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There has been a significant increase in the number of electric vehicles (EVs) 

mainly because of the need to have a greener living. Thus, ease of access to charging 

facilities is a prerequisite for large scale deployment for EV. 

The first component of this dissertation research seeks to formulate a deterministic 

mixed-integer linear programming (MILP) model to optimize the system of EV charging 

stations, the locations of the stations and the number of slots to be opened to maximize the 

profit based on the user-specified cost of opening a station. Despite giving the optimal 

solution, the drawback of MILP formulation is its extremely high computational time (as 

much as 5 days). The other limit of this deterministic model is that it does not take 

uncertainty in to consideration. 
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The second component of this dissertation is to overcome the first drawback of the 

MILP model by implementing a two-stage framework developed by (Chawal et al. 2018), 

which integrates the first-stage system design problem and second-stage control problem 

of an EV charging stations using a design and analysis of computer experiments (DACE) 

based system design optimization approach. The first stage specifies the design of the 

system that maximizes expected profit. Profit incorporates costs for building stations and 

revenue evaluated by solving a system control problem in the second stage. The results 

obtained from the DACE based system design optimization approach, when compared to 

the MILP, provide near optimal solutions. Moreover, the computation time with the DACE 

approach is significantly lower, making it a more suitable option for practical use. 

The third component of this dissertation is to overcome the second drawback of the 

MILP model by introducing stochasticity in our model. A two-stage framework is 

developed to address the design of a system of electric vehicle (EV) charging stations. The 

first stage specifies the design of the system that maximizes expected profit. Profit 

incorporates costs for building stations and revenue evaluated by solving a system control 

problem in the second stage.  The control problem is formulated as an infinite horizon, 

continuous-state stochastic dynamic programming problem. To reduce computational 

demands, a numerical solution is obtained using approximate dynamic programming (ADP) 

to approximate the optimal value function. To obtain a system design solution using our 

two-stage framework, we propose an approach based on DACE.  DACE is employed in 

two ways.  First, for the control problem, a DACE-based ADP method for continuous-state 

spaces is used.  Second, we introduce a new DACE approach specifically for our two-stage 
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EV charging stations system design problem.  This second version of DACE is the focus 

of this paper.  The “design” part of the DACE approach uses experimental design to 

organize a set of feasible first-stage system designs.  For each of these system designs, the 

second-stage control problem is executed, and the corresponding expected revenue is 

obtained.  The “analysis” part of the DACE approach uses the expected revenue data to 

build a metamodel that approximates the expected revenue as a function of the first-stage 

system design.  Finally, this expected revenue approximation is employed in the profit 

objective of the first stage to enable a more computationally-efficient method to optimize 

the system design. To our knowledge, this is the only two-stage stochastic problem which 

uses infinite horizon dynamic programming approach to optimize the second stage 

dynamic control problem and the first stage system design problem. Moreover, when the 

designs obtained from our DACE approach and MILP design are solved using DACE-

based ADP method (simulation), an improvement of approximately 8% is observed in the 

simulated profit obtained from ADP design compared to that of MILP design indicating 

that when uncertainty is considered, DACE ADP design provides the better solution.  
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Chapter 1. Introduction 

1.1. Research Background 

  Electric vehicles are becoming important primarily due to environmental factors 

as the current gasoline vehicular emission is on the rise. There has been a significant 

increase in the number of electric vehicles mainly because of the need to have a greener 

living. Though they came into existence in early 19th century the necessity is being felt in 

the recent times. One of the Environmental assessment of a full Electric Transportation 

Portfolio by the Electric Power Research Institute and Natural Resource Defense Council 

has suggested that fueling the transportation using electricity instead of gasoline/petroleum 

can significantly reduce the Green House gases emissions and other air pollutants. The 

Context of the study is the climate-projection goals that they are striving to achieve which 

is reducing 80% of the Green House gas emission levels from 1990 to 2050. As suggested 

by the study, 60% of the carbon pollution occurs from passenger vehicles emission, if we 

keep a check on this segment, around 60% of the goal is achieved (He et al. 2015). There 

has been a significant increase in the adoption of the Electric vehicles in the recent years, 

this can be partly credited to the increasing global concern for climate change and 

increasing crude oil prices.  Volvo has announced that starting in 2019, all of the new 

models it produces will be electric or hybrid. Hakan Samuelsson, Volvo president and chief 

executive, said in a statement. "Volvo Cars has stated that it plans to have sold a total of 1 

million electrified cars by 2025. When we said it we meant it. This is how we are going to 

do it." (https://www.npr.org/sections/thetwo-way/2017/07/05/535596277/all-new-volvo-

models-will-be-electric-or-hybrid-starting-in-2019). With this growth in EVs and the 
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fundamental transformation from traditional oil based fleets to electrical power vehicular 

technologies, concerns have emerged in the Smart City.  

 One of the key aspects that needs to be considered for EV charging stations is the 

drive range or the accessibility to charging stations, resulting in restricted adoption of the 

Electric Vehicle. The driving range varies greatly from manufacturer to manufacturer and 

also from model to model, as on 2014, the longest EV driving range was of 424 km for 

Tesla Model S, while the shortest range was of Scion iQ Ev (2013) which was a range of 

60 Km. As per U.S Department of Energy (2014), the EV driving range for the vehicle 

ranges from 100 km- 160 km (Huang et al. 2016). One of the solutions to this problem is 

installation of many Electric charging stations, but how many to be installed, where they 

should be installed gives rise to a facility location problem.  

 This study focuses on one such concern, which is the current and future locations 

and the number of EV charging stations needed in a particular area. A sufficient number of 

charging stations with high level of service is required for charging EVs for both today and 

the future. The need for a sustainable charging station design, with maximum climate 

benefits, economic profit and social acceptance, is at an all-time high.  

1.2. Motivation 

One of the most important motivations for this project is that electricity is a clean 

energy source, and can be generated using multiple renewable energy sources. This is 

critically important for reducing greenhouse gas emissions. To aid this endeavor the U.S. 

government pledged to reduce greenhouse gas emissions by approximately 17% by 2020 
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(http://www.eia.doe.gov/emeu/aer/pdf/pages/sec12_4.pdf, 2010). According to the 

website of the Energy Information Administration (2016), the transportation sector alone 

causes up to 36.41% of all energy-related emissions and is the largest producer of carbon 

dioxide emission in the U.S (https://www.eia.gov/environment/emissions/carbon/). This 

further increase the need for the transportation sector in the U.S. to find a cleaner alternative. 

Furthermore, energy power in the transportation sector is derived almost exclusively from 

fossil fuels, making the U.S. the world’s largest consumer of crude oil and petroleum 

products. Each day, Americans consume approximately 20 million barrels of petroleum, 

and import approximately 7 million barrels as per the website of the Oak Ridge National 

Laboratory (http://cta.ornl.gov/data/download36.shtml, 2016). Because of the increasing 

risk associated with obtaining oil, as well as the growing scarcity, it is threatening both the 

energy security and the economy. If this trend of heavy reliance on petroleum continues, 

based on current consumption, the production would not be able to handle it. Eventually, 

the economy will be unable to afford the high cost of oil dependency. 

Environmental pollution is one of the worst effects of our accelerated development 

rate. An integral part of environment pollution is air pollution, which is caused majorly due 

to usage of traditional sources of energy such as coal, natural gas, and oil. Finding reliable, 

renewable, and non-polluting substitute to these is necessary for sustainable development 

of environment, else there will be serious implications. To combat such high levels of 

carbon dioxide emissions, we need a major transformation. EVs address that purpose well. 

With higher number of EVs in market, there will be a substantial reduction in CO2 

emissions which would help in sustainable development. The idea of breezing past gas 
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stations without leaving a carbon footprint behind appeals to electric car enthusiasts, but 

the fear of running out of battery power has been a major barrier in getting people to buy 

them. 

Renewable energy, in the use of EVs are the most effective means of significantly 

lowering the consumption of oil and controlling the fuel economy. By supporting existing 

and future technologies of electrical power based vehicular products, it is our hope to shift 

the transportation sector from oil based designs to a cleaner, more sustainable electric based 

design. In order to achieve that goal and spread the use of EVs, reliable access to charging 

stations is required. 

In this research, we have proposed a model whose objective is to minimize EV 

overall system charging cost while still storing an adequate amount of power in the battery 

to satisfy EV charging demand. This requires many variables such as number of vehicles 

both now and in the future, cost of each station, monitoring demand, the amount of power 

generated, and the market price (MP) for energy and trading power with the power grid 

accordingly. By generating electricity from renewable sources, charging stations may 

become active participants in the power market.  
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1.3. System Design Configuration 
 

 

Figure 1.1. Electric Charging Station System (Sarikprueck 2015) 

The proposed EV charging station, as illustrated in Figure 1.1, is designed to obtain 

energy from wind/solar energy generation and the power grid. The energy stored in the 

charging station is used to charge the EVs. The system can store excessive energy for future 

demand by storing it in the battery storage unit. The surplus stored energy can be used by 

the station to satisfy the demand if the energy generated is insufficient. If the energy 

generated from wind/solar and the battery storage is insufficient to satisfy demand, then 

the required energy is bought from the power grid. Any excess energy from the storage 

unit can be sold back to the power grid for added profit.  
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Figure 1.2. The distribution of the station locations  

Charging Stations

Demand Nodes 
(Zip Codes)

 

 

Figure 1.3. Demand Nodes and Charging Stations 

 

Figure 1.2 shows the distribution of the 11 potential station within the Dallas/Fort 

Worth area in Texas. The 140 hotspots (cities) are spread around these stations. Figure 1.3 

shows a visual depiction of the projects primary focus (the distance) and how the demand 

is determined based on it. The distance between each hotspot and station is pre-determined 
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and is used in the optimization model 

The rest of this dissertation is organized as follows: In Chapter 2, the first paper is 

presented named optimizing a system of electric vehicle charging stations using mixed 

integer linear programming computer experiments where deterministic models are 

discussed to optimize the system of EV charging stations. In Chapter 3, the second paper 

is presented titled a two-stage design and analysis of computer experiments approach for 

optimizing a system of electric vehicle charging stations where uncertainty is taken into 

consideration to optimize the system of EV charging stations. Finally, conclusions and 

future research are presented in Chapter 4.   

Reference 

He, F., Yin, Y., & Zhou, J. (2015). Deploying public charging stations for electric vehicles 

on urban road networks. Transportation Research Part C: Emerging Technologies, 60, 

227-240. 

Huang, K., Kanaroglou, P., & Zhang, X. (2016). The design of electric vehicle charging 

network. Transportation Research Part D: Transport and Environment, 49, 1-17. 

Sarikprueck, P. (2015). Forecasting of wind, PV generation, and market price for the 

optimal operations of the regional PEV charging stations. The University of Texas at 

Arlington. 
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Chapter 2. Optimizing a System of Electric Vehicle Charging Stations using Mixed 

Integer Linear Programming Computer Experiments 

Abstract 

Due to the economic and environmental concerns associated with fossil fuels and 

the growing need for sustainability, the use of electric vehicles (EVs) is a viable solution. 

However, ease of access to charging facilities is a prerequisite for large scale deployment 

for EV. This paper formulates a mixed-integer linear programming (MILP) model to 

optimize a system of EV charging stations, locations of EV charging stations, the number 

of charging slots to be opened, and expected profits. Then, a two-stage framework is 

considered which integrates the first-stage system design problem and second-stage control 

problem of an EV charging stations using a design and analysis of computer experiments 

(DACE) based system design optimization approach. The first stage specifies the design 

of the system that maximizes expected profit. Profit incorporates costs for building stations 

and revenue evaluated by solving a system control problem in the second stage. This 

approach generates a meta-model to predict revenue from the control problem using 

multivariate adaptive regression splines (MARS), fitted over a binned Latin hypercube (LH) 

design. Using the revenues from the control problem, the system design problem is then 

solved. The results obtained from the DACE based system design optimization approach, 

when compared to the MILP, provide near optimal solutions. Moreover, the computation 

time with the DACE approach is significantly lower, making it a more suitable option for 

practical use. 
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Index Terms - Design and analysis of computer experiments based system design 

optimization approach, electric vehicle charging stations, Latin hypercube sampling design, 

meta-model, mixed integer linear programming, multivariate adaptive regression splines. 

1. Nomenclature 

A. Sets: 

J                    set of potential station locations indexed by j 

I  set of demand hot spots indexed by i 

𝐼(𝑗)  set of demand hot spots within the max-mile radius of the station  

T                             set of time periods of 15 minutes in a day indexed by t 

K    set of basis functions indexed by k 

B. Parameters: 

mij  Distance from hotspot i to station j (miles)   

𝜑  Max-mile radius between the hotspots and the station 

pi  Population of EVs at hotspot i 

dt  Demand percentage in time period t 

e  Efficiency of the battery  

dc                 Discharge rate  

𝜙  Recapture rate 

𝜃  First time period in a day 

𝜌  Last time period in a day 

rt  Retail price in time period t 

cr  Battery charge capacity  

http://www.eia.gov/electricity/monthly/current_year/december2014.pdf
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cj  Cost of opening station j 

Ncj                           Cost of opening a slot at station j 

v  Minimum battery level   

u  Maximum battery level  

 ℶ   The maximum number of slots opened per charging station j 

sc  Slot capacity  

Wt  Wind generation (Mwh) in time period t 

St  Solar production (Mwh) in time period t 

Mt  Market price in time period t 

0                   Y-intercept of MARS function 

k   Least square estimators for basis function k 

C. Variables: 

xj ∈ {0,1}  Binary variable, if station j is operational 

yij ∈ {0,1}        Binary variable, if hotspot i is assigned to station j 

tj ∈ {0,1}       Binary variable, if the solar production in time period t is allocated to 

station j 

tj                    Fraction of the total wind generation in time period t allocated to station j 

gtj
+  Electricity bought from grid by station j in time period t 

gtj
_                  Electricity sold to grid from direct charge of station j in time period t 

Btj
_  Electricity sold to grid from battery of station j in time period t 

Dtj  Total demand in time period t at charging station j 

D1
tj                 Demand satisfied by direct charge of station j in time period t 
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D2
tj  Demand satisfied by battery of station j in time period t 

Ltj   Battery level of station j in time period t 

Bctj              Battery charge of station j in time period t 

Nsj                Number of operational slots at station j 

Tcj               Total capacity of slots at station j 

Ndtj           Nominal demand in time period t at station j 

Rtj           Recapture of lost demand of time period t – 1 at charging station j 

atj , btj , ctj     Binary decision variables used for piecewise formulation in time period t at 

station j 

𝑍𝑀𝐼𝐿𝑃             Objective function of MILP formulation 

(�̅�, 𝑁𝑠̅̅̅̅  )        System station design data points  

𝑍𝑀𝐼𝐿𝑃(�̅�, 𝑁𝑠̅̅̅̅  )  Objective function of MILP formulation  

 𝑅𝑒𝑣 (𝑁𝑠̅̅̅̅  )      Objective function of MILP formulation without the cost component  

kBF                Basis function k  

D. Acronyms: 

DACE   Design and Analysis of Computer Experiments 

EV       Electric Vehicle 

LH  Latin Hypercube  

MARS  Multivariate Adaptive Regression Splines 

MILP  Mixed Integer Linear Programming 
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2. Introduction 

The energy crises during the 1970s created a need for alternative forms of energy 

for transportation vehicles and thus began the research into EVs. In current times, the need 

for sustainability has risen exponentially, giving EVs the emphasis they deserve. A recent 

environmental assessment by the Electric Power Research Institute and Natural Resource 

Defense Council has suggested that using electricity instead of gasoline/petroleum can 

significantly reduce greenhouse gas emissions and other air pollutants [1]. To bolster the 

usage of EVs, governments have taken a variety of initiatives. For example, Norway has 

given a tax exemption on EVs until 2020 to position itself as the EV leader [2]. By 

supporting existing and future technologies of electrical power based vehicular products, 

the transportation sector is expected to shift from an oil based design to a cleaner, more 

sustainable electric based design. One of the key aspects that needs to be considered for 

EV charging stations is the drive range or the accessibility to charging stations, resulting 

in restricted adoption of the EV. One of the solutions to this problem is better installation 

of EV charging stations, which minimizes operational cost for setting up EV charging 

stations and maximizes the profit in running the stations. By generating electricity from 

renewable sources, charging stations may become active participants in the power market. 

