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ABSTRACT	

DYNAMIC	WIRELESS	INTERROGATION	OF	ANTENNA‐SENSOR	IN	

HARSH	ENVIRONMENT	

 

JUN YAO, Ph.D. 

The University of Texas at Arlington, 2016 

Supervising Professors: Dr. Saibun Tjuatja and Dr. Haiying Huang 

Microstrip antenna-sensor has received considerable interests in recent years due to its simple 

configuration, compact size, and multi-modality sensitivity. Due to its simple and conformal 

planar configuration, antenna-sensor can be easily attached on the structure surface for Structure 

Health Monitoring (SHM). As a promising sensor, the resonant frequency of the antenna-sensor 

is sensitive to different structure properties: such as planar stress, temperature, pressure and 

moisture. As a passive antenna, antenna-sensor’s resonant frequency can be wirelessly 

interrogated at a middle range distance without using an on-board battery. However, a major 

challenge of antenna-sensor’s wireless interrogation is to isolate the antenna backscattering from 

the background structure backscattering to avoid “self-jamming” problem. The goal of this thesis 

is to develop a high-speed wireless interrogation mechanism for antenna-sensor to realize real-

time SHM. Furthermore, since the proposed antenna sensor-node is designed without using any 

electronics this dynamic remote sensing system can be used in high-temperature harsh 

environment. 

In our researches, High-speed wireless interrogation of antenna-sensor for vibratory strain 
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sensing is firstly achieved in room temperature using an amplitude modulator and a Frequency 

Modulated Continue Wave (FMCW) interrogator. A rectangular patch antenna was bonded on 

aluminum beam to perform as a stress sensor as well as a wireless transceiver. By switching the 

load of the antenna-sensor between an open and a matching load using a square wave, the 

antenna backscattering signal is an amplitude modulated signal whose envelop is a square wave. 

The resonant frequency of the antenna-sensor can be determined at the frequency which has the 

largest amplitude in the envelop curve. Since the FMCW can sweep the interrogation frequency 

at a rate up to 300 Hz, real-time interrogation of antenna-sensor can be easily realized. 

Far-field static antenna-senor interrogation for high temperature sensing was also developed. 

In this study, a patch antenna was used as temperature sensing unit and a Reactive Impedance 

Surface (RIS) based Ultra-wide Band (UWB) antenna was added as a passive wireless 

transceiver (Tx/Rx) for the antenna-sensor. A mircrostrip delay line was implemented in the 

sensor node circuitry to connect the Tx/Rx antenna and patch antenna-sensor. Since the new 

sensor node contains no electronics it can be applied in harsh environment which has a 

temperature up to 300 °C. Due to the time delay caused by the microstrip delay line in the sensor 

node, the antenna backscattering can be separated from the background structure backscattering 

in time domain using time-gating technology. The gated time domain sensing signal was 

converted into frequency domain using Fast Fourier Transform (FFT). The frequency spectrum 

of the gated signal indicates the reflection coefficient of the antenna-sensor and the resonant 

frequency of the antenna-sensor can be determined at the frequency which has the lowest 

reflection coefficient. 

Furthermore, dynamic wireless interrogation of antenna-sensor for temperature sensing in 

harsh environment was realized by using a FMCW radar interrogator and non-electronics sensor 
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node. Since this approach performs the time gating in the frequency domain instead of time 

domain substantial improvement on the interrogation speed can be achieved without adding any 

electronics in the sensor node. A down-conversion RF mixer was implemented in the 

interrogator circuit to demodulate the reflected FMCW interrogation signal and get the 

backscattering from both structure and sensor. Due to the difference of the beat frequencies of 

those two signals, the sensor backscattering can be easily separated from the structure 

backscattering using a digital band pass filter. In this study, a high interrogation speed of 50 Hz 

was achieved and the accuracy of the FMCW interrogator was validated using a temperature 

testing. 

Compact FMCW interrogator was also developed for an antenna-based foot pressure sensing 

system. The interrogator consists of three parts: a FMCW synthesizer, a RF circulator and a 

power detector. The power consumption of this interrogator is only 160 mw and the interrogation 

rate is up to 55 Hz. Static pressure tests were performed to validate the accuracy of the proposed 

FMCW interrogator and the experimental results were compared with those from network 

analyzer measurements. The normalized discrepancies of two measurements are within 0.002%. 
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CHAPTER	1 	

INTRODUCTION	

SHM is a technique used to detect and characterize the damage of engineering structures [1] 

[2]. Sensors which convert the physical properties into electric signals are becoming more and 

more significant in SHM technology since it observes the structure properties [3] [4] [5] [6] [7]. 

Various wired sensor, such as thermocouples [8] [9] [10], strain gauge [11] [12] [13], optical 

fiber sensors [14] [15] [16] [17] and etc. are developed and commonly used. However, these 

types of sensors can only be interrogated via wired connection which limits the mobility of 

dynamic systems and also requires high maintenance costs [18] [19]. Furthermore, wired sensing 

system cannot survive in the high-temperature harsh environment due to the temperature 

limitation of the cable and solder connections [20]. By eliminating the electric wiring of 

conventional sensors, wireless sensors are inexpensive and easier to install, which advances us 

one step closer to ubiquitous sensing [21] [22] [23]. A typical wireless sensing system can be 

separated into two parts: a wireless sensor and a wireless reader [24]. The wireless sensor is 

responsible for encoding the sensing information into a Radio Frequency (RF) signal that can be 

wirelessly transmitted via an antenna while the function of the wireless reader is to decode the 

received RF signal and extract the original sensing information. A wireless sensor can be broadly 

classified as either being active or passive, depending on whether it needs an on-board battery or 

not. 

1.1 Active	wireless	sensor	

Active wireless sensor requires an on-board battery to power the sensor node circuitry. In the 

circuitry, a microcontroller chip is used to perform sensing signal processing and wireless 
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require an on-board battery to power the sensor node circuitry. Passive sensors either consume 

no power at all or their power consumption is so low that it can be powered using the energy 

harvested from other sources. The operation time of the sensor is not limited by the battery life 

so that sensor node’s maintenance cost can be reduced a lot. The passive wireless sensor can be 

classified into two categories depends on if there is electronics in the sensor node circuitry. 

Wireless Radio Frequency Identification (RFID) enable sensor is a typical wireless sensor with 

electronics. Non-electronics passive sensor includes Surface Acoustic Wave (SAW) sensor, 

inductive coupled sensor, and antenna sensor. 

1.2.1 Wireless RFID enable sensor 

Passive RFID sensor [31] [32] [33] is widely used for SHM due to its low-cost, long detection 

range and compact size. It can be classified into two major categories: chip RFID and chipless 

RFID sensor. In [34], a Wireless Identification and Sensing Platform (WISP) was represented 

using chip RFID sensor. Similar to an active wireless sensor, a WISP sensor is also equipped 

with a microprocessor, an ADC, an external memory and one or more conventional sensors [35] 

[36]. But the WISP sensor was powered by the energy harvested from the interrogation signal 

[37] rather than using an on-board battery. In order to achieve compact and low power RFID 

chip sensor, a CMOS temperature sensor was implemented into the RFID tag [38] [39]. Chipless 

RFID tags provide an identification code realized by nonchip-based means with physical 

permanent modification in the tag that modulated the reader’s backscattered signal [40] [41]. In 

Girdau’s paper [42], a resistive temperature sensor was implemented as the load of a UWB 

antenna that modulates the amplitude of the antenna backscattering as a function of temperature. 

A microstrip delay [43] [44] line is used to connect the UWB antenna and the sensor so that the 

tag mode antenna backscattering can be separated from the structural mode in the time domain. 
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Chipless temperature sensor with self-calibration ability was also developed by Girdau’s group 

[45]. An operation amplifier based calibrator was added in the sensor-node circuit to remove the 

clutter and make the temperature measurement independent of the reader-tag distance and angle.  

