pushing the message on the queue and is never

aware of what has happened on the consumer side. The consumer never returns a value

to the main thread which also means that it never become a reason to block execution go

the main thread.

4.4 Avoiding Large Number of Thread Spawn

From point 4.3, it is clear that a non-blocking execution would require a separate

thread on which logging code would run. From a broader view this approach looks quite

efficient. A separate thread would never hinder the execution of main thread and

38

application would run perfectly as a whole. However, whether the application would run

perfectly or not also depends on how many number of thread the application would be

using. The application would have one main thread for sure. Apart from this thread,

logging thread can have either one replica such as in case of a desktop application or a

multiple replica in case of a web application.

 A web application serves web pages to the client. The code behind for

every web page contains application logic. If a logger object is instantiated at each of

these web pages it would create a multiple thread spawn problem. The logging library

defines the number of thread it would spawn for purpose of consuming logs. If this

number is ‘n’ and there are 10 webpages served simultaneously by the web server, the

webserver would be handling a total number of 10 * n threads at a given point in time.

Since, all consuming threads would be doing similar jobs of consuming messages and

pushing to a centralized storage, they need not be duplicated to such a high number. A

singleton pattern can be used to ensure that at any point of time, the application just runs

a single instance of logger class. This will ensure that the logger class spawn the define

number (n) of thread just one time. So, if as per configuration we have a max number of

simultaneous thread as ‘n’, at any point of time the application will have no more than ‘n’

running threads.

4.5 Data Pipeline using Kafka

Kafka is a modern system with a high degree of resilience. It is a distributed

system which can be easily scaled horizontally by adding new clusters. The working of

kafka is based on “topics”. Topics are entities which stand independently of application

code and any system can publish messages to these topics and other systems can

consume messages from the same topic. For example, a topic named

39

“UserInformationChanged” can serve the purpose of dealing with user information

changed functionality. If a user information is changed, the related payload can be

pushed to this kafka topic. Any consumer who wants to receive information about what

user information changed, can subscribe to this topic to consume data.

 The resiliency of kafka is provided by notion of offsets. All messages

pushed onto kafka queue are related to an offset which basically acts as an index for the

message. To retrieve the message all a client needs to do is call GET with the required

offset. Since kafka has its own configurable storage system (generally configured for 30

days data retention), if a consumer code failed and data is lost, data can be easily

replayed just be going back to that offset.

4.6 Elasticsearch DB

The raw messages in AWS S3 are useful if they can be processed to a

meaningful format like JSON and then can be converted into visualizations. SQL is a

tabular structured database and does not support JSON inherently. Even though SQL

has great query filtering such as aggregations, ordering and grouping, it does not have

any visualization support. Any data in SQL if needs to be visualized in a chart or graph

format will need to integrate with visualization tools such as tableau and powerBi.

Elasticsearch is the database of our choice. It supports JSON as its primary data format

and has a sister application called Kibana which is quite popular and efficient for creating

rich visualizations and dashboards. In fact, Elasticsearch is marketed under the umbrella

of ELK Stack (Elasticsearch, Logstash, Kibana).

We use Elasticsearch because of its following benefits:

40

• Lucene Base: Elasticsearch is built on top of Lucene. Lucene is a fully featured data

retrieval kit. This way Elasticsearch leverages almost all information retrieval

algorithms from Lucene. Since Lucene is familiar to many developers it is easier to

pick up Elasticsearch usages and get up to speed fast.

• Full Text Search: Elasticsearch provides search features such as partial text

searching, full text searching or facetted search. It provides multiple filters such as

“bool”, “must”, “match”, “should”, “range”, etc.

• Auto completion and Fuzzy Searching: Elasticsearch makes it very easy to build UI’s

for auto completion feature where Elasticsearch provides matches as user types.

Using fuzzy search an application can leverage spell check algorithm as part of

Elasticsearch SDK itself.

• Full Query Feature: Elasticsearch supports complex SQL like query with ease. It has

support for select, inset, delete, group by, order by, aggregations and almost all SQL

like query params.

• Document based storage: Elasticsearch stores real world entities in form of

structured JSON data and uses indexing for efficient searching. It uses indexes on

JSON fields(Keys) to provide maximum performance.

• Retrieval Speed: Since Elasticsearch uses structured data, it can find the document

using indexes very fast. It also caches structured data for a particular query and they

are returned from local cache if the query is exactly same.

• Scalability: Since Elasticsearch is inherently a distributed system, it is built from

ground up keeping scalability in mind. It can be easily scaled horizontally by adding

new clusters which reduces the load on existing clusters.

• Restful API: Elastic search driven by restful APIs, which makes it possible to perform

action using a simple Restful Service.

41

• Fully Featured IDE: Elasticsearch has a mature ide to test Elasticsearch queries and

view results. It can be used as a debugging tool to investigate any problems with the

query. IT can also be used to create or delete static indexes. Finally, almost all admin

related jobs require this IDE in some way or another.