This further increases the need for the transportation sector in the U.S. to find a cleaner 

alternative. 

Several papers proposed different approaches and implemented several algorithms 

for optimizing locations for EV charging stations. The work in [3] - [6] proposed different 

approaches for finding optimal locations and sizes for charging stations. A robust integer 
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linear optimization and a stochastic programming framework was proposed to solve the 

strategic optimization problem of determining optimal locations for charging stations of 

(ad-hoc) electric car-sharing systems, and for considering uncertainty associated with 

vehicle-to-grid and wind power scenarios, respectively in [7] and [8]. A linear 

mathematical model to optimize the cost of power trading and auto regressive methods to 

forecast wind power output and market clearing price for energy was proposed in [9]. A 

stochastic model was proposed in [10] and [11] for back up flow capturing demand to 

ensure stability in service coverage and for-profit maximization based on price 

responsiveness of customers, respectively. The work in [12] - [15] proposed a methodology 

that ensured little to no queue at the charging station based on customer demand. The work 

in [16] – [20] proposed a battery swapping methodology as a candidate solution to existing 

approaches to meet customer demand. 

Although the aforementioned papers proposed different approaches and 

implemented several algorithms for the optimization of locations for EV charging stations, 

a globally optimal set of stations to be opened, with the corresponding number of slots, has 

never been found while considering factors such as the customer demand obtained from 

the city population (hotspots) of EVs, the distances from hotspots to the stations, and 

available solar energy and wind energy generation. To address these issues, we proposed a 

deterministic MILP model to obtain a globally optimal set of stations to be opened that 

maximizes profits. In this research, we considered 11 possible locations for charging 

stations for 140 demand hotspots in multiple time periods.  
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The other contribution of this paper is an implemented two-stage framework 

developed by [28], which addresses the design of a system of EV charging stations using 

a DACE based system design optimization approach. The first stage specifies the design 

of the system that maximizes expected profit, which incorporates costs of building stations 

and revenue from a system control problem in the second stage. The “design” part of the 

DACE approach uses experimental design to organize a set of feasible system designs of 

EV charging stations.  For each of these system designs, a second-stage control problem is 

executed, and the corresponding expected revenue is obtained.  The “analysis” part of the 

DACE approach uses the expected revenue data to build a metamodel that approximates 

the expected revenue as a function of the first-stage system design.  Finally, this expected 

revenue approximation is employed in the profit objective of the first stage to enable a 

more computationally-efficient method to optimize the system design. The results obtained 

from the DACE based system design optimization approach, when compared to MILP, 

provides near optimal solutions with a loss of less than 1% of profit. Furthermore, the 

DACE approach reduces the computational time from 4 days and 23 hours to less than an 

hour, making it a much more suitable option for practical use. In addition, our DACE model 

allows us to generate controllability/revenue functions, which may be used to evaluate 

different cost scenarios. 

The rest of this paper is organized as follows: a System Design Problem 

Formulation including system design objectives, formulation of the problem using MILP 

and a DACE based system design optimization approach is presented in detail in Section 
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3. In Section 4, System Design Experiments are described where the results are discussed. 

Finally, Conclusions are made in Section 5. 

3. System Design Problem Formulation 

3.1. System Design Layout 

 

Figure 2.1. EV Charging Station Layout 

 

The proposed EV charging station, as illustrated in Figure 2.1, is designed to obtain 

energy from wind/solar energy generation and the power grid. The energy stored in the 

charging station is used to charge the EVs. The system can store excessive energy for future 

demand by storing it in the battery storage unit. The surplus stored energy can be used by 

the station to satisfy the demand if the energy generated is insufficient. If the energy 

generated from wind/solar and the battery storage is insufficient to satisfy demand, then 

the required energy is bought from the power grid. Any excess energy from the storage 

unit can be sold back to the power grid for added profit.  
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Figure 2.2. The distribution of the station locations  

 

Charging Stations

Demand Nodes 
(Zip Codes)

 

 

Figure 2.3. Demand Nodes and Charging Stations 

 

Figure 2.2 shows the distribution of the 11 potential station locations within the 

Dallas/Fort Worth area in Texas. The 140 hotspots (cities) are spread around these stations. 

Figure 2.3 shows a visual depiction of the projects primary focus (the distance) and how 
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the demand is determined based on it. The distance between each hotspot and station is 

pre-determined and is used in the optimization model 

3.2. Objective 

The major objective of this paper is to develop a new model to optimize the number 

of stations and the number of slots to be opened along with maximizing the overall profits 

using an MILP formulation. Despite giving the optimal solution, the drawback of the 

proposed MILP formulation is that it may require extremely high computational time (as 

much as 5 days) to solve. In general, the formulation can be solved using branch-and-cut, 

which can consume a lot of time. Hence, we utilized a DACE based optimization approach 

to determine the system of EV charging stations. 

3.3. MILP Formulation 

As shown in equation (1) below, the objective is to maximize revenue from selling 

energy to the grid both from the battery and direct charge across all the stations and the 

revenue from meeting the demand minus the cost of buying energy from the grid, the cost 

of constructing an EV station at a potential location and the cost of opening slots.  

   )()(max jjj

Jj

j

Tt Jj

tjttjtjtjt NsNcxcNdrgBgM  
 

                                            (1) 

s.t. 

∑ 𝑝𝑖𝑑𝑡 [
(𝜑−𝑚𝑖𝑗)

𝜑
𝑦𝑖𝑗]𝑖𝜖𝐼(𝑗) =                                            (2) 

The constraints in equation (2) ensure that the total demand in time period t at charging 

station j is the product of the distance function, which is the percentage of the demand of 

hotspot i assigned to station j with the population of hotspot i and the general demand 

percentage in time periods t. 

tjD TtJj  ,
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               𝑦𝑖𝑗 ≤  𝑥𝑗         ∀𝑖 ∈ 𝐼(𝑗), ∀𝑗 ∈ 𝐽               (3)                                                                                





Jj

ij Iiy 1                                                                                         (4)   

The constraints in equation (3) ensure that demand hotspot i cannot be assigned to stations 

j, if stations j is not operational. The constraints in equation (4) ensure that each hotspot i 

is served by at most one station. 

𝑥𝑗 +  𝑦𝑖�̂� ≤ 1     ∀𝑖 ∈ 𝐼, ∀𝑗, 𝑗̂  ∈ 𝐽, 𝑚𝑖𝑗 < 𝑚𝑖�̂�                                                (5) 

The constraints in equation (5) ensure that if j is a closer station than 𝑗̂, then the hotspot 

will be assigned to the closer one only.  

, let 𝜀 be the upper bound (very large number, + ∞) and  be such that 

= {
1          𝑖𝑓 +  ≥ 𝑇𝑐𝑗  

0          𝑜. 𝑤.                                                        

 

- (1- ) +𝑇𝑐𝑗  ≤ ≤ 𝑇𝑐𝑗  +(1- )                                                 (6) 

   -  + + ≤ ≤ + +                                                 (7) 

The constraints in equation (6) and (7) is a piecewise linear formulation ensuring that if the 

sum of the total demand and the recapture of the loss demand in time period t at station j is 

equal or more than total capacity of the station j, then total nominal demand in time period 

t at station j is equal to the total capacity of the charging station j; otherwise, it is equal to 

the sum of the total demand and the recapture of the loss demand in time period t at station 

j.  

 

 

TtJj  , tja

tja tjD tjR

tja 
tjNd tja  TtJj  ,

tja 
tjD tjR tjNd tjD tjR tja  TtJj  ,
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When demand for a time period exceeds capacity, we assume 50% of the customers 

are willing to wait to be served in a subsequent time period (recaptured), while 50% are 

lost. , let  be such that  

= {
1          𝑖𝑓 [ + − 𝑇𝑐𝑗] 𝜙 ≥ 0

0          𝑜. 𝑤.                                                        

 

-(1- ) +[ + − 𝑇𝑐𝑗]𝜙 ≤ ≤ [ + − 𝑇𝑐𝑗  ]𝜙  +(1- ) (8) 

-(1- ) +[𝐷𝜌𝑗 + 𝑅𝜌𝑗 − 𝑇𝑐𝑗  ]𝜙 ≤ 𝑅𝜃𝑗 ≤ [𝐷𝜌𝑗 + 𝑅𝜌𝑗 −  𝑇𝑐𝑗]𝜙  +(1- )        ∀𝑗 ∈ 𝐽 (9)     

- ≤ ≤                                                  (10) 

The piecewise constraints in equations (8), (9) and (10) ensure that if 50% of the total 

demand and recapture from time period t-1 at station j is equal to or more than the total 

capacity of the station j then recapture in time period t at station j is 50% of the total demand 

and recapture of the loss demand in time period t-1 at charging station j minus the total 

capacity of the charging station j. Otherwise, there will be no recapture. We assume that 

the recapture of the loss demand at last time period is taken into consideration to calculate 

the recapture of the loss demand at the first stage.  

, let  be such that  

= {
1          𝑖𝑓 [ + −  𝑇𝑐𝑗  ]𝜙 ≥  𝑇𝑐𝑗

0          𝑜. 𝑤.                                                        

 

 -(1- ) +𝑇𝑐𝑗 ≤ ≤ 𝑇𝑐𝑗  +(1- )                         (11) 

- +[ + −  𝑇𝑐𝑗  ]𝜙 ≤ ≤ [ + − 𝑇𝑐𝑗  ]𝜙 +        (12)                                                

- +[𝐷𝜌𝑗 + 𝑅𝜌𝑗 −  𝑇𝑐𝑗  ]𝜙 ≤ 𝑅𝜃𝑗 ≤ [𝐷𝜌𝑗 + 𝑅𝜌𝑗 − 𝑇𝑐𝑗 ]𝜙 +        ∀𝑗 ∈ 𝐽   (13)                                                    

TtJj  , tjb

tjb jtD )1(  jtR )1( 

tjb 
jtD )1(  jtR )1(  tjR jtD )1(  jtR )1(  tjb  TtJj  ,

tjb 
tjb 

tjb 
tjR tjb  TtJj  ,

TtJj  , tjc

tjc jtD )1(  jtR )1( 

tjc 
tjR tjc  TtJj  ,

tjc 
jtD )1(  jtR )1(  tjR jtD )1(  jtR )1(  tjc  TtJj  ,

tjc 
tjc 



20 
 

The piecewise constraints in equations (11), (12) and (13) ensure that if 50% of total 

demand and recapture of the loss demand in time period t-1 at station j minus the total 

capacity of the charging station j is equal to or more than the total capacity of the station j 

then recapture of the loss demand in time period t at station j is equal to the total capacity 

of the station j. Otherwise, it is equal to the sum of the 50% of total demand and recapture 

of the loss demand in time period t-1 at station j minus the total capacity of the charging 

station j.   

         ∀𝑗 ∈ 𝐽                                                    (14) 

The constraints in equation (14) ensure that the number of slots opened per charging station 

j is the division of total capacity of the charging station j by the slot capacity. 

                     (15) 

The constraints in equation (15) ensure that the total nominal demand in time period t at 

charging station j is equal to the demand satisfied by the direct charge of station j in time 

period t and the demand satisfied by the battery of station j in time period t. 

, let  be such that  

= {
1    if  solar production 𝑡 is allocated to station 𝑗 

   0                  𝑜. 𝑤                                                                   
 

𝐿𝑡𝑗 = 𝐿(𝑡−1)𝑗 + 𝐵𝑐𝑡𝑗 − 𝑒 𝐷𝑡𝑗
2 + 𝑒𝐵𝑡𝑗

−                     ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (16) 

𝐿𝜃𝑗 = 𝐿𝜌𝑗 + 𝐵𝑐𝜃𝑗 − 𝑒 𝐷𝜃𝑗
2 + 𝑒𝐵𝜃𝑗

−    ∀𝑗 ∈ 𝐽       (17) 

TtJjDggSWBc tjtjtjtjttjttj   ,
1

                       (18) 

sc

Tc
Ns

j

j 

)( 21

tjtjtj DDNd  TtJj  ,

TtJj  ,
tj

tj
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The set of energy balance constraints include the battery level transition as equation (16), 

the energy balance for the battery charge as equation (18). Moreover, the constraints in 

equation (17) ensure the battery level at the first stage is calculated using battery level 

transition equation and the battery level at the previous stage (96 stage).  

