

1

NEAREST NEIGHBOR CLASSIFIERS

WITH IMPROVED ACCURACY AND EFFICIENCY

by

SINCHAN BHATTACHARYA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2017

2

Copyright © by SINCHAN BHATTACHARYA 2017

All Rights Reserved

3

Acknowledgements

 I would like to express my sincere gratitude to my advising professor Dr. Michael T

Manry for his continuous support throughout my master study and related research, for his

patience, guidance and immense knowledge. His guidance helped me in all the time of research

and writing of this thesis.

 I would also like to thank Dr. Venkat Devarajan and Dr. R Stephen Gibbs for their time,

valuable comments and being a member of my thesis defense committee.

 Finally, I must express my sincere gratitude to my family for their love and support. I

dedicate this thesis to my parents, Mr. Sanjay Bhattacharyya and Mrs. Sumita Bhattacharya, my

brother, Mr. Sameek Bhattacharya and my fiancée Ms. Rituparna Sinha Roy.

December 6, 2017

4

Abstract

NEAREST NEIGHBOR CLASSIFIERS

WITH IMPROVED ACCURACY AND EFFICIENY

SINCHAN BHATTACHARYA, MS

The University of Texas at Arlington, 2017

Supervising Professor: Dr. Michael T. Manry

 Nearest Neighbor algorithms are non-parametric algorithms that use distance measure

techniques for classification and regressions. This thesis uses the method of pruning to improve

accuracy and efficiency of a nearest neighbor classifier and also states the different stages the

pruning algorithm can be applied and shows the best stage for pruning which gives the

maximum accuracy. The performance of the classifier is shown to be better than other improved

nearest neighbor classifiers. A fast method of finding the optimal k in a k-nearest neighbor

classifier is proposed in the thesis. A method of optimizing the distance measure using a

second order training algorithm in a k-nearest neighbor algorithm is also proposed in this thesis

which results to better accuracy than the traditional k-nearest neighbor classifier.

5

Acknowledgements ... 3

Abstract ... 4

Chapter 1 INTRODUCTION .. 8

1.1 Feature Extraction.. 8

1.2 Classifiers .. 8

1.3 Nearest Neighbor Classifiers ... 9

1.4 Objective of this thesis ... 10

Chapter 2 NEAREST NEIGHBOR AND k-NEAREST NEIGHBOR CLASSIFIERS 12

2.1 Data notation .. 12

2.2 Structure of the Nearest Neighbor Classifier ... 13

2.3 Basic Nearest Neighbor Classifier operation ... 13

2.4 Basic k – Nearest Neighbor Classifier Operation .. 14

2.5 Generating center vectors ... 15

2.6 Example Distance Measures ... 17

2.6.1 Euclidean Distance .. 17

2.6.2 Mahalanobis Distance Measure [23] ... 18

2.6.3 Minkowski Distance Measure [24] ... 18

2.6.4 Weighted Euclidean Distance.. 18

2.6.5 Theoretical Properties of Nearest Neighbor and k-Nearest Neighbor

Classifier ... 20

2.7 Problems with Nearest Neighbor and k-Nearest Neighbor Classifier 21

Chapter 3 REVIEW OF OAWNNC ... 22

3.1 Motivations behind the structure of OAWNNC .. 23

3.2 Modified Weighted Euclidean Distance Measure .. 24

3.3 Training OAWNNC for distance measure improvement 25

3.3.1 First Order Training Algorithms for Weight Optimization 26

6

3.3.2 Second Order Training algorithm for Weight Optimization 29

3.4 OAWNNC Results.. 30

3.5 CENTER VECTOR OPTIMIZATION (CVO) .. 32

3.6 Structure of Center Vector Optimization (CVO) ... 32

3.7 Multiple Optimal Learning Factor (MOLF) ... 34

CVO Training Algorithm Summary ... 35

3.8 Results of using Center Vector Optimization ... 35

3.9 Problem of misplaced center vectors... 36

Chapter 4 PRUNING AND IMPROVED NEAREST NEIGHBOR CLASSIFIER 36

4.1 STRUCTURE OF PRUNING .. 37

4.2 PRUNING ALGORITHM SUMMARY ... 38

4.3 CHOOSING THE BEST STAGE FOR PRUNING .. 38

4.4 RESULT OF PRUNING AT DIFFERENT STAGES ... 39

4.5 RESULT OF PRUNING .. 40

Chapter 5 ... 42

5.1 REVIEW WORK ON FINDING OPTIMAL k ... 42

5.2 EFFICIENT METHOD OF FINDING OPTIMAL k ... 43

5.3 Choosing maximum k ... 45

5.4 Finding the optimal k ... 46

5.5 Results of finding the optimal k ... 49

5.7 Improving the k-nearest neighbor classifier .. 56

5.8 Results of improving k-Nearest Neighbor Classifier ... 56

Chapter 6 ... 58

6.1 Results of different stages of pruning .. 58

6.2 Results of Pruning with respect to accuracy .. 59

6.3 Results of pruning with respect to efficiency ... 60

7

6.4 Results of finding optimal k in k-NNC .. 64

6.5 Result of applying distance measure optimization on k-NNC 65

6.6 Conclusion ... 70

Appendix A Optimizing distance measure weights using Newton’s algorithm. 72

Appendix B Description of datasets .. 73

1 GONGTST.TST ... 74

2 COMF18.TRA .. 74

3 F17C This dataset is used for the application of prognostics or flight

condition recognition. It consists of parameters that are available in the basic

health usage monitoring systems (HUMS), plus some others. The data was

collected from M430 flight load level survey conducted in Mirabel Canada in

early 1995. It has 17 input features and 39 classes. .. 74

4 Skin Segmentation Data Set .. 74

5 Phoneme Data Set... 75

6 Object Recognition Data Set ... 75

References .. 76

Biographical Information.. 87

8

Chapter 1

INTRODUCTION

This chapter gives an overview of the basic concepts of feature extraction, classifiers and its

application. It also explains nearest neighbor classifier and its properties. In section 1.4 the

objective of the thesis is defined.

1.1 Feature Extraction

Feature extraction is the process of deriving values (features) from measured data , which

is intended to be informative and non-redundant, facilitating the subsequent learning and

generalization steps, and in some cases leading to better human interpretations. Feature

extraction is related to dimensionality reduction.[49]

 When the input data to an algorithm is too large to be processed and it is suspected to

be redundant, then it can be transformed into a reduced set of features (also named a feature

vector). Determining a subset of the initial features is called feature selection. The selected

features are expected to contain the relevant information from the input data, so that the desired

task can be performed by using this reduced representation instead of the complete initial data.

The features extracted are often beneficial to mitigate the computational complexity and

improve the accuracy classifiers.[51]

 The data sets used in the experiments of the thesis are features extracted from real

measured data.

1.2 Classifiers

 In machine learning and statistics, classifications is the problem of identifying to which a

set of categories a new observation belongs, on the basis of a training set of data containing

observations (or instances) whose category membership is known. Classification is an example

of pattern recognition [1]. Good examples of classification are assigning emails into spam and

non-spam category, classification of different blood type, classifying number set from hand-

written digit images. Algorithms that implements classification are called classifiers.

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Feature_(machine_learning)
https://en.wikipedia.org/wiki/Feature_vector
https://en.wikipedia.org/wiki/Feature_vector

9

The kind of classifier needs to be implemented depends upon the dataset needed to be

classified. For non-complex datasets linear and generalized linear classifiers like the perceptron

[2], support vector machines [3] etc. are used. For highly complex datasets non-linear

classifiers like multi-layer perceptron [4], random forest [5], decision tree [6] etc. are used. All

these classifiers are called parametric classifiers as because the classifiers have parameters

(also known as weights) which can be adjusted according to the training dataset to achieve

higher efficiency of classification.

1.3 Nearest Neighbor Classifiers

 The nearest neighbor classifier is used effectively for pattern recognition [7, 8, 48],

computer vision and image recognition [9, 10, 49], text classification [11, 13], event recognition

[14, 71], ranking models [15, 72, 73, 74], face recognition [56, 75, 76], intrusion detection [57,

77, 78, 79] and object recognition [16, 80, 81, 82]. This kind of classifiers achieves consistent

high performance without priori assumptions about the distributions from which the training data

samples are drawn.

Nearest neighbor classifiers are a type of instance based learning or lazy learning classifiers. In

this kind of classifiers generalization beyond the training data is delayed until a new test data is

encountered. Hence, the Nearest Neighbor classifiers are consistent non parametric estimators.

The term non-parametric means that there is no prior knowledge of the statistical distribution of

the data to be classified. During testing, the distance between the input vectors (pattern) and

each cluster’s center vector is calculated. The estimated class of the input vector is that of the

nearest center vector. As the number of training patterns tends to infinity, classifiers based on

nearest neighbor rule converge to the corresponding Bayes estimate.

10

1.4 Objective of this thesis

 The thesis proposes an improved nearest neighbor algorithm which does pruning on

the input data set to increase the accuracy and efficiency of the nearest neighbor classifier. The

pruning algorithm finds the input vectors which outliers for the given data set or which does not

affect the accuracy of the classifier and removes them from the input data set. The reduction of

the input data set increases the accuracy of the classifier and also decreases the time taken by

the classifier to predict correct class labels in application, making the classifier more efficient.

The thesis also proposes a new method of finding the best value of k for a k-nearest neighbor

classifier by making one single pass through the training data set, thus, helping in finding the

unknown important parameter k efficiently. It also states an improved k-nearest neighbor

classifier which uses a clustering algorithm to reduce the input data set and then perform

assigning weights to input features and then optimizing them using a second order training

algorithm to give important input features higher weights and less important and noisy features

lower weights.

 Chapter 2, reviews the structure and operations of the traditional nearest neighbor

classifiers and its disadvantages. Chapter 3, explains previous works to improve the nearest

neighbor classifier by implementing clustering on the input dataset to find center vectors for

every class label and then applying distance measure optimization technique to differentiate

between more important input features from less important and noisy input features and finally

weigh them differently during classification and finally optimizing the center vector locations in

input dimension space which directly minimizes the input-output mapping error. Chapter 4

introduces the method of pruning and how it can be implemented to the nearest neighbor

classifier to improve both accuracy of prediction of correct class and efficiency of the classifier.

Chapter 5 proposes a new efficient method of finding the best k for k-nearest neighbor classifier

and also applies the method of clustering and distance measure optimization to the k-nearest

11

neighbor classifier. Chapter 6 presents the results of the various algorithms applied on several

datasets.

12

Chapter 2

NEAREST NEIGHBOR AND k-NEAREST NEIGHBOR CLASSIFIERS

 This chapter reviews the structure and operation of the traditional nearest neighbor

classifier as well as the traditional k- nearest neighbor classifier. It also defines several distance

measure techniques. A basic algorithm for k-means clustering is also explained along with

implementing it with the Nearest Neighbor Classifier.

2.1 Data notation

The nearest neighbor classifier requires a dataset to compare to for predicting the correct class

of an input pattern. This dataset is called the training data. The training vector is denoted by 𝒙𝑡𝑝

where 𝒙𝑡𝑝 is the pth N-dimensional training vector. The total number of training patterns in the

training data is represented by Nv. The input test vector is represented by by 𝒙𝑝, where 𝒙𝑝 is the

𝑝𝑡ℎ𝑁-dimensional test vector. The total number of classes is represented by Nc. The class

labels are represented by i.

 The nearest neighbor classifier compares the input test vector with the training data,

which can be also referred to as example vectors, to predict the correct class of the classifier.

The example vectors are represented by 𝒎𝑖𝑘, where 𝒎𝑖𝑘 is the kth example vector of the ith

class. 𝒎𝑖𝑘 can be the entire training data, which is the case of the regular nearest neighbor,

𝒎𝑖𝑘 = 𝒙𝑝

Or the example vectors, mik, can be center vectors of the ith class, found by the method of

clustering (discussed in details in section 2.5) Nv(i) patterns, where Nv(i) is the total number of

training patterns in the ith class,

Nv = ∑ Nv(i)

i

The minimum distance between test vector 𝒙𝑝and the kth example vector of the 𝑖𝑡ℎ class, 𝒎𝑖𝑘,

is denoted by 𝑑𝑖

13

di = min
k

d(𝐱𝐩, 𝐦ik)

where d(𝐱𝐩, 𝐦ik) is the distance operator discussed in the following section, section

2.6

2.2 Structure of the Nearest Neighbor Classifier

 The training data of ‘𝐾’ 𝑁-dimensional cluster center vectors, 𝒎𝑖𝑘, where 𝒎𝑖𝑘 is the

center vector of the𝑘𝑡ℎ cluster of the 𝑖𝑡ℎ class. The test vector is denoted by 𝒙𝑝, where 𝒙𝑝 is the

𝑝𝑡ℎ𝑁-dimensional test vector. The total number of classes is dented by 𝑁𝑐. The distance

between 𝒙𝑝and the closest center vector of the 𝑖𝑡ℎ class is denoted by 𝑑𝑖.

 Nearest neighbor classifier is an instance based classifier [42], unlike many other

artificial learners, so, they do not extract any information from the training data during the

learning phase. During classification, an unlabeled test pattern is classified by assigning the

class of the nearest trained pattern. The distance metric function can be empirically chosen

among the Euclidean [18], Minkowski [20] and Mahalanobis [21] methods among others, based

on the training data and application [23]. The most commonly used distance metric for

continuous variables is the Euclidean distance (𝐿2).

2.3 Basic Nearest Neighbor Classifier operation

 In the 𝑁𝑣,𝑁 - dimensional training patterns, each pattern is associated with the class

label to which it belongs [96]. There can be two stages of operations involved during

classification using nearest neighbor classifiers.

1. Clustering: The training data of 𝑁𝑣 patters and 𝑁-dimensional input space is divided

into into 𝐾 clusters. This division of input patterns into 𝐾 cluster’s center vectorscan

be done by implementing clustering algorithms such as K – Means [91], SOM [92],

DBSCAN [93] or EM [18]. The value of 𝐾 is selected in such a way such that each

cluster has more similar patterns compared to patterns in another cluster.