4.7 Kibana Dashboard Visualization

As a final step of a logging system we need to ensure that we get proper

visualizations from the logs that are gathered. There are many visualization tools in

the market today. Some of them are Tableau, powerBi and Kibana. Tableau is a

great visualization tool. Its development has mostly revolved around providing rich

visuals to user without worrying much about underlying data storage. Tableau does

not have storage on its own. However, there are multiple connectors which tableau

makes use of. It has connectors ranging from CSV, MySQL, S3 and lots more.

However, it does not as of now has a Elasticsearch connector. PowerBi is similar to

Tableau in lot of ways. Our solution of choice is Kibana. Since Kibana is shipped as a

part of ELK stack, it makes lot of sense to use it in coordination with Elasticsearch.

Kibana also provide following benefits:

• Search Highlighting

• Enhanced Query Aggregation

• Scripted Fields

• Automated Dashboards

• Client Server Separation

42

Chapter 5

Implementation Overview

The implementation can be efficient and scalable if it adheres specifically to

problem statement. The outline of customer problem statement are as follows:

5.1 Customer Problem Statement

• Need ability to store application logs to a centralized location such as AWS S3.

• Unlike traditional way of viewing logs as a text file, should be able to view log

data in a structured way.

• Should be able to filter logs by parameters such as datetime, component or any

other key present as part of log data.

• Should be able to make meaningful analysis from logged data using

visualizations.

• Visualization should reflect most recent data as per the use case. For example –

Number of users logged in every hour can have a delay of an hour of data.

• The system should enable data to be accessed by visualization platform such as

tableau.

5.2 System Requirements

The problem statement needs to be translated into concrete requirements. Since,

logging systems may need to scale in the near future, both functional and non-functional

requirements need to be addressed from the onset of development lifecycle.

5.2.1 Functional Requirement

• System should be able to log messages to S3 in real time.

43

• Log data should follow JSON format with “Message” as the mandatory fields and

other supporting optional fields.

For example,

{

"DateTime": "2017-05-11T14:23:45Z",

"Message": "Payment Successful for user 5065188077",

"Status": "Success",

"ThreadId": "8",

"Component": "AuthorizePayment",

"SessionId": "as3es-ger3d-iq993-wqddw",

"RequestId": "1033923",

"ErrorCode": "0"

}

• The size of log files should be configurable by the user. For example, a

developer can specify that he wants all log files in size of 100KB each.

• The log files should be stored in structure as follows:

<S3 Bucket Name>/Module/”MM/DD/YYYY”/log_mm_dd_yyyy_hh_mm_ss

• The storage structure should make it easy for client scripts to read log data

based on timestamps. For example, I should be able to iterate over all logdata

from now to now – 5 days.

• Filter should be provided as a dropdown which options such as by day, by

month. Etc.

• The data pipeline should be properly compatible with ELK visualization stack.

• The visualization should be automatically updated if new data arrives.

44

5.2.2 Non-Functional Requirements:

• Data Should be logged real time to a centralized location.

• Logging Framework should have 100 percent yield to avoid data loss.

• Logging activity should not hinder the main execution of parent system.

• The centralized server should have high availability.

• A pipeline which pulls logged data and creates visualization should be in place.

• All the visualization should provide data which is near real time to make better

sense.

5.3 High Level Solution and Code Flow

1. Client Application can use existing logging frameworks such as log4j for Java

or log4net for .Net frameworks.

2. A custom appender class needs to be implemented which uses AWS libraries

to commit data to S3 bucket. This appender class will be used by log4j/log4net

framework.

3. This system can then push log messages to S3 bucket.

Figure 5-1 Logging to S3 (Producing Logs)

45

4. Once logs are in S3, a Jenkins/python pipeline can fetch the logs from S3 and

push to an Elasticsearch index.

5. Then visualization can be built on top of data present in ES index.

6. Since Kibana visualization have automatic update features, any new data

arrival in the ES index will be picked up by the visualization.

Figure 5-2 Log Consumption and Visualization Pipeline

5.4 Implementation

1. Custom appender may use multi-threading to increase performance. Instead

of using raw threads, advanced frameworks such as

“SharedThreadPoolExecutor” is being used.

2. The log file size is made configurable by keeping it as a configuration property

in log4j.properties file.

3. The layout.conversionPattern property is also configurable and can be

changed by the user depending on the format in which log message string is

required.

46

4. A class UTA Logger is created as a wrapper class for logger object. This call

takes care of formatting log message and any supporting fields such as datetime

in a valid json object.

5. The primary purpose of this class is to act as a singleton. This is important

because our solution uses multiple threads. Creating multiple objects, each

spawning multiple threads is not a good design and can lead to performance

issues in a multiple page web application scenario.

