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CHAPTER 1

Abstract

Human gait has shown to be a strong indicator of health issues under a wide variety

of conditions. For that reason, gait analysis has become a powerful tool for clinicians to

assess functional limitations due to neurological or orthopedic conditions that are reflected

in gait. Therefore, accurate gait monitoring and analysis methods have found a wide range of

applications from diagnosis to treatment and rehabilitation. This thesis focuses on creating

a low-cost and non-intrusive vision-based machine learning framework dubbed as iGait

to accurately detect CLBP patients using 3-D capturing devices such as MS Kinect. To

analyze the performance of the system, a precursor analysis for creating a feature vector is

performed by designing a highly controlled in-lab simulation of walks. Furthermore, the

designed framework is extensively tested on real- world data acquired from volunteer elderly

patients with CLBP. The feature vector presented in this thesis show very high agreement in

getting the pathological gait disorders (0.98% for in-lab settings and 90% for actual CLBP

patients), with a thorough research on the contribution of each feature vector on the overall

classification accuracy.
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CHAPTER 2

Literature Review

2.1 Impact of health on gait

In an everyday environment the state of a person’s health or even age can be deter-

mined by the way they walk also known as "gait". For example elderly people walks tend to

walk slowly and tend to shuffle, while people with knee or hip injury tend to walk asymmet-

rically or drag their feet while walking. Several orthopedic and neurological disorders have

shown their reflections on a patient’s gait.

For example patients suffering from Type 2 Diabetes have effects in their stride

frequency. People with preferred stride frequency(PSF) have their plantar pressure at the

lowest level. The purpose of this study was to check how stride frequency above or below

the preferred stride frequency affects the plantar loading. Their research suggested that the

time to contact time and the pressure time while walking seems to be affected which results

into plantar ulceration. [1].

Patients suffering from osteoarthritis also show some peculiar variations in their gait

characteristics, more specifically their stride length. A study done by [2] where they

included 102 patients for testing using functional assessment which includes analyzing

the gait for 6 min walk. Stride characteristics were measured using the stride analyzer.

Later they also discuss that with intervention, the group had an increase in 15% in walking

distance as well as 9.1% increase in the stride length while free walking.

Neurological disorder like Parkinson’s disease shows a direct relation to the abnormal-

ities in stride length and stride frequency. [3] investigated to find out any relation between

the abnormalities in the stride length-cadence relation in gait hypokinesia in Parkinson’s
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disease.In this study 20 patients were chosen and were instructed to walk a 10m track at

cadence rates ranging from 40steps/min to 180steps/min. To guide the patients to maintain

the cadence rate a metronome was used with the respective beat frequency. The gait patterns

were recorded by a foot switch stride analyzer. Further linear regression analysis showed

that the mean slope for the regression for stride length against cadence was not different for

Parkinson’s disease(PD) and normal patients but they showed a statistical difference in the

mean intercept between the PD and control group.

Human gait has shown to be a strong indicator of health issues under a wide variety

of conditions. For that reason, gait analysis has become a powerful tool for clinicians to

assess functional limitations due to neurological or orthopedic conditions that are reflected

in gait. Therefore, accurate gait monitoring and analysis methods have found a wide range

of applications from diagnosis to treatment and rehabilitation [4], [5].

2.2 Data Acquisition Types

Studies for finding gait abnormalities have been divided into 2 cases:

1. Wearable sensor based methods

2. 3D Vision based methods

Wearable sensor based methods

The basic ideas for sensor based methods is to use physical sensors mounted on the

subject’s body to measure gait characteristics and later use some classification method to

classify them. Sensors included for capturing these characteristics were as follows:

1. Inertial Measurement Unit (IMU)

2. Gyroscopes:

3. Capacitive Sensors

4. Force Sensitive Resistors
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5. Markers on skin

6. Force Plates

7. BSN Sensor (Body Sensor Network)

Lower Body segments are usually considered for accelerometer/gyroscope placements

to detect gait cycle events. For example [6] designed a system which could detect the

four important phases of walks: stance, heel-off, swing, heel-strike. For this they used the

gyroscope to measure the angular velocity of the foot and 3 force resistive resistors to get

the forces exerted by the foot on the sole of the shoe by the person while walking. Despite

walking either on regular, irregular or inclined surfaces the system could provide a very high

reliability in detecting the walk phase for people with both normal and abnormal gait. This

system also was unperturbed by any non-walking events such as weight shifting between

legs during standing, feet sliding, sitting down and standing up.

Figure 2.1: setup of 3 force resistive resistors(left) and a gyroscope(right), adopted from [6]

Another study by [7] gave evidence of utilizing accelerometers to get the spatio-

temporal features for gait analysis. They based their hypothesis by utilizing a study done by

[8] which stated that the three-dimensional displacements of the trunk can be well predicted

by an inverted pendulum model of the body’s center of mass trajectory. The amplitude and

timing of pelvic displacements depended on the spatio-temporal parameters of the stride
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cycle. Conversely the spatio-temporal parameters of the walk can be determined by the

accelerations of the lower-trunk. Hence they checked the feasability of this hypothesis where

the placed an accelerometer at the lower trunk having sensitivity of 500mV/g and range:

+-2g and were able to prove that the system gave reliable results in identifying stride cycles

for both left and right leg for overground walking and their system could provide a reliable

methodology to test in real-time applications, however they cannot guarantee reliability if

there were sharp turns while walking as the model was inspired from inverted pendulum

model.