14

2. Classification: Clustering of the training pattern gives the center vectors of each

cluster which is saved to the memory. Each time a new test pattern needs to be

classified, the distance between the test vector and the center vectors is calculated.

The closest center vector from each class is determined as

di = min
k

d(𝐱𝐩, 𝐦ik)

where, d(𝐱p, 𝐦ik), is the distance of the 𝑝𝑡ℎtest pattern, 𝒙𝑝, from the center vector,

𝒎𝑖𝑘.𝑑𝑖 is the distance of the new test pattern from the closest center vector of 𝑖𝑡ℎ

class. The class membership of this new test pattern is then estimated as

ic
′ = argmin

i
di

where, 𝑖𝑐
′ is the estimated class of the 𝑝𝑡ℎ test pattern, 𝒙𝑝.

2.4 Basic k – Nearest Neighbor Classifier Operation

The k – Nearest Neighbor differs from the Nearest Neighbor Classifier in the aspect of

predicting the correct class for an input test label. In the k- Nearest Neighbor classifier, each of

the 𝑁𝑣,𝑁 - dimensional training patterns has got a class label associated with it.

Every time a input test vector 𝐱p is provided to the Classifier the distance 𝐝p between the

input test vector 𝐱p and all the training center vectors 𝐦ik is computed. The k least distances

are found which gives the k closest training center vectors, 𝐦ik. The class seen most in these k

closest training vector is the predicted class for the input test vector, 𝐱p. The following theorem

will describe the convergence of k- Nearest neighbor Classifier probability of error, Pe(k-NNC).

15

Theorem 2.1 [27, 28]: As k and (Nv/k) approach infinity, the k-Nearest neighbor Classifier

can be viewed as an attempt to estimate the a-posteriori probabilities from the training sample

and

 BeNNCke

k

Nv
k

PP

)(
,

lim

 Among the k Nearest Neighbors 𝐦jm, let k(i) be the number of neighbors 𝐦im from

class i. Then,

 ic
′ = argmin

i
{k(i)} = argmin

i
{k(i)/k}

But,

 lim
𝑘→∞

{
𝑘(𝑖)

𝑘
} = 𝑃(𝑖|𝐱)

from the Strong Law of Large Numbers [29] P(i|x) is the B3 Bayes discriminant.

2.5 Generating center vectors

 Clustering is the task of grouping a set of objects such that objects in the same group

are more similar to each other in some sense than to those in other groups [18]. It is a main task

of exploratory data mining, and a common technique for statistical data analysis, used in many

fields, including machine learning, pattern recognition, image analysis, information

retrieval, bioinformatics, data compression, and computer graphics [36].Center vectors can be

generated using various algorithms like K – Means [91], SOM [92], DBSCAN [93] and EM [18].

The appropriate center vector generating algorithm is dependent on the individual dataset and

the intended use of the results. The training dataset can be used in different ways for

classification using nearest neighbor classifiers. For example,

1) Entire training dataset or patterns can be used as center vectors. This avoids the

need for using any clustering algorithms. The number of training patterns can be

large, even in the order of millions. Thus this method can cause huge memory

16

strains as the entire dataset needs to be cached in memory. Along with this,

computing distance of a test pattern from all these training patterns can be

computationally very expensive. However, the above method can prove to be useful

if the number of training patterns is limited and testing time is not a matter of

concern.

2) We can randomly choose few training patterns and use them as center vectors.

This method also avoids the need for using any clustering algorithms and does not

cause much memory strains as only center vectors need to be cached in memory

as compared to the entire training dataset. Number of center vectors is much less

than the number of training patterns. Since these randomly picked center vectors

are not optimal,they may group dissimilar objects to each other and might even

prove to be use less center vectors. This can lead to decreased performance.

3) K-Means clustering [91] is a popular vector quantization method that partitions

𝑁𝑣patterns into 𝐾 clusters where each pattern belongs to the cluster with the

nearest mean. This results in partitioning of the data space into Voronoi cells [94].

Given a set of 𝑁𝑣 training patterns, 𝒙𝑝, where each pattern has 𝑁-dimensional

inputs. K- Means clustering aims to partition 𝑁𝑣patterns into 𝐾 clusters, so as to

minimize the within-cluster sum of squares distances.

Algorithm Summary [95]

1. 𝑖𝑡 = 0, where 𝑖𝑡 = iteration number and 𝑁𝑖𝑡 = total number of iterations.

2. 𝑖𝑡 = 𝑖𝑡 + 1

3. Calculate center vector, 𝒎𝑘,as

4. 𝐦k =
1

Nv(k)
∑ 𝐱pp:m(p)=k ,

where 𝑚(𝑝) equals the cluster number of the 𝑝𝑡ℎ pattern and

𝑁𝑣(𝑘)equals thenumber of patterns in the 𝑘𝑡ℎ

17

Reclassify 𝒙𝑝s, in one data pass. If 𝒙𝑝belongs to the 𝑘𝑡ℎcluster, 𝑚(𝑝)equals

𝑘. 𝑚(𝑝) therefore specifies the cluster membership of the 𝑝𝑡ℎpattern. If any

clusters change and iterationnumber <𝑁𝑖𝑡 , go to step 2.

 The K – Means clustering error, 𝐸𝑘−𝑚𝑒𝑎𝑛𝑠 , is

Ek−means =
1

Nv

∑ d(𝐱p, 𝐦m(p))

Nv

p=1

=
1

Nv

∑ Ek

𝐾

k=1

Ek = ∑ d(𝐱p, 𝐦k)

p:m(p)=k

2.6 Example Distance Measures

 Nearest neighbor algorithms calculates the distance between the new test pattern and

the training vectors to estimate the class of this new test pattern. There are a variety of distance

measures available.

2.6.1 Euclidean Distance

 Euclidean distance measure is by far the most common distance measure technique

used. The associated norm is called the Euclidean norm [24]. Euclidean distance between the

𝑝𝑡ℎ test pattern, 𝒙𝑝 and 𝒎𝑖𝑘center vector is given by

d(𝐱p, 𝐦ik) = ⃦ 𝐱p − 𝐦ik ⃦ = (∑(xp(n) − mik(n))
2

N

n=1

)

½

(2.1)

The square root is often not computed in practice, because the closest center vector will still be

the closest, regardless of whether or not the square root is taken [25] and hence, by not

computing the square root computational efficiency of the classifier is improved.

18

2.6.2 Mahalanobis Distance Measure [23]

 Mahalanobis distance measure computes the distance between pth test pattern, 𝒙𝑝 and

the distribution, 𝐷. It is a multi-dimensional generalization of the idea of measuring how many

standard deviations away 𝒙𝑝is from the mean of D. If the point is at the mean of distribution, 𝐷,

the distance is zero [41]. Mahalanobis distance measure can also be defined as the measure of

dissimilarity between the test pattern, 𝒙𝑝, and the training center vector, 𝒎𝑖𝑘, of the same

distribution [26]. Mahalanobis Distance is unitless and scale-invariant, and takes into account

the correlations of the data set.

d(𝐱p, 𝐦ik) = ∑ ∑ 𝑎𝑘(𝑛, 𝑚)[𝑥𝑝(𝑛) − 𝑚𝑖𝑘(𝑛)][𝑥𝑝(𝑚) − 𝑚𝑖𝑘(𝑚)]

𝑁

𝑚=1

N

n=1

where,

ak(𝑛, 𝑚) ∈ 𝑪𝑘
−1, 𝑪𝑘 = 𝐸[(𝒙𝑝 − 𝒎𝑖𝑘)(𝒙𝑝 − 𝒎𝑖𝑘)

𝑇
]

(2.2)

2.6.3 Minkowski Distance Measure [24]

 It is a generalization of Euclidean distance and the Manhattan distance. The distance of

order 𝑣 between the 𝑝𝑡ℎ test pattern, 𝒙𝑝 and 𝒎𝑖𝑘 center vector is given by

d(𝐱p, 𝐦ik) = (∑(xp(n) − mik(n))
v

N

n=1

)

1

v

(2.3)

If 𝑣 = 2, the Minkowski distance is equivalent to Euclidean distance(L2).

2.6.4 Weighted Euclidean Distance

Weighted Euclidean distance is a modified version of Euclidean Distance that

incorporates weights in the distance calculation in such a way that distance measure for

each input element 𝑥𝑝(𝑛) is multiplied with the corresponding weights element 𝑤(𝑛).

19

The weighted Euclidean distance between the 𝑝𝑡ℎ test pattern, 𝒙𝒑 and center vector,

𝒎𝑖𝑘 , is given by

d(𝐱p, 𝐦𝐢𝐤) = ∑ (w(n) ⋅ (xp(n) − mik(n)))
2

N

n=1

(2.4)

In this thesis weighted Euclidean distance measure is used to compute the distances in

the classifier, where the weights are a measure of importance for the corresponding input

element. Optimal tuning of the weights are done in such a way so that the less important and

noisy features are assigned smaller weights and important features are assigned larger weights.

This causes the features with less importance and noisier to participate less in computing

distance compared to the highly discriminative features. Thus this helps in solving the problem

of misclassification due to noisy features.

Weight Initialization

 Weights are one of the most important parameters that determine the performance of

any classifier. The training error convergence, performance and training hyper-parameters like

learning rates etc. depend heavily on initial weights. If the weights are too small the gradients

would in turn be very small in magnitude and thus the classifier will take more time to converge

or might not converge to a desired error value. On the other hand if weights are very large then

their gradients would be very large in magnitude too. So a small change in weight update can

lead to large change in the output, thus a very small learning rate would be required to

compensate for this problem. Later, a small learning rate will need more iterations to converge

weights with small magnitudes, since their gradients are also small. If some inputs have much

larger variance than others, they can dominate the training. So to avoid dominance of some

high variance inputs over others, inputs are normalized by initializing weights as 𝑤(𝑛) =

1

𝑉𝑎𝑟(𝑥(𝑛))+ ∈
, where∈is a small positive constant of order 10−3 used to avoid division by zero.

20

2.6.5 Theoretical Properties of Nearest Neighbor and k-Nearest Neighbor Classifier

 The Bayes error is the minimum achievable error rate by any classifier. Incase if the

classes overlap then the error rate will be nonzero. For example, suppose that the training input

pattern, with the correct class label of that pattern, follows a Gaussian distribution with mean 𝜇𝑖

and fixed variance. The two Gaussians overlap so no classifier can predict the class label

correctly for all training patterns, and the Bayes error rate is nonzero.

 The Bayes error rate is the average over the space of all examples of the minimum

error probability for each example. The optimal prediction for any test pattern𝒙is the label that

has highest probability given 𝒙. The error probability for this example is then one minus the

probability of this label. Formally, the Bayes probability of error rate is

Pe−Bayes = ∫ p(𝐱)[1 − max

i
p(i|𝐱)]

𝒙

(1.1)

where 𝑝(𝑖|𝒙) is the probability that 𝒙 has label 𝑖 and 1 − 𝑝(𝑖|𝒙) is the probability that 𝒙has a

different label. The maximum is taken over the 𝑁𝑐 possible labels 𝑖 = 1 to 𝑖 = 𝑁𝑐 [30].

Theorem: When the number of training examples tends to infinity, the probability of error rate of

NNC is at worst twice the Bayes error rate as proven in [1].

Proof: Let 𝒙 be a test pattern and 𝒎𝑖𝑘 be its closest neighbor. If the number of training

examples 𝑁𝑣 is large, then the probability distribution for any test pattern and its nearest

neighbor will be essentially the same. In this case, for the 𝑝𝑡ℎ test pattern, 𝒙, the expected

probability of error rate of NNC is

𝑃𝑒−𝑁𝑁𝐶 = ∑ p(i|𝐱)[1 − p(i|𝐱)

Nc

i=1

]

(1.2)

To prove the theorem, we need to show that

21

∑ p(i|𝐱)[1 − p(i|𝐱)]

Nc

i=1

≤ 2[1 − max
i

p(i|𝐱)]

i.e Pe−NNC ≤ 2 ∙ Pe−Bayes

(1.3)

Let 𝑚𝑎𝑥
𝑖

𝑝(𝑖|𝒙) = 𝑟 and let the maximum be attained with 𝑖 = 𝑗. Then the left hand side is

∑ p(i|𝐱)[1 − p(i|𝐱)]

Nc

i=1

= 𝑟(1 − 𝑟) + ∑ p(i|𝐱)[1 − p(i|𝐱)]

i≠j

(1.4)

and the right hand side is 2(1 − 𝑟). The summation above is maximized when all the values

𝑝(𝑖|𝒙) are equal for 𝑖 ≠ 𝑗. The value of left hand side is then

𝐴 = r(1 − r) + (Nc − 1)

1 − r

Nc − 1

(Nc − 1) − (1 − r)

Nc − 1

∴ 𝐴 = r(1 − r) + (1 − r)
Nc + r − 2

Nc − 1

(1.5)

Now 𝑟 ≤ 1 and Nc − 2 + 𝑟 < Nc − 1 so 𝐴 < 2(1 − 𝑟).This proves that, with large enough training

set, no classifier can do better than half the probability of error rate of a 1-nearest neighbor

classifier[30]

2.7 Problems with Nearest Neighbor and k-Nearest Neighbor Classifier

Though nearest neighbor methods are very easy to implement, they have many

drawbacks.

1 Computationally expensive –Nearest neighbor classifiers compute distance of the input

vector to all the input training vectors. This distance measurement is computationally

expensive and requires that all the center vectors to be stored in memory. This increases

the computational complexity and memory requirements. Due to these computational

complexities they cannot be used for real time applications.

22

2 Curse of dimensionality - The accuracy of the nearest neighbor classifiers tends to

decrease as the number of features or inputs increases [46]. The reason is that in a high-

dimensional space all points tend to be far away from each other, so nearest neighbors are

not meaningfully similar. Practically, if vectors (patterns) are represented using many

features, then every pair of examples will likely disagree on many features, so it will be

rather arbitrary which vectors are closest to each other [9].