6. The S3Appender class extends from AppenderSkeleton Class. Therefore it

needs to override methods activateOptions(), append(LoggingEvent) and

close().

7. activateOptions() is called when the appender class is instantiated using log4j

manager object. Here, consumer threads are initialized and started. Any other

initializations such as S3 authentication keys, etc. are done here.

8. Append() method is invoked automatically when a logging method such as

debug() or info() is called. We get the rendered message from LoggingEvent

parameter.

9. A StringBuilder is used as a buffer to append log messages and keep it in

memory until the log file size specified by the user is reached. At this point all

accumulated messages are flushed onto local disk.

10. The consumer thread which continuously checks for log data on the disk then

picks up the file and reads its content.

11. Logformatter method is then called with the message content to add any

additional fields and check for validity of JSON.

12. The returned data from Logformatter() method is pushed to S3.

47

13. The filename to which message will be pushed in S3 is constructed on the fly

using current datetime and random string returned by the method getSaltString()

14. Close() method is implemented to take care of gracefully exiting all the

worker threads when the application shuts down.

15. In close(), the code also checks for any un-flushed message and queues it

for processing. If the size of buffer is zero, the threads are exited and resources

freed.

16. The appender uses Google’s Gson library for any JSON related

manipulations and is the only dependency apart from native log4j.

5.5 Design Class Diagram

Figure 5-3 Design Class Diagram

48

5.6 Code Usage for Client

5.6.1 Properties File

log4j.rootCategory=DEBUG, S3Appender

log4j.appender.S3Appender=org.uta.s3appender.S3Appender

log4j.appender.S3Appender.layout=org.apache.log4j.PatternLayout

log4j.appender.S3Appender.maxsize=100000

log4j.appender.S3Appender.layout.ConversionPattern=%d{yyyy-MM-dd

HH:mm:ss} %-5p %c{1}:%L - %m%n

5.6.2 Sample Usage

package org.uta.s3appender;

import org.apache.log4j.Logger;

public class MainApp {

final static Logger logger = Logger.getLogger("org.uta.s3appender");

public static void main(String... args) throws Exception {

logger.debug(“Test Debug Message”);

logger.debug(UTALogger.LogFormatter(“Message”, “SessionId”, “RequestId”,

new Resource() {{

put(“key1”, “value1”);

}};);

}

}

49

5.7 Test Cases

Table 2 Test Cases for S3 Appender

Test Case Desc Pre-Condition Expected Output Actual Output Status

To verify if logger

object is getting

initialized or not.

S3 bucket should be

configured.

On running the

application, logger

object should be

initialized without

any errors on

console.

Logger object

was initialized

successfully and

console did not

show any

errors.

To verify if a

simple plain

message is not

logged to S3

before

application exits.

S3 bucket should be

configured.

A short message

should not be

logged to S3

before application

exits, to prove

message is still in

the buffer.

Message was

not logged to

S3.

To verify if a

simple plain

message is

logged to S3

after application

exits.

Application should be

in terminated mode.

S3 bucket should be

configured.

The buffer should

be flushed and

message should

be logged once

application exits

Message was

displayed in S3.

To verify if

messages sent

S3 bucket should be

configured.

The S3 bucket

should receive all

The messages

were dropped in

50

continuously is

received by S3.

the messages as

soon as possible.

(average < 2

seconds)

S3 averaging

less than 2

seconds

To verify the

throughput when

sending bulk of

messages

S3 bucket should be

configured.

There should be

no message loss.

All the data should

be successfully

stored in S3.

The data was

stored in S3

without any

message loss.

To verify if size

of file stored in

S3 changes

accordingly.

Change file size

parameter in log4j

properties config file.

Test Data: Give file

size as say 10000,

12000 and so on, S3

bucket should be

configured.

The file size

should be

according to what

is specified in

config.

The file size was

in accordance

with config

parameter.

To verify that all

the messages

are properly

flushed on

application exit.

S3 bucket should be

configured.

Any remaining

message in buffer

should be logged

in S3 on

application exit.

Messages were

properly flushed

and logged on

application exit.

51

Chapter 6

Technical Approach

6.1 Storing Logs in S3 Bucket

Choosing AWS S3 as the centralized storage solution provides a lot of benefits

including cost optimization and easy scalability. All AWS services are tied to a region and

it is recommended to select a region by keeping few things in mind. First, not all services

are available in each region and it is better to choose a region with more number of

datacenters. Second, it is always beneficial to spin up a cluster in the region which also

have the application data.

Though easy to configure, S3 requires few configurations that are important to

leverage benefits that it can provide. The S3 configuration uses a concept called AWS

profile. Use of AWS profile is optional, but recommended.

6.1.1 AWS S3 Configuration

There are four important S3 config properties. They are Bucket Name, S3

Access Key, S3 Secret Key and AWS Region. There are multiple ways to provide these

information to the AWS SDK. First by creating an AWS profile which can be done by

creating a file .aws/credentials in the root directory in case of Unix based system and

mac. On windows this file can exist in the directory containing windows installation. This

file can contain the properties specified above in form of key value pair.