A solar-powered chipless RFID stress sensor was presented in [46] [47]. Based on a 

conventional thin-film strain gauge, the wireless sensor is capable of measuring both static and 

vibration deformations. The block diagram of the low-power wireless vibration system is shown 

in Fig 1.2. In order to achieve low power wireless transmission of the strain signal, a signal 

conditioning circuit is introduced to convert the low-frequency strain signals to a high frequency 

oscillatory signal whose frequency is directly controlled by the strain gauge output. As such, 

antenna backscattering can be exploited for wireless transmission of this oscillatory signal with 

zero power consumption. The sensor antenna, which receives the interrogation signal 

broadcasted by the wireless interrogator, is connected to a 50 Ω matching resistor via an 

impedance switch. When the impedance switch is on, the sensor antenna is connected to the 

matching resistor. Since the received antenna signal will be mostly dissipated by the 50 Ω 

 
Figure 1.2 Low-power wireless vibration sensing system based on thin film strain gauge 
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resistor, very little energy will be reflected back and re-radiated by the sensor antenna. On the 

other hand, turning the switch off disconnects the sensor antenna from the 50 Ω resistor and thus 

terminates the sensor antenna with an open load. As such, all of the received signal will be 

reflected at the open load and re-radiated by the sensor antenna, resulting in a large antenna 

backscattering. Controlling the impedance switch using the oscillatory signal fε can then encode 

the frequency of the oscillatory signal in the amplitude modulation of the antenna backscattered 

signal. Due to this modulation, the backscattered sensing signal has a frequency component of fi 

± fε. Once received by the wireless interrogator, the backscattered antenna signal fi ± fε is passed 

through a homodyne receiver to recover the oscillatory signal fε, which is then input into a 

frequency counter that can determine the frequency of the oscillatory signal at a relatively high 

speed. Since fε is directly proportional to the strain experienced by the foil strain gauge, dynamic 

demodulation of the strain gauge output from the backscattered antenna signals can be achieved. 

Both chip and chipless RFID wireless sensors require electronics in the sensor-node circuitry 

and most of the electronic components cannot survive in high temperature [42] [45] [46]. 

Therefore, RFID wireless sensors cannot be used in harsh environment. 

1.2.2 Non‐electronics	wireless	passive	sensor	

1.2.2.1 Wireless	SAW	sensor	

The wireless SAW sensing system can be separated in two parts: an Electromagnetic (EM) 

transducer and a SAW sensor node [48] [49] [50]. The transducer is used to broadcast the 

interrogation EM wave to the sensor node and process the reflected EM wave to get the sensing 

information. The SAW sensor node consists of a piezoelectric substrate connected to a passive 

antenna. Reflectors are patterned on the piezoelectric substrate at short distance from the antenna 

connection [51] [52]. An incoming EM signal from the transducer is firstly received by the 
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passive antenna and sent to the piezoelectric substrate to excite SAWs. The SAWs propagate 

along the substrate and get reflected back to the antenna once reaching the reflector. The 

variation of substrate physical properties will be encoded in the reflected SAWs which will be 

converted back into EM signal and re-broadcast to the EM transducer. Thus, the sensing 

information can be decoded in the transducer. In [53], a remote temperature sensing system using 

a SAW sensor and a passive dipole antenna was demonstrated. The temperature affects the 

propagation speed of the SAW so that it changes the time-delay of the reflected SAW. Since 

there is no electronics in the sensor node, the proposed SAW sensor can be applied in an 

environment with a high temperature which is up to 200 °C. Wireless stain sensing using SAW 

sensors are also represented in [54] [55] [56]. Since the SAW sensor is passive the lifetime of its 

sensing system is not limited to the lifetime of the battery. However, in order to keep a low SAW 

propagation loss, the frequency of the EM wave is limited to tens of megahertz. This frequency 

limitation makes the miniaturization of the passive antenna extremely difficult. 

1.2.2.2 Wireless	inductive	coupled	sensor	

The inductive coupled sensing system consists a wireless reader and a wireless resonance 

sensor. The sensor node equivalent circuit is a RLC circuit. The resonant frequency of the RLC 

circuit is wirelessly detected via the inductive coupling between the sensor and reader coils [57] 

[58] [59]. Depending on the sensor, the measured quantity affects the capacitance, inductance 

and resistance of the sensor circuit. A wireless strain sensor was developed in [60] using 

inductive coupled sensor. The coil sensor acts like a LC resonance circuit, as shown in Fig. 1.3. 

Mechanical strain changes the inductance of the embedded sensor thus shift its resonant 

frequency. By wirelessly measuring the resonant frequency shift the strain can be calculated. In 

[61], a wireless hydrogel sensor was also demonstrated using the similar principle. Instead of 
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frequency using a network analyzer, the mechanical stress on the beam can be estimated. A 

temperature sensor was also proposed by Sanders using a patch antenna [66]. A radiation patch 

antenna-sensor was bonded on a metal base to perform as a temperature sensor. Temperature 

variation changes the dialectical constant of antenna-sensor’s substrate as well as the physical 

dimension of the patch antenna, which will result in its resonant frequency shift. The relationship 

between the resonant frequency shift and temperature variation was calibrated and the accuracy 

of the temperature sensor was validated in the paper. Patch antenna-sensor was also used for 

structure crack detection [67]. The presence of a crack in the ground plane of the antenna-sensor 

increases the electrical length of the patch, which results in antenna-sensor’s resonant frequency 

shift. In the paper, it shows 1 mm crack growth caused the antenna-sensor frequency to shift by 

22.1 MHz. 

Due to its simple and conformal planar configuration, antenna-sensor can be easily attached on 

the structure surface for SHM [69] [70]. By detecting the resonant frequency shift of the antenna-

sensor, the structure physical properties can be determined. In the aspect of passive antenna, 

antenna-sensor can be wirelessly interrogated at middle range distances without an on-board 

battery [71].  

1.2.3 Wireless interrogation mechanism of antenna-sensor 

The wireless interrogation system for antenna-sensor can be separated into two parts: a 

wireless interrogator and wireless antenna-sensor node. First of all, an interrogation signal is 

broadcasted to the antenna-sensor node. After encoding the sensing information in the 

interrogation signal, the antenna sensor backscatters the modulated signal so that the wireless 

interrogator can retrieve the sensing information from the backscattered interrogation signal. The 

signals received by the wireless interrogator usually consist of both the signal backscattered by 
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resonant frequency of the antenna-sensor can be determined at the frequency which has the 

largest amplitude in the spectrum curve. Another approach to address the self-jamming problem 

is to modulate the antenna backscattered signal. Xu and Huang [77] presented an amplitude 

modulation scheme using periodic impedance switching to modulate the amplitude of antenna 

backscattering. A down conversion mixer was used at the wireless interrogator to demodulate the 

amplitude modulated (AM) antenna sensing signal. The antenna resonant frequency was 

determined from the signal spectrum by stepping the interrogation frequency, which achieved 

much higher frequency resolution than the time-gating technique [71]. Wireless interrogation 

system that uses the RFID technology has also been published [78] [79] [80] [81] [82] [83]. An 

RFID chip is integrated into the antenna sensor circuitry and the antenna resonant efficiency is 

measured from the time it takes to charge the RFID energy harvesting chip. An RFID enabled 

temperature sensor was demonstrated by Qiao [80] using a 900 MHz patch antenna terminated 

with a RFID chip. The RFID harvest the energy from the interrogation signal. The antenna-

sensor’s resonant efficiency was measured from the maximum reading-range which can be 

calculated from the turn-on power of the RFID chip. Both approaches described, i.e. the 

frequency-stepping amplitude modulation scheme and the RFID-based interrogation, are suitable 

only for static sensing due to their inherently very low interrogation speed. Another drawback of 

those two wireless interrogation mechanisms is that they require electronics in sensor node and 

those electronics fails in high-temperature environment, which limits its application in harsh 

environment. Wireless interrogation without electronics for antenna-sensor is also developed.  