3 Contaminated input features – noise and less discriminative input features can cause

problems such as convergence difficulties, poor classification accuracy and contamination

of the distance measure which leads to false classification.

4 Rigid Voronoi cells - Clustering algorithms often get stuck in local minima and the result is

largely dependent on the choice of initial cluster centers [3] [4]. Generated clusters, 𝒎𝑖𝑘 are

not changed after initialization, and are not chosen to minimize, 𝑃𝑒−𝑁𝑁𝐶 ,the probability of

error of the nearest neighbor classifierso they are not optimal. Clustering methods other

than the Learning Vector Quantization (LVQ) method [2] do not adapt the center vectors in

a way that minimizes the probability of error. [10].

Chapter 3

REVIEW OF OAWNNC

 This chapter introduces a method to optimize the distance measure used in the Nearest

Neighbor Classifier which gives a solution to the problem 3 (problem of contaminated input

features) mentioned in section 2.6. The method is termed as Optimal Attribute Weighting in a

Nearest Neighbor Classifier (OAWNNC) algorithm and it compares all the features and

differentiates between noisy and unimportant features with important features.

23

3.1 Motivations behind the structure of OAWNNC

 OAWNNC uses weighted Euclidean distance measure instead of regular Euclidean

distance measure. The distance measure is initialized with weights as 𝑤(𝑛) =
1

𝑉𝑎𝑟(𝑥(𝑛))+ ∈
 as

mentioned in section 2.4.4 (weight initialization). This diminishes the dominance of inputs with

high variance. However, these weights are not optimal since they barely contribute in improving

the performance of the classifier. Traditional nearest neighbor classifier, has a probability of

error, 𝑃𝑒−𝑁𝑁𝐶 , as a measure of how well the classifier performs. To calculate the optimal weights,

there needs to be a way to minimize 𝑃𝑒−𝑁𝑁𝐶 with respect to the weights, 𝒘. Since, 𝑃𝑒−𝑁𝑁𝐶 is a

scalar value and its gradient with respect to weights is zero i.e.
𝜕𝑃𝑒−𝑁𝑁𝐶

𝜕𝑤(𝑛)
= 0, there is no direct

way to minimize 𝑃𝑒, with respect to the weights to find optimal weights.

 To solve this problem, OAWNNC maps traditional nearest neighbor classifier to a

neural net. To calculate the optimal weights that improve the classification performance of the

neural network optimization of the objective function is done. A mapping function is derived that

provides one to one mapping between the NNC discriminant 𝑑𝑖 and the neural network

discriminant 𝑦(𝑖), such that improving the classification performance of the neural network,

improves the probability of error, 𝑃𝑒−𝑁𝑁𝐶 , of the Nearest Neighbor Classifier. A modified softmax

discriminant function 𝑦(𝑖) is being used in the Optimal Attribute Weighting in a Nearest Neighbor

Classifier (OAWNNC). This softmax function is defined as

y(i) =
(di)

−1

∑ (dj)
−1Nc

j=1

The distances of test vector from the closest center vectors of each class is inversed and

divided by the sum of all the inversed distances which gives a score for each class represented

by the softmax discriminant 𝑦(𝑖). It provides a one to one mapping from 𝑑𝑖 when the inverse of

distances of the test pattern to the closest center vector of each class adds up to one, i.e

24

∑ (di)
−1 = 1

Nc
j=1 . Since this function is continuous at all points, gradients for optimization can be

easily computed. The class of the test pattern is estimated from the output score vector, 𝒚, as

ic
′ = argmin

i
y(i)

 Softmax function outputs a score in the range of 0 to 1. With the score of the correct

class being close to 1 and that of the incorrect class close to 0. It makes it easier to

comprehend the performance of the classifier if its outputs as the scores are interpretable as

posterior probabilities of categorical target output. For this reason, OAWNNC chooses the target

output of the 𝑝𝑡ℎ,
tx

𝑝
, of the correct class to be 1 and those of incorrect class to be 0 is chosen.

This is called one-hot encoding technique.

tp(i) = δ(i − ic(p))

where 𝑖𝑐(𝑝)is the correct class of the 𝑝𝑡ℎ, pattern.

 OAWNNC converts the classification problem into regression by using the mean square

error function (MSE). Squared error loss is one of the most widely used loss function in

statistics. In statistical modeling the MSE, representing the difference between the actual target

output and the output values predicted by the neural network, is used to determine the extent to

which the network fits the data and whether the removal of some explanatory variables,

simplifying the model, is possible without significantly harming the model's predictive ability [36].

The objective function used in training 𝑦(𝑖) is

E =
1

Nv

∑ ∑ (tp(j) − yp(j))
2

Nc

j=1

Nv

p=1

(3.1)

3.2 Modified Weighted Euclidean Distance Measure

 During the training of the classifier optimal weights, 𝒘, are calculated using regular

weighted Euclidean distance measure as mentioned in section 2.4.4. While doing so few weight

elements 𝑤(𝑛) become negative which causes the distance measure value, 𝑑, to become

25

negative and thus led to decreased performance and increased misclassification error of the

classifier. To solve this issue, two different modified weighted Euclidean distance measure

techniques are proposed:

1. Using absolute value of weights, ⎸𝑤(𝑛)⎹ , for distance calculation.

d(𝐱p, 𝐦ik) = ∑ (⎸w(n)⎹ ⋅ (xp(n) − mik(n)))

2

N

n=1

+ ∈

(3.2)

2. Using squared values of weights,w(n)2, for distance calculation.

d(𝐱𝐩, 𝐦𝐢𝐤) = ∑ (w(n)2 ⋅ (xp(n) − mik(n)))

2

N

n=1

+ ∈

(3.3)

where ∈ is a small positive constant of the order 10−3 that prevents the distances from being

zero so that division by zero can be avoided while mapping the NNC to the neural network.

Throughout this thesis squared weights, 𝑤(𝑛)2, are used, since during weight optimization

training with different datasets, it was found that squared weights,𝑤(𝑛)2, perform better as

compared to absolute weights, ⎸𝑤(𝑛)⎹ .

3.3 Training OAWNNC for distance measure improvement

 In order to solve the problems of the curse of dimensionality, and misclassifications

caused by noise and less discriminative features, it is necessary to optimize the distance

measure algorithm. To make sure that the distance measure emphasizes more on highly

discriminative features than the less discriminative features, we optimize weights corresponding

to each input feature.

 The training of a classifier is done by changing of the weights in order to make the

computed output as close as possible to the desired output, thus reducing the mean square

error (MSE). It mainly involves the following two independent steps. First a search direction has

to be determined. i.e., in what direction do we want to search in weight space for a new current

26

point. Once the search direction has been found we have to decide how far to go in the

specified search direction, i.e., a step size has to be determined. Most of the optimization

methods used to minimize error functions are based on the same strategy. The minimization is

a local iterative process in which an approximation to the error function in a neighborhood of the

current point in weight space is minimized.

3.3.1 First Order Training Algorithms for Weight Optimization

 In this section, steepest descent which is the first order optimization algorithm is used.

The negative gradient of the MSE with respect to input weights are calculated as follows,

𝐠 = −

∂E

∂𝐰

(3.4)

Each element of the negative gradient vector 𝒈 is calculated from the above equation (3.4) as

g(n) = −
∂E

∂w(n)
 =

2

Nv

∙ ∑ ∑ (tp(j) − yp(j)) ∙
∂yp(j)

∂w(n)

Nc

j=1

Nv

p=1

(3.5)

where, taking the partial derivative of 𝐸 in equation (3.1) yields

∂yp(j)

 ∂w(n)
=

− ∑ du
−1Nc

u=1 ∙ (dj)
−2

∙ 2 ∙ 𝑤(𝑛) ∙ [xp(n) − mjk(n)]
2

 + (dj)
−1

∙ ∑ (du)−2 ∙ 2 ∙ w(n) ∙ [xp(n) − muk(n)]
2Nc

u=1

(∑ (du)−1Nc
u=1)

2

(3.6)

Input weight changes are calculated using the negative gradients from equations (3.4), (3.5)

and (3.6) and learning factor 𝑧,where 𝑧, is a heuristically chosen scalar value. The process of

updating the weights is as follow,

 𝐰 ← 𝐰 + z ∙ 𝐠 (3.7)

27

Optimal Learning Factor

 The learning factor,𝑧, decides the rate of convergence rate of the training. Usually a

very small positive value for 𝑧 will work, but convergence is likely to be slow. If 𝑧 is too large the

error,𝐸, can increase [36]. In order to avoid this uncertainty, a lot of heuristic scaling approaches

have been introduced to modify the learning factors between iterations and thus speed up the

rate of convergence. In this thesis we are using Taylor’s series for the error 𝐸, a non-heuristic

Optimal Learning Factor (OLF) can be calculated as,

𝐳 =
−

𝛛𝐄

𝛛𝐳

𝛛𝟐𝐄

𝛛𝐳𝟐

(3.8)

where the numerator and denominator derivatives are evaluated at 𝑧 = 0. Assume that the

learning factor,𝑧, is used to update only the input weights 𝒘, as given in equation (3.7).

Using the negative gradient 𝒈, the optimal learning factor is derived in the following steps,

−

∂E

∂z
 =

2

Nv

∙ ∑ ∑ (tp(j) − yp(j)) ∙
∂yp(j)

∂z

Nc

j=1

N

p=1

(3.9)

where, ∂yp(j)

 ∂w(n)
=

A − B

(∑ (du)−1Nc
u=1)

2

(3.10)

where,

and

A = − ∑ du
−1

Nc

u=1

∙ (dj)
−2

∙ ∑(2 ∙ g(n) ∙ w(n) ∙ [xp(n) − mjk(n)]
2

)

Nv

p=1

B = −(dj)
−1

∙ ∑ du
−2 ∙ ∑(2 ∙ g(n) ∙ w(n) ∙ [xp(n) − muk(n)]

2
)

Nv

p=1

Nc

u=1

Also, Gauss-Newton approximation for second partial is given by,

28

 ∂2E

∂z2
 =

2

Nv

∙ ∑ ∑ [
∂yp(j)

∂z
]

2Nc

j=1

N

p=1

(3.11)

Thus the optimal learning factor is calculated using equations (3.8), (3.9), (3.10) and (3.11).

After finding the optimal learning factor (OLF) the input weights are updated as given in

equation (3.7)

First Order Training Algorithm Summary for Weight Optimization

1) 𝐾 clusters are made out of 𝑁𝑣 training patterns using K-Means++ clustering algorithm

[45], where 𝐾 = ∑ 𝑘𝑖
Nc
i=1 . 𝑘𝑖 is the number of clusters of the 𝑖𝑡ℎ class

After clustering we get 𝐾 center vectors 𝒎𝑖𝑘, where 𝒎𝑖𝑘 is the 𝑘𝑡ℎ center vector of the

𝑖𝑡ℎ class

2) Initialize 𝑤(𝑛)

3) For iteration, 𝑖𝑡 = 1 to 𝑁𝑖𝑡, where 𝑁𝑖𝑡 is the total number of iterations,

4) During first data pass calculate 𝑑𝑖 , 𝒚, 𝐸, 𝒈

5) During second data pass calculate–
𝜕𝐸

𝜕𝑧
,

𝜕2𝐸

𝜕𝑧2 , 𝑧

6) Update𝒘 ← 𝒘 + 𝑧 ∙ 𝒈

7) End iterations

* Refer to Appendix A for the pseudo-code

29

3.3.2 Second Order Training algorithm for Weight Optimization

 The second order training of a multi layer perceptron involves quadratic modeling of the

error function. The advantage of using the second order training methods is that it has got fast

convergence. However, they can lead to problems like memory limitation, since the hessian and

gradient matrices should be computed and stored and they also are computationally very

expensive.

Newton’s Method

 Newton’s method is the basis of number of popular second order optimization

algorithms. Newton’s algorithm is iterative, where in each iteration, [28]

1) Calculate Newton weight change vector 𝒆.

2) Update weights with this weight change vector 𝒆.

The weight change vector 𝒆 is calculated by solving the linear equations using OLS [27]

 𝐇 ∙ 𝐞 = 𝐠 (3.12)

where, the negative gradient of MSE with respect to weights is represented by 𝒈, and it is

calculated using equation (3.4), (3.5) and (3.6) and 𝑯 is Hessian of the objective function

calculated with respect to all the weights in the network and has elements defined as,

h(i, j) =

∂2E

∂w(i) ∂w(j)

(3.13)

Equation (3.12) is solved for 𝒆 using Orthogonal Least Squares (OLS) [27] and 𝒘 is updated as

 𝐰 ← 𝐰 + 𝐞 (3.14)

We keep on updating the weight 𝒘 till the change in the training error from the previous iteration

is less than 10-6.

30

Second Order Training Algorithm Summary for Weight Optimization

1) Clustering of the 𝑁𝑣 training patterns into 𝐾 clusters is done using K-Means++

clustering algorithm [38].

After clustering we get 𝐾 center vectors represented as 𝒎𝑖𝑘, where 𝒎𝑖𝑘 is the 𝑘𝑡ℎ center

vector of 𝑖𝑡ℎ class

2) Initialization of 𝑤(𝑛)

3) For iteration, 𝑖𝑡 = 1 to 𝑁𝑖𝑡, where 𝑁𝑖𝑡 is the total number of iterations,

4) Calculate 𝑑𝑖 , 𝒚, 𝐸, 𝒈, 𝑯

5) Calculate 𝒆

6) Update weight using the formula 𝒘 ← 𝒘 + 𝒆

7) End iterations

* Refer to Appendix A for the pseudo code

3.4 OAWNNC Results

 Table – 1 compares randomized 10-fold testing results from traditional nearest neighbor

classifier using center vectors 𝒎𝑖𝑘 as input training vectors and OAWNNC with distance

measure optimization (DMO).