Another way is to provide it as part of application properties file and use then in s3_client

api as shown below. The properties can be fetched using default getter and setters for

specified property name. In Java, for getter setter to work properly camel casing needs to

be followed for variable names corresponding to properties in the properties file.

52

Figure 6-1 S3 Configuration

6.1.2 S3 Folder Structure

 In a scenario where the system is intended to collect lots of data on a daily

basis, it is good have a folder level separation for daily logs. For example, folder naming

can follow pattern as /Module/<MM/DD/YYYY>/. This makes sure that any consumer will

have capability to segregate logs based on daily filters. The files in a particular folder can

also follow certain pattern. Though this is not important, this will make implementation

easier and we will have more parameters to validate. One such pattern for log file can be

“application_log_mm_dd_yyyy_hh_mm_ss.txt”. In this way, even without any other

parameters given to us, it will be easy to make out some pattern among the logs just by

using their file names.

6.1.3 AWS SDK S3 API

 AWS provides api for S3 in almost all modern programming language. We use

Java api for our purpose. The connection is established by calling AmazonS3Client

constructor with user profile information which returns an S3 Client object. The S3 client

object provides access to various functionalities such as copying objects from one bucket

to another and deleting objects. It provides usages such as create bucket, delete bucket,

delete bucket configuration, delete object and get object from bucket. We use S3 Client’s

list api which gives us keys for all the logs present in the bucket. This key acts as a

handle which can be used to retrieve log file content and load it into memory for various

uses. Since, we also need to upload log files to S3, S3 client also provides support for put

object using which a log file can be uploaded to S3 bucket.

53

6.1.4 Maintaining S3 Policy

S3 bucket policy specifies what actions are allowed on a certain principle inside a

S3 bucket. S3 bucket policy follow ACL (Access control list) type. Example of an S3

bucket policy is shown below.

Figure 6-2 S3 Bucket Policy

6.2 Schema Structuring

While logging has become one of the major components of many system in the

modern world, most of the systems do not give structure to their logs. They either do not

see any use case for having structured logs, or are just unaware of the values it can

provide. There is always a use case for having a better schema without any doubt. Even

for applications where logs just work as a debug information, structuring logs can provide

many benefits. One is that having structured logs eliminates the time wastage a

developer has to suffer browsing through unreadable logs.

54

Second, Logs can be shared across developers and to higher management as it

becomes more and more understandable. In application which records user’s data, it is a

no brainer to say that structuring logs is the first and most important task to cover while

building a logging system. In such an application, log’s structure becomes the building

block for all visualizations and dashboards that can be made. How real-time data can be

viewed on the dashboards also depends on how schema bound the logs are.

6.2.1 LogFormatter Class

We use a Logformatter class to bind schema to our log messages. This class is

also made a singleton class as the only method it exposes is a static method. This class

has a static method called format() which does the required structuring. The method

accepts log parameters as key, value pair and stores them in hash map. These key value

pairs are then used to build a JSON object which is passed back to the logger object.

This class also exposes a getInstance() method which returns a new instance of the

class only if there are no existing instances, thereby following principles of singleton

pattern. The implementation roughly looks as shown below.

Figure 6-3 LogFormatter Wrapper

55

6.2.2 JSON/AVRO Data Format

When deciding about providing structure to our data, the next big decision to

make is about the data format. There are many data formats available which are

commonly used. XML is a mature data representation language with support of

serialization/deserialization. This means the data can be easily transferred over wire and

it works with almost all network protocols. The problem with XML is their verbosity.

Consider an example below.

Figure 6-4 Sample XML

In the example above, it is clear that for handling large information sets, xml is not a good

alternative from the storage perspective. It takes up more information for its metadata as

compared to the actual data itself. This means that serializing and deserializing such data

can be memory expensive.

 Json on the other hand solves this problem to a great extent. It uses bracket

notations to as an alternative to opening and closing tags in xml. It also provides

construct to match with objects and arrays as in any programming language. The

example below shows the above data in json format. Json looks quite concise and

provides multiple benefits. Due to its lesser metadata size the payload can transmit more

real information. Most of the language supports json out of the box.

56

Figure 6-5 Sample JSON

6.2.3 Backward Compatibility for Plaintext Logs

Visual logging introduces a new wrapper class which provides methods to format

log messages into a Json structure. This works very well as seen in the examples above.

However, not all use case may need to employ the json formatting. For example, a code

file among many others in a project may want to log just plaintext messages. In yet

another scenario, a team may not want to move to the new logging approach because

this may not work for them, and changing each logger statement would be a lot of work to

do.

Figure 6-6 Backward Compatibility

Visual logging provides backward compatibility. This means plain old logger

statement with a string message without any log formatter implementation would work

equally well with this new framework. The log statements shown below would work fine

with this logging system.

