
FACE DETECTION AND RECOGNITION USING MOVING

WINDOW ACCUMULATOR WITH VARIOUS

DEEP LEARNING ARCHITECTURE

BY

ANIL KUMAR NAYAK

SUPERVISING PROFESSOR

DR. FARHAD KAMANGAR

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

MAY 2018

 2

COPYRIGHT © BY ANIL KUMAR NAYAK 2018

ALL RIGHTS RESERVED

 3

Acknowledgements

I would first like to thank my advisor Dr. Farhad Kamangar of Computer Science Engineering at The

University of Texas at Arlington. Professors office was always open whenever I wanted a thesis discussion,

or I face any kind of trouble during my thesis research or had a question about my research or writing. He

consistently gave me feedback on my progress on monthly basis and steered me in the right the direction

whenever he thought I needed it.

I would also like to thank my committee member Dr. Manfred Huber and Dr. Gergely V. Záruba for accepting

the invitation be on my committee. I appreciate Dr. Manfred Huber's help. Whenever I need some guidance,

he was always there and never hesitated to spare his valuable time for a quick discussion.

I would also like to thank the experts who were involved in the validation of my research work as I have

been working on testing phase for this research project. My Friends who have helped me in proving data

for testing and supporting me morally throughout my research.

Finally, I must express my very profound gratitude to Dr. Farhad Kamangar, my parents and to my friends

here in Arlington as well as in INDIA for providing me with unfailing support and continuous encouragement

throughout my MS of study and through the process of researching and writing this thesis. Thesis research

would not have been possible without them. Thank you.

March 26, 2018

 4

Abstract

Recent advancement in the field of Computer Vision and Deep Learning is making object detection and

recognition easier. Hence, growing research activities in the field of deep learning are enabling researchers

to find new ideas in the area of face detection and recognition. Implementation of such systems has a

number of challenges when it comes to the current approaches. In this paper, we have presented a system

of Face Detection and Recognition with newly designed deep learning classification models like CNN,

Inception and various state of art models like SVM and we also compared the result with FaceNet. Multiple

approaches to the face recognition were presented, out of which training of deep neural network, SVM on

embedding data are optimized for the recognition task by implementing a moving weighted accumulator at

the post processing stage. The accumulator helps in storing of past recognized faces for decision making.

For real-world testing, we have implemented a face detection and recognition graphical component, which

has helped us in the testing of various deep learning models in real-world scenarios as well as to minimize

the data collection efforts for incremental training of deep learning and classification models.

.