To reduce the number of intrusive sensors, since when we compare getting features

from 2 limbs separately the user might feel uncomfortable. To tackle this problem [9]

suggested that to get the accelerations of the lower trunk, one can place the sensors close to

the L3 vertebral position. They got this inspiration after Zijlstra and Hof [7] who proved

that the lower trunk accelerations and walking speed are similar for different subjects.

Similarly IMUs were used to detect the gait phases and features. The objective of the

study was to classify gait abnormalities by using 3 IMUs (Opal, APDM, Inc., Portland, OR,

USA) featuring a tri-axial accelerometer and a tri-axial gyroscope unit mass 22 g, unit size

48.5mm × 36.5mm × 13.5mm, sampling frequency 128 Hz, accelerometer range ±6g, where

g = 9.81m/s2 were located on both shanks (about 20 mm above the malleoli with x, y and z

axes pointing in vertical (VT, downward), antero-posterior (AP, forward) and medio-lateral

(ML, right), directions respectively) and over the subject’s lumbar spine, between L4 and

S2, of each participant. [10]

Marker based technique was used by Nooriwati et. all[12] to create a classification

system for Parkinson’s disease. 12 healthy patients and 20 patients with Parkinson’s disease

were used for the test. 37 reflective markers were placed on the patient’s body and then

were tracked by using 6 infrared cameras placed at appropriate positions to ensure no loss of

tracking of the tracker points. Also subjects were instructed to walk freely on two embedded
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Figure 2.2: setup of a BSN sensor behind the ear and a RGB-D Camera, adopted from [11]

force plates where Ground Reaction Forces (GRFs) in all 3 directions (vertical, horizontal

and lateral) were recorded, but while training only the vertical and horizontal forces were

recorded. The camera was used to recorder the kinematic features(hip angle, knee angle,

etc.) while the force plates were used to record the kinematic features(maximum vertical

heel contact force, maximum horizontal push-off force, etc.)

In order to measure the stability or the risk of falling of a person [11] employed a

Body Sensor Network(BSN) sensor that can be easily worn behind the ear and because of

its lightweight property and wireless data transmission, it proves to be a viable solution

for providing an unobtrusive sensing method. A BSN sensor has an embedded 3-axis

accelerometer which ensures accumulation of data in a easy to wear and wireless fashion

(fig. 2.2).This work was further extended by [13] to include depth camera which helped

them in computing the body pose and leg separation as they proved to be also indicators of

gait abnormality.

6



Vision Based sensors

For Vision based sensors, the methodology is usually divided into 2 parts.

1.Model Based: This approach usually employs fitting of a 3d model/skeleton to the RGB-D

data and then later compute the gait features.

2.Model Free: Model free analysis usually utilizes the RGB data to create a silhouette over

the body by first detecting a human body and then later getting relevant features from the

silhouette.

An example of model free analysis used to recognize people based on their gait

characteristics is proposed by Michela et. all [14]. They present a viewpoint independent,

markerless system suitable for gait identification. Testing was done on 300 videos including

surveillance and synthetic ones. The markerless system gave an accuracy of 92.5% for

identifying people walking from different viewpoints based on their gait characteristics.

This system proves to have a potential to be utilized in gait abnormality detection too.

Figure 2.3: Computation of features at µ = 0 with non-overlapping(a), overlapping(b) and
at a viewpoint at µ = 20(c), adopted from [14]
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In a model based system by using some detection algorithm a person is detected in a

frame and then later a model (Can be a skeleton or a group of ellipses denoting limbs) is

fit. Courtney et. all [15] created a novel system derived from spatiotemporal segmentation

and model based tracking. The model used is an ellipse-based hierarchical tree structure.

Once the outline has been is obtained and the body is segmented from the rest of the image,

the outlines of the body formed by the snake’s algorithm is then given to an ellipse-fitting

algorithm, which then divides the body into ellipsoidal segments like head, torso, thigh

and shank(fig.2.4). Once the fit is done, various gait features like knee flexion agle, tibial

rotation, etc. are computed and will act as a precursor to detect gait abnormalities by using

these features.

Figure 2.4: Individual ellipse model attached to the respective segments of the body, adopted
from [14]

2.3 Chronic Low back pain

Recent studies reveal that over 26 million Americans suffer from Chronic Low Back

Pain (CLBP) at least once a year resulting in substantial socio-economical impacts such

as billions of dollars in medical costs and the cost of replacing the affected workforce

during the long periods of high levels of pain [16], [17]. Moreover, elderly people are more

prone to suffer from CLBP due to the health decline that is a result of aging which affects
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neuromuscular function [18]. Detection of CLBP patients traditionally has been performed

by X-rays, Magnetic Resonance Imaging (MRI) [19], and electromyography [20], [21].