57

6.2.4 Resource Field

Visual logging provides structure to a logging information using a schema. These

schemas however, cannot be concrete one because logging use case will certainly differ

for different project and organization. For example, a component may be interested in

logging http related fields like status code, http method, execution time. Another

component may be interested in logging fields like user login information, login session

duration, user’s demographic information etc. This makes it clear that no model can

satisfy the schema usage in a generalized manner.

 In order to solve this issue, visual logging introduces a “resource” field in

logFormatter method which takes inputs as a key-value pair in a hash map. This ensures

that framework receives all the information without imposing a strict schema on the user.

6.3 S3 Appender

Visual logging comprises of a data pipeline which not only logs data but also

uses them to enable visualization with almost zero engineering. This requires data to be

present in a centralized storage such as AWS S3 in this case. Out of the box, logging

frameworks such as Log4J and other do not support sending messages to S3. They

support logging mechanisms such as console logging, file logging, etc. However, they

provide a flexibility to implement the custom implementation for the logging mechanism.

User can customize the logging implementation to change message formats, change

message bulk size to be logged, change destination to messages to SQL, S3 or any

other storage medium possible.

58

6.3.1 Appender Skeleton Class

Customizing logging mechanism starts with the AppenderSkeleton Class. In java,

a new class can be created, S3Appender in this case, which extends from

AppenderSkeleton class provided by log4J package. This class has following methods

which needs to be override.

• ActivateOptions – This method is invoked the first time a logger object is

instantiated. This method can be used to setup initial configuration parameters or

other options as required by the implementation. For example,

@Override
public void activateOptions() {
 System.out.println("Activating Appender");
 builder = new StringBuilder();
 startInstance(threadsize, fileextension, s3bucketpath, s3accesskey,
s3secretkey, sharedQueue);
 lStartTime = System.nanoTime();
}

• Append – This method takes a parameter of type LoggingEvent which enables

the custom class to intercept the logging message coming from the client. This

message can be formatted, serialized or processed in any way before sending it

to the destination. In the visual logging implementation, a check is added where

this method checks for the total size of message in temporary buffer is more than

a specified size. Only then the messages will be flushed to the storage. This

reduces the number of clutters in the storage and keeps the file chunks

consistent in size.

As shown below, the message is collected using getRenderedMessage()

method of LoggingEvent class. Capacity determines size of the shared queue.

The if condition check ensures the total size of shared queue at any point of time

does not become more than the configured maximum queue size. If the shared

queue is not out of the max size, the implementation keeps on adding to the

59

temporary buffer. The implementation also uses string builder as a temporary

storage data structure as compared to string buffers. String builders are faster

and thread safe and therefore, they do not need to be synchronized explicitly.

Figure 6-7 Append Method Implementation

• Close – This method takes care of closing the logger instances when all

messages has been logged. This message however, may not be called in all the

condition. For example, a console application or a desktop application running on

a machine has a defined exit scenario. For example, a music player application

will be shut down by the user when he is done listening to music. However, in a

web application which runs on a server, the application is expected to run

indefinitely and serve the requests. In such a case the close method should not

be called explicitly and logger instance should end only when the application is

exiting.

60

Figure 6-8 Overriding Close Method

6.3.2 Singleton Wrapper

As discussed in section 4.1.3, visual logging implementation may lead to

numerous threads instantiated and running at the same time. We use a singleton

wrapper class to solve this problem. When a client requests the UTALogger class’

getInstance method, the implementation checks for any existing instance. If there is an

instance already in memory, that instance object is returned to the caller, else a new

instance is created, cached and returned to the caller. For any subsequent requests this

cached instance serves the purpose. This ensures that client has only one instance of the

log wrapper object. Since, threads are spawned at every instantiation of the wrapper

class, this solves the problem by having just one instance at any point in time.

61

6.3.3 Producer Consumer Pattern

Visual logging works by utilizing the producer consumer message sharing pattern

at its core. The messages are produced by the parent application which runs on the main

thread or the producing thread. The framework spawns several other threads called

consuming threads. The number of consuming threads created can be specified as part

of the configuration. The communication between producer and consumers take place

through a shared queue. Main thread enqueues the messages on the queue, whereas,

consumer threads constantly look for any new messages in the queue. If any new

message arrives, consumer pick it up and processes the message, else it keeps on

waiting.

6.3.4 Graceful Exit of Logging Threads

When the parent application exits and the related consumer threads do not

terminate, they become a zombie thread simply eating up resources. This is not an ideal

situation for any application and should be avoided. Visual logging uses the concept of

poison pills to solve this problem. When an application exits, a shutdown of the logging

system is initiated by LogManager.shutDown() method. This makes a call to close()

method discussed above. Here, the shared queue is populated by ‘n’ poison pills, where

‘n’ denotes the number of thread. The poison pill can be any unique identifier or simply a

null value. When the consumer tries to consume the poison pill the implementation

identifies that thread needs to be terminated and calls abort() on the thread.