A near-field interrogation mechanism for antenna-sensor was proposed in [84]. Patch antenna-

sensor was considered as a radiative resonator and directly interrogated without using any 

electronics at a short distance. Time Domain (TD) gating technology was applied to capture the 
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radiating signal form the antenna-sensor to determine its resonance frequency. However, since 

the patch-antenna has a relative low Quality (Q) factor [47] the maximum wireless interrogation 

distance of this mechanism is only 5 cm. 

1.3 Research	objectives	and	approaches	

The Objective of this thesis is to develop high-speed wireless interrogation techniques in harsh 

environment for passive antenna-sensor.  

Analytical models of microstrip rectangular patch antenna were firstly established. The 

resonant frequency of the antenna was sensitive to two factors: one is the physical dimension of 

the patch and the other one is the dialectical constant of its substrate. Structure characteristics 

change the two properties of the antenna-sensor, which results in antenna-sensor’s resonant 

frequency shift. By monitoring this frequency shift the structure characteristic variation can be 

determined using the analytic model. The detail mathematic derivation of the analytic model of 

the antenna-sensor is discussed in CHAPTER 2. 

Based on the analytical model of the antenna-sensor, patch antenna was implemented as a 

strain sensor and a dynamic wireless interrogation mechanism of antenna-sensor for vibration 

measurement was realized using a Frequency Modulated Continue Wave (FMCW) interrogator 

in room temperature. In [85], we exploited the FMCW radar principle [86] [87] [88] [89] [90] for 

dynamic wireless interrogation of the antenna-sensor. One of the most common FMCW signals, 

i.e. the periodic linear chirp, is used as the interrogation signal. By sweeping the interrogation 

frequency continuously with time, we can determine the antenna resonant frequency from the 

varying amplitude of the antenna backscattering since it is frequency dependent [65] [66] [67] 

[68] [91] and thus varies continuously with the interrogation frequency. CHAPTER 3 presents 

the development of an FMCW-based wireless interrogator with an interrogation rate up to 320 
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Hz and its demonstration for dynamic vibration measurements.  

We also developed a novel far-field (60 cm) interrogation system of antenna-sensor for harsh 

environment temperature sensing [92]. In this study, a new sensor node was developed without 

using any electronics. In the sensor node, a patch antenna was used as temperature sensing unit 

and a RIS based UWB antenna [93] [94] was added as a passive wireless transceiver (Tx/Rx) for 

the antenna-sensor. Temperature variation shifts antenna-sensor’s resonant frequency which can 

be determined from its reflection coefficient. The reflection coefficient of antenna-sensor was 

encoded in the reflected interrogation signal which was radiated through the Ultra-Wide Band 

(UWB) antenna to the interrogator. At the interrogator side, TD gating technology was applied 

on the reflected signal to separate the sensor mode data from the background clutter, and retrieve 

the real-time antenna-sensor’s resonant frequency from its reflection coefficient. The sensor node 

design as well as wireless interrogation mechanism will be discussed in CHAPTER 4. 

After achieving successful high-speed interrogation using FMCW interrogator in room 

temperature as well as the static wireless interrogation without electronics in harsh environment, 

combined technique was investigated. Dynamic wireless interrogation of antenna-sensor for 

temperature sensing in harsh environment was realized by using the FMCW radar interrogator 

and non-electronics sensor node. In this study, an interrogation rate of 50 Hz was achieved in 

high-temperature wireless sensing. The accuracy of the proposed dynamic FMCW interrogator 

was validated during the temperature testing by comparing the results to those measured from a 

Vector Network Analyzer (VNA) interrogator. The normalized discrepancy is only 3%. The 

operation principle, hardware setup and validation testing will be presented in CHAPTER 5. 

Compact FMCW interrogator was also developed for foot pressure sensing system [95]. A 

PCB FMCW synthesizer [96] was developed with a compact dimension and a low power 
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consumption of 160 mw. The proposed potable interrogator can be powered by a fully charged 

3.7V battery for 8 hours. The accuracy of this compact interrogation circuit and the antenna-

based pressure sensor was validated using a static pressure testing. The operation principle of the 

antenna pressure sensor, design of the FMCW synthesizer and the validation pressure testing will 

be discussed in CHAPTER 6. 

Finally, in CHAPTER 7, the conclusion will be draw and the future work will be discussed. 
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reff is effective dielectric constant [97] which can be calculated from the dielectric constant of 

the substrate r, the substrate thickness h, and the width of the radiation patch W as: 

 

1
2

1

2 1 10 /
. 

(2.3)

When the substrate thickness h is much smaller than the dimensions of the radiation patch, 

h<<W and h<<L, the effective dielectric constant can be approximated as the dielectric constant 

of the substrate, i.e. reff ≈ r. As a results, (2.3) can be simplified to 

 2√

1
. (2.4)

The resonant frequency variation f10 can then be expressed in terms of the changes in the 

substrate dielectric constant rand the patch length L, i.e. 

 . (2.5)

From equation (2.4) we can also derive that 

 
1
2

 (2.6)

and 

 
1

. (2.7)

Substituting equations (2.6) and (2.7) into (2.5) and normalizing the shift of resonant frequency 

with the antenna’s initial resonant frequency, we obtain  

 
1
2

. (2.8)

Equation (2.8) serves as the theoretical foundation of the antenna-sensor. The first term 

represents the sensitivity of the antenna resonant frequency to the effective dielectric constant 
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changes of the antenna, which can be exploited for environment (e.g. temperature, moisture, gas 

etc.) and bio-chemical sensing. The second term represents the sensitivity of the antenna 

resonant frequency to the dimension change of the radiation patch, which can be related to strain, 

crack, and temperature changes. 
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CHAPTER	3 	

REAL‐TIME	VIBRATORY	STRAIN	SENSING	USING	PASSIVE	

WIRELESS	ANTENNA‐SENSOR	

3.1 Operation	principle	

The wireless vibratory strain sensing system can be separated into two subsystems, as shown 

in Fig. 3.1; a wireless interrogator and a wireless passive strain sensor. The wireless interrogator 

consists of a transmitter that sends interrogation signal, a receiver/demodulator that processes the 

backscattered signal, and a Data Acquisition (DAQ) to facilitate digital signal processing. A horn 

antenna is utilized in the wireless interrogator, and the transmitted and received signals are 

separated using an RF circulator. The wireless passive strain sensor consists of a microstrip patch 

antenna and an AM modulator with energy harvesting capability. The microstrip patch is 

designed to function as both a dynamic strain sensor as well as a wireless communication 

antenna. Mechanical tensile strain changes the dimensions of the antenna sensor, which in turn 

changes the antenna resonant frequency [65]. Thus, the strain on the patch antenna can be 

estimated from the resonant frequency shift in the backscattered signal of the antenna. To 

improve detection of sensor node backscattered signal, i.e. avoiding self-jamming, the load of the 

antenna-sensor is periodically switched at frequency fm between high-impedance (open-circuit) 

and matched-load, thus effectively amplitude modulate the backscattered signal. The switching 

circuit (AM modulator) consists of an oscillator, microwave switch and a 50Ω load. For passive 

sensor node operation, energy harvesting circuit is used to power the modulator; a solar-powered 

modulator is used in this study. By controlling the switch using solar-powered oscillator, the 

amplitude of the antenna-sensor backscattering is modulated at the set oscillator frequency fm. 
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The demodulation unit recovers the envelope of the received signal using an envelope detector. 