Recently, a study was conducted to explore the capabilities of the accelerometer within a

smart mobile environment [22] for classifying CLBP patients. Such intrusive methods are

slow, expensive, and usually require the patient to be hospitalized under careful clinical

supervision. The effects of CLBP on gait have long been studied and evaluated during the

past decades [23], [24], [25]. More specifically, authors in [26], [27], and [23] attempted to

classify deviations in gait patterns under CLBP. Consequently, dececting health decline by

monitioring and analyzing gait over time is a crucial tool to prevent accidents or reduce the

pain caused by CLBP.
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CHAPTER 3

Methodology

The methodology section will be divided into

3.1 The iGait System

The architecture of the iGait system is illustrated in Fig. 3.1. iGait receives in input

body-motion data from a body motion-capturing system, e.g., a low-cost depth camera (like

Microsoft’s Kinect) or a motion-capturing system. These data are transmitted by iGait,

which processes them, extracts a feature vector and queries a trained classifier to classify

the patient’s likelihood to have a normal or abnormal walking pattern. If an abnormality

is present, iGait extracts a recommendation to a user (e.g. healthcare expert) in the form

of an alert notification. Our team has developed a web graphical-user interface (GUI) for

notifying the medical expert and for providing him/her with a view of relevant body-motion

parameters over a certain window of time.

The “Data Acquisition” block obtains patient’s joints motion using a capturing device

such as Kinect or any MOCAP. This data consist of a set of live measurements of the

tri-dimensional (3-D) coordinates of the body joints at every frame. The capturing rate used

in the experiments was 30 Hz.

These 3D joint coordinates are then passed to the “Feature Extraction” block (more

details in Sect. 3.1.1). Note that, while in this paper we focus on extracting features to best

recognize the onset of CLBP, any kind of spatio-temporal feature vectore could be extracted

by this block to then train iGait to detect other medical conditions reflected in walking

abnormalities (e.g., fall risk, Parkinson disease, etc.).
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The features extracted at a short sequence of frames by the “Feature Extraction” block

are used as inputs to the “Abnormality Classification” system, which outputs an abnormality

identification (ID) for a particular time window over which the features where extracted.

The presented system outputs two class labels, namely “normal” and “abnormal”. The

“Abnormality Classification” system has been previously trained with features extracted

from walking data with known labels. In case that an abnormal pattern has been detected,

an alert message will be notified to the healthcare expert (e.g., via text message or any other

means of communication considered in the iGait GUI).

Figure 3.1: Block Diagram of iGait System

The Microsoft (MS) KinectT MV1 captures the 3D scene information from its depth

sensor. The sensor comprises of an infrared laser projector combined with a monochrome

CMOS sensor, which captures video data in 3-D under any ambient light conditions. As

visualized in Fig. 3.2he device also has an RGB camera and a multi-array microphone for

speech recognition [28]. The RGB camera in the middle of the device records image frames
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with a resolution of 640x480 [29] pixels at a rate of 30 frames per second (fps). The depth

sensor consists of an infrared projector (on the left) and an infrared camera (on the right)

that uses the structured light principle [30] [31] to detect the distance of objects from the

camera with a precision of 4–40 mm depending upon the distance from the sensor (usually

from 0.5m until 4m).

Figure 3.2: Kinect V1 Sensor [28]

On the other hand, the newer version of Kinect (known as Microsoft (MS)

KinectT MV2) [32] has a higher RGB capture resolution of 1920x1080 pixels with a Time

of Flight depth data as an image of resolution 512x424 resolution. The field of view for

depth is 70 degrees horizontally and 60 degrees vertically [33].

In this paper, a Kinect V2 is used for acquisition since it tracks more joints and has a

higher motion tracking accuracy, with greater stability.

The skeletal tracking tool included with the Kinect SDK V2 is utilized to collect the

joint data. The Kinect device records the joints as points relative to the sensor itself. The

joints that are obstructed cannot be resolved directly and are inferred from the rest of the

posture of the person being tracked. The data was collected in frames where each frame
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represents a posture of the person being tracked and it consists of 3-D coordinates of twenty

five joints as shown in Fig. 3.3

Figure 3.3: Kinect V2 Skeleton Map, adopted from [34]

For recognizing specific conditions of gait abnormalities (two abnormalities con-

sidered in this paper: CLBP and limping), selective joint positions were only taken into

consideration in order to reduce computation complexity. The joint numbers highlighted in

bold were considered for creating the features.

Preprocessing

Both the XYZ-positions and speeds of the aforementioned joints have a noise while

they were recorded. In order to remove the noise, a second order order low-pass Butterworth

smoothing filter [35] based on the empirically-determined cutoff frequencies of 1Hz was

used and it can be seen in the figure 3.4.
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Figure 3.4: Kinect V2 Joints X,Y,Z co-ordinates in meters (green) with the filtered val-
ues(red)

Center of Mass Calculation

Based on the percentage weight distribution of different body segments, like head

to neck, shoulder to forearm, neck to hip, hip to knee, knee to ankle and ankle to foot;

individual segment Center Of Mass (COM) were calculated and the overall body’s COM

was their average.