31

Data Set Number of inputs Number of

classes

NNC accuracy % DMO accuracy

%

F17C.dat 17 39 25.5005 68.7039

SKIN.dat 2 2 93.8531 94.4196

GONGTST.tst 16 10 66.8333 77.8000

COMF18.TRA 18 4 54.2776 73.6481

PHONEME.dat 5 2 61.4701 75.3252

OBJECT RECOG 576 2 32.24 47.64

Table 1- Classification Performance of NNC v/s OAWNNC with Distance Measure Optimization

(DMO).

 This is a plot of mean square error (MSE) versus iteration number, 𝑁𝑖𝑡, for the nearest

neighbor classifiers mapped neural network with first order and second training for weight

optimization on COMF18.tra dataset. From the plot it concludes, that MSE converges much

faster using second order training as compared to the first order training.

Figure 1–Weight Optimization Training Iteration Difference for COMF18.tra dataset.

 From the results shown in Table – 1, it can be concluded that OAWNNC with distance

measure optimization outperforms the traditional NNC on all the datasets. From Figure – 1,

32

second order training error converges much faster than first order training. The trained weights

get assigned such that the magnitude of the weights corresponding to the noisy or unimportant

features is less compared to high impacting features. Thus OAWNNC with distance measure

optimization (DMO)solves problem 3 mentioned in

section 2. 6.

3.5 CENTER VECTOR OPTIMIZATION (CVO)

The center vectors 𝒎𝑖𝑘, can be optimized to reduce the probability of error and improve

classification of error. This section introduces to a method of moving the center vectors 𝒎𝑖𝑘 in

an optimized method using second order training to reduce the probability of error and improve

the classification accuracy.

Cluster center vectors formed by using clustering algorithms are rigid so they do not

change after initialization. Thus our OAWNNC algorithm is dependent on these initial clusters.

Since these clusters do not contribute to minimizing the probability of error, they are not optimal.

In addition to this, clustering is sensitive to the choice of initial clusters, clustering parameters

etc. Therefore, few of the center vectors generated may not be unique. Hence we can say the

classifier is highly dependent of the initialization of the center vectors and the rigid nature of the

clusters. This is why the center vectors needs to be moved and adjusted so that it reduces the

probability of errors. The Learning Vector Quantization method is a technique somewhat does

the same thing of optimizing the codebook of input vector so that it decreases the input-output

mapping [39,40].

3.6 Structure of Center Vector Optimization (CVO)

Here, Center Vector Optimization (CVO) minimizes the MSE error from equation (3.1) with

respect to the 𝑖𝑡ℎclass,𝑘𝑡ℎcenter vector 𝒎𝑖𝑘. In the first step it calculates the negative gradient

with respect to 𝒎𝑖𝑘 and then move the center vector in the direction of the negative gradient

33

using a second order algorithm. The negative gradient,𝒈𝑖𝑘 , of the MSE with respect to 𝒎𝑖𝑘 is

calculated as follows,

𝒈𝑖𝑘 = −
∂E

𝐦ik

(3.15)

𝐠ik = −
∂E

∂mik(n)
 =

2

Nv

∙ ∑ ∑ (tp(j) − yp(j)) ∙
∂yp(j)

∂mik(n)

Nc

j=1

Nv

p=1

(3.16)

where, 𝑦𝑝(𝑗) is calculated as,

yp(j) =

(dj)
−1

∑ (du)−1Nc
u=1

(3.17)

And
∂yp(j)

∂mik(n)
 is computed as,

∂yp(j)

∂mik(n)
= 0

if 𝒎𝑖𝑘 is not participating in computing 𝑦𝑝(𝑗)

or else,

∂yp(j)

∂mik(n)
 = 2 ∙ dj

−2 ∙ w(n)2 ∙ (xp(n) − mik(n)) . (∑ du
−1 − dj

−1)/ ∑ du
−1Nc

u=1)Nc
u=1 (3.18)

when i = j, and

∂yp(j)

∂mik(n)
 = − 2 ∙ dj

−1 ∙ di
−2 ∙ w(n)2 ∙ (xp(n) − mik(n)) / ∑ du

−1

Nc

u=1

when i ≠ j

Once the calculation of the negative gradient 𝒈𝑖𝑘,of the MSE with respect to 𝒎𝑖𝑘 is done

the Center Vectors are moved in the direction of the negative gradients in order to minimize the

error.

The center vector is updated as follows,

𝒎𝑖𝑘 ← 𝒎𝑖𝑘 + 𝑧𝑖𝑘 ∙ 𝒈𝑖𝑘 (3.19)

34

3.7 Multiple Optimal Learning Factor (MOLF)

The learning factor, 𝑧, decides the rate of convergence of classifier training. So, different

learning factors can be used for different center vectors. This technique of using multiple

learning factors 𝑧,proves to e efficient. Using a Taylor’s series for the error 𝐸, and Newton’s

algorithm [36] a non-heuristic multiple optimal learning factor (MOLF) can be calculated as,

 𝑯 ∙ 𝒛 = 𝒈𝒛 (3.20)

where,𝒈𝑧is the negative gradient of error 𝐸with respect to the learning factors𝒛, after replacing

center vector𝒎𝑖𝑘 as given in equation (3.19) and evaluated at 𝑧𝑖𝑘 = 0. Matrix 𝑯, is the Hessian

matrix of the objective function.Assume that the learning factor,𝑧𝑖𝑘 , is used to update only the

center vector,𝒎𝑖𝑘, as given in equation (3.19).Using 𝒈𝑖𝑘from equation (3.15), negative gradient

𝒈𝑧𝑖𝑘 is calculated as follows,

𝐠zik = −
∂E

∂z𝑖𝑘

 =
2

Nv

∙ ∑ ∑ (tp(j) − yp(j)) ∙
∂yp(j)

∂z𝑖𝑘

Nc

j=1

Nv

p=1

(3.21)

as mentioned in section 3.6, if center vector, 𝒎𝑖𝑘, is not participating in computing 𝑦𝑝(𝑗) using

equation (3.17) then,

∂yp(j)

∂zik

= 0

else,

−
∂yp(j)

∂zik
 = 2 ∙ dj

−2 ∙ (∑ gik(n) ∙ w(n)2 ∙

N

n=1

(xp(n) − mik(n))). (∑ du
−1 − dj

−1)/ ∑ du
−1

Nc

u=1

)

Nc

u=1

when i = j, and

−
∂yp(j)

∂zik

 = − 2 ∙ dj
−1 ∙ di

−2 ∙ (∑ g
ik

(n) ∙ w(n)2 ∙

N

n=1

(xp(n) − mik(n)))/ ∑ du
−1

Nc

u=1

(3.22)

when i ≠ j .The Hessian matrix, 𝑯, of the objective function calculated with respect to all the
center vectors is computed as,

ℎ(𝑖, 𝑗) =
𝜕2𝐸

𝜕𝑧𝑖𝑘𝜕𝑧𝑗𝑘

(3.23)

35

Equation (3.20) is solved for 𝒛,using OLS [41] and 𝒎𝑖𝑘 isupdated according to equation (3.19).

CVO Training Algorithm Summary

1) Iterating, 𝑖𝑡 = 1 to 𝑁𝑖𝑡, where 𝑁𝑖𝑡 is the total number of iterations.

2) On first data pass calculate 𝑑𝑖 , 𝒚, 𝐸, 𝒈𝑖𝑘

3) On second data pass calculate –
𝜕𝐸

𝜕𝑧𝑖𝑘
,

𝜕2𝐸

𝜕𝑧𝑖𝑘
2 , 𝒛

4) Update 𝒎𝑖𝑘 ← 𝒎𝑖𝑘 + 𝑧𝑖𝑘 ∙ 𝒈𝑧𝑖𝑘

5) End iterations

3.8 Results of using Center Vector Optimization

Table – 2 compares randomized 10-fold testing results from traditional nearest neighbor

classifier, OAWNNC and OAWNNC with center vector optimization.

Data Set Number of

inputs

Number of

classes

NNC

accuracy %

OAWNNC with

DMO accuracy

%

OAWNNC with

DMO and CVO

accuracy %

F17C.dat 17 39 25.50 68.70 69.02

SKIN.dat 2 2 93.85 94.42 95.42

GONGTST.tst 16 10 66.83 77.80 80.47

COMF18.TRA 18 4 54.28 73.65 77.28

PHONEME.dat 5 2 61.47 75.33 76.32

OBJECT

RECOG

576 2 32.24 47.64 50.22

Table 2 - Classification Performance of NNC v/s OAWNNC with DMO v/s OAWNNC with DMO

and CVO

36

From the results shown in the Table – 2, it can be concluded that center vector

optimization makes OAWNNC insensitive to initial cluster center vectors. It optimally moves the

cluster center vectors that further improve the performance of OAWNNC as compared to

traditional nearest neighbor classifier. Thus CVO solves problem 4 mentioned in section 2.5.

3.9 Problem of misplaced center vectors

As we see, using the OAWWNC and CVO method on the classifier reduces the

classification error and increases the prediction Accuracy of the classifier. It also reduces the

computational time and storage used during the classification process. But training data

generally contains a lot of outliers which is recorded because of human or computing errors

during the observation of the experiment. These outliers results into incorrect the initialization of

the center vectors during clustering. The Center Vector Optimization rule causes the increase in

accuracy of prediction of the Classifier by moving the Center Vectors. But if there is a

concentration of training vector which are outliers then the Center Vector found during

Clustering is situated at the region of the outliers. Center Vector optimization causes the

outlying Center Vector move to give an optimized Classifier, but still the Center Vector will be

present which can cause incorrect predictions. There are even Center Vectors which are very

near to one another and removing one might increase the accuracy of prediction and decrease

computational speed and storage. For all such Center Vectors, which reduces the Accuracy of

the Classifier or plays no part in the prediction of testing data, the efficiency of the Classifier

decreases? This problem of unwanted Center Vectors is handled in the next section of Pruning.

Chapter 4

PRUNING AND IMPROVED NEAREST NEIGHBOR CLASSIFIER

 This section introduces a way of pruning center vectors 𝒎𝑖𝑘 in an optimized method to

increase the efficiency of prediction of the Nearest Neighbor Classifier.

 The distance between the Center Vectors and a new testing vector is measured to find

the correct class. So, the efficiency of the classifier is dependent on the position of the center

37

vectors and the position of the center vectors is dependent on the training data. Data contains

outliers. In statistics, an outlier is an observation point that is far away from other observations.

An outlier may be because of variability in the measurement or it may signify experimental error

[17]. Because of outliers the clustering algorithm initializes some clusters which are distant from

the actual observation points. This data points are not important during classification and this

excess unimportant center vectors decreases the efficiency of the classification by increasing

the processing time. Some center vectors causes incorrect classification, removing which

increases the accuracy of prediction of the Nearest Neighbor Classifier [42, 45]. Pruning is the

methodical way of removing unimportant and bad center vectors which causes the increase of

accuracy of the classifier [46].

4.1 STRUCTURE OF PRUNING

 The method of pruning removes center vectors 𝒎𝑖𝑘 one at a time and calculates the

accuracy of the classifier for each case when a center vector is removed. Then it compares all k

accuracy and finds out the 𝑘𝑡ℎ center vector 𝒎𝑖𝑘, removing which causes the accuracy of

prediction A, to increase.

 This process is continued until pruning of center vectors does not increase the accuracy

of the classifier. The resultant center vectors are then used as input training vectors for the

purpose of classification. This process of pruning results into an even smaller training dataset

compared to the complete training vectors or even the center vectors found after Clustering and

Center Vector Optimization. This eventually decreases the computational time for classification,

helping in increasing the efficiency of the Nearest Neighbor classifier. Thus, it also allows the

Classifier to be used in a real-time application.

 The accuracy A, for a classifier is calculated as [47],

A = 1 - Pe (4.1)

where, ŷi is the predicted value of the ith sample and yi is the corresponding true value.

38

𝑓(ŷi = yi) is an indicator function, it returns 1 when ŷi is equal to yi and returns 0 when ŷi is not

equal to yi.

 Accuracy Ak is calculated every time a center vector is removed, where Ak is the

accuracy of the Classifier when the kth cluster, 𝒎𝑖𝑘, is pruned.

 The cluster to be pruned is done using the following logic,

k = argmax
k

Ak

 4.2 PRUNING ALGORITHM SUMMARY

1) the 𝒎𝑖𝑘center vector is removed

2) The accuracy Ak is found

3) The pruned center vector which results to the maximum Accuracy is removed from the

training dataset and the maximum Accuracy is saved

4) Pruning stops when the maximum Accuracy of the classifier starts decreasing due to

removing input center vectors.

4.3 CHOOSING THE BEST STAGE FOR PRUNING

 The pruning method removes the training centre vectors 𝒎𝑖𝑘 which decreases or does

not affects the accuracy of the classifier, but the question remains when to perform the pruning

operation. The pruning method can be applied to the method of preparing the training vectors in

several stages. After clustering of the training vectors xp and distance measure optimization, it

needs to be decided whether to perform pruning of centre vectors 𝒎𝑖𝑘 and then move the

centre vectors optimally or to perform pruning after the centre vector positions are optimized.

The several stages where pruning can be applied are:

i. Distance measure optimization, then pruning. (OAWNNC + Pruning)

ii. Distance measure optimization, then pruning and then moving centre vectors

(OAWNNC + Pruning + CVO)

39

iii. Distance measure optimization followed by moving centre vectors and then pruning.

(OAWNNC + CVO + Pruning)

iv. Distance measure optimization followed by pruning which followed by moving centre

vectors and then again performing weight optimization (WO). (OAWNNC + Pruning +

CVO + WO)

All this four different methods of finding the optimized training vectors is tested and the

corresponding results recorded.