Since the demodulated antenna-sensor backscattered signal has frequency fm (due to AM 

modulation at the sensor), a band pass filter with a narrow bandwidth centered at fm can then be 

applied to the demodulated signal to extract the antenna-sensor information and to remove the 

background clutter and additive noise. After acquiring the filtered envelop signal using a Data 

Acquisition (DAQ) device, a Digital Signal Processing (DSP) algorithm can be applied to track 

the time-varying amplitude of the acquired antenna-sensor backscattered signal. By 

synchronizing the demodulated antenna-sensor backscattered signal with the input of the FMCW 

synthesizer (i.e. the low-pass periodic signal and for linear FMCW a saw tooth signal) the 

antenna resonant frequency shift can be estimated from the amplitude changes of the acquired 

signal, from which the strain variation can be determined. 

3.2 Hardware	implementation	

3.2.1 Design	of	passive	strain‐sensor	node	

3.2.1.1 Design	of	antenna‐sensor	for	strain	sensing	

In this study, a rectangular patch antenna was used to monitor the mechanical strain alone its 

length direction. The antenna-sensor was designed using Rogers RT/duroid® 5880 Laminates 

[98]. The dielectric constant of the substrate material is 2.2 and the thickness is 0.787 mm. 

Antenna-sensor’s physical dimension is shown in Fig. 3.2 and the simulated S11 curve was 

represented in Fig. 3.3. As seen from fig. 3.2, the feeding point of the antenna-sensor was set in 

the middle of the bottom edge to eliminate the resonant frequency of TM01 mode. From Fig 3.3 

we can see that the simulated TM10 mode resonant frequency of the designed antenna-sensor is 

5.39 GHz. Since this antenna-sensor is designed for strain sensing in a stable room temperature 

we assume that the dielectric constant of the subtract material is a constant. Thus, the equation 
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the signal shown in Fig. 3.6(b). The power received by the patch antenna Pr can be calculated to 

be 0.149 mW using Friis equation [101] [102], i.e. 

 4
, (3.2)

where the transmitted power Pt is 20 dBm, the interrogation distance d is 90 cm, the wavelength 

is 55 mm, and the gains of interrogation antenna Gt and antenna sensor Gr are 12 dBi and 6 dBi, 

respectively. The signal shown in Figure 7(b) has an amplitude of 0.1 V at the “ON” state and an 

amplitude of 0.07 V at the “OFF” state. Therefore, the power received by the 50  load is 0.1 

mW at the “ON” state and is 0.05 mW at the “OFF” state. The insertion losses of the sensor node 

can thus be calculated as -4.8 dB and -1.75 dB for the “ON” and “OFF” states, respectively. 

The power consumption of the entire sensor-node circuit was measured to be 0.63 mW and 

was provided by a 3.2 mm* 2.5 mm solar cell illuminated by a 134 lm light-emitting-diode 

(LED). The illumination light was focused on the photocell using a magnifying lens. It was 

discovered that the modulation circuit is powered up when the focused spot is about the same 

size as the solar cell. Therefore, the illumination intensity can be estimated to be 134 lm / 

(0.0032m*0.0025m) = 16,750,000 lux, which is around 170 times larger than that of the sunlight, 

assuming the intensity of the sunlight is 98,000 lux. Accordingly, the area of the solar cell should 

be increased by 170 times in order to power the sensor node by direct sunlight. In other words, 

the sensor node can be powered by direct sunlight using a square solar cell with a length and 

width of 37.0 mm. As long as the interrogator is implemented with a light source, the sensor 

node can be interrogated at any time and location even though there is no direct sunlight. 
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in which (m) represents the impedance switching state, i.e. “ON” or “OFF”, and R is the input 

impedance of the envelope detection, which is 50 W. (m)
BSP is the power of the backscattered signal 

and can be calculated as 

 2 , (3.4)

where Pt is the transmitted power, )(m
insertionL  is the insertion loss of the sensor node calculated in 

section III.A, and  Lpath is the transmission loss between the interrogator and sensor antennas, 

which can be calculated from equation (2) as 

 
4

. (3.5)

In equation (4), the transmission path loss is doubled because of the round-trip transmission 

between the interrogator and sensor. Finally, the envelope amplitude of the backscattered signal 

can be calculated as  

 
2

. (3.6)

Based on equations (3)-(6), the relationship between the envelope amplitude VAM and the 

interrogation distance d can be calculated and is plotted in Fig. 3.12, using Pt = 25 dBm and the 

parameters given in section 3.2.1. The maximum interrogation distance is then estimated to be 

2.87 m based on the envelope detector sensitivity of 100 mV. Larger interrogation distances can 

be achieved using a higher transmission power, a higher gain interrogation antenna or a better 

impedance switch at the sensor node. For example, according to the Federal Communications 

Commission (FCC) regulation, the transmitted power can be increased to 30 dBm and the gain of 

the interrogation antenna can be increased to 23 dBi. These increases will increase the 

interrogation distance to 13.6 m. In the idea case of dBL off
insertion 0)(  , Pt = 30 dBm, and Gt = 23 dBi, 

the maximum interrogation distance that can be achieved is 18 m. 
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period. As such, there should be multiple amplitude modulation cycles for each FMCW period. 

Our tests have shown that 10 amplitude modulation cycles in one FMCW period is sufficient for 

extracting the antenna resonant frequency. Since the modulation frequency fm is fixed at 32.78 

kHz, the maximum sampling rate is therefore limited to be 3.2 kHz. When we increased the 

modulation frequency to 800 kHz, however, we were able to achieve a sampling rate of 78 kHz. 

In this case, the sampling rate is limited by the scan rate of the FMCW synthesizer. The above 

tests were conducted under the condition that a stable amplitude modulated signal, i.e. the signal 

shown in Fig. 3.11(c), is obtained by the oscilloscope. The antenna resonant frequency, however, 

was extracted from this signal using the DSP algorithm shown in Fig. 3.13. Compared to the 

other three factors mentioned above, the DSP algorithm takes a much longer time to execute 

since it is implemented using the built-in MATLAB program of the oscilloscope. For each array 

data, it took the algorithm 12.5 ms to process, which limits the sampling rate to 1/12.5 ms = 320 

Hz. To increase the sampling rate, we could implement some of the functions described in Fig. 

3.13, such as the envelope detection, using analog circuits and implementing the program in a 

real-time digital signal processor. 

3.3 Experiment	and	data	analysis	

3.3.1 System	setup	

In order to evaluate the strain-tracking performance of this wireless strain monitoring system 

both static and dynamic tensile tests were performed. The experimental setup is shown in Fig. 

3.14. An Instron tensile machine was used to apply axial loads to the aluminum specimen. An 

RF horn antenna was set up to face the microstrip patch as an interrogation antenna. Due to the 

space limitation the distance between the interrogation horn antenna and the patch antenna 

sensor was set as 90 cm. Solar light was emitted by a 134 lm LED which was located next to the 
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4
∙

, (3.7)

in which Vex = 10V and GF = 2.13.  

Both static and dynamic tensile tests were performed to evaluate the performance of the 

wireless strain monitoring system. Static tensile tests were conducted to calibrate the sensitivity 

of the antenna sensor. Static axial loads, ranging from 500 lb to 3500 lb with an increment of 500 

lb, were applied on the aluminum beam. Vibratory strain tests were carried out to evaluate the 

dynamic response of the strain sensing system. A sinusoidal tensile load, varying from a 

minimum of 500 lb to a maximum of 3500 lb, was applied to the specimen at different loading 

frequencies. 

3.3.2 Testing	results	and	discussion	

3.3.2.1 Calibration	of	antenna	sensor	for	static	tensile	test	

The normalized envelopes of the demodulated signal at different static loads are shown in Fig. 

