
Hierarchical Representation Learning with Connectionist Models

by

DE WANG

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

MAY 2018



Copyright c© by De Wang 2018

All Rights Reserved



I dedicate this work to my dear parents and brother.



ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to my advisor Dr. Heng Huang

for all the supports and helps all the way along past 6 years, both in academic and

in life. The dissertation would not be possible without the invaluable guidance and

support by Dr. Heng Huang. I joined the Ph.D. program right after I got my Bachelor

in China, it is Dr. Heng Huang who guide me into the field of machine learning. I

enjoyed discuss research with him a lot, it is my fortune to have the opportunity

working with him during the last few years.

I would also like to thank my committee members. I am grateful to Dr. Chris

Ding for discussing problems with me. His rigorousness towards academic research

influenced me a lot. I would also like to thank Dr. Junzhou Huang for serving as my

committee member. I have learned a lot from Dr. Junzhou Huang’s classes. I also

want to express my thankfulness to Dr. Jeff Lei. Thank you for all the time devoted

to serve on my committee, and introducing me to the work of using machine learning

for software testing.

I would also like to thank all my friends during my PhD study. I really enjoyed

discussing problems with those talented minds, Dr. Xiantong Zhen, Dr. Xiaojun

Chang, Dr. Hongyi Xin, Dr. Feng Zheng, Dr. Hong Chen, Dr. Jingbo Xia, Dr. Lei

Luo, Dr. Feiping Nie, Dr. Xiao Cai, Dr. Miao Zhang, Xiaoqian Wang, Zhouyuan

Huo, Hongchang Gao, Guodong Liu, Xin Miao, Xianghua Wu, Chaochao Yan, Jie

Xu, Kamran Ghasedi, Amirhossein Herandi. You guys make my life more colorful,

those time will be in my memories for my whole lifetime.

iv



My gratefulness also goes to my hosts and friends during my internship and

work. Thanks Dr. Jack Stokes at Microsoft Research offer me the position as a

research intern in the security group, where he introduced me to the fantastic world

of malware detection, attacks and defenses. Thanks Dr. Carlos Guestrin and Sethu

Raman for offering me the intern position at Turi, and Haijie Gu for being my mentor

during the wonderful three months at Seattle. Thanks Dr. Matthew Zeiler for offering

me a internship position at Clarifai, and discuss with me on cutting edge industry

research problems. Thanks Dr. Po-sen Huang and Dr. David Eigen at Clarifai for

being my mentor, and Jake Zhao, Robert Wen, Michal Wolski for all the wonderful

memories in New York City and MIT Hackthon event. Thanks my manager Etienne

Jacques and Guillaume Binet at Argo AI for all the guidance on my work, and the

talented scientists/engineers in the detection team at Pittsburgh, Jingdan Zhang,

Kyoungmin Lee, Nicholas Meyer, Lawrence Jackson, Josh Manela.

Last but not least, I would like to express my deepest gratitude to the most

important persons in my life: my parents Hanyuan Wang, Zhenfang Tian, and my

elder brother Jinliang Wang and my sister in law Yan Liu. You take all the heavy

lifting work, raised me up and support me through my 20 years of study, even though

the economic hardship. Without the support from them, I can never get this far in

my life.

February 28, 2018

v



ABSTRACT

Hierarchical Representation Learning with Connectionist Models

De Wang, Ph.D.

The University of Texas at Arlington, 2018

Supervising Professor: Dr. Heng Huang

To unleash the power of big data, efficient algorithms which are scalable to

millions of data are desired. Deep learning is one area that benefits from big data

enormously. Deep learning uses neural networks to mimic human brains, this ap-

proach is termed connectionist in AI community. In this dissertation, we propose

several novel learning strategies to improve the performance of connectionist models.

Evaluation of a large neural network during inference phase requires a lot of

GPU memory and computation, which will degrade user experience due to response

latency. Model distillation is one way to distill the knowledge contained in one cum-

bersome model to a smaller one, which imitates the way that human learning is guided

by teachers. We propose darker knowledge: a new method of knowledge distillation

via rich targets regression. The proposed method outperforms current state-of-the-art

model distillation methods proposed by Hinton et. al. A lot of high level machine

learning tasks depend on model distillation, such as knowledge transfer between differ-

ent neural network architectures, black box attack and defense in computer security,

policy distillation in reinforcement learning, etc. Those tasks would benefit a lot from

the improved model distillation method.
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In another work, we design a new deep neural network architecture, which

enables model ensemble in a single network. The network is composed of many

columns, where each column is a small computational graph that performs a series

of non-linear transformation. We train multi-column branching neural networks by

stochastically dropping off many columns to prevent co-adaption of columns from

overfitting, and promote each column to learn different features which will enhance the

aggregated representation. The new architecture exhibits ensemble property in one

single model and improves the classification performance of a single neural network

upon current state-of-the-art architecture.

On the other hand, we studied the vulnerability of modern deep learning sys-

tems, both at the training stage and evaluation stage. At the training stage, it is

possible that the training data can be contaminated by attackers with noise. This is

deteriorate the recognition performance of deep learning models. We propose a new

loss function that is more robust to noise input, and outperforms standard practice

of neural network training. At the evaluation stage, we show that even though neural

networks can achieve unprecedented high recognition accuracy on image recognition

tasks, but the models are vulnerable to access attacks where attackers can generate

fake identity proof easily by exploiting deployed neural networks. We show that what

neural networks learn is very different from humans vision system. Given a trained

model, we can easily generate an image that will be classified into a target class with

almost 100% confidence, while the image might even look like white noise to human

eyes.
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CHAPTER 1

Introduction

Deep learning [1] gets tremendous traction in both academic and industry,

thanks to its superior performance in perception tasks like image recognition [2],

speech recognition [3, 4, 5] and natural language understanding [6, 7, 8]. Although

many research has been done all over last few decades, the whole deep learning field re-

ally took off after 2012, in which year the AlexNet [9] came out and won the ImageNet

competition [10] in a landslide. The success of deep learning can not be achieved with-

out the emergence of big dataset, computing infrastructure (especially GPU), and the

prosperity of experimental frameworks like Caffe[11], Tensorflow[12] (mainly backed

by Google), MXNet[13], Theano[14] (mainly backed by MILA lab led by Yoshua

Bengio, but ceased from active development now), PyTorch/Torch (mainly backed

by NYU and Facebook), CNTK (computational network toolkit, mainly backed by

Microsoft) Keras[15], Chainer[16], etc. Now many tech giants/start ups enter into

the race for self-driving cars/medical images where perception plays one of the most

crucial rule, deep learning is a vital part of the technology stack.

Before the resurgence of neural networks, data driven learning are usually com-

prised of two separated steps:

1) Feature engineering: extract features from raw data. Some representative ap-

proaches include Histogram of Oriented Gradients (HOG) [17], SIFT [18] for images,

Bag of Words (BoW) representation for text mining, etc.

2) Learn models on extracted features. Among them, most popular models are

Support Vector Machine (SVM) [19], Logistic Regression (LR).
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There are advantages and disadvantages for this learning paradigm. The advan-

tage is that the features are designed by human expert, so every feature has explicit

meaning to model builder. In addition, those shallow models have good interpretabil-

ity due to the simplicity in model where only a single weight matrix is learned. For

example, we can easily know which features contribute more toward the classifica-

tion. However, this paradigm depends heavily on human expert to design meaningful

features for the target task. Neural networks, on the other hand, do not require the

features to be designed by domain expert, but accept raw inputs (images, texts) and

learn the feature representation automatically, thanks to the large amount of data

available for training. The performance of deep learning models outperform hand

crafted feature engineering by a large margin. Therefore, the academic community

shift towards the new paradigm of representation learning [20], which learn useful

features automatically from raw features. Under this paradigm, everything can be

embedded into a vector space in which the similarity can be characterized by the dis-

tance of the vectors in the embedding space. For example, words, sentences or even

paragraphs can be embedded into the vector space [21, 22, 23, 24, 25] and arithmetic

operation can be applied onto the embedding to get meaningful words. The drawback

of neural networks is that it relies on large amounts of labeled training data to prop-

erly learn the large amount of parameters, although this bothers academic/industry

community a lot, it is not an obstacle insurmountable in the big data era.

Neural networks are hierarchical models stacked by layers of non-linear transfor-

mations. Hierarchical structure allows for efficient compositionality of input features

to more complex feature representations. Primate visual cortex (V1) is composed of

layers of neurons. Compositionality is one of the most fundamental property of how

the world is formed. Simple features can compose into more complex features in the

hierarchical architecture. For example, the lower layers in neural network learn the
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edge, where those features are composed into junctions and more complex contours

in the upper layers of neural networks [26]. Neural networks can be categorized in

the connectionist model approaches, which is a term introduced by Donald Hebb

to model the process of mental/behavior development of interconnected networks of

simple units.

Due to higher capacity of neural network models, the performance improvement

will not saturate as quickly as low capacity models. Therefore, with the massively

available amount of data, deep learning models usually get better performance. Be-

fore the resurgence of deep learning, neural networks has been hot research topics

in machine learning community in the 90s, and most of the critical technique ad-

vancements have been published. The network architecture are mostly comprised of

convolutional operators and max pooling/average pooling operators, which is already

pretty standard in convolutional neural networks (CNN) that time [27]. Due to the

weight sharing in convolution and pooling operation, convolutional neural network

is able to capture the spatial structure in inputs, and it is invariant to translation.

One may also regard the sequence structure in text as one dimensional structure, and

there are works that use convolutional networks for text processing like sentiment

analysis task [28]. Recurrent neural networks (RNN) like long short term memory

RNN [29] has also come out in 90s. The recurrent structure can be used to capture

the temporal structure in inputs. The most important algorithm in leraning deep

models, i.e. the back-propagation [30, 31] algorithm [30, 31] has been there since 80s

as well. Although there are many variants of optimization algorithms (for example

AdaDelta [32], Adam [33]) for neural networks, the core idea of learning remains

unchanged, i.e. to update the weights based on error gradients.

During the 90s, most of the neural networks are shallow, and have a much

smaller amount of parameters, due to the limitation of computing capability. There-

3



fore, the representation power of the models are limited, and MNIST [34] is considered

a pretty big data set to run machine learning models on. However, due to the fast de-

velopment of high performance computing technology like GPU (Graphics Processing

Unit) computing technology (and some ASICs like TPU (Tensor Processing Unit)),

nowadays ImageNet kind of become the new MNIST. The higher end computing de-

vices offers hundreds of TFLOPS (tera floating point operations per second) compute

capability, which vastly reduce experimental turnaround and expedite researchers to

make more discovery in a short time. For example, in one of Google’s experiment,

64 TPUs are used to train a ImageNet ResNet-50 model to 75% accuracy in just

22 minutes. This is a huge speedup compared with the computing infrastructure

in 2012, where it takes two weeks for researchers to train an AlexNet [9] on GPUs.

Researchers have exploited different ways to parallelize the training of deep learn-

ing models to reduce the experimental turnaround. The distributed training can be

basically categorized into two paradigms, data parallel approach and model parallel

approach. For the data parallel approach, the training data is splitted into many

shards and distributed to multiple nodes. Each node compute the gradient and send

back to a server to aggregate the results [35]. The model parallel approach partition

the computational graph into different parts, and each node compute only part of

the computational graph [36]. Data parallel approach is more popular due to the

simplicity in implementation. WIth the distributed training framework, Facebook

managed to train ImageNet in one hour [37] with a minibatch size of 8192 on 256

GPUs.

The development of modern deep neural networks can be split-ted into two

stages. The first stage starts from 2006, where researchers start to explore unsu-

pervised learning of network weights. Since the highly non-convex nature of the

optimization for neural networks, finding a better initialization can help the model to
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find a better optimum solution. The training is consisted of two steps: first, pre-train

[38] with unsupervised model such as restrictive Boltzmann machine (RBM) [39]

or stacked auto-encoder [40]/denoising auto-encoder [41]/contractive auto-encoder

[42, 42]/sparse coding [43, 44]. Those pre-training algorithms train the weights layer

by layer via minimizing the reconstruction error. After the pre-training, the model is

fine-tuned on labeled data set with normal gradient descent.

However, researchers abandons the step of pre-training after 2012 due to that

the size of labeled training data increases, and some technique advancements that al-

leviate the notorious gradient vanishing problem. The difficulty of preventing people

from training deep neural network is the gradient vanishing problem [45, 46] during

the back-propagation the gradients become a smaller value layer by layer such that the

gradient approaches zero at the lower layers of the network. Therefore, the weights

in the lower layers can not be properly updated. Basically, most of the advancements

in recent years are related to this problem in different aspects. The various type of

activation functions like (ReLU [9, 47], LeakyReLU, PReLU [48], ELU [49]) do not

suffer from the gradient vanishing problem as the standard sigmoid activation func-

tion. For further reference, Xu et. al. [50] has a good benchmark on the performance

of different type of activation functions. Xavier et. al [6] proposed to initilize the

weights with respect to the number of parameters in each layer, which will help to

keep a stable flow of gradients during the trainging. Batch normalization [51] helps

to prevent the covariate shift problem (the input distribution of each layer changes

during training), so that the we can be less careful about weight initialization, and

more aggressive learning rate can be used during training. Another approach to alle-

viate the gradient is to add shortcut to the network architecture, most representative

works are Highway Network [52], ResNet [53], DenseNet [54].
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With the rapid advancement of deep learning in recent years, there are still

many challenges remains to be tackled before it can reach to ubiquitous deployment.

It sounds pretty exciting when AlphaGo [55] beats Lee Sedol in the ancient game of

GO, apply those technology in real world applications is still far from ready due to

the complex nature of real world environments. Although reinforcement learning al-

gorithms have made rapid progress during the last few years [56, 57], the environment

which is viable to deploy the AI agent is still mostly in toy experimental setup or

very limited tasks. The other obstacle is the dependency on large amount of training

data. Therefore, researchers have been actively researched into unsupervised deep

learning, which is regarded as one of the most important problem for achieving AI.

With the wide adoption of deep learning models in industry, improve the ac-

curacy of the models can have a broad impact on the success of applications where

deep learning is in the critical path. In addition, making the models to run more effi-

ciently while preserving the accuracy can save a lot of computing power/energy and

reduce the inference latency. Last but not least, the security of the deployed models

is of paramount importance for organization to protect data integrity and security of

properties.

In this dissertation, we proposed some approaches to address those problems.