4.4 RESULT OF PRUNING AT DIFFERENT STAGES

 Pruning is done at different stages of the improved nearest neighbor classification

algorithm and the results of accuracy of the classifier is recorded. The results are compared and

displayed below,

Data Set Number

of inputs

Numbe

r of

classes

OAWNNC +

Pruning +

CVO

accuracy %

OAWNNC

+ CVO +

Pruning

accuracy %

OAWNNC

+ Pruning +

CVO + WO

accuracy %

OAWNNC

+ Pruning

accuracy

%

F17C.dat 17 39 86.61 84.83 86.61 88.41

SKIN.dat 2 2 99.21 99.26 99.31 99.35

GONGTST.tst 16 10 82.53 72.96 83.03 85.20

COMF18.TRA 18 4 78.77 77.92 78.77 75.78

PHONEME.dat 5 2 85.02 84.69 85.02 81.72

OBJECT

RECOG

576 2 76.56 82.58 84.94 85.79

Table 3- Accuracy of the classifier at different stages of pruning

40

4.5 RESULT OF PRUNING

 In section 4.4, the results of different stages of pruning shows the best accuracy of the

classifier model is achieved by optimizing distance measure and then performing pruning of the

center vectors. The results of accuracy of the new improved classifier with weight optimization

followed by pruning (NNCWO-Pr) is compared with the regular nearest neighbor classifier which

uses th entire training pattern for testing (NNCR), the nearest neighbor classifier which uses

training center vectors as training patterns (NNCCV) and the improved nearest neighbor

classifier from chapter 3, which uses the training center vectors for testing, improves the

distance measure and also optimizes the position of the center vectors (OAWNNC+CVO)

Data Set Number

of

inputs

Number

of

classes

NNCCV

accuracy

%

OAWNNC +

CVO

accuracy %

NNCR

accuracy %

NNCWO-Pr

accuracy %

F17C.dat 17 39 25.50 69.02 46.10 88.41

SKIN.dat 2 2 93.85 95.42 99.95 99.35

GONGTST.tst 16 10 66.83 80.47 87.20 85.20

COMF18.TRA 18 4 54.28 77.28 73.64 78.77

PHONEME.dat 5 2 61.47 76.32 88.46 81.72

OBJECT

RECOG

576 2 31.44 50.22 95.09 85.79

Table 4- Comparison of accuracy of NNCCV vs. OAWNNC + CVO vs. NNCR vs. NNCWO-Pr

From the above table it is evident that the proposed method of applying pruning to the nearest

neighbor significantly increases the accuracy of the classifier from previous nearest neighbor

classifiers which uses center vectors as input training vectors (OAWNNC+CVO and NNCCV).

But the regular nearest neighbor classifier (NNCR) results to better accuracy than the proposed

classifier, NNCWO-Pr. This is because the NNCR takes the entire training dataset into

41

consideration for classification and hence, it has a lot more number of patterns to compare with

to find the predicted class of the input testing vector. But considering all the patterns for

classification makes the classifier computationally complex and the classifier takes more time to

predict, hence, making it impractical for real time classification purposes. The proposed

classifier in this thesis applies clustering which reduces the training patterns and pruning further

decreases the size of the training pattern set. Hence, decreasing the time taken for

classification and thus, increasing the efficiency of the classifier, making it applicable for real

time purposes. The efficiency of the classifier is calculated by computing the time taken, in

seconds, to predict the correct class of the testing data. The time taken for classification for

testing data for OAWNNC + CVO, NNCR and NNCWO-Pr is compared in the following table.

Data Set Number

of inputs

Number

of classes

OAWNNC +

CVO Time

taken in sec

NNCR Time

taken in sec

NNCWO-Pr

Time taken in

sec

F17C.dat 17 39 0.07256 0.770755 0.0621

SKIN.dat 2 2 11.58744 1854.2547 4.98541

GONGTST.tst 16 10 0.21585 1.396677 0.193966

COMF18.TRA 18 4 0.9867558 4.62871 0.39433

PHONEME.dat 5 2 0.546507 1.199788 0.40522

OBJECT RECOG 576 2 0.832548 192.99 0.758221

Table 5- Efficiency of classifiers OAWNNC + CVO vs. NNCR vs. NNCWO-Pr

From the above table we can conclude that nearest neighbor classifier with distance measure

optimization and pruning performs the best in terms of efficiency.

From table we can conclude that the best accuracy can be achieved in most cases with a

regular nearest neighbor classifier (NNCR) but the efficiency of this classifier is too low to be

used in a real time application. On the other hand the nearest neighbor classifier using center

42

vectors as training samples and implementing distance measure optimization and center

vectors optimization (OAWNNC + CVO) has better efficiency than NNCR much lower accuracy

than NNCR. The nearest neighbor classifier with distance measure optimization and pruning

(NNCWO-Pr) has better accuracy than OAWNNC + CVO and nearly same or better accuracy

compared to NNCR. NNCWO-Pr has the best efficiency compared to OAWNNC + CVO and NNCR.

Hence, the classifier proposed in the thesis is better in performance compared to the regular

nearest neighbor classifier and other improved versions of it and can be applicable for real time

applications.

Chapter 5

IMPROVEMENT OF k-NEAREST NEIGHBOR CLASSIFIER

 The k-Nearest neighbor classifier is a non-parametric method for classification [52]. The

k-nearest neighbor classifier differs from the nearest neighbor classifier in selecting the number

of nearest neighbor center vectors mik from the test data xt
p. In the nearest neighbor classifier

only the nearest neighbor is considered for inferring the class of the input data. But in k-nearest

neighbor classifier k nearest neighbor center vectors are taken in account for inferring the

correct class for the input vector. The challenge faced in the k-nearest neighbor classifier is

deciding on the optimum k value which gives the best accuracy of the classifier [53]. The

optimal value of k is dependent on the data to be classification. This chapter reviews previous

works to find the optimal k and then defines a method to find the optimal k by doing just one

pass through the training data which is an improvement for the k-nearest neighbor classifier.

5.1 REVIEW WORK ON FINDING OPTIMAL k

 The performance of the k-nearest neighbor classifier depends on choosing the optimal

number of neighbors (k), which is different from one data sample to another. Performance of the

classifier varies significantly when K is changed [83, 84].

Guo et al. converted the training data set into multiple smaller datasets called the “KNN

Model”. The model groups each similar pattern together and consider the number of patterns in

43

a group as optimal k for that “KNN Model”. By doing so the need to choose the best k is

eliminated. However, there is still a need to define other thresholds such as “error tolerant

degree” and the minimum number of points allowed in each group. [85]

Hamamoto et al. used a bootstrap method for nearest neighbor classifier. But this

classifiers performed well when the tested examples are in high dimensions. [86]

The “inverted indexes of neighbors classifier” (IINC) [28], [29] and [30] is one of the best

attempts found in the literature to solve the problem. The aim of their work was not intentionally

to solve the problem of the k parameters; rather it was designed to increase the accuracy of the

classifier. The main idea of the IINC is to use all the neighbors in the training set, rewarding the

nearest neighbors, and penalizing the furthest one. But this classifiers had few problems like, all

the training data was needed to calculate all the inverted indices; non-uniform number of

patterns in each class caused the accuracy of prediction to decrease; distances need to be

sorted, which took long time and hence decreased the efficiency of the classifier.[90]

In the next section a method is proposed to find the optimal k by passing through the

input train dataset just once.

5.2 EFFICIENT METHOD OF FINDING OPTIMAL k

 A new method to find the optimal k parameter is proposed in which single pass through

the data is done. The training data contains Nv-𝑁-dimensional pattern. The training data is

splitted into two parts, namely training data and validation data. The split percent is selected to

be 70% by 30% which is considered to be fair split [58]. The larger chunk of split data is

considered to be the training data, represented by (xp, ic(p))., where the pth dimensional training

vector x is represented by xp and ic(p) is it’s corresponding class label. The data is divided into

two parts for the purpose of cross-validation.

5.2.1 Cross Validation – It is a model validation technique for assessing how the results of

a statistical analysis will generalize to an independent data set. Cross-validation is a way to

https://en.wikipedia.org/wiki/Statistics

44

predict the fit of a model to a hypothetical validation set when an explicit validation set is not

available [59, 60].

 Suppose we have a model where one or more parameters are unknown and we have a

data set which can be fitted to the model. The process of fitting the data to the model causes

optimization of the fitting parameters of the model and the end results gives a model which fits

the data set as well as possible.[59,61] If we have an independent sample of validation data

from the same population as the training data, it will generally turn out that the model does not

fit the validation data as well as it fits the training data. Cross-validation is a way to predict the fit

of a model to a hypothetical validation set when an explicit validation set is not available. [59,

61]

 Two types of cross-validation can be distinguished, exhaustive and non-exhaustive

cross-validation [59]. In the process of finding the optimized k for the k-nearest neighbor

classifier, we use the k-fold cross-validation technique which is a non-exhaustive type of cross-

validation. The K-fold cross-validation technique is more tractable than the exhaustive methods

of cross-validation and it also uses all the observations for training and validation and each

observation is used exactly once for validation [63]. Thus in the method of finding optimal k for

the k nearest neighbor algorithm we use the K-fold validation technique.

5.2.2 Idea of K-fold validation - Given a single data set, randomly divide it into K disjoint subsets

Dk of equal size, for 1≤ k ≤ K. Form K separate training/validation set pairs as

for 1 ≤ k ≤ K [64]. The training vector during the kth fold of the validation is represented as Tk

and the validation vector kth fold of the validation is denoted as Vk. For every value of k, train the

network on dataset Tk and test it on Vk and obtain Acv(K). Acv(K) is the cross-validation

accuracy, A, of the classifier during the Kth fold of the validation.

https://en.wikipedia.org/wiki/Independence_(probability_theory)
https://en.wikipedia.org/wiki/Statistical_population

45

5.3 Choosing maximum k

 The training data is split into two parts (namely training data, Tk and validation data, Vk) if

validation data is not available. It is done for the purpose of K-fold cross validation. Then a

maximum value of k is chosen. Choosing the maximum value needs to be done in such a way

that it should not be too large which might cause into reduced accuracy as because a large k

means a large portion of the space is considered for calculation which would cause the

prediction to be less dependent on the actual location of the space [52]. If the k is chosen too

small then it will lead to noisy decision boundary [66]. The value of k depends on various

parameters like the total number of patterns in the training data, Nv, the number of features in

the data, N ,the number the class labels, Nc and also the number of patterns in each class label.

The value of k is directly proportional to the value Nv, N and Nc.

Past studies suggest selecting the value of maximum k to be the square root of the total number

of patterns, Nv,[65,67,68,69]

 i.e. max(k) = √ Nv

Intuitively the value of k should be less than twice the number of patterns of that class which

has the least number of data.

 i.e. ic-min = argmin(Nv(ic))

where ic is the cth class label and ic-min is the class which has the least number of patterns. Then

the maximum value of k is given as,

max(k) ˂ 2Nv(ic-min) ˂ 2Nv(argmin(Nv(ic)))

The reason for choosing the maximum value of k by this method is because, consider the

distribution of the number of patterns of each class is uneven. Considering the worst case

condition, if the k is selected to be more than twice the number of patterns of that class which

has the least number of data, 2*Nv(argmin(Nv(ic))),

 max(k) ˃ 2Nv(ic-min)

46

 then the classifier would not predict the class ic-min, even though if it is the correct class, as the

rest of the nearest neighbors vectors might belong to another incorrect class. Since, the number

of rest of the nearest neighbors will be greater than the nearest neighbors of the class with the

least number of patterns,

 i.e. 2Nv(ic-min) ˃ Nv(ic-min),

Considering max(k) = 2Nv(ic-min) + β

where β is any positive integer value greater than 1.

max(k) - Nv(ic-min) = 2Nv(ic-min) + β - Nv(ic-min) = Nv(ic-min) + β

Therefore, max(k) - Nv(ic-min) ˃ Nv(ic-min)

As, Nv(ic-min) + β > Nv(ic-min)

Now, if the all Nv(ic-min) + β patterns belongs from one different class then the classifier

would predict the other class which is actually incorrect.

From previous works and above equations the maximum value of k is selected as

whichever is maximum between the square root of the total number of patterns, √ Nv, and one

less than twice the number of patterns of that class which has the least number of data,

kmax = max(√ Nv, 2Nv(ic-min) - 1) (5.1)

5.4 Finding the optimal k

After splitting the training data into training and validation data, Tk and Vk respectively

and deciding on the maximum value for k, the method of finding the best k for the k-nearest

neighbor classifier is performed.

The distance between the first k training vectors TKk and the pth validation vector VKp is found

and stored. The equation used to find the Euclidean distance is as follow,

 d(𝑇𝐾𝑘, VKp)= ∑ (𝑇𝐾𝑘(𝑛) − 𝑉𝐾𝑝(𝑛))
2N

n=1

47

 The maximum value of k, kmax, is found using the equation Eq 5.1. Then the distance of

validation vector from the first kmax training vectors are found and stored in the distance vector

denoted as, dk. The remaining training vectors, from kmax+ 1 to Nv, is considered. Distance of

each of this training vector from the validation vector is found one at a time and the symbol

which denotes it is dnew.

 The training vector, among the first kmax training vectors, farthest from the test validation

vector is found by finding the maximum distance value in the distance vector dk. The equations

are as follow,

kx = argmax
k

(𝐝𝐤)

where kx is the position of the maximum distance in the dk vector.

Now, the distance of the new training vector from the validation vector is compared to

the maximum distance among dk and updated as follow,

IF dnew < dkx, THEN dkx dnew

where, dkx, is the distance in the kx position of the dk vector, hence dkx is the maximum

value of distance in the dk vector.

After of one pass through the data, the distance vector dk will contain the kmax nearest

training vectors from the validation vector. Then the dk vector is sorted in ascending order. Now

the value of k is considered from 1 to kmax and the predicted class for each value of k is

calculated as follow,

k(ic(k)) = k(ic(k)) + 1

where, ic is the class label of the cth class and ic(k) is the predicted class of the kth

vector. Thus, k(ic(k)) is the count of the class labels of cth class calculated from the kth vector

when the number of nearest neighbor considered for the calculation is k.