3.15. It is evident that the antenna resonant frequency decreases as the load increases. To 

correlate the frequency shift to the applied strain, the normalized amplitude of 0.99 was selected 

as the reference amplitude. The frequency shifts at different loads were measured and normalized 

with respect to the antenna resonant frequency at zero loading. The actual tensile strains which 

are applied on the specimen at different loads are also calculated from the bridge output and 

equation (3.7). Therefore, the experimental relationship between the normalized resonant 

frequency shift and the mechanical tensile strain on the specimen is achieved. The comparison 

between the experimental relationship and the theoretical one which shown in the equation (3.1) 

is represented in Fig. 3.16. The experimental curve displayed a high degree of linearity 

(coefficient of determination R2 = 0.9995), but the strain sensitivity of the normalized frequency 
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We suspect that the increased discrepancies at higher vibratory frequencies are due to the 

substrate material. Since the substrate material RT/duroid® 5880 is a Polytetrafluoroethylene 

(PTFE) composite reinforced with glass fibers, it may not have the same dynamic response as the 

metallic specimen. To test this hypothesis, a strain gauge was bonded on top of the substrate 

material so that the substrate strains, i.e. the strains measured from the strain gauge bonded on 

 
Figure 3.18 Time-domain vibratory strains measured by the antenna-sensor and strain gauge at 1 Hz 

 
Figure 3.19 Time-domain vibratory strains measured by the antenna-sensor and strain gauge at 8 Hz 
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the substrate, can be compared with the specimen strains, i.e. the strains measured from the strain 

gauge bonded on the specimen. In Table 3.1, the differences between the strains measured on the 

specimen and from the antenna sensor are given in the second column while the differences 

between the strains measured on the specimen and the substrate are given in the third column. 

Both sets of differences were normalized with respect to the maximum specimen strains. For 

both cases, the normalized differences increase with the vibratory frequency. Therefore, we can 

conclude that the observed discrepancy between the antenna sensor and strain gauge 

measurements at high vibratory frequencies are due to the non-ideal dynamic response of the 

substrate material. In the future, we will evaluate the dynamic responses of other substrate 

materials in order to identify a substrate material that is more suitable for high frequency 

dynamic strain measurements. 

3.4 Conclusions 

The design, implementation, and validation of a novel wireless vibratory strain sensing system 

are presented. A frequency resolution of 9.26 ppm and an interrogation frequency of up to 320 

Hz were achieved. The accuracy of the wireless strain measurement system was validated using 

in-situ strain gauge measurements. Static test results confirmed that the antenna resonant-

frequency shift is a linear function of the strain it experienced while the normalized differences 

Table 3.1 Discrepancy analysis at different vibratory frequencies 

Loading Freq. (Hz) 
)max( specimen

antennaspecimen



 

)max( specimen

substratespecimen



 

1 1.19% 1.27% 

2 1.68% 1.67% 

3 1.90% 1.82% 

4 2.40% 1.93% 

5 2.51% 2.23% 

6 2.72% 2.30% 

7 2.96% 2.48% 

8 3.70% 2.85% 
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between the calibrated antenna sensor and strain gauge measurements are less than 1%. Real-

time measurement of vibratory strains was demonstrated through dynamic tests. We discovered 

that the differences between the strains measured from the antenna sensor and the strain gauge 

bonded on the specimen increased with the vibratory frequency. The frequency dependent 

discrepancies were found to be contributed by the non-ideal dynamic response of the substrate 

material. In the future, a substrate material with fast dynamic response should be selected to 

achieve dynamic measurements at higher frequencies. 
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clutter in time domain. 

The wireless interrogator measures the two-port Scattering (S) parameter, i.e. S21, of the 

wireless interrogation. Then the S21 parameter is sent to a DSP demodulator to decode the 

sensing information. First of all, linear chirp interrogation signal was generated and broadcasted 

to passive sensor node from wireless interrogator. Once the interrogation signal is received by 

the UWB Tx/Rx antenna it is then transmitted to the antenna-sensor via the microstrip delay line. 

Upon received by the antenna-sensor, the portion of the FMCW signal that matches the antenna 

resonant frequency is received and radiated by the antenna-sensor. The remaining interrogation 

signal is reflected back to Tx/Rx antenna by flowing along the transmission line and re-broadcast 

back to the interrogator via the Tx/Rx antenna. As such, the reflection coefficient of the antenna-

sensor is encoded into the Tx/Rx antenna backscattering. The reflected power of Tx/Rx antenna 

backscattering received by the interrogator can be calculated using Friis equation: 

 , (4.1)

where Pt is the transmit power of the interrogation signal; d is the distance between the wireless 

interrogator and the Tx/Rx antenna; Gtt and Gtr are the radiation gains of the transmitter (Tx) 

receiver (Rx) of the interrogator; respectively; Gr is the radiation gain of the UWB Tx/Rx 

antenna; is the wavelength of the transmission electromagnetic (EM) wave; S11 is the 

reflection coefficient of the antenna-sensor and Ld is the loss caused by the delay line. The 

minimum detectable power of the wireless interrogator can be expressed as [73]:  

 ∙ ∙ ∙ , (4.2)

where E is the thermal energy; B is the bandwidth of the receiver; F is the noise figure of the 

interrogator receiver and SNR is the required signal to noise ratio for this system. Substituting 

(4.1) into (4.2), the theoretical maximum interrogation distance can be calculated as 
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 4 ∙ ∙ ∙
. (4.3)

Based on equation (4.3), the maximum interrogation distance is estimated to be 2.25 m assuming 

a transmitted power of 10 dBm, E = 4 x 10-21 J, B = 0.8 GHz, SNR = 20 dB, Git = 12 dBi, Gir = 

12 dBi, Gr = 4 dBi, Ld = -1 dB, S11 = -10 dB, F = 1 dB, and a wavelength of 0.12 m. 

Once Tx/Rx antenna backscattering as well as the background clutter is received by the 

interrogator the transmission S21 is determined respect to the transmitting power and sent to 

DSP demodulator. In DSP modulator, TD gate was applied on the reflected mixture signal to 

separate the 0antenna backscattering from the background clutter. And Fast Fourier Transform 

(FFT) was used to convert the gated time domain signal into frequency domain to demodulate 

the reflection coefficient of the antenna-sensor. The real-time resonant frequency of the antenna-

sensor can be determined at the frequency which has the lowest reflection coefficient. 

4.2 Sensor	node	implementation	

4.2.1 Design	of	temperature	antenna‐sensor	

Rogers RO3210 [103] was selected as the substrate material for the wireless sensor because of 

its high thermal coefficient of dielectric constant aε, which is -459 ppm/°C in the temperature 

range from 0°C to 100°C. Compare to aε, the thermal expansion coefficient aT  of 13 ppm/°C is 

much smaller and thus can be ignored in this study. Therefore, equation (6) can be simplified as: 

 
1
2

. (4.4)

Based on equation (4.4), the theoretical temperature sensitivity of the normalized frequency shift 

KT is calculated to be 225.9 ppm/°C. 
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the reflected signal peak from the antenna-sensor starts at 3.5 ns, which means the round-trip 

time delay caused by the 200 mm microstrip delay line is 3.5 ns. 

4.2.2 Design	of	UWB	Tx/Rx	microstrip	antenna	

To implement the entire sensor node on printed circuit boards, the UWB Tx/Rx antenna was 

developed based on a one-layer substrate patch antenna. The radiation patch is a conventional 

rectangular patch fed at the bottom edge using a 50 Ω microstrip transmission line, as shown in 

Fig. 6(a). The ground plane, on the other hand, has a grid pattern with periodically cross gaps 

that divide the metallic ground into small square patches (see Fig. 6(b)). The patterned ground 

plane and the rectangular radiation patch can be considered as a type of metamaterial, namely a 

RIS structure that acts like a parallel LC resonant circuit [94]. The resonant frequency fRIS of the 

LC circuit can be determined when it has the largest impedance. The impedance of the LC circuit 

can be expressed by the impedance of the equivalent inductor XL and capacitor XC, i.e. 