Non-linear Curve Fitting

All the derived values obtained from the joint coordinates that were captured from

the walks can be considered as time series and to extract meaningful features from such

signals, a non-linear regression curve fitting was applied so that those model parameters

can be used as features. We have used a model function comprising of sine and exponential

component parameters to fit the time series data with the help of MATLAB’s statistical and
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Figure 3.5: Computed Center of Mass X,Y,Z co-ordinates for Normal and Limping walk
over number of frames

machine learning toolbox optimization functions and a subset of the estimated coefficients

(amplitude and frequency) were used as features. This reduced the dimensionality of the

features from n (number of frames) to 2.

3.1.1 Body Features Extraction

3.1.1.1 Hunch Angle

In a Propulsive gait condition, a person walks with a stooped stiff posture with head

and neck bent forward. Propulsive gait characteristics are indicators of several gait disorders

caused due to several medical conditions like Multiple Sclerosis, Parkinson’s[6], etc. The

hunch angle will quantify the extent a person is stooped forward while walking. It’s the

angle between the start of the spine joint (A), spine base (B) and the middle of feet (C),

which is the average of the left and right ankle joints. The hunch angle for a video spanning

for n number of frames is calculated as below,
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Figure 3.6: Hunch angles for normal and limping walks(Red indicates the actual data while
green line indicates average)



−→
AB = A − B

−−→
BC = B −C

Θhunch =

∑n
i=1 cos−1


−−→
ABi ·
−−→
BCi∣∣∣∣∣∣∣∣∣

−−→
ABi

∣∣∣∣∣∣∣∣∣·
∣∣∣∣∣∣∣∣∣
−−→
BCi

∣∣∣∣∣∣∣∣∣


n

(3.1)

3.1.1.2 Anterior and Mediolateral Angle

A good indicator for checking balance problems is to quantify the sway of upper

body while walking [36]. Swaying either sideways or straight shifts the center of mass

causing a disturbance in the overall walking rhythm which may result in fall. For this reason,

we are calculating the anterior and mediolateral angles. The anterior angle(pitch) is the

angle(arctan2) between the Y and Z planes of the vector passing from the Center of mass
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and the left ankle. The angle between the X and Z plane gives the mediolateral(roll) angle.

Subsequently, the non-linear curve fitting explained in section 3.1 is employed to get the

amplitude and frequency of these angles over time, which are then used as features. An

example of the raw anterior and mediolateral angles (as measured by Kinect) are illustrated

in Fig. 3.7 and Fig. 3.8 (red curve) while their least-squares fitting is showed in green.

Figure 3.7: Anterior angle over a set of consecutive frames and the least square fitted curve.

Figure 3.8: Mediolateral angle over a set of consecutive frames and the least square fitted
curve
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3.1.1.3 Knee angles (left and right leg)

Hemiplegic gait, primarily is a result of a cerebrovascular accident or stroke and

is characterized by an extensor hypertonia in the lower limb causing a stiff movement of

leg and reduced knee flexion in the swing phase[37]. To capture the kinematics of this

abnormality and judge which side is hemiplegic, the knee angles of both legs were recorded

while walking. The left and right knee angles were computed by using the angle between

hip, knee and ankle joints of the respective sides. To extract the features of walking steps,

the Z-component of the foot position[28] was used to segment the step phase and based on

the frames when the feet were in the swing phase, knee angles of the respective leg were

recorded and the mean and standard deviation of the angles of the individual legs were used

as features.

Figure 3.9: Knee angles for Left and Right leg for Limping and Normal walk.

3.1.1.4 Elbow angles (left and right leg)

Another peculiar characteristic of the hemiplegic gait is the development of flexor

hypertonia in the upper limb, causing a stiffness in the elbow joint muscles resulting an
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inability to swing the arms while walking [37]. The elbow angles were calculated by using

the corresponding left or right hand using the 3 joints which are shoulder, elbow and wrist.

The logic for angle computation is the same as that adopted for Hunch/Knee angle. (eq. 3.1).

Figure 3.10: Elbow angles for Left and Right arms for Limping and Normal walk.

3.1.1.5 Left-Right leg Duration

Subjects suffering from Parkinson’s disease or having a diplegic gait[38] show a lot of

adductor spasm in lower limbs resulting into little step walk and tend to drop their feet close

towards the body while walking [39]. It can be inferred that during a phase of the walk, most

of the time the legs might be close to each other and this time-dependent phenomenon can

be extracted. Binarized Gradient with an empirically decided threshold for the difference

between the left and right ankle’s positions computed over time gives us the knowledge
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of the time where the two ankles were close to each other (Fig. 3.15). The sum of zeros

normalized by the total number of frames were used as the features.

Figure 3.11: Gradient of difference of left and right ankle position and the corresponding
binarized curve.