 Then the predicted class is calculated as the class of the maximum occurring training

pattern. Then the error vector, e, is updated after comparing if the predicted class, ic(k), is same

as the actual class label ic(p). The error vector is denoted as e(k) which is the error of the

48

classifier when k nearest neighbors are chosen for classification. The error vector e(k) is

assigned zero if the predicted class is matches the actual class label, else the e(k) is assigned

one.

IF (ic(k) = ic(p)), THEN e(k) 0, ELSE e(k) 1

Then the probability of error of the classifier is calculated using the error vector,

Pe(k) =
Pe(k) + e(k)

Nvtest

where Nvtest is the number of patterns in the validation vectors and Pe(k) is the probability of

error of the classifier when k nearest neighbors are considered for classification.

Then the accuracy, A, is calculated by using the equation,

A(k) = 1 - Pe(k)

where the accuracy of the classifier when k nearest neighbor is selected for classification is

A(k).

 The optimal k, koptimal, is found by finding the k which results to the maximum accuracy,

A(k).

koptimal = argmax
k

(A(k))

5.4 Algorithm to find the best k

Initialization

The value of kmax is initialized. The elements of error vector, e, initialized as 0.

Find dk where, 1 ≤ k ≤ kmax

Algorithm

1) Start K-Fold cross-validation.

2) FOR p = kmax + 1 TO Nv

3) Calculate kx, dkx and dnew

4) IF dnew < dkx, THEN dkx dnew

5) END FOR

49

6) SORT dk

7) FIND ic(k)

8) FOR k = 1 TO kmax

9) FIND k(ic(k))

10) IF (ic(k) = ic(p)), THEN e(k) = 0

11) Pe(k) = Pe(k) + e(k)

12) Pe(k) = Pe(k) / Nvtest

13) A(k) = 1 - Pe(k)

14) END FOR k

15) Calculate koptimal

5.5 Results of finding the optimal k

 The above mentioned algorithm to find the optimal k is applied on the following six

datasets and the results are displayed:

Dataset GONGTST.tra

koptimal 4

Testing Accuracy 86.4%

50

Fig-2 – Accuracy in % vs. k for GONGTST.tra data for range of k from 2 to 300

Fig-3 – Accuracy in % vs. k for GONGTST.tra data for range of k from 2 to 10

51

Dataset Comf18.tra

koptimal 14

Testing Accuracy 78.73%

Fig-4 – Accuracy in % vs. k for Comf18.tra data for range of k from 2 to 300

Figure 5– Accuracy in % vs. k for Comf18.tra data for range of k from 2 to 300

52

Dataset F17C.dat

koptimal 5

Testing Accuracy 46.29%

Fig-6 – Accuracy in % vs. k for F17C.dat data for range of k from 2 to 300

.

Fig-7 – Accuracy in % vs. k for F17C.dat data for range of k from 2 to 10

53

Dataset Object Recognition

koptimal 2

Testing Accuracy 45.20%

Fig-8–Accuracy in % vs. k for Object Recognition data for range of k from 2 to 400

Fig-9 – Accuracy in % vs. k for Object Recognition data for range of k from 2 to 10

54

Dataset Phoneme

koptimal 5

Testing Accuracy 86.34%

Fig-10 – Accuracy in % vs. k for Phoneme data for range of k from 2 to 400

Fig-11 – Accuracy in % vs. k for Phoneme data for range of k from 2 to 10

55

Dataset Skin Segmentation

koptimal 3

Testing Accuracy 99.94%

Fig-12 – Accuracy in % vs. k for Skin Segmentation data for range of k from 2 to 300

Fig-13 – Accuracy in % vs. k for Skin Segmentation data for range of k from 2 to 10

56

5.7 Improving the k-nearest neighbor classifier

 The k-nearest neighbor classifier is arguably the simplest and most intuitively appealing

nonparametric classification procedure [70]. But it is computationally expensive and it also faces

the curse of dimensionality. It is computationally expensive because the classifier computes

distance of the input test vector to all the input training vectors. This distance measurement is

stored in the memory which causes a lot of memory to be used and large numbers of

computations are done by the classifier for prediction which makes the classifier inefficient for

real time purposes. Moreover, the accuracy of the nearest neighbor classifiers tends to

decrease as the number of features or inputs increases [46]. The reason is that in a high-

dimensional space all points tend to be far away from each other, so nearest neighbors are not

meaningfully similar. The input training data can have noisy and less discriminative input

features which can cause problems such as convergence difficulties, poor classification

accuracy and contamination of the distance measure which leads to false classification. To

solve these problems an improved k-nearest neighbor algorithm is proposed.

To solve the problem of high computational cost and curse of dimensionality, k-means++

clustering method is applied to the training data as in section 2.6.1, which reduces the input

training vector by finding input center vectors. Then the distance measure optimization (DMO)

algorithm, discussed in section 3.3, is applied which weights the input features in such a way so

that the more important features are given higher weights and less significant features are

assigned lower weights, hence noisy and less discriminative features separated and treated

differently than the more important and significant features. The results of the experiment are

provided in the next section.

5.8 Results of improving k-Nearest Neighbor Classifier

The accuracy of a k-Nearest neighbor classifier with distance measure optimization (k-

NNCDMO), regular k-nearest neighbor classifier (k-NNCR), compared in the following table

57

Data Set Number

of inputs

Number

of

classes

koptimal

for k-

NNCR

k-NNCR

accuracy

%

koptimal for

k-NNCDMO

k-NNCDMO

accuracy

%

F17C.dat 17 39 5 46.29 4 45.40

SKIN.dat 2 2 3 99.94 2 99.95

GONGTST.tst 16 10 4 86.4 3 87.16

COMF18.TRA 18 4 14 78.73 19 78.85

PHONEME.dat 5 2 5 86.34 3 87.62

OBJECT RECOG 576 2 3 93.62 2 93.62

Table 6- Efficiency k-NNCR vs. k-NNCDMO

 From Table 6 we can say k-NNCDMO gives better accuracy than k-NNCR.

58

Chapter 6

RESULTS AND CONCLUSION

 This chapter presents results on several data sets to show that the new methods are

successful in improving traditional NNC. These datasets are described in details in Appendix B.

Center vectors were generated from 𝑁𝑣 training patterns using K – Means clustering algorithm

[45].

6.1 Results of different stages of pruning

 Pruning can be implemented at different stages of the improved nearest

neighbor classification algorithm. The different stages of pruning compared here are:-

1. Weight optimization, then running and then center vector optimization (OAWNNC +

Pruning + CVO)

2. Weight Optimization, followed by center vector optimization and then applying pruning

(OAWNNC + CVO + Pruning)

3. Weight optimization followed by pruning and then implementing center vector

optimization method followed by weight optimization again.(OAWNNC + Pruning +

CVO + WO)

4. Weight optimization followed by pruning (OAWNNC + Pruning)

The results are compared and displayed below for all four stages are displayed below,

59

Data Set Number

of inputs

Numbe

r of

classes

OAWNNC +

Pruning +

CVO

accuracy %

OAWNNC

+ CVO +

Pruning

accuracy %

OAWNNC

+ Pruning +

CVO + WO

accuracy %

OAWNNC

+ Pruning

accuracy

%

F17C.dat 17 39 86.61 84.83 86.61 88.41

SKIN.dat 2 2 99.21 99.26 99.31 99.35

GONGTST.tst 16 10 82.53 72.96 83.03 85.20

COMF18.TRA 18 4 78.77 77.92 78.77 75.78

PHONEME.dat 5 2 85.02 84.69 85.02 81.72

OBJECT

RECOG

576 2 76.56 82.95 84.94 85.79

Table 7– Different stages of pruning

From the above table we can conclude that the best classification accuracy is achieved

when pruning is applied after weight optimization.

6.2 Results of Pruning with respect to accuracy

 This sub-section shows the improvements in the accuracy of the classification by

applying the method of pruning of training center vectors after performing distance measure

optimization. The results of pruning (OAWNNC + Pruning) is compared with regular NNC which

uses all the training patterns (NNCR), NNC which uses center vectors for training (NNCCV) and

improved NNC by performing distance measure optimization and center vector optimization

(OAWNNC + CVO).Table – 4 displays the compared results.

60

Data Set Number

of

inputs

Number

of

classes

NNCCV

accuracy

%

OAWNNC

+ CVO

accuracy

%

OAWNNC +

Pruning

accuracy %

NNCR

accuracy %

F17C.dat 17 39 25.50 69.02 88.41 46.10

SKIN.dat 2 2 93.85 95.42 99.35 99.95

GONGTST.tst 16 10 66.83 80.47 85.20 87.20

COMF18.TRA 18 4 54.28 77.28 78.77 73.64

PHONEME.dat 5 2 61.47 76.32 81.72 88.46

OBJECT

RECOG

576 2 31.44 50.22 85.79 95.09

Table 8–Results of pruning compared with other Nearest Neighbor Classifiers

 From Table 4 it is evident that implementation of pruning with distance measure

optimization improves the accuracy of the classifier and provides the best result compared to

any method nearest neighbor classification which uses center vectors for classification. But the

nearest neighbor classifier which uses all the training patterns for classification has better

accuracy than the improved nearest neighbor classifier with pruning. The reason being that

more correct training data helps the classifier to find closest patterns from the testing pattern.

But larger the training data set, higher is the complexity of classification and thus it takes more

time for classification and results to lower efficiency of the classifier. The efficiency of different

NNC is compared in the next section.

6.3 Results of pruning with respect to efficiency

Efficiency of the classifier is found by calculating the time taken by the classifier to find the

classify the testing data. The lesser the time taken to classify, higher will be the efficiency of the

61

classifier. The experiments are done using the same hardware with the same background

processes running on it, so that any external factors, like machine speed, number of threads

available etc. does not affect the results of the experiment. The efficiency of the regular NNC,

improved NNC with distance measure optimization and center vector optimization and improved

NNC with distance measure optimization and pruning.

Data Set Number

of inputs

Number

of classes

OAWNNC +

CVO Time

taken in sec

NNCR Time

taken in sec

NNCWO-Pr

Time taken in

sec

F17C.dat 17 39 0.07256 0.770755 0.0621

SKIN.dat 2 2 11.58744 1854.2547 4.98541

GONGTST.tst 16 10 0.21585 1.396677 0.193966

COMF18.TRA 18 4 0.9867558 4.62871 0.39433

PHONEME.dat 5 2 0.546507 1.199788 0.40522

OBJECT RECOG 576 2 0.832548 192.99 0.758221

Table 9–Time taken by OAWNNC + CVO vs. NNCR vs. NNCWO-Pr

Fig-14 – Efficiency of NNCR vs. OAWNNC + CVO vs. NNCWO-Pr for F17C.dat file

62

Fig-15 – Efficiency of NNCR vs. OAWNNC + CVO vs. NNCWO-Pr for SKIN.dat file

Fig-16 – Efficiency of NNCR vs. OAWNNC + CVO vs. NNCWO-Pr for GONGTST.tst

file

63

Fig-17 – Efficiency of NNCR vs. OAWNNC + CVO vs. NNCWO-Pr for COMF18.tra file

Fig-18 – Efficiency of NNCR vs. OAWNNC + CVO vs. NNCWO-Pr for PHONEME.dat

file

64

Fig-19 – Efficiency of NNCR vs. OAWNNC + CVO vs. NNCWO-Pr for PHONEME.dat

file

6.4 Results of finding optimal k in k-NNC

A new algorithm to find the optimal k for a k-Nearest neighbor classifier is proposed in

the Chapter 5, where passing through the training data only once, can determine optimal k. The

method is tested on six different datasets, where the optimal k is found for each dataset and the

training accuracy of the classifier for a range of k is plotted. Then the testing accuracy of the

classifier for optimal k is recorded.

65

Data Set Number of

inputs

Number of

classes

koptimal Accuracy of k-

NNC in %

F17C.dat 17 39 5 46.29

SKIN.dat 2 2 3 99.94

GONGTST.tst 16 10 4 86.4

COMF18.TRA 18 4 14 78.73

PHONEME.dat 5 2 5 86.34

OBJECT RECOG 576 2 3 93.62

Table 10 – Optimal k in k-NNC and its corresponding testing accuracy

6.5 Result of applying distance measure optimization on k-NNC

Contaminated input features in the dataset decreases the accuracy of a classifier. The

noisy and less discriminative input features should be affect the classification results less than

highly discriminative input features. To solve this problem of distance measure optimization,

discussed in section 3.3, is applied to the k-Nearest neighbor classifier (k-NNCDMO) and the

accuracy of the k-NNCDMO is compared with the regular k-nearest neighbor classifier.

The regular k-Nearest neighbor classifier (k-NNCR) uses the entire training pattern to for

the purpose of prediction. Hence, every time there is a new input, the classifier has to calculate

the distance between the input test vector and the entire training pattern, hence resulting into

high computational complexity and high computational time for classification, making it

inappropriate for real time applications. To solve this problem, clustering is applied to the input

training vectors to reduce the training vector set. The accuracy of the k-nearest neighbor

classifier using center vectors as training pattern (k-NNCCV) is also displayed in the table.