62

Chapter 7

Experiments and Results

7.1 Structured Data

The benefits by structuring the log data is the most important claims by visual

logging framework. In order to test the effectiveness of the new format, we can use

following judgement parameters:

• Readability

• Consumability

• Size of logs

Consider the logs below,

{
 "executionTime": "1",
 "datetime": "2017-12-05T23:44:56.468-08:00",
 "apiName": "assignUserProfile",
 "ThreadId": 12,
 "aWSRegion": "us-east-1",
 "message": "Random message for api assignUserProfile",
 "httpMethod": "PUT",
 "statusCode": "400"
}

and

Figure 7-1 Structured Data Demonstration

It is clear from the logs that structured log is much more readable and comprehensible. A

developer can easily make out meanings from the structured logs as compared to the

unstructured one. On the Consumability front, the structured logs are much more efficient

as compared to the plain format logs. A consuming service can access the structured

63

logs easily using key value pairs. This leads to lot less code and efficient performance of

logging system. The unstructured logs on the other hand, forces use of a parsing engine

which in turn uses complex regex which is not memory efficient and costly operation by

time parameter. It may look that the size of structured logs is considerably more than the

unstructured one, this may not always be the case. Roughly they may have twice the size

increment. This problem too can be solved using more efficient data format like AVRO,

where key-value pairs are stored intelligently to avoid repetition of keys which is the

primary reason of large log size.

7.2 System Throughput

We use a multithreaded environment to handle pushing logs to S3. This is done

to ensure that any processing in the logging system code does not hinder with operations

of the parent application. First, It is important to test how many log messages the system

is able to handle per second. This is measured by incrementing the threads for each run

and finally identifying the optimum thread count. It is important to note that the optimum

thread count cannot be a fixed number, but will depend on the system hardware

configuration and CPU architecture. The graph below shows the result from this

experiment.

64

Figure 7-2 Thread Count vs Execution Time

Figure 7-3 Message Size vs Execution Time

65

7.3 Demonstration of Debugging Efficiency

It is evident from above experiments that structured data makes it possible to

comprehend a log message faster. This itself is a huge improvement in amount of time a

developer may take to go through the logs and drill down to the system issue. However,

this logging system also solves a problem of log stitching. In large application, an

execution point starts at a certain line of code but flows through various other methods

and api calls to perform the required task. It would be difficult to know which method or

api in the entire flow is cause of the issue at hand. This can be solved by adding a

common identifier such as “SessionId” in this case to log messages. Using this field, it is

possible to gather complete logs of the execution flow and go through only those logs to

find the problem. As shown in example below,

Figure 7-4 Log Stitching

66

7.4 Visualization and Dashboards

One of the most important benefits are the visualizations provided by the

framework with almost zero engineering from the client side. These visualizations can

easily be plugged into a Kibana dashboard or can be exported to use in a custom

visualization tool. In the example below, the first graph shows http status code for all

requests coming into status by its count. The second line chart visualization shows the

successful number of requests per time period or the throughput of a system. Using

these visual information, it is very easy to answer questions like:

• How many GET/POST requests were processed each day/hour?

• What is the average number of successful requests every hour? (200 OK)

Figure 7-5 Visualizations

7.5 Backward Compatibility

In real world application, backward compatibility plays a very important role. Let’s

say an exciting upgrade to an application is scheduled to be pushed to existing users.

This upgrade may remove existing features and add better ones as part of the upgrade.

This however, is not an ideal business decision to take. There may be users having

67

specific use case related to older functionality which is going to be wiped out. This means

company would be losing those customers.

 The logging system design that is presented here supports backward

compatibility. Consider the examples below which shows two different log statements.

logger.debug(UTALogger.LogFormatter("Random message for api ",
, new HashMap<String, Object>
 () {{
 put("httpMethod", httpMethod);
 put("statusCode", statusCode);
 }}));

}

Figure 7-6 Backward Compatibility Demonstration

User may choose to log using the new LogFormatter static class or may want to stick to

traditional logging statements as shown above. This make sense as a project may not

have use case to log user data or their log messages are just plain string. Since, there is

no use case for new framework, the customer would not upgrade to new ways of logging.

In such as case, the logging system should not crash. The visual logging framework

takes care of this caveat and handles traditional and new scenarios effectively.

68

Chapter 8

Conclusion and Future Work

Logging data is one of the most important activities in application development

process. Logging not only helps in auditing applications, but their utility ranges from

efficient debugging to important analytical decisions which can impact a business

operation greatly. Though logging is deemed important part of an application, not much

thought process goes into architecting the aspects of a logging system. Only after a deep

inspection, one can find out the benefits of structuring data in a right way or using

multithreaded environment for logging if data size is huge. Once understood, it takes

quite an effort to come up with a clear and efficient solution.