 TtJjgSWg tjtjttjttj   ,)(                                    (19) 

                                                      (20) 

The constraints in equation (19) ensure that the electricity sold to the grid from the direct 

charge of station j in time period t should be less than or equal to the sum of the total wind 

purchased by station j in time period t, the solar production of station j in time period t and 

the electricity bought from the grid by station j in time period t. Similarly, the constraints 

in equation (20) ensure that the electricity bought from the grid by station j in time period 

t should be less than the total nominal demand in time period t at charging station j.  

tjB + TtJjxedcD jtj  ,**2                              (21) 

        TtJjxcrBc jtj  ,*                              (22) 

TtJjxuLxv jtjj  ,**                                 (23) 

The constraints in equation (21) ensures that the sum of the electricity sold back to the grid 

from the battery of station j in time period t and the demand satisfied by the battery of 

station j in time period t cannot be higher than the product of discharge rate and storage 

efficiency of station j. Similarly, the constraints in equation (22) ensure that the battery 

charge of station j in time period t should be within the battery charge capacity. The 

constraints in equation (23) ensure that the battery inventory is between the minimum 

tjtj Ndg 
TtJj  ,
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battery level and maximum battery level for each station. Moreover, (21) - (23) are only 

are considered when station j is operational. 

                                                 (24) 

The constraint in equation (24), ensure the fraction of the allocation of the wind generation 

to all the stations is no more than 1.  

  ≤ 𝑥𝑗                                        (25) 

              ≤  𝑥𝑗                                                 (26) 

Constraints in equations (25) and (26) ensure that the total wind purchased by station j in 

time period t, and the solar production of station j in time period t are only possible if the 

stations are operational. 

Nsj ≤ ℶ 𝑥𝑗              Jj                                 (27) 

The constraints in equation (27) ensure that the number of slots opened is between zero 

and the maximum number of slots opened per charging station j. 

                  , , , , ,Tcj  ,Nsj ,           (28)     

  𝑥 ∈ 𝔹|𝐽|                                                                            (29) 

                                   𝑦 ∈ 𝔹|𝐼|∗|𝐽|               (30) 

  ∈ 𝔹|𝑇|∗|𝐽|                                              (31) 

The constraints in equations (28)-(31) ensure that that variables are nonnegative, and x, y 

and  are binaries of appropriate dimension. Furthermore, the constraints in equation 

(4), (5) and (25) create a dependent relationship between the stations and prevent the 

problem to be separable.  





Jj

tj 1 Tt

tj TtJj  ,

tj TtJj  ,

tjNd tjD 1

tjD
2

tjD tj 0,,,,, 

tjtjtjtjtjtj RBBcggL TtJj  ,

cba ,,,

cba ,,,
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3.4. DACE Based System Design Optimization Problem Formulation Approach 

DACE as proposed in [26] is used as a statistical basis for designing experiments 

for efficient prediction. As mentioned in [27], in DACE, an experimental design is used to 

organize a set of computer experiment runs, to enable fitting of a statistical “meta-model” 

that approximates a complex system’s output from the computer experiment. Specifically, 

in this paper we use the steps used in [28] to solve the system of EV charging stations using 

DACE approach. 

I. Binned LHS Design 

As mentioned in [28], a binned LH design is used to generate 250 training data 

points and 75 testing data points of the locations of the charging stations and the number 

of slots at each charging station as shown in Appendix A [(𝑥1, 𝑁𝑠1 ),….. , (𝑥𝑁 , 𝑁𝑠𝑁 )].  

II. Second stage control problem 

For each system of charging stations (�̅�, 𝑁𝑠̅̅̅̅  ) in the design, the corresponding 

control problem revenue 𝑅𝑒𝑣(𝑁𝑠̅̅̅̅ ) is determined using MILP as shown in equation (32).  

𝑅𝑒𝑣(𝑁𝑠̅̅̅̅ )=   
 

 
Tt Jj

tjttjtjtjt NdrgBgM )(max           (32) 

      s.t.  Equations (2) – (31). 

III. MARS model 

In this paper, MARS, introduced in [29], is fitted to the design obtained by the 

binned LH and the corresponding revenues generated by solving second stage control 

problem. The fitted model as illustrated in equation (33), predicts the revenue. 

𝑅𝑒�̂�(𝑁𝑠̅̅̅̅ ) )Ns(
1

0 



K

k

kk BF                                 (33)  
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The MARS model determined in this research is given in Appendix B. In our paper, we 

fit two different MARS models, one with basis interaction terms and the other with no 

interaction.  

IV. First stage EV system master problem 

The system of charging stations (𝑥∗, 𝑁𝑠∗) is obtained by maximizing profit using 

the optimization problem given by (32).  

where �̂�𝑀𝐼𝐿𝑃(𝑥∗, 𝑁𝑠∗) = max 𝑅𝑒�̂�(𝑁𝑠̅̅̅̅ ) -         (34) 

 s.t.  Equtaions (28) – (31). 

To evaluate the quality of (𝑥∗, 𝑁𝑠∗) , 𝑍𝑀𝐼𝐿𝑃(𝑥∗, 𝑁𝑠∗)  is then calculated solving equation (1) 

– (32) using CPLEX, where 𝑥 = 𝑥∗  and  𝑁𝑠 = 𝑁𝑠∗  . The obtained 𝑍𝑀𝐼𝐿𝑃(𝑥∗, 𝑁𝑠∗) and 

(𝑥∗, 𝑁𝑠∗)  are the solutions to the DACE approach. 

4. System Design Experiments 

4.1. MILP Experiments 

From a computational perspective, all our runs are executed on a workstation 

equipped with Intel Core i7 CPU @3.50 GHz *12 and 32 GB RAM and are solved using 

[30]. Data on wind generation, solar generation, and market price are from 2012 used in 

this study [21-23]. Data on demand profiles are from [9]. The average retail price of 

electricity is 10.17 cents per kilowatt-hour [24]. The maximum and minimum battery 

capacities are 3.6 MWh and 720 kWh per slot. The charging rate and discharging rates are 

600 kW and 75 kW per slot. The capacity of every slot is 0.01875 Mwh. In our study, the 

storage efficiency is considered to be 79.8% [25]. For convenience, we assumed stations 

more than a 20-mile radius are not able to fulfill the demand of a hotspot. The cost of the 

jjjj NsNcxc 
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slots opened, are assumed to be 10% of the setup cost of each station. The maximum 

number of slots to be opened is 10.  As market prices change every 15 minutes, our 

formulation considers a daily control problem consisting of 96 15-minute periods. When 

demand for a time period exceeds capacity, we assume 50% of the customers are willing 

to wait to be served in a subsequent time period (recaptured rate), while 50% are lost. Given 

that the processing time normally requires 5 days for each scenario, and the solution is 

found before 2 hours, a limit of 6 hours is used in all scenarios, except the scenario in which 

opening the stations costs $100 per day   

Table 2.1. Number of Slots Per Charging Stations vs. Different Cost Scenarios 

Table 2.1 illustrates the optimal number of stations to be opened and the number of 

slots to be opened along with the individual profits generated from each station, at different 

cost scenarios. Moreover, computational time and the status whether the run is completed 

or is stopped where a limit of 6 hours is used, is shown in the Table. It is observed that with 
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no operational cost, all the stations are opened, and the number of slots opened and the 

total profit generated is higher as compared to the other scenarios. As the cost increases, 

more stations are left closed and the number of slots decrease within their respective 

stations. However, when increasing the cost from $70 to $100, the number of slots in 

Garland increased from 2 to 3, because Garland now captures the demand from Rockwall 

(closed for $100). 

To be as realistic as possible, we realize that it would not be necessary to open 8 or 

more stations to meet the demand whereas opening under 3 stations will not be sufficient 

enough to fulfill the demand. As illustrated in the Table above, operational cost of $60, $70 

and $100 have 5, 5 and 4 stations being opened respectively. $100 seems to be more 

convincing cost of operating a charging station as compared to the other two. Hence, a 

station cost of $100 per day is considered as the base line. Using a cost of $100 per day, it 

took 4 days and 23 hours of processing time to provide an optimal solution. The objective 

value of the optimal solution is $2689.38  (𝑍𝑀𝐼𝐿𝑃), and the stations to be opened are Forth 

Worth, Dallas, Garland and Denton and their individual profits for these stations are 

$2072.21, $293.96, $201.76 and $121.45 per day, respectively. For each of these locations 

the number of slots opened are 5, 4, 3 and 1, respectively. 

It has been observed that the solution (best integer) is normally obtained between 

20 minutes to 1 hour 55 minutes, and to prove a solution is the optimal, using the branch 

and cut algorithm, it takes close to 5 days.  
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 Figure 2.4. Demand distribution at an operational cost of $100 

Figure 2.4, illustrates the demand distribution per station in time periods from 1 to 

96. It can be observed that the total demand distribution for Fort Worth is the highest, 

Dallas is the second highest, followed by Garland, and Denton, respectively. The total 

demand in a day at each station are 4.61, 3.89, 1.97 and 1.12 Mwh, respectively Moreover, 

the demand is lowest from time period 12 to 20 i.e. from 3 am to 5 am and then it gradually 

increases and has high demand between time periods 52 to 68 i.e. from 1 pm to 5 pm. 

Afterward, the demand decreases. 
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Figure 2.5. Major stations: different cost vs. number of slots 

Figure 2.5 indicates that at a cost of $0, all 4 main stations have higher number of 

slots open. Fort Worth and Dallas have a high slot count of 6 and 5, respectively, whereas 

Denton and Garland close by with a slot count of 4 and 3, respectively. Fort Worth and 

Dallas hold a high slot count even though the cost increases, whereas the number of slots 

at Garland and Denton start decreasing. This plot is a clear depiction of a practical scenario, 

where at a certain point opening slots with higher costs is not profitable, given the demand. 

In other words, at a cost $200 per day, the profits generated from Garland and Denton are 

less than their costs, which leads to their closure.       
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4.2. DACE Based System Design Optimization Experiments 

Table 2.2. Comparisons of the DACE MILP objective solutions 

Software 

for MARS 

model 

Interaction 

allowed or 

not 

Testing 

R2 
𝑍𝑀𝐼𝐿𝑃(𝑥∗, 𝑁𝑠∗)  

 Cplex CP 

/Couenne (% Diff) 

MINOS             

(% Diff)  

ARESLAB Yes 97.0 2606.8  (3.1) 2566.8 (4.6) 

ARESLAB No 97.7 2670.0  (0.7) 2574.6 (4.3) 

SPM Yes 97.8 2614.0  (2.8) 2555.8 (5.0) 

SPM No 98.7 2678.5  (0.4) 2629.5 (2.2) 

 

The baseline cost of $100 per station per day is considered in all our DACE based 

system design optimization experiments. MARS models for revenue are created using 2 

software packages, MATLAB 8.6 –ARESLAB toolbox developed by [31] and Salford 

Predictive Modeler 8.0 (SPM) from [32], one with basis interaction terms and the other 

with no interaction, creating 4 different models.  Once the MARS models are developed, 

they are optimized using 3 different software programs (CPLEX CP Optimizer [30], AMPL 

11.2 developed by [33] using Couenne solver developed by [34]  and MINOS solver 

developed by [35]. The systems of charging stations obtained using CPLEX CP and 

Couenne are identical, so 8 unique systems were generated using the DACE approach, as 

shown in Table 2.2. The testing coefficient of determination R-squared for each MARS 

model is computed as shown in the Table. Moreover, the percentage difference between 

the objective solutions 𝑍𝑀𝐼𝐿𝑃(𝑥∗, 𝑁𝑠∗)   and 𝑍𝑀𝐼𝐿𝑃 is also presented in parenthesis as % Diff 

in Table 2.2. Based on initial analysis, the DACE approach using the MARS metamodel 

without interaction from the SPM software performs best, with a percentage difference of 

𝑍𝑀𝐼𝐿𝑃(𝑥∗, 𝑁𝑠∗)  of 0.4%, and has the highest testing R-squared. 
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In this study, systems of charging stations from DACE approaches with 

metamodels without interaction terms are more accurate than those with interaction terms, 

suggesting that there is not much of a demand shift  because of the stations are far apart 

from each other. In other words, demand distribution (e.g., equations 4 and 5) and 

allocating wind across the different stations (e.g., equations 25)  has little influence on the 

solution in this case study. 

Table 2.3. Number of Slots (MILP vs. DACE) 

  Number of slots per opened Stations (cost $100) 

  Fort Worth Dallas Garland Denton Total 

MILP 5 4 3 1 13 

Cplex CP/Couenne 4 5 2 2 13 

MINOS 3 5 2 2 12 

 

The system design build (𝑥∗, 𝑁𝑠∗) obtained from our best model is further analyzed 

and compared to that from solving the MILP in using branch-and-cut in Table 2.3. Observe 

that all the system design builds have the same open stations, which are at locations Fort 

Worth, Dallas, Garland and Denton. Also, the total number of slots opened using MILP, 

CPLEX CP, AMPL – Couenne are 13, whereas AMPL – MINOS are 12.  
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4.3. Separable Case 

 

Figure 2.6. Separable Case 

The DACE approach allow us to analyze the marginal profits as a function of the 

number of slots opened at each station. Plots of the marginal profits to open slots are given 

in Figure 2.6. The significant basis functions are associated with Fort Worth, Dallas, 

Garland, and Denton. All of the other basis functions associated with other stations have 

zero coefficients in the estimated revenue function, meaning that MARS determined that 

the marginal profits of these stations are insignificant, and consequently, the DACE 

optimization step kept them closed. It can be observed that for the Fort Worth station, 4 

slots is the optimal solution, whereas for the Dallas station, 5 slots is the optimal solution. 

Similarly, for Garland and Denton, 2 slots per station is the optimal solution, which 
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resembles the results (𝑥∗, 𝑁𝑠∗)  obtained from CPLEX CP and AMPL – Couenne. 

Moreover, the profit obtained by Fort Worth with the optimal number of slots is $904.55. 

Similarly, for Dallas, Garland and Denton, it is $1543.95, $35.67 and $194.71 respectively 

adding up to be $2678.88, identical to the 𝑍𝑀𝐼𝐿𝑃(𝑥∗, 𝑁𝑠∗)  obtained from MARS model  

without interaction using SPM software, as illustrated in Table 2.3. 