66

Data Set Number

of inputs

Number

of

classes

koptimal

for k-

NNCCV

k-NNCCV

accuracy

%

koptimal

for k-

NNCR

k-NNCR

accuracy

%

koptimal

for k-

NNCDMO

k-

NNCDMO

accuracy

%

F17C.dat 17 39 2 23.45 5 46.29 4 45.40

SKIN.dat 2 2 2 97.06 3 99.94 2 99.95

GONGTST.tst 16 10 6 74.67 4 86.4 3 87.16

COMF18.TRA 18 4 6 67.83 14 78.73 19 78.85

PHONEME.dat 5 2 2 74.99 5 86.34 3 87.62

OBJECT

RECOG

576 2 4 90.20 3 93.62 2 93.62

Table 11 – Accuracy of different k-NNC is compared

The result of efficiency of the regular k-Nearest neighbor classifier (k-NNCR), k-nearest

neighbor classifier using center vectors as training pattern (k-NNCCV) and k-Nearest neighbor

classifier with distance measure optimization is compared in the following table (k-NNCDMO)

67

Data Set Number of

inputs

Number of

classes

k-NNCR

efficiency

seconds

k-NNCDMO

efficiency

seconds

k-NNCCV

efficiency

seconds

F17C.dat 17 39 1.11 0.62 0.07799

SKIN.dat 2 2 2045.06 2128.70075 15.5212

GONGTST.tst 16 10 1.415827 1.549507 0.25084

COMF18.TRA 18 4 5.717 5.71094 0.1606

PHONEME.dat 5 2 1.217627 1.098723 0.134554

OBJECT RECOG 576 2 391.21 261.201977 1.091677

Table 12– Efficiency of different k-NNC is compared

Fig-20 – Efficiency of k-NNCR vs. k-NNCDMO vs. k-NNCCV for F17C.dat

68

Fig-21 – Efficiency of k-NNCR vs. k-NNCDMO vs. k-NNCCV for SKIN.dat

Fig-22 – Efficiency of k-NNCR vs. k-NNCDMO vs. k-NNCCV for GONGTST.tst

69

Fig-23 – Efficiency of k-NNCR vs. k-NNCDMO vs. k-NNCCV for COMF18.tra

Fig-24 – Efficiency of k-NNCR vs. k-NNCDMO vs. k-NNCCV for PHONEME.dat

70

Fig-25 – Efficiency of k-NNCR vs. k-NNCDMO vs. k-NNCCV for OBJECT RECOG

From the above figures we can conclude that the k-NNCCV has the best efficiency. But as the
accuracy of the k-NNCCV is much lower than regular k-nearest neighbor, it cannot be used
unless further improvement is done on the algorithm.

6.6 Conclusion

 From Table 8 we can conclude that applying pruning to the improved nearest neighbor

classifier which already implements distance measure optimization, the accuracy is the best

compared to any other forms of the improved nearest neighbor classifier. For datasets OBJECT

RECOG and PHONEME.dat the regular nearest neighbor classifier out performs the proposed

nearest neighbor classifier with respect to the accuracy and for SKIN.dat dataset both the

classifier has almost the same classification accuracy. These three datasets have huge number

of training patterns and hence the NNCR takes a large amount of time to perform classification

and thus becomes inapplicable in real time applications. The nearest neighbor classifier

implementing distance measure optimization and pruning that is proposed in this thesis has a

significantly higher efficiency compared to the regular nearest neighbor classifier. Hence,

pruning solves the problem of having outliers in the data and also noisy center vectors which

affects the performance of the classifier. Pruning also improves the efficiency of the classifier.

71

 In k-nearest neighbor classifier, the optimal k can be found by a single pass through the

training data. The parameter k is dependent on the dataset, so finding the optimal k using an

efficient method is highly useful in implementing the k-nearest neighbor classifier.

 From Table 11 we can conclude that applying distance measure optimization to the k-

nearest neighbor algorithm increases the accuracy of the classifier. Using center vectors as

training vector for the k-nearest neighbor classifier increases the efficiency of the classifier but

decreases the accuracy. The future endeavor in this field is to apply growing algorithm along

with pruning to the nearest neighbor algorithm and applying pruning and center vector

optimization along with the distance measure optimization to the k-nearest neighbor classifier.

72

Appendix A

Optimizing distance measure weights using Newton’s algorithm.

1) Cluster 𝑁𝑣 patternsinto 𝐾 clusters, where 𝐾 = ∑ 𝑘𝑖
Nc
i=1 .

𝑘𝑖 is the number of clusters of 𝑖𝑡ℎ class

After clustering we get 𝐾 center vectors𝒎𝒊𝒌, where 𝒎𝑖𝑘 is the 𝑘𝑡ℎ center vector of 𝑖𝑡ℎ

class

2) Initialize 𝑤(𝑛) =
1

𝑣𝑎𝑟(𝑥(𝑛))
for 1 ≤ 𝑛 ≤ 𝑁

3) Initialize 𝒘𝒐𝒍𝒅 = 𝒘, 𝑧𝑜𝑙𝑑 = 0

4) For 𝑖𝑡𝑒𝑟 = 1 to 𝑀𝑎𝑥𝐼𝑡𝑒𝑟

a) Initialize𝒈 = 0, 𝑯 = 0

a) For 𝑝 = 1 𝑡𝑜 𝑁𝑣

i. For 𝑖 = 1 𝑡𝑜 𝑁𝑐

i. Compute 𝑑𝑖 = min (𝑑(𝒙𝑝, 𝒎𝑖,𝑘)) using equation (3.3)

ii. Compute 𝒚

End 𝑖

iii. Compute 𝑀𝑆𝐸 using equation (3.1) with one-hot encoding target output

iv. Compute negative gradient vector 𝒈using equation (3.4), (3.5) and (3.6)

v. Compute Hessian matrix 𝑯 using equation (3.13)

End 𝑝

vi. Solve equation (3.14) to compute update vector 𝒆 using OLS [27]

vii. Update weights as 𝑤(𝑛) ← 𝑤(𝑛) + 𝑒(𝑛)

End 𝑖𝑡𝑒𝑟

5) Save Weights to disk

73

Appendix B

Description of datasets

74

1 GONGTST.TST

 The raw data consists of images from hand printed numerals collected by the

Internal Revenue Service. Images are 32 by 24 binary matrices. An image scaling

algorithm is used to remove size variation in characters. This dataset contains 16 input

features. The 10 classes correspond to 10 Arabic numerals.

2 COMF18.TRA

 This dataset comes from [47] and has 18 input features to classify patterns into 4

distinct classes. These features are extracted from images as per Level 1 of the US

Geological Survey Land Use/Land Cover Classification System to categorize into four

regions of land use: urban areas, fields or open grass lands, trees (forest land) and water

(lakes or river).

3 F17C

 This dataset is used for the application of prognostics or flight condition

recognition. It consists of parameters that are available in the basic health usage

monitoring systems (HUMS), plus some others. The data was collected from M430

flight load level survey conducted in Mirabel Canada in early 1995. It has 17 input

features and 39 classes.

4 Skin Segmentation Data Set

 The skin dataset is collected by randomly sampling B,G,R values from face

images of various age groups (young, middle, and old), race groups (white, black, and

asian), and genders obtained from FERET database and PAL database [48]. Total

75

number of training patterns is 245057; out of which 50859 is the skin samples and

194198 is non-skin samples. It has 3 input features and 2classes.

5 Phoneme Data Set

 This dataset distinguishes between nasal and oral sounds. It has 3818 patterns

with 5 input features and 2 classes [49].

6 Object Recognition Data Set

 The features are extracted from a trained Convolutional Neural Network (CNN)

after throwing away the fully-connected layer at the top. So the features are the output of

the last convolutional layer. The CNN was trained on 128x128 grayscale images.

76

References

[1] En.wikipedia.org. (2017). Statistical classification. [online] Available at:

https://en.wikipedia.org/wiki/Statistical_classification [Accessed 4 Dec. 2017].

[2] Bishop, Christopher M. "Pattern recognition." Machine Learning 128 (2006).

[3] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3),

pp.273-297.

[4] Rumelhart, D., Hinton, G. and Williams, R. (1986). Learning representations by back-

propagating errors. Nature, 323(6088), pp.533-536.S

[5] Anon, (2017). [online] Available at: http://Quinlan, J. Ross. "Simplifying decision

trees." International journal of man-machine studies 27.3 (1987): 221-234 [Accessed

4 Dec. 2017].

[6] Broder, A. (1990). Strategies for efficient incremental nearest neighbor

search. Pattern Recognition, 23(1-2), pp.171-178.

[7] Broder, A. J. Strategies for efficient incremental nearest neighbour search. Pattern

Recognition 23(1/2): 171–178. 1990.

[8] Shizen, Y. Wu, “An Algorithm for Remote Sensing Image Classification based on

Artificial Immune b-cell Network”, Springer Berlin, Vol 40.

[9] Efficient Nearest Neighbor Classification Using a Cascade of Approximate Similarity

Measures.

Vassilis Athitsos, Jonathan Alon, and Stan Sclaroff.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 486-

493, June 2005.

[10] Online and Offline Character Recognition Using Alignment to Prototypes.

Jonathan Alon, Vassilis Athitsos, and Stan Sclaroff.

77

International Conference on Document Analysis and Recognition (ICDAR), August

2005.

[11] G. Toker, O. Kirmemis, “Text Categorization using k Nearest Neighbor

Classification”, Survey Paper, Middle East Technical University

[12] Y. Liao, V. R. Vemuri, “Using Text Categorization Technique for Intrusion detection”,

Survey Paper, University of California.

[13] E. M. Elnahrawy, “Log Based Chat Room Monitoring Using Text Categorization: A

Comparative Study”, University of Maryland.

[14] Anon, (2017). [online] Available at: http://Y. Yang and T. Ault, “Improving Text

Categorization Methods for event tracking”, Carnegie Mellon University [Accessed 4

Dec. 2017].

[15] Csie.ntu.edu.tw. (2017). Cite a Website - Cite This For Me. [online] Available at:

http://www.csie.ntu.edu.tw/~htlin/other/mlrt2010/MLRT-TsungHsienChiang.pdf

[Accessed 4 Dec. 2017].

[16] F. Bajramovie et. al “A Comparison of Nearest Neighbor Search Algorithms for

Generic Object Recognition”, ACIVS 2006, LNCS 4179, pp 1186-1197.

[17] En.wikipedia.org. (2017). Outlier. [online] Available at:

https://en.wikipedia.org/wiki/Outlier [Accessed 4 Dec. 2017].

[18] Anon, (2017). [online] Available at: http://Wikipedia contributors. "K-nearest

neighbors algorithm." Wikipedia, The Free Encyclopedia. Wikipedia, The Free

Encyclopedia, 28 Nov. 2016. Web. 28 Nov. 2016 [Accessed 4 Dec. 2017].

[19] En.wikipedia.org. (2017). Euclidean distance. [online] Available at:

https://en.wikipedia.org/wiki/Euclidean_distance [Accessed 4 Dec. 2017].

78

[20] Ichino, Manabu, and Hiroyuki Yaguchi. "Generalized Minkowski metrics for mixed

feature-type data analysis." IEEE Transactions on Systems, Man, and

Cybernetics 24.4 (1994): 698-708.

[21] De Maesschalck, Roy, Delphine Jouan-Rimbaud, and Désiré L, Massart. "The

mahalanobis distance." Chemometrics and intelligent laboratory systems 50.1

(2000): 1-18.

[22] En.wikipedia.org. (2017). Hamming distance. [online] Available at:

https://en.wikipedia.org/wiki/Hamming_distance [Accessed 4 Dec. 2017].

[23] Hu, L., Huang, M., Ke, S. and Tsai, C. (2017). The distance function effect on k-

nearest neighbor classification for medical datasets.

[24] En.wikipedia.org. (2017). Norm (mathematics). [online] Available at:

https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm [Accessed 4 Dec.

2017].

[25] Wilson, D. Randall, and Tony R. Martinez. "Improved heterogeneous distance

functions." Journal of artificial intelligence research 6 (1997): 1-34.

[26] Manry, Michael T. "Unsupervised Learning and Neural Nets That Use It." Neural

networks EE 5353. University of Texas at Arlington. Texas. 16 November, 2016.

Lecture.

[27] K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd. edition, 1990,

Academic Press.

[28] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, John Wiley & Sons, 2nd

edition, 2001.

[29] A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill,

New York, 1965.

79

[30] En.wikipedia.org. (2017). Cluster analysis. [online] Available at:

https://en.wikipedia.org/wiki/Cluster_analysis [Accessed 11 Dec. 2017].

[31] Vajda, S., & Santosh, K. C. (2017). A Fast k-Nearest Neighbor Classifier

Using Unsupervised Clustering. Communications in Computer and Information

Science Recent Trends in Image Processing and Pattern Recognition, 185-193.

doi:10.1007/978-981-10-4859-3_17

[32] Selim SZ, Ismail MA (1984) K-means-type algorithms: A generalized convergence

theorem and characterization of local optimality. IEEE Transactions on Pattern

Analysis and Machine Intelligence 6(1):81{87

[33] Kohonen, Teuvo, Self-organization and associative memory. Vol. 8. Springer Science

& Business Media, 2012.

[34] Manry, Michael T. "Unsupervised Learning and Neural Nets That Use It." Neural

networks EE 5353. University of Texas at Arlington. Texas. 16 November, 2016.

Lecture.

[35] Du, Qiang, Vance Faber, and Max Gunzburger, "Centroidal Voronoi tessellations:

applications and algorithms." SIAM review 41.4 (1999): 637-676.

[36] Wikipedia contributors. "Mean squared error." Wikipedia, The Free Encyclopedia.

Wikipedia, The Free Encyclopedia, 18 Nov. 2016. Web. 18 Nov. 2016.

[37] Arthur, David, and Sergei Vassilvitskii. "k-means++: The advantages of careful

seeding." Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms. Society for Industrial and Applied Mathematics, 2007.

[38] Arthur, David, and Sergei Vassilvitskii. "k-means++: The advantages of careful

seeding." Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms. Society for Industrial and Applied Mathematics, 2007.

80

[39] En.wikipedia.org. (2017). Learning vector quantization. [online] Available at:

https://en.wikipedia.org/wiki/Learning_vector_quantization [Accessed 11 Dec. 2017].

[40] Rawat Rohit, ManryMichael T. “Second Order Training of a Smoothed Piecewise

Linear Network”. December 2016.

[41] M. D. Robinson, and M. T. Manry, “Two-Stage Second Order Training in Feedforward

Neural Networks,” Twenty-Sixth International Florida Artificial Intelligence Research

Society Conference, 2013.

[42] Ieeexplore.ieee.org. (2017). A pruned fuzzy k-nearest neighbor classifier with

application to electrocardiogram based cardiac arrhytmia recognition - IEEE

Conference Publication. [online] Available at:

http://ieeexplore.ieee.org/document/4777725/ [Accessed 5 Dec. 2017].