 The proposed solution tries to use existing technologies such as Kafka, ELK

Stack and AWS S3 and provides a complete data pipeline starting from data production

to visualizing data. The process of collecting data, storing it, preprocessing it and

restoring it is all covered in some stages of this pipeline. The proposed solution seems to

work very well and aligns properly to the specified requirements. However, there are few

areas of improvement which can be taken care at a later stage.

 One of the problem is data repetition. For example, SessionId is repeated in all

the same session logs just to identify all the information for a given session. Though this

is quite helpful, it clutters log message with repeated value which also increases log size.

Since we use AWS S3 as storage, cutting down on repeated data can save costs.

Another problem is posed by complex query writing style of Elasticsearch. ES follows

JSON query which is not very intuitive to read and understand when compared to SQL

query. Not everyone in an organization apart from developers would like to deal with non-

SQL like syntax. It would be great future task to provide users with SQL-ES connecter

69

where a SQL like query can be parsed to ES query and allows user to fetch data from

Elasticsearch database.

70

References

[1] Alspaugh, Sara, Archana Ganapathi, Marti A. Hearst, and Randy Katz. "Better
logging to improve interactive data analysis tools." In KDD Workshop on
Interactive Data Exploration and Analytics (IDEA). 2014.

[2] Basak, Jayanta, and P. C. Nagesh. "A User-Friendly Log Viewer for Storage
Systems." ACM Transactions on Storage (TOS) 12, no. 3 (2016): 17.

[3] Nathan Keegan, Soo-Yeon Ji, Aastha Chaudhary, Claude Concolato, Byunggu

Yu, Dong Hyun Jeong, "A survey of cloud-based network intrusion detection
analysis", Human-centric Computing and Information Sciences, vol. 6, pp. , 2016,
ISSN 2192-1962.

[4] Anastopoulos, Vasileios, and Sokratis Katsikas. "A structured methodology for
deploying log management in WANs." Journal of Information Security and
Applications (2017).

[5] Pritom, Mir Mehedi A., Chuqin Li, Bill Chu, and Xi Niu. "A Study on Log Analysis
Approaches Using Sandia Dataset." In Computer Communication and Networks
(ICCCN), 2017 26th International Conference on, pp. 1-6. IEEE, 2017.

[6] Iversen, Morten Aursand. "When Logs Become Big Data." Master's thesis, 2015.

[7] Kaldor, J., Mace, J., Bejda, M., Gao, E., Kuropatwa, W., O’Neill, J., Ong, K.W.,
Schaller, B., Shan, P., Viscomi, B. and Venkataraman, V., 2017. Canopy: An
End-to-End Performance Tracing And Analysis System.

[8] Rodrigues, A. J. "AUTOMATED LOG ANALYSIS USING AI: INTELLIGENT
INTRUSION DETECTION SYSTEM." Computer 132 (2013): 0886.

[9] Sato, Tatsuya, Yosuke Himura, and Yoshiko Yasuda. "Evidence-based context-
aware log data management for integrated monitoring system." In Network
Operations and Management Symposium (APNOMS), 2016 18th Asia-Pacific,
pp. 1-4. IEEE, 2016.

[10] Stoica, Ion, Michael Franklin, Michael Jordan, Armando Fox, Anthony Joseph,
Michael Mahoney, Randy Katz, David Patterson, and Scott Shenker. THE
BERKELEY DATA ANALYSIS SYSTEM (BDAS): AN OPEN SOURCE

71

PLATFORM FOR BIG DATA ANALYTICS. University of California, Berkeley
Berkeley United States, 2017.

[11] Sun, Maoyuan, Gregorio Convertino, and Mark Detweiler. "Designing a Unified
Cloud Log Analytics Platform." In Collaboration Technologies and Systems
(CTS), 2016 International Conference on, pp. 257-266. IEEE, 2016.

[12] FENG C, WANG H, LU N, et al. Log-transformation and its implications for data
analysis. Shanghai Archives of Psychiatry. 2014;26(2):105-109.
doi:10.3969/j.issn.1002-0829.2014.02.009.