3.1.1.6 Knee Angle Wave

In Diplegic gaits[38], the patients show a universal flexion of joints more specifically

for lower limbs, the relative variation of knee joint angle is very less. The difference between

the angles of the left and the right knees were fed to the non-linear curve fitting to obtain the

amplitude and frequency which in turn were used as features for classification(Fig. 3.12).

Figure 3.12: Knee angle difference and fitted curve.
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3.1.1.7 Shoulder-Hip

Patients with chronic non-specific low back pain patients, walk with more synchronous

(in-phase) horizontal pelvis and thorax rotations than controls[40]. The x component of

left and right shoulder showed in-synchroicity for CLBP patients compared to normal

patients(Fig. 3.13 and 3.14), so we measure this synchronicity by difference between the

coordinates of the respective sides of shoulder and hip joint, which is then further subtracted

from each other for each frame . Then a windowed maxima and minima is taken for each

gait cycle and then mean, standard, deviation, range of these maxima and minima were used.

Also a difference between the means of left shoulder to hip distance and right shoulder to

hip distance is taken into consideration for the feature vector pool.

Figure 3.13: x component of left and right hip vs time for lowback pain patients

Figure 3.14: x component of left and right hip vs time for normal patients
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3.1.1.8 Left-Right Distance (when feet closest and farthest)

To measure the stride length variability, we use the euclidean difference between the

coordinates of the left and right ankle. The difference is then smoothened by running a

rolling mean filter and then maxima and minima of the curve was calculated. The maximas

will give us the frame locations where the distance between the feet were maximum, while

minimas will give the locations where the distance between the feet were minimum. The

respective mean of the maximas and minimas for multiple gait cycles were then normalized

by the person’s height which was calculated from the starting frames, when the person was

standing stationery. The person’s height was calculated by taking the average of difference

of the y co-ordinate of head to both feet and averaged when the person was 4m away from

kinect and stood upright.

Figure 3.15: Difference between left and right ankle.

3.1.2 Fall Prediction

The overall fall-prediction algorithm is as shown in Fig. 3.16. It is comprised of 3

stages: Capture, Process and Classify. The Capture phase includes recording the 3-D joint
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positions from the body via the Kinect SDK skeleton tracker. The recorded matrix will be of

N x 25 x 3, where N stands for the number of frames, 25 are the number of joints and 3 are

their respective X, Y and Z co-ordinates in Kinect’s reference frame. The 3-D matrix is then

passed to the Butterworth smoothing filter to filter out the noise. Furthermore, to remove the

noisy beginning and ending of walk that happens due to being too far or too close to the

sensor respectively, the step segmentation block is used.

The process phase includes the creation of feature vector for a recorded walk. The

Center of mass block creates N x 3 matrix based on the recorded joint positions. The create

feature block utilizes this COM data along with the actual recorded 3-D joint position matrix

to compute the feature vector. The feature vector is then finally normalized and fed to the

classification block.

The classification model is responsible for generating an alert based on the given fea-

ture data. The classify sub-block gives us the classification gait abnormality category based

on the new data fed to it with the help of a pre-trained model. Based on the classification

result, the next block (Send SMS) decides to send an alert to the physician.

Figure 3.16: Flow diagram of Complete Algorithm.

23



3.1.3 The iGait System Protocol

The goal of the experimental protocol was to first create a data benchmark by asking

participants to do a simulated walk under 4 classes: left leg limping,right leg limping, wide

walk and normal walk. The extracted features were then used along with their respective

class lables to train the classifier. The (trained) classifier was then used to classify a new

walk. This would test the effectiveness of the features we designed. Moreover, given the

controlled scenario designed for these walks, we were able to determine the influence of

each features on the overall accuracy of the classification.

The Simulated data creation and acquisition phase include capturing motion of 20

actors (age between 20 - 30) who were informed previously on the type of walks they had to

perform. Sample videos of the type of walk done by a CLBP expert were shown to the actors

prior to each type of walk and then a few dry runs were performed (normal and limping)

before the actual data acquisition.

The experimental setup can be seen in Fig. 3.17. Videos were recorded with a Kinect

placed at hight of 60cm from the ground. The range of walking was 4 to 1.5m from Kinect

to the person.

Figure 3.17: Experimental Setup.
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Each subject was first asked to walk normally at three different speeds: habitual, slow

and fast pace. Then a video was shown to make the subjects understand the way how a

person walks if he was moderately limping because of discomfort in the left leg followed. A

dry run test then followed. Similarly, the same procedure was done for moderate limping

with a defect in the right leg. This was then performed with High level of limping for each

leg. The whole experiment was first done with normal pace of limping, followed by high

pace. Metronome was played to guide the volunteers for maintaining the stepping pace.