[43] Wilson, D. R., & Martinez, T. R. (2000). Machine Learning, 38(3), 257-286.

doi:10.1023/a:1007626913721

[44] Sci2s.ugr.es. (2017). Cite a Website - Cite This For Me. [online] Available at:

http://sci2s.ugr.es/keel/pdf/algorithm/congreso/Zhao03Cpruner.pdf [Accessed 5 Dec.

2017].

[45] Batchelor, B. (2017). Growing and pruning a pattern classifier.

[46] En.wikipedia.org. (2017). Pruning (decision trees). [online] Available at:

https://en.wikipedia.org/wiki/Pruning_(decision_trees) [Accessed 5 Dec. 2017].

[47] Scikit-learn.org. (2017). 3.3. Model evaluation: quantifying the quality of predictions

— scikit-learn 0.19.1 documentation. [online] Available at: http://scikit-

learn.org/stable/modules/model_evaluation.html#classification-metrics [Accessed 5

Dec. 2017].

[48] Kowalski, B. and Bender, C. (2017). K-Nearest Neighbor Classification Rule (pattern

recognition) applied to nuclear magnetic resonance spectral interpretation.

81

[49] En.wikipedia.org. (2017). Feature extraction. [online] Available at:

https://en.wikipedia.org/wiki/Feature_extraction [Accessed 5 Dec. 2017].

[50] Parsons, S. (2010). Introduction to Machine Learning, Second Editon by

EthemAlpaydin, MIT Press, 584 pp., $55.00. ISBN 978-0-262-01243-0. The

Knowledge Engineering Review,25(03), 353. doi:10.1017/s0269888910000056

[51] Ieeexplore.ieee.org. (2017). Feature Extraction Algorithm Based on K Nearest

Neighbor Local Margin - IEEE Conference Publication. [online] Available at:

http://ieeexplore.ieee.org/document/5344145/ [Accessed 5 Dec. 2017].

[52] En.wikipedia.org. (2017). K-nearest neighbors algorithm. [online] Available at:

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm [Accessed 5 Dec. 2017].

[53] Arxiv.org. (2017). Cite a Website - Cite This For Me. [online] Available at:

https://arxiv.org/ftp/arxiv/papers/1409/1409.0919.pdf [Accessed 5 Dec. 2017].

[54] Pdfs.semanticscholar.org. (2017). Cite a Website - Cite This For Me. [online]

Available at:

https://pdfs.semanticscholar.org/604b/32f6aac14f23b786e4da561af9cea766c3d3.pdf

[Accessed 5 Dec. 2017].

[55] Ieeexplore.ieee.org. (2017). A K-nearest neighbor classifier for ship route prediction -

IEEE Conference Publication. [online] Available at:

http://ieeexplore.ieee.org/document/8084635/ [Accessed 5 Dec. 2017].

[56] Ieeexplore.ieee.org. (2017). Unknown aware k nearest neighbor classifier - IEEE

Conference Publication. [online] Available at:

http://ieeexplore.ieee.org/document/7983027/ [Accessed 5 Dec. 2017].

[57] Ieeexplore.ieee.org. (2017). Genetic programming and K-nearest neighbour classifier

based intrusion detection model - IEEE Conference Publication. [online] Available at:

http://ieeexplore.ieee.org/document/7943121/ [Accessed 5 Dec. 2017].

82

[58] Citeseerx.ist.psu.edu. (2017). Cite a Website - Cite This For Me. [online] Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.1337&rep=rep1&type=p

df [Accessed 5 Dec. 2017].

[59] En.wikipedia.org. (2017). Cross-validation (statistics). [online] Available at:

https://en.wikipedia.org/wiki/Cross-validation_(statistics) [Accessed 5 Dec. 2017].

[60] Geisser, Seymour (1993). Predictive Inference. New York, NY: Chapman and

Hall. ISBN 0-412-03471-9.

[61] Kohavi, Ron (1995). "A study of cross-validation and bootstrap for accuracy

estimation and model selection". Proceedings of the Fourteenth International Joint

Conference on Artificial Intelligence. San Mateo, CA: Morgan Kaufmann. 2 (12):

1137–1143.

[62] Devijver, Pierre A.; Kittler, Josef (1982). Pattern Recognition: A Statistical Approach.

London, GB: Prentice-Hall.

[63] Cs.utoronto.ca. (2017). Cite a Website - Cite This For Me. [online] Available at:

http://www.cs.utoronto.ca/~fidler/teaching/2015/slides/CSC411/tutorial3_CrossVal-

DTs.pdf [Accessed 5 Dec. 2017].

[64] Manry, Michael T. "Unsupervised Learning and Neural Nets That Use It." Neural

networks EE 5353. University of Texas at Arlington. Texas. 16 November, 2016.

Lecture.

[65] Arxiv.org. (2017). Cite a Website - Cite This For Me. [online] Available at:

https://arxiv.org/ftp/arxiv/papers/1409/1409.0919.pdf [Accessed 5 Dec. 2017].

[66] Cs.haifa.ac.il. (2017). Cite a Website - Cite This For Me. [online] Available at:

http://www.cs.haifa.ac.il/~rita/ml_course/lectures/KNN.pdf [Accessed 5 Dec. 2017].

[67] M. Jirina and M. J. Jirina, "Classifier Based on Inverted Indexes of Neighbors,"

Institute of Computer Science, Technical Report No. V-1034, 2008.

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-412-03471-9

83

[68] M. Jirina and M. J. Jirina, "Using Singularity Exponent in Distance Based Classifier,"

in Proceedings of the 10th International Conference on Intelligent Systems Design

and Applications (ISDA2010), Cairo, 2010, pp. 220-224.

[69] M. Jirina and M. J. Jirina, "Classifiers Based on Inverted Distances," in New

Fundamental Technologies in Data Mining, K. Funatsu, Ed. InTech, 2011, vol. 1, ch.

19, pp. 369-387.

[70] Hall, P., Park, B. and Samworth, R. (2017). Choice of neighbor order in nearest-

neighbor classification.

[71] Ieeexplore.ieee.org. (2017). Multi-agent event detection system using k-nearest

neighbor classifier - IEEE Conference Publication. [online] Available at:

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6914382 [Accessed 11 Dec.

2017].

[72] Cs.cmu.edu. (2017). Cite a Website - Cite This For Me. [online] Available at:

http://www.cs.cmu.edu/~aarnold/cald/fp025-geng.pdf [Accessed 11 Dec. 2017].

[73] Proceedings.mlr.press. (2017). Cite a Website - Cite This For Me. [online] Available

at: http://proceedings.mlr.press/v25/chiang12/chiang12.pdf [Accessed 11 Dec. 2017].

[74] Jiang, Liangxiao, et al. “Learning k-Nearest Neighbor Naive Bayes for

Ranking.” Advanced Data Mining and Applications Lecture Notes in Computer

Science, 2005, pp. 175–185., doi:10.1007/11527503_21.

[75] Wang, S. and Liu, Z. (2010). Infrared Face Recognition Based on Histogram and K-

Nearest Neighbor Classification. Advances in Neural Networks - ISNN 2010, pp.104-

111.

[76] Ebrahimpour-ko..., H. “FACE RECOGNITION USING BAGGING

KNN.”Users.cecs.anu.edu.au,

www.academia.edu/1080778/FACE_RECOGNITION_USING_BAGGING_KNN.

http://www.academia.edu/1080778/FACE_RECOGNITION_USING_BAGGING_KNN

84

[77] Govindarajan, M., & Chandrasekaran, R. (2009). Intrusion detection using k-Nearest

Neighbor. 2009 First International Conference on Advanced Computing.

doi:10.1109/icadvc.2009.5377998

[78] Li, Wenchao, et al. “A New Intrusion Detection System Based on KNN Classification

Algorithm in Wireless Sensor Network.” Journal of Electrical and Computer

Engineering, vol. 2014, 2014, pp. 1–8., doi:10.1155/2014/240217.

[79] Web.cs.ucdavis.edu. (2017). Cite a Website - Cite This For Me. [online] Available at:

http://web.cs.ucdavis.edu/~vemuri/papers/knn-ss02.pdf [Accessed 11 Dec. 2017].

[80] Kang, Myunga, and Jongmin Kim. “Real Time Object Recognition Using K-Nearest

Neighbor in Parametric Eigenspace.” Bio-Inspired Computational Intelligence and

Applications Lecture Notes in Computer Science, pp. 403–411., doi:10.1007/978-3-

540-74769-7_44.

[81] R.Muralidharan, Dr. “Object Recognition Using K-Nearest Neighbor Supported By

Eigen Value Generated From the Features of an Image.” International Journal of

Innovative Research in Computer and Communication Engineering, Research and

Reviews, 1 Jan. 1970, www.rroij.com/open-access/object-recognition-using-knearest-

neighborsupported-by-eigen-value-generated-fromthe-features-of-an-

image.php?aid=46808.

[82] Boiman, O., Shechtman, E., & Irani, M. (2008). In defense of Nearest-Neighbor

based image classification. 2008 IEEE Conference on Computer Vision and Pattern

Recognition. doi:10.1109/cvpr.2008.4587598

[83] Y. Song, J. Huang, D. Zhou, H. Zha, and C. L. Giles, "Iknn: Informative k-nearest

neighbor pattern classification," in Proceedings of the 11th European conference on

Principles and Practice of Knowledge Discovery in Databases, Berlin, 2007, pp. 248-

264.

http://www.rroij.com/open-access/object-recognition-using-knearest-neighborsupported-by-eigen-value-generated-fromthe-features-of-an-image.php?aid=46808
http://www.rroij.com/open-access/object-recognition-using-knearest-neighborsupported-by-eigen-value-generated-fromthe-features-of-an-image.php?aid=46808
http://www.rroij.com/open-access/object-recognition-using-knearest-neighborsupported-by-eigen-value-generated-fromthe-features-of-an-image.php?aid=46808

85

[84] M. Latourrette, "Toward an explanatory similarity measure for nearest-neighbor

classification," in Proceedings of the 11th European Conference on Machine

Learning, London, 2000, pp. 238-245.

[85] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, "KNN ModelBased Approach in

Classification," Lecture Notes in Computer Science, vol. 2888, pp. 986-996, 2003.

[86] Y. Hamamoto, S. Uchimura, and S. Tomita, "A Bootstrap Technique for Nearest

Neighbor Classifier Design," IEEE TRANSACTIONS ON PATTERN ANALYSIS AND

MACHINE INTELLIGENCE, vol. 19, no. 1, pp. 73-79, 1997.

[87] M. Jirina and M. J. Jirina, "Classifier Based on Inverted Indexes of Neighbors,"

Institute of Computer Science, Technical Report No. V-1034, 2008.

[88] M. Jirina and M. J. Jirina, "Using Singularity Exponent in Distance Based Classifier,"

in Proceedings of the 10th International Conference on Intelligent Systems Design

and Applications (ISDA2010), Cairo, 2010, pp. 220-224.

[89]] M. Jirina and M. J. Jirina, "Classifiers Based on Inverted Distances," in New

Fundamental Technologies in Data Mining, K. Funatsu, Ed. InTech, 2011, vol. 1, ch.

19, pp. 369-387.

[90] “Solving the Problem of the K Parameter in the KNN Classifier Using an Ensemble

Learning Approach.” Table I from Solving the Problem of the K Parameter in the KNN

Classifier Using an Ensemble Learning Approach - Semantic Scholar,

www.semanticscholar.org/paper/Solving-the-Problem-of-the-K-Parameter-in-

the-KNN-Hassanat-

Abbadi/e0c716aee8e5b960515d3928e84e07baa0fcb7aa/figure/2.

http://www.semanticscholar.org/paper/Solving-the-Problem-of-the-K-Parameter-in-the-KNN-Hassanat-Abbadi/e0c716aee8e5b960515d3928e84e07baa0fcb7aa/figure/2
http://www.semanticscholar.org/paper/Solving-the-Problem-of-the-K-Parameter-in-the-KNN-Hassanat-Abbadi/e0c716aee8e5b960515d3928e84e07baa0fcb7aa/figure/2
http://www.semanticscholar.org/paper/Solving-the-Problem-of-the-K-Parameter-in-the-KNN-Hassanat-Abbadi/e0c716aee8e5b960515d3928e84e07baa0fcb7aa/figure/2

86

[91] Selim SZ, Ismail MA (1984) K-means-type algorithms: A generalized convergence

theorem and characterization of local optimality. IEEE Transactions on Pattern

Analysis and Machine Intelligence 6(1):81{87

[92] Kohonen, Teuvo, Self-organization and associative memory. Vol. 8. Springer Science

& Business Media, 2012.

[93] En.wikipedia.org. (2017). DBSCAN. [online] Available at:

https://en.wikipedia.org/wiki/DBSCAN [Accessed 11 Dec. 2017].

[94] Du, Qiang, Vance Faber, and Max Gunzburger, "Centroidal Voronoi tessellations:

applications and algorithms." SIAM review 41.4 (1999): 637-676.

[95] Manry, Michael T. "Unsupervised Learning and Neural Nets That Use It." Neural

networks EE 5353. University of Texas at Arlington. Texas. 16 November, 2016.

Lecture.

[96] Sheth, Jugal R. “OPTIMAL ATTRIBUTE WEIGHTING IN A NEAREST NEIGHBOR

CLASSIFIER .” University of Texas at Arlington, UTA, 2016, pp. 1–53.

87

Biographical Information

Sinchan Bhattacharya was born in India in 1991. He received his Bachelor of

Technology in Electrical Engineering from West Bengal University of Technology,

Kolkata, India in May 2013 and Master of Science in Electrical Engineering from the

University of Texas at Arlington in December 2017.

He interned at Unique Software Development in spring 2017 and fall 2016. He

has been involved in research activities under the guidance of Dr. Michael T. Manry in

Image Processing and Neural Networks Laboratory (IPNNL) since 2015. His main

research interests include Neural Networks and Pattern Recognition.