We organize the dissertation as follows. In chapter 2, we introduce a new method

for model distillation, which can distill the knowledge learned in a larger model into

smaller ones while preserving the accuracy. The proposed approach outperforms

standard practice for knowledge distillation. In chapter 3, we introduce a new neural

network architecture which is termed as stochastic columnar network (SCN). The

new architecture improves the model recognition performance upon state-of-the-art

models with a lower amount of computational overhead. In chapter 4, we study the

potential attacks during the training and evaluation stages of deep learning. We show

6



that deep learning models are vulnerable to attacks which can generate fake identity

proofs easily. In addition, we proposed a new loss function which is more robust to

injected noise during the training stage. We conclude the dissertation in chapter 5.
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CHAPTER 2

Darker Knowledge

2.1 Introduction

Deep learning is popular nowadays for its superior performance in perception

tasks in computer vision, speech recognition and natural language processing. In the

meantime, it is also notorious for the difficulty in training deep networks.

Universal approximation theorem pointed out that: giving large enough number

of neurons, a single hidden layer neural network can be a universal function approxi-

mator [58]. It is not that the expressive capability, but the optimization difficulty that

limits the performance of shallow fat networks. Training of neural networks mostly

rely on back-propagation of gradients using stochastic gradient descent (SGD) or its

variants like AdaGrad, AdaDelta, RMSProp, and momentum based SGD, Nesterov

Accerlerated Gradient (NAG), Adam. All these methods rely on the gradients as

guidance to update model parameters. As the first wave of the resurgence of neural

networks, layer-wise pre-training using Restricted Boltzman Machine (RBM) [39] or

Stacked (denoising) Auto-Encoder (SA/SdA) [41] provides a good initialization for

the highly non-convex optimization of deep netowrks. There are also works [59, 60, 61]

that use Evolutionary Computation (EC) algorithms like Genetic Algorithm (GA) for

neural network optimization. But GA requires to evaluate the fitness function many

times to guide the evolution of agents. Intuitively, validation accuracy can be used

as the fitness score, but it is very computation expensive, and seems like only viable

for organizations that have a lot of computational power like Sentient AI, a company

that use millions of distributed cores to evolve neural networks.
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On the other hand, Human beings attend school to learn knowledge from teach-

ers who have experienced much more than average students. In order to implement

intelligence in learning machines, it is essential for the system to have the capability

of distilling knowledge from teacher models (which are usually cumbersome models

with large number of parameters or neurons in the case of neural network). The

knowledge learned by teacher models can guide the parameter search of student mod-

els which are usually harder to be optimized without the guidance. This process is

called knowledge/model distillation, and there are some seminal works introduced by

Geoffrey Hinton et al. [62] and Jimmy Ba et al [63] and Rich Caruana et al. [63].

In the context of deep learning, knowledge distillation is a cornerstone used in

many active research areas. Hinton et al. [62] mentioned that: knowledge learned

by a model are stored in the weight parameters, which are bound to a specific net-

work architecture. Conventional knowledge transfer like fine-tuning top layers of the

network [11] still requires the bottom layers to remain the same in order to use the

learned weights. Net2Net [64] enables knowledge transfer to a deeper/wider network

by warmstart the model with identity connection, but still requires extended mod-

els share modules with the same architecture. When the architecture changes, the

weights can not be used anymore. Knowledge/model distillation has no architecture

constraints, provides a way to transfer the knowledge learned by one model to an-

other one with any different architecture. This enables us to transfer knowledge from

larger/deeper neural networks to smaller/shallower ones, and even transfer knowledge

between recurrent neural networks(RNN), convolutional neural networks (CNN) and

deep neural networks/multi-layer perceptrons (DNN/MLP). For example, William

Chan et al. [65] used soft alignment to distill the knowledge learned from a RNN to

a DNN. The distilled DNN model is easier for deployment, and outperforms state-of-

the-art DNN models trained directly. Krzysztof J. Geras et al. [66] compressed the
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knowledge learned by a long short term memory (LSTM) RNN into a CNN. The dis-

tilled model achieved state-of-the-art performance on the standard 309h Switchboard

automatic speech recognition task, and consumes less memory and computational

time in deployment.

Light memory consumption makes it possible to deploy distilled models onto

embedded devices like mobile phones. Shorter response time reduces latency and

improves user experience when deployed at massive scale. Shallow networks take less

cycles in the inference stage, allows for easier parallelization. Note that knowledge

distillation is orthogonal to other model compression techniques like low rank decom-

position of weights [67], vector quantization [68], DeepCompression [69], SqueezeNet

[70], so the distilled model can be further compressed using the those methods. In

this work, we focus on the performance comparison with current standard practice of

model distillation but not the model compression rate.

In reinforcement learning, Google DeepMind used knowledge distillation to dis-

till action policy in Deep Q Networks (DQN), in which multi-task policies are dis-

tilled into a single policy [71]. With a drastically smaller network, the distilled model

demonstrates expert level performance. In gradual learning, knowledge distillation

is used to prevent the model from forgetting old tasks (using soft target alignment)

when learning new tasks [72].

Knowledge distillation is also widely used in security domain to implement

black box attack on neural network based security systems [73]. To implement an

adversarial attack, gradients information of the output w.r.t. the input is required.

With model distillation, attackers could mimic the deployed model (which is usually

a black box to users) with the student model, and use gradient information from the

student model as the guide to implement adversarial attacks. Knowledge distillation
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can also be used in a semi-supervised way and ensure differential privacy while training

deep models [74].

With such a broad range of research topics built on top of model

distillation, a lot of higher level tasks would benefit from it if we could

improve the performance of model distillation.

In this paper, we propose a simple yet effective way to improve model distilla-

tion. We organize the paper as follows: In section 2.2, current standard practice of

model distillation is introduced. Following that, we present the new way of perform-

ing model distillation. Extensive experiments on are presented in the next section.

We conclude the papers with considerations for future works.

conv1 layer mp1 layer conv2 layer mp2 layer
rich 

targets
logits soft

targets

bird: 0.05

dog: 0.60

cat: 0.30

ship: 0.01

...

...

2x2

2x2
3x3

Nx32x32x32 Nx16x16x32 Nx16x16x64 Nx8x8x64 Nx512 Nx10 Nx10

Figure 2.1: A common deep convolutional neural network architecture. Key: conv:

convolutional layer, mp: max pooling layer.

2.2 Related Works

In this section, we will introduce related works on the topic of knowledge/model

distillation. Those familiar with the literature might skip to the next section directly.

Vanilla Model Compression
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Caruana et al. [75] proposed model compression to distill the knowledge of a

trained large teacher model to a much smaller one. The teacher model is used to

obtain labels on a large set of data, then the data with the predicted labels are fed

into training the small student model. This approach is similar to self-taught learning,

except that the goal is to train a student model, rather than the model itself. It also

proposed methods for modeling real data distribution so that they can generate more

training data to further improve the training of student model.

The distilled model is as accurate as the teacher model, although with much

fewer parameters. However, the same accuracy often can not be reached by directly

train the student network on original training data.

Dark Knowledge/Soft Targets Alignment

Dark Knowledge [62] is proposed by Geoffrey Hinton et al to improve model

distillation performance. Instead of using the predicted hard labels as training targets,

dark knowledge uses the predicted probability p = [p1, p2, ..., pc] (∀i, 0 < pi < 1, and

pi is the probability of a sample being classified into class i) of the teacher model as

the training target. The probability scores are also known as soft targets, in contrast

to the hard targets of original {0, 1} labels. Figure 4.13 is a schematic illustration of

a standard convolutional network. The last red column is the predicted probability of

each class. Dark knowledge argues that the probability scores capture the relationship

between classes. Taking MNIST dataset for example, digit 1 and 7 looks more similar

than 1 and 8, so the prediction of a hand written digit with a ground truth 1 is

usually classified with a higher probability of 7 than 8. Similarly, for natural image

classification, cats looks more similar to dogs than desks. Thus for a dog image, the

output might be [0.6, 0.3, 0.01] for dog, cat, and ship class respectively. By utilizing

the relationship between classes, the teacher model communicates more information
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to the student model, which helps training the student model to better mimic the

complex non-linear function learned by the teacher model.

But usually with vanilla softmax activation (without using a temperature to

normalize the logits feeding into softmax function), many of the probability scores

would concentrate on one class too much, making the correlation between classes not

that obvious. So Hinton et al. proposed to use a higher temperature to normalize

the logits so that the probability scores distribute more evenly to better reflect the

correlation between classes.

Specifically,

p = softmax(z/T ) (2.1)

softmax(x) = exp(x)/
c∑
i=1

(exp(x)) (2.2)

where p ∈ Rc×1 is the output probability scores w.r.t. each class, softmax is a function

which is usually applied to a vector to get the probability scores, z ∈ Rc×1 is the logits

(the layer before feeding into the softmax function) output by a deep neural network

f(x) applied on an input x. T is the scalar temperature. Intuitively, when T is large,

the difference between normalized logits is small, so the output probability will be

pushed towards uniform distribution.

If the the distilled student model could match these soft targets on a large

transfer set (note that the transfer set do not need to be constrained to the original

data used for training, but could be any data), then we can say that the student

model distill most of the knowledge stored in the larger teacher model. So we can

formulate the model distillation problem as soft targets alignment via cross-entropy

loss between probability scores of student model and teacher model.

In the distillation process, the student model should use the same temperature

as the teacher model. When deploy the student model, vanilla softmax function
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should be used to get the probability scores back to normal. The temperature need

to be tuned for best performance. The teacher model can be an ensemble of teachers

to form a super teacher, where the targets could be the geometric or arithmetic mean

of all teachers. They found that a single student model, while guided by the super

teacher, could perform similarly on speech recognition tasks.

Logit Regression

Jimmy Ba and Rich Caruana [63] also studied whether shallower networks could

perform as well as deep nets. Instead of using the probability scores as the training

targets, logits are used as regression targets. In Figure 4.13, the blue column repre-

sents the logits, which are real values before feeding into the final softmax layer.

Specifically, [63] formulate it as logit regression with L2 loss as follows:

L(WS;X) =
1

2N
‖ZT − ZS‖22 (2.3)

ZT = TNN(WT ;X) (2.4)

ZS = SNN(WS;X) (2.5)

where TNN and SNN are the non-linear function of teacher network and student

network that mapping the input data X ∈ RN×d into logit space, ZT ∈ RN×c and

ZS ∈ RN×c are the logits of the teacher network and student network, WT and WS

are parameters of teacher and student networks, N is the number of data. Note that

here logits refer to the summarized logit scores Z, and should not be confused with

logistic regression.

Ba et al. found that by using the proposed model distillation strategy, single

hidden layer feed-forward network can perform similarly to well engineered complex

deep convolutional networks. They argue that it is not the expressive capability

of shallow models that limits the performance, but because current optimization

algorithms work better for deep architectures. If we can come up with better learning
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algorithms, shallow models might perform as good as deeper ones. Ba et al. also

claims that logit regression works better than using L2 loss or KL divergence in

probability space.

Deep and Convolutional?

In [76], researchers studied that whether the the depth and the convolutional

structure are needed in the student model. Extensive experiments are carried out

using Bayes Optimization for hyper-parameters. They conclude that it is hard for

feed-forward neural networks to learn the function learned by convolutional neural

networks in image recognition tasks. To reach the accuracy of deep convolutional

teacher models, at least serveral layers of convolution are needed. In this work,

we do not study the effect of having convolutional layers or not, but focus on the

performance comparison between different knowledge distillation methods. It’s also

possible to achieve better accuracy with better teacher model formed by ensemble or

other advanced architectures/methods, which is beyond the study of this work.

2.3 Darker Knowledge

To the best of our knowledge , most of the works based on model distillation

are using either soft targets alignment, or logit regression. If the model distillation

method is improved, many other tasks depend on that can be benefited as well. In this

section, we propose darker knowledge via rich latent targets regression, and validate

empirically that the new proposed approach improves upon current standard practice

of model distillation.

The idea is very intuitive. From information theoretic point view, there are a

lot more information contained in the activations below the logit layer. We call these

activations rich targets since they contain semantically rich information. In a common

convolutional architecture shown in figure 4.13, the magenta column represents the
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rich targets (note that rich targets is not restricted in convolutional networks, but

could be in any network architectures). Logits are summarized from rich targets, and

softmax function is applied to logits to get the final output in the probability space.

Each hard target contains only one bit of information. Soft targets/probability scores

give better proximity information between different classes than hard targets. Logits

carry more information, but it is still much less than rich targets. Rich targets can

potentially communicate much more about the underlying latent factors that actually

lead to the final classification decision. Although we do not know specifically what

each target represents, we know that those targets are trained to be discriminate in

order to properly classify the training data. Once a deep teacher model is trained,

rich targets can be easily obtained.

It is known that deep neural networks are highly nonconvex, and hard to opti-

mize. Deeper networks usually have more local minimum, and it tends out the many

of the local minimum are of similar energy, so it is easier to get a better solution than

shallower ones [77]. By using rich targets from a deep model as guidance, shallower

networks have more hints to search over the huge parameter space and find a better

local optimum than directly optimize the shallower network. Using logits or soft tar-

gets could also guide the optimization of student network, but the constraint is less

tight as rich targets. It is possible that top layer weights co-adapt to minimize the

divergence of logits or soft targets, thus features do not need to be very strong to

achieve the divergence minimization goal, weaker features could be learned. By min-

imizing the divergence of rich targets, the student model is forced to learn stronger

features already learned by the teacher model.

We have validated this assumption using a simple experiment. We train a

student model of 6 convolutional layer and 3 interleaved max pooling layers using

soft target alignment. Then we chop off the top layers and using the rich target layer
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as features to train a linear classifier, this approach achieves 14.41% error rate on the

CIFAR 10 test set. If the student model is trained with logit regression, 13.15% erorr

rate is achieved using the layer corresponds to rich targets. While using rich target

regression, we achieve 11.95% error rate.

Based on the above intuition, we propose to perform model distillation via rich

latent targets regression. Following dark knowledge, we term this method Darker

Knowledge since the knowledge are hidden deeper in the lower layers of the network,

and is not very straight-forward to be discovered. Note that not exactly the last layer

activations should be used as training targets, but layers below that could also be

used if appropriate. For models without a fully-connected layer on the very top of

the teacher network, the flattened pooling layer may be used as the rich targets. In

general, lower layers contain more specific low-level information, higher layers contain

more general high-level information. We may even use multiple layers to guide the

distillation process better.