Numerical values indicate the number of videos taken for each subject (20 subjects

were used in this in-lab validation study) while bold values stands for fast and underlined

for slow pace of walking(Table. 3.1)

Pace Non-Limping

Slow 3

Normal 3

Fast 3

Limping Level
Limping Type

Moderate High

Left Leg 2 2 2 2

Right Leg 2 2 2 2

Wide Walk 2 2 2 2

Table 3.1: Count of video sequences for experiment

The features used for classification were mediolateral angle, anterior angle, Left-

Right distance, Knee angle difference, hunch angles, left and right knee angle with their

means and standard deviations, mean left and right elbow angles. A 10-fold cross-validation

technique was used and 5 Nearest Neighbor [41], SVM classifier with linear and Gaussian

Kernel [42] were adopted for classification.
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Low-back pain patient data collection and testing

This study aims to create a machine learning framework for accurate detection of

CLBP, to identify means so that they can walk with less difficulty. For the present study,

patients suffering from low-back pain were recruited by a team of experts at Kinesiology

department of University of Texas at Arlington. Patients with mild Low back pain were

only considered so that they won’t face problems while conducting the research. The local

medical ethical committee approved the protocol and consent forms were provided to subject

prior the recording. Additionally, to maintain the privacy of patients only skeletal depth data

(no RGB) of the walks was recorded. Each person was first informed about the acquisition

hardware, what the system aims at achieving and then they were instructed to start from

a designated start point, walk straight towards the sensor at their natural pace and stop at

a predefined marker about 0.5m away from Kinect. Bold markers were laid down on the

floor to provide visual cues to help them to walk in straight line as well as act as an indicator

for start and end position. A test run was done to make the patient get accustomed to the

recording system.

In this study, we address the following concerns: 1) The accuracy of the proposed

framework in detecting CLBP. 2) What subset of spatio-temporal features discussed in the

literature are more suitable for such classification task. 3) Finally as part of the joint study

with the Kinesiology department, we focussed on finding correlations between the extracted

gait features and the amount of pain a subject perceives.

The inclusion criteria for patients was age between 50-75, male and female. There

were in all 16 patients which were suffering from chronic back pain problems and 16 patients

in the same age demographic with very little or no back-pain. The Kinesiology department

was responsible to provide the ground truth data for the patients, which was decided by the

team by making the patients perform many tests like Time Up and GO (TUG) as well as
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brain mapping for getting the level of pain while performing some tasks and answering a

sets of questionnaire.

Similar to the in-lab test, the setup was placed shown in Fig. 3.17. Each patient was

told to walk towards the Kinect in a straight line at their natural pace for 6 times. The

features extracted were the mediolateral angle, anterior angle, Left-Right duration and

normalized distance, Knee angle difference, hunch angles and Shoulder-Hip. A 10-fold

cross-validation technique was used and 5 Nearest Neighbor, Gaussian Mixture Model, and

SVM classifier with linear and Gaussian Kernel were adopted for classification.

Recurrent Neural Networks (RNN) have been proven to be useful to find dependencies

and pattern over the length of a signal. Additionally, using self-loops to produce paths

where the gradient can flow for long duration is a core contribution of the initial Long

short-term memory (LSTM) model[43]. By making the the weight of the self-loop gated

and controlled by another hidden unit, the time scale of integration can be dynamically

changed [44]. In order to classify walks using neural networks, a sequence database was

created and statistically normalized using indi- vidual mean and standard deviations. 3D

joint coordinates for all of the 25 joints were used for training and classification. First 60

frames starting from the initiation of the walk were used per sample. An LSTM unit with

input size of 75 corresponding to (25 * 3) 3D joint coordinates with a hidden size of 64 was

used while the output of it was fed to a fully connected network and finally a logsoftmax

layer.
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CHAPTER 4

Experimental Results

4.1 Experimental Results

Graphical User Interface: The experiments consist of a simulated in-lab test and

a real-world test on CLBP patients in collaboration with the kinesiology department. In

order to facilitate data acquisition and analysis of these experiments, an easy to use and

efficient GUI was developed in MATLAB (Fig. 4.1). The GUI includes online and offline

analysis and classification functionality for live and pre-recorded walks. A record button

invokes the Kinect Skeleton tracker developed in C++ which utilizes the SDK for Kinect V2

for real-time data acquisition of the 3D skeleton joints. Aditionally, Classify Walk button,

processes the previously recorded walks from the database for classification and visualizes

the raw data. The graphical interface provides the user the flexibility to select the type of the

classifier for the recorded walk. Furthuremore, to provide more accurate information to the

user, the lower left sub-window will show the raw data acquired by the tracker in the form

of a skeleton scaled appropriately, while the lower right window gives the raw X, Y and Z

co-ordinates of the center of mass.

For in-lab experiments, the results are visualized on the plot by means of highlighting

the respective leg joints (blue color) which had abnormal movement as shown in Fig. 4.2.

4.1.1 Classification metrics

In order to avoid domination of some features for the overall classification, the

features were normalized to range [1, -1] appropriately. SVM was also included along-with

5 neighborhood KNN, due to its high accuracy and ability to work optimally with high
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Figure 4.1: MATLAB GUI for recording and classification

Figure 4.2: Right leg joints highlighted in blue

dimensional data [45]. For using SVM classifier, the library libSVM [46] was adopted.