[13] Barish, Greg. Scalable and High-Performance Web Applications. Pearson 2005.
Web. 25 Oct 2017.
http://www.informit.com/articles/article.aspx?p=26942&seqNum=18

[14] Apache ActiveMQ. Apache Software Foundation 2004. Web. 25 Oct 2017.
http://activemq.apache.org/clustering.html

[15] O. Baysal, R. Holmes, and M. W. Godfrey. Developer dashboards: The need for
qualitative analytics. IEEE Software, 30(4):46–52, 2013

[16] Biyani, Vishal. Log Management as a Service. Site Point. Web. 26 Oct 2017.

https://www.sitepoint.com/log-management-as-a-service/

[17] Liebetrau, Etienne. Simple Network Monitoring with Windows Firewall Logging
And Reporting. Web Spy. Web. 28 Oct 2017. http://webspy.com/blogs/simple-
network-monitoring-with-windows-firewall-logging-and-reporting/

[18] Devang, Suresh. JDBC Architecture. Web. 28 Oct 2017.

https://sites.google.com/site/sureshdevang/jdbc-architecture

[19] Kerry Elijah. Data Communication in LabView. LabView. Web. 29 Oct 2017.
http://slideplayer.com/slide/3448678/

http://www.informit.com/articles/article.aspx?p=26942&seqNum=18
http://activemq.apache.org/clustering.html
https://www.sitepoint.com/log-management-as-a-service/
http://webspy.com/blogs/simple-network-monitoring-with-windows-firewall-logging-and-reporting/
http://webspy.com/blogs/simple-network-monitoring-with-windows-firewall-logging-and-reporting/
https://sites.google.com/site/sureshdevang/jdbc-architecture
http://slideplayer.com/slide/3448678/

72

Biography

Ravi Nishant received his bachelor’s degree in Computer Science from R.V

College of Engineering, affiliated to Visveswaraya Technological University, Belgaum,

India in 2010. He worked in CSC, Newgen Technologies, NVIDIA and Adobe as a

software engineer for a period of six years.

 In 2015, he started his masters in computer science at the University of Texas at

Arlington. He worked as web developer assistant for UTA Information Security Lab and

worked as voluntary research assistant in the field of information security and anonymity.

His research interests include Big Data, Machine Learning and Data Analytics.

	Acknowledgements
	Abstract
	List of Illustrations
	List of Tables
	Chapter 1
	Introduction
	1.1 Motivation Behind the Thesis
	1.1.1 Ease of Usability
	1.1.2 Low Resource Usage
	1.1.3 Information from logs
	1.1.4 Providing generalized solution
	1.1.5 Ability to scale:
	1.1.6 Security

	1.2 Challenges
	1.2.1 Varying Logging Requirements:
	1.2.3 Backward Compatibility

	Chapter 2 Related Work
	2.1 Massive distributed and parallel log analysis
	2.1.1 Introduction
	2.1.2 Why log analysis?
	2.1.3 Challenges faced and Issue to be addressed
	2.1.4 Approaches followed
	2.1.5 Model Design
	2.1.6 Analysis App
	2.1.8 How this model differs from others?
	2.1.9 Improvements and Conclusion

	Chapter 3
	Existing Problem and Requirements
	3.1 Unstructured Schema
	Logs are more often viewed as a debug information useful in system maintenance. There was lack of sufficient use cases for logs to be properly structured and organized. For example, a log file which stores api session data just need to record the t...
	Logs which are unorganized can be problems to both the parent application and application which consumes these logs. For example, it would be difficult to come up with a generic solution to process large amount to unstructured logs. It would also be...

	3.2 Strongly Coupled Storage
	3.3 Lack of Visualization Capabilities
	3.4 Handling Data Loss
	3.5 Real Time Analytical Capabilities
	3.6 Performance Scalability

	Chapter 4
	Solution Design and Components
	4.1 Base Logging Framework
	4.2 Centralized Storage
	4.3 Non-Blocking Execution
	4.4 Avoiding Large Number of Thread Spawn
	4.5 Data Pipeline using Kafka
	4.6 Elasticsearch DB
	4.7 Kibana Dashboard Visualization

	Chapter 5
	Implementation Overview
	5.1 Customer Problem Statement
	5.2 System Requirements
	5.2.1 Functional Requirement
	5.2.2 Non-Functional Requirements:

	5.3 High Level Solution and Code Flow
	5.4 Implementation
	5.5 Design Class Diagram
	5.6 Code Usage for Client
	5.6.1 Properties File
	5.6.2 Sample Usage

	5.7 Test Cases

	Chapter 6
	Technical Approach
	6.1 Storing Logs in S3 Bucket
	6.1.1 AWS S3 Configuration
	6.1.2 S3 Folder Structure
	6.1.3 AWS SDK S3 API
	6.1.4 Maintaining S3 Policy

	6.2 Schema Structuring
	6.2.1 LogFormatter Class
	6.2.2 JSON/AVRO Data Format
	6.2.3 Backward Compatibility for Plaintext Logs
	6.2.4 Resource Field

	6.3 S3 Appender
	6.3.1 Appender Skeleton Class
	6.3.2 Singleton Wrapper
	6.3.3 Producer Consumer Pattern
	6.3.4 Graceful Exit of Logging Threads

	Chapter 7
	Experiments and Results
	7.1 Structured Data
	7.2 System Throughput
	7.3 Demonstration of Debugging Efficiency
	7.4 Visualization and Dashboards
	7.5 Backward Compatibility

	Chapter 8
	Conclusion and Future Work
	References
	Biography