 . (4.5)

Where XL and XC can be calculated as: 

 
Figure 4.5 Time domain signal converted from measured S11 parameter of the fabricated antenna-sensor 
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[93]. The RIS structure is inductive at frequencies below fRIS while the radiation patch becomes 

capacitive below its resonant frequency fpatch. Therefore, by setting fRIS higher than fpatch, the 

magnetic energy stored in the RIS structure can compensate for the electrical energy stored in the 

near field of the patch antenna, which results in additional resonances at lower frequencies and 

thus broaden the bandwidth of the antenna [94]. 

The design of the UWB Tx/Rx antenna started with a conventional patch antenna having a 

perfect ground plane. The resonant frequency of the conventional patch antenna fpatch was chosen 

to be at 3.8 GHz and the resonant frequency of the RIS structure fRIS was selected as 4.2 GHz, 

which is slightly higher than fpatch. Base on the properties of the substrate material and the 

selected fRIS, the dimensions of the patterned ground, i.e. Z1 and Z2, can be calculated to be 1.2 

mm and 7.7 mm, respectively, using equation (10), (11) and (12). The pictures of the radiation 

patch and the patterned ground plane of the UWB Tx/Rx antenna, fabricated using the chemical 

etching technique, are shown in Fig. 4.6(c) and 4.6(d). The S11 parameter of the fabricated 

 
Figure 4.7 Comparison between the simulated and measured S11 of the Tx/Rx antenna 
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antenna was measured and compared with the simulation results in Fig. 4.7. The bandwidth of 

the UWB Tx/Rx antenna, determined at the -10 reflection coefficient, is 1.6 GHz (i.e. from 1.9 to 

3.5 GHz), which matches with the simulation very well. Compare to the conventional patch 

antenna, the -10 dB operation bandwidth of the metamaterial antenna increases by more than 100 

times. The gain of the Tx/Rx antenna, measured using a two-port transmission test, is shown in 

Fig. 4.8. The antenna displayed a relatively flat gain, varying from 3.3 to 4 dBi in frequencies 

ranging from 2.2 GHz to 3 GHz. Due to its flat gain and wide bandwidth, the temperature 

sensitivity of the Tx/Rx antenna will have very little effect on the measurement of the antenna 

sensor resonant frequency.  

After validating the performances of the antenna sensor and the Tx/Rx antenna separately 

using SMA connectors, both antennas were integrated on one RO3210 laminate by connecting 

them using a 200 mm microstrip transmission line. The entire sensor node was fabricated using 

chemical etching and the pictures of its front and back surfaces are shown in Fig. 4.9. 

4.3 Instrumentation	and	Experimental	Setup	

The experimental setup for validating temperature sensing capability of the antenna sensor as 

well as its wireless interrogation is showed in Fig. 4.10. The sensor node package was placed 

inside an oven so that the environment temperature can be varied. For wireless interrogation, the 

metal panel of the oven door was removed but the insulation element was kept in place to 

prevent heat convention and maintain a stable temperature inside the oven. The insulation 

element of the oven is made of polymer material, which has a dielectric constant similar to air.  

Therefore, the insulation material will not introduce any changes on the phase or amplitude of 

the interrogation signal. The wireless interrogator was realized by using a VNA and two 

interrogation horn antennas. The horn antennas were placed at an interrogation distance of 60 cm 
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time-domain signal displays two major wave packets that correspond to the structural 

backscattering and the antenna sensor backscattering. Both wave packets have small side lobes, 

which can be reduced by windowing before the IFFT. Nonetheless, the presents of the side lobes 

will not have an effect on determining the frequency of the antenna sensor backscattering. Even 

though the signals backscattered by the Tx/Rx antenna and the surrounding structures usually 

have the largest amplitude, they appear at a different time span from that of the antenna sensor 

backscattering. Therefore, a gating window can be applied to the time domain signal to extract 

the antenna sensor signal. Since the time-gated signal will only contain signals that are reflected 

at or near the feeding point of the antenna sensor, the time gating process also eliminate 

reflections at other locations along the transmission delay line due to temperature gradient, etc. 

Subsequently, the gated signal is converted back to the frequency domain using Fast Fourier 

Transform (FFT) and the resonant frequency of the antenna-sensor can be determined as the 

frequency at which the reflection coefficient has the lowest value. 

4.5 Results	and	discussions	

The time-domain representation of a typical S21 parameter is shown in Fig. 4.13. Time “0” 

corresponds to the feeding point of the transmitting interrogation signal. The first wave packet 

arrives at around 2 ns, which corresponding to a round trip distance of 0.3 m. This distance 

coincides with the distance between the feeding point of the interrogation antenna and the 

antenna aperture. Therefore, we can conclude that this wave packet is due to the coupling 

between the two interrogation horn antennas. The second wave package arrives at around 6 ns, 

which corresponds to a round-trip distance of 0.9 m and thus is the structure mode backscattering 

generated by the antenna sensor and the temperature oven. Due to the time delay introduced by 

the microstrip delay line, the antenna mode backscattering occurs at 3.5 ns after the structure 
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mode backscattering. We can then extract the antenna mode backscattering by time gating the 

transmission signal from 9.5 ns to 12.5 ns. The resonant frequency of the antenna sensor can then 

be determined by performing FFT of the time-gated signal. The frequency spectra of the time 

gated signal at different temperatures are shown in Fig. 4.14. The resonant frequency of the 

 
Figure 4.13 Time domain reflection signal converted from measured S21 parameter at room temperature 

 
Figure 4.14 FFT of gated TD signal at different temperatures 
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interrogator will be investigated to reduce the cost of the interrogator and to increase the 

interrogation speed. In addition, we will explore high-temperature PCB material to increase the 

operation temperature of the wireless antenna sensor. 
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CHAPTER	5 	

WIRELESS	ANTENNA	SENSOR	INTERROGATION	USING	FMCW	

BASED	TIME‐GATING	TECHNIQUE	

5.1 Operation	principle	

In this study, we continue integrate the time-gating technique and the FMCW radar method to 

realize FMCW time-gating interrogation technique which can be used in high-temperature harsh 

environment. The advantage of such an approach is that the time gating is performed in the 

frequency domain instead of the time domain. As a result, substantial improvement on the 

interrogation speed can be achieved. Non-electronics sensor node package mentioned in 

CHAPTER 4 will still be used in this research. Thus, the proposed high-speed interrogation 

mechanism can be implemented in high-temperature environment. Compare to the setup in 

CHAPTER 4, the VNA interrogator was replaced by the proposed FMCW interrogator, the block 

diagram of the system setup is shown in Fig. 5.1. In the FMCW interrogator, a delay line was 

added to increase the beat frequency of backscattered sensing signal. Thus, after bandpass filter, 

Figure 5.1 Proposed antenna-sensor wireless interrogation using FMCW time-gating technique 
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the frequency of the sensing signal will be much higher than the sweeping frequency of the 

FMCW interrogation signal so that a stable amplitude envelop of the sensing signal can be 

achieved in a single FMCW period.  

The FMCW synthesizer generates a linear chirp signal whose frequency is a linear function of 

time. As a result, the frequencies of the backscattered sensing signal as well as the background 

clutter also vary linearly with time (see Fig. 5.2). At a given time t, the frequency generated by 

the FMCW synthesizer is f1. The signal was sent to the Local Oscillation (LO) port of the down-

convention mixer through a directional coupler. In the meantime, the interrogation Rx antenna 

receives the background clutter (f2) as well as the backscattered sensing signal (f3) and the 

mixture signal will be sent to Radio Frequency (RF) port of the mixer. The frequency of the 

reflected background clutter f2 can be calculated based on the time delay caused by the delay line 

ddelay and the wireless transmission dtrans: 

 , (5.1)

where W is the frequency sweeping range of the FMCW signal; T is the period of FMCW signal. 

Since there is a microstrip delay line implemented in the sensor package, the backscattered 

sensing signal has an additional delay dsensor thus, at time t, the frequency of reflected sensing 

signal f3 can be expressed as: 

 . (5.2)

Therefore, after down-conversion, the output of mixer IF port has two beat frequency 

components: (f2 - f1) for background structure backscattering and (f3 - f1) for sensor node 

component. Due to the time delay dsensor, the sensor node signal is separated from the background 

structure backscattering in frequency domain and the frequency difference between those two 
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arrival time difference between the first peaks of those two time domain signals. From the figure, 

the experimental time delay of the delay line was measured as 50.8 ns. 

The reflected signal received from the Rx interrogation antenna was applied to a down-

conversion mixer. The mixer IF output contains two frequency components: background 

structure backscattering (f2 - f1) and sensor node backscattering (f2 - f1). A low-pass filter was 

implemented right after the IF port in order to filter the high frequency noise of the mixer output. 

The filtered signal was collected by a high speed oscilloscope. The sampling rate of the 

oscilloscope was set as 2.5 MHz. Since the period of FMCW interrogation signal is 1 ms, every 

FMCW period 2500 sample points were collected. Consider the interrogation frequency sweeps 

from 2.2 to 3 GHz each FMCW period, the frequency detection resolution can be calculated as 

0.8 GHz/2500 = 320 kHz for this sensing system. In order get stable signal, an average of 20 

FMCW period signals were calculated as the signal of single FMCW period. Since the 

interrogation rate of the FMCW signal is 1 kHz the interrogation rate of this sensing system is 1 

kHz/20 = 50 Hz. 

A DSP algorithm was developed in Matlab to process the data recorded from the oscilloscope. 

The purpose of this data process is to separate the sensor node backscattering from background 

structure backscattering for each interrogation period and determine the resonant frequency from 

the frequency spectrum of the sensor node signal. The flow chart of the DSP algorithm is shown 

in Fig. 5.9(a) and the signals corresponding to each block are shown sequentially in Fig. 5.9(b). 

First of all, the acquired signal is segmented into data arrays with each array corresponding to 

one FMCW period. Both time-domain and frequency spectrum of the collected signal are shown 

in Fig 5.9(b). In the frequency spectrum, there are three main frequency components which stand 

for coupling between the interrogation antennas, background clutter and sensor node signal, 



respectiv

the senso

sensor no

relationsh

filtered s

envelope

the FMC

be determ

5.3 Tem

A temp

system. T

Figure

vely. A Butte

or node sign

ode and the 

hip of the F

signal is pro

e detection al

CW sweeping

mined at the 

mperature

perature tes

The experim

e 5.9 Illustratio

erworth digit

nal from the 

time scale i

FMCW synt

oportional to

lgorithm is t

g frequency 

frequency w

e	validatio

ting was pe

mental setup

n of Matlab DS

tal band-pas

other two. A

is converted 

thesizer. As

o the reflecti

then applied 

range. Final

which has the

on	testing	

erformed to 

, including t

SP algorithm; 

62 
 

s filter was t

After filterin

to the frequ

s mentioned

ion coefficie

on the filter

lly, the reson

e lowest amp

and	data	a

validate the

the interroga

(a) flow diagra
blocks 

then applied

ng we get th

uency scale 

d in equation

ent of the an

red sensor si

nant frequen

plitude in the

analysis	

e accuracy 

ation horn a

am; (b) signals 

d on the data

he time doma

based on th

n 5.5, the a

ntenna-senso

ignal to track

ncy of the an

e envelope c

of the FMC

antennas, the

 corresponding

a array to sep

ain signal fo

he time-frequ

amplitude of

or. Therefor

k its amplitu

ntenna-senso

curve.  

CW interrog

e sensor pac

 
g to processing

parate 

or the 

uency 

f this 

re, an 

ude in 

or can 

gation 

ckage 

g 



63 
 

and the temperature oven was the same as that in Chapter 4. The wireless interrogation distance 

was set as 60 cm and the testing temperature starts form 25 to 170 °C. For comparison, VNA 

interrogator was firstly used to monitor the frequency variation of the antenna-sensor at different 

testing temperatures. The block diagram of the experimental setup is shown in Fig 5.10. 

DSP algorithm which is shown in Fig.4.10 was applied on the recorded S21 parameters to 

calculate the reflected amplitude of the antenna-sensor. The measured antenna-sensor’s reflected 

amplitude curves at different temperatures are represented in Fig. 5.11. From the figure we can 

see that the resonant frequency of the antenna-sensor increases as temperature increasing, which 

 
Figure 5.10 Block diagram of the wireless temperature sensing system using VNA interrogator 

 
Figure 5.11 Measured antenna-sensor’s reflection coefficients at different temperatures using VNA 

interrogator 
 

VNA 
interrogator

S21 Sensor-package

Rx 
antenna

Tx
antenna

60 cm

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0.5

1

1.5

2

2.5

x 10
-3 FFT of time-gated signal

Freq. (GHz)

A
m

p
lit

u
d

e
 (V

)

 

 

25 °C
50 °C
80 °C
100 °C
120 °C
140 °C
170 °C



64 
 

matches the results from Chapter 4. 

The FMCW interrogator was then implemented to replace the VNA. The testing setup is 

shown in Fig. 5.12. The mixer output of a single FMCW period was collected by the 

oscilloscope at a rate of 50 Hz and processed off-line using the DSP algorithm shown in Fig. 5.9. 

The reflected amplitudes of the antenna-sensor at different temperatures were calculated and 

some of them are plotted in Fig. 5.13. The resonant frequencies can be determined at the 

frequency which has the lowest amplitude in the amplitude curve. The measured frequency 

 
Figure 5.12 Block diagram of the wireless temperature sensing system using FMCW interrogator 

 
Figure 5.13  Measured antenna-sensor’s reflection coefficients at different temperatures using FMCW 

interrogator 
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environment was presented. FMCW based antenna-sensor interrogator was developed to perform 

the time-gating perform in the frequency domain instead of the time domain. Therefore, a higher 

interrogation rate of 50 Hz was achieved in the proposed temperature sensing system. The 

accuracy of the FMCW interrogator was also validated during the temperature testing. The 

experimental relationship between antenna-sensor’s frequency shift and temperature variation 

matches very well with the reference one which is measured by VNA interrogator. The 

normalized discrepancy is only 3%. In the future, a portable PCB FMCW synthesizer will be 

developed to reduce the size and power consumption of the FMCW interrogator and multiple 

antenna-sensors will be implemented to achieve wireless sensing network.  
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A 3D model of the pressure antenna senor was also created in HFSS, as shown in Fig. 6.6. The 

antenna testing apparatus was also created using the simulation software, keeping the same 

dimensions as previously mentioned; the material of the reflection plate is aluminum. In order to 

understand how the plate’s downward displacement affects the resonant frequency of the 

antenna, simulations were conducted by varying the downward displacement of the reflection 

plate and the upper plastic cover from 0 mm to 1 mm with a step of 0.2 mm. The S11 curve was 

calculated at every displacement and the resonant frequencies were determined from the 

simulated S11 curves. As shown in Fig. 6.7, the antenna resonant frequency increases with the 

displacement increases. Furthermore, the relationship between the variation of the resonant 

frequency and the downward displacement have a very good linearity (coefficient of the 

determination R2 = 0.9987).  

6.3 Design	of	the	FMCW	synthesizer	

In the FMCW generator, a periodic linear chirp is implemented by using a VCO controlled by 

a periodic triangle signal. As such, the instantaneous frequency of the chirp is swept through a 

frequency range continuously during each period of the triangle signal. The sweep rate and the 

frequency range of the chirp signal can be adjusted by changing the frequency and the amplitude 

of the triangle control signal. First of all, a triangle wave generator was designed and simulated 

by using a 555 timer (TLC555). The SPICE simulation schematic of the generator is shown in 

Fig. 6.8 and the simulation results are demonstrated in Fig. 6.8(a). The simulated saw tooth wave 

varies from 1.32 V to 3.3 V at a frequency of 52.8 Hz. Then the circuit was fabricated and the 

output was measured to validate the simulation results. As shown in Fig 6.8(c), the measured saw 

tooth wave is from 1.4V to 3.6 V with a frequency of 52.1 Hz, which matches the simulated 

curve very well. The slight discrepancy is due to the tolerance of the lump components.  
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KHz. Since the frequency of the FMCW signal is 52.1 Hz and the carrier frequency sweeping 

range is from 5.65 GHz to 5.735 GHz the frequency resolution is (5.735-5.64)e6/(50000/52.1) = 

98.99 kHz. 

The VNA measured return-loss curves which are normalized respect to the minimum value are 

represented in Fig. 6.15. It is clearly indicated that the vertical pressure shifts the curve to the 

 
Figure 6.15 Normalized S11 return-loss measured from VNA 

 
Figure 6.16 Normalized output from power detector 
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From Fig.15 and 6.16, sensor’s resonant frequencies, which measured by both VNA and 

FMCW interrogation circuit, under different pressures are achieved at the normalized amplitude 

“1” and plotted in Fig 6.17. In order to compare to the simulation results, the pressure scale is 

covered into the displacement scale based on the calibrated pressure-displacement relationship 

which is shown in Fig. 6.4. The experimental curves have a high degree of linearity (coefficient 

of the determination R2 = 0.997), which validates the simulation results. Furthermore, the 

resonant frequencies measured using FMCW interrogation circuit and VNA match every with 

each other. The discrepancies which are normalized respected to the VNA readings are shown in 

Fig. 6.18. The discrepancies are very small which are within + 0.002%. It proves that the 

designed FMCW interrogation circuit is accurate enough for pressure antenna sensor 

interrogation and resonant frequency detection. 

6.5 Conclusions	

In this study, a compact FMCW interrogation circuit for antenna pressure sensor was 

demonstrated. The interrogation circuit can realize a dynamic interrogation up to 52 Hz with a 

frequency resolution of 96 kHz. The accuracy of the proposed interrogation circuit was also 

validated using static pressure testing. The normalized discrepancies between the measurements 

of FMCW interrogator and VNA interrogator are within + 0.002%. In future, Bluetooth function 

will be added into the interrogation circuit. Thus, wireless interrogation of the antenna pressure-

sensor can be achieved. 
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	CONCLUSIONS	AND	FUTURE	WORKS	

Wireless passive sensing technology is developing quickly for SMH in the past decade. 

Different passive sensors have been invented for wireless SMH, such as SAW sensor, inductive 

coupled sensor and RFID enabled sensor. All those sensors have their own advantages and 

drawbacks. Since SAW sensor is a passive sensor its lifetime is not limited by the battery. But in 

order to low maintain low propagation loss, the operation frequency of the SAW sensor is 

limited to tens of megahertz. And this frequency limitation makes the miniaturization of the 

passive antenna extremely difficult. Inductive coupled sensor can be implemented in harsh 

environment. However, the wireless interrogation of this sensor is a kind of near-field 

communication; the wireless interrogation distance is only a few centimeters. RFID sensor is a 

pass sensor which can be wirelessly interrogated with a long distance. But since it requires 

electronics in the sensor node it cannot be applied in the harsh environment.  

Microstrip antenna-sensor is considered as a promising wireless sensor due to its compact size, 

passive operation and multi-modality sensitivity. Different wireless interrogation techniques of 

antenna-sensor were also developed to isolate the antenna backscattering from the background 

clutter and solve the self-jamming problem during the wireless communication. NTDR 

interrogation mechanism removes the background clutter by subtracting the reflected time 

domain signal acquired at both antenna termination states. However, since this method has low 

detection resolution of antenna-sensor’s resonant frequency it cannot be used for wireless 

sensing system. Another wireless antenna-sensor interrogation mechanism was developed using 

step-frequency interrogation and antenna backscattering modulation for strain sensing. But, this 

mechanism can only be used for static testing due to the low stepping speed of the interrogation 
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signal. Wireless interrogation mechanism for harsh environment was also developed. In this 

mechanism, antenna-sensor was considered as a resonator and there is no other electronics 

implemented in the sensor node.  

However, the short wireless sensing distance limits the application of this interrogation 

mechanism. The goal of this thesis is developing a high-speed antenna-sensor interrogation 

mechanism which can be used in high-temperature harsh environment. First of all, a dynamic 

wireless interrogation mechanism was proposed using FMCW interrogation signal and antenna-

backscattering modulation. A frequency resolution of 9.26 ppm and an interrogation rate up to 

320 Hz were achieved. The accuracy of the wireless strain measurement system was validated 

using in-situ strain gauge measurements. The normalized differences between the calibrated 

antenna sensor and strain gauge measurements are less than 1% during the static stress testing, 

which proves the accuracy of the this interrogation mechanism. Vibration testing validated the 

proposed sensing system has good dynamic stress tracking ability up to 8 Hz.  

Static wireless interrogation of antenna-sensor for high-temperature harsh environment 

application was also developed using time-gating technique and a new sensor node which has no 

electronics. Temperature testing (up to 280 °C) was conducted to validate the functionalities of 

the wireless sensor and interrogation system. The measured temperature sensitivity is 195.13 

ppm/°C which matched very well with the theoretical value. 

Dynamic interrogation mechanism of antenna-sensor for harsh environment was also realized 

by combining the FMCW interrogator and non-electronics sensor node. Due to antenna 

backscattering and background clutter have different beat frequencies, time gating can be applied 

on the frequency domain instead of the time domain to extract the antenna backscattering. As a 

result, substantial improvement on the interrogation speed can be achieved. In our study, an 
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interrogation rate of 50 Hz was achieved for the proposed temperature sensing system. During 

the temperature testing, the measured resonant frequencies at different temperatures were 

compared to those measured from static VNA interrogator. The normalized discrepancy is only 

3%, which proves its accuracy. 

Further researches were done to reduce the size of the FMCW interrogator for foot pressure 

sensing system. A compact PCB FMCW synthesizer which has a dimension of 4 * 5 cm was 

developed. It can be powered by a 3.7 V lithium battery and the power consumption is only 160 

mW. The normalized discrepancies between the measurements of compact FMCW interrogator 

and VNA interrogator are within + 0.002%.   

In the future, the research will focus on the antenna-sensor design using ceramic substrate and 

metallic material which have high-temperature limitation. Therefore, the new antenna-sensor can 

be used to measure the temperature up to 1200 °C. Techniques of designing, developing, and 

characterizing flexible dielectric substrate with controlled dielectric and mechanical properties 

will also be investigated to improve the antenna-sensor fabrication procedure. 

Antenna-sensor with dual-sensitivity will also be developed for both mechanical stress and 

temperature measurement. In this study, resonant frequencies of antenna-sensor for both TM10 

and TM01 mode will be used and decoupling data analysis algorithms will be generated to 

determine the sensing information form the frequency spectrum of the antenna-sensor. 

Finally, multiple sensors will be placed on the sensor node to achieve wireless sensing 

network. Microstrip delay lines with different lengths will be added to connect different sensors. 

Due to the unique time delay caused by the delay line sensing information of each sensor can be 

separated from others’ by using time gating technique. Real-time DAQ algorithms will be 

developed to extract the sensing information from each sensor from the mixed antenna-
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backscattering signals.  
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