For choosing the optimal parameters to get the highest accuracy for SVM model training,

a script supplied by LibSVM was used which first applies a coarse grid search to find a

good combination of C and γ values and then a fine grid search to find the optimal set

of parameter values. This value is used for the k-fold cross-validation and generating the

metrics as shown in table 1.

Recall (or Sensititvity or true positive rate) measures the coverage of real positive

cases by the predicted positive rule[47]. In our context it will stand for how the classifier

performs in identifying all positive cases and it’s a part of a holistic analysis, called ROC.

Recall = sensitivity = tpr =
T P
RP

=
T P

T P + FN
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TP represents the true positives the classifier could successfully detect in all real posi-

tives(RP) pool, which comprises of TP and false negatives(FN). On the other hand, FN

represents those cases in which the classifier misclassified them as negatives.

Precision or confidence conversely determines the proportion of predicted positive

cases that are correctly real positives[47]. Compared to tpr, which is a measure of rate of

discovering real positives, precision or true positive accuracy(tpa) is a measure of accuracy

of predicted positives [47].

Precision = tpa =
T P
PP

=
T P

T P + FP

FP are the cases the classifier misclassified them as positives. F-measure combines the

precision and recall and is a harmonic mean of the two. Accuracy is the measure of how the

classifier could detect true negatives(TN) and true positives(TP) out of all results.

Accuracy = T P + T N/(T P + FP + FN + T N)

Classifier Accuracy Precision F-score Recall

5-NN 0.96 0.96 0.96 0.97

Linear SVM 0.97 0.97 0.97 0.96

Gaussian SVM 0.98 0.98 0.98 0.98

Table 4.1: Classification metrics for in-lab experiments

Based on the experimental setup and the classification strategy explained in section

3.2b and 3c, the classification performance for the in-lab test results are tabulated in Table

4.1. We found that the highest accuracy and recall was achieved by Gaussian SVM(RBF)

Kernel since it can perform better in case of non-linear separation between classes. [48].

For the low-back pain test, we have used 5 neighborhood KNN, SVM and Gaussian

mixture model (GMM). For SVM, the tuning parameters were obtained with the same
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strategy as that of in-lab test. For Gaussian Mixture Model, a "spherical" covariance type

was used to constrain the covariance of the different estimated classes. Using the same

10-fold cross-validation strategy and with a richer feature set compared to the in-lab tests,

the classification metrics (Table 4.2) was obtained. LSTM with zero knowledge of feature

vector gave the highest accuracy, which proves a viable solution for future.

Classifier Accuracy Precision F-score Recall

5-NN 0.77 0.80 0.75 0.77

Linear SVM 0.87 0.89 0.89 0.89

Gaussian SVM 0.86 0.88 0.86 0.87

GMM 0.86 0.87 0.87 0.87

LSTM 0.90 0.92 0.89 0.90

Table 4.2: Classification metrics for Low-back pain patients

4.1.2 Feature Significance

To find the impact of each feature for classification accuracy, we did a feature signifi-

cance test using a forest of trees utility provided by sklearn [49]. A meta estimator was used

which includes 100 randomized decision trees that ran on several subsamples of the features

producing the plots for in-lab testing (Fig. 4.3) and low-back pain(Fig. 4.4), where the red

bars signifies the feature importance while the blue line signifies the inter-tree variability.

The x axis represents the feature indices used in the classification, while the y-axis is the

feature importance percentage. Note that the features which have low ranking doesn’t mean

that they are not all unimportant, it just means they are correlated with each other a lot and

either can be substituted with other of similar ranking.
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Index Feature Name Feature Description

0 Left-Right Duration Average time feet are close to each

other in each step

1 Mediolateral Amplitude Amplitude of the Sine curve

fitted to Mediolateral angle signal

2 Mediolateral Frequency Frequency of the Sine curve

fitted to Mediolateral angle signal

3 Anterior Amplitude Amplitude of the Sin curve

fitted to Anterior angle signal

4 Anterior Frequency Frequency of the Sin curve

fitted to Anterior angle signal

5 Knee Amplitude Amplitude of the Sin curve

fitted to Knee angle signal

6 Knee Frequency Frequency of the Sin curve

fitted to Knee angle signal

8 Left-Right Least Distance Height normalized local minima’s

mean of left-right ankle difference

9 Left-Right Great Distance Height normalized local maxima’s

mean of left-right ankle difference

10 Shoulder-Hip Min Median Average of local minimas for

shoulder-hip difference signal

11 Shoulder-Hip Min Std Standard deviation of local minimas

for shoulder-hip difference signal

12 Shoulder-Hip Min Range Range of local minimas for

shoulder-hip difference signal

Table 4.3: List of features used in the experiments and their respective indices used in
Fig. 4.3 and 4.4.
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Index Feature Name Feature Description

13 Shoulder-Hip Max Mean Mean of local maximas for

shoulder-hip difference signal

14 Shoulder-Hip Max Median Average of local maximas for

shoulder-hip difference signal

15 Shoulder-Hip Max Std Standard deviation of local maximas

for shoulder-hip difference signal

16 Shoulder-Hip Max Range Range of local maximas for

shoulder-hip difference signal

17 Shoulder-Hip Max-Min Difference of mean of difference

between local maximas and minimas

for shoulder-hip difference signal

Table 4.4: List of features used in the experiments and their respective indices used in
Fig. 4.3 and 4.4(Continued).