 5

Contents

1. INTRODUCTION ..13

1.1. THESIS OBJECTIVE ...13

1.2. PRELIMINARY UNDERSTANDING ...14

1.3. METHODOLOGY ..14

1.4. DELIMITATIONS ..14

1.5. OUTLINE ..15

2. BACKGROUND ..16

2.1. BACKGROUND OF COMPUTER VISION ..16

2.2. BACKGROUND OF DEEP LEARNING ...17

2.3. RECENT WORK IN DEEP LEARNING ..17

2.4. UNDERSTANDING CNN..17

2.5. UNDERSTANDING INCEPTION MODEL ...18

2.6. PRE-TRAINED MODEL ..19

2.7. UNDERSTANDING SVM ...20

2.8. THEORY ...21

2.9. CONVOLUTIONAL LAYER ...22

2.10. POOLING LAYER ..24

2.11. FULLY CONNECTED LAYER ...26

2.12. ACTIVATION FUNCTION ..26

2.12.1. RELU ..27

2.12.2. SIGMOID ...27

2.12.3. SOFTMAX ..28

2.12.4. TANH ...29

2.12.5. SOFTPLUS ..29

2.12.6. RELU6 ..30

 6

2.13. ELEMENTARY FEATURE ...30

2.14. WEIGHT VECTOR ...31

2.15. FILTERS OR KERNELS ...31

2.16. STRIDES ...32

2.17. PADDING ...32

2.18. DROPOUT ..34

2.19. INCEPTION LAYER ..34

2.20. NORMALIZATION ..35

2.21. REGULARIZATION ..35

2.22. OPTIMIZATION ..36

2.22.1. ADAM OPTIMIZER ...36

2.22.2. GRADIENT DESCENT OPTIMIZER ..37

2.23. LOSS FUNCTION ..37

2.24. EARLY STOPPING ...38

2.25. ONE HOT ENCODING ...38

2.26. EMBEDDING ..38

2.27. BATCH PROCESSING ..38

3. IMPLEMENTATION ..40

3.1. FACE DETECTION AND RECOGNITION SYSTEM EXPERIMENT ...40

3.2. HARDWARE...41

3.3. SOFTWARE ..41

3.4. SYSTEM ARCHITECTURE ..42

3.4.1. GUI COMPONENT ..42

3.4.2. TRAINING COMPONENT ..43

3.5. DATA ...44

3.6. MODULES ...44

3.7. COMMUTER ..45

 7

3.7.1. TRAINING COMMUTER..45

3.7.2. GUI COMMUTER ...46

3.8. CONTEXT ...46

3.9. CONFIGURATION ..47

3.10. DATA LOADER ...49

3.11. CROPPING OF FACE ...49

3.12. CAPTURE FACES ..50

3.13. PRE-PROCESSING ..51

3.13.1. NORMALIZATION ..51

3.13.2. RESIZE ...51

3.13.3. RESHAPING..52

3.14. AUGMENTATION ...52

3.14.1. ROTATION ANGLE ..52

3.14.2. WIDTH SHIFT RANGE ...52

3.14.3. HEIGHT SHIFT RANGE ..52

3.14.4. SHEAR RANGE ...52

3.14.5. ZOOM RANGE ..53

3.14.6. HORIZONTAL AND VERTICAL FLIP ..53

3.15. DATA SPLITTER ..53

3.16. DEEP LEARNING MODEL PREPARATION ..53

3.16.1. HYPER-PARAMETER DETAILS: ..54

3.16.2. MODEL FILE DETAILS: ..54

3.16.3. IMAGE SIZE ..55

3.16.4. DEEP NEURAL NETWORK ...55

3.16.5. CONVOLUTION LAYER CONFIGURATION JSON BLOCK ...56

3.16.6. MAXPOOL LAYER CONFIGURATION JSON BLOCK ...57

3.16.7. FLAT LAYER CONFIGURATION JSON BLOCK ..57

 8

3.16.8. DENSE LAYER CONFIGURATION JSON BLOCK ...58

3.16.9. INCEPTION LAYER CONFIGURATION JSON BLOCK ..58

3.16.10. OUTPUT LAYER CONFIGURATION JSON BLOCK ..60

3.17. TRAINING ..60

3.17.1. CNN MODEL TRAINING ..61

3.17.2. INCEPTION 1B MODEL ...64

3.17.3. INCEPTION 5B MODEL ...67

3.17.4. SMV CLASSIFIER ..70

3.18. DETECTOR ...71

3.18.1. METHOD AND IMPLEMENTATION ...72

3.18.2. DLIB LIBRARY ...72

3.18.3. MTCNN LIBRARY ..72

3.18.4. POST-PROCESSING OF DETECTOR ..72

3.18.5. ANTI-ROTATION OF FACE WITHOUT PADDING ..73

3.18.6. ANTI-ROTATION OF FACE WITH PADDING ...73

3.19. RECOGNIZER ...74

3.19.1. METHOD AND IMPLEMENTATION ...75

3.19.2. FACENET ..75

3.19.3. CNN MODEL, SVM & INCEPTION 1B AND 5B MODEL ...75

3.20. PRE-PROCESSING ..76

3.20.1. NORMALIZATION ..76

3.20.2. RESIZING ...76

3.20.3. RESHAPING..76

3.21. POST PROCESSING ..77

3.21.1. ACCUMULATOR ...77

3.21.2. WEIGHTED ACCUMULATOR ...78

3.21.3. OVERLAY OF BOUNDING BOX ..78

 9

3.21.4. PREDICTION DETAILS ENHANCEMENT ...78

3.22. GUI ..79

3.22.1. CAMERA QT FRAME...79

3.22.2. TOOLBAR QT FRAME ...79

3.22.3. RECOGNITION SYSTEM FLOW QT FRAME ..79

3.22.4. PREDICTION QT FRAME ...80

4. EXPERIMENTS ...81

4.1. DATA ...81

4.2. DATA AUGMENTATION DETAILS ...81

4.3. RESULT ..82

4.3.1. TESTING ACCURACY FOR GRAY SCALE IMAGES OF DEPTH 1 ..82

4.3.2. TESTING ACCURACY FOR RGB IMAGES OF DEPTH 3 ...82

4.4. COMPARISON WITHOUT ACCUMULATOR ...83

4.4.1. CNN MODEL ..83

4.4.2. INCEPTION 1B ...84

4.4.3. SVM – INCEPTION 5B EMBEDDING ..84

4.4.4. SVM – FACENET EMBEDDING ..85

4.4.5. FACENET..85

4.5. COMPARISON WITH MOVING ACCUMULATOR ...87

4.5.1. CNN MODEL ..87

4.5.2. INCEPTION 1B ...88

4.5.3. SVM – INCEPTION 5B EMBEDDING ..88

4.5.4. SVM – FACENET EMBEDDING ..89

4.5.5. FACENET..89

4.6. LOSSES ..91

4.6.1. CNN LOSS FUNCTION...91

4.6.2. INCEPTION 1B LOSS FUNCTION ...91

 10

4.6.3. INCEPTION 5B LOSS FUNCTION ...92

4.7. VALIDATION ACCURACY ..93

4.7.1. CNN VALIDATION ACCURACY ..93

4.7.2. INCEPTION 1B VALIDATION ACCURACY ...94

4.7.3. INCEPTION 5B VALIDATION ACCURACY ...94

4.8. CONCLUSION ..95

4.9. FUTURE WORK ..96

4.10. BIBLIOGRAPHY ..96

Table of Figures

Figure 1: SVM model for linearly separable data .. 20
Figure 2: Convolutional neural network architecture block diagram... 21
Figure 3: Inception model architecture block diagram ... 22
Figure 4: Convolution of a gray scale image on 3x3 kernel size .. 23
Figure 5: Maxpool layer operation [google] ... 25
Figure 6: Relu activation function ... 27
Figure 7: Sigmoid activation function .. 28
Figure 8: Softmax activation function.. 28
Figure 9: Tanh activation function .