4.4. CPU Time Comparisons 

Table 2.4. CPU Time Comparisons (MILP vs. DACE) 

 

To justify the use of the DACE based system design optimization approach, the 

process run time is calculated for the 2 different models (interaction and non-interaction) 

as shown in Table 2.4. Once a binned LHS design is generated using MATLAB, the 

revenue values are collected using CPLEX. Although it took 54 minutes for this process, 

it is only required to be completed once for all further processes as it is independent of the 

cost scenarios. After the revenues are collected, it is used to fit the MARS model using the 

SPM software. Finally, the MARS model is optimized on CPLEX CP and the results are 

collected. The best process time is 54 minutes and 40 seconds, for the non-interaction 

model. Given that this model is the revenue model (cost not considered), it is flexible to 
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handle different cost scenarios, without having to collect responses. This, in comparison to 

the original computation time of 4 days and 23 hours, is more practical. 

5. Conclusion 

A mixed-integer linear programming (MILP) model is formulated to optimize the 

locations of the EV Charging stations, the number of slots to be opened at each station and 

the overall profit. Based on the results obtained from solving the MILP, Fort Worth has the 

most slots to be opened, followed by Dallas, Garland, and Denton. The drawback of this 

approach, despite giving an optimal solution, is its extremely high computational time (as 

much as 5 days). Hence, we utilized a two-stage framework and a DACE based system 

design optimization approach to solve the system of EV charging stations. In this study, 

systems of charging stations from DACE approaches with metamodels without interaction 

terms are better than those with interaction terms, suggesting that there is not much of a 

demand shift  because of the stations being far apart from each other. Moreover, the DACE 

approach allow us to analyze the marginal profits as a function of the number of slots 

opened at each station. The significant basis functions are associated with Fort Worth, 

Dallas, Garland, and Denton. Instead of 4 days and 23 hours using branch and cut to solve 

the MILP, the DACE approach requires roughly 1 hour to find a solution within 1% of 

optimal. 

For future work, solving the problem with stochastic input variables for wind and 

solar power generation and market price will be investigated. 
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Chapter 3. A Two-Stage Design and Analysis of Computer Experiments Approach for 

Optimizing a System of Electric Vehicle Charging Stations 

Abstract 

A two-stage framework is developed to address the design of a system of electric 

vehicle (EV) charging stations. The first stage specifies the design of the system that 

maximizes expected profit. Profit incorporates costs for building stations and revenue 

evaluated by solving a system control problem in the second stage.  The control problem 

is formulated as an infinite horizon, continuous-state stochastic dynamic programming 

problem. To reduce computational demands, a numerical solution is obtained using 

approximate dynamic programming (ADP) to approximate the optimal value function. To 

obtain a system design solution using our two-stage framework, we propose an approach 

based on design and analysis of computer experiments (DACE).  DACE is employed in 

two ways.  First, for the control problem, a DACE-based ADP method for continuous-state 

spaces is used.  Second, we introduce a new DACE approach specifically for our two-stage 

EV charging stations system design problem.  This second version of DACE is the focus 

of this paper.  The “design” part of the DACE approach uses experimental design to 

organize a set of feasible first-stage system designs.  For each of these system designs, the 

second-stage control problem is executed, and the corresponding expected revenue is 

obtained.  The “analysis” part of the DACE approach uses the expected revenue data to 

build a metamodel that approximates the expected revenue as a function of the first-stage 

system design.  Finally, this expected revenue approximation is employed in the profit 

objective of the first stage to enable a more computationally-efficient method to optimize 
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the system design. To our knowledge, this is the only two-stage stochastic problem which 

uses infinite horizon dynamic programming approach to optimize the second stage 

dynamic control problem and the first stage system design problem. 

1. Introduction 

Alternative energy sources are critically important for curbing greenhouse gas 

emissions and creating a more independent energy economy. According to the website of 

the Energy Information Administration (2016), the transportation sector alone causes up to 

36.41% of all energy-related emissions and is the largest producer of carbon dioxide 

emission in the U.S. This presents an urgent need for the transportation sector in the U.S. 

to act on emissions abatement. Furthermore, energy power in the transportation sector is 

derived almost exclusively from fossil fuels, making the U.S. the world’s largest consumer 

of crude oil and petroleum products. Each day, Americans consume approximately 20 

million barrels of petroleum, and import approximately 7 million barrels as per the website 

of the Oak Ridge National Laboratory (2016). Not only is available oil harder and more 

dangerous to attain, but the volatility of oil prices is threatening both energy security and 

the economy. If this trend of heavy reliance on petroleum continues as projected, the gap 

between oil consumption and production is going to become even wider. Eventually, the 

cost of oil dependence to both national security and the economy will be too high to afford. 

The average price of electricity is relatively stable compared to oil prices, and the electric 

power grid is fully constructed throughout the country, making electricity more attractive 

than other alternative substitutions for petroleum, such as biomass and hydrogen.   
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Environmental pollution is one of the worst effects of our accelerated development 

rate. An integral part of environment pollution is air pollution, which is caused primarily 

by usage of traditional sources of energy such as coal, natural gas, and oil. Finding reliable, 

renewable, and non-polluting substitutes to these is necessary for sustainable preservation 

of natural environment. To combat such high levels of air pollutants, we need a major 

transformation. With higher number of EVs in market, there will be a substantial reduction 

in CO2 emissions which would help in sustainable development. The idea of breezing past 

gas stations without leaving a carbon footprint behind appeals to electric car enthusiasts, 

but the fear of running out of battery power has been a major barrier in getting people to 

buy EVs.  

Just like traditional vehicles, EVs will need “re-fueling.” In our research, we study 

the design of system of EV charging stations to support the growing population of EVs.  

An appropriate design must hedge against the volatility of the market price of electricity. 

We propose a method for assessing system controllability that reduces computational costs 

and allows more extensive design exploration. Moreover, our method allows us to consider 

uncertainty in both systems input and in the demand for the output. When dealing with 

high-dimensional infinite horizon stochastic dynamic programming data set with 

continuous state space, the limit called 'curse of dimensionality' obstructs the solution as 

the size of the state space grows exponentially, making it computationally intractable to 

solve using traditional methods.1 To resolve this limit, Chen et al. (2017a) proposed design 

                                                            
1 Kulvanitchaiyanunt, Asama. "A Design And Analysis Of Computer Experiments-based Approach To 

Approximate Infinite Horizon Dynamic Programming With Continuous State Spaces." (2014). 
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and analysis of computer experiments (DACE) based infinite horizon approximate 

dynamic programming (ADP) algorithm to sample the state space with design of 

experiment and to approximate the value function via statistical modeling methods. The 

control problem is formulated as an infinite horizon, continuous-state stochastic dynamic 

programming problem. ADP approach is based on DACE approach, to optimize this high-

dimensional, large-scale, EV charging stations system design problem and control problem 

over continuous spaces.  

This paper focuses on the DACE approach for the two-stage stochastic optimization 

where a binned Latin hypercube (LH) experimental design is derived, and a multivariate 

adaptive regression splines (MARS) model is applied for analyzing computer experiment 

data. The first stage focuses on the system design problem, while the second stage focuses 

on the system control problem. Requirements and parameters for cost and performance are 

handled by the first stage. For a specific system design, simulated information on system 

behavior and uncertainties is used by the second-stage control optimization to provide a 

performance objective on controllability back to the first stage.  The expected revenueis 

returned from the second stage as part of the objective for the first-stage system design 

master problem, which is then solved using the computer program. Uncertainties due to 

the variation in wind power, solar power, the market price of electricity, and customer 

demand will be incorporated by our EV system simulation, and since these uncertainties 

are not well understood, they will be modeled flexibly to enable exploration of various 

levels of uncertainty. Historical data will be employed fully possible.  
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1.1 Literature review  

In the existing papers, different approaches and algorithms had been proposed and 

implemented such as the design of optimal EV charging profiles, optimization of the 

locations for EV charging stations, DC fast charging system, battery swapping 

methodology, economic operation of a microgrid-like EV parking deck to ease drivers’ 

anxiety about the driving range with the increase the number of EVs on road.  

1.1.1 General approaches 

Ashtari et al. (2012) recorded vehicle usage and used it to predict PEV charging 

profiles and electrical range reliability. The effect of charging scenario on electrical range 

reliability is more significant where battery sizes are smaller. Steen et al. (2012) proposed 

an approach to control PEVs charging based on the charging behavior estimated from the 

demographical statistical data, which leads to a well-developed public charging 

infrastructure that could reduce the stress on the residential distribution systems since part 

of the charging can be done in commercial areas. Xie et al. (2016) formulated the fair 

energy scheduling problem as an infinite-horizon MDP and employs ADP methodology to 

maximize long-term fairness and flatten the peak load in the distribution network. Zhu et 

al. (2012) provided a dynamic game theoretic optimization framework based on stochastic 

mean field game theory, the optimization will provide an optimal charging strategy for the 

EVs to proactively control their charging speed in order to minimize the cost of charging. 

To improve the penetration of sustainable energy in the charging systems, Badawy and 

Sozer (2017), Khodayar et al. (2012), Marano and Rizzoni (2008), and Guo et al. (2014) 

had employed wind or solar generation as a type of energy resources to supply electricity 



44 
 

to the charging stations. Yao et al. (2017), considering demand response, formulated a 

binary optimization problem to simultaneously maximize the number of EVs for charging 

and minimize the monetary expenses. Sarikprueck et al. (2017) proposed a novel regional 

EV DC fast charging system equipped with renewable resources, such as wind and solar 

energy, to serve EV demand. However, the decision-making procedure is deterministic, 

and the system does not consider the future state but only the current state while making 

the decisions. 

1.1.2 Approaches to optimize location of EV charging stations 

The work in Tang et al. (2013), Lin and Hua (2015) and Arslan and Karasan (2016) 

proposed different approaches for finding optimal locations and sizes for charging stations. 

Chawal et al. (2018) proposed a deterministic mixed integer linear programming (MILP) 

model to obtain the optimal number of stations to be opened and the corresponding number 

of slots, along with profits for each station and overall profits based on the user-specified 

cost of opening a station. A robust integer linear optimization and a stochastic 

programming framework was proposed to solve the strategic optimization problem of 

determining optimal locations for charging stations of (ad-hoc) electric car-sharing systems, 

and for considering the uncertainty factors associated with vehicle-to-grid and wind power 

scenarios, respectively in Brandstatter et al. (2017) and Battistelli et al. (2012). 

Kulvanitchaiyanunt et al. (2015) utilized the system as mentioned in Sarikprueck et al. 

(2017), to make a decision for each stage through linear programming (LP) without 

considering the uncertainty. 



45 
 

Chen et al. (1999) proposed a finite horizon approach to approximate the value 

function, aiming to overcome the “curse of dimensionality”. Orthogonal array (OA) was 

used to sample the state space and MARS to approximate the value function. Later, Chen 

et al. (2006) summarized this approach as DACE based ADP. ADP is a modeling 

framework that offers several strategies for tackling the curses of dimensionality in large, 

multi-period, stochastic optimization problems (Powell 2011). Chen et al. (2017) applied 

this DACE-based ADP approach to solve a control of a system of EV charging stations by 

solving large-scale, high-dimensional, dynamic control system (expected revenue) so that 

the decision-making procedure considers the uncertainty. As mentioned in the abstract, 

DACE is employed in two ways.  First, for the control problem, a DACE-based ADP 

method for continuous-state spaces is used.  Second, we introduce a new DACE approach 

specifically for our two-stage EV charging stations system design problem.  The first 

version of DACE is adopted from Chen et al. (2017). In our paper, we employed this 

expected revenue in the profit objective of the first stage to optimize the system design.  

1.1.3 Multi-stage stochastic programming framework 

Several papers utilized a two-stage and a multi-stage stochastic programming 

framework to solve a finite-horizon stochastic programming problem. For instance, Pilla 

et al. (2008) utilized a two-stage stochastic programming framework to assign crew-

compatible aircraft in the first stage, and to enhance the demand capturing potential of 

swapping in the second stage. He implemented design and analysis of computer 

experiments to reduce the computation involved in solving the problem. Pan et al. (2010) 

developed a two-stage stochastic program to optimally locate the stations prior to the 
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realization of battery demands, loads, and generation capacity of renewable power sources. 

The overall objective function combines the first-stage cost and the expected cost of 

recourse actions over all scenarios. In the first stage, the location and size of exchange 

stations are decided. The expectation term in the objective represents the second-stage 

recourse cost of satisfying PHEV demands and meeting demands for power over a set of 

scenarios. Guo et al. (2016) addresses a two-stage framework for the economic operation 

of a microgrid-like electric vehicle (EV) parking deck. In this paper, the first stage provides 

the parking deck operators with a stochastic approach for dealing with the uncertainty of 

solar energy. The second stage introduces a model predictive control-based operation 

strategy of EV charging dealing with the uncertainty of parking behaviors within the real-

time operation. Lulli and Sen (2004) presented a branch-and-price method to solve special 

structured multistage stochastic integer programming problem. This method is then 

specialized to a batch-sizing problem under uncertainty. They consider a finite-horizon 

sequential decision process under uncertainty. 

1.2 Contribution 

The aforementioned papers proposed different approaches and implemented 

several algorithms such as the design of optimal EV charging profiles, optimizing the 

locations for EV charging stations, DC fast charging system, battery swapping 

methodology, economic operation of a microgrid-like EV parking deck. By contrast the 

primary goal of our research is to optimize the EV system problem which includes both 

the system design problem and the dynamic control problem.  
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Pilla et al. (2008), Pan et al. (2010), Guo et al. (2016) and Lulli & Sen (2004) 

utilized a two-stage and a multi-stage stochastic programming framework to solve a finite-

horizon stochastic programming problem whereas we develop a two-stage DACE 

framework to solve an infinite horizon stochastic dynamic problem.  

As compared to Chawal et al. (2018) and Kulvanitchaiyanunt et al. (2015), where 

MILP and LP are used respectively to solve the optimization problem, where demand, 

market price, wind generation and solar generation are deterministic. In this paper, we have 

introduced stochasticity in our model by varying those parameters and solve it using 

infinite horizon ADP.  

As compared to Chen et. al (2017), which considered only one randomly selected 

system design, we optimize the system design problem. Design of experiments is used to 

generate a binned LH design which is solved by DACE-based ADP approach to generate 

expected revenues. A MARS model is then fitted over the revenues obtained from the 

control problem and is solved by the computer program to deliver the best-known system 

design problem, making it more realistic and a robust model.  