Referring the feature importance rankings for in-lab experiments, where the classes

were left-leg limping, right-leg limping, wide walk and normal walk, it can be confirmed

that left right distance, which signified the time for which both the ankles were close to each

other, where a person usually faces discomfort to extend the leg completely and hence lands

the quickly near the other, captured the essence of limping, while second and third ranked

mediolateral angles played a very important role in classification, since the visualization

of these walks showed significant sway of the spine sideways.Only considering the top 5

features we could achieve an accuracy as show in the below classification metrics for the

in-lab tests(Table 4.6).

Rankings for the low-back pain showed expected results, which had top 2 from

the shoulder to hip features, which are the primary indicators for low-back pain patients,

since their walks showed an unusual constricted/unsynchronized hip movements. Only
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Figure 4.3: Feature importance for in-lab experiment

Classifier Accuracy Precision F-score Recall

5-NN 0.87 0.85 0.85 0.85

Linear SVM 0.76 0.77 0.76 0.77

Gaussian SVM 0.82 0.83 0.82 0.82

Table 4.5: Metrics (top 5 features) for in-lab experiments

considering the top 5 features we could achieve an accuracy as show in the classification

metrics(Table 4.6) for the low-back pain tests.

Classifier Accuracy Precision F-score Recall

5-NN 0.77 0.77 0.78 0.77

Linear SVM 0.75 0.75 0.75 0.75

Gaussian SVM 0.75 0.76 0.76 0.75

GMM 0.67 0.68 0.65 0.68

Table 4.6: Metrics (top 5 features) for low-back pain experiments
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Figure 4.4: Feature importance for Low-back pain experiment

4.1.3 ROC Curves

In-lab Test

For computing the ROC for in-lab tests the multiclass (limping left, limping right, wide

walk and normal) classification problem was modified into a binary one vs all classification

problem which resulted into 4 different ROCs for each class. The class labels previously

labelled as (0/1/2/3), which was a N*1 vector was binarized to [1000], [0100], [0010] and

[0001] respectively making it to a N*4 vector. Now to compute the ROC for ith class the

ith column class label was considered as class label, which in turn turned the problem into

a binary classification one. The ROC for class label "non-limping" (class index = 0)is as

follows(Fig. 4.5)

Referring to Fig. 4.5, the Area under the curve for normal walk for KNN was the

highest.

The ROC for class label "limping left" (class index = 1) is as shown in Fig. 4.6. The

Area under the curve for limping left class for KNN and SVM Linear Kernel was the highest.

35



Figure 4.5: ROC for Class Index 0

Figure 4.6: ROC for Class Index 1

The ROC for class label "limping right" (class index = 2) is as shown in Fig. 4.7, the

Area under the curve for limping right class for KNN was the highest.

The ROC for class label "wide walk" (class index = 3) shown in Fig. 4.8, the Area

under the curve for wide walk class for was the highest using any classifiers.
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Figure 4.7: ROC for Class Index 2

Figure 4.8: ROC for Class Index 3

low back pain Test

Similar analysis was used to plot the ROC for low back pain classes.The Area under

the curve(AUC) is effective and is a combined estimate of sensitivity and specificity that

describes the validity of diagnostic test. As shown in the figure(fig 4.9), SVM with Gaussian

Kernel is having the highest area under the curve i.e it will be able to distinguish a person

having low-back pain or not very efficiently compared to other classifiers.
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Figure 4.9: ROC for low back pain Class
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CHAPTER 5

Conclusion and Future Work

5.1 Conclusion and Future Work

By leveraging Kinect V2, which provides a low-cost, non-contact and accurate gait

capturing system, this machine learning framework can be used to effectively detect low-

back pain . The methodology includes capturing and filtering of the data to ensure an

accurate acquisition of spatio-temporal data and then by formulating a set of reliable features

which was created by a 2-step procedure, one in the lab and then later fine tuning it to test it

with the real-life patients a reliable and non-intrusive system was developed to accurately

classify low-back pain patients. For the in-lab tests, where the skeleton was synthetically

produced using 20 participants, enabled to test our initial validation of the feature set which

was primarily inspired by understanding the motion of human body. The ROC curves

prove that the system was highly accurate to not misclassify someone with a normal walk.

The logic when tested with real-life patients resulted in a lower accuracy, but due to the

flexibility of the machine learning framework, new gait abnormality specific features were

easily included in the pool and the system could achieve a maximum of 90% classification

accuracy for the real patients.

In future one can apply this framework to detect other gait abnormalities by modifying

the feature set. Also LSTM proved to be a viable solution for future research since it was

able to provide the maximum accuracy without prior knowledge of feature vector and only

using the raw 3d co-ordinates from kinect it was able to find dependencies over the video

sequence.
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