We formulate the method mathematically as follows:

L(WS;X) =
1

2N
‖RT −RS‖22 (2.6)

RT = TNN(WT ;X) (2.7)

RS = SNN(WS;X) (2.8)

where R ∈ RN×h is the rich targets (h is the dimension of the hidden layer that rich

targets correspond to).

After the distilling phase, the simplest way to go would be just concatenate

the last layer of the teacher model on top of the student model if the discrepancy of

the rich latent targets is small between student and teacher models. Actually in our

experiments, we found that decent accuracy can be achieved in this way, but train

a linear layer on top of that could be more accurate than directly concatenate the
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last layer weights. In our experiments, we will learn a linear classifier on top of the

student model. Off-the-shelf SGDClassifier from scikit-learn is used for simplicity.

We have also tried using L1 loss instead of L2 loss. Empirical results show that

L2 loss works better, so we stick to L2 loss in our experiments.

2.4 Experimental Results

Experiments Setup

The experiments are carried out in Keras with tensorflow as the backend. All

codes will be open sourced shortly for reproducibility.

For all the experiments, Adam [33] optimizer is used with default parameters

β1 = 0.9, β2 = 0.99 and ε = 1e− 8, with a batch size of 32, for a total of 200 epochs.

Weights are initialized by the default glorot uniform intializer [45], learning rate is

scheduled as [0.0001, 0.001, 0.0001, 0.00001] with turning points at epochs [5, 160,

180, 200]. The first 5 epochs is for warm start the training, then the more aggressive

learning rate is used for the most of the training epochs. In the final stage, the

learning rate is reduced to further optimize the objective function. Learning rate will

be reduced if a plateau is reached for a consecutive of 5 epochs, by a factor of
√

0.1.

The learning rate schedule is visualized in figure 3.2b (d). The temperature for soft

targets is tuned from 5 to 15.

We organize the experiment section as follows: in the first subsection, prelimi-

nary results on MNIST dataset is presented to distill a convolutional network into a

MLP and a shallower convolutional net. After that, extensive experiments with dif-

ferent training data setting and student network architectures on CIFAR10 dataset

are presented. We demonstrate the effectiveness of knowledge transfer across datasets

in the last subsection.
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(a) MNIST samples (b) CIFAR10 samples

Figure 2.2: Sample images from MNIST and CIFAR10 datasets.

2.4.1 Preliminary Experiments on MNIST Dataset

We first do experiments on MINST data set to validate our idea. MNIST is a

widely used digit recognition dataset, where each image is 28 by 28, with gray scale

value. Figure 3.3a (a) shows some sample images from MNIST dataset. We use

the default training/testing split in our experiments. This is a relatively easy task

for convolutional network nowadays, and vanilla MLP can achieve a pretty decent

accuracy on this task.

Firstly, we show that we can transfer the knowledge learned by a convolutional

network to a MLP. Within tensorflow, we trained a convolutional network with two

convolutional layers interleaved with 2x2 max pooling layers and ReLU (rectified

linear units) activation function. Filter size of the convolutional layers are (5, 5, 1,

32) and (5, 5, 32, 64), respectively. A dropout rate of 0.5 is used during the training

phase. This teacher network achieved 87 errors among the total 10, 000 testing data.

We have also trained an MLP, with two hidden layers, each hidden layer has 1024

neurons. While trained directly on the original hard label, this network achieves 304

errors.
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rich logits soft

MLP (784-1024-1024-10) 114 131 144

conv1 ((5, 5, 1, 32)-1024-10) 91 123 130

Table 2.1: Number of errors made by student model on MNIST testing set. MLP

represents the result using a two hidden layer MLP as student, conv1 represents

using 1 convolutional layer network as student. ”rich”, ”logits” and ”soft” represents

distillation using rich targets, logit targets, and soft targets respectively.

Table 4.1 shows the results of using different model distillation methods. We

can see that rich target regression makes less errors on the test set than commonly

used soft targets and logit regression. We have also trained a shallower CNN to mimic

the teacher model, with only one convolutional layer (5, 5, 1, 32) of stride 2 and a

max pooling layer with stride 2. As expected, convolutional network makes less errors

than MLP student network on the test set. Again, our method outperforms standard

practice for model distillation.

Since MNIST dataset is simple for convolutional network nowadays, it is used

to serve as an initial validation of idea. It would be more convincing to show the

performance comparison on larger datasets. In the next section, we will resort to

CIFAR10 dataset to show the performance of each approach under different settings.

The experiments require a lot of model training. It takes a lot of computation power

and weeks of training time to train a model on the ImageNet dataset, we will add the

performance comparison on ImageNet dataset in the future.

2.4.2 CIFAR10 Dataset

Dataset Description
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10% 30% 50% 70% 90% 100%

rich 21.52 16.86 15.97 15.07 14.85 14.26

logits 30.24 23.23 21.71 20.88 20.77 18.77

soft 30.53 24.72 23.86 22.01 21.55 18.77

hard 40.15 27.71 25.05 22.69 21.73 21.05

Table 2.2: Error rates on the test set with different percentage of training data

available. ”hard” refers to direct training on original hard label.

CIFAR10 dataset consists of 60, 000 natural images selected from 80 million

tiny images [78]. It is divided into 50, 000 training set and 10, 000 testing set. There

are 10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck.

Each image is 32 by 32 pixels with 3 RGB color channels. In our experiment, we

use the 50, 000 training set as the transfer set to train the student model. Figure

3.3a (b) shows some sample images from CIFAR10 data set. Note that we can also

use outside images from the 80 million images as the transfer set, but it would take

very long for the training, so we do not resort to images beyond the training set of

CIFAR10 dataset.

Convolutional networks help with modeling invariance in images, and is more

efficient than feed-forward networks with same parameter budgets. It is observed in

previous works [63, 76] that student models without convolutional architecture could

not learn very good classifiers for natural images with many sources of invariance such

as light, view angle, rotation, thus we do not study the effect of having convolutional

layers or not, and only use convolutional networks as student models.

Train Student Model with Partial Data

21



We have trained a teacher model using the CIFAR10 dataset, with 4 convolu-

tional layers interleaved by 2 max pooling layers. The model is trained using aug-

mented data with random horizontal flip, and vertical and horizontal shifts, and

achieve a 86.38% accuracy on the testing set.

We first perform experiments using different fraction of training data to train

the student model. The student model is similar to the architecture of teacher model,

with 4 convolutional layers and 2 max pooling layers. To make fair comparsion, the

same random seed is used to generate index of training data being selected. No data

augmentation is used to make the comparison more strict. Table 2.2 shows the per-

formance of different distillation methods. We can see that our method outperforms

standard practice of using logit regression or soft target alignment by a large mar-

gin. This suggests that our method can communicate more useful information to the

student.

In addition, training directly on the original hard label overfit seriously since the

training data is scarce, but the performance using model distillation is much better.

When the training data is scarce, student model is vulnerable to overfitting, but the

teacher model is trained on a larger dataset without overfitting. Model distillation

serves as an implicit regularization to the student model. Using the same teacher

model, darker knowledge better regularizes the student model to learn stronger fea-

tures than standard practice because it communicates more information in the latent

feature space of the teacher model.

Student Models with Different Architectures

In this subsection, we make thorough comparison of different knowledge distil-

lation methods with different student model architectures. To boost the performance,

we have trained a stronger teacher using wide residual network (WRN) [79], which

is a variant of the residual network family that uses more feature maps. The WRN
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model consists of 16 layers, with a width factor of 8. The teacher model achieves

93.68 accuracy on the CIFAR10 test set.

We have trained student models with different number of convolutional layers,

max pooling layers, and different number of convolutional feature maps. The num-

ber of feature map in each convolutional layer is set with a base number and then

multiplied by a multiplier. Figure 3.2b (a) - (c ) shows the convergence of validation

loss of different student model architectures using the WRN teacher model. Figure

3.2b (d) shows the learning rate schedule used during training. We do not show the

training loss in case that the figures look too cluttered. We can see that when the

number of convolutional layers is increased from 2 layers to 4 layers, the loss drops

significantly. This suggests that in order for the student model to perform well, at

least several layers of convolution are needed to model the invariance learned by the

teacher model.

Table 2.3 shows the performance comparison of different knowledge distilla-

tion methods. Note that when the number of max pooling layer is increased, the

total number of parameters drops significantly since the input neurons for the last

fully connected layer will be reduced significantly. We can see that our method con-

sistently outperforms the current commonly used model distillation methods. The

performance of logit regression and soft target alignment is somewhat mixed, because

the knowledge contained in these two layers are similar. Not surprisingly, when the

number of convolutional layer is small, adding more convolutional layers improves

the accuracy; when the number of parameter is small, adding more parameters also

reduces the errors rates noticeably.
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2.4.3 Knowledge Transfer across Datasets

In this subsection, we demonstrate the capability of knowledge transfer between

datasets with the proposed model distillation method. For the benefits of knowledge

transfer, we use a dataset homogeneous to CIFAR10 to train the teacher model.

CIFAR100 [80] is also a subset collected from 80 million tiny image dataset by Alex

Krizhevsky. In contrast to CIFAR10, CIFAR100 contains one hundred classes with a

coarse label and several fine labels.

A teacher model of the architecture (with 4 convolutional layers, 2 max pooling

layers) similar to the vanilla CNN model in CIFAR10 experiments is trained on the

CIFAR100 dataset, which achieves 62.46% accuracy on the test set for the 100-way

multi-class classification problem. The model is trained using augmented data with

horizontal flip, and random horizontal and vertical shifts. The student models are

similar as the ones used in the CIFAR10 dataset, except that the logit layer has 100

neurons for the logit regression.

Different from previous experiments, the teacher model now contains 100 logit

neurons and probability scores. Therefore, for logit regression, a linear classifier is

sticked on top of the learned logits after model distillation. Since the probability soft

targets is for the 100 classes of the CIFAR100 dataset, it is not principled to use

the soft targets approach in this situation. Therefore, we do not compare with soft

targets distillation in this experiment.

Table 2.4 shows the error rates of knowledge transfer from CIFAR100 to CI-

FAR10 dataset. We can see that the performance via rich target regression is signifi-

cantly better than logit regression. We argue that the reason lies in two folds: on the

one hand, rich targets contain more information than logits; on the other hand, the

knowledge contained in logits is too specific and restricted to the original datasets,

thus limits its usability for knowledge transfer across datasets.
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2.5 Future Works

As the experiments suggest that darker knowledge works better than current

standard practice of knowledge distillation, it would be interesting to see whether in

other domains like speech recognition can be improved using the proposed method.

We leave this study for the future work.

2.6 Conclusion

In this work, we propose to perform knowledge distillation via rich latent targets

regression. Rich targets communicate more useful information to guide the optimiza-

tion of student models, help student models learn stronger features for classification.

The performance of the proposed approach works better than standard practice of

using logit regression or soft target alignment on a wide variety of datasets and

model architectures. On the task of knowledge transfer across datasets, the proposed

method also works significantly than previous methods. We conjecture that a broad

range of machine learning tasks (as mentioned in the introduction) relying on model

distillation should be benefiting from the improved model distillation method.
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(a) Validation loss of rich target regression.
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(b) Validation loss of logit target regression.
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(c) Validation loss of soft target alignment.
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(d) Learning rate schedule during training.

Figure 2.3: Loss on validation set of different student model architecture w.r.t. num-

ber of epochs. Since the loss are of different scale, we do not plot the curves in one

figure. Key: c: number of convolutional layers, p: number of max pooling layers.
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multiplier 1 2c-2p, 2.12M 4c-2p, 2.16M 6c-2p, 4.6M 6c-3p, 1.45M 8c-2p, 2.26M 8c-4p, 0.85M

rich 20.27 14.69 11.89 12.33 11.78 13.88

logits 20.97 15.69 14.09 14.78 14.26 15.83

soft 20.83 16.39 14.02 14.20 14.22 16.59

multiplier 2 2c-2p, 4.27M 4c-2p, 4.46M 6c-2p, 9.98M 6c-3p, 3.70M 8c-2p, 10.72M 8c-4p, 2.85M

rich 19.23 12.75 11.48 11.95 11.94 14.49

logits 20.06 14.93 13.77 13.38 14.38 15.52

soft 19.92 15.34 13.05 13.93 13.27 15.72

multiplier 3 2c-2p, 6.50M 4c-2p, 6.88M 6c-2p, 16.10M 6c-3p, 6.72M 8c-2p, 17.8M 8c-4p, 6.02M

rich 18.64 12.49 12.11 12.28 11.54 14.4

logits 19.65 14.35 13.97 13.70 13.54 15.48

soft 18.77 15.38 13.24 13.37 13.96 15.16

Table 2.3: Error rates on the CIFAR10 test set of different model distillation methods.

Key: c: number of convolutional layers, p: number of max pooling layers, followed

by number of parameters in the student network. M: millions of parameters in the

student network. Multiplier: multipliers for the number of convolutional feature

maps.
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methods / arch 2c-2p 4c-2p 6c-2p 6c-3p 8c-2p 8c-4p

rich 25.17 23.69 24.04 23.78 24.14 24.55

logits 32.01 29.78 30.69 31.11 31.19 33.48

Table 2.4: Error rates of knowledge transfer from CIFAR100 to CIFAR10 dataset.

Key: c: number of convolutional layers, p: number of max pooling layers, followed

by number of parameters in the student network. M: millions of parameters in the

student network.
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CHAPTER 3

Stochastic Columnar Network

3.1 Introduction

Neural network architecture is the cornerstone for deep learning research. After

Krizhevsky et al. kicked off the ball of deep learning for image recognition, the archi-

tecture of neural networks evolves a lot all along these years, and the error rates on

the ImageNet competition drops all the below 5 percent for the top 5 predictions. To

be more specific, AlexNet uses interleaved layers of convolutional layers and pooling

layers, and summarize the information with two fully connected layers which is then

fed into a softmax classifier. These shared weights convolutional filters and pooling

layers can model many type of invariance property of images. In 2013, Matthew Zeiler

and Rob Fergus used an architecture similar (which is termed ZFNet) to AlexNet, and

spotted the top 5 position on the ImageNet leaderboard. In the coming year, VGG

net [81] from Oxford and GoogLeNet [82, 83] further improved image recognition ac-

curacy by train a network that is much deeper. In addition, GoogLeNet introduced

the branching into the network architecture in the first time. Different branches use

different filter size (i.e. 1x1, 3x3, 5x5 convolutional filter) to capture different scale

of features, and then summarized into the top feature map by depth concatenation.

The 2015 ImageNet competition is won by ResNet [53] from MSRA, which

achieved an error rate of 3.57%. This is the first time which reduced the error rate

drops below 5%, and trained a network more than 150 layers (later with stochastic

depth network [84], researchers have trained network more than 1000 layers.) ResNet

conjectures that deeper network should perform better given enough training data,
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but in practice just stacking more layers does not give superior performance due to

the notorious problem of vanishing gradient during back propagation training. With a

very deep network, the very bottom layer cannot receive significant gradient informa-

tion upon which the back propagation stage hinges. ResNet add identity mapping to

facilitate the flow of gradients from top layers to bottom layers. With those identity

mappings wired between layers, we can train much deeper neural networks. Inspired

by ResNet, there are a lot of variants to further improve the architecture. DenseNet

[54] adds identity mapping between a certain layer to each upper layer to form a

densely connected computational graph. WideResNet [79] adds more filters to the

feature maps which leads to a wider network. Inception V4 network [85] adds identity

mapping to the inception architecture and improved the performance a little bit.

It seems that researchers are always focusing on making the network deeper

and deeper along these years. We conjecture that going deep is not the only way out

to push the boundary of neural network performance. In addition, given the inherent

sequential computational paradigm of neural networks, deeper networks also need

more stages of computation, which might lead to slow training and inference of the

model.

Currently neurons in neural networks are usually laid out in a flat manner, which

is easy for implementation. But human visual cortex exhibits more delicate structures

that is very helpful for signal processing. One important type of structure in visual

cortex is called cortex column. Each column serves as a basic functional unit in human

visual cortex. In each column, many neurons are encapsulated to collaboratively

evolve so that the capsule fires it gets stimulated by certain configurations or setups.

In this work, we are trying to mimic this important structure in visual cortex, and

design neural network architecture for image recognition tasks. We will validate the

idea with popular image recognition benchmark datasets.
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Figure 3.1: Stochastic columnar network architecture.

3.2 Stochastic Columnar Network

We first categorize the common approaches for model ensembling, which usually

takes a majority vote from a committee of models. This committee of models can

be trained in various ways. It is better to have different/heterogeneous models in

the committee. If all the model are making similar predictions, the prediction of the

ensemble may reduces to that of a single model. If ranked from more heterogeneous

models to homogeneous ones, we have the following strategies to form the committee

for model ensemble.

(1) Each model is of different architecture. In this case, the models are hetero-

geneous, the ensemble of models should be performing better since the trained models

are less correlated. However, the drawback of the above approach is that each model

need to be trained separately, which introduces significant computational overhead.

(2) Each model is trained with the same architecture, but different initialization.

Since deep neural network models are highly non-convex, different initialization usu-

ally leads to different converged model, although the performance is usually similar

due to the fact that many of the local minimums are of similar energy. Similar to the
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approach (1), this approach also introduces a lot of computational overhead during

training. The trained model would be more correlated, since the same architecture is

used.

(3) The models are trained with the same architecture, same initialization,

but snapshots of the trained weights are saved at different epochs. Those different

snapshots form a committee for the ensemble. This approach incurs no extra overhead

during training, but would still require to save all the weights for the models. The

models are very correlated since they are trained with the same architecture and the

same initialization.

The above approaches only takes the final classification output from each large

network, therefore each network provides very limited information about what it has

learned. In all the above approaches, all the networks/models in the ensemble need to

be evaluated during inference stage, which is also quite computational expensive, and

also memory expensive for storing the weights of all models. This is a big challenge

faced by many real world applications, especially in the circumstance of running the

inference on embedded devices like cellphones, IoT (internet of things) perception

sensors, etc.

It is widely known that Dropout [86] can be viewed as an ensemble of an expo-

nential number of models. With a dropout probability of 0.5, dropout demonstrates

strongest regularization. However, since it is just randomly dropping neurons during

training, all the models are sharing the same base architecture, therefore the models

being ensembled are still very similar, making the ensemble not very strong.

In this section, we introduce a new neural network architecture that implements

model ensemble in one single network such that best parameter efficiency is achieved.

We call this type of ensemble as IME(Intra-Model Ensemble). Since we are dealing

with vision perception tasks, the network is instantiated as a convolutional network
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which can model various types of invariance that is helpful in image recognition tasks.

Note that it can also be instantiated as a fully connected network if the data is more

suited for a vanilla DNN.

We think the key elements for implementing a IME learning system lie in the

following aspects:

(1) Modular design with small components such that less parameters are needed

in total. If each component is too large, the total number of parameters would also be

large. In this work, we propose to use a small computational graph (a small stacked

layers of neurons) as the base component.

(2) Hierarchical architecture with early fusion of learned features to allow for

complex synergy between components. Instead of fusing the final prediction for each

large model, we fuse the information of each component in early stage to allow for

more complex synergy between components.

(3) Independence between components. With more independent components,

the redundancy is much smaller, so that given a fixed parameter budget the model

can capture more useful features for recognition. We propose DropColumn operation

to promote the independence between components, which will be introduced in the

following subsection.

Through modular design, we can enable feature reuse by hierarchically com-

posing a number of small computational graphs into a single bigger network. By

stacking multiple of such small computational graphs horizontally and vertically, the

whole network allows for more complex compositionality compared with just using

the classification output of each network. In this way, we only need to store the

weights for one single network, and evaluate the one single network once for predic-

tion. Note that the traditional neural network ensemble methods can be viewed as

an implementation of IME if we view each gigantic network as a basic component.
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It is also an active research area for gradual/continual learning, where the goal is to

encompass more knowledge into one single model instead of training one model for

one task. Due to it’s modular design, our model could potentially encompass many

tasks into one single network for continual learning by adapting different modules to

different tasks, which we will left for the future research. In this work we focus on

the single task (classification) problem rather than continual learning.

Taking the analogy from visual cortex, we call each small computational graph

a column (a set of encapsulated neurons), where each small computational graph ac-

cepts inputs and go through a series of nonlinear mappings to get an intermediate

output layer. In figure 3.1a, the left shows a common neural network architecture

(pooling operation is omitted for simplicity), and the right shows a base column setup.

Each column/small computational graph is composed of a series of convolution and

non-linearities. Without bells and whistles, we use 3x3 kernel size for all the convolu-

tion and ReLU as activation function. It’s possible that using different convolutional

filters or alternative activation functions can further improve the performance of the

whole model, but those most standard settings in modern neural networks are used

since we want to focus on the effect of the newly introduced network architecture.

Neurons only pass information to the neurons in the higher layer within the same

column. A shortcut connection which connects the input and output of a column is

added to facilitate the training of deeper models (if the number of input and output

feature map is different, a convolution mapping is used instead). The base column has

a width parameter, i.e. the base number of feature maps, which will be represented

as B in the following. Usually a column is slim because B is set to a value much

smaller than the number of feature maps in a common CNN.

Figure 4.13 is a sketching illustration of the proposed neural network archi-

tecture. Many columns form a column array, then the output of those columns are
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concatenated to form the input of the next column array to allow for complex inter-

action between columns. Note that there is no information flowing between columns

within a certain column array, however, between column arrays the columns could

interact with each other since the output of each column in the lower column array

is concatenated and then fed into the next module as input. To fix the design space

of the architecture, we stack three layers of column array as a module, and stack

three modules to form the final network. The original input images are first trans-

formed into a 4-D tensor before feeding into the first module, and the final output

goes through a softmax function which outputs number of class probability values.

Without bells and whistles, cross-entropy is used as a loss function for the classifica-

tion problems. Table 3.1 summarizes the architecture’s basic setup for repeatability,

where B is the number of feature maps in a base column, C is the number of columns,

and repetition represents the number of times a certain module is stacked.

pc = exp(zi)/
C∑
c=1

(exp(zi)) (3.1)

where z is the logits score in the final hidden layer, pi is the probability score for each

class, C is the total number of classes.

L = −
N∑
i=1

C∑
c=1

yic log(pic) (3.2)

where y is the ground truth label, and takes a one-hot encoding for multi-class clas-

sification problems.

3.2.1 DropColumn

In deep neural networks, neurons tend to co-adapt to overfit the classification

tasks. Many neurons are learning correlated/similar functions. In addition, deep
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learning models are usually over-parameterized, with millions of trainable parameters

but much less training examples. To avoid the overfitting, Hinton et al. [86] proposed

dropout, which randomly drops many neurons during the training. With such a simple

operation, the dependence between neurons are reduced significantly.

To promote the independence between columns, we propose to stochastically

drop many of the columns during training. Specifically, we specify a drop or keep

probability of columns. Multiply with the number of total columns, we get the number

of columns to be dropped. If the multiplication results in a non-integer value, it is

rounded to the closest integer. A random index generator is utilized to get the

index of columns to be dropped. During the training stage, those columns do not

need to be computed, and the output of those columns is set as zero, which will

be concatenated with other columns and fed into the upper module. Since many

of columns are dropped, the magnitude of activations is changed, which would lead

to the change of weight magnitude. Therefore, similar to Dropout operation, we

also need to compensate the change of weight magnitude incurred by DropColumn

training. There are two approaches to compensate the weights, either during the

training stage or postponed to test/inference stage.

(1) scaling the activations during the inference stage: i.e. multiply the activa-

tions by pk when we perform prediction, where pk is the probability of keeping the

neurons (instead of the probability of dropping the columns, i.e. pk = 1− pd).

Mathematically,

a0 = max(0, h0) (3.3)

a = a0 ∗ pk (3.4)

suppose ReLU activation function is used, the network output a after the scaling as

the input for the next layer.
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(2) inverting the activations during the training stage: i.e. divide the activations

by pk during the training stage. Then at inference stage, predication is performed

just as usual without any modification. Mathematically,

a0 = max(0, h0) (3.5)

a = a0/pk (3.6)

Usually the second approach is more widely used, one potential reason is that:

one does not need to concern about the magnitude changes during the inference stage,

therefore, the same testing function could be used for both models whether trained

with or without DropColumn operation. Therefore, we use the second approach to

invert the activations during the training stage in the experiments. We call this type

of network as Stochastic Columnar Network (SCN), since the network stochastically

drops many column during training.

Note that during the inference stage, all columns are kept for either one of the

two strategies, i.e. the DropColumn operation is only performed during the training

stage.

3.2.2 Relationship with Dropout

With the operation of stochastically dropping columns in stochastic columnar

network, one might relate it to dropout naturally. In convolutional neural networks,

there are two way of performing dropout.

(1) Drop or keep the activations in each feature map independently.

(2) Drop or keep the whole feature map.

Because adjacent activations/pixels are related to each other in the feature

maps, the vanilla i.i.d. dropout will just result in learning rate decrease. The sec-

ond approach, which is also known as spatial dropout, however, can help promote
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independence between feature maps. Therefore, it helps to regularize the model to

prevent co-adaptation of feature maps from overfitting.

Compared with dropout, DropColumn performs dropping at a much higher

level, or a more coarse granularity: instead of dropping single neurons in dropout,

DropColumn drops many columns/computational sub-graphs. It is compatible to per-

form dropout within each column, and perform DropColumn simultaneously. How-

ever, note that DropColumn operation can only be performed in those networks that

do actually have the columnar structure.

In this work, we have also studied the effect of using spatial dropout during

training. We found that adding spatial dropout do not help to improve the perfor-

mance (sometimes even deteriorate the performance a little bit). For example, we

have set the dropout ratio as 0.2 (i.e. 80% of neurons are kept) after each convolu-

tional layer, the accuracy dropped from 81.54% to 80.71%. The reason might be that

BatchNormalization [51] is used throughout the network, and the convolutional layer

does not contain many parameters, which makes the usage of dropout less necessary.

Due to the DropColumn operation, the model needs to run on different com-

putational graph in each iteration. Therefore, we adopt PyTorch to implement the

model. With the imperative programming style of PyTorch, we can implement the dy-

namic computational graph more easily. The DropColumn operation is implemented

as a separate module inherited from the nn.module, and will be invoked when the

training flag is set as True.

3.3 Experimental Results

In this section, we show the experimental results compared with state-of-the-art

deep learning models. For the ease of comparison, we use two of the most widely used

image datasets for empirical validation: the CIFAR10 and CIFAR100 datasets.
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CIFAR10 dataset consists of 60, 000 natural images selected from 80 million

tiny images by Alex Krizhevsky. It is divided into 50, 000 training set and 10, 000

testing set. There are 10 classes: airplane, automobile, bird, cat, deer, dog, frog,

horse, ship, truck. Each image is 32 by 32 pixels with 3 RGB color channels. Similar

to the CIFAR10 dataset, CIFAR100 is also a subset collected from 80 million tiny

image database, but contains one hundred classes with a coarse label and several

fine labels. The dataset is also split into 50, 000 training images and 10, 000 testing

images. Figure 3.3a (b) shows some sample images from CIFAR data set.

For the training setup, we use momentum based SGD algorithm as the optimizer

with the default moment parameter of 0.9, the model is trained 300 epochs with a

batch size of 64, with an initial learning rate of 0.025, and scheduled learning rate

decay at the 150 and 225 epochs, the learning rate will decay further if a plateau

appears between multiple epochs. Figure 3.2a shows a typical learning rate schedule

used in our experiments.

The models to be trained are composed of three blocks, where each block is

composed of 3 modules, each module contains a certain number of columns. If we

denote the number of columns as C, and the number of filters in each column as B,

a SCN can be instantiated given the two parameters. Note that the total number of

parameters is proportional to the product of B and C, therefore, we keep the product

fixed in order to keep the number of parameters fixed. In this way, we can see how

the number of columns affect the classification performance.

We first show how the number of columns and the DropColumn probability (in

the experiment, we use the probability of keeping the columns instead of dropping)

affect the classification performance. Then we empirically evaluate the models with

different columns and DropColumn probability on the CIFAR datasets.
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Figure 3.2: Learning rate schedule and loss curves with different DropColumn prob-

ability during training.

(a) CIFAR image samples (b) Effects of number of columns(c) Effects of different DropCol-

umn probability.

Figure 3.3: Effects of different number of columns and DropColumn probability.

3.3.1 Effect of Number of Columns

We roughly keep the number parameters the same by increasing C (the number

of columns and decreasing the base number of filters B. We evaluate the trained

model with different number of columns on the test set of CIFAR10 dataset. Figure

3.3b shows the classification performance of models with different columns, where the

horizontal axis is the number of columns, and the vertical axis is the testing error

rate. We can see that: by keeping the number of parameters fixed, the testing error

rate decreases when the number of columns increases. In addition, the benefits of
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adding columns diminishes when we keep adding more dividing convolutional filters

into more columns: in the beginning, the error rate drops more significantly when

dividing large convolutional blocks into few columns. The benefits then become less

significant when we further divide those columns into more slim columns (i.e. with

smaller number of base filters in each column). In practice, programs can exploit the

multi-column structure to parallelize the computation of each column into different

streams to accelerate the training.
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Figure 3.4: Training time in one epoch with different DropColumn probability and

different number of columns.

3.3.2 Effect of DropColumn Probability

As we have explained in the above section, performing DropColumn operation

during training can potentially improve the classification performance of the trained

model. We evaluate the classification error rate on CIFAR10 dataset using different

DropColumn probability to train the model while keeping all the other factors fixed.

In figure 3.3c, the horizontal axis is the probability of keeping a certain column, and
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the vertical axis is the classification error rate. We can see that with appropriate

rate of dropping the columns, the testing error rate can be reduced. Similar to the

effects of adding columns, the error rate drops more significantly when we first start

dropping some columns from not dropping any columns. Then the effect become

less significant when we keep increasing the DropColumn probability. However, if

excessively dropping too many columns, the error rate might go up a little bit. In

contrast to dropout where the optimal dropout rate usually lies around 0.5, in the

DropColumn operation, the optimal drop rate is usually higher. The potential reason

might be that there are much less columns compared to number of neurons, therefore

dropping too much columns leads to severe loss of information.

Figure 3.2b demonstrates how the training loss and testing loss decrease during

the 300 epochs of training with different DropColumn probability. From the figure

we can see that the training loss converges to a similar value, but the testing loss of

p = 0.8 (i.e., drop 20% of columns during the training stage) is lower than that of

p = 1.0 (i.e., without dropping columns during the training stage). This shows that

DropColumn operation during the training stage helps to reduce overfitting.

On the other hand, properly increasing the DropColumn probability not only

improve the classification performance, but also reduces the training time a lot. Figure

3.4 shows the training time in one epoch with different DropColumn probability and

different number of columns. From the figure we can see that: dropping some columns

reduces the training time a lot , due to the fact that many columns do not need to be

computed during training. In addition, using more columns also reduce the training

time, because many columns can be computed in parallel. Due to the decoupled

computation, the training time can be further reduced with more delicate engineering

tricks.
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Figure 3.5: Error rate of different dropping probability during the inference stage of a

trained SCN network. The legend refers to the keeping probability of the DropColumn

operation during the training stage.

3.3.3 Classification Performance

In this subsection, we empirically validate the effectiveness of the proposed

neural network architecture. Table 3.2 and 3.3 show the classfication error rates on

the testing set of the two data sets, respectively. We only tested till to dropping

30% percent of columns since we found that excessive dropping of columns would

lose too much information for the classification task. Note that in the table we

are using keeping probabilities, e.g. p=0.7, keeping 70% percent, and p=1.0 means

without dropping any column. When we increase the number of columns, the number

of feature maps in each column is reduced in order to keep the total number of

parameters the roughly the same.

From the two tables, we can conclude that: under the same parameter budget,

better classification performance can be achieved when adding more columns . In

addition, the performance improves significantly when we go from without dropping

any column to dropping columns. As we have shown before, dropping columns can
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lead to speed up for training. Therefore, the model can be trained both faster and

better.

SCN demonstrates state-of-the-art classification performance on the widely used

image recognition benchmarks. Table 3.4 shows some state-of-the-art performance on

CIFAR10 and CIFAR100 datasets. We can see that SCN achieves better accuracy

than most of the methods on the standard training/testing split. NSANet gets the

best performance, but the network is searched in a huge design space by a lot of cloud

TPUs, which is computationally prohibitive for most AI researchers.

3.3.4 Ensemble Property

We show the classification performance of SCN using different dropping proba-

bility during inference stage in figure 3.5. From the figure we can see that the testing

error rate increases with higher dropping probability (i.e., lower keeping probability).

This is expected since dropping more columns during inference loses information for

the classification. This is in contrast with dropping columns during training, which

could promote the independence between columns and helps improve the classifica-

tion performance. The testing error increases more significantly if we drop more and

more columns by increasing the dropping probability.

Note that the error rate increases smoothly when we start dropping columns dur-

ing inference stage (smaller gap of DropColumn probability can be used to smooth

the curve). This is in stark contrast with traditional architectures like AlexNet,

ZFNet or VGG network where if we drop some intermediate blocks, the whole classi-

fier amounts to random guess. This is because those traditional architectures adopt

sequential blocks of convolutional operations, therefore, the upper layers depends

heavily on the previous layer’s activation distribution. Note that we are not recom-

mending dropping columns during the inference stage, but to show that the learned
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columns are independent in a certain degree, thanks to the DropColumn operation

which promotes the independence between columns. Since each column is a small

computational graph, the whole stochastic columnar network can be viewed as an

implementation of intra-model ensemble which enables efficient feature reuse and

composition. Residual networks can also be viewed as an ensemble of networks, but

in each residual block there are only two paths for the information to pass through.

In a SCN, there are C (number of columns) paths in each module. This helps to

boost the ensemble property compared with residual networks.

We can also see that when the same number of columns are dropped during the

inference stage, the error rates of the SCN model trained with p = 0.8 is much smaller

than that of the model trained with p = 1.0 (i.e., without dropping any column during

training). With the same number of columns being kept during the inference stage,

models trained with a lower keep probability (dropping more columns) perform much

better. This justifies that the columns are pushed to learn more independent features

when dropping more columns during the training stage. Therefore, this approach

boosts the parameter efficiency since the learned features are much less correlated

and less redundant. This accounts for the better classification performance with the

same amount of parameters compared with state-of-the-art models.

3.4 Conclusion

We propose a new class of neural network architecture that exhibits ensemble

property in a single network. The network adopts a basic information processing unit

of a small computational graph which we call column. Through hierarchically com-

posing those columns into a network, and fusing the information output from columns,

we achieve a stochastic columnar network that can efficiently enable feature reuse and

models complex compositionality. To prevent overfitting, DropColumn operation is
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performed during training stage. We show that the classification performance im-

proves upon state-of-the-art neural network models, and in the mean time could save

the training time with appropriate DropColumn probability. Interestingly, we can see

that the error rates increases smoothly when DropColumn operation is performed at

the inference stage, which justifies the ensemble property of the proposed model.

SCN introduces a new level of indirection into and hopefully could inspire the

design of neural network architectures. Further research can be done along the direc-

tion of more sophisticated design of base column, information fusion between columns,

more sophisticated regularization techniques for promoting independence between

columns, etc.
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stage layer filter, stride repetition

stage 0 conv 0 3x3, 64, stride 1

stage 1 3

conv 10 3x3, B x C, stride 1

conv 11 3x3, B x C, stride 1

conv 12 3x3, 256, stride 1

stage 2 3

conv 20 3x3, B x C, stride 2

conv 21 3x3, B x C, stride 1

conv 22 3x3, 512, stride 1

stage 3 3

conv 30 3x3, B x C, stride 2

conv 31 3x3, B x C, stride 1

conv 32 3x3, 1024, stride 1

stage 4

FC 1024 x nLabels

Table 3.1: Architecture of stochastic columnar network.
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Keep prob / Arch config C64 B16 C32 B32 C16 B64

p=0.7 3.52 3.61 3.69

p=0.8 3.41 3.48 3.49

p=0.9 3.53 3.52 3.58

p=1.0 3.76 3.81 3.85

Table 3.2: Classification error rates on the CIFAR10 data set with different instan-

tialization of stochastic columnar network. ”Cxx” denotes number of columns in the

network, and ”Bxx” denotes number of feature maps used in each column. During

training different probabilities are used for the DropColumn operation.

Keep prob / Arch config C64 B16 C32 B32 C16 B64

p=0.7 16.69 16.97 17.84

p=0.8 16.61 17.09 17.44

p=0.9 16.65 17.17 17.71

p=1.0 17.75 18.46 18.76

Table 3.3: Classification error rates on the CIFAR100 data set with different instan-

tialization of stochastic columnar network.
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CIFAR10 CIFAR100

FitResNet [87] 5.84 27.66

ResNet [53] 4.69 22.68

Stochastic Depth Net [84] 5.23 24.58

ResNet in ResNet [88] 5.01 22.9

WideResNet [79] 4.17 20.5

DenseNet-BC [54] 3.62 17.5

FractalNet [87] 4.6 23.73

ResNeXt [89] 3.58 17.31

Dual Path Network [90] 3.65 -

NASNet (best) [91] 2.4 -

Table 3.4: State-of-the-art performance achieved by other models: error rates on the

CIFAR10 and CIFAR100 datasets
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CHAPTER 4

Attacks and Defenses of Deep Learning Models

4.1 Introduction

In the era of big data, many industries rely more and more on data to achieve

automate tasks. Deep learning is transforming the transportation and health care in-

dustry. Companies building self-driving cars rely heavily on deep learning models for

image recognition/object detection. More and more companies are using deep learn-

ing for cancer diagnostics in order to alleviate the insufficient supply of experienced

doctors. With the wide adoption of deep learning models in each aspects/verticals of

our daily lives, it is of paramount importance to study the security of deep learning

models, and the potential defense mechanisms to make the model more robust to

various types of attacks.

Attacks can happen either in the training phase or testing phase. In the training

phase, attackers can try to contaminate the training data to make the model behave

as they want. In the testing phase, attackers can alter the testing data, or generate

some data to deceive the model.

To begin with, we first introduce on the potential of attacks during the training

phase. One underlying assumption is that the input data and their corresponding

labels are faithful and correct. However, this is not always the case in real world

scenarios. In fact, it is common that data/labels may contain noise. The source

of noise can be roughly categorized into two aspects: unintentional and intentional.

Unintentional noise comes from the process of data labeling. For example, nowa-

days computer vision API providers distribute labeling tasks to human labellers on

50



MTurk (Amazon Mechanic Turk)/CrowdFlower or other crowd sourcing platforms.

The labeling quality depends heavily on the carefulness of labellers and the quality

assurance of crowd sourcing platforms. In this process, the human labellers can be

careless or tired or lack of expertise to correctly label some data. In addition, the

goal of the labeller is usually to finish as many tasks as possible to maximize their

rewards, therefore noisy labels is pretty hard to be removed due to the large amounts

of labeling task assigned to human labellers. On the other hand, intentional noise

may exist in the training data. In the future, more and more services will rely on

machine learning models, therefore there is big economic incentive for people to inject

noise labels to training data, trying to compromise the training of the model. With

data-driven machine learning becomes more and more popular, data is deemed as

one of the most valuable property of a company/person. Therefore, people do not

want to share data with outside institutes. In the future, it will be more popular

for federated learning/multi-party learning [92], where training data are distributed

among many parties due to that people want to protect the privacy/security of their

training data. it is possible that some shards of training data are compromised by

people for economic returns, or even vicious people pretend to be part of the training

cohort. Due to the reasons mentioned above, we believe it is important to make deep

learning models robust to noisy labels. Since the training of neural network totally

depends on the error gradient back propagated from the output loss layer, in this

work, we explore a robust loss function to replace the commonly used loss functions

in neural network for classification problems. This approach is very intuitive and easy

to be implemented since only the last layer of the neural network need to be changed.

On the other hand, we study potential attacks during the testing phase. Re-

searchers have studied adversarial attacks where the input can be perturbed with

minimum magnitude that human can not even notice, but the deep learning model
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will recognize it as the other class. Usually this process is guided by the gradient of

the output with respect to the input data. There have been many works elaborate

on this type of adversarial attacks[73, 93, 94, 95]. Those type of techniques usually

start from a certain input example and gradually evolve the input to the direction

where the output of the neural network will be the target class the attackers want to

achieve.

Apart from the above mentioned adversarial attack, we think it is important

to study whether deep learning models are vulnerable to access attacks when deep

learning based models are deployed for access control in security critical applications

(for example, in bank vault, iPhone’s i-Touch fingerprint recognition system, or center

control room of an organization). Access attack is a type of attack where people have

not been granted access to a certain software/system/places compromise the security

guard (the deployed model) to gain access to privileged information/rights illegally.

Once the deployed model is being compromised by vicious people, enormous loss can

be incurred since attackers can do whatever they want in the system. Especially for

those biometrics based system, users are much harder to alter them compared with

password based access control systems. Therefore once biometrics based systems are

compromised by attackers, it might be harder to take approaches for loss stopping.

Note that the goal of this type of attack is to generate the object (for example image in

vision based system) that serve as the credential to enter into privileged section/area.

Note that we do not care about whether the generated image has any visual regularity

to human. In this paper, we will demonstrate a technique that can generate images

which will be recognized by deep learning models with 100% certainty to be any class

that the attackers want.

We summarize the takeaways from this paper as follows:
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1) We tested the most commonly used classification loss functions for deep

learning with the presence of different ratio of noisy labeling, i.e. cross entropy loss

and hinge loss. According to the experiment, hinge loss is not robust to the training

attack of noisy data, while cross entropy is much more robust to this type of training

attack than hinge loss.

2) We proposed to use a new type of loss function for deep learning: the corren-

tropy loss. Empirical results suggest that correntropy is more robust to noisy input.

Therefore, it serves as a good surrogate loss function for defending against noisy data

training attack.

3) We proposed a new type of algorithm to generate adversarial samples for

access attack during the evaluation/inference stage. Experiments show that neural

networks are vulnerable to this type of evaluation attack. We urge that the academic

community should pay more attention to the security of deep learning models, given

all the buzz from industry and wide adoption of deep learning.

We organize the paper as follows: in the next section, we introduce some pre-

liminary knowledge on commonly used loss functions for classification. After that,

we introduce our new robust loss function. Then we demonstrate that deep learning

models are vulnerable to access attacks on commonly used computer vision bench-

mark data sets.

4.2 Preliminary

In this section, we introduce preliminary knowledge before diving into the newly

proposed approach.

A deep learning model is usually formed by stacking many layers of non-linear

mapping. Within the non-linear transformation, it incorporates prior knowledge

about the inherent property of data modality, e.g. modeling spatial correlation with
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convolutional mapping, and modeling the context of sequential structure with recur-

rence. After many layers of non-linear transformation, the output hidden activations

are used as features to input to a linear classifier. The output of the last layer is

summarized into probability scores by softmax function in Eq. (4.1). Usually cross-

entropy in Eq. (4.2) between the probability scores and ground truth is used as the

loss function for classification problems. The error of the cross-entropy loss back

propagates through out the whole network to update the trainable parameters in the

model.

pc = exp(zi)/
C∑
c=1

(exp(zi)) (4.1)

where z is the logits score in the final hidden layer, pi is the probability score for each

class, C is the total number of classes.

L = −
N∑
i=1

C∑
c=1

yic log(pic) (4.2)

Due to the popularity of SVM (support vector machine) before the deep learn-

ing era, researchers have tried to use the loss function of SVM (hinge loss) as a loss

function [96]. The motivation of hinge loss is to learn a large margin classifier. There-

fore, hinge loss does not penalize the loss function when the margin (the product of

the prediction and the ground truth) is larger than a certain threshold, and the loss

increase linearly when margin falls below the specified threshold. Mathematically,

Hinge loss for binary classification problem can be written as follows:

L = −
N∑
i=1

max(0, 1− yi ∗ si) (4.3)

s = f(W,xi) (4.4)
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where xi is the i-th data point, yi is the ground truth label, si is the prediction of

the model, W is the model parameter we want to learn, and N is the total number

of training data.

For the multi-class hinge loss, we can formularize it as follows:

Li =
∑
j 6=yi

max(0, sj − syi + 1) (4.5)

where sj represents the model prediction score for the j-th class, and syi represents

the score for the ground truth class.

4.3 Training Attack

In this section, we study one type of training attack. As mentioned in the

introduction, this type of attack is implemented by injecting noise to training data.

Therefore, the model training procedure should be robust to noise in the training

data. The naive approach might be examine the data one by one, and correct the

labeling of noisy cases, or even just remove all of those annotations. However this

approach is not scalable, and in the real world it might be not even realistic (e.g. in

the federated learning setting, we do not have a centralized copy of the whole training

data nor do we have access to all shards of training data.) Therefore, it is not viable

to solve the problem from the input of neural network.

The goal of machine learning models is to extract regularities from training

data, however, noisy data would introduce many irregularities to the training data,

therefore making the learning harder to disentangle key properties/attributes that

decides the category of objects. When the prediction deviates from the ground truth,

many commonly used loss functions (e.g. least square loss) incur a much larger loss

value. Therefore, with the presence of noisy data, the loss will be dominated by noisy

points, making the model fail to learn. Least square estimator models the conditional
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mean of the output, when the data does not follow gaussian distribution, it can be

easily skewed with few noisy data if the noise is large enough.

4.3.1 Method: Deep Modal Regression

Figure 4.1: Noise distribution.

In this work, we propose a principled approach to alleviate the noisy training

data problem. Without the hustles and bustles to remove/correct the data labeling

in the input space, our proposed method can automatically adapt to the heavy noise

in the data.

When we model the data distribution, usually we assume a conditional data

generation model as follows:

Y = f(X) + ε (4.6)

The learning process is to learn the function f based on certain assumptions on the

distribution of noise ε. The most common assumption is Gaussian distribution on

the noise, where the conditional distribution is modeled by conditional mean, and it

works reasonably well when data are sampled from a Gaussian distribution. However
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with the presence of human injected spiky noise, the Gaussian noise assumption fails

to hold, conditional mean is not valid to characterize the data generation process.

Some other usually used way to characterize the conditional distribution are

conditional median (which assumes Laplacian distribution of data, and can be used

to model long-tail distribution), and conditional mode. Conditional mode [97] offers

a very appealing property in which it does not assuming any specific underlying

distribution. When human injected noise exists, the conditional mode is affected

least. Therefore, we propose to characterize the conditional distribution via modeling

conditional mode.

The mode of a distribution lies on where the probability density peaks. Math-

ematically, the modal regression function can be written as follows:

f ∗(x) = argmax
y∈R

PY |X(y|X = x) (4.7)

As proved in Thereom 3 of [97], modal regression is the maximizer of the like-

lihood criterion:

R(f) =

∫
x

pY |X(f(x)|X = x)dp(x) (4.8)

The empirical estimation of R(f) can be obtained by kernel density estimation,

Rσ(f) =
1

lσ
Kσ(yi − fi, 0) =

1

lσ

l∑
i=1

φ(
yi − fi
σ

) (4.9)

where φ is the representing function.

With a Gaussian kernel, it can be written as:

Rσ(f) =
1

lσ2

l∑
i=1

exp−
(yi−fi)

2

σ2 (4.10)

Or equivalently we can minimize the following loss function:

L = σ2

l∑
i=1

(1− exp−
(yi−fi)

2

σ2 ) (4.11)
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This loss function is usually known as the correntropy loss, and it has gain

popularity regression tasks to deal with non-gaussian noise. To model the complex

non-linearity between inputs and outputs in perception problems like image recog-

nition, we constrain the hypothesis space f on the function space spanned by the

convolutional neural network (CNN) function family. Therefore, we dub the method

deep modal regression. CNN is well suited for dealing with translational invariance in

image recognition. The CNN learns a function that maps the input from image space

to prediction probability scores, then the error is evaluated with correntropy loss.

With this differentiable loss function, the optimization can follow standard stochastic

gradient descent approach or any of its variants.

MNIST 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.6 0.7

CrossEntropy 99.23 99.11 98.99 98.75 98.66 97.93 97.24 96.91 95.74 93.86 92.77 86.67 66.42

HingeLoss 99.25 99.09 99.07 98.49 98.07 97.29 96.89 92.15 89.05 82.45 63.09 33.34 12.28

CorrEntropy 99.22 99.16 99.12 98.90 98.82 98.05 97.61 97.03 96.72 94.48 93.56 88.63 70.61

Table 4.1: Classification accuracy of different level of noise rates on the MNIST

dataset.

4.3.2 Experimental Results

To evaluate the effectiveness of the proposed loss function for deep learning, we

run experiments on the two widely used benchmark datasets, MNIST and CIFAR10

datasets. Standard networks for each dataset are used, and the networks are trained
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CIFAR10 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.6 0.7

CrossEntropy 91.67 91.32 90.89 90.46 90.43 89.85 89.65 89.63 88.35 87.56 86.64 83.24 79.65

HingeLoss 91.28 90.85 72.85 56.7 56.43 46.52 37.63 29.18 27.18 23.46 20.68 12.42 10.00

CorrEntropy 91.63 91.30 91.03 90.98 90.87 90.38 90.27 90.15 89.93 89.71 88.57 86.15 83.85

Table 4.2: Classification accuracy of different level of noise rates on the CIFAR10

dataset.

with cross entropy (CE), hinge loss, and correntropy, respectively. Error rates on the

standard test test are reported.

The architecture for MNIST experiment is a standard LeNet architecture: the

original input image of size 28x28 go through two interleaved series of operations: 5x5

convolution, ReLU activation, 2x2 max-pooling operation. The first convolutional

operator has 32 filters, and the second convolutional operator has 64 filters. The

feature map after the second max-pooling operation is then summarized into 1024

neurons, with another fully connected layer transforming the hidden features into 10

output classes. Adam optimizer [33] is used with a learning rate of 10−4. We train

the network with 20000 iterations, with a batch size of 50 samples.

For the CIFAR10 experiment, we use an architecture that has three interleaved

blocks, where each block consists of two consecutive padded convolutional layers

followed by a 3x3 max-pooling operator with a stride 2. The feature maps are sum-

marized by two fully connected layers of neurons 1024 and 512 before feeding into the

classification layer with a output of 10 classes. Random cropping and horizontal flip-

ping are applied as data augmentation to alleviate the overfitting problem. A weigh

decay with regularization strength of 0.0004 is applied on all parameters. Adam op-
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timizer is used for training, with an initial learning rate of 10−2 and the learning rate

will decay when the objective do not decrease for a few epochs with a decay rate of

0.31. The batch size is 128, and the network is trained with 200 epochs.

We train the networks with different level of noise rate, from 0.05 to 0.7, with

a step size of 0.05. The noise is added by randomly perturb certain percentage of

the ground truth labels. Table 4.1 and 4.2 show the classification accuracy on the

MNIST and CIFAR10 dataset, respectively. Note that all the other configurations

are the same except for the loss being used on the top of the neural networks. From

the tables, we can conclude that:

1) With the increase rate of noise level, the error rates on the testing set on

both datasets increase. This is expected since the randomly perturbed label make

the neural network harder to learn the correct mappings between input image and

the output label.

2) Cross entropy is pretty robust to noise in the training data. Even with

half of the training data are random noise, we can still achieve above 90% accuracy.

The reason might be that input are surpressed with the range [0, 1] by the softmax

function. Correntropy is more robust to noise in the training data, due to its ability

to handle non Gaussian noise.

3) While the hinge loss can achieve similar accuracy with no noise, the accu-

racy drops quickly with the increase of noise rate, in contrast to cross entropy and

correntropy loss functions. The loss is dominated by noisy data, making it hard to

extract regularities from data. When the noise exceeds certain level, the model can

not be well trained and basically reduces to random guess.

In a nutshell, when the training data is contaminated by attackers with noise,

correntropy can be used as a surrogate loss function to defend against this type of

attacks.
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4.4 Evaluation Attack: Malware

4.4.1 Related Work

In this section, we will review previous works related to adversarial samples.

First we describe previous papers related to adversarial learning in general. We then

discuss papers related to adversarial learning to either create or detect adversarial

malware samples.

Adversarial Attacks: Adversarial attacks and defense for deep learning mod-

els have been a popular research topic recently due to the wide range applications

of deep learning models. Goodfellow, et al., [98] demonstrated that deep learning

models can be fooled by crafting adversarial samples from the original input data

by adding a perturbation on the direction of the sign of the model’s cost function

gradient. This method is known as the fast gradient sign method. For images which

are considered in their paper, the algorithm computes the gradient information once

and perturbs all of the pixels to a certain amplitude. Since the fast gradient sign

method requires continuous features, it is not applicable to our malware classification

data which is composed of sparse binary features.

Papernot, et al., [99] proposed another algorithm for crafting adversarial sam-

ples, which iteratively perturbs the input along the dimension with largest gradient

saliency. The algorithm perturbs one input feature in each iteration until the al-

tered sample is misclassified into the desired target class. The goal of this method

is to use the minimum perturbation to the original sample such that the perturba-

tion is not perceivable by humans, but is misclassified by a machine learning model.

This algorithm has a larger computational complexity compared to the fast gradient

sign method in [98], because in each iteration, the algorithm needs to compute the

derivative of the model’s output probability with respect to the perturbed sample.
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In most cases, users do not have the knowledge about the architecture and

parameters of the trained model that are deployed into a service. Deployed models

are known as black box models due to the fact that the attacker does not have any

information beyond the outputs of the model on input queries. Papernot, et al., [73]

proposed a method based on model distillation to craft adversarial attack samples on

black box models. The authors in [73] found that adversarial samples are transferable

among models, i.e., the adversarial samples crafted for one model can also mislead the

classification of other models. They use model distillation techniques to compromise

an oracle hosted by MetaMind. In this case, the oracle is a defensive system where

the users only know the input and output, but they do not know anything about the

architecture of the model.

A defensive strategy using model distillation is proposed in [100]. Model dis-

tillation is performed by using the soft labels (prediction probability on a trained

neural network) as the label of training samples to train a new deep neural network.

They found that distillation captures class correlation, and the model trained on soft

labels is more robust than one trained using hard labels. In this case, a hard label is

specified as the discrete class label. The authors also found that using a high tem-

perature in distillation training enforces smoothness of the model, which could make

the model more robust to adversarial samples. Using the high temperature distilled

model, the changes in adversarial samples have much less impact on the classification

of the model.

Several authors [101, 102, 103, 104] have proposed using an ensemble of mod-

els to avoid different type of malicious attacks. For example, the authors in [102]

proposed using an ensemble of models to improve the privacy of deployed models

since attackers will only be able to obtain an approximation of the target prediction

function. Kantchelian, et al., [101] proposed two algorithms for evasion attacks on
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tree ensemble classifiers, like gradient boosted trees and random forests. However,

each tree classifier is very weak compared with a full-fledged neural network.

Malware Classification: Several deep learning malware classifiers are pro-

posed in [105, 106, 107, 108, 109, 110]. The first study of deep learning for a DNN

malware classifier was presented in [105]. Similar to our results, the authors found

that a shallow neural network slightly outperformed a DNN on dynamic analysis-

based malware classification. Saxe, et al., studied DNNs in the context of static

malware classification in [106]. Huang and Stokes proposed a deep, multi-task ap-

proach for dynamic analysis which simultaneously tries to optimize predicting a) if a

file is malicious or benign and b) the file’s family if it is malware or returning a benign

label in the case it is clean. In [107], the authors propose a two-stage approach where

the first stage employs a language-model, using a recurrent neural network (RNN)

or an echo state network (ESN), to first learn an embedding of the behavior of the

file based on its system call events. This embedding then serves as the features for a

DNN in the second stage. Athiwaratkun, et al., [109] explored similar architectures

for deep malware classification using long short-term memory (LSTM) or a gated

recurrent units (GRU) for the language model, as well as a separate architecture us-

ing a character-level convoluation neural network (CNN). In [110], Kolosnjaji, et al.,

propose an alternative model also employing a CNN and an LSTM.

Several authors have proposed methods for creating adversarial malware sam-

ples. In [111], Xu, et al., propose a system which uses a genetic algorithm to generate

adversarial samples which can be mispredicted by a classifier. The system assumes

access to the classifier’s output score. The authors demonstrate that their system

can automatically create 500 malicious PDF files that are classified as benign by the

PDFrate [112] and Hidost [113] systems.
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Hu and Tan [114] propose a generative adversarial network (GAN) to create

adversarial malware samples. In their work, the authors assume that the attackers

know the features which are employed by the malware classifier, but they do not know

the classification model or its parameters. They use static analysis where the features

are API calls and a sparse binary feature is constructed to indicate which APIs were

called by the program. Furthermore, the authors assume that the prediction score

from the model is reported from the malware classification model.

Grosse, et al., [115] study the distillation defense for static analysis-based mal-

ware classification. Similar to this paper, the authors assume that the attacker has

access to all of the deep learning malware classifier’s model parameter. In our work,

we also consider the distillation defense for dynamic analysis-based malware classifica-

tion. In addition, we evaluate the ensemble defense and introduce the regularization

defense for a dynamic malware classifier. In another recent paper, Grosse, et al., [116]

add a separate class for adversarial samples and propose a statistical hypothesis test

to identify adversarial samples.

4.4.2 System Overview and Threat Model

In this section, we provide a high-level overview of the defender’s training and

evaluation systems as well as the threat model which includes the assumptions about

the attacker and the detection strategies.

System Overview: The system overview is depicted in Figure 4.2. The orig-

inal data for this study was collected by scanning a large collection of Windows

portable executable (PE) files with a production version of a commercial anti-malware

engine which had been modified to generate two sets of logs for each file including

unpacked file strings and system API (application protocol interface) calls includ-

ing their parameters. Before an unknown file is executed on the actual operating
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Figure 4.2: Overview of the adversarial attack and defense of a dynamic analysis-

based malware classification system.

system, the anti-malware engine fist analyzes the file with its lightweight emulator

which induces the dynamic behavior of the file. The first log file that is generated

during emulation is a set of unpacked file strings. Typically, a malware file is packed,

or encrypted, to make it difficult to reverse engineer by malware analysts. During

emulation, text strings, which are included in the PE files, are unpacked and written

to the system memory. The emulator’s system memory is next scanned to recover

null terminated objects which include the original text strings. In addition, the en-

gine also logs the sequence of API calls and their parameters which are generated

during execution. This sequence provides an indication of the dynamic behavior of

the unknown file.

From these two log files, we generate three sets of sparse binary features for our

deep learning models. We consider each distinct, unpacked file string as a potential

feature. Two sets of features are derived from the system call data. First, we generate

a potential feature for each distinct value of an API call and input parameter value
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for a specific input position. Second, we generate all possible combinations of API

trigrams (i.e., (k) API call, (k+1) API call, (k+2) API call) as a feature which

represents the local behavior of the file.

There are tens of millions of potential features which are generated from the

three sets of raw features. Since the neural network cannot process this extremely

large set of data, we utilize feature selection using mutual information [117] in order

to reduce the final feature set to 50,000 features. If any of these final features are

generated during emulation, the corresponding feature will be set to 1 in the sparse,

binary input feature for that file. This set of feature vectors is then used to train the

deep learning model which has been enhanced to defend against adversarial attacks.

We assume the attacker has knowledge of the selected features and the trained

DNN model. With this information, they are able to craft adversarial malware sam-

ples which are processed by the anti-malware engine and the identical inference engine.

The goal of the attacker is for their malware sample to have a benign prediction.

Threat Model: We follow earlier work [100] and assume that the attacker

has access to all of the model parameters and operating thresholds. For an ensemble

classification system, we assume that the attacker has obtained all parameters and

threshold values for each classifier in the ensemble. This is the most challenging

scenario to protect. Once the attacker has successfully obtained of the parameters

for the model or ensemble of models, we assume they implement the Jacobian-based

strategies proposed in [100, 99] to determine the ranking of important malicious and

benign features.

Modern anti-malware systems consist of two main components: an anti-malware

client on the user’s computer and a backend web service which processes queries from

all of the individual anti-malware clients. It would be difficult and most likely require

a successful spearphishing campaign to obtain any classification models running in a
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backend web service. However it would be much easier to reverse engineer a malware

classifier’s parameters and threshold values running on a user’s client computer.

All of the data is generated by the anti-malware engine’s emulator running in a

virtual machine without external network access. We assume that malware does not

detect that it is being emulated and halt all malicious activity. We further assume

that the malware does not alter its behavior due to the lack of external internet access.

Finally, in several of the attack strategies proposed in the next section, we as-

sume that the malware author can remove key features related to malicious activity

(i.e., malware features) while maintaining its ability to achieve the desired malicious

objective. Since most malware is either packed or encrypted, our analysis is based

on the behavior of the malicious code, and we use a dataset of over 2.3 million mal-

ware and benign files in this study, it is impossible for us to actually modify the

malware to remove malicious features. Removing important malicious content may

actually transforms the malware into a benign file. However, attackers often employ

metamorphic strategies to use alternate code paths to reach the desired malicious

objective [118]. In order to continue to perform its desired malicious behavior, we

assume the attacker has the ability to engineer an alternative attack strategy. For

example, instead of writing a value to the registry, the attacker may choose to instead

write important data to a local file or memory. In other cases, the attacker may re-

implement key functions of the operating system. We, therefore, assume the attacker

has the ability to effectively remove malicious features by re-implementing the key

pieces of the malware’s code related to the most important malicious features.

4.4.3 Baseline DNN Malware Classifier

Before discussing the strategies for crafting and defending against adversarial

samples, we first review the baseline deep neural network malware classifier which is
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illustrated in Figure 4.3. We follow earlier work in [105] and use a sparse random

projection matrix [119] to reduce the input feature dimension from 50,000 to 4,000

for the DNN’s input layer. The sparse random projection matrix R is initialized with

1 and -1 as

Pr(Ri,j = 1) = Pr(Ri,j = −1) =
1

2
√
d

(4.12)

where d is the size of the original input feature vector. All hidden layers have a

dimension of 2000. Following [108], we use the rectified linear unit (ReLU) as the

activation function, and dropout [120] is utilized with the dropout rate set to 25%.

All inputs to the DNN are normalized to have zero mean and unit variance. The

output layer employs the softmax function to generate probabilities for the output

predictions:

softmax(x) = exp(x)/
c∑
i=1

(exp(xi)). (4.13)

4.4.4 Crafting Adversarial Samples

In this section, we describe six iterative strategies for crafting adversarial sam-

ples. Essentially, the attacker’s strategy is to first discover features that have the

most influence on the classification output, and then alter their malware to control

these features. The Jacobian, which is the forward derivative of the output with re-

spect to the original input, has been proposed in [100, 99] as a good criterion to help

determine these features. For a malware classifier, the prediction output indicates

that an unknown file is either malicious or benign. Thus, the attacker’s goal is to

alter (i.e., perturb) the important features such that the malware classification model

incorrectly predicts that a malicious file is benign. To compromise the malware clas-

sifier, the attacker can modify their malware to decrease the number of features that

68



Softmax Output Layer

2-Classes

Sparse Binary Input Vector 
(50000)

Random Projection Layer
(50000 -> 4000)

1-4 Hidden Layers
(ReLU)

(2000, 2000, 2000, 2000)

Input Layer
(4000)

Deep Neural Network

Figure 4.3: Model of the baseline deep neural network malware classifier.

are important for a malware prediction, increase the number of features that lead to

a benign prediction, or both.
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For each iterative attack strategy that simulates an attacker modifying their

malware, we alter one feature during each iteration and then re-evaluate the Jacobian

with respect to the perturbed sample. We analyze six strategies to craft adversarial

samples. The first three methods use the Jacobian information [100, 99] to identify

which features to alter:

(1) dec pos, i.e., disabling the features that would lead the classifier to predict

that an unknown file is malware based on the Jacobian of the classification output

with respect to the original input features. We define a feature to be a positive feature

if the Jacobian with respect to the feature is positive. We call these features positive

features since they are the key indicators of malware behavior.

(2) inc neg, i.e., enabling the features that would lead a classifier to predict that

an unknown file is benign. These features are called negative features with respect

to the malware class. A negative feature has a positive Jacobian with respect to the

benign class.

(3) dec pos + inc neg, i.e., alternatively disabling one positive feature for one

iteration and then enabling one negative feature in the next iteration. This strategy

investigates whether there is any synergy between removing malicious content and

adding benign features in a round robin fashion.

In contrast to the above methods that use the Jacobian information, we also

include three, similar “randomized” strategies that do not use the Jacobian for com-

parison. For these additional algorithms, we randomly select positive features to

disable or negative features to enable instead of selecting them using the rank of

the Jacobian’s forward derivatives. Thus, the additional strategies include: (4) ran-

domized dec pos, (5) randomized inc neg random, and (6) randomized dec pos +

inc neg.
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4.4.5 Defensive Methods

In this section, we review three methods for defending against adversarial at-

tacks including the distillation, ensemble, and weight decay defenses. Although the

distillation and ensemble defenses have been previously proposed, the weight decay

defense is new. Only the distillation defense has been previously explored to defend

against adversarial attacks in malware detection applications, and this work was done

in the context of static malware classification [115].

Distillation Defense: The first defense we study is the distillation defense [100,

115] where the model model is trained using knowledge distillation. As discussed pre-

viously, knowledge distillation is typically used to distall the knowledge learned from

a large model into a smaller network making the smaller model more efficient in

terms of its memory, energy, or processing time in deployment. However, in adver-

sarial learning, the goal is to make the distilled model more robust to adversarial

perturbations, instead of focusing on compressing the network size.

The motivation of using model distillation as a defense mechanism is that with

a higher temperature during the distillation process, the error surface of the learned

model can be smoothed. We denote the function learned by the neural network model

as F . During the inference stage, the feature vector is input into the trained network

and transformed into logit scores z ∈ Rc×1. Then a softmax function is used to

convert those scores into probabilities with respect to each class. Mathematically,

the Jacobian’s forward derivative of the output with respect to the input can be

calculated as follows [100, 99]. For notational clarity, we denote the denominator of
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the softmax function as h(x) =
c∑

k=1

(exp(zk)/T ), where T is the temperature used

during distillation. Thus, we have:

∂Fi
∂xj

=
∂

∂xj
(
ezi/T

h(x)
)

=
1

h2(x)
(
∂ezi(x)/T

∂xj
h(x)− ezi/T ∂h(x)

∂xj
)

=
1

T

ezi/T

h2(x)
(

c∑
k=1

(
∂zi
∂xj
− ∂zk
∂xj

)ezk/T ). (4.14)

From (4.14), we see that as the derivative becomes smaller with higher temperature,

the model is less sensitive to adversarial perturbations.

Ensemble Defense: The ensemble defense for extraction attacks and evasion

attacks has been recently proposed by several authors [101, 102, 104] for tree ensemble

classifiers. In this work, we study the ensemble defense with neural networks. The

idea behind the ensemble defense is intuitive. It may be easy for an attacker to craft

adversarial samples to compromise an individual detection model, but it is much more

difficult for them to create samples which fool a set of models in an ensemble with

different properties. We employ a “majority vote” ensemble defense in this work.

We first train an ensemble with E classifiers where E is an odd number. During

prediction, an unknown file is predicted to be malware if the majority (i.e., > E/2)

of the classifiers predict that the file is malicious.

Weight Decay Defense: The third defense we propose and study is the

weight decay defense. Weight decay is typically used to prevent overfitting of machine

learning models. The `2 norm of a weight matrix is defined as the square sum of all

the elements. By adding an `2 penalty of the model weights in the objective function

during optimization, the model is encouraged to prefer smaller magnitude weights

since large values are penalized by the objective function.
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With a smaller magnitude of weights, the function parameterized by the neural

network is smoother, and therefore, changes in the input space lead to smaller changes

in the output of a deep learning model. We conjecture that weight decay could help

alleviate the vulnerability of a deep learning system against adversarial attacks.

4.4.6 Experimental Results

In this section, we evaluate the adversarial defenses against the different attack

strategies described in the previous sections. We first describe some details related

to data preparation and experimental setup. We then present the performance of

the baseline classification system which does not employ any defenses. Finally, we

evaluate the results for the distillation, weight decay, and the ensemble defenses.

Data Preparation and Setup: In some cases, multiple files can share the

same input vector. Therefore, we only include the first instance of a unique input

vector and discard any remaining duplicates. After de-duplication, we have input data

and labels from 2,373,671 files. A file is assigned the label of 1 if it is malware and 0 if

it is benign. We then randomly split the original dataset into a training set, validation

set, and test set including 1,523,978, 268,937, and 580,756 files, respectively.

In our training, we implement all models using the Microsoft Cognitive Toolkit

(CNTK) [121]. All models are derived from the baseline model described Section 4.4.3.

We use the adam optimizer for training where the initial step size is set to 0.1.

Training proceeds for each step size until no further improvement is observed in the

validation error. At that point, CNTK halves the step size for subsequent epochs.

We train for a maximum of 200 epochs, but CNTK implements early stopping when

no additional improvement in the validation error is observed for a minimum step

size of 1e-4.
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Baseline Classifier: Before investigating the various defenses, we first ana-

lyze the performance of the baseline malware classifier useing the receiver operating

characteristic (ROC) curves depicted in Figure 4.4 for a range of DNN hidden layers,

H, varying from 1 to 4. Malware classifiers need to operate at very low false positive

rates to avoid false positive detections which may result in the removal of critical op-

erating system and legitimate application files. Thus, our desired operating point is a

false positive rate (FPR) of 0.01%. While the DNNs with multiple hidden layers offer

equivalent performance at higher false positive rates compared to a shallow neural

network with one hidden layer, the figures indicates that the DNNs offer improved

performance at very low false positive rates. In particular, the false positive rate

of the shallow neural model immediately jumps to over 0.015% which is above our

desired operating point.

For reference, we next analyze the test error rates of the baseline malware

classification system in Table 4.3. As observed in [105] for a different dataset created

for dynamic analysis malware classification, a shallow neural network with a single

hidden layer provides the best overall accuracy. The test error rates in Table 4.3 are

computed with the probability that the file is malicious pM ≥ 0.5. This threshold

corresponds to operating points with higher false positive rates on the ROC curves for

H ∈ 1, 2, 3, 4. These higher thresholds explain why the shallow network has a better

test error, but the ROC curves indicate better performance for multiple hidden layers

at the same FPR.

Distillation Defense: We next analyze the performance of the distillation

defense system for all malware and benign files. The ROC curves of the DNN systems

employing the distillation defense are presented in Figure 4.5a for temperature setting

T = 2 and Figure 4.5b for T = 10. We make several observations from these figures.

Both systems provide multiple operating points below FPR = 0.01% which allows
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Figure 4.4: ROC curves of the baseline malware classifier for different numbers of

hidden layers.

Layers Test Error Rate (%)

1 1.1378272

2 1.2053255

3 1.1762255

4 1.1619338

Table 4.3: Test error rates of the baseline malware classifier for different numbers of

hidden layers.
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(a) T=2
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(b) T=10

Figure 4.5: ROC curves of the malware classifiers with the distillation defense with

different temperature.

better fine-tuning of the models. For the model with T = 2, we do not observe any

benefit from adding multiple hidden layers. However, we do get a small lift in the

performance for the DNN with 4 hidden layers for T = 10. Both systems offer similar

performance above an FPR = 0.02% compared to the baseline classifiers in Figure 4.4.

In Figure 4.12, we next investigate the effectiveness of the six adversarial sample

crafting strategies for the baseline classifiier and distillation defense, with tempera-

tures T =∈ {2, 10}, for model depths H ∈ {1, 2, 3, 4}. In each iteration, a single

feature is modified, and the generated sample is evaluated by the trained model to

test whether the sample is misclassified. From Figure 4.12, we make several obser-

vations. Generally, the distilled models follow a similar trend with regard to the six

strategies for crafting adversarial samples, where dec pos and dec pos+inc neg are the
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two most effective strategies for the attacker. With a higher distillation temperature,

it becomes much harder to craft adversarial samples for the distilled model. If the

same number of features is perturbed, the success rate for crafting adversarial samples

is reduced significantly for models distilled with a higher temperature. This result is

because the error surface of the distilled model is smoothed for higher temperatures,

such that the output is less sensitive with respect to the input.

We summarize the success of the different iterative strategies for crafting adver-

sarial samples after iteration 20 in Figures 4.7a for the baseline classifier, Figure 4.7b

for T = 2, and Figure 4.7c for T = 10. The figures indicate that shallow networks with

H = 1 hidden layers are the most susceptible to successfully crafted adversarial sam-

ples. We see that using the Jacobian information can help to craft more adversarial

samples with the same number of perturbed features than its randomized counter-

parts. From the attacker’s perspective, the dec pos strategy (switching off positive

malware features) is the most effective approach for crafting adversarial samples for

the full defense with T = 10. Likewise, dec pos + inc neg (alternatively switching

off positive feature and switching on negative feature) is more effective than inc neg

(switching on negative features). This is fortunate from the defender’s perspective

because it requires the attacker to potentially spend more effort implementing alter-

native strategies for removing malicious features.

Weight Decay Defense: We next present an analysis of the proposed weight

decay defense. We train the malware classification model using different strengths

of weight decay regularization, D ∈ {0.0001, 0.0005, 0.001, 0.01}, and plot the ROC

curves for these values of D in Figures 4.8a-4.8d, respectively. In general, the true

positive rates drop with increasing values of D.

We analyze all combinations of weight decay strength and hidden layer depth

in terms of defense to adversarial attacks. The best overall resilience of this model
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defense to the six adversarial sample crafting strategies for iteration 20 also employs

D = 0.0001 and is summarized in Figure 4.9a. For comparison, we also summarize

the defensive capabilities for D = 0.0005 in Figure 4.9b. Figure 4.9a shows that the

resilience to adversarial sample crafting strategies also increases as the hidden layer

depth increases. The weight decay defense is not as effective as the distillation defense

in Figure 4.7c or even the basline model in Figure 4.7a.

Ensemble Defense: Finally, we present the results for the ensemble defense

on our dataset. In Figure 4.11, we present the ROC curves for an ensemble with

E = 5 classifiers. Ensembles with other numbers of classifiers offer similar results.

The summary results after 20 iterations for E = 3 and E = 5 classifiers are

shown in Figure 4.12a and Figure 4.12b, respectively. The figures indicate that in-

creasing the number of classifiers in the ensemble make increases the difficulty of suc-

cessfully crafting adversarial examples. Furthermore, the ensemble defense greatly

reduces the percentage of successfully crafted samples compared to the results for

the baseline classifier in Figure 4.7a and the distillation defense with T = 10 in

Figure 4.7c.

4.5 Evaluation Attack: Images

In this section, we study the a type of attack during the evaluation stage of

a trained model. Nowadays there are more and more systems employee biometrics

as a proof-of-identity for accessing privileged information. Among them fingerprint,

iris and face are the most widely used identity proof. The backend of those secu-

rity systems/payment system is usually powered by machine learning models. Many

of them are taken convolutional neural network based models due to the superior

performance.
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The underlying assumption for these security systems are that those identity

proofs are unique in the world and hard to get by attackers. However, in this work

we show that these systems are vulnerable to attacks by the computer generated

images which exploit the deployed deep learning models. Attackers can generate fake

identity proofs easily, without any physic/digital access to the concerned subject.

This would be detrimental since the users has no fault at all on their end, while their

confidential/privileged information is at stake. The situation might be more serious

consider that biometrics are, unlike password based access control, hard to change.

4.5.1 Method: Deep Generator Attack

In this subsection, we introduce an attack during the evaluation stage. The

attack can automatically generate images that would be very confidently (100%)

recognized as being any desired target class that the attackers want it to be.

We exploit an architecture as illustrated in Figure 4.13. At the first glance,

it looks similar to the Generative Adversarial Network (GAN) [122, 123], where im-

ages are sampled from a latent subspace, as indicated in Figure 4.13 at the bottom,

represented by green and blue dots. The green dot represents a class indicator that

can only accept integer value in the range from one to the number of classes that the

discriminator outputs. The remaining blue dots represent the random noise. The gen-

erator map the input from the latent space to the image space, upsampled by layers

of deconvolutional operators. Then the generated image is fed into a discriminator,

which is a trained CNN that deployed for services.

Note that although the architecture looks similar to GAN, it does not have

much thing to do with GAN beyond that. A GAN is a game play between the

generator and discriminator, where the generator plays the thief trying to generate

image as realistic as possible that can not be distinguished from real images, while
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the discriminator plays the police tying to discern the fake generated images from the

real ones. In our network, however the weights in discriminator are fixed. To prevent

the confusion with GAN, we emphasize the differences as follows:

1) The discriminator is taken from a trained network, and the weights in the

discriminator are fixed. This is because we try to mimic the situation where the

trained network is deployed at service.

2) The output of the discriminator is the real classes that the discriminator has

been trained to predict. In contrast, GAN’s discriminator predicts whether the input

is real image or generated fake image.

3) Our goal is not to generate realistic images, but to generate images that will

break into the system’s prediction system. During the training process, not a single

real image is used.

The training procedure optimizes the weights in the generator network via

stochastic gradient descent. The training examples are generated by sampling the

latent space z = z0, z1, ...zn, n = 50, z0 is the class indicator element. Each pair

(z, z0) forms a training case, where z is the feature, and z0 is the ground truth label,

emphi.e. the generator will a generate an image recognized the trained model as

being class z0. In this way, after the generator is trained by many such samples, we

can simply generate images that will be classified into the desired class by specifying

the class indicator z0 in the input space.

4.5.2 Experimental Results

We run the experiment on both MNIST, CIFAR10 and ImageNet dataset to

show the effectiveness of the attack. For the MNIST experiment, the discriminator is

a standard LeNet as described in section 4.3.2, which achieves classification accuracy

of 99.23% on the held out testing set. The generator starts from the 50 dimensional
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vector in the latent space, and go through two fully connected layers with 1024 and

7*7*128 neurons respectively. The hidden layer is reshaped into 128 7x7 feature maps

and upsampled with two deconvolutional operators. In the output of the generator

we get 28x28 images.

For the CIFAR10 experiment, we use off-the-shelf trained model with the same

architecture as described in section 4.3.2 as the discriminator, which achieves 91.82%

classification accuracy. The generator is similar to the one used in the MNIST dataset,

except that the 1024 neurons in the first layer is mapped into 8*8*128 neurons,

because the output image should be of the shape 32x32 for the CIFAR10 classifier.

For the ImageNet experiment, we use a trained ResNet-50 [53] as the discrimi-

nator, which achieves a reported 92.2% top5 classification accuracy on the ImageNet

evaluation set . The generator is of the similar architecture of the one used in the

MNIST experiment except that 3 more upsampling layers are used to map the input

to the 224x224 image space. For all the experiments, we use the Adam operator with

a learning rate of 10−4 and train the generator 20000 iterations while keep the dis-

criminator’s weights fixed. During the training process, we observe that the training

loss goes down quickly and the discriminator will soon recognize the generated images

as the class specified by in z0 in the latent space. This suggests that the attacker can

exploit the deployed model to gain access to the system illegally pretty easily with

this type of technique.

Figure 4.14 shows the generated images on each dataset. Although the most of

the generated images are not discernible to human eyes, the neural network models

(which all achieve more than 90% accuracy on the held out testing sets) recognize

those images with 100% confidence of being a certain class. This suggests that al-

though those neural networks can achieve incredible image recognition accuracy, what

the neural networks have learned is fundamentally different from human eyes. Neural
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networks deployed might be vulnerable to access attacks, where the attackers can

generate fake identity proof easily, without ever approaching the real identity holder.

To massively adopt neural network methods in safety critical applications like ac-

cess control, self-driving cars, and biometric payment services, we need to further

investigate effective approaches to improve the robustness to such type of attacks.

It seems for smaller input space (e.g. 28x28 for the MNIST dataset), we might

we able to reveal what the training data looks alike by adding some regularization.

However, for the larger input space like CIFAR or ImageNet images, it is very hard

to reveal how the training data looks alike even though we reach 100% confidence

on the generated images. Due to the curse of dimensionality, the number of sam-

ples needed to properly train the model increases exponentially. Although trained

on large amounts of training data, it is still hard cover the whole space of variation

in the image. Modern neural network models which do not considering much geo-

metric invariance beyond translation are still incapable of disentangle features that

is essential for the classification, and overfit to the training data in a certain degree.

4.6 Conclusion

With the wide adoption of deep learning in each industry, we believe it is of

paramount importance to investigate potential attacks of deep learning system on

every stage: from data collection, model training, model testing/evaluation stage.

This paper investigates two potential attacks, one in training stage via injecting noise

in the training data, where we proposed a new loss function to alleviate the potential

loss of model performance. The other attack is in the evaluation stage via generating

pseudo-images which will be predicted to be any target class with 100% confidence

by the deployed model. Those attacks are never meant to be exhaustive, attackers

can come up with different attack techniques in any stage. Given the success of deep
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learning in industry applications. We believe the security of deep learning models need

much more attention/vigilance from academic community and industry adopters.
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(a) H = 1, Baseline
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(b) H = 1, T = 2

0 2 4 6 8 10 12 14 16 18 20

Iteration

0

5

10

15

S
uc

ce
ss

fu
lly

 C
ra

fte
d 

A
dv

er
sa

ria
l S

am
pl

es
 (

%
) dec_pos

inc_neg
dec_pos + inc_neg
randomized dec_pos
randomized inc_neg
randomized dec_pos + inc_neg

(c) H = 1, T = 10
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(d) H = 2, Baseline
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(e) H = 2, T = 2
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(f) H = 2, T = 10
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(g) H = 3, Baseline
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(h) H = 3, T = 2
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(i) H = 3, T = 10
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(k) H = 4, T = 2
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(l) H = 4, T = 10

Figure 4.6: Success rates of adversarial samples against the baseline classifer and the

using defensive distillation with temperatures, T ∈ 2, 10. Each subfigure shows the

results of a DNN with different number of hidden layers, H.
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Figure 4.7: Percentage of successfully crafted adversarial samples for different sample

crafting strategies with different temperature for distillation defense.
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(b) D=0.0005
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(c) D=0.001
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(d) D=0.01

Figure 4.8: ROC curves of the malware classifiers for different regularization strength

with different numbers of hidden layers.
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Figure 4.9: Percentage of successfully crafted adversarial samples after iteration 20

for different sample crafting strategies with different weight decay strength.
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Figure 4.10: Percentage of successfully crafted adversarial samples for the first 20

iterations with different sample crafting strategies, D = 0.0005 weight decay and

L = 3 hidden layers.
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Figure 4.11: ROC curves of the ensemble malware classifier with E = 5 classifiers for

different numbers of hidden layers.
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Figure 4.12: Percentage of successfully crafted adversarial samples after iteration

20 for different sample crafting strategies with different number of models for the

ensemble defense.

Figure 4.13: Illustration of the deep generator attack architecture.
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(a) MNIST without regularization (b) MNIST with regularization (10−3)

(c) CIFAR10: 6x8 images randomly sampled (d) ImageNet: 6x8 images randomly sampled

Figure 4.14: Generated images on different datasets that are recognized 100% confi-

dent as being the target class that attackers desired.
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CHAPTER 5

Conclusion

As the industry is adopting deep learning models in more and more applications,

such as self-driving cars, medical image diagnostics, video surveillance, etc., it is of

paramount importance to develop efficient and accurate deep learning models such

that the application can achieve satisfactory performance in limited computational

resources within a certain latency budget.

Better designed architecture reduces the computational overhead and improves

the perception accuracy. In this dissertation, we proposed a new architecture, which

is termed stochastic columnar network. The network is composed of many columns

where each column is a small computational graph. During the training stage, those

columns will be randomly dropped with a certain probability. The DropColumn

operation promotes the independence of the columns. We show that the network

exhibits ensemble property, by removing many columns during the inference stage, the

accuracy drops smoothly. Empirical results show that the proposed methods improve

the performance compared with state-of-the-art neural network architectures.

In addition, efficient knowledge distillation methods can be applied afterwards

to further reduce model memory footprint while preserving the model accuracy. We

proposed a new knowledge distillation method. Instead of distilling knowledge from

the probability score or logit layer (the penultimate layer of a neural network which

is of the same dimension as the number of classes), we proposed to distill knowledge

from the lower layer of the neural network. The intuition is that the lower layer

of the teacher model contain more useful information that can be used to distill
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knowledge from. After distill the useful information from the teacher model, the

student model can learn a linear function on the distilled feature space to predict the

final class of testing examples. Empirical results show that the proposed approach

works better than standard practice for knowledge distillation like dark knowledge or

logit regression.

On the other hand, the security of deep learning models should also be take

into serious consideration. In this dissertation, we show that deep learning models are

vulnerable to attacks at both training stage and evaluation stage. For the training

attacks, we proposed to replace the standard loss function with a new loss function

called correntropy loss, such that the model can be more robust to injected noise

in training data. Empirical results show that the performance of the proposed loss

function works better than standard loss function like cross entropy or hinge loss with

the presence of injected noise. We also studied one type of evaluation attacks, and

showed that deep learning models are subject to access attack where the attackers

can exploit the deployed models and generate fake identity proof easily. Therefore,

we should be wary about the security while deploying deep learning models.
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