Moreover, when the designs obtained from our DACE approach and MILP design 

from Chawal et al. (2018) are solved using DACE-based ADP approach (simulation), an 

improvement of approximately 8% is observed in the simulated profit obtained from ADP 

design compared to that of MILP design indicating that when uncertainty is considered, 

DACE-based ADP design provides the better solution. To our knowledge, currently there 

exists no tractable approaches that can globally optimize a general high dimensional 

infinite horizon stochastic dynamic problem. Hence, to evaluate the quality of our 
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methodology we employ the two-stage DACE framework to optimize the problem 

mentioned in Chawal et al. (2018). The results gained are near optimal with less than 1% 

loss in the solution generated by the obtained design (DACE MILP) as compared to the 

global optimal solution obtained using MILP method. These findings justify the 

effectiveness of the developed methodology and its widespread practical applications. 

2. Methodology 

In this section, we will describe about two–stage framework, infinite horizon SDP 

and their general formulation. 

2.1 Two-Stage Stochastic Design and Control Framework 

Our two-stage structure models the design problem as the first stage master problem 

and the dynamic control problem as the second stage sub problem.  In general, there are 

two types of decision variables, the first stage system design variables and the second stage 

dynamic control variables.  Like two-stage stochastic programming as mentioned by Birge 

and Louveaux (2011) and Sen and Sherali (2006), the first stage objective includes the 

second-stage cost objective.  In classical stochastic programming, the second stage 

considers many future scenarios and solves the second-stage optimization for each of these 

scenarios. In our two-stage formulation, the second stage is a dynamic control problem that 

explores the future states of the system under uncertainty. For a specific system design, 

simulated information on system behavior and uncertainties is used by the second-stage 

control optimization to provide a performance objective on controllability back to the first 

stage.  In theory, the expected revenueis returned from the second stage as part of the 

objective for the first-stage system design master problem.   
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2.1.1 First Stage  

The first stage master problem is the system design function where the objective 

consists of costs on the design parameters and an expected cost Es [V (s, x)] from the second 

- stage optimal value function over possible initial states. 2 The calculation of the expected 

cost Es [V (s, x)] is illustrated in the section 3.2 below. As mentioned earlier, the system 

design problem variables consist of the locations of the charging stations and the number 

of slots at each station. The first stage master design problem can be formulated as: 

c(x) + Es [V (s, x)]                                                                  (1)                                                                                                                                                

s.t.   x ∈ ΓD                                                                                                                     (2) 

where; 

 x are the system design problem variables. 

 c(x) is the “cost” objective in each time period of the second stage control problem. 

 s is the initial state of the control problem. 

 ΓD is the constraint set for the system design variables (parameters). 

 V (s, x) is the optimal value function for the second stage dynamic control problem. 

2.1.2 Second Stage  

The main objective of this stage is to solve the dynamic control sub-problem using 

the DACE approach for the ADP as mentioned before. The second stage dynamic control 

infinite horizon sub - problem can be formulated mathematically as: 

𝑉(𝑠𝑡; 𝑥) = min 𝐸𝜀 [𝑔(𝑠𝑡 , 𝑢, 𝜀; 𝑥) + 𝛾𝑉(𝑠𝑡+1; 𝑥)]                                                (3) 

                                                            
2 Kulvanitchaiyanunt, Asama. "A Design And Analysis Of Computer Experiments-based Approach To 

Approximate Infinite Horizon Dynamic Programming With Continuous State Spaces." (2014). 
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s.t. 𝑢𝑡 ∈  Γ𝑐(𝑥),                                                                                           (4) 

𝑠𝑡+1 = ℎ(𝑠𝑡 , 𝑢, 𝜀; 𝑥)                                                                                            (5) 

The following notation is for the second stage dynamic control problem, given the 

set of system design variables x: 

 𝑠𝑡 is the state of the system at the beginning of time period t. 

 𝑢 is the second stage control vector. 

 𝜀 represents the uncertainty in system state dynamics. 

 𝑔(𝑠𝑡 , 𝑢, 𝜀; 𝑥) is the “cost” objective in each time period of the second stage 

control problem, given the system is in state 𝑠𝑡. 

 ℎ(𝑠𝑡 , 𝑢, 𝜀; 𝑥) is the state transition equation from time period t to t+1. 

 𝑉(𝑠𝑡; 𝑥) is the optimal value function for the second stage dynamic control 

problem. 

 𝛾 is the discount factor on future values. 

 Γ𝑐(𝑥) is the constraint set for the control variables. 

Finding an exact FVF is intractable for medium-sized problems. To reduce 

computational demands, numerical ADP, solution methods are needed to approximate the 

optimal value function. Following is a generalized approximate FVF (aFVF) (�̂�): 

�̂�(𝑠𝑡; 𝑥) = min 𝐸𝜀 [𝑔(𝑠𝑡 , 𝑢, 𝜀; 𝑥) + 𝛾�̂�(𝑠𝑡+1; 𝑥)]                                             (6) 

where �̂�(𝑠𝑡; 𝑥) is an approximation of the value function at time t. 
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3. Case Study: System of Electric Vehicle Charging Station 

 
Figure 3.1. EV Charging Station Layout 

 

The proposed EV charging station (Figure 3.1) is designed to get charged by 

wind/solar energy generation and electricity from the power grid. The wind/solar energy 

can provide energy to the grid.  The energy stored in the charge station is used to charge 

the EVs. The system can store excessive wind/solar energy for future demand by storing it 

in the battery storage unit. The station can use the surplus stored energy to satisfy the 

demand, if the energy generated is not sufficient to satisfy the demand. Any excess energy 

from the storage unit will be sold back to the power grid for added profit. 
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Figure 3.2. The locations of the station  

Figure 3.2 above shows the distribution of the 11 potential station within the 

Dallas/Fort Worth area in Texas. The 140 hotspots (cities) we are focusing on are spread 

around these stations. In the following section, we discuss in detail our problem 

formulation as well as a step by step approach to solve our problem. We base our ADP 

approach on DACE, to solve this two–stage high-dimensional, large-scale, infinite-

horizon, EV charging station system design problem and control problem over continuous 

spaces. 

3.1 DACE Approach 

DACE as proposed in Sacks et al. (1989) is used as a statistical basis for designing 

experiments for efficient prediction. DACE uses design of experiments (DoE) to sample 

the state space and statistical modeling to efficiently represent performance measures from 

a computer model. In our case study, we generate binned LH design to obtain a set of 

feasible first-stage system designs. For each of these design build, a corresponding revenue 

is obtained by solving the second stage control problem. We then use this expected revenue 
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data to build a MARS model that approximates the expected revenue as a function of the 

first-stage system design.  Finally, this expected revenue approximation is employed in the 

profit objective of the first stage to enable a more computationally-efficient method to 

optimize the system design. Our EV system design problem has taken into consideration 

uncertainties due the variation in wind power, solar power, the market price of electricity, 

and customer demand.  

The following notation is used: 

 N is the total set of design points.  

 J is set of potential stations locations indexed by j. 

 cj is the cost of opening station j. 

 Nsj is the number of slots at station j. 

 Ncj   is the cost of opening slots at station j. 

 xj ∈ {0,1} is a binary variable, if station j is operational or not. 

 (�̅�, 𝑁𝑠̅̅̅̅ ) represents system station design data points. 

 𝑌(𝑁𝑠̅̅̅̅ )  is the objective function of control problem (revenues). 

 𝑍(�̅�, 𝑁𝑠̅̅̅̅  ) is objective function of master problem (profits). 

 
kBF  is k-th basis function. 

 
0  is Y-intercept for MARS function. 

 
k  represents least square estimators for k-th basis function. 
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The procedure for the DACE approach is as follows: 

1. Create an experimental design (e.g., binned LH design) to sample points in the system 

design space.  Each point corresponds to a set of parameters for specific system build.  

2. For each system design point, solve the control problem (Chen et al. 2017). These 

solution runs correspond to the computer experiment.  Save the approximate future 

value function from each run. 

3. For each approximate future value function, calculate the expected value over the initial 

state space using a numerical integration approach that samples initial states and then 

averages these responses to obtain the expected revenues. These expected revenues 

correspond to the responses for each experimental design point specifying a system 

design. 

4. Fit a statistical model (e.g., MARS) to the design obtained by the experimental design 

(e.g., binned LH) in step 1 and the corresponding expected revenues generated by step 

3.  

5. Use the obtained statistical model from step 4 in the first stage to identify the system 

design that maximizes profit, where profit is calculated by subtracting the cost 

component from expected revenue. 

6. Calculate the true expected profit using the optimized system designs from step 5, 

where the expected revenue component is determined by simulating the ADP policy. 
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3.1.1 Binned LH Design  

To be realistic, we considered how many stations would need to be open in order 

to meet the estimated demand.  A range of about 4 to 7 stations was seemingly adequate.  

While we wanted to explore a range from 2-10 stations open, we desired an experimental 

design with more instances in the 4-7 range, or about half the stations closed. 

As an initial experimental design, we used the function lhs design (number of design points 

were taken to be 100 and 75 for training and testing data points respectively, and the 

number of predictor variables were taken to be 11) in MATLAB, which may be 

downloaded from https://www.mathworks.com/.  A partial output from the MATLAB 

function is shown in Table 3.1.  We can then convert the fractional values in Table 3.1 to 

values between 0 – 10 that represent the number of slots; however, a direct conversion 

would yield instances that have all or most stations open, we instead created 19 bins that 

are equally-spaced over the [0,1] range. The first 9 bins, i.e., almost half of the bins, are 

assigned to zero slots, and the remaining 10 bins are equally distributed from 1 to 10 slots 

as specified in the Table 3.2 below. In other words, given the station is open, the number 

of slots that an open station will have, is a discrete uniform distribution with values between 

1 and 10.  
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Table 3.1. 20 points using MATLAB lhsdesign 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 

0.738 0.282 0.451 0.165 0.448 0.310 0.783 0.642 0.235 0.507 0.497 

0.839 0.024 0.657 0.703 0.320 0.616 0.528 0.793 0.757 0.520 0.610 

0.243 0.092 0.186 0.462 0.103 0.286 0.421 0.050 0.886 0.678 0.002 

0.515 0.757 0.532 0.629 0.106 0.824 0.074 0.854 0.853 0.908 0.583 

0.456 0.670 0.627 0.960 0.862 0.818 0.237 0.420 0.627 0.936 0.757 

0.329 0.736 0.029 0.317 0.541 0.988 0.585 0.427 0.717 0.884 0.665 

0.832 0.575 0.474 0.072 0.964 0.466 0.442 0.344 0.929 0.583 0.517 

0.986 0.778 0.895 0.789 0.994 0.489 0.905 0.574 0.456 0.900 0.828 

0.592 0.043 0.143 0.377 0.411 0.611 0.057 0.312 0.299 0.116 0.970 

0.182 0.375 0.443 0.558 0.364 0.864 0.484 0.395 0.690 0.338 0.300 

0.119 0.219 0.669 0.191 0.221 0.041 0.572 0.362 0.304 0.029 0.786 

0.568 0.442 0.323 0.078 0.459 0.195 0.148 0.677 0.682 0.505 0.261 

0.305 0.842 0.959 0.142 0.265 0.974 0.582 0.714 0.058 0.720 0.027 

0.254 0.259 0.695 0.842 0.481 0.980 0.874 0.994 0.994 0.185 0.096 

0.544 0.557 0.225 0.305 0.439 0.477 0.215 0.955 0.197 0.424 0.318 

0.179 0.020 0.562 0.404 0.261 0.840 0.168 0.367 0.659 0.085 0.293 

0.661 0.150 0.885 0.622 0.095 0.956 0.070 0.162 0.374 0.298 0.034 

0.058 0.805 0.565 0.825 0.422 0.700 0.715 0.943 0.745 0.800 0.171 

0.032 0.178 0.772 0.737 0.518 0.396 0.017 0.296 0.023 0.493 0.440 

0.269 0.792 0.900 0.381 0.333 0.439 0.295 0.565 0.096 0.785 0.745 

 

Table 3.2. Equally Spaced 19 bins 

0.05263158 0 

0.10526316 0 

0.15789474 0 

0.21052632 0 

0.26315789 0 

0.31578947 0 

0.36842105 0 

0.42105263 0 

0.47368421 0 

0.52631579 1 

0.57894737 2 

0.63157895 3 

0.68421053 4 

0.73684211 5 

0.78947368 6 

0.84210526 7 

0.89473684 8 

0.94736842 9 

1 10 
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Figure 3.3. Hypothetical distribution  

Hypothetically, we can state that the number of stations opened is a binomial 

random variable where n = 11 and p = .47368421 [B(11,.47)] as shown in Figure 3.3. The 

step function in Figure 3.4 illustrates how the bins are overlaid on the fractional values 

from Table 3.1.  We refer to this experimental design as a binned LH design.  Using this 

approach, we generated 100 training data points and 75 testing data points over the first-

stage decision space, consisting of the locations of the charging stations and the number of 

slots at each charging station.  We denote the pairs of location and number of slots from 

each experimental design point by ( (𝑥1, 𝑁𝑠1 ), ….. , (𝑥𝑁, 𝑁𝑠𝑁 )  ), where N (175) 

represents the total number of sample design points.    The entire training and testing binned 

LH designs are included in the Appendix A.  As observed in Figure 3.5, we can clearly 

observe that our binned LH design (observed distribution) closely resembles the desired 

hypothetical distribution, thus matching our requirement. About 80% of our instances have 

between 4-7 stations open. 
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Figure 3.4. Step function  

Table 3.3. 20 points from the Binned LH Design (Partial) 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 

6 0 0 0 0 0 6 4 0 1 1 

7 0 4 5 0 3 2 7 6 1 3 

0 0 0 0 0 0 0 0 8 4 0 

1 6 2 3 0 7 0 8 8 9 3 

0 4 3 10 8 7 0 0 3 9 6 

0 5 0 0 2 10 3 0 5 8 4 

7 2 1 0 10 0 0 0 9 3 1 

10 6 9 6 10 1 9 2 0 9 7 

3 0 0 0 0 3 0 0 0 0 10 

0 0 0 2 0 8 1 0 5 0 0 

0 0 4 0 0 0 2 0 0 0 6 

2 0 0 0 0 0 0 4 4 1 0 

0 7 10 0 0 10 3 5 0 5 0 

0 0 5 7 1 10 8 10 10 0 0 

2 2 0 0 0 1 0 10 0 0 0 

0 0 2 0 0 7 0 0 4 0 0 

4 0 8 3 0 10 0 0 0 0 0 

0 7 2 7 0 5 5 9 6 7 0 

0 0 6 6 1 0 0 0 0 1 0 

0 7 9 0 0 0 0 2 0 6 6 
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Figure 3.5. Comparison between observed distribution and hypothetical distribution  

3.1.2 Second-stage control problem  

For each system design point, we solved the control problem using DACE-based 

ADP approach as mentioned in Chen et al. (2017). These solution runs correspond to the 

computer experiment.  Save the approximate future value function from each run. 

For each approximate future value function, calculate the expected value over the initial 

state space using a numerical integration approach that samples initial states and then 

averages these responses to obtain the expected revenues. These expected revenues 

correspond to the responses for each experimental design point specifying a system design. 

In this case study, we sampled 117 initial states using Sobol sequence and then averaged 

117 simulated revenues to obtain the expected revenue. The obtained 

revenues  (𝑌(𝑥1,𝑁𝑠1 ),…., 𝑌(𝑥𝑁,𝑁𝑠𝑁  )) is the solution to our second-stage control problem, 

and represent Es[V(s; x)] component of the equation(1). This will be referred to as 𝑌𝐷𝐴. 
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For our system design, simulated information on system behavior and uncertainties 

is used by the simulation to provide a performance objective on controllability to return 

back to the first stage. The simulated ADP policy takes into consideration uncertainties due 

the variation in wind power, solar power, the market price of electricity, and customer 

demand.  As shown in Figure 3.6, each row is fed as an input to the second-stage control 

problem.  The DACE-based ADP solution policy (Chen et al. 2017) for the control problem 

is then simulated, as described above, to obtain the expected revenues.  In the DACE 

perspective for the two-stage framework, the “computer model” is the combination of the 

DACE-based ADP solution approach followed by the simulation of the ADP policy.  The 

expected revenues are the response values corresponding to the binned LH experimental 

design points over the system design space.  The next section uses these data to fit a 

metamodel for the DACE approach. 
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Figure 3.6. Computing revenues solving control problem  

3.1.3 MARS model 

Because curvature is apparent in the scatter plots, we employed the flexible MARS 

modeling method (Friedman 1991, Tsai and Chen 2005) to identify piecewise-linear basis 

functions. MARS is fitted to the expected revenue data from the previous section. The fitted 

model predicts the revenue as:  

 �̂�𝐷𝐴 )Ns(
1

0 



K

k

kk BF                                                                        (7) 

The MARS function is created using Salford Predictive Modeler 8.0 (SPM) downloaded 

from https://www.salford-systems.com/products/mars. The obtained MARS model is as 

follows: 

Revenue 

Control Problem 
Solve 
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�̂�𝐷𝐴 = 1766.01 - 96.3572 * BF3 + 78.3721 * BF4 - 69.8796 * BF5- 91.8993 * BF8 + 753.933 * BF9 

- 61.2331 * BF10+ 77.2286 * BF11 + 69.5352 * BF12 + 61.6513 * BF14                             (8) 

s.t 

BF9 = max( 0, 1 – Ns2);           

BF5 = max( 0, 5 – Ns3);                 

BF10 = max( 0, 5 - Ns5);            

BF14 = max(0, 1 - Ns6);                                   

BF3 = max( 0, 4 – Ns7);                                 

BF12 = max( 0, 1 - Ns8);                                    

BF8 = max( 0, 2 - Ns9);                                      

BF11 = max( 0, 1 - Ns10);                                       

BF4 = max( 0, 1 – Ns11);               

     

As shown in the equations above, the MARS forward stepwise algorithm selected 

14 basis functions while the MARS backward procedure pruned 5 basis functions 

indicating 9 basis functions should be the best size of the fitted model. In this study, we 

also observed that the MARS model without interactions performed better on the test data 

set than the one with interactions.  We surmise this to be reasonable because the stations 

are fairly far from each other, leading to little shifting of demand. Further, the power trading 

component in the control problem dominates revenue generation compared to the 

allocation of wind power across the different stations. For our best MARS model shown 

above, the testing R2 is 94.4%. 

3.1.4 First stage system design master problem  

As mentioned earlier, the expected revenue is returned from the second stage as 

part of the objective for the first-stage system design master problem. Instead of directly 

solving the second-stage control problem within the iterations of the first-stage 

optimization, the MARS model in equation (8) is used to represent the expected revenue 

from the second stage.  The first stage is optimized to identify the system design that 

maximizes profit, where profit is calculated by subtracting by subtracting the cost 
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component from the MARS model to obtain an estimate for the expected profit (�̂�𝐷𝐴) and 

to obtain best system design points (𝑥𝐷𝐴
∗ , 𝑁𝑠𝐷𝐴

∗ ), as shown in the following equation: 

 𝑥𝐷𝐴
∗ , 𝑁𝑠𝐷𝐴

∗  ∈ 𝑎𝑟𝑔 𝑚𝑎𝑥 �̂�𝐷𝐴(𝑁𝑠) − 𝑐𝑥 − 𝑁𝑐𝑁𝑠                    (9) 

𝑠. 𝑡.  (𝑥, 𝑁𝑠, 𝐵, 𝑔, 𝑁𝑑)  ∈  Γ𝐷                (10) 

Here, Γ𝐷 represents the set of constraints for the system design variables. 

The optimization was implemented in Cplex Cp, using IBM ILOG CPLEX 12.6.3 

(downloaded from https://www.ibm.com/us-en/marketplace/ibm-ilog-cplex). The 

obtained system design variables are then solved using step 2 and step 3 our DACE 

approach to generate the true revenue (𝑌𝐷𝐴(𝑥𝐷𝐴
∗ , 𝑁𝑠𝐷𝐴

∗ )) for the given system design. Once 

we have the true revenue, we calculate the true profit by subtracting the cost component, 

as shown in the following equation: 

𝑍𝐷𝐴(𝑥𝐷𝐴
∗ , 𝑁𝑠𝐷𝐴

∗ ) = 𝑌𝐷𝐴(𝑁𝑠𝐷𝐴
∗ ) − 𝑐𝑥𝐷𝐴

∗ − 𝑁𝑐𝑁𝑠𝐷𝐴
∗           (11) 

The obtained 𝑍𝐷𝐴 and (𝑥𝐷𝐴
∗ , 𝑁𝑠𝐷𝐴

∗ ) are the solutions to our first stage master problem.   

3.2 Case Study: System Design Experiments  

3.2.1 ADP Results 

From a computational perspective, all our simulations are executed on a 

workstation equipped with Intel Core i7 CPU @3.50 GHz *12 and 32 GB RAM. Table 3.4 

illustrates the best-known number of stations to be opened and the number of slots to be 

opened along with the individual profits generated from each station. Taking practicality 

into consideration, a station cost of $100 per day is considered as the base line. It took 4 

days and 3 hours of processing time to provide the best solution. The obtained best known 

solution is $2,132.14, and the stations to be opened are Forth Worth, Dallas, Garland and 

https://www.ibm.com/us-en/marketplace/ibm-ilog-cplex
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Denton, with their individual profits being $916.94, $1,013.91, $124.17 and $77.12, 

respectively. For each of these locations the numbers of slots being opened are 5, 5, 4 and 

2, respectively. 

Table 3.4. Numbers of Slot and profit generated per stations 

  
Fort Worth Dallas Garland Denton Total 

Slots 5 5 4 2 16 

Profit  $916.94   $1,013.91   $124.17   $77.12   $2,132.14  

 

Figure 3.7 illustrates the station wise profit distribution. The profit distribution between 

Dallas, Fort Worth, Garland and Denton are 47%, 43%, 6% and 4%, respectively, 

indicating Dallas to be the most profitable station, followed by Fort Worth, Garland, and 

Denton.  

 

Figure 3.7. Station-wise profit distribution 
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3.2.2 Separable Case  

 

Figure 3.8. Separable Case 

The DACE approach can give more insightful descriptions to the first stage that 

help us analyze the nature of individual stations.  Figure 3.8 uses separable curves to show 

the relationship between each station and number of slots to be opened per station, based 

on the MARS model. The significant basis functions are associated with Dallas, Fort Worth, 

Garland, and Denton. All the other basis functions associated with other stations are zero, 

meaning the remaining seven stations are closed. It can be observed in Figure 3.8 that the 
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optimal number of slots for Fort Worth, Dallas, Garland and Denton are 5, 5 ,4 and 2, 

respectively, identical to the slots obtained in Table 3.4.  

3.2.3 Comparison between DACE based ADP and MILP   

Table 3.5. Comparison between ADP Design and MILP Design 

  Fort Worth Dallas Garland Denton 𝑍𝐷𝐴 𝑍𝑀 

ADP Design 5 5 4 2 
$2132.14 $2669.06 

MILP Design 5 4 3 1 
$1973.35 $2689.38 

DACE MILP Design 4 5 2 2 $2014.41 $2678.53 

 

In Table 3.5, 𝑍𝐷𝐴  is the solution obtained using DACE based ADP approach, 

whereas 𝑍𝑀  is the solution obtained from MILP from Chawal et al. (2018). As mentioned 

earlier, the best known ADP system design (𝑥𝐷𝐴
∗ , 𝑁𝑠𝐷𝐴

∗ ) opens stations at Fort Worth, Dallas, 

Garland and Denton with their numbers of slots as 5, 5, 4 and 2, respectively.  By 

comparison, from Chawal et al. (2018), the best known MILP system design (𝑥𝑀
∗ , 𝑁𝑠𝑀

∗ ) 

also opens stations at Fort Worth, Dallas, Garland and Denton, but with slightly different 

numbers of slots, specifically, 5, 4, 3 and 1, respectively. When the ADP system design 

and MILP system design are both evaluated using the ADP approach to the second-stage 

control problem (Chen et al. 2017), the simulated expected profits obtained are $2132.14 

and $1973.35, respectively. Hence, the expected profit generated by ADP system design is 

estimated to exceed that generated by the MILP system design by $158.79. The difference 

in the expected profit can be attributed to the fact that ADP solves the problem taking 

stochasticity into consideration. Hence, we can see an improvement of 8.04% as shown 

below.  
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𝑍𝐷𝐴(𝑥𝐷𝐴
∗ ,𝑁𝑠𝐷𝐴

∗ )− 𝑍𝐷𝐴(𝑥𝑀
∗ ,𝑁𝑠𝑀

∗ )

𝑍𝐷𝐴(𝑥𝑀
∗ ,𝑁𝑠𝑀

∗ )
= 8.06%                                  

By contrast, when evaluating both using the MILP approach to the second-stage control 

problem (Chawal et al. 2018), the MILP system design generates an expected profit that 

greater than that of the ADP system design by $20.32, indicating that when uncertainty is 

not taken into account, the deterministic MILP system design provides the better solution.  

As a final comparison, we sought to assess the concept of a DACE approach by 

utilizing a DACE approach with the MILP version of the second-stage control problem 

from Chawal et al. (2018).  To our knowledge, there does not exist attractable approach to 

globally optimize a general high-dimensional, infinite-horizon stochastic dynamic 

programming problem. By evaluating the DACE approach in the deterministic 

environment of the MILP version, we can directly compare the performance of DACE to 

the globally optimized MILP solution.  If DACE performs similarly to the globally optimal 

solution in the deterministic environment, then we can be more assured that the DACE 

approach for the stochastic environment is yielding a quality solution.  

Our two-stage DACE framework yielded nearly optimal results with only 0.41% 

loss in profit generated by the obtained DACE MILP system design (𝑥𝐷𝑀
∗ , 𝑁𝑠𝐷𝑀

∗ ), as 

compared to the globally optimal profit ($2689.38) obtained using the MILP method as 

shown in the calculation below. This verifies the effectiveness of the developed 

methodology using DACE. 

𝑍𝑀(𝑥𝑀
∗ ,𝑁𝑠𝑀

∗ )− 𝑍𝑀(𝑥𝐷𝑀
∗ ,𝑁𝑠𝐷𝑀

∗ )

𝑍𝑀(𝑥𝑀
∗ ,𝑁𝑠𝑀

∗ )
= 0.41%       
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4. Conclusion  

We presented a two-stage stochastic optimization problem that seeks to optimize a 

system design problem in the first-stage, while solving an infinite-horizon stochastic 

dynamic programming problem in the second stage. We introduced the first 

computationally-tractable approach to solve such a problem.  Our approach utilized the 

DACE-based ADP work of Chen et al. (2017) to optimize the second-stage stochastic 

dynamic programming problem, and developed a DACE approach to incorporate the result 

of the second-stage into the first-stage system design problem. Computational results for 

the DFW Metroplex EV charging stations case study demonstrated the efficacy of the 

DACE approach, yielding 8% higher expected profit than an MILP-based solution 

evaluated in the stochastic environment, and yielding less than 1% loss in profit comparing 

a DACE approach to the globally optimal MILP solution in the deterministic environment.  

Moreover, the DACE approach using a MARS metamodel provides insight that uncovers 

the underlying nature of the first-stage design variables.  

For future work, alternatives to ADP to solve infinite horizon stochastic problem 

can be explored. Instead of MARS, other statistical models that best approximates the 

outputs as functions of the input variables of the system can be investigated. Alternative 

design of experiment methods as compared to LH can also be employed and tested.  

Acknowledgement 

This research is partially supported by the National Science Foundation Grant 

ECCS-1128871.  We gratefully acknowledge Amirhossein Khosrojerdi for the DFW EV 

demand profile. 



69 
 

Reference 

Arslan, O., & Karaşan, O. E. (2016). A Benders decomposition approach for the charging 

station location problem with plug-in hybrid electric vehicles. Transportation 

Research Part B: Methodological, 93, 670-695. 

Ashtari, A., Bibeau, E., Shahidinejad, S., Molinski, T. (2012). PEV charging profile 

prediction and analysis based on vehicle usage data. IEEE Transactions on Smart 

Grid, 3(1): 341-350. 

Badawy, M. O., & Sozer, Y. (2017). Power Flow Management of a Grid Tied PV-Battery 

System for Electric Vehicles Charging. IEEE Transactions on Industry 

Applications, 53(2), 1347-1357. 

Battistelli, C., Baringo, L., & Conejo, A. J. (2012). Optimal energy management of small 

electric energy systems including V2G facilities and renewable energy 

sources. Electric Power Systems Research, 92, 50-59. 

Bellman, R. (1957). E. 1957. dynamic programming. Princeton University Press. Bellman 

Dynamic programming1957. 

Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming. Springer 

Science & Business Media. 

Boaro, M., Fuselli, D., De Angelis, F., Liu, D., Wei, Q., Piazza, F. Adaptive Dynamic 

Programming Algorithm for Renewable Energy Scheduling and Battery 

Management. Cognitive Computation. 5(2): 264-277. 2013.  

Brandstätter, G., Kahr, M., & Leitner, M. (2017). Determining optimal locations for 

charging stations of electric car-sharing systems under stochastic demand. 



70 
 

Chawal, U., Rosenberger, J., Chen, V. C., Lee, W. J., Wijemanne, M., & Punugu, R. K. 

(2018). Optimizing a system of electric vehicle charging stations using mixed 

integer linear programming computer experiments. COSMOS 18-05, University of 

Texas at Arlington.  

Chen, V. C. P., Ruppert, D., Shoemaker, C. A. Applying experimental design and 

regression splines to high-dimensional continuous-state stochastic dynamic 

programming. Operations Research, 47(1): 38-53, 1999. 

Chen, V. C., Tsui, K. L., Barton, R. R., & Meckesheimer, M. (2006). A review on design, 

modeling and applications of computer experiments. IIE transactions, 38(4), 273-

291. 

Chen, Y., Liu, F., Kulvanitchaiyanunt, A., Chen, V. C. P., Rosenberger, J., Wang, S. 

(2017). Infinite Horizon Approximate Dynamic Programming Using Computer 

Experiments. COSMOS 17-02, University of Texas at Arlington. 

Energy Information Administration (2016). U.S. Energy-Related Carbon Dioxide 

Emissions. Retrieved December 05, 2017, 

https://www.eia.gov/environment/emissions/carbon/ 

Friedman, J. H. (1991). Multivariate adaptive regression splines. The annals of statistics, 

1-67. 

Guo, Y., Hu, J., & Su, W. (2014). Stochastic optimization for economic operation of 

plug-in electric vehicle charging stations at a municipal parking deck integrated 

with on-site renewable energy generation. In Transportation Electrification 

Conference and Expo (ITEC), 2014 IEEE (pp. 1-6). IEEE. 



71 
 

Guo, Y., Xiong, J., Xu, S., & Su, W. (2016). Two-stage economic operation of 

microgrid-like electric vehicle parking deck. IEEE Transactions on Smart 

Grid, 7(3), 1703-1712. 

Khodayar, M. E., Wu, L., & Shahidehpour, M. (2012). Hourly coordination of electric 

vehicle operation and volatile wind power generation in SCUC. IEEE 

Transactions on Smart Grid, 3(3), 1271-1279. 

Kulvanitchaiyanunt, A., Chen, V. C., Rosenberger, J., Sarikprueck, P., & Lee, W. J. 

(2015, October). A linear program for system level control of regional PHEV 

charging stations. In Industry Applications Society Annual Meeting, 2015 

IEEE (pp. 1-8). IEEE. 

Lin, W., & Hua, G. (2015). The flow capturing location model and algorithm of electric 

vehicle charging stations. In Logistics, Informatics and Service Sciences (LISS), 

2015 International Conference on (pp. 1-6). IEEE. 

Lulli, G., & Sen, S. (2004). A branch-and-price algorithm for multistage stochastic 

integer programming with application to stochastic batch-sizing 

problems. Management Science, 50(6), 786-796. 

Marano, V., & Rizzoni, G. (2008, September). Energy and economic evaluation of 

PHEVs and their interaction with renewable energy sources and the power grid. 

In Vehicular Electronics and Safety, 2008. ICVES 2008. IEEE International 

Conference on (pp. 84-89). IEEE. 

Oak Ridge National Laboratory (2016). Transportation Energy Data Book. 36th ed. 

Retrieved December 05, 2017, http://cta.ornl.gov/data/download36.shtml. 



72 
 

Pan, F., Bent, R., Berscheid, A., & Izraelevitz, D. (2010, October). Locating PHEV 

exchange stations in V2G. In Smart Grid Communications (SmartGridComm), 

2010 First IEEE International Conference on (pp. 173-178). IEEE. 

Pilla, V. L., Rosenberger, J. M., Chen, V. C., & Smith, B. (2008). A statistical computer 

experiments approach to airline fleet assignment. IIE transactions, 40(5), 524-

537. 

Powell, W. B. (2011). Approximating value functions. Approximate Dynamic 

Programming: Solving the Curses of Dimensionality, 225-269. 

Sacks, J., Welch, W. J., Mitchell, T. J., & Wynn, H. P. (1989). Design and analysis of 

computer experiments. Statistical science, 409-423. 

Sarikprueck, P., Lee, W. J., Kulvanitchaiyanunt, A., Chen, V., & Rosenberger, J. (2017). 

Bounds for Optimal Control of a Regional Plug-In Electric Vehicle Charging 

Station System. IEEE Transactions on Industry Applications. 

Sen, S., & Sherali, H. D. (2006). Decomposition with branch-and-cut approaches for two-

stage stochastic mixed-integer programming. Mathematical 

Programming, 106(2), 203-223. 

Steen, D., Carlson, O., Bertling, L., (2012). Assessment of electric vehicle charging 

scenarios based on demographical data. IEEE Transactions on Smart Grid, 3(3), 

pp.1457-1468. 

Tang, Z. C., Guo, C. L., Hou, P. X., Fan, Y. B., & Jia, D. M. (2013). Optimal Planning of 

Electric Vehicle Charging Stations Location Based on Hybrid Particle Swarm 



73 
 

Optimization. In Advanced Materials Research (Vol. 724, pp. 1355-1360). Trans 

Tech Publications. 

Tsai, J. C., & Chen, V. C. (2005). Flexible and robust implementations of multivariate 

adaptive regression splines within a wastewater treatment stochastic dynamic 

program. Quality and Reliability Engineering International 21(7), 689-699. 

Xie, S., Zhong, W., Xie, K., Yu, R., & Zhang, Y. (2016). Fair energy scheduling for 

vehicle-to-grid networks using adaptive dynamic programming. IEEE 

transactions on neural networks and learning systems, 27(8), 1697-1707. 

Yao, L., Lim, W. H., & Tsai, T. S. (2017). A real-time charging scheme for demand 

response in electric vehicle parking station. IEEE Transactions on Smart 

Grid, 8(1), 52-62. 

Zhu, Z., Lambotharan, S., Chin, W. H., Fan, Z. (2016) A mean field game theoretic 

approach to electric vehicles charging.  IEEE Access, 4: 3501-3510. 

 

 

 

 

 

 

 



74 
 

Chapter 4. General Conclusion 

In this dissertation, due to the reason that there has been a significant increase in 

the number of EVs, our primary focus is to optimize the system of Electric Vehicle 

charging station which includes the locations of the stations and the number of slots to be 

opened to maximize the profit based on the user-specified cost of opening a station since. 

There are mainly three components in this dissertation research. The first component 

mainly seeks to formulate a deterministic MILP model to optimize the system of EV 

charging stations. Based on the overall results obtained from the MILP approach in regard 

to the number of slots to be opened, Fort Worth followed by Dallas, Garland, and Denton 

and so on. The drawbacks of this approach, despite giving the optimal solution, is its 

extremely high computational time (on average 5 days) and it does not take uncertainty in 

to consideration. Hence, we utilized a two-stage framework and used DACE based system 

design optimization approach to solve the system of EV charging stations, which is the 

second component of this dissertation. Both of these components are presented in Chapter 

2 (first paper). Instead of 4 days and 23 hours using MILP, DACE based system design 

optimization approach took roughly 1 hour to get the near optimal solution with a loss of 

less than 1% accuracy indicating it is the most desirable approach, in terms of time saving 

and resource saving. Based on the overall result obtained from this approach in regard to 

the number of slots to be opened, Dallas has the more number of slots to be opened, 

followed by Fort Worth, Garland, and Denton and so on indicating there are equally 

optimal solutions obtained from different system design build. In all cases, the model 

without interaction is providing us the better solutions than the model with interaction. In 
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addition, it helps us to gain understanding about input and output relationship using 

separable curve, where individual station natures can be studied to show the relationship 

between each station and number of slots to be opened per station to generate the maximum 

profit. Moreover, it helps us to generate the controllability function/revenue function (cost 

not considered), hence is flexible to handle different cost scenarios. The third component 

of this dissertation, presented in chapter 3 (second paper), is to consider uncertainty in our 

model for which we apply DACE based infinite horizon ADP algorithm to solve a large-

scale, high-dimensional, infinite horizon, EV charging station control problem over a 

continuous state and decision space to optimize the system of the EV Charging stations. 

Based on the overall result in regard to the number of slots to be opened, Dallas has the 

more number of slots to be opened, followed by Fort Worth, Garland, and Denton and so 

on. Moreover, when the designs obtained from our DACE ADP design and MILP design 

are solved using ADP approach (simulation), we observed an improvement of 

approximately 8% in the simulated solution obtained from ADP design indicating that 

when uncertainty is considered, DACE ADP design provides the better solution. On 

employing the two-stage DACE framework to optimize the problem mentioned in DACE 

MILP, the results gained are near optimal with less than 1% loss in the solution verifying 

the effectiveness of the developed methodology and its widespread practical applications. 

As mentioned earlier, to the best of our knowledge, this is the only two-stage stochastic 

problem which uses infinite horizon dynamic programming approach to optimize the 

second stage dynamic control problem and the first stage system design problem. 
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For future work, alternatives to MILP to solve the deterministic EV problem can 

be investigated which can solve the problem quicker. Another design of experiment 

methods as compared to binned LH can also be employed and tested. Instead of MARS, 

other statistical models that best approximates the outputs as functions of the input 

variables of the system can be investigated. Lastly, substitute to ADP to solve infinite 

horizon stochastic problem can be explored. Moreover, this methodology can be utilized 

to work on the smart city application. 
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Appendix A                                                                                                                   

Binned Latin Hypercube Sampling Design3 

  

 

 

 

 

 

 

 

 

 

 

                                                            
3 Kulvanitchaiyanunt, Asama. "A Design And Analysis Of Computer Experiments-based Approach To 

Approximate Infinite Horizon Dynamic Programming With Continuous State Spaces." (2014). 
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Table A.1. 250 points Binned Latin Hypercube Design Training Data Set 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 

0 0 0 2 4 8 6 1 6 4 6 

0 8 4 0 0 3 0 0 0 6 1 

4 8 0 6 0 0 9 1 6 0 0 

0 4 0 1 1 3 0 6 0 5 9 

0 5 3 10 0 0 4 8 8 0 0 

0 0 5 0 4 0 3 0 1 0 0 

0 0 3 7 0 0 0 0 0 6 9 

1 0 10 10 3 0 2 2 0 4 0 

0 10 0 0 3 0 2 9 9 0 0 

6 9 7 8 6 0 0 0 4 0 5 

4 1 0 0 0 4 1 0 0 2 0 

2 0 1 0 9 9 8 5 9 9 6 

0 2 0 6 2 0 0 1 7 0 0 

10 0 7 2 7 1 1 0 0 0 3 

0 0 0 0 8 4 6 9 0 9 6 

0 0 3 1 10 4 0 2 0 0 4 

9 5 0 4 0 3 0 0 0 3 1 

6 0 0 8 0 0 0 6 8 5 6 

10 0 0 7 0 0 1 10 0 0 0 

0 0 4 9 0 6 0 0 0 0 0 

0 0 9 3 0 0 4 7 0 0 0 

0 4 0 0 0 10 0 0 0 0 1 

2 0 8 5 8 10 0 0 0 0 0 

0 9 0 0 6 3 8 0 0 10 8 

2 8 0 5 9 5 4 6 6 9 0 

0 2 0 5 9 5 0 0 0 6 9 

9 0 6 0 5 1 5 2 0 4 1 

8 0 0 0 0 2 0 1 0 7 10 

0 0 0 9 0 0 10 0 3 10 9 

0 0 5 8 0 0 0 8 0 5 7 

5 1 8 8 7 0 3 7 0 1 6 

7 6 4 0 0 2 0 0 10 0 10 

9 9 0 7 3 0 4 0 6 8 0 

10 1 0 0 6 3 0 0 0 1 0 

7 2 7 5 0 0 10 0 6 0 0 

4 2 0 0 0 10 2 1 4 3 0 
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7 2 0 7 0 5 0 0 0 2 3 

0 0 6 0 0 0 10 0 1 0 6 

5 10 0 7 0 3 0 4 0 0 0 

0 7 5 0 7 0 7 10 0 9 0 

0 4 2 0 0 0 8 1 2 0 3 

8 9 3 5 0 5 5 5 0 8 5 

1 10 0 0 0 2 0 0 1 5 10 

0 4 0 0 4 0 0 9 10 3 0 

9 0 0 0 9 0 2 1 0 0 0 

0 0 9 0 0 0 6 7 0 0 0 

0 4 0 5 7 9 0 8 0 8 0 

6 2 3 2 7 3 5 0 0 0 7 

4 0 0 0 0 5 5 7 0 8 2 

4 0 0 4 1 0 7 1 3 4 2 

0 0 2 7 0 5 5 0 6 0 1 

0 3 8 0 1 5 0 4 0 0 0 

3 8 0 0 0 8 10 4 0 0 0 

5 3 0 0 9 0 9 10 0 0 0 

1 2 8 2 4 0 10 0 3 0 5 

1 5 9 0 2 10 5 0 0 0 0 

0 0 0 0 7 0 0 0 1 0 2 

2 10 0 6 3 10 0 6 10 0 4 

0 6 0 6 1 0 1 8 3 0 6 

1 0 3 2 0 3 0 2 6 5 2 

0 7 0 0 7 0 10 1 0 0 9 

1 5 6 6 0 8 7 0 0 1 7 

1 3 1 0 0 2 6 0 0 9 6 

0 8 4 8 0 0 8 2 0 0 6 

0 0 0 0 2 0 1 8 0 0 4 

0 9 0 2 0 0 6 0 0 6 0 

8 0 2 0 3 8 5 0 0 7 0 

9 0 0 0 10 0 0 10 3 0 0 

1 0 0 0 0 0 7 3 0 0 2 

0 3 3 9 0 5 0 8 0 0 3 

0 0 6 2 3 0 0 5 9 0 0 

8 5 9 0 0 0 7 6 0 0 0 

7 0 6 10 4 0 5 2 6 2 3 

4 0 4 6 0 7 5 0 0 6 0 

0 6 2 0 0 6 0 2 6 0 0 
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3 1 0 8 8 0 0 0 0 6 0 

2 0 0 0 0 6 0 7 0 0 4 

4 0 7 0 0 0 6 7 0 7 2 

8 0 0 0 2 0 1 0 0 6 8 

6 5 0 3 0 9 0 0 0 4 0 

0 0 0 10 0 0 0 8 9 0 0 

3 9 6 0 7 1 1 0 4 5 2 

4 0 0 3 2 0 2 2 4 7 0 

0 5 2 7 0 0 0 6 0 0 0 

0 0 6 2 0 7 7 9 3 0 4 

3 7 0 0 5 0 0 9 0 7 7 

9 6 0 0 0 0 0 0 10 8 4 

1 5 1 0 6 6 8 6 6 0 3 

0 7 0 0 5 8 0 0 0 0 0 

0 0 0 0 0 7 0 0 4 1 4 

8 8 0 0 0 1 4 0 4 5 0 

0 6 0 2 5 8 0 0 0 4 0 

7 7 0 0 9 6 3 0 0 0 0 

10 2 0 0 0 2 7 8 10 10 0 

7 0 0 0 0 2 0 6 6 8 6 

7 0 4 2 0 10 0 6 6 6 0 

0 0 6 0 0 7 7 10 0 4 10 

9 6 3 7 0 0 2 9 0 0 8 

7 8 7 8 0 5 4 0 2 0 10 

0 10 7 0 1 0 0 5 0 6 10 

0 0 2 5 9 0 6 10 0 0 0 

7 10 3 0 0 0 0 6 9 10 7 

0 0 0 10 10 7 4 6 8 7 8 

3 0 7 2 4 0 4 7 1 1 0 

0 9 0 9 0 4 0 0 0 0 4 

0 0 0 4 0 0 8 2 0 0 10 

2 2 3 0 0 0 0 3 7 0 0 

10 0 0 0 8 5 0 7 0 0 0 

2 0 1 0 5 0 3 10 0 0 0 

0 0 0 8 1 0 4 8 0 0 2 

0 0 0 7 0 0 0 0 8 8 0 

0 0 1 6 0 0 2 5 0 0 0 

6 0 9 0 0 6 0 0 8 7 8 

0 1 8 3 8 1 7 1 0 3 10 
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3 0 0 5 0 0 7 10 0 8 0 

0 5 0 0 1 5 3 0 0 0 0 

0 7 0 5 0 9 3 7 0 0 0 

1 5 5 5 2 0 7 0 10 0 0 

0 1 6 0 4 0 0 0 0 4 3 

0 1 6 0 2 1 4 2 2 4 0 

2 2 10 3 0 7 0 7 2 1 5 

6 7 6 5 0 0 2 0 8 0 7 

6 9 0 0 8 0 0 0 0 0 9 

0 0 0 1 9 6 0 0 9 0 8 

0 7 0 4 0 5 9 8 5 9 2 

9 0 0 0 8 0 0 0 7 0 1 

0 2 0 0 0 0 8 9 4 0 0 

0 0 9 0 3 0 4 0 3 4 5 

6 2 3 1 6 0 0 0 2 2 2 

10 0 0 0 5 7 3 4 0 8 0 

0 4 0 3 0 0 0 7 5 1 0 

9 0 2 1 0 0 0 2 5 0 0 

0 0 0 4 0 1 4 0 10 5 0 

4 0 10 0 7 9 4 0 5 0 3 

0 2 0 5 4 0 0 3 2 0 0 

1 1 6 2 0 8 0 0 8 3 0 

5 0 0 1 0 3 0 3 0 0 0 

1 0 0 0 0 1 9 10 6 0 5 

6 0 0 8 0 6 10 0 1 5 0 

4 0 5 0 9 1 5 1 5 1 0 

0 3 7 0 0 0 0 10 0 0 2 

7 0 0 0 0 0 0 10 1 6 0 

0 7 9 0 5 0 0 7 4 3 0 

0 3 0 10 5 0 1 3 10 4 9 

5 5 3 0 0 0 0 1 1 0 0 

8 0 0 0 4 3 7 0 9 0 4 

0 0 0 8 2 0 0 0 7 9 0 

0 0 0 3 0 9 0 0 0 2 3 

0 0 5 10 0 9 2 5 7 0 3 

5 3 6 0 2 6 6 0 0 4 4 

1 2 0 10 2 0 0 9 0 4 0 

9 1 4 4 8 0 0 0 0 0 0 

5 4 0 0 8 8 0 4 1 5 0 
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0 4 0 4 4 4 9 7 4 10 7 

0 6 2 0 6 0 0 4 0 8 0 

9 9 10 10 3 0 3 0 2 0 0 

0 0 0 6 1 1 9 5 9 1 1 

0 9 0 0 0 2 10 1 0 0 0 

7 0 7 8 0 0 1 0 9 7 0 

3 0 0 7 10 0 3 2 10 0 0 

2 0 1 7 8 0 0 0 3 0 0 

0 5 5 0 0 0 0 0 7 6 0 

0 10 3 0 9 9 0 0 4 0 0 

4 0 3 5 0 0 4 0 0 1 0 

0 0 0 0 8 4 0 0 5 3 0 

4 9 8 0 10 2 2 0 5 0 5 

0 0 0 0 0 1 4 9 2 3 4 

4 7 0 0 0 3 6 3 3 0 1 

0 2 6 0 8 8 5 2 0 0 0 

0 0 5 0 0 3 6 0 0 0 0 

0 3 8 0 1 1 0 0 7 3 3 

0 3 5 0 1 0 0 0 9 0 0 

10 0 0 0 0 0 0 0 1 10 10 

0 0 9 0 0 0 6 7 0 7 0 

0 0 9 10 1 5 4 5 4 3 8 

9 6 0 3 6 0 5 0 10 0 9 

8 0 0 0 0 3 7 4 0 0 0 

0 0 0 4 7 5 2 3 7 3 9 

6 0 6 10 0 0 2 9 0 0 0 

0 0 0 6 8 4 1 8 3 0 4 

0 0 0 0 0 0 0 0 0 6 9 

0 7 0 5 0 10 9 0 0 5 3 

0 3 10 5 0 0 6 0 1 1 6 

0 0 4 1 1 0 8 3 5 8 8 

0 10 0 0 2 0 0 6 3 0 0 

0 0 2 9 0 6 0 0 0 0 0 

0 0 0 4 3 7 0 0 1 0 2 

0 0 5 0 4 9 3 0 0 2 0 

0 9 8 0 9 0 4 0 3 0 9 

0 0 5 5 6 0 0 4 0 0 5 

5 8 8 0 0 5 10 0 5 0 10 

10 0 8 0 10 8 0 7 5 0 8 
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0 10 0 2 4 4 0 10 6 0 0 

0 0 0 10 3 10 10 0 7 0 0 

5 0 0 1 0 6 0 4 10 0 3 

0 0 0 10 0 0 0 0 8 0 10 

0 0 0 1 0 0 0 0 0 0 9 

3 0 0 0 0 3 0 3 8 0 10 

0 0 0 0 8 7 2 8 6 8 2 

10 0 0 0 0 2 0 1 2 0 5 

5 0 2 1 0 0 3 0 0 10 6 

6 0 0 0 3 0 0 9 0 0 5 

9 7 2 1 9 9 0 2 10 3 8 

5 0 6 3 5 0 0 0 0 0 8 

0 8 0 4 10 0 5 3 1 7 0 

7 9 7 7 0 0 0 0 4 0 8 

10 8 2 4 0 0 0 0 5 0 9 

3 10 4 6 3 0 0 4 3 0 6 

3 0 10 0 0 2 5 0 2 0 0 

8 2 0 0 0 8 7 7 0 0 5 

0 0 0 0 9 9 0 7 0 0 0 

0 10 4 2 6 6 9 5 10 0 5 

3 0 0 0 0 0 9 5 7 0 5 

2 0 0 0 0 0 0 4 0 0 0 

0 0 9 0 0 9 3 1 10 7 1 

0 5 0 0 9 3 0 0 0 0 0 

2 8 7 3 6 8 1 5 2 1 0 

8 0 0 0 1 0 7 0 8 9 2 

0 0 9 0 0 0 6 3 5 7 4 

2 0 5 6 3 3 7 9 0 7 1 

0 5 3 7 0 0 0 0 0 2 0 

8 0 4 0 0 0 0 10 5 0 0 

0 1 9 1 4 0 0 0 4 0 0 

4 9 4 0 10 0 5 0 0 0 0 

10 8 0 0 0 0 10 0 8 10 6 

0 0 0 9 0 0 0 0 0 10 6 

0 0 3 0 7 7 0 0 4 2 7 

0 6 0 0 9 0 0 2 0 3 1 

9 0 0 2 0 0 3 0 0 0 10 

4 7 9 5 0 7 0 0 8 0 0 

2 3 0 6 0 0 7 3 9 9 0 
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3 0 0 8 2 2 1 0 7 7 0 

6 0 1 0 0 0 8 7 0 0 0 

3 8 0 0 0 0 0 8 7 0 3 

3 8 10 8 7 0 0 0 3 0 1 

0 7 1 1 7 0 0 0 0 0 1 

8 0 10 0 0 0 0 0 9 4 0 

0 4 4 0 0 5 0 2 0 0 0 

5 0 7 6 9 0 10 0 0 0 4 

0 0 0 0 10 0 9 0 0 5 10 

10 8 0 0 0 0 0 4 0 5 10 

8 0 0 4 4 9 7 9 3 0 3 

0 10 0 7 0 0 0 8 7 0 0 

0 8 0 0 4 0 2 10 10 9 0 

0 2 0 0 0 0 8 0 5 10 0 

0 1 10 0 6 0 10 7 8 10 0 

6 1 1 9 0 5 1 0 4 2 0 

0 9 0 0 6 3 1 0 0 5 0 

5 4 9 2 0 0 9 0 2 4 0 

4 0 0 0 0 0 0 0 9 0 0 
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Table A.2. 75 points Binned Latin Hypercube Design Testing Data Set 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 

0 0 0 0 9 7 0 7 0 0 9 

9 1 2 0 0 0 1 1 7 0 7 

0 0 8 10 7 0 9 0 0 0 0 

0 9 0 10 3 0 9 8 8 0 8 

9 0 7 10 0 0 0 0 0 0 9 

0 3 0 0 4 0 2 9 3 10 4 

9 4 9 0 10 2 10 6 0 7 0 

0 0 0 8 5 2 0 0 0 0 6 

4 0 0 3 0 0 2 7 2 0 2 

0 0 0 0 4 0 8 2 0 6 3 

7 8 3 7 0 0 10 5 0 0 0 

0 9 0 3 6 0 9 9 1 9 5 

0 0 8 0 0 0 0 8 0 0 4 

0 2 6 0 10 0 6 3 1 0 6 

0 0 5 9 6 0 0 0 0 7 2 

0 6 4 0 0 5 0 3 9 7 7 

8 0 5 1 5 0 10 7 4 0 0 

0 0 9 7 0 0 0 0 0 0 0 

0 4 0 1 0 8 0 9 0 0 0 

7 4 0 0 8 5 6 0 0 5 0 

1 3 0 1 0 3 0 0 3 0 6 

10 0 5 6 0 5 0 2 0 0 7 

8 0 0 1 1 4 6 0 10 5 1 

10 3 9 0 8 0 0 10 0 0 3 

0 0 6 0 0 0 8 9 9 0 0 

9 0 0 0 4 2 6 0 0 0 4 

2 0 0 0 0 0 0 0 0 0 5 

7 3 1 5 7 0 0 0 7 0 3 

10 1 0 6 3 3 2 7 0 4 0 

0 0 5 9 0 0 0 0 0 1 4 

0 0 9 4 7 0 0 10 2 6 0 

3 0 3 3 0 6 6 1 0 0 0 

8 0 0 6 8 0 7 0 9 0 1 

1 0 2 6 0 0 0 0 0 10 1 

0 0 4 0 2 0 0 7 2 2 0 

8 0 0 4 10 4 0 10 10 10 0 
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0 3 3 8 7 7 3 0 0 0 2 

0 3 7 0 0 2 0 0 5 0 0 

3 0 0 0 9 0 1 0 1 4 10 

0 0 7 0 6 0 7 0 0 0 7 

0 7 2 7 0 1 8 0 6 6 0 

0 0 0 6 0 2 0 10 0 5 2 

3 0 4 0 4 0 0 0 1 1 0 

10 8 3 5 0 1 4 0 0 10 0 

5 0 5 0 3 4 0 0 0 10 0 

6 9 9 10 0 0 5 6 10 0 0 

0 3 0 1 0 8 0 8 4 1 3 

0 0 0 8 8 0 5 0 6 4 4 

3 0 3 3 9 10 9 0 6 3 5 

0 4 0 0 6 0 0 6 0 6 0 

0 4 7 0 0 0 1 0 2 10 0 

8 0 5 10 3 4 0 1 5 9 0 

1 0 0 0 0 9 0 5 0 5 0 

5 9 10 0 0 4 0 7 5 3 10 

1 7 4 4 10 0 4 10 0 0 5 

8 7 2 2 0 1 4 0 0 8 0 

6 1 8 8 6 0 0 0 0 7 6 

10 5 0 9 10 0 6 5 1 8 10 

0 0 0 5 10 7 2 0 0 0 0 

8 9 3 0 2 10 7 2 4 0 0 

4 2 0 8 9 9 9 4 0 0 0 

0 7 10 0 3 10 0 0 0 0 7 

0 5 8 0 7 5 3 3 4 5 0 

0 0 0 0 0 5 0 0 3 6 0 

0 6 1 0 8 9 0 1 0 0 0 

0 0 0 9 0 7 8 4 0 8 2 

6 8 0 0 0 1 0 9 7 7 0 

0 0 8 0 5 0 0 0 0 5 0 

2 8 2 0 0 0 3 6 0 4 0 

5 0 10 0 1 5 10 5 2 0 3 

5 0 3 6 2 0 2 0 6 0 2 

0 4 8 0 4 0 0 0 6 2 0 

7 10 5 2 0 2 0 0 0 1 0 

0 6 0 0 3 9 0 5 4 0 0 

6 0 0 4 0 0 3 3 7 3 3 
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Appendix B                                                                                                                    

MARS MODELS form DACE Based System Design Optimization Approach 
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