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ABSTRACT 

INTEGRATION OF MULTIMODAL SENSOR DATA FOR  

TARGETED ASSESSMENT AND INTERVENTION 

 

Shawn Norman Gieser, Ph.D. 

The University of Texas at Arlington, 2017 

 

Supervising professor: Fillia Makedon 

 

Physical and Occupational Therapy have been used for many years to help 

people who have suffered an injury of some kind. This injury could be caused by a 

physical injury, such as falling or breaking a bone, or a brain injury, such as a stroke. 

Traditional interventions involve having a therapist watch a patient perform any 

prescribed interventions to see if they are done correctly and to assess progress, or to 

have a patient perform exercises at home unsupervised. Patients, once discharged, do 

not always adhere to the prescribed intervention. They begin to not keep scheduled 

appointments and not complete the at home exercises. This limits the patient’s chances 

for a full recovery. 

Tele-rehabilitation is a potential answer to improve adherence and rate of 

recovery. By using gamification and Virtual Reality (VR), rehabilitation exercises can be 

turned into more engaging and entertaining activities called exergames. Patients show a 

preference towards these exergames over traditional interventions. The sensors 

required to gather input for these games often include motion tracking technologies. 
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These input modalities can be used to gather more information about a patient than just 

the score achieved in a game. Detailed information about the patient’s motions can be 

collected. With new low-cost alternatives available, such as the Microsoft Kinect, Leap 

Motion, and HTC Vive, these types of tele-rehabilitation systems are becoming more 

affordable. 

This research aims to develop a virtual recreation of an Occupation Therapy 

assessment using newer low-cost equipment. Data gathered from gameplay and from 

sensors are used to assess a user’s performance. Evaluation of different types of 

gameplay will be done to find the best way to administer computerized or virtual 

versions of this Occupational Therapy task. 
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CHAPTER 1 

INTRODUCTION 

1.1 Problem 

During life, people may injure themselves or become injured by the actions of 

others. These injuries may cause people to become either temporarily or permanently 

disabled. People can also become disabled by cause of an illness or something else 

happening inside the body. Regardless of the cause, many disabled individuals undergo 

some type of therapy, whether that be physical, occupational, speech, vocational, or a 

combination of these. This thesis will focus primary on physical and occupational 

therapy applications, but can be extended into the others. 

Physical Medicine and Rehabilitation (PM&R), according to the American Board of 

Physical Medicine and Rehabilitation, deals with the “diagnosis, evaluation, and 

management of persons of all ages with physical and/or cognitive impairment and 

disability,” [1]. Two roles in PM&R are those of Physical Therapists (PTs) and 

Occupational Therapists (OTs) [2]. The American Physical Therapy Association defines 

the role of a PT as someone “who diagnose(s) and treat(s) individuals … who have 

medical problems or other health-related conditions that limit their abilities to move and 

perform functional activities in their daily lives” and “examine(s) each individual and 

develop(s) a plan using treatment to promote the ability to move, reduce pain, restore 

function, and prevent disability” [3]. The American Occupational Therapy Association 

Inc. defines the role of an OT as someone who “help(s) people of all ages participate in 

the things they want and need to do through the therapeutic use of everyday activities 

(occupations), … helps people function in all of their environments, … and addresses 
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the physical, psychological, and cognitive aspects of their well-being through 

engagement in occupation” [4]. 

PTs and OTs provide interventions to their patients in order to improve their 

patients’ quality of life, strength and range of motion (ROM) in affected areas of the 

body, and ability to perform activities of daily living (ADL). Interventions are the 

“interactions and procedures used in managing and instructing patients” [3]. These 

interventions are customized for each individual patient based on their diagnosis, cause, 

and progress during the intervention. While the goal of Physical Therapy and 

Occupational Therapy interventions are similar, the means of which these goals are 

achieved are different. Physical Therapy interventions may involve stretching of 

muscles, applying weight and attempting to use the affected portion of the body, heat 

treatments, and many others but not limited to those detailed in [5] and [6]. 

Occupational therapy interventions may involve buttoning a shirt, picking up and placing 

various types of objects, feeding yourself, and others but not limited to those described 

in [7]. 

As the recovery process begins, patients are transitioned from a hospital to their 

house. These patients are expected to go to local clinics to perform interventions, as 

well as complete a home-based program. The goal of these interventions is to further 

aid in the recovery of patients once they leave the hospital and to learn how to function 

in their normal day to day lives. 

This is where the issue of patient compliance and/or adherence begins to surface. 

Some patients do not complete their prescribed interventions (some studies report over 

50% [8]), while some never attend appointments with PM&R staff [9]. There are many 
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reasons for this noncompliance, including lack of time due a limited lifestyle, patients 

thinking something else is the cause of the pain or will solve their problem, patients 

finding the exercises too boring and repetitive, and many other detailed in [10]. 

1.2 Motivation 

One of the many proposed ideas to solve this compliance issue is to use virtual 

reality to enhance traditional therapy techniques [11]. Virtual Reality (VR) can be 

defined as “the use of computer technology to create the effect of an interactive three-

dimensional world in which the objects have a sense of spatial presence” [12]. VR 

therapy has already been successfully applied to the treatment of PTSD and to help 

people get over phobias [13,14]. VR exposes people to triggers of a psychological 

condition in a safe and controlled environment. These triggers can be changed or 

modified based on a person’s reaction and progress through a recovery program. 

VR can be applied to physical and occupation therapies in a similar fashion. A 

Virtual Environment (VE) can be created to mimic real world situations where a patient 

can perform any actions needed to complete a goal. The actions, goals, and all other 

aspects of the VE can be modified based on the current abilities and limitations of the 

patient to make it easier or harder. This happens under the supervision of a therapist 

which can make any necessary changes during the course of treatment and make sure 

a patient does not injure him/herself. VR interventions have been shown to have an 

increased compliance rate and an increased rate of recovery compared to traditional 

interventions [15]. Also, the opinions of the patients towards interventions have also 

improved when they are VR based [16]. 
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Turning therapies into games have also been proposed, especially when 

developing interventions for children. Using game based, or “gamified,” interventions 

have shown similar results to those using VR interventions. This has led to VR gamified 

interventions. Patients undergoing these interventions not only showed an increased 

compliance rate and rate of recovery [17], but also experienced less pain during these 

games [18]. 

The main concern with VR gamified interventions is that these interventions 

require expensive sensors, computers, and other equipment, many of which are 

connected to the patient. This poses two issues. The first is the cost of the equipment. 

Many hospitals and clinics cannot afford to purchase this equipment, making VR based 

interventions available to those who have access to those certain facilities. The cost 

would also prevent many patients from doing any VR home-based interventions. This 

would require all patients to do interventions at a hospital or clinic. This would be next to 

impossible for patients who live far away from these facilities or have busy lives. Also, 

PM&R staff would have to obverse all activity that takes place to make sure there is no 

damage to equipment, therefore increasing staff costs, only making VR interventions 

even more expensive. 

The second issue is that the patient has to wear this equipment or have wires 

attached to them. This causes the patient to become encumbered with the extra weight 

of the equipment. The wires also limit the movement of patient. All of these may limit the 

effectiveness of Physical and Occupational Therapy. This would require extra care to be 

taken during interventions to make sure no harm comes to the patient. 
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In recent years, new low-cost off-the-shelf sensors have become available, many 

of which were initially designed for playing games. There are many examples of these. 

The Microsoft Kinect tracks human body movement in the form of a skeleton. The Leap 

Motion Controller tracks the movement of the hand and fingers. The Nintendo Wii has 

accessories that track human movement and infrared light. The Myo, by Thalmic Labs, 

tracks the movement of an arm while obtaining electromyography (EMG) data from the 

muscles to interpret hand gestures. Head Mounted Displays (HMDs), like the Oculus 

Rift, Samsung Gear, and HTC Vive, have made immersive VEs much more affordable 

and accessible to many individuals. Many of these sensors have already begun being 

used in various types of therapeutic interventions and are showing positive results [19, 

20]. These sensors would allow the use of VR based interventions in a home 

environment, allowing a significant amount of data to be collected when a therapist is 

not present. 

1.3 Proposed Work 

In this dissertation, we present a framework for a Computerized Rehabilitation 

system using the different versions of the Box and Blocks Test. The goal of this system 

is to allow a patient to complete different versions this test in a home environment 

without a therapist present. A therapist would prescribe an intervention and send it to 

the patient via a hospital system. The patient would log in and see what exercises or 

games to do that particular day. The patient would then perform those exercises or play 

those games using various low-cost sensors, generating large amounts of multi-modal 

data. This data then goes though many types of computational analysis, such as data 

fusion, gesture recognition, activity performance evaluations, and many others in order 



 6 

to provide reports. These reports contain any necessary information in a readable form 

that the therapist and the patient need to further the recovery process. This information 

is saved to a database so that it can be viewed by both the therapist and the patient as 

needed. The patient would view their information in order to see visible progress of their 

rehabilitation, which would motivate them to perform even better and perform the 

interventions. The therapist would view this information in order to monitor patient 

progress and make changes to the intervention to help the patient recover faster. Figure 

1.1 gives a general overview of the proposed cyber-physical framework. 

 

Figure 1.1 Architecture of Proposed Box and Blocks Rehabilitation Framework 

This dissertation focuses on the sensor and computational analysis portions of 

the Box and Blocks Rehabilitation framework. The topics of this dissertation is 

organized in the following order. Chapters 2, 3 and 4 focus on sensor validation, 

including visualizing data obtained from sensors, determining error, and using the 

sensors in tasks to see if they would be useful for a more complicated task. Chapters 5 
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and 6 present games that may be used for physical or occupational therapy. Chapters 

7, 8, and 9 present the Box and Blocks Test, 2 computerized versions of this test, user 

opinions of the different versions, and analysis of data obtained from the computerized 

versions. Finally, Chapter 10 will provide concluding remarks and a discussion of future 

work. Figure 1.2 provides a visual representation of this dissertation. 

 

Figure 1.2 Structure of Dissertation 
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CHAPTER 2 

USING CAVE IN PHYSICAL REHABILITATION EXERCISES  

FOR RHEUMATOID ARTHRITIS 

2.1 Introductory Comments 

 This chapter is the first chapter of the Sensor Validation section of this 

dissertation. If obtained sensor data cannot be easily visualized or explained to a health 

professional, then a case could be made that the sensor should not be used in 

rehabilitation. However, if the data obtained is combined with data from another sensor, 

or the results from computational analysis of that data, is something that can be easily 

visualized or explained, then it would be valid for rehabilitation.  

 This papers shows ways to visualize data obtained from motion tracking sensors. 

It also presents analysis tools on how to get useful and meaningful results from the data 

obtained. The contributions of each of the authors is as follows: 

• Shawn Gieser: Designed study, ran participants, performed analysis, wrote most 

of the paper 

• Eric Becker: Supervised the study, assisted in study design, suggested analysis 

techniques, wrote some of the related works, helped edit the paper 

• Fillia Makedon: Supervised the study, helped edit the paper 
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2.2 Abstract 

Rheumatoid Arthritis is a chronic disease that leads to swelling and inflammation 

of the joints and even spread to surrounding tissues and blood vessels. Physical 

therapy has been used successfully to slow the effects of this degenerative disease. 

Patients, however, do not want to do these exercises due to the fact they are boring and 

repetitive. In this paper, we introduce the first steps in creating a virtual environment 

using a CAVE System for the physical therapy sessions where the user will be engaged 

and motived to complete the exercises prescribed by his or her doctor. 

Categories and Subject Descriptors: I.4.8 [Image Processing and Computer 

Vision] Scene Analysis – Motion Tracking, J.3 [Computer Applications] Life and Medical 

Sciences 

General Terms: Experimentation, Human Factors 

Keywords: Rheumatoid Arthritis, CAVE, Motion Tracking, Physical Therapy 

2.3 Introduction 

Rheumatoid Arthritis (RA) is a chronic, systemic, inflammatory autoimmune 

disorder causing pain and swelling of both large and small joints and commonly 

presents in patients age thirty to fifty years of age [1]. RA can also spread to muscles, 

arteries, and internal organs, causing an increase in morbidity and mortality [2]. RA 

decreases the lifespan of an affected person by an estimated five to ten years [3]. 

Not only does RA decrease a person’s lifespan, but it also decreases your 

productivity while they are working. A person will have a fifty percent probability of being 

permanently work disabled after a range of four and a half to twenty-two years, losing 

an average of thirty-nine days in the first year [4]. This loss of productivity, along with 
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the chronic pain caused by RA, leads patients to become depressed, thirteen to 

seventeen percent of which are severe cases [5]. 

Patients were originally told rest and not exercise whenever possible, but that 

has changed over the past twenty years with studies focusing on the effect of exercise 

and outcome measures as diverse as fitness, muscle strength, bone density, functional 

scores, disease activity and joint damage [6]. Even though exercise helps, there is non-

compliance with some patients when it comes to performing the prescribed exercises. 

The reason for non-compliance could be that they do not have time, find them to boring, 

or are just unable to do them [7]. In fact, less than fifty percent of patents continue 

performing the exercises when not supervised [8]. 

So this makes the question of “How do we keep patients involved in their 

rehabilitation exercises to where they want to complete them?” In this paper, we present 

our preliminary results in creating a virtual reality (VR) environment using a CAVE 

system for RA physical therapy in which patients will complete game-like activities to 

motivate them to complete their activities. More specifically, we will present a basic 

calibration sequence and what data can be represented with just a basic exercise from 

tracking the motion of the patient. 

In this paper, we will first talk about related works done with VR and CAVE in 

other aspects of health care, as well as other technologies in motion tracking. Second, 

we will describe the calibration sequence and exercises that were done to capture data. 

Then we will show results of analysis done on the captured data and explain their 

significance. Lastly, we will describe our conclusions and future work for this work. 

2.4 Related Works 
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2.4.1 Virtual Reality and CAVE in Rehabilitation 

VR has been used in many different forms for rehabilitation. The main reason for 

this particular method is that VR can provide interesting and engaging tasks that are 

more motivating than formal repetitive therapy [9]. This brings the complexity of the 

physical world into the controlled environment of the physical. VR allows for the 

measurement of natural movement within natural complex environments. In fact, this 

particular method also allows us to create a synthetic environment with precise control 

over a large number of physical variables that influence behavior while recording 

physiological and kinematic responses. VR also provides the numerous strengths, 

which include stimulus control and consistency, real-time performance feedback, 

modifications of the program based on patient’s abilities, the ability to distract the 

patient, and to motivate the patient directly while performing the exercises [10]. 

Using VR in rehabilitation has shown an improvement over regular rehabilitation 

techniques. Over seventy percent of patients in a VR rehabilitation group showed 

clinically significant improvements, while only forty percent of patients did who were in a 

traditional rehabilitation group. Also, the VR group had a higher enthusiasm towards the 

exercise programs, enjoyed the exercises more, and had an improved confidence level 

[9]. All these can cause long term compliance while rehabilitation takes place. 

VR rehabilitation has been used in patients with Cerebral Palsy, patients 

recovering from surgery, and patients who have had a stroke [11]. Both [11] and [12] 

use VR for stroke rehabilitation using a glove for haptic feedback. [11] focuses more on 

the technical side showing an improvement in patient’s use of hands. [12] shows that 
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patients actually liked this exercise and that they would actually expect further 

improvement if people. 

CAVE is very useful in VR rehabilitation. CAVE can track a patient’s arm and 

represent it in the virtual world. In this case, a patient would have to actually move and 

reach into the virtual world in order to interact with objects and to perform his exercises. 

One can save this data and generate the joint angles for the arm. This data can be used 

to track range of motion over time and see improvements the patient is making [13]. 

2.4.2 Other Technologies in Rehabilitation 

Other motion tracking technologies have been used in various rehabilitation 

exercises. VICON has been used in Cerebral Palsy rehabilitation therapies by tracking 

children while they are playing games such as Wii Sports and Dance Dance Revolution 

[14]. VICON was also used in determining balance of patients by having them stand on 

a tillable surface that would shake and the patients would have to regain balance [15]. 

While VICON is a good approach, the time it takes to connect all the reflective sensors 

or putting on a suit for motion caption would take too much time. 

Nintendo Wiimotes have been used in motion tracking as well. This is used 

mainly in upper body rehabilitation since the Wiimote has to be held in a hand. The 

patient can use the Wiimote to interact with objects in the virtual environment. This 

requires the set up to have at least two Wiimotes and an infrared LED emitter. This was 

added into a CAVE environment [16]. 

Lastly, the Microsoft Kinect has become popular in the last few years. A system 

called RPLAY is using the Kinect for tracking the patient’s motions. It uses a Dynamic 

Space-Time Warping algorithm to analysis 3-dimensional human motion. However, the 
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accuracy of the Kinect is not perfect and can cause issues the tracking. Also, it does not 

allow the subject to be fully immersed in the environment [8]. 

2.5 Experiment 

For this experiment, we used student volunteers to would simulate a patient by 

moving their arms in big circles while hitting certain target points along the circle’s path. 

We used the IS-900 for capturing data. The two wrist sensors were worn by the student 

while the head sensor was placed on the ground to be used a reference point. The 

wand was not used for this experiment. The experiment consists of two stages. The first 

part calibrates the system for the current student. The second part is the data collection 

while the student performing the exercise. 

2.5.1 Calibration 

Before we can begin data collection, we have to calibrate the system for the 

student. The calibration process establishes the target points that the student would 

have reach. Figure 2.1 shows the six target points that each student had to calibrate, 

with each one given a code of one through six. 

 

Figure 2.1 The target points that have to be targeted before data collection can begin. They are labeled 
(from top to bottom, left to right) forward (1), back (2), left (3), right (4), up (5), down (6). 
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Each student will require a different calibration due to the fact that each student 

has a different height, weight, and physical build. Calibration points could also differ on 

the same subject over different days. If the subject is not hurting, then the target points 

would be further out then on a day when he hurting and unable to extend his arms as 

much. After calibration is complete, an error is created around each target point. This is 

so that the participant only has to be close the target point, and not be perfect every 

time. 

These target points are then saved for later use during both the data collection 

phase and the analysis. 

2.5.2 Data Collection 

The data collection part is where the student does the actual exercise. Each 

student had to do six different exercises, each thirty times. Each exercises required 

them to move their arms in circles to hit the various target points (Figure 2.1) for that 

exercise. The exercises are shown in Table 2.1. 

Table 2.1 Exercises and Movement Path 

Exercises Path of Points 
Vertical Clockwise 3, 5, 4, 6 

Vertical Counterclockwise 3, 6, 4, 5 
Horizontal Clockwise 3, 1, 4, 6 

Horizontal Counterclockwise 3, 6, 4, 1 
Side Circle Forwards 5, 1, 6, 2 

Side Circle Backwards 5, 2, 6, 1 
 

During the data collection, a sample is taken at a rate of fifty hertz. Each sample 

contains a sample number, current recognized target point (zero if no point recognized), 

and the x, y, and z coordinates of the three sensors. These samples are saved and are 

used for analysis later on. 
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2.6 Results 

2.6.1 Data Visualization 

With just the raw data, one can already see useful information. The motion in the 

depth (Figure 2.2), horizontal (Figure 2.3), and vertical directions (Figure 2.4) can be 

plotted with respect to time. Also, the full three-dimensional path can be plotted (Figure 

2.5). 

 

Figure 2.2 Position (m) in the depth direction with respect to time 

 

Figure 2.3 Position (m) in the vertical direction with respect to time 
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Figure 2.4 Position (m) in the horizontal direction with respect to time 

 

Figure 2.5 Position (m) in 3D space 

2.6.2 Segmentation 

Next, we break up the session into segments. Each segment is only circle during 

the session. This is relatively easy to accomplish. Since we know where the circle starts 

(say position 3), we can just look through the file and look for times when one circle 

ends and another begins (when it transitions form a 0 to a 3). Each of these segments 

can also be represented as a three- dimensional graph. These graphs can show us if a 



 21 

patient is struggling during a certain part of the exercise by a portion of the circular 

shape being concave compare to the rest of the circle. 

2.6.3 Segment Analysis 

One analysis that can be run on these segments is how consistent the patient is 

over time. To do this, we need to compare the radii of the different segments to each 

other. To compute the radius of a segment, we must find the center of the segment first. 

This can be done using the following formula: 

𝑥", 𝑦", 𝑧" = (
𝑥()

(*+

𝑛 ,
𝑦()

(*+

𝑛 ,
𝑧()

(*+

𝑛 ) 

where xc, yc, and zc are the center of the segment, n is the number of points in that 

segment, and xi, yi, and zi are the current point in the segment. 

Now that we have the center of the segment, we can calculate the average 

radius of that segment. To do that, we can use the this formula: 

𝑅𝑎𝑑𝑖𝑢𝑠456 = 	
𝑥( −	𝑥" 9 +	 𝑥( −	𝑥" 9 +	 𝑥( −	𝑥" 9;)

(*+

𝑛  

where xc, yc, and zc are the center of the segment, n is the number of points in that 

segment, and xi, yi, and zi are the current point in the segment. 

We can now compare the average radii across multiple segments to see if a 

patient is struggling during the course of the exercise. This radius can also be compared 

to a target radius taken from target points. Example of struggling is show in Table 2.2. It 

shows that the subject is getting either worn out or is beginning to experience pain. If we 

take the average radius of the whole exercise, then we can see if the patient is 

improving or regressing over the course of time. 
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Table 2.2 Comparing average radius samples to target radius 

Sample Number Average Radius (m) Target Radius (m) 
1 0.35 0.35 
10 0.33 0.35 
20 0.32 0.35 
30 0.30 0.35 

 

2.7 Conclusions 

In this paper, we have presented the first steps in creating a virtual environment 

for rheumatoid arthritis physical therapy treatments. We showed how to calibrate the 

system and to perform the exercises. This calibration process can be used to make the 

commands for the games. These commands would be the exercises so that the subject 

would not feel like he or she is doing rehabilitation but playing a game instead. 

We then demonstrated what data can be obtained from the sensors, the 

visualization of the data, and any initial processing that cane be done. This data can be 

used by medical staff to show how much a subject is improving or degenerating over 

time. This will allow the medical staff to make changes to the games to incorporate 

different motions to better suit the patient. 

2.8 Future Work 

The next part of this project is to incorporate game-like activities so that patients 

will actually enjoy and become engaged in their exercises. Also, we need to find out any 

other useful data we can obtain and represent. Finally, we need to find the best way to 

visualize the data for the medical staff to make the best decisions. 
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CHAPTER 3 

QUANTITATIVE EVALUATION OF THE KINECT SKELETON TRACKER  

FOR PHYSICAL REHABILITATION EXERCISES 

3.1 Introductory Comments 

 This is the second chapter in the Sensor Validation section of this dissertation. 

Each sensor has its own accuracy issues. This can be caused by either an error created 

by the senor, or noise in the sensor data. This can be corrected by various means, such 

as sensor calibration, adjusting the position of the sensor, adjusting the data obtained to 

account for the error, or filtering out noise. Medical data needs to be as accurate as 

possible, so planning on how to deal with sensor error is a must when it comes to 

assessing a sensors validity for rehabilitation. If the error is minimal, or can be reduced 

or eliminated, then a sensor would be valid for rehabilitation. If the error cannot be 

reduced or rectified, then the sensor would not be valid for rehabilitation. 

 This chapter presents a way to determine the error by using a ground truth 

VICON system and discusses one technique to eliminate error from a Microsoft Kinect 

V1 sensor. The contributions of each of the authors is as follows: 

• Shawn Gieser: Designed study, collected data, performed analysis, wrote paper 

• Vangelis Metsis: Assisted in study design, suggested analysis techniques, 

assisted in analysis, edited paper 

• Fillia Makedon: Assisted in study design, edited paper 
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3.2 Abstract 

Using video game technology in physical rehabilitation has shown many positive 

results in the past few years. The release of the Microsoft Kinect has presented many 

new opportunities for development in physical rehabilitation technologies. However, 

there have been questions about the Kinect’s accuracy in actual experimentation. In this 

paper, we compare skeleton data obtained by a Kinect to that obtained by a VICON 

system in order to determine the accuracy of the Kinect while a tracked subject is 

moving their arm around. This is the first steps towards a much larger physical 

rehabilitation system. 

Categories and Subject Descriptors: I.4.8 [Image Processing and Computer 

Vision] Scene Analysis – depth, range data, motion, tracking, J.3 [Computer 

Applications] Life and Medical Sciences – Health 

General Terms: Measurement, Reliability, Experimentation, Human Factors, 

Verification 

Keywords: Kinect, VICON, Motion Tracking, Physical Therapy 

3.3 Introduction 

Rehabilitation has two major goals: the enhancement of functional ability, and the 

realization of greater participation in community life. In terms of physical rehabilitation, 

the focus is to improve motor functions of various joins and limbs to improve the 

patient’s daily life [1]. Game based physical therapy has been shown to be useful. 

Patients who had had experiences with Virtual Reality integrated with their exercises 

have found the exercises more entertaining and had higher rates of recovery [2]. Also, 

work with other types of gaming technology have shown to be useful as well, such as 
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the Nintendo Wii and the Microsoft Kinect [3, 4]. These type of systems prove useful 

because they are low cost and highly accessible. 

But now comes the question of “If these systems are low-cost, then is there any 

accuracy lost due to decrease in cost?” In this paper, we present a validation system to 

analyze the accuracy of the Microsoft Kinect. We use the Microsoft Kinect’s Skeleton 

Tracker to track a subject and compare it to a Vicon system that is tracking the subjects 

arm. 

In this paper, we will first talk about some uses of the Kinect in other 

rehabilitation systems as well as other evaluation and validation techniques. Second, 

we will describe the equipment used and the experimental setup of how we collected 

data. Then, we will show the results of analysis done on the captured data between the 

two different systems. Lastly, we will describe our conclusions and future work. 

3.4 Related Work 

The Microsoft Kinect provides a low-cost, markerless motion tracking system. 

This is attractive to rehabilitation systems for many reasons. Because of its low-cost, it 

can be used by almost anyone who can afford it. There is not the hefty price tag that 

very accurate systems such as a Vicon system can provide. This makes it so it can be 

widely used in many places, not just a scientific or laboratory setting. Other marker 

based systems have the disadvantage of requiring a set up time and accurate 

placement of the markers. A markerless system allows for a faster experience for 

patients and does not hinder the patient’s movements in anyway [5]. 

The Kinect has already been used in a Kinerehab project [4, 6]. The purpose of 

this was to determine the number of correct motions made by a patient. Also, [7] uses a 
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Kinect while having subjects play games made for rehabilitation. The main issue with 

these approaches is that there is no validation of the data obtained using a ground truth 

as reference. 

Work has also been done to validate the depth sensor of the Kinect [8]. The work 

done here has shown that the Kinect can do well at performing depth analysis. 

However, this work was only done on static objects and not done on actual people or 

used with objects in motion. 

Evaluation work has also been done in gait assessment [5, 9]. One approach had 

the Kinect stationary, while the other had it placed on a mobile robot while following a 

person. Both show promising results with the Kinect while comparing against a Vicon 

system. However, these approaches focused on gait assessment and did not focus on 

upper body. 

Also, validation work has also been done when focusing on postural control [10]. 

This work also shoes that the Kinect has the potential to be used in clinical settings. 

They did mention some drawbacks that were found. One of limitations found was lack of 

access to joint rotations in the subject’s limbs. This limits the amount of angular data 

that can be obtained from the joints. 

3.5 Experiment 

3.5.1 Equipment 

3.5.1.1 Vicon 

The Vicon system is a motion capture system that was used as a ground truth in 

our experiments [11]. It is used for collecting highly accurate 3D coordinate positions of 

infrared (IR) reflective markers. 
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For this, we used the Vicon Tracker software to track markers placed on a 

subject’s left shoulder, elbow, and wrist. Since Tracker only tracks rigid bodies, we 

made custom 3D printed mounts to place the markers in and taped them to the 

subject’s body. They were placed in such a way to mimic joints in the Kinect SDK. 

Figure 3.1 shows the mounts and the placement on the body. 

 

 
Figure 3.1 Top) Vicon markers placed in the 3D printed mounts.  The left mount was placed on the wrist, 

the center was placed on the elbow, and the right was placed on the shoulder.  Bottom) The mounts 
placed on the body. 
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3.5.1.2 Microsoft Kinect 

The Microsoft Kinect, as shown in Figure 3.2, is a low-cost sensor that captures 

motion data from an IR camera and a regular RGB camera [12]. We are using the 

Skeleton Tracker from the Kinect SDK to obtain the joint positions of the subject in 3D. 

Figure 3.3 shows an example of the model produced by the skeleton tracker. 

 

Figure 3.2 The Microsoft Kinect Sensor with Vicon markers placed on top 

 

Figure 3.3 Skeleton Tracker Model produced from the Kinect SDK. 

3.5.2 Experimental Setup and Data Collection 

For the experiment, our goal was to compare data from the Kinect Skeleton 

Tracker to that of the Vicon system. To start, we placed Vicon markers on top of the 
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Kinect (Figure 3.2). This gives the position of the Kinect in the Vicon reference frame as 

well as the Rotation and Translation Matrices between the Kinect and Vicon reference 

frames. We then placed the Kinect on a tripod in a room with 16 Vicon MX cameras 

(Figure 3.4 Top). The subject then walked into the room with the markers attached to 

their arm. Figure 3.4 Bottom shows the view of the setup from Vicon Tracker. 

 

 
Figure 3.4 Top) Kinect placed in the Vicon Capture area. Bottom) Vicon Tracker view of the environment. 



 34 

The subject walked into the room wearing the mounts on their arm. The subject 

was then asked to walk around and move their arm around to where the both the Kinect 

and Vicon would we the motion. The Kinect recorded all the X, Y, and Z coordinate 

position in meters, while the Vicon recorded the same values for the marker mounts. 

Timestamps of when the samples were taken were also recorded. This is because the 

Kinect records at 30 frames a second, and Vicon records at 100 frames a second. This 

allows us to find matching frames between the two systems. 

3.6 Results 

The first step in order to compare the Kinect and Vicon data is to convert from 

points obtained from the Kinect reference frame to the Vicon reference frame. The 

Vicon system gives the rotation and translation matrices between the two systems, 

making the transformation trivial. Figure 3.5 shows an example of the obtained arm 

position data from the two different sensors. We then calculated the difference between 

the two sets of samples. Figure 3.6 shows the difference between the Kinect and Vicon 

for each frame taken. The reason for the different number of samples for each joint is 

that the Vicon system did not capture all the mounts in each frame. The reason for this 

is that the markers that were placed too close together, particularly on the wrist mount. 

The system saw two markers as one and recorded the value for that mount at [0, 0, 0] 

for some frames. Those frames were excluded from all calculations. The spikes at the 

end of the graph were caused by walking away from the Kinect where the Kinect’s error 

increases greatly. 
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Figure 3.5 Visual comparison of the subject's arm from both Vicon and Kinect views. 

 

Figure 3.6 Difference of the joint positions between the Vicon and Kinect samples. 

Table 3.1 shows the mean and the standard deviation of the joint positions 

between the two systems. There were some differences between the two, which were 

expected. This much of a difference was not. Other experiments that used Vicon for 

Kinect evaluation shown more promising results [5, 9, 10, 13]. Gait analysis has had 
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average error of less 2cm [5]. [13] also tracked an subject’s arm using a Kinect and a 

similar system to that of the Vicon. The error presented in their work was also 

significantly less than ours. All of these used markers placed on the body instead of 

using mounts. This has led us to believe that our issue with how the markers were 

placed on the body during our experiments. The fact that the markers were placed on 

top of the Kinect means that the Vicon system sees the Kinect slightly higher than 

where the principle point of the depth camera actually is. Also, the calculated center of 

the Kinect from Vicon may also not line up with the principle point. Another reason for 

the differences were that the mounts could have caused some deviation as well. While 

we tried to mimic the joint positions of the Kinect SDK Skeleton Tracker, the mounts 

may have been slightly off. Also, the mounts were a raised surface on the body, causing 

Vicon to see the mounts closer to the Kinect than the joint actually was. 

Table 3.1 Mean and Standard Deviation of the Difference of Joint Positions  
between the Vicon and Kinect samples 

Joint Mean (m) Standard Deviation (m) 
Shoulder 0.302 0.138 

Elbow 0.322 0.180 
Wrist 0.284 0.178 

 

Next we determined the above mentioned difference that was caused between 

these two systems and accounted for this. This significantly reduced our error, as 

shown in Table 3.2 and Figure 3.7. To remove the error, we measured the approximate 

distances between the position of the mounts and the Kinect joint locations, as well as 

the distance from the Kinect and the markers on top of the Kinect. When these were 

accounted for, we able to obtain much more promising results. 
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Table 3.2 Mean and Standard Deviation of the Difference of Joint Positions between the Vicon and Kinect 
samples after Correction 

Joint Mean (m) Standard Deviation (m) 
Shoulder 0.057 0.036 

Elbow 0.079 0.061 
Wrist 0.084 0.077 

 

 

Figure 3.7 Difference of the joint Position between the Vicon and Kinect samples after error corrections. 

3.7 Conclusions 

In this paper, we have shown a way to validate data obtained from the Microsoft 

Kinect Skeleton Tracker. We also compared this data to that obtained from a Vicon 

system while tracking a subject’s arm. The Vicon system was used as a ground truth in 

order to determine the accuracy of the Kinect. The results that were obtained were not 

exactly expected. The difference between the two systems was somewhat significant 

averaging at least 5cm per joint, but parts of this were caused by the experimental 

setup. The fact that there are still differences seen means that further work needs to be 

done in order to further reduce this difference. 
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3.8 Future Work 

The first step that has to be taken is to figure out how much error was introduced 

by the set up. Also, different marker formation in the marker mounts have to be made so 

that less frames have to be dropped. Finally, this would have to be applied to the whole 

body instead of just an arm so that full body tracking can be validated. 
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CHAPTER 4 

EVALUATION OF A LOW COST EMG SENSOR AS A  

MODALITY FOR USE IN VIRTUAL REALITY 

4.1 Introductory Comments 

 This is the third and final chapter of the Sensor Validation section. If a sensor will 

be used for recognizing gestures in a game, that sensor should be able to recognizes 

gestures outside of a game. The same can be applied to Activities of Daily Living 

(ADLs) and exercises. A test using a sensor to perform basic tasks or classify simple 

actions should be done before incorporating it rehabilitation tasks or games. If the 

sensor can recognize the required gestures in simple activities or the desired motion 

outside of the game, then it would be valid to use in rehabilitation games. If the sensor 

cannot classify the gesture, then it would not be valid for use. Any results obtained from 

a low-cost sensor should be similar to a more accurate sensor. 

 This chapter presents an assessment of a low-cost EMG sensor by using data 

obtained for gesture classification. These classification results are compared to that of a 

more accurate sensor. The contributions of each of the authors is as follows: 

• Shawn Gieser: Designed study, collected data, decided analysis techniques, 

generated figures, annotated data, wrote paper 

• Varun Kanal: Assisted in study design, collected data, developed data visualizer 

decided analysis techniques, performed analysis, generated tables, assisted in 

results section 

• Fillia Makedon: Assisted in study design, edited paper 

  



 42 

EVALUATION OF A LOW COST EMG SENSOR AS A  

MODALITY FOR USE IN VIRTUAL REALITY3 

 

 

 

 

 

 

Shawn N. Gieser, Varun Kanal, and Fillia Makedon. 2017. Evaluation of a Low Cost 

EMG Sensor as a Modaility for use in Virtual Reality. In Stephanie Lackey and Jessie 

Chen (eds.) Virtual Augmented and Mixed Reality (VAMR ’17). Lecture Notes in 

Computer Science, vol. 10280. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-

57987-0_8 

 

  

                                            
3 In Press 



 43 

4.2 Abstract 

Virtual Reality (VR) is becoming more accessible to everyday users. Users of VR 

want realistic experiences, both in how it looks and in how to interact with the 

environment. Electromyography (EMG) is a possible tool to use to make VR more 

realistic, but in the past, has been considered too expensive to be accessible to the 

everyday user. New low-cost EMG sensors have become available in recent years that 

have made this technology more available to the everyday user. In this paper, we 

evaluate one low-cost EMG sensor to assess its usefulness as an input modality for VR. 

We will do this by assessing how accurately gesture recognition can be accomplished 

with the data acquired from the sensor. We will compare it to gesture classification done 

with data obtained from a higher cost EMG system that has a much higher sampling 

rate. If the classification results are similar, then low-cost EMG is a valid choice as an 

in- put modality for VR. 

Keywords: EMG, Gesture Classification, KNN, SVM, Myo Armband, Trigno Lab 

4.3 Introduction 

Virtual Reality (VR) technology is becoming more and more accessible to 

everyday users. Just in the last two years, releases of multiple consumer versions of 

Head Mounted Displays (HMDs), such as the HTC Vive, Oculus Rift, Samsung Gear 

VR, Sony Playstation VR, and Google Daydream just to name a few, have increased 

the demand for this technology [1]. The people who use VR love how immersive the 

environment is and that tasks are accomplished by mimicking the motions needed to 

perform the task in real life [2]. 
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VR tasks, however, sometimes do not properly mimic their real world 

counterpart. Once commercial example would be the game The Climb by Crytek [3]. In 

this game, one climbs a virtual wall using two controllers to represent their hands. 

Buttons are used for grabbing rocks and putting chalk on the virtual hands. In real rock 

climbing, one uses their hands, feet, and various muscle groups to climb a wall or rock 

face. There are no buttons to press to perform these tasks. Therefore, one could say 

that this virtual task does not have a high degree of interaction fidelity. Interaction fidelity 

is the objective degree of exactness in which real-world interactions can be reproduced 

in an interactive virtual environment [4]. 

One possible way to increase interaction fidelity is to add electromyography 

(EMG) as an input modality. Let us create an example task by requiring a user to push a 

heavy block in a virtual environment. With controllers, this task can be completed by 

navigating to the block, moving the controllers to the block, pressing a button to grab the 

block, then finally moving the controllers forward to push the block. This is a very simple 

list of actions to complete if this block really was heavy. With the addition of EMG, we 

could add one more requirement to the list of actions. In addition to moving the 

controllers forward, the user would have to flex the muscles in their arms and chest. 

This would make the task more similar to the real world counterpart since the virtual 

task now requires similar muscle activation to the physical task. 

In this paper, we will be evaluating a low cost, off the shelf, EMG sensor in its 

use-fullness to classify gestures. We will be comparing the results with a full EMG 

system that has a higher sampling rate. If the low-cost sensor is useful in being able to 

classify gestures and has a similar success rate classifying gestures as the full EMG 



 45 

system, then it would also be useful as a modality in VR applications. We will begin by 

going over background information and related works, followed by our experimental 

setup and procedure. We will then talk about our analysis and discuss our results. 

Lastly we will present our conclusions and future work. 

4.4 Related Work 

There have been many different approaches for deciding how to handle input in 

VR. Text input has been attempted many times. Researchers have used various 

techniques such as speech, gloves, writing on tablets, chord keyboards, and gesture 

mapping [5, 6]. SteamVR uses a controller in which users point at a virtual keyboard 

and click which letters they want [7]. Drawing has also had various techniques applied 

to it. Haptic devices which have a pen or a stylus attached have been used [8]. Modern 

approaches however use controllers to accomplish this, such as what is used in Google 

Tilt Brush [9]. Others have focused on movement techniques in VR. [4] compares game 

movement techniques and its correlation to different levels of display fidelity. The two 

different movement techniques compared are keyboard input and a “human joystick” 

where the user’s position and distance from a central point effects direction and speed 

of movement in a game. The two different levels of display fidelity were a one wall of a 

six-sided CAVE and another version using four wall of the CAVE to create a full 360-

degree environment. The situations that performed the best were either high levels of 

both interaction and display or low interactions of both. It has also been said that 

developers should focus on not developing mid-fidelity or semi-natural interactions 

techniques that do not resemble real world interactions [10]. Commercial examples of 

movement techniques vary between many different options, which include, but not 
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limited to, an omni-directional treadmill and using a controller to point at a location and 

“teleport” to that location [11, 12]. All of these various techniques represent different 

degrees of interaction fidelity. 

Gesture classification has been done by others using EMG. Most of these 

studies involve expensive equipment, or equipment put together in house. Various 

classification techniques have been used, including K-Nearest Neighbor (KNN) [13], 

Support Vector Machines (SVM) [14], Dynamic Time Warping (DTW) [15], and Bayes 

[16]. EMG gesture classification has been used for various applications as well. It has 

been used as an input device for games and computers [13, 17], as well as assisting 

the users with motor disabilities in navigating a wheelchair [18]. EMG has also been 

combined with accelerometers to get increased accuracy on motions and tasks that 

involve movement of the hand or arm [19]. EMG has been used in VR to train amputees 

how to control a prosthetic device so that they can become used to controlling the 

device before having it attached to their body [20]. These uses of EMG data show that 

EMG can serve as a modality in VR. With low-cost options becoming available, can 

these EMG sensors, that don’t have as high of a sampling rate, serve in the same 

capacity? 

4.5 Experimental Setup and Procedure 

In this section, we will begin by describing the equipment that was used. This will 

be followed by the procedure, detailing the gestures used, sensor placement on the 

body, and how the study was conducted. 

4.5.1 Equipment 
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We acquired data from two different EMG sensors. The first one was the Myo 

Armband developed by Thalmic Labs [21], seen in Figure 4.1 Left. It is a wireless 

sensor that communicates with a computer or smart phone via Bluetooth. It contains 

eight EMG sensors with a sampling rate of approximately 200 Hz [22]. It also has a nine 

axis IMU, a three-axis accelerometer, and a three-axis magnetometer, all with a 

sampling rate of approximately 50 Hz. For the sake of this study, all we are using is the 

EMG aspect of this sensor. The Myo Armband is relatively inexpensive when compared 

to that of medical grade EMG systems. The main issue with this sensor is that the 

sampling rate for the EMG sensor does not satisfy the Nyquist-Shannon Theorem. The 

Nyquist-Shannon Theorem states that the sampling frequency should be greater than 

twice the signal frequency [23]. Based off this theorem, the Myo Armband should only 

be able to pick up signals with a frequency of 99 Hz and lower. This then creates a 

potential issue, since most significant EMG activity happens in the 5 to 450 Hz range 

[24]. 

 

Figure 4.1 (Left) The Myo Armband (image from myo.com). (Right) Delsys Trigno Lab (image from 
delsys.com). 
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The second sensor was the Trigno Lab developed by Delsys [25], seen in Figure 

4.1 Right. The Trigno Lab has a number of small sensors that communicate to a base 

station via an RF signal. Each sensor contains an EMG sensor with a sampling rate of 

approximately 1926 Hz and has a three-axis accelerometer with a sampling rate of 

approximately 148 Hz [26]. This EMG sampling rate easily satisfies the Nyquist- 

Shannon Theorem since it is over four times the maximum frequency of significant EMG 

activity.  

Two different pieces of software were used for data collection. For collecting data 

from the Myo Armband, we used Unity [27]. We felt that it was a more realistic approach 

than specialized data collection programs. Since the goal was to see if the Myo 

Armband would be good for VR, it made sense to use a program that had built in 

functionality for game design and VR. For data collection from the Trigno Lab, we used 

EMG Works [28], a specialized piece of software developed by Delsys. 

4.5.2 Experimental Procedure 

To assess the validity of low cost EMG sensors as a modality for VR, we will be 

assessing how well we can classify gestures with just EMG data. This will be useful in 

recognizing what a user is trying to do in a virtual environment. For this study, we used 

eleven gestures. These gestures were resting, wave out, wave in, fist, fingers spread, 

double tap, pinching, holding up a block, pretending to hold up a block, pointing, and 

thumbs up. All these gestures, except for double tap, can be seen in Figure 4.2. Six of 

these gestures can be detected by the Myo Armband already, which are resting, wave 

out, wave in, fist, fingers spread, and double tap. As far as the authors have noticed, all 
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other gestures are primarily classified as resting even though there is an unknown 

gesture reading available. 

 

Figure 4.2 The gestures used during data collection. From Top-Left to Bottom-Right: Rest, Wave out, 
Wave in, Fingers Spread, Pinching, Holding a Block, Pretending to hold a Block, Pointing, and Thumbs 

up. 

In order to get as similar readings as possible from the two different sensors, we 

attempted to place the sensors in the same position on the body. To do this, we first had 

each participant for the study place the Myo Armband on their arm following the 

instructions for the Myo Armband (Figure 4.3 Left). These were that the armband had to 

be placed on the widest part of the forearm with the USB port facing towards the hand. 

We additionally added that the sensor logo should be facing upwards when the arm is in 

a supinated position. We then marked where the top and bottom of the individual pods 

were positioned on the arm with a red marker (Figure 4.3 Center). The EMG sensors 

from the Trigno Lab were then placed in the areas marked (Figure 4.3 Right). 
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Figure 4.3 (Left) Placement of the Myo Armband. (Center) Markings from where the Myo was positioned. 
(Right) Placement of Trigno Sensors. 

There were thirty-five participants for this study. Participants were recruited 

through one of the introductory courses in the Computer Science Department. There 

were no exclusionary criteria to prevent someone from participating in this study. The 

order of the sensors was alternated between participants to balance the study. The 

participants placed the Myo armband on first so that its position on the arm can be 

marked. The participant then either left the Myo Armband on, or took it off so the Trigno 

sensors can be put on. The participants made the eleven gestures three times each. 

The gesture was made before being recorded. Each gesture was held and recorded for 

approximately five seconds. After the first set of gestures were complete, the sensors 

were switched. If the Myo Armband was second, it was lined back up with the markings 

on the arm so that it can be in the same position it was before. Then the participants 

repeated the same gestures as before. Overall, each participant performed sixty-six 

gestures, thirty-three with each sensor. 
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4.6 Analysis and Discussion 

The first component we looked at was the classification algorithm built into the 

Myo Armband’s software. We wanted to see how the Myo Armband’s classification 

algorithm looks at gestures it can already classify and what it’s results are for the new 

gestures we added. Table 4.1 shows these results. These results were acquired 

through the IMU sensor of the Myo Armband which has a sampling frequency of 50 Hz. 

The Myo Armband sends the gesture classification results with the IMU data instead of 

with the EMG data. These results show what the Myo Armband classified each gesture 

as at each time the IMU sensor acquired a sample. These results were also acquired 

using the default calibration setting on the Myo Armband. Even though there is a 

custom calibration setting available, we chose to use default settings since this is what 

we were interested in most. 

Table 4.1 Myo Self-Classification Results 

 Myo Classification 
Gesture 

Made Rest Fist Wave 
In 

Wave 
Out 

Fingers 
Spread 

Double 
Tap 

Unknow
n 

Rest 13998 0 0 0 0 0 47593 
Fist 14079 44308 1735 368 1178 0 1364 

Wave In 17004 13433 21106 3 1330 88 8292 
Wave Out 1170 5479 2187 51236 1762 66 0 
Fingers 
Spread 14947 15775 1947 4178 26227 31 0 

Double 
Tap 13252 405 216 262 416 853 0 

Pinching 28788 14741 2510 6780 9552 0 0 
Pick Up 
Block 35960 13877 2836 4541 4714 25 0 

Pretend 34359 9634 5739 2396 10982 0 0 
Pointing 48140 12375 1167 575 26 0 0 
Thumbs 

Up 36695 21144 305 0 4544 0 0 
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As you can see in Table 4.1, the Myo Armband correctly identified a little over 

50% of the gestures that it was supposed to. The individual gesture success rates are 

as follows: Rest – 22.727%, Fist – 70.294%, Wave In – 34.449%, Wave Out – 82.772%, 

Fingers Spread – 41.560%, and Double Tap – 32.380%. The classification results for 

Double Tap were presented differently in Table 4.1. For the other gestures, we showed 

what the Myo Armband classified each sample sent by the IMU sensor. However, 

Double Tap is only shown by the Myo Armband for a small period after the gesture has 

been completed. We examined all the classification results sent by the Myo Armband 

during the five second recording period to see if there was a Double Tap result. If there 

was, the whole gesture was determined to be a Double Tap. If not, we used whatever 

the most common classification result was. These low classification rates may have 

been caused by using the default calibration settings instead of creating a custom 

calibration profile for each participant. Using a custom calibration profile should greatly 

improve these results. 

Looking at the added gestures, all five of them had one common element. These 

gestures all shared the Rest gesture as their highest classified gesture. Therefore, if you 

were building a classifier to support the Myo Armband, the Rest gesture can be used to 

determine if an additional classifier is even necessary for the current gesture or not. If 

the Myo Armband shows rest, then run the additional classifier. If the Myo Armband 

shows any other gesture, then the additional classifier would most likely not be needed 

in that case. 

Figure 4.4 shows a sample of the raw data collected from the Trigno Lab and the 

Myo Armband. These plots show the data collected from each sensor or pod used. Two 
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gestures are shown in the graph. The blue dashed line represents the data collected 

while a participant performed one of the “Pretend” gestures, and the red solid line 

represents one of the “Rest” gestures. These were plotted on the same graph to show 

the comparison of muscle activity between the two gestures. All other attempts for all 

gestures were plotted in this same way. One thing to note is that the Y-axis on Myo 

Armband graphs is not in Volts like traditional EMG data. This is because the data the 

Myo Armband SDK produces for the EMG sensors is unitless activation [29]. We have 

decided to label this “Myo Units.” 

Figure 4.5 shows a frequency analysis done on the data previously shown in 

Figure 4.4. This was also done for all attempts for all gestures. To perform the 

frequency analysis, the signals obtained from both the sensors was decomposed into 

their individual frequencies. This was done by performing a Fast Fourier Transform 

(FFT) on the signal. FFT is a modification of the Direct Fourier Transform (DFT) for 

quicker results. The formula for DFT is: 

𝑋𝑘 = 𝑥)𝑒?(9@A)/C
C?+

)*D

 

where xn is the data sequence and Xk is the DFT. Even though the data collected from 

the Myo Armband was unitless, we decided to perform the frequency analysis on the 

data to show a comparison between two data sets. 
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Figure 4.4 Sample of the raw data collected from the Trigno Lab (Top) and the Myo Armband (Bottom) 
EMG sensors for the “Pretend” Gesture compared to the “Rest” Gesture 
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Figure 4.5 Frequency Analysis of data collected from Trigno Lab (Top) and Myo Armband (Bottom) EMG 
Sensors for the “Pretend” Gesture compared to the “Rest” Gesture 

For gesture classification, we focused on using the data collected instead of the 

frequency analysis. This decision was made to make it simulate as if a program or 
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game was getting a window of data at a time. For the Trigno Lab data set, we used 

filtered data. The filtering process was performed in 3 steps. First, the signal was 

passed through a high pass filter. The corner frequency for this filter was 10 Hz. Then, 

the filtered signal was passed through a low pass filter with the corner frequency at 500 

Hz. Finally, the signal was passed through a notch filter at 50 Hz. The resulting signal 

has its frequency in the range of 10 Hz to 500 Hz. This removes any low frequency and 

high frequency noise. The filter used for this was a zero phase shift equiripple filter. We 

did not filter the Myo Armband data, since the data is unitless, and the Myo Armband 

has a small sampling rate. 

To help with classification, each senor was given a weight of 1, 0.5, or 0 based 

on the graphs that were generated in the style of Figure 4.4. This weight was 

determined manually based on how different the “Non-Rest” gesture was compared to 

the “Rest” gesture. If the “Non-Rest” gesture’s EMG signal had significantly greater 

and/or easily distinguishable from the “Rest” gesture, then that sensor was given a 

weight of 1. If there was no difference, or the “Rest” gesture showed more activity, then 

it was given a weight of 0. If the EMG for the “Non-Rest” gesture was greater, but not 

significantly greater, then it was given a weight of 0.5. Figure 4.6 shows examples of 

how these were classified. Tables 4.2 and 4.3 show the averages of the weights given 

for each sensor separated by gesture. 



 57 

 

Figure 4.6 Examples of what was used for weight classification with Trigno Lab (Left) and Myo Armband 
(Right) for weights of 1 (Top), 0.5 (Middle), and 0 (Bottom) 

Table 4.2 Trigno Lab Sensor Weights for each Gesture 

 Trigno Lab Sensor Number 
Gesture 1 2 3 4 5 6 7 8 

Rest 0.6889 0.7111 0.5778 0.5000 0.6333 0.8556 0.6778 0.9222 
Fist 0.5778 0.3556 0.1667 0.6111 0.7667 0.5889 0.5444 0.5889 

Wave In 0.8222 0.7667 0.5000 0.5333 0.2333 0.2111 0.2333 0.6778 
Wave Out 0.7667 0.6333 0.2667 0.3667 0.2556 0.6444 0.4778 0.5889 
Fingers 
Spread 0.6333 0.7111 0.7444 0.5111 0.7444 0.7444 0.5333 0.4000 

Double Tap 0.5333 0.5333 .3111 .2889 .1889 .2111 0.1667 0.4667 
Pinching 0.5444 0.4111 0.2556 0.2333 0.1778 0.1889 0.3222 0.4556 
Pick Up 
Block 0.5556 0.5111 0.1778 0.1889 0.1111 0.2356 0.2667 0.4556 

Pretend 0.3333 0.2889 0.1333 0.2222 0.2000 0.3667 0.3111 0.3778 
Pointing 0.6222 0.2667 0.1778 0.2778 0.2556 0.4111 0.4222 0.6889 

Thumbs Up 0.6889 0.7111 0.5778 0.5000 0.6333 0.8556 0.6778 0.9222 
 

The data was extracted from 8 pods from each sensor. The weights were used to 

narrow down the pods which was the most important for each sensor. The pod with the 

highest weight was used for classification. There were some cases where the highest 

weight for the pods was below 0.5, even in such cases the pod with the highest weight 

was used. Two classification algorithms were considered: K Nearest Neighbors (KNN) 
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and Support Vector Machines (SVM) with a linear kernel. A 5 fold cross validation 

method was used to create the model. When creating these models, we focused on the 

gestures “Holding a Block” and “Pretend.” This was done so that we could apply this to 

previous work in VR. [30] shows a problem with interaction fidelity of picking up virtual 

blocks. One of the possible solutions was to consider other input modalities. These two 

gestures best represent the motions needed to pick up a block. Table 4.4 shows the 

classification results using these methods. 

Table 4.3 Myo Armband Sensor Weights for each Gesture 

 Myo Armband Sensor Number 
Gesture 1 2 3 4 5 6 7 8 

Rest 0.7476 0.8714 0.7667 0.7000 0.7190 0.8524 0.8714 0.8476 
Fist 0.9429 0.3952 0.2905 0.6571 0.8000 0.7190 0.7333 0.6810 

Wave In 0.9857 0.9524 0.8333 0.6762 0.5190 0.5190 0.7048 0.8333 
Wave Out 0.9381 0.8238 0.5286 0.4143 0.5000 0.7952 0.8095 0.7571 
Fingers 
Spread 0.9476 0.9524 0.8905 0.7905 0.9095 0.9286 0.7762 0.7143 

Double 
Tap 0.8048 0.7952 0.6571 0.4000 0.5143 0.5224 0.5143 0.5810 

Pinching 0.8286 0.7381 0.5143 0.3048 0.4810 0.2714 0.4000 0.6476 
Pick Up 
Block 0.7714 0.6524 0.4714 0.3000 0.4095 0.4333 0.5333 0.6095 

Pretend 0.5429 0.5048 0.2619 0.2095 0.4190 0.5238 0.6619 0.6333 
Pointing 0.6810 0.5000 0.3238 0.2524 0.5714 0.6905 0.6905 0.7143 
Thumbs 

Up 0.7476 0.8714 0.7667 0.7000 0.7190 0.8524 0.8714 0.8476 

 

The results in Table 4.4 are not promising, which a highest classification rates on 

the Trigno Lab data set being 61.11% on KNN with the “Double Tap” gesture and the 

Myo Armband data set being 53.81% on KNN with the “Pinching” gesture. This initially 

led us to believe that not enough data was collected, or we did not consider enough 

sensors. We then started modifying our approach to classification to look at extracted 

features from the EMG data. There were 5 features extracted from the signal; Maximum 
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value of the selected window, the Minimum value, the absolute Mean of the window, the 

Variance and the Root Mean Square (RMS) of the signal. These features are few of the 

common features that are used for signal analysis and have been known to be used in 

EMG gesture classification [31]. We used extracted features on both sets of data for 

comparison, even though the Myo Armband data was unitless. Table 4.5 shows the 

classification results using the extracted features. 

Table 4.4 Classification Results: Filtered Trigno Lab Data and Myo Armband Raw Data 

Gesture Trigno Lab Filtered Data Set Myo Armband Raw Data Set 
KNN SVM KNN SVM 

Fist 50.00% 41.11% 26.67% 24.76% 
Wave In 50.00% 43.33% 43.81% 45.24% 

Wave Out 48.89% 45.55% 40.95% 41.91% 
Fingers Spread 48.89% 42.22% 40.00% 39.05% 

Double Tap 61.11% 43.33% 41.86% 41.43% 
Pinching 50.00% 41.01% 53.81% 49.05% 

Pick Up Block 50.00% 43.33% 48.57% 50.00% 
Pretend 55.56% 38.89% 49.05% 49.05% 
Pointing 53.33% 36.67% 38.57% 40.47% 

Thumbs up 50.00% 38.89% 41.43% 40.48% 
 

Table 4.5 Classification Results: Extracted Features from Trigno Lab and Myo Armband Data 

Gesture Trigno Lab Data Set Myo Armband Data Set 
KNN SVM KNN SVM 

Fist 86.66% 41.11% 95.24% 95.24% 
Wave In 94.44% 52.22% 81.43% 81.90% 

Wave Out 93.33% 48.89% 99.05% 98.57% 
Fingers Spread 90.00% 46.67% 99.05% 96.67% 

Double Tap 90.00% 50.00% 98.10% 98.10% 
Pinching 83.33% 36.66% 86.19% 92.86% 

Pick Up Block 75.56% 43.33% 87.62% 87.14% 
Pretend 84.44% 44.44% 90.95% 92.38% 
Pointing 73.33% 48.89% 77.62% 77.62% 

Thumbs up 91.11% 43.33% 84.28% 85.24% 
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The Trigno Lab data set performed significantly during KNN classification using 

extracted features instead of filtered data. SVM classification only showed a slight 

improvement in success rates. The Myo Armband data set, however, showed significant 

improvements with both classifiers. This is very interesting since the Myo Armband data 

set is unitless. Even though this does look promising, further investigation is needed to 

explain why this result occurred. These initial results, however, do show that low-cost 

EMG sensors could have a place in VR and an input modality if used properly since the 

KNN classification results were similar between the Trigno Lab data set and the Myo 

Armband data set. 

4.7 Conclusions 

In this paper, we evaluated a low cost, off the shelf, EMG sensor for its potential 

use in VR. We decided that if this sensor can classify gestures, and we can classify 

gestures with a similar success rate to a sensor with a better sampling rate, then we can 

use it to trigger virtual interactions. We used KNN and SVM to classify the gestures. Our 

results show that using extracted features to classify gestures works significantly better 

than using raw data. Also, the classification results between the two different sensors 

were similar. With these results, we can conclude that, if used properly, then low-cost 

EMG sensors can be used in VR. We cannot fully support the use of extracted data with 

the Myo Armband yet until we have done further investigation. 

4.8 Future Work 

There are many future steps for this work. The first is to investigate how the 

extracted features affected the Myo Armband classification so much. This would help 

solidify our claim that this sensor is useful in VR. Also, we would need to expand the 
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training set for our data so we can get more accurate weights. This will allow us to have 

a primary sensor with one or two secondary sensors to be considered as well. This will 

also allow us to get more accurate classification results. Lastly, we would look at to see 

how a custom calibration file effects the data collected, if at all. 

The other major category for future work is using EMG in VR. We will expand on 

our previous work to improve gameplay and interaction with virtual objects [30]. This will 

then be expanded to future games as well. This should increase the interaction fidelity 

of virtual tasks. This will require user experience tests to be done to see if this does 

increase interaction fidelity as expected. 
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CHAPTER 5 

POT HUNTER: A VIRTUAL REALITY GAME FOR ANALYZING RANGE OF MOTION 

5.1 Introduction 

 This is the first chapter of the Gamification section of the dissertation. This 

chapter presents a reaching game. This is meant to represent a task where someone is 

required to reach onto a high shelf and grab an object. We also show techniques of how 

to use gameplay to present useful data to a therapist of when a patient was reaching 

into the target area. These results make this a game that could be used for rehabilitation 

for analyzing gross upper arm range of motion. The contributions of each of the authors 

is as follows: 

• Shawn Gieser: Designed the study, assisted in game design, ran participants, 

performed analysis, wrote paper, 

• Peter Sassaman: Assisted in study design, developed the game, ran participants, 

wrote equipment and game sections, helped edit the paper, 

• Eric Becker: Assisted in study design, assisted in game design, suggested 

analysis techniques, assisted writing background and related sections, helped 

edit the paper. 

• Fillia Makedon: Assisted in study design, helped edit the paper. 
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5.2 Abstract 

Patients undergoing physical therapy go through a series of sessions performing 

exercises to help improve the range of motion (RoM) in affected regions of the body due 

to disease or injury. However, patients find these tasks repetitive and boring and end up 

not completing the prescribed therapy program. It has been shown that game based 

therapy exercises have led to increased rates of compliance. In this paper, we provide a 

continuation of previous work in VR-based therapy and present Pot Hunter, and one 

type of RoM analysis for when a person reaches above their head. 

Categories and Subject Descriptors: I.4.8 [Image Processing and Computer 

Vision] Scene Analysis – Motion, Tracking, J.3 [Computer Applications] Life and Medical 

Sciences 

General Terms: Experimentation, Human Factors 

Keywords: Range of Motion, CAVE, Motion Tracking, Physical Therapy 

5.3 Introduction 

Two main aims in physical rehabilitation are the enhancement of motor 

functionality of joints and limbs and exercise compliance, both of which improve 

Activities of Daily Living (ADL) [1]. One of the challenges is tracking the patient’s range 

of motion and assisting during unsupervised exercises [2]. 

Using exergaming has helped improve compliance in traditional therapy [3]. A 

higher recovery rate was observed in patients using VR-based therapy when compared 

to patients undergoing traditional therapy; patients exhibited greater enthusiasm and a 

higher confidence level in being able to complete the program [4].  
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In this paper, we present a VR game, called Pot Hunter or PH for short, designed 

to help assess and analyze the range of motion in physical therapy. PT tracks a person 

playing the game in 3D space. Human motion data is collected and clustered into 

separate instances whenever the player reaches above his/her head. This will allow us 

to measure and visualize how far above the head the player is able to reach. In what 

follows, we first present related work, the equipment, the environment and the methods 

used to create and play PH. Then we provide an analysis and discussion of the results, 

followed by conclusion and future work. 

5.4 Background 

The authors of [5] analyze the strengths and weaknesses in using VR in 

rehabilitation.(SWOT). Some of the strengths include real- time performance feedback 

and gaming factors to enhance motivation. The real-time feedback is key for therapist to 

get real- time analysis of a patient while they are doing the exercise. Gaming factors 

make the patient feel motivated to complete tasks and help recover faster. Some of the 

weaknesses are wires, displays, and side effects the patient experiences. The 

introduction of wearable displays has eliminated such weaknesses. Side effects 

continue to be an issue (called “VR sickness”). VR brings to rehabilitation processing 

and graphics power as well as telerehabilitation. New technology in processors and 

graphics cards make it possible to develop VR technologies even cheaper and make 

them more immersive. Telerehabilitation has the possibility to increase compliance by 

allowing patients to do their exercises in more comfortable environments and still allow 

therapists to be involved. 
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A key feature for stroke victims involves the retraining of the upper limbs so they 

can partake of ADL. Games can be created such that the gameplay encourages the 

repetitive motion needed for subjects to overcome the results of the disability caused by 

the stroke. This gameplay is especially important because boredom becomes a key 

factor when doing this kind of exercise. For example, for older patients, history and trivia 

challenges worked better than an action style game [6]. In fact, even with the 

development and inclusion of inertial measurement units (IMU), the activity of the game 

play is usually not enough, and requires the flow of the activity to suit the player. The 

playing of the games with motions by themselves was not enough to encourage 

improvement in ADL. Thinking challenges and social interaction also need to be 

included in the design and structure of such virtual environments to encourage and 

promote rehabilitation [7]. In addition, as technology has improved, games and therapy 

can be moved to a home. In addition, the developers connected the game to key 

functions needed to resume ADL. Over the course of the study, patients using the 

system showed a marked improvement in their ADL, and started to show interest in 

their own progress and prognosis, showing real interest instead of boredom [8]. Further 

improvements included the implementation of a feedback loop. Incentives of scores and 

deterrents of loss of points would push the subjects to behave more normally, and to 

take the virtual environment sincerely. This extra reinforcement, both positive and 

negative, shaped the play in the virtual environment and the response of the subjects 

[9]. Making the subject want to do the exercise, wanting to do the repetition in order to 

retrain the neurological pathways of the brain is a key component of rehabilitation that 

virtual reality. 
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5.5 Related Work 

Another aspect of keeping the subjects focused on their rehabilitation is by the 

application of new technologies to keep them performing their exercises regularly. One 

solution was the creation of a wearable baseball cap that had a pocket for a mobile 

device [10]. Augmented reality was used to keep young drivers focused on the traffic 

through a point system [11]. Another style of sensor is to have an actual tool that 

interacts with other objects in the real world to include adding physical stress on the 

hand and fingers [12]. 

New technologies are also in place that include, motion tracking, the Oculus Rift 

and Kinect. Oculus Rift is a wearable display device that projects the virtual 

environment on a pair of stereoscopic screens, while the Kinect can do a coarse-grain 

skeleton tracking of the human figure. Combined, these tools can be used to facilitate 

rehabilitation [13]. Another system uses the IMU with a wireless configuration to track a 

constrained arm or measure the rotation of a limb as it uses a steering wheel or similarly 

shaped device [14]. These newer technologies are cheaper and wireless. 

Immersive virtual reality has the subject interact displays. One of these is MIME. 

It combines the head display with the hand and gesture recognition. The system is 

capable of recognizing the placement of the hand within the view of the subject. In 

addition, the system attempts to find the region of interest (ROI) of the subject, trying to 

find where the person is looking and devoting the system resources to improve that 

section of the system [15]. Gloves with actuators in the fingertips give the sense of 

touching a virtual object [16]. Magnetic fields are used in the Hydra unit to show hand 

position in a power wall situation [17]. 
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Previous work [18] has shown that VR can be used for rehabilitation by having 

the subjects perform gestures that simulate traditional rehabilitation exercises. We 

visualized the collected data to enable the therapists better understand important 

information about the patient. However, an engaging interface was lacking. Also, the 

data set was just limited to positional data and did not include other types of data that 

can provide a better evaluation of the patient’s motion. 

5.6 Pot Hunter 

In this section, we discuss the development of the PH game providing the 

sensors and development environment that were used and the procedure for setting up 

and playing the game. 

5.6.1 Equipment 

Previous studies used specialized hardware to create immersive assessments. In 

our assessment we used a variety of devices to form a Computer Aided Virtual 

Environment (CAVE). The various hardware systems utilized to compose this CAVE 

system are the following. The Oculus Rift Head Mounted Display [19] which provides its 

user with a full field of view stereo three dimensional image while also providing low 

latency head tracking. These features combined allow their user to look around naturally 

in a visually convincing virtual environment. Second, we utilized the InterSense System 

[20] to accurately determine the position and orientation of each of the participant’s 

hands, head, and wand. It achieves this by emitting an ultrasonic sound from an array 

installed on the ceiling, which is picked up by microphones on each of the modules 

strapped to the user’s wrists and head. Third, we used the Fifth Dimension 

Technologies Data Glove 14 Ultra [21] with 14 flexure sensors on each of the gloves, 
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they can accurately track each of the fingers on the participant’s hands. A subject 

wearing all these sensors is shown in Figure 5.1 left. Finally, a Personal Computer was 

used to host all of these systems and to run the simulated environment. 

 

Figure 5.1 (Left) Subject wearing sensors for the PH Game (Right) Gameplay of PH seen from the Oculus 
Rift 

5.6.2 Environment 

To create a convincing and comfortable environment in which the participant 

could interact, several models were utilized which resemble realistic objects. First, was 

the scene itself which resembles an Italian Piazza. This resource came with the Vizard 

[22] software. Second, we utilized pots which were available for free download and use. 

The pots were textured to different colors for scoring pieces. Third, as a scoring bin of 

sorts, a basket was modeled and textured. The model was made in the Blender 3D [23] 

modeling software and the texture was made in the Gimp [24] art software. The texture 

was UV (ultra violet) mapped on the object and exported as a .dae (digital asset 

exchange) file type. The basket is tied in position and orientation to the physical wand 

sensor that is a part of the InterSense motion tracker. Finally, a barrier was modeled to 
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discourage the participant from traveling outside the sensor boundaries. In order to 

prevent the barrier from obstructing the view of 3D text information in the world, the 

barrier was made to resemble a glass barrier. In order to achieve the convincing look of 

glass the reflection, refraction, and other physical properties had to be applied to the 

model in Blender. 

5.6.3 Procedure 

The procedure developed for our assessment includes the following: First, the 

appropriate lenses for a participant’s vision strength are placed into the Oculus Rift. 

Second, the participant moves to the center of the room onto a cross marked with tape 

on the floor. Third, the data gloves, wrist trackers, wand, Oculus Rift, and head tracker 

are equipped by the participant. Fourth the Rift’s optics are adjusted by the participant 

forwards or backwards to bring the image into sharp focus. Fifth, an inter-pupillary 

distance (IDP) test is taken. Sixth, the participant is asked to put their hands above their 

head, by their side, and in front of their face to calibrate where the scoring pieces should 

be placed in the environment. After this calibration the participant sees themselves in an 

Italian Piazza. Inside the Piazza is a grid of pottery in several different primary colors. 

3D text appears showing the participant which color piece of pottery they should grab 

from the grid of pottery and place the virtual basket they are holding. The user’s score 

increments of decrements depending the pot was of the collect color. The assessment 

concludes when all pots have been gathered. Figure 5.1 right shows a screenshot of the 

gameplay. 

5.7 Analysis 
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We had eight subjects play the PH game ten times each. The data gathered from 

each sensor is shown in Table 5.1. For this paper, we are looking at the times when a 

player reached above their head. Therefore, only the data produced by the Intersense 

positional trackers were considered. 

Table 5.1 Types of Data Collected from PH gameplay 

Sensor Data Collect 
Intersense Positional Trackers  

(Head and Wrists) 
X, Y, Z position in 3D Space,  
Roll, Pitch Yaw of Sensors 

5DT Data Gloves 
Amount of bend in each joint of the finger, 

Amount of abduction between fingers, 
Pitch, Roll 

Oculus Rift Angular Acceleration and Velocity 
 

To find the times when a player reach above their head, we looked at the Y 

component of the wrist trackers in relation to the Y component of the head tracker 

obtained during the calibration process. The wrist tracker that was compared depends 

on the handedness of the player, left or right handed. Right handed players tended to 

reach for the pots with their right hand, while left handed players reached with their left. 

Whenever the dominant hand’s wrist tracker was above the head tracker’s calibration 

data, this was assumed to be a time when the player was reaching up to grab a pot. 

Once the times when a player reached above their head were identified, we took 

the 3D positional coordinates and ran the K- Means clustering algorithm in order to 

group the data into separate instances of reaching up to grab a pot. Since there were 

only nine pots to grab during the game, we used k=9 for obtain a cluster for every 

instance a player reached to grab a pot. The centroid for each cluster is used as the 

average position of their hand and will be used in later work. We ran K-Means 10 times 

in and took the result that had the smallest sum of point to centroid differences. This 
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allowed us to obtain a more accurate clustering and overcome some of the randomness 

of choosing the initial centroid positions. 

We also looked at the timestamps when the data was sampled. If we only look at 

the times where a player reached above their head, we can easily cluster the positional 

data into different instances since there is a large time difference between last sample 

taken right before the hand came below the head and the first sample taken right after 

the hand rose above the head again compared to the time difference caused by the 

sample rate. This is compared to the clusters created by K-Means. 

5.8 Analysis 

Figure 5.2 shows the visualized Y component of each positional tracker with 

respect to time as well as 3D visualizations of the wrist position grouped by each 

instance the player reached above their head. From these, it is clear that the PH game 

can be used to analyze RoM when someone reaches above their head. 

 

Figure 5.2 (a) Y positon of positional trackers, (b) K-Means clustering of a subject reaching 9 times above 
their head, (c) timestamp clustering of a subject reaching above their head. 
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However, there were three specific circumstances where the way the player 

collected pots caused problems during analysis. One of these cases is where the player 

very rarely brought their hand below their head. This caused the inaccurate clustering, 

because there were not nine distinct times where their wrist went above their head and 

came back down. This can be remedied in a two ways. The first is the instructing the 

player not raise the basket as high. The other way is to instead of looking at times when 

the user reached above their head is to look for local minima and maxima in the path of 

the wrist. 

The second circumstance was when the player made wide arcs with their arms 

while reaching up to grab the pots. Even though there were nine distinct times where 

the user reached above the head, the wide arcing path made by the arm caused the 

wrist to intersect with previous paths when the player reached up for other pots. This 

caused an inaccurate clustering by K-Means since it was based on positional data and 

did not consider time. It did not affect the time-based clustering since that method was 

based solely on time. A solution to this would be to look at specific windows of the data 

and perform K-Means on smaller portions instead of analyzing the whole set at once. 

The third is where the user reached above their head but did not grab a pot. This 

caused there to be more than nine instances where the player reached above their 

head. This caused issues in both the K-Means and time based clustering. A solution to 

this would be to combine the wrist data with the glove data to find times when the player 

reached up, closed their hand to grab a pot, and then lowered it. This would eliminate 

the extra times when the player reached above their heads. 

5.9 Conclusion 
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In this paper, we presented the game PH, a continuation of the work in [18] 

aimed at increasing user engagement in exercise. The subjects showed increased 

interest in the activities to that of the previous work. We also used a similar calibration 

procedure to that of the previous work. We also showed that other forms of RoM 

analysis can be done using VR. We expanded from circular motions to that of reaching 

above the head and showed how traditional machine learning can be used to obtain 

valuable results. We showed that K-Means and timestamps analysis can be used to 

cluster data and perform segmented data analysis. This will allow therapists to easily 

monitor the progress of patients while comparing multiple sessions. 

5.10 Future Work 

The next phase of the PH game is to include multiple forms of analysis and the 

use of glove data in order to eliminate the problem described at the end of Section 6. 

Also, analysis of when the player reaches across their body will be analyzed as well. 

We will also look at the head orientation to know where the patient is looking in the 

virtual world. This will allow us to know when the patient looks at the pots or at the 3D 

text telling them what color pot to grab. This can be useful in measuring attention and 

memory based on how many times they look back at the text. Other algorithms for 

clustering and motion analysis will be analyzed to see if better results can be obtained. 

We will also explore better ways to display the data to the therapist, using 

interactive graphs, comparing different sessions and determining how to best display 

the data. Finally, we will explore new ways to display the game objects for better 

engagement. 
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CHAPTER 6 

REAL-TIME STATIC GESTURE RECOGNITION FOR UPPER EXTREMITY 

REHABILITATION USING THE LEAP MOTION 

6.1 Introduction 

 This is the second and final chapter of the Gamification section of this 

dissertation. This chapter presents a gesture matching game using the Leap Motion 

hand tracker. It also presents the methods used to collect data and train the gesture 

classification for the game. These gestures, which are used as exercises, were provided 

by an Occupational Therapist. This makes this game a gamified version of real 

Occupational Therapy exercises that could be used in a rehabilitation setting. The 

contributions of each of the authors is as follows: 

• Shawn Gieser: Designed study, collected data, performed analysis, designed 

game, wrote paper 

• Angie Boiselle: Assisted in study design, provided gestures, wrote some 

background and related work, edited paper 

• Fillia Makedon: Assisted in study design, edited paper 
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6.2 Abstract 

Cerebral Palsy is a motor disability that occurs in early childhood. Conventional 

therapy methods have proven useful for upper extremity rehabilitation, but can lead to 

non-compliance due to children getting bored with the repetition of exercises. Virtual 

reality and game-like simulations of conventional methods have proven to lead to higher 

rates of compliance, the patient being more engaged during exercising, and yield better 

performance during exercises. Most games are good at keeping players engaged, but 

does not focus on exercising fine motor control functions. In this paper, we present an 

analysis of classification techniques for static hand gestures. We also present a 

prototype of a game-like simulation of matching static hand gestures in order to 

increase motor control of the hand. 

Keywords: Gesture recognition, Leap Motion, Upper Extremity Rehabilitation, 

Gamification, Cerebral Palsy 

6.3 Introduction 

 

Cerebral palsy (CP) is a condition directly related to a lesion in the brain that 

occurs early in the life of a child. Children with cerebral palsy (CP) have permanent 

issues with posture and movement that impact participation in daily activities. They may 

also experience musculoskeletal changes, cognitive impairment, communication and 

behavioral concerns [1]. There are several subtypes of cerebral palsy based on the type 

of muscle tone (spasticity, dyskinetic, hypotonia, and mixed tone) and location of 

impairment (quadriplegia, hemiplegia, diplegia, and others) [2]. Hemiplegia is a type of 

CP where the child experiences limitations in posture and movement on one side of the 
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body. A child with hemiplegia does not use the impaired arm as often as the unaffected 

arm due to repeated experiences of failure in using that arm. Human computer 

interaction (HCI) is a method that supplement traditional rehabilitation therapy, such as 

occupational and physical therapy, to create experiences and environments to provide 

children with successful opportunities to promote the use of their affected hand or limb 

without feeling a sense of failure. Research has shown that the use of specially 

designed computer games can motivate and help children to enhance the use the 

affected limb while also strengthening the muscles involved and any related affected 

functionality [3–5]. 

Introduction of low cost, off the shelf sensors, such as the Leap Motion [6], have 

increased the accessibility to and usability of equipment that was previously too 

expensive for many applications. The Leap Motion was specifically designed to detect 

hand motions and gestures. It operates over a small range and high precision due to its 

use of infrared optics. Rehabilitation therapists indicate that the Leap Motion has 

potential for rehabilitation and that it would be an effective motivational tool young 

people within a home environment without a therapist being present [7]. 

The purpose of this paper is twofold. First, we will compare three classification 

techniques, decision trees, Support Vector Machines (SVM) and k-nearest neighbors 

(KNN), to recognize and classify static gestures from the Leap Motion based on the 

position of the hand and fingers as well as the joint angles. Secondly, a game will be 

created to detect these gestures and will be evaluated by both student volunteers and 

occupational therapy experts in the field. 

6.4 Background 
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Evidence for rehabilitation in the area of cerebral palsy has expanded in recent 

years due to new technologies and methodologies. Specific interventions have been 

researched to ensure efficacy, cost-effectiveness and safety [8]. In addition, the World 

Health Organization (WHO) has established the International Classification of 

Functioning, Disability, and Health (ICF) that is intended to serve as a collaborative 

global framework and scientific tool to measure health and disability. The ICF has 

shifted the focus from disability and impairment to that of function and participation 

within context of the social and physical environment [9]. It is for these reasons that it is 

important to develop rehabilitation interventions that are both evidence-based and 

consider contextual factors and participation. 

Reference [8] completed a systematic review of smaller systematic reviews for 

interventions related to children with cerebral palsy. Therapeutic interventions that were 

found to have the strongest evidence included: bimanual training; Botulinum toxin 

(Botox) injections; context-focused therapy; goal-directed functional training using a 

motor-learning approach; therapeutic home programs; and Botox followed up by 

occupational therapy. Human computer interaction is an area within rehabilitation 

therapy that provides a new and innovative method for intervention. Virtual reality 

games are used in rehabilitation to promote movement and strengthening within a 

motivating environment [10]. Evidence is emerging to determine the efficacy of virtual 

reality and influence of functional outcomes related to children with cerebral palsy [11]. 

However, the principles of Virtual Reality (VR) support strong evidence because it can 

be designed to emphasize motor learning, bimanual training and goal-directed training 

within the home environment [10, 12]. The child’s participation in rehabilitation through 
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the use of highly motivational VR games within the context of their home also supports 

WHO initiatives. 

Gaming systems such as the commercially-available gaming systems and robotic 

arm systems are most commonly used in the clinic setting. Children with CP are often 

unable to use commercially-available systems due to movement restrictions in the 

upper extremities. Additionally, they are not beneficial to the occupational therapist 

because they do not specifically measure small upper extremity movements such as 

finger extension, wrist extension, ulnar/radial deviation, and forearm supination [13]. 

6.5 Related Work 

VR has been used in the treatment of CP with an increased success rate 

compared to conventional exercises. The authors of [4] show that children with and 

without CP found that VR exercises are more interesting than conventional exercises. 

These children also were able to hold exercises longer and showed an increased range 

of motion during VR exercises compared to conventional exercises. The parents for the 

children also noticed their children having more fun during VR exercises and believe 

that their children would continue the exercises at home. The authors of [14] also agree 

with this, stating that a VR training program has potential to improve reaching abilities 

and control in children with CP. 

The Leap Motion controller has been used in game based physical therapy. 

Reference [7] evaluated the usefulness of the Leap Motion controller for a clinical 

environment by developing game-like versions of existing rehabilitation activities that 

were evaluated by clinicians. The results of their trial show that the Leap Motion does 

have potential to be used in place of some traditional techniques, especially in the home 
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and for young people. Reference [15] focused on the responses from patients. The 

patients in this study said that the game presented to them was very engaging and 

addressing a need of practicing movements that are related to daily functions. Also, the 

patients said that they would play this game if provided as part of home therapy 

program. 

Work has also been done with using the Leap Motion controller in terms of 

gesture recognition. Reference [16] shows classification techniques using the Leap 

Motion controller for both static and dynamic gestures. Reference [17] also presents a 

gesture recognition system using the Leap Motion control made for therapy 

applications, including a list of gestures created with the help of therapists. Both these 

systems, however, are lacking a game aspect to keep the patient involved. These 

present a good starting point, but missing the game component could lead to non-

compliance similar to that of conventional therapy exercises. 

6.6 Experimental Procedure 

6.6.1 Equipment 

This paper focuses on the use of the Leap Motion controller. As shown in Fig. 

6.1, the Leap Motion consists of three infrared (IR) light emitters and two IR cameras. 

Since this system uses stereo vision, it can be categorized as an optical tracking system 

instead of depth based tracking system [18]. The Leap Motion controller provides 

detailed information about a user’s hand, including the position of the wrist, palm, and 

finger digits in the Cartesian space, as well as the direction of the hand and finger digits. 

This information can be used to determine joint angles of the wrist and knuckles. The 

Leap Motion controller can also provide other information, such as what fingers are 
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extended, the normal vector to the palm, information about the forearm and any tools 

being used within the Leap Motion controller’s field of view. 

 

Figure 6.1 A view of the real (left) and the schematic (right) of the leap motion controller 

6.6.2 Data Collection 

A gesture library was created for this prototype with the help of an occupational 

therapist. The goal of this was to actually recognize gestures that are used as 

exercises. Figure 6.2 shows the gestures that were chosen for this library. 

 

Figure 6.2 Gesture library for the prototype. from top left corner to bottom right: extension of the index 
finger, extension of the middle finger, extension of the ring finger, extension of the pinky finger, extension 

of four fingers, extension of the thumb, ulnar deviation, radial deviation, supination of the forearm, 
extension of the wrist. 
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The training data for the various classification procedures was gathered by 

having student volunteers perform the gestures in a controlled environment. A 

visualization tool was developed using the Unity Game Engine [19] and the Leap Motion 

API. UI tools were placed in the top left corner to allow the administrator of the data 

collection to easier start and stop data collection and save the data. Also, the volunteer 

can see a visualization their hand on the screen to allow the administrator and the 

volunteer to verify that the gesture is seen correctly by the Leap Motion Controller. 

Figure 6.3 shows this UI Design. 

 

Figure 6.3 View of the data collection program of extension of the index finger 

The volunteer was given photos of the gestures before data collection begun so 

they could know what they had to do. The volunteer then placed their right hand above 

the Leap Motion controller and made the first gesture. When it was shown correctly on 

the screen, the administrator collected approximately 5 s of data at a sample rate of 50 

Hz and saved it. The volunteer then made the second gesture, and was recorded the 

same way. This task was repeated till all gestures were recorded, and the whole 
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process was repeated two more times. We did not record all the data points produced 

by the Leap Motion control. Instead, we only recorded the features that were useful to 

determine the gesture. These included what fingers were extended, the direction of the 

forearm and the hand, the normal vector of the palm, and joint angles of the wrist and 

knuckles. 

6.7 Analysis 

We used three different methods of classification: Decision Tree, K-Nearest 

Neighbors (KNN), and Support Vector Machines (SVM). First, we had to determine what 

features are used to classify which gestures. For example, only the Supination of the 

Forearm gesture has the palm’s normal vector in the positive Y direction. This feature 

can then be ignored for all other gestures in this gesture library. A full list of the features 

that were used to classify each gesture is shown in Table 6.1. 

Table 6.1 List of features used to identify each gesture 

Gesture Name Features Used 

Extension of the Index 
Finger 

Extension values of the 5 fingers, angles of the 
metacarpophalangeal (MP), proximal interphalangeal 

(PIP), and distal interphalangeal (DIP) joints of the 
index finger 

Extension of the Middle 
Finger 

Extension values of the 5 fingers, angles of the MP, 
PIP, and DIP joints of the middle finger 

Extension of the Ring 
Finger 

Extension values of the 5 fingers, angles of the MP, 
PIP, and DIP joints of the ring finger 

Extension of the Pinky 
Finger 

Extension values of the 5 fingers, angles of the MP, 
PIP, and DIP joints of the pinky finger 

Extension of Four Fingers Extension values of the 5 fingers, angles of the MP, 
PIP, and DIP joints of the four fingers 

Extension of the Thumb Extension values of the 5 fingers, angles of the MP and 
interphalangeal (IP) joints of the Thumb 

Unlar Deviation Direction of Forearm and Hand, angle of the wrist joint 
Radial Deviation Direction of Forearm and Hand, angle of the wrist joint 

Supination of the Forearm Palm’s normal vector 
Extension of the Wrist Direction of Forearm and Hand, angle of the wrist joint 
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We made ten different decision trees to classify the ten different gestures. The 

reason for this was based on game play. During gameplay, we can assume what 

gesture someone is supposed to make by where they are in the game, since they would 

only make certain gestures at certain points. With this assumption, we can classify the 

gesture with a decision tree with fewer levels than a single tree that would classify all 

gestures at once. One of the decision trees is shown in Fig. 6.4. The tolerances for the 

joint angles and directional vectors were determined by looking at the training data to 

verify that a majority of the training data would be classified correctly, and to allow some 

error from any potential input from a game. 

The KNN analysis was developed using the built in Matlab functions. The number 

of neighbors chosen was 294 as it still yielded a very low error. No other parameters 

were changed. This approach only used one model to classify gestures, unlike the 

decision tree approach mentioned above. We only used one model, because KNN can 

easily handle multiple classes without consuming too much time. This approach also 

was the only one to use all features collected to classify the gesture. 

Lastly, we used 10 SVMs also developed using the built in Matlab functions using 

the Gaussian Radial Basis Function as the kernel function. We made 10 different SVMs 

for the same reason as mentioned with the decision trees. The feature vector for each 

SVM comes from the Table 6.1. 

Table 6.2 shows a comparison between the 3 different methods. The method 

used to verify the classification models developed was resubstitution. Each model had 

the data samples that were supposed to match the model resubstituted back into the 

model to give the results below. As shown, KNN yielded the best results. Most of the 
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decision tree models were above 90 %, and further modification on the tolerances for 

the middle, ring, and pinky finger extensions would help fix this. 

 

Figure 6.4 Decision tree for extension of the index finger 
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Table 6.2 Classification results using resubstitution of training data 

 Decision 
Tree  KNN  SVM  

 Correct Incorrect Correct Incorrect Correct Incorrect 
Extension of the 

Index Finger 93.96% 6.04% 100% 0% 100% 0% 

Extension of the 
Middle Finger 76.96% 23.04% 100% 0% 100% 0% 

Extension of the 
Ring Finger 82.57% 17.43% 100% 0% 100% 0% 

Extension of the 
Pinky Finger 89.09% 10.91% 100% 0% 100% 0% 

Extension of Four 
Fingers 97.24% 2.76% 99.51% 0.49% 99.68% 0.32% 

Extension of the 
Thumb 100% 0% 100% 0% 100% 0% 

Unlar Deviation 96.7% 3.3% 100% 0% 99.91% 0.09% 
Radial Deviation 99.91% 0.09% 99.88% 0.12% 99.86% 0.14% 
Supination of the 

Forearm 100% 0% 100% 0% 100% 0% 

Extension of the 
Wrist 93.32% 6.68% 100% 0% 97.9% 2.1% 

 

6.8 Game 

For the game prototype development, we once again used the Unity Game 

Engine and the Leap Motion API. The game consists of two phases. The first is a fifteen 

second rest period. The player is not required to do anything during this phase. A 

picture of the next gesture is shown so that the player can prepare. During the second 

phase, the player is to match a gesture that is shown on the screen. Both a picture of 

the gesture and a visualization of the hand as seen from the Leap Motion are shown to 

players, so that they can see what they are doing with respect to real life and the Leap 

Motion itself. When the gesture is matched, the top left corner turns green, and red 

when it is not matched. The score increments by one for every second the gesture is 

held. A screen capture of this game is shown in Fig. 6.5. This is supposed to help 
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strengthen the hand. We used the decision tree models for this game due to the lack of 

open source classification software readily available for Unity. The recognition of 

gestures did not seem to be affected by using decision trees in terms of response and 

recognizing most gestures. Certain gestures, however, did require more exact 

positioning than was expected by the authors. 

 

Figure 6.5 Screen capture of the unity leap motion game 

Student volunteers played the game then filled out a three question survey after- 

wards. All but question was on a Likert Scale of 1–5 with 5 being the most positive and 

1 being the most negative. The mean of the responses to the question “I feel the overall 

control interface is easy to use” was 3.67, but the mean of the responses to “I feel that 

with practice, I could become proficient in using the control interface” was 4.83. This 

shows that people feel that playing the game more would lead them to a higher score, 

which would then improve range of motion. The mean of the responses to the question 

“The tasks presented on the screen are easy to understand” was 4.33. The only 
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comment from the volunteers that one of the pictures was rotated from the Leap Motion 

model, which caused some confusion. 

A video of one of the authors playing the game was made and sent out 2 area 

hospitals to be evaluated by physical and occupational pediatric therapists. This 

prototype got mixed reviews. The mean of “The Leap Motion appears easy to use” and 

“I feel that I could become proficient in using the Leap Motion” was 3.78, while the mean 

of “The tasks on the screen are easy to understand” was a 4. When asked about an 

improved version of the prototype, the most interesting response was to “I feel patients 

would be motivated to use an improved version of this prototype” which had a mean of 

2.87. The comments provided by theses therapists said that the game needs to be more 

engaging, fun, and interactive to help hold a patient’s attention. 

6.9 Conclusion 

In this paper, we have presented an analysis of classification techniques on data 

gathered from the Leap Motion controller. Decision trees provided over 90% accuracy 

for the majority of gestures, but KNN and SVM provided much more accurate results. 

This is believed to be due to the tolerances chosen for the joint angles of the decision 

tree now allowing for a wide enough variance to properly classify certain gestures. 

Further adjustment of the tolerances should yield better classification results. 

A game prototype also was presented. The reviews of the student volunteers 

playing this prototype said that the interface was easy to use and could easily become 

proficient in using it. Therapists viewing a demo of the game also had positive feedback 

in terms of using the Leap Motion controller and the way tasks were presented to the 

user. Therapists did comment on the engagement level of the game, saying that 



 98 

patients might not feel motivated to use the current or improved version of this 

prototype, saying that the game needs to have more features to keep the patient’s 

attention so that they feel motivated to use the system. Based on the feedback from the 

student volunteers and the therapists, there is enough evidence to develop a new 

version of the game which incorporate other gestures and data modalities, as well as a 

more engaging interface. 

6.10 Future Work 

The next phase of this prototype is to expand on the gesture library. Adding 

gestures will increase the number of features to be viewed to distinguish gestures from 

each other. Gestures added could be either static or dynamic. This would then mean 

that more analysis of various gesture recognition algorithms would be needed to 

determine the best use for dynamic gestures using the Leap Motion. 

Also, a therapist user interface will be added. This will allow therapists to view 

any important data gathered during gameplay sessions. This will also enable the 

potential for telerehabilitation, since the therapist can then view the data from sessions 

the patient does at home. This interface will also allow the therapist to control the 

exercises, such as the order of the gestures and the difficulty of the exercises, or how 

accurate the gesture has to be.  

Lastly, a more engaging game will be developed. The current game is very basic, 

and therapists have commented on it. A more engaging game might help therapists feel 

that the patient would feel motivated to play this game, especially in pediatrics. 
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CHAPTER 7 

COMPARING OBJECTIVE AND SUBJECTIVE METRICS  

BETWEEN PHYSICAL AND VIRTUAL TASKS 

7.1 Introduction 

This is the first chapter of the Box and Blocks section of this dissertation. This 

section will focus on the Box and Blocks Test, an assessment used in Occupational 

Therapy. This chapter focuses on a computerized version of the Box and Blocks Test 

using the Leap Motion. The game is presented and used in a user study. The user study 

reveals information of how people felt about the computerized, or virtual, version 

compared to a physical one, as well as their performance between the two different 

versions. The contributions of each of the authors is as follows: 

• Shawn Gieser: Designed study, designed virtual version, assisted in building the 

physical version, ran participants, performed analysis, wrote paper 

• Caleb Gentry: Built the physical version, wrote physical version of the paper 

• James LePage: Assisted in study design, performed analysis, assisted in writing 

related works, background, and results, edited paper 

• Fillia Makedon: Assisted in study design, edited paper. 
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7.2 Abstract 

Virtual Reality (VR) is becoming a tool that is more often used in various types of 

activities, including rehabilitation. However, studies using VR rehabilitation mainly focus 

on comparing the performances of participants, but not their opinions. In this paper, we 

present a virtual version of the Box and Blocks Test. We also present the results of a 

pilot study where participants completed a physical version of the Box and Blocks Test 

and the virtual version, comparing their scores and opinions. We also compare how the 

participants viewed the passage of time while performing both versions as a way to see 

how engaged they were during the task. 

Keywords: Box and blocks test, Leap Motion, Upper extremity rehabilitation, 

Gamification, Virtual Reality, Time Perception 

7.3 Introduction 

The onset of low-cost, off-the-shelf sensing equipment, such as the Leap Motion 

[1], have made Virtual Reality (VR) more easily accessible to everyone. It has also 

expanded the use of VR and virtual environments into many different fields, such as 

driving simulations, cooking, vocational training, and rehabilitation [2–5]. When VR is 

used in rehabilitation, exercise programs can provide more interesting and engaging 

tasks, causing patients to perform better and recover quicker than traditional 

rehabilitation [6]. Research has shown that therapists would use certain types of VR 

technology in a home environment without their presence, creating a form of tele-

rehabilitation [5]. 

However, with this advent of VR rehabilitation, would people want to perform a 

VR version of exercises and tasks, or would they rather do the traditional physical 
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version Also, other questions can be asked too, such as which version do people find 

more fun, more frustrating, or which would they rather do again? This paper aims to 

answer these questions by presenting a virtual version of an Occupational Therapy 

assessment task called the Box and Blocks Test using the Leap Motion. This virtual 

version was then compared to the tangible and traditional physical version by having 

participants perform both tasks and recording their performance. We will also compare 

how participants perceive the passage of time to see which version they were more 

engaged by. Lastly, we will compare their subjective opinions of the participants to see 

which version they prefer and why, as well as their overall opinions of the technology 

being developed. 

7.4 Background 

The Box and Blocks Test is an assessment used in Occupational Therapy used 

to evaluate gross manual dexterity [7]. This is done by having a participant sit in front of 

a box with a partition in the middle, and having them move blocks from one side to the 

other. The goal is to move as many blocks as the participant can in a one minute time 

period. Blocks can only be moved one at a time. The test is at first uses only the 

participant’s dominant or non-affected (for people with disabilities) hand, moving blocks 

from the same side as the dominant hand to the other. The participant get a point for 

each block they move over. Carrying multiple blocks over at once only counts as one 

point. If the hand does not completely cross the partition (i.e. the block is thrown over), 

that block is not counted towards the score. If a block bounces out of the box and lands 

on the table or the floor, that block is still counted and the participant does not have to 
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pick it up. After one minute has passed, the blocks are counted and the test is reset to 

be repeated with the person’s non-dominant or affected hand. 

The assessment of activity engagement can be done by simply asking 

participants to what degree they enjoyed the activity; however this can create 

expectation demand which bias the participants’ self-reports. To avoid these demand 

characteristics, more indirect means of assessing engagement is required. A relatively 

simple way of indirectly assessing engagement is through the assessment of perceived 

time while per- forming a task. 

Characterized by the idiom “time flies when you are having fun,” research has 

shown that being exposed to engaging positive activities or stimuli results in individuals 

underestimate the amount of time that has passed, while individuals tend to 

overestimate time passing when under negative conditions [8–10]. In practical terms, 

being exposed to positive stimuli such as pictures of desserts or pleasurable tactile 

stimulation [11] result in an underestimation of exposure time. Factors such as pain [12] 

and fear [13] have been associated with an overestimations of the time passed. 

7.5 Related Work 

Using VR has been shown to have many strengths when applying it to 

rehabilitation, as it provides stimulus control, consistency, and real-time performance 

feedback. VR also allows the adaptation to a patient’s abilities, and the ability to distract 

and motivate a patient [14]. In fact, VR can be used for patients of all ages, helping 

adults regain the ability to perform activities of daily living [15] to children with Cerebral 

Palsy to improve motor performance [16]. The Leap Motion has been evaluated for 

game based therapy. Clinicians and therapists have shown positive feedback when 



 107 

viewing the Leap Motion’s use for therapy [17], and that it has the potential to be used in 

a home environment with younger users [5]. 

The Box and Blocks Test has been used in many stages of studies that involves 

VR rehabilitation, such as evaluation of VR tasks or even being the task performed. The 

performance of people performing VR tasks and games created is correlated to the 

scores of that same person performing the Box and Blocks Test [15]. The scores from 

the Box and Blocks Test are also used as inclusion and exclusion from studies that 

involve VR games as well [18]. There have been versions of the Box and Blocks Test 

created in a virtual environment using both a Wii and a Kinect [19, 20]. However, these 

two studies only showed the performance between the different versions, and did not 

consider the opinions of the participants performing the task. 

Not surprising, video and computer games have also demonstrated distortions in 

perceived time passing while engaged. For example, when time performing the 

activities were the same, the perceived time playing a video game was shorter than 

reading on a computer [21]. Additionally, in a comparison of expert and novice gamers, 

expert gamers perceived time as passing more quickly than novices after 30 and 60 min 

of play. While initially novice gamers perceived time as going slower while they were 

learning the game after 90 min they had similar time experiences as experts as their 

experience increased [22]. 

7.6 Experimental Setup and Procedure 

For this experiment, we had participants perform two different versions of the Box 

and Blocks Test. The first version was a traditional version that could be touched. The 

second version was a virtual version done on a computer, lacking any tactile feedback. 
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All participants participating in this pilot study were from a healthy general student 

population. The rest of this section will describe the two different versions followed by 

the experimental procedure. 

7.6.1 Physical Version 

The physical version used in the study was 3D printed. The goal with the physical 

version of the test was simply to recreate the size and shape of the original test. The 

box has a partition dividing it in half with all of the blocks on one side, where the subject 

was asked to move all blocks from one side of the partition to the other in one minute 

[7]. The goal was to see their ability to reach and grab the blocks, and quickly move 

them over the partition to drop them into the other side. The physical setup used for this 

experiment is shown below in Fig. 7.1 Left. The box and blocks were designed using 

SolidWorks CAD software, and printed using Makerbot Replicator 2 and Polyprinter 229 

3D printers. The reason for this design was centered around some physical goals for 

the equipment. 

 

Figure 7.1 (Left) Physical version that was 3D printed. (Right) Virtual version that was created in Unity 
using the Leap Motion. 

Firstly, it was desired that the physical version be mobile, and easy transport to 

the different subjects in the test. Thus, it was decided that rather than making the box 

and blocks out of wood, which would be heavy, plastic puzzle pieces would be light, and 
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easy to place into a box for easy transportation. Additionally, if any piece of the box 

broke, a repair would be easy, requiring only that the broken part be reprinted and then 

the experiment could easily continue. Thus, this design was more mobile and robust, 

allowing the experiment to be performed accurately on a continuous basis. In order to 

accomplish this, the parts needed to be designed using dovetails for a “puzzle-piece” 

fitting process. This allowed the parts to be easily printed, easy to assemble, and easy 

to transport. 

7.6.2 Virtual Version 

A virtual version of the Box and Blocks test was developed using the Unity Game 

Engine [23], which can be seen in Fig. 7.1 Right. All components were developed to be 

a scale model of the physical version in comparison to the size of a virtual hand. This 

allowed the virtual version to be an accurate recreation of the physical version and 

would require participants to perform the exact same actions to complete the Box and 

Blocks Test. This virtual environment was displayed on a computer monitor. 

A Leap Motion was used to capture the motion of the hand. Grabbing the blocks 

in the virtual world is done in a similar fashion to that of the physical version. When a 

participant’s fingers were near a block and then brought their fingers close together in a 

pinching fashion, a block was bound to the participant’s thumb on their virtual hand. 

When they moved their fingers apart, the block would be released from the thumb and 

fall from the hand. This prevented multiple blocks to be picked up at once. The physics 

model for the hand was turned off to make it easier for the participant to move their 

virtual hand and pick up blocks without causing other blocks to fly around the 
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environment. The score was automatically tracked and increased each time a block was 

placed in or fell into the other side of the box. 

For gameplay, timers were implemented for the fifteen second practice and the 

sixty second full sessions that turn off sensor input upon completion. During the full 

session, the data from the Leap Motion is recorded so that it can be analyzed later and 

turned into a report for therapists. These data points include, but not limited to, the wrist 

position, palm position, fingertip positions, and joint angles. 

7.6.3 Experimental Procedure 

Twelve participants took part in this pilot study. After obtaining consent, the 

participants were given a survey asking the following questions: 

• Demographic questions, such as age, gender, and ethnicity 

• Have you had any experience playing video games? Significant/Some/No 

Experience 

• Have you had any experience with virtual reality? Significant/Some/No 

Experience 

Then, the concept of the Box and Blocks Test was described to the participants. 

Afterwards, the participants performed both the physical and virtual versions in one 

minute and five minute formats. The order of the tasks were complete were balanced in 

order to not show any bias towards a certain version. The order of tasks can been seen 

in Table 7.1. 

Both the one minute physical and virtual versions were similar to the original 

procedure [24], with the physical being exact, and the virtual having minor modifications. 

The one minute tasks consisted of an optional practice period followed by the actual 
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test. The practice period for the physical version followed the standard rules of fifteen 

seconds. The virtual version’s practice period did not have a time limit, but lasted until 

the participants had a firm understanding of how to pick up blocks in the virtual world. 

After the practice period, the participants than performed the Box and Blocks Test with 

both hands with both versions. The participants’ score was recorded after each one-

minute tasks. 

Table 7.1 Order of tasks completed by participants 

Participant 
Number Task 1 Task 2 Task 3 Task 4 

1, 5, 9 Physical  
One-Minute 

Virtual  
One-Minute 

Physical  
Five-Minute 

Virtual  
Five-Minute 

2, 6, 10 Virtual  
One-Minute 

Physical  
One-Minute 

Physical  
Five-Minute 

Virtual  
Five-Minute 

3, 7, 11 Physical  
One-Minute 

Virtual  
One-Minute 

Virtual  
Five-Minute 

Physical  
Five-Minute 

4, 8, 12 Virtual  
One-Minute 

Physical  
One-Minute 

Virtual  
Five-Minute 

Physical  
Five-Minute 

 

After the one-minute tasks, the participants were given another survey to see 

what their opinions were of the two different versions. The questions can be seen in 

Table 7.5 in Sect. 7.7, along with the results of the survey. 

Once the survey was completed, the participants were then asked to do a five 

minute version of both the virtual and the physical tasks. If they ran out of blocks on one 

side of the box, the participants started moving blocks back to the other side without 

changing hands. The participants were not told when five minutes were over, but were 

told to stop whenever they felt five minutes have passed. All other rules of the one 

minute version still applied to the five minute version. The five minute tasks were 

performed with both hands. The scores and the elapsed time since the start of the task 

till the participants stopped were recorded. 
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A short video explaining the procedure and technology used can be seen here: 

https://youtu.be/ej5ZQBTGDWU. 

7.7 Analysis and Discussion 

Below, in Table 7.2 is the demographic information of the student population that 

participated in this study. The rest of this section will detail the rest of the results 

obtained. 

Table 7.2 Demographic information of student participants 

Population Characteristics Number of participants Percentage 
Male 9 75% 
Age   
    18 – 24  6 50% 
    25 – 34  4 33% 
    35 – 44  2 17% 
Ethnic or racial minority 3 25% 
Bacherlors Degree or Higher 6 50% 
Right Handed 10 83% 

 

7.7.1 Experience with Video Games and VR 

Experience with video games and virtual reality was assessed on a three point 

self-report measure: No Experience, Some Experience, and Significant Experience. 

Though this was a very crude evaluation tool, it does allow students to easily classify 

their experience. 

As shown in Table 7.3, there was a fair amount of variability in the response of 

the students with only one student reporting “Significant Experience” with virtual reality. 

To improve the interpretability of the results, scores were coded: No Experi- ence 

= 0, Some Experience = 1, and Significant Experience = 2. The two scales were 

summed. Students were then split into two groups, Low Experience (scores of 0 or 1, N 

= 5) and High Experience (scores greater than 1, N = 7). 
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Table 7.3 Participants experience with video games and virtual reality 

Level of Experience  Number of Participants Percentage 
Video Game Experience   
No Experience 3 25% 
Some Experience 3 25% 
Significant Experience 6 50% 
Virtual Reality Experience   
No Experience 5 42% 
Some Experience 6 50% 
Significant Experience 1 8% 

 

7.7.2 Comparison of Scores on Physical and VR Tasks 

As expected, students scored higher, in the physical task compared to the virtual 

task, as seen in Table 7.4. At the one minute mark using the dominant hand, students 

physically moved 53.6 (sd = 7.1) blocks compare to 19.3 (sd = 5.0) moved through the 

computer interface. The results on the non-dominant had were very similar with 55.7 (sd 

= 6.7) moved in the physical task and 19.5 (s.d = 5.1) moved in the computer task. 

Paired comparisons between modalities were significantly different (p < .001). 

Table 7.4 Number of blocks moved by each participant 

Participant 
Number 

Physical Virtual 
Right Left Right Left 

1 44 48 26 21 
2 55 57 24 25 
3 58 50 27 28 
4 49 46 21 17 
5 62 61 16 24 
6 56 69 20 21 
7 58 52 12 12 
8 60 55 13 14 
9 63 60 20 13 

10 45 46 20 18 
11 45 51 21 15 
12 59 62 15 24 
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Overall the it appeared that experience with video games and VR was associated 

superior ability to perform the computer task as the level of video game/VR experience 

was positively correlated with total blocks moved in the computer task, r = .834, but not 

in the physical task, r = .101. Contrary to expectations, the association between the total 

moved with both hands was insignificant p > .5. 

7.7.3 Time Perception 

Students, when asked to stop when they perceived five minutes had passed, 

spent approximately the same amount of time on the each modality. Total time spent of 

both dominant and non-dominant hands were 545 s (sd = 204) for the physical task and 

536 (sd = 227) for the computer task, p > .5. 

When the analysis was done between Low and High Experience students, there 

was a significant difference in the time spent performing the computer task. Those with 

High Experience performed the task for 427 s (sd = 169) compared to the Low 

Experience students who performed the task for 689 s (sd = 223), 2 min more. 

7.7.4 Student’s Subjective Experiences 

The subjective experiences of the students were evaluated. Table 7.5 presents 

the questions asked and the preferences of the students. As can be seen, the physical 

task was viewed as easier and less frustrating by the majority of students. Of note, the 

majority of students felt that technologies like the one used here should be developed to 

improve rehabilitation and would recommend this type of system to a family member. 

One interesting finding was that the subjective ratings appear, in part, related to 

the amount of experience the student had in video games/VR. In the item “Which 

version was more fun?” zero (0 %) of students in with Low Experience felt the virtual 
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task was more ‘fun’; this is significantly lower than the High Experience students where 

four (57 %) reported the virtual task was more fun, X2(2, N = 7) = 8.6; p = .004). 

Table 7.5 Subjective comparison of physical and virtual based tasks 

 Physical Computer No Preference 
N % N % N % 

Which version was 
more fun? 6 50% 4 33 2 17% 

Which version was 
more frustrating? 0 0% 10 83% 2 17% 

Which version was 
stressful? 3 25% 6 50% 3 3% 

Which version makes 
you more tired or 
worn out? 

5 42% 5 42% 2 17% 

Which version 
required more work? 2 17% 9 75% 1 8% 

Which version would 
you rather do again? 7 58% 3 25% 2 17% 

Ratings on 1-10 with 10 being the highest Average SD 
How useful do you think the technology would be in assisting in 
rehabilitation? 7.1 2.1 

If you were asked to use this type of technology for rehabilitation 
at home, how likely would you use it? 7.2 2.1 

How strongly do you feel these types of technologies should be 
developed? 9.4 0.9 

Would you recommend a friend of family member to use this 
technology in their rehabilitation? N % 
Yes 9 75% 
No 0 0% 
No Preference 3 25% 

 

There were two common comments that were received by the participants about 

why the virtual version was harder and more frustrating. The first was that it was very 

difficult to grab the blocks at times in the virtual version. The second was that it was 

sometimes hard to perceive where the fingers were and what block you would be 

picking up. 

7.8 Conclusions 
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In this paper, we have presented a virtual version of the Box and Blocks Test. 

We compared the scores and opinions of student volunteers who performed both the 

physical and virtual versions of the test. We showed that the amount of experience with 

video games and VR was positively correlated with their performance of the virtual task. 

We also compared their time perception during the two different tasks, showing that 

students with less video game and VR experience perceive time going slower than 

students with more experience. Lastly we showed that students, even though they 

found the virtual version more frustrating, would rather do that version again instead of 

the physical version. Also students with more VR experience found the virtual activity 

more fun than students with less experience. 

7.9 Future Work 

Future plans for this work include conducting a clinical versions of this study to 

get the opinions of patients who are actually undergoing therapy and whether they 

would want to use VR technologies or not. The target populations for future studies 

could include patients who are post-stroke, have significant hand pain due to arthritis, or 

children with cerebral palsy. Besides just gathering their opinions of the technology and 

comparing the performances between the two versions, we would also be comparing 

their pain levels between the two versions to see if patients feel less pain performing the 

virtual version. 

We also plan to develop analysis tools to process the data obtained by Leap 

Motion during the one and five minute sessions. The data and results will be presented 

in a user interface designed for therapists. We will meet with therapists and discuss the 

data that is collected and how to visualize the data in a way that is useful to them. 
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Lastly, we will improve the ability for the person to interact with the virtual 

environment, mainly the ability to grasp blocks. There are two possible solutions being 

considered. The first is to improve how the game interprets the pinching motion of the 

hand while picking up the blocks. The second is to either change sensors or include 

other sensors to get a more accurate reading of the hand, fingers, and joints. 
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CHAPTER 8 

COMPUTERIZED BOX AND BLOCKS IN A CLINICAL SETTING 

8.1 Introduction 

 This is second chapter in the Box and Blocks section of this dissertation. This 

chapter uses the same set up as chapter 7, but this time done in a clinical setting using 

patients who are experiencing hand pain. The goal of this work is to see if a 

computerized version would lessen a patient’s level of perceived pain when performing 

the task when compared to pain levels when performing the physical version. We are 

also looking to see if patients would prefer to use the virtual version over the physical 

version. Analysis of the data obtained from the Leap Motion is presented to look at the 

speed of the hand to detect fatigue. The contributions of each of the authors is as 

follows: 

• Shawn Gieser: Designed study, designed virtual version, assisted in building the 

physical version, ran participants, performed analysis, wrote related works, 

methods, procedure, Assisted in results and discussion 

• James LePage: Assisted in study design, performed analysis, wrote results and 

discussion, assisted in related works, methods, procedure, 

• Fillia Makedon: Assisted in study design, edited paper. 
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COMPARING OBJECTIVE AND SUBJECTIVE METRICS  

BETWEEN PHYSICAL AND VIRTUAL TASKS7 
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7 To be submitted 
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8.2 Introduction 

Computer applications in rehabilitation have been used many times in research. 

Multiple frameworks and system architectures have been proposed for integrating 

computers and sensors into rehabilitation. [1] presents an architecture for fusing the 

different types of data collected during rehabilitation exercises. This framework 

proposes the use of a Microsoft Kinect, microcontroller, accelerometer, gyroscope, 

temperature sensor, and capacitive touch sensor. They also present an ontology to 

represent the contextual information obtained from an ambient assisted living 

environment. [2] shows a software architecture where a therapist can assign tasks to a 

patient remotely so that the patient can perform these exercises at home in front of a 

Microsoft Kinect. The results from these exercises are then sent back to the patient and 

the therapist. The patient sees immediate feedback from the system so he or she can 

perform exercises correctly. The therapist see a more comprehensive report so that 

changes may be made to the exercise regime based on patient performance and rate of 

recovery. This architecture is the basis for a future tele-rehabilitation system, which can 

aid in the rehabilitation of patients without them having to frequently visit or live in a 

rehabilitation center. Mobile devices can also be used in rehabilitation. [3] and [4] both 

present architectures using mobile devices. These papers show how a mobile device 

can be used as input to a computer or gaming device so it can be displayed on a 

monitor. Some architectures, however, require the application to be used only on the 

phone, while the data is sent to a cloud server so a therapist can look at the results [5]. 

 One of the greatest advantages using computers in rehabilitation brings is 

gamification. Gamification is turning tasks into game-like activities to increase 
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engagement and performance when performing those tasks. Therapists and patients do 

like many aspects that games bring to rehabilitation, such as adjustability, increased 

attention, increased enjoyability, and that less negative feelings are felt by patients [6]. 

The Microsoft Kinect is a common tool used for the gamification of rehabilitation tasks. 

One of the most common games performing normal exercises [2]. The Kinect grabs the 

position of the joints from a subject’s body and calculates the joints’ angles while the 

subject performs the exercises. The system can then tell the subject how accurately 

they performed the exercises, how many repetitions they have done, or how to improve 

for their next session. Regular games using the Kinect have also been used in 

rehabilitation. [7] presents a patient who improved playing sports games. This however 

was a single patient, not multiple patients. When used in patients with chronic, acute, or 

subacute stoke, Kinect games have increased patients Fugl-Meyer Assessment (FMA) 

and modified Barthel index (MBI) scores, even if just slightly [6]. Kinects have also been 

used to detect emotions based on facial expression. The patient’s current emotional 

state can then be used to adjust level difficulty to best match this state [8]. 

 Gamification, however, is not just limited to the treatment of motor impairments. 

Virtual Reality (VR) can be used to immerse the user inside a game that represents a 

therapeutic task. [9] shows that virtual reality can be used to treat patients with spatial 

neglect by having patients “touch” certain virtual objects around them. VR has also been 

used to help older women with Mixed Urinary Incontinence. This approach uses a 

dance game that cues patients to perform certain dance moves and pelvic floor muscle 

contractions. This form of intervention not only improved testing results, but also had a 

high satisfaction rate among patients. Additionally, over half the patients in this study 
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reported a perceived improvement of 75% or greater [10]. The use of virtual reality has 

also shown improvement in areas of cognitive function, visual perception, balance, 

lower limb strength, and depression [11]. 

Other approaches track a patient’s hand, wrist, or fingers for game based 

rehabilitation. Inertial Measurement Units (IMUs) typically contain an accelerometer, 

gyroscope, and magnetometer. These can be used to track the motion of a user’s hand 

while performing certain gestures or exercises. This motion can then be used as input 

for many different types of rehabilitation games [12]. Infrared (IR) light has been used to 

track fingers for rehabilitation games. IR lights were placed on the ends of patients’ 

fingers, which were tracked by IR cameras. The position of these lights served as input 

for games. This method, combined with using games, showed greater improvement in 

patients in almost all areas being assessed in [13]. Gloves can be a good way to get a 

representation of a patient’s hand during rehabilitation exercises. This can let the 

computer application capture a more precise representation of a hand, detecting 

extension and flexion of various joints. This also provides more accurate timing for how 

long certain exercises are performed and much time between repetitions is taken [14]. 

The Leap Motion provides some advantages to using gloves. The Leap Motion is 

more affordable than most gloves. The Leap Motion is also more durable since it is not 

susceptible to wear like gloves are [15]. An additional advantage is that the Leap Motion 

provides additional information than that of most glove systems, such as hand, finger, 

and joint positions and what direction a user’s hand is facing or finger is pointing. This 

allows for the development of various types of games with many different goals [16, 17]. 
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Mobile devices, such as phones and tablets, have been used in rehabilitation 

exercise as well. [5] present a mobile rehabilitation program that uses sensors that track 

movement. These sensors then send data to the phone to give live feedback during the 

exercises, as well as information about the user’s improvement over time. Gamification 

has also been done using mobile devices as well. Some of these games contain very 

simple gamification concepts that do not necessarily make a full game played on the 

device. Some games present tasks to users that need to be done in the real world. The 

users then check in when the task is completed to earn points, achievements, medals, 

and earn spots on a leaderboard. This method, when used in patients with heart 

conditions, was well received by patients and like the game-like aspects of performing 

everyday tasks. Patients felt these tasks had value outside the game in that it would 

help them return to everyday life [18]. Full rehabilitation games on mobile devices 

usually take advantage of the on-board accelerometer to track movement. This allows 

for more targeted rehabilitation by forcing a patient to perform exercises that increase 

their range of motion [4]. Mobile games do not just work on motor skills, but also 

cognitive skills as well. Games have been shown to aid in the development of attention, 

reaction, and memory skills. Users saw these types of games as a potential 

rehabilitation tool [3]  

[19] presents a virtual version of the Box and Blocks Test using a Microsoft 

Kinect. This paper shows there is a strong correlation between the scores of the virtual 

and real Box and Blocks Tests. Our study differs in several ways. We use a Leap 

Motion to track the user’s hand instead of a Kinect. We are comparing the scores of the 

physical and virtual versions, but we are also looking at the user’s level of engagement 
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and pain levels between the two versions as well. Lastly, we will be looking at 

estimating fatigue based upon times when a block is transferred.  

The current study has three aims. The first is to determine if the virtual hand task 

using the Leap Motion is an adequate index of performance by comparing results to the 

physical task. Second is to determine veterans’ preferences and opinions about the 

virtual version modality. The third is to assess the level of engagement in the task 

experienced by veterans  

8.3 Methods 

The procedure received approval from the Veteran Affairs North Texas Health 

Care System Institutional Review Board (IRB) (Reference number 15-049) and was 

acknowledged by The University of Texas at Arlington’s IRB (Reference number 2015-

0889). 

8.3.1 Participants 

24 subjects were recruited. Twelve were Veterans who were experiencing upper 

extremity pain or limitations. One veteran’s responses created a significant outlier and 

this veteran’s information was not included. The inclusion criteria for veterans was 18 

years of age or older, currently experiencing hand pain from any etiology, and enough 

range of motion in the hand to complete basic tasks. Twelve students without hand pain 

were also recruited as a non-clinical control group. 

8.3.2 Materials 

The box and blocks test chosen as it is used in several other studies to validate 

the usefulness of virtual reality based rehabilitation [20]. The physical version, as seen 

in Figure 8.1, is a 3D printed replica of the one presented in [21]. This 3D printed 
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version was used for a few reasons. The first was that it is lightweight, making it easier 

to transport as each piece was only filled 10%. Secondly was that the box has a puzzle 

piece design, allowing easy assembly and disassembly making it portable. Lastly, if a 

piece was lost or damaged, a replacement could be easily reproduced at little cost 

instead of having to buy a new set. 

 

Figure 8.1. Physical Version of the Box and Blocks Test. 

The virtual version, seen in 8.2 is a scale model developed in Unity [22]. The 

virtual version is displayed on a computer monitor. A Leap Motion was used to track the 

motion of the patient’s hand and for input for the virtual version [23]. By using the Leap 

Motion, a patient completing the virtual version would have to perform the same motions 

as the physical. Picking up blocks can be accomplished by making a pinching motion as 

if picking up a real block. The virtual environment allowed for several conveniences, 

such as only forcing a patient to only pick up one block at a time, automatic score 

keeping, automatic time keeping, making sure the patient’s hand completely crossed 

the partition before releasing the block in order to count towards the score, and making 

resetting the test much faster. 
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Figure 8.2 Virtual Version of the Box and Blocks Test 

8.3.3 Procedures 

After obtaining consent, patients were asked to complete a short survey. The 

questions asked can be seen in Table 8.1. 

Table 8.1 Survey questions given before the experimental procedure. 

Question Answer Options 
Have you had any experience playing 
video games? 

Significant 
Experience 

Some 
Experience 

No 
Experience 

Have you had any experience with 
virtual reality? 

Significant 
Experience 

Some 
Experience 

No 
Experience 

What is the usual level of pain you 
experience when doing your daily 
activities? 

Scale 1 (no pain) to  
10 (worst pain you ever felt) 

What is the usual level of pain when 
your hands are not involved with 
something, such as watching TV? 

Scale 1 (no pain) to  
10 (worst pain you ever felt) 

What activities cause the most hand 
pain? Open Ended 

How much does pain affect your daily 
life? Scale 1 to 10 

Are you left or right handed? Left Right 
What is your gender?  
What is your age?  
What is your ethnicity?  
What is the highest degree of level you 
school that you have completed? 

 

What is your marital status?  
What is your employment status?  

 



 130 

Prior to beginning the tasks, an optional practice period was used before the 

patient completed each task. The practice period for the physical version was for fifteen 

seconds, as it was in the original procedure.  The virtual version’s practice period was 

not time based. Instead, the practice period lasted until the patient acknowledged that 

they had a clear understanding of how to grasp blocks and move them in the virtual 

environment. 

8.3.4 Phase One  

Each version was done with both hands, one after the other. After each hand, the 

score was recorded. The patient’s perceived pain level, on a scale of 1 to 10, was also 

recorded. The test was then reset. 

We alternated the order in which the patients completed the two versions in order 

to balance the study and eliminate bias. Below is a list of the order of tasks completed 

during phase one. 

• Practice period – first version – non-affected hand 

• First version – non-affected hand 

• Record score and pain level 

• Reset 

• Practice period – first version – affected hand 

• First Version – affected hand 

• Record score and pain level 

• Switch versions 

• Practice period – second version – non-affected hand 

• Second version – non-affected hand 
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• Record score and pain level 

• Reset 

• Practice period – second version – affected hand 

• Second Version – affected hand 

• Record score and pain level 

After completing the first phase, the patient then completed a survey about which 

version they preferred. The questions asked can be seen in Table 8.2. 

8.3.5 Phase two 

Phase two was implemented to determine which of the two versions was found to 

be more engaging. Similar to the statement “time flies when you are having fun,” we 

anticipated time would be perceived as passing faster in situations which were engaging 

or perceived generally more positive. Each patient performed the same virtual and 

physical versions again, but this time stopped when they felt five minutes had passed. 

We judged level of engagement by how long they performed the task, i.e. performing 

the task longer before stopping at the perceived 5 minute mark would indicate a higher 

level of engagement. After they performed each version, the score, pain level, and time 

they performed the task were recorded. The order of the versions that the patient 

performed was alternated in order to balance this phase as well. Below is a list of the 

order of tasks completed in phase two. 

• Practice period (if needed) – first version- non-affected hand 

• First version – non-affected hand 

• Record score, pain level, and time elapsed 

• Reset 
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• Practice period (if needed) – first version- affected hand 

• First version – affected hand 

• Record score, pain level, and time elapsed 

• Switch versions 

• Practice period (if needed) – second version- non-affected hand 

• Second version – non-affected hand 

• Record score, pain level, and time elapsed 

• Reset 

• Practice period (if needed) – second version- affected hand 

• Second version – affected hand 

• Record score, pain level, and time elapsed 

8.4 Results 

Data collected was analyzed with SPSS v22 [24]  

To determine if the virtual task was an adequate estimate of physical ability, the 

performance on hands were combined and Pearson Moment correlations were 

performed on total blocks moved. Significant positive associations were identified 

between the physical and virtual tasks, with correlations between hands fell between .56 

and .76; p <.005. 

8.4.1 Overall performance 

Scores and times were combined across hands. Figure 8.3 presents the overall 

performance on the tasks. Overall students performed better on both the physical and 

virtual tasks. On the physical task, students successfully moved 43% more blocks. The 
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difference was greater for the virtual task where students successfully moved 2.7 times 

the number of blocks than the veterans. 

Table 8.2. Survey questions given after Phase One 

Question Answer Options 
Which version was more fun? Physical 

Version 
Virtual 

Version 
No 

Preference 
Why? Open Ended 
Which version was easier? Physical 

Version 
Virtual 

Version 
No 

Preference 
Why? Open Ended 
Which version was more frustrating? Physical 

Version 
Virtual 

Version 
No 

Preference 
Why? Open Ended 
Which version was more stressful? Physical 

Version 
Virtual 

Version 
No 

Preference 
Why? Open Ended 
Which version made you more tired/worn 
out? 

Physical 
Version 

Virtual 
Version 

No 
Preference 

Why? Open Ended 
Which version did you feel required more 
work? 

Physical 
Version 

Virtual 
Version 

No 
Preference 

Why? Open Ended 
Which would you rather do again? Physical 

Version 
Virtual 

Version 
No 

Preference 
Why? Open Ended 
How useful do you think the technology would 
be in assisting Veterans with rehabilitation? 

Scale 1 (Not useful at all) to  
10 (Very useful) 

If you were asked to use this type of 
technology for rehabilitation at home, how 
likely would you use it? 

Scale 1 (Not likely at all) to  
10 (Very likely) 

How strongly do you feel the VA should be 
developing these types of technologies? 

Scale 1 (Not at all) to  
10 (Very much) 

What are your overall thoughts or additional 
comments about the technology? Open Ended 

Would you recommend other Veterans to use 
this technology in their rehabilitation? Yes No No 

Preference 
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Figure 8.3 Average total number of blocks moved on one minute task 

8.4.2 Perceptions of the task  

Veteran responses to the technology were encouraging. As can be seen in Table 

8.3, Veterans uniformly found the physical task easier and the virtual task more 

frustrating. However, more than half of the veterans found the virtual task was more fun 

or had no preference and more than half stated they either would prefer to do the virtual 

task again or had no preference. This finding is very important as 8 of 11 veterans felt 

more “worn out” after the virtual task and 9 of 11 found the task required more work. 

In relation to whether they supported the development of tasks such as this for 

veteran care, the veterans were asked to rate on a one to ten scale, ten being higher, 
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how strongly they felt the VA should be developing these types of technology. The 

average rating was 9.0 (s.d. 1.8) with 9 of 11 veterans giving a rating of 8 or above. 

When asked how useful the veterans thought this specific technology would be in 

helping veterans, the average score was 7.5 (s.d. 2.6). When asked how likely they 

would be to use the technology at home, the average score was 6.9 (s.d. 3.6). All 

veterans, 11 of 11, reported they would recommend the technology to other veterans. 

Table 8.3. Veterans Opinions of the Tasks 

Veterans' Opinions of the Tasks 

 Physical Virtual 
No 

Preference 
Which Version Was Easier 11 0 0  
Which Version Was More Frustrating 0 11 0  
Which Version Would You Rather 
Do Again 5 5 1  

Which Version Made You Feel More 
Worn Out 1 8 2  

Scale of one (lowest) to ten (highest)     

How useful do you think the 
technology would be in assisting 
veterans' rehabilitation? 7.5 (2.6)    
How likely would you be to use this 
technology for rehabilitation at 
home? 6.9 (3.6)    
How strongly do you feel the VA 
should be developing virtual 
technologies? 9.0 (1.8)    
Numbers in parentheses are 
standard deviations     

 

8.4.3 Engagement  

Generalized Linear Models with Repeated Measures was performed to evaluate 

the interaction between patient status and the modality of the box and blocks test. On 



 136 

the 5 minute trail of the physical task, both veterans and students stopped the trail at 

approximately the same time (see Figure 8.4). However, compared to students, during 

the virtual trial Veterans worked on the task significantly longer than students before 

stopping at what they perceived to be five minutes. Overall, there was a significant 

interaction between veteran patient status and modality, F(1,21) = 19.5; p < .001. 

Additionally, paired t-tests were performed on the veteran data between the time spent 

the physical and virtual tasks. Veterans spent significantly longer on the virtual task than 

they did on the physical task, t(10) = 5.3, p <.001. 

 

Figure 8.4 Average seconds spent on ‘five-minute’ tasks 
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It was important to clarify if the results were due to familiarity with video games 

and virtual reality. Participants rated their experience with both video games and virtual 

reality on a zero to two scale. These were combined to obtain a score of 0 to 4. After 

controlling for familiarity Veterans continued to be demonstrated longer periods of 

engagement, F(1,20) = 15.2, p < .001. 

8.4.4 Pain and time performance  

Overall, there were no significant differences between veterans’ pain scores 

between the physical and virtual tasks. However, not surprisingly, veterans experienced 

higher levels of pain when performing the longer five minute task, compared to the one 

minute task. With the veteran subjects, no significant correlations were found between 

level of pain and time spent performing the task on the five minute trials. Only one 

correlation, the correlation between resting pain and the time spent performing the 

physical task was above .3, specifically -.359. All other correlation coefficients were 

below .15. 

8.5 Discussion 

This study focused on the acceptability of the use of technology by a veteran 

population with upper extremity pain. The study obtained qualitative and quantitative 

data about the veterans’ experiences and assessed their level of engagement. The 

findings of this study highlight several very encouraging findings. 

First, there was a strong correlation between total blocks moved when comparing 

the physical version to the virtual version. This shows that our virtual version could be a 

good substitute for the physical version in the assessment of patients. 
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The second broad finding is that, in a veteran population, veterans are supportive 

of the use of this technology. Though veterans find the use of the technology more 

frustrating and experienced increased fatigue, the veterans felt the technology would be 

useful and would recommend its use to others. Additionally, they were strongly 

supportive of further development of the technology to be used in rehabilitation. 

Third, veteran patients with upper extremity pain, demonstrated a higher level of 

engagement in in the virtual task than the physical task. This was based on their longer 

time they spent engaging the task. Two aspects are important. The first is that this 

finding was independent of their self-reported history with virtual reality and video 

games. The second is that the Veteran population with upper extremity pain, more fully 

engaged the virtual task than the student comparison group. 

Overall, the findings are very encouraging for the acceptability of the use of 

technology in rehabilitation with a veteran population. There are however, several 

limitations that must be addressed. The first is the reliance on the participants’ self-

report of their history of video-games and virtual reality. Due to age and phase of life 

differences, it is conceivable that the veterans and students do not have similar opinions 

of what is a significant amount of experience. Though one of the strengths of the study 

is the indirect assessment of engagement through the use of the 5-minute trial, it is 

possible that the veterans spent more time, in part, due to wanting to be more 

successful, in short focusing more on their performance, letting their internal clock go 

past 5-minutes on purpose to improve their ‘score’. 

There are a number of obvious directions for future studies related to patient 

engagement. Most important, is that it is still to be determined if the use of these 
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technologies would improve overall functioning or decrease long-term pain scores. 

Additionally, would the more immersive environment of a 3d virtual experience increase 

the engagement and if so what would be the cost/benefits of the improved, yet costlier 

technology. 

One additional area of study would be in the further evaluation of the 

engagement effect both within a session, i.e. does engagement decrease the longer a 

person is doing the task within a session, and across sessions, i.e. does engagement 

decrease over multiple sessions. The exploration of the change in engagement could 

lead to improved engagement methods. For example, as the technology can detect 

minute second to second changes in performance, could the system have natural stop 

points to avoid the patient becoming too fatigued, reducing the enjoyment of the task. 

Assessment tasks could be built into the system, similar to the 5-minute task used here, 

which could detect changes in engagement in the environment. This could trigger 

changes in the game to re-engage the patient in the task to keep motivation and 

engagement high. These changes could be precipitated by a therapist decision or could 

be automated within the system.  

Finally, this could be extended to do remote assessment of patients. This would 

be useful for patients who live far away from a hospital or clinic. Patients will be able to 

still be able to do any prescribed exercises or assessments related to our system 

without having to deal with the stress of traveling or scheduling meetings. This will allow 

patients to do these exercises in the comfort of their own home. We can use the remote 

assessment to get veterans’ opinions of this system when used in a home environment. 

With the system in a new location, technical issues may arise that effect the veterans’ 
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perception of or engagement with the system. Opinions of therapists can be collected to 

evaluate the program from their perspective as well. This way, we can develop a system 

that will fit the needs of both veterans and therapists. 
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CHAPTER 9 

COMPARING IMMERSION LEVEL’S IMPACT ON INTERACTION FIDELITY  

AND ANALYSIS OF BOX AND BLOCKS DATA  

9.1 Introduction 

 This is the third and final chapter of the Box and Blocks Test section of this 

dissertation. This chapter will address two key points. The first will be comparing how 

different levels of immersion in a gamified task effects task performance. A user study 

was done where participants performed a physical version of the Box and Blocks test 

followed by two virtual versions. They are both updated versions of the version 

presented in chapters 7 and 8. The first version is displayed on a monitor with the Leap 

Motion on the table, just like in chapters 7 and 8. The second is displayed inside a 

virtual reality head mounted display (HMD) with the Leap Motion mounted to the front of 

it. These different levels of immersion should affect performance, with the HMD version 

predicted to yield better results than the monitor. We also show that a higher level of 

immersion makes the task more similar to that of the physical version. This will be done 

by correlating the scores of the two virtual versions to that of physical, as well as 

surveys gathering user opinion. 

The second point will be on how the data obtained from the game (score, activity 

in the game, etc.) and the Leap Motion can be used to better assess the user. 

Techniques will be presented on how to analyze hand data (how fast the user is 

opening or closing their hand), arm data (how fast the user is moving their arm back and 

forth, is the user hitting the wall), and other results that may prove beneficial to a 

therapist. 
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9.2 Experimental Setup 

9.2.1 Virtual Versions 

There were two virtual versions of the Box and Blocks test developed. These are 

the desktop version and head-mounted display (HMD) version. Both versions were 

developed in tandem using the Unity3D game engine [1]. Measurements of the box and 

blocks from the physical Box and Blocks test [2] were used to accurately model the 

virtual box and blocks for the virtual environment. 

Both versions utilized the Leap Motion hardware to capture participant hand and 

finger motion. Leap Motion’s Orion software update [3] provides significant 

improvements to the motion capture technology observed in [4]. These improvements 

were expected to ease some of the difficulty participants experienced when using an 

older version of the Leap Motion software. 

The Box and Blocks software uses a position vector between the thumb and 

index finger to determine if a block is within grabbing distance. If a block is within 

grabbing distance, this is indicated to the participant by “highlighting” the block. Virtual 

blocks are grabbed through making a natural grabbing motion, specifically by bringing 

the fingers near to – or touching – the thumb. Only one block is able to be grabbed at a 

time. Once the fingers and thumb are within a predetermined threshold distance, the 

block is grabbed and bound to the virtual hand’s movement in the VE. Similar to 

grabbing, participants are able to release the block by moving apart their fingers and 

thumb. If a block touches the virtual box divider while being “held”, the participant will be 

made to drop the block. This is counted toward the participant’s error count. When a 

block is brought over the divider while being held, this is automatically counted toward 
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the participant’s score. Blocks in the VE are not able to be “thrown” and the virtual 

hands pass through the objects in the VE without interaction. 

Test administrators are able to toggle between demonstration and recording 

modes at the start of the software. In addition, just as in the case of the physical Box 

and Blocks test, the dominant hand of the participant can be specified so that it is the 

first hand that is tested by toggling between left- and right-dominance. When in 

recording mode, the software will record Leap Motion data as well as game play data. 

Just a portion of the Leap Motion data features recorded include position, velocity, and 

rotation vectors of the palm, fingers, and joints accompanied by timestamps. Game play 

data features include block events such as timestamps for when a block is scored, hits 

the divider, grabbed, and dropped. 

The same virtual environment is used in both versions. It is meant to resemble a 

small office environment, with a chair, desk, clock, bookshelf, and a few other assorted 

items. The clock is the only other object in the VE of significance other than the box and 

blocks. It is used to display the elapsed time once the test begins. A clock was chosen 

for this interface for the reason that it translates well into an HMD virtual environment, 

where traditional HUD interfaces are often disorienting to the user. 

9.2.2 Desktop Version 

For the desktop version, participants view the virtual environment on a computer 

monitor. The motion tracker is placed face up on the table between the participant and 

the monitor. From a seated position, they are able to reach over the motion tracker and 

see their hand in the virtual environment. The Box and Blocks software adjusts the 

positioning of the virtual hand at the start of each portion of the test to insure the 
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participant is able to reach the corners of the box in the VE without physically moving 

their hands outside of the range of the motion tracker. 

9.2.3 Head Mounted Display Version 

 For the HMD version, the HTC Vive system was used. The motion tracker was 

mounted to the front of the HMD. A chair is placed in the physical room such that is 

approximately where the virtual chair will appear to be located in the VE. Participants 

are instructed to sit in the chair before placing on headset. 

9.2.4 Procedure 

This procedure was approved by the Institutional Review Board at The University 

of Texas at Arlington, reference number 2017-0323. 

Study participants first completed a pre-activity survey. This survey is to collect 

demographic data, as well as information about the participant’s ability to play video 

games, VR games, and past exposure to PT and OT. Table 9.1 lists the non-

demographic questions and answer options for the pre-activity survey. 

Table 9.1. Non-Demographic Questions on Pre-Activity Survey 

Question Answer Options 
Please rate how much you play video games? Scale from 1 to 10 
Please rate how good you feel you are at playing video games? Scale from 1 to 10 
Please rate how often you play VR games? Scale from 1 to 10 
Please rate how good you feel you are at playing VR games? Scale from 1 to 10 
Have you had any PT or OT in the past? Yes or No 
If you had any PT or OT in the past, how long ago was it? Open ended 
If you had any PT or OT in the past, what was it for? Open ended 
Have you ever performed the Box and Blocks Test before? Yes or No 
If yes, what was the Box and Blocks Test used for? Open Ended 
Did you find the Box and Blocks Test useful for its intended 
purpose? 

Yes or No 
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After completing the pre-activity survey, participants completed the Box and 

Blocks test three times. Participants first completed a physical version of the test. This 

physical version and procedure for this version is the same as it was presented in [4]. 

This version was performed first in order for participants to establish an understanding 

of the real version before trying any of the virtual versions.  

The Desktop and HMD versions were performed second and third. The order of 

these two different versions were alternated in order to eliminate bias based on order of 

completion. Each version was demonstrated to the participant before letting he or she 

try it. Each participant was given an optional period to practice each version until they 

felt comfortable performing the task. After this practice period, the participant performed 

the task, following the same procedure for the virtual version mentioned in [4].  

During the test, the number of blocks moved and errors were recorded. Also, the 

practice time was recorded to see how long it takes the participants to become 

accustomed to the environment. Also, on the virtual versions, data from the Leap Motion 

was collected to be used for motion analysis.  

After completing the virtual versions, the participants took a post-activity survey 

to collect their opinions of the virtual versions compared the physical version. Table 9.2 

shows the questions along with the answer choices for each question. Each question 

listed was followed with an open ended question asking them to explain their answer. 

9.3 Survey Analysis 

Table 9.3 shows the demographic information for the participants in this study. 
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Table 9.2. Post-Activity Survey Questions 

Question Answer Choices 
Which version was the easiest? Physical/Monitor/Headset (Ranking 1–3) 
Which version was the most frustrating? Physical/Monitor/Headset (Ranking 1–3) 
Which version required the most physical 
work? 

Physical/Monitor/Headset (Ranking 1–3) 

Which version required the most mental 
work? 

Physical/Monitor/Headset (Ranking 1–3) 

Which version would you rather do 
again? 

Physical/Monitor/Headset (Ranking 1–3) 

Which one of the two computer versions 
felt more like the physical task 

Monitor, Headset, About the same 

Would you recommend either of these 
computer versions to anyone you know 
that is undergoing rehabilitation? 

Yes, No, No Preference 

Which of the two versions would you 
recommend? 

Monitor, Headset, About the same 

Any other comments or remarks? Open Ended 
 

Table 9.3 Demographic Information of Participants 

Population Characteristics Number of Participants Percentage 
Gender 
Male 9 75% 
Female 3 25% 
Age 
18 – 24  9 75% 
25+ 3 25% 
Bachelor’s Degree or Higher 11 92% 
Right-handed 10 83% 

 

9.3.1 Video Game and Virtual Reality Experience 

Participants reported their experience with video games and with virtual reality. 

They rated their play rate and skill for each type of experience using a 10-point Likert 

scale. To aid interpretation, play rate scores and skill scores were summed and coded: 

Low Experience, and High Experience. Table 9.4 displays this information. 

 

9.3.2 Comparison of Performance on Physical vs. Monitor vs. VR tasks 
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 Table 9.5 shows the scores of the participants for the different versions. 

9.3.2.1 Accuracy 

A one-way within subjects Analysis of Covariance (ANCOVA) was run to 

examine participant performance. No significant differences were found across task 

types overall, but significant differences were found when including handedness as a 

covariate, F(5,50) = 2.61, p < .036, partial eta-squared = .21. Specifically, participants 

had the worst performance during the right-handed trials of the monitor task. 

Participants performed best for both right- and left-handed trials of the physical tasks, 

followed by both right- and left-handed trials of the VR tasks. Additionally, VR task 

performance correlated more strongly with the physical version of the task (Pearson's r 

= .68, p = .014, r-squared = .46) than with the monitor version of the task (Pearson's r = 

.62, p = .03, r-squared = .38). 

Table 9.4 Participants Experience with Video Games and Virtual Reality 

Level of Experience Number of Participants Percentage 
Video Game Experience 
No Experience 0 0 
Some Experience 3 25% 
Significant Experience 9 75% 
Virtual Reality Experience 
No Experience 10 83.33% 
Some Experience 1 8.33% 
Significant Experience 1 8.33% 

 

9.3.2.2 Error 

A one-way within subjects Analysis of Covariance (ANCOVA) was also run to 

examine how errors differed based on the three versions of the task. No significant 

differences were found, regardless of handedness. 

9.3.2.3 Subject Experience of Participants 
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Table 9.5 Participants’ scores while performing the different versions 

Subject 
Number 

Scores (both hands combined) 
Physical Monitor VR 

1 102 22 49 

2 107 48 80 
3 116 64 107 
4 110 64 88 
5 131 86 129 
6 111 35 90 
7 138 57 142 
8 102 56 103 
9 116 50 94 

10 114 61 66 
11 99 68 79 
12 121 20 64 

 

One-way within subjects Analyses of Variance (ANOVA) were run to examine 

participants' ratings of the three versions of the tasks. Significant differences were 

found, and a breakdown of participants' responses can be found in Table 9.6. 

Table 9.6 Participants’ ratings of the monitor vs. VR. Physical versions of the Box and Blocks task 

 Monitor VR Physical No Preference 
n % n % n % n % 

Which version was 
the easiest? 0 0% 1 8.33$ 11 91.6

7% - - 

Which Version was 
the most frustrating? 12 100% 0 0% 0 0% - - 

Which required the 
most physical work? 6 50% 2 16.67% 4 33.3

3% - - 

Which required the 
most mental work? 10 83.33% 1 8.33% 1 8.33

% - - 

Which would you 
rather play again? 0 0% 12 100% 0 0% - - 

Which felt more like 
the physical version of 
the task? 

2 16.67% 10 83.33% - - - - 

Which version would 
you recommend to 
others? 

0 0% 11 91.67 - - 1 8.33% 
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Participants found the physical version to be easiest, followed by the VR version, 

then the monitor version (F(2,22) = 133.00, p < .001, partial eta-squared = .92). 

Participants found the monitor version to be the most frustrating, followed by the VR 

version, then the physical version (F(2,22) = 62.77, p < .001, partial eta-squared = .85). 

There was no significant difference in the reported amount of physical work that the 

tasks required, but the monitor version was reported by participants to require the most 

mental effort (F(2,22) = 17.99, p < .001, partial eta-squared = .62). 

Interestingly, participants rated the VR task as the task they would be more likely 

to want to complete again (F(2,22) = 133.00, p < .001, partial eta-squared = .92). The 

majority of participants (n = 10) rated the VR task as feeling more like the physical task. 

All participants noted that they would recommend the VR version for future use in rehab 

settings. Finally, there was a marginally significant correlation between self-reported 

video game skill and scores on the monitor version of the task (r = .55, p = .06). 

9.4 Analysis of Game and Motion Data 

 This section will discuss areas of interest when looking at the motion data 

obtained from the Leap Motion and the game. 

9.4.1 Scoring Rate 

 The rate at which a person scores can show many different things. If a person 

takes the same amount of time to score, that is the time between one block is dropped 

on the other side to when the next block is dropped, then this could show the person 

can perform the task consistently. If there is a consistent long time between scores, that 

could mean the person is struggling or in pain, but is still completing the task.  
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 If a time between scores slowly increases over time, then this could be indicative 

of a person who is experience fatigue during the task. The fatigue could be caused by 

just normal use of the arm, or be caused by increasing pain in the arm or hand. The 

goal of a person performing the task would be to improve the time between scores over 

time, therefor building up strength in the arm, regaining motion in the arm, or show that 

the arm is recovering from injury. 

 If there is a random one-time spike in the time between two scores, then this 

indicates a “struggle point” for the person performing the test. This may be caused by a 

spike in pain, an issue with the software and the leap motion recognition, or could be 

caused by the patient being distracted by something outside the game. The cause for 

these “struggle points” should be investigated and potentially fixed. 

9.4.2 Errors 

 This version of the game records two types of errors. The first is if the person hits 

the middle wall of the while attempting to transfer the block over. This type of error is 

called a “wall hit.” A wall hit shows that a person is not lifting their arm up high enough 

to get the block over the wall. If this type of error happens frequently, then this could 

show issues with the person’s shoulder. 

 The second type of error is a “drop.” This is when a person drops a block on the 

wrong without transferring it over, and when it’s not caused by a wall hit. A drop shows 

that a person is having issues holding the pinching position needed to hold the block. If 

this type of error happens frequently, then this could represent issues with the the 

person’s hand. 

9.4.3 Fingers Used for Picking up Blocks 
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 The fingers that are used to pick up a block can tell us about how a patient uses 

their hand. This can be determined by looking at which finger, or fingers, are close to 

the thumb. If common fingers to perform the task are used, such as the pointer, middle, 

or both, then this could remember normal motion. If someone is using other fingers to 

perform the task, then this could mean that there is some issue with the person wanting 

to use the pointer and/or middle finger. 

 A therapist can also have a patient perform the task using certain fingers to pick 

up the blocks. This can help a patient recover different functions of their hand. The 

same principle as above applies that if they are not using the proper fingers for the task, 

then the patient could be avoiding using those fingers. 

9.4.4 Joint Angles 

 How much a person bends their joints can show a lot about the range of motion 

in their hand. The angle of the joint can be determined with the following formula: 

𝜃 = 180 −	cos?+
𝑎 	 ⋅ 	𝑏

∥ 𝑎 ∥∥ 𝑏 ∥
 

where a and b are the directional vectors that the 2 bones on either side of the joint are 

pointing. These vectors are obtained from the Leap Motion data that was recorded 

during gameplay.  
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CHAPTER 10 

CONCLUSION 

In this dissertation, I have presented a potential use for a VR based Box and 

Blocks Test to be used for intervention and assessment during rehabilitation. This VR 

Box and Blocks Test can be used potentially in a clinical or home environment. I have 

also shown various ways to validate equipment and visualize data collected for use in a 

rehabilitation setting. I have also presented other uses for gamification in developing 

rehabilitation games. Finding show that virtual systems generate interest from both the 

general populous and a targeted user group. Future work and studies are necessary to 

refine the work presented in this dissertation so that it can be used effectively in a 

clinical environment. 

10.1 Future Work 

Future studies are needed to assess the efficacy of VR in rehabilitation. These 

studies would be long term studies, and would heavily involve many different roles of 

health professionals. These studies would compare VR based therapies to that of 

traditional therapies. Patients using VR therapies would have their rate of recovery 

compared to that of patients using traditional interventions and techniques. This would 

require a suite of customizable VR therapies to be created for patients at different 

stages of recovery. Health professionals would have to be trained to use the software 

and how to interpret the results. Opinions of both health professionals and patients 

would need to be collected to see how effective users perceive the system and its 

likelihood to be used a reliable alternative to traditional therapies.  
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Once the system is proven useful, then a tele-rehabilitation system can be built 

around the existing games. Patients can perform exercises and play games either at 

home or a local clinic. The data collected would then be sent to a server where a 

therapist or doctor can view any results to monitor progress and provide feedback to 

paitents. This would allow health professionals in increase their patient load without 

increasing the amount of work required. This would also allow patients to recover with 

less trips to the doctor’s office, allowing the patient to have more time and less stress to 

focus on recovery. 

Lastly, psychological tests can be incorporated into the treatments as well. 

Patients who have survived traumatic brain injuries suffer not only from physical 

impairments, but also cognitive. Incorporating cognitive assessments into rehabilitation 

tests can allow cognitive therapists to view data received from VR interventions. 

Patients could perform one exercise, or play one game, and benefit from both physical 

and cognitive rehabilitation at the same time. This would save time during recovery and 

allow for an increased rate of recovery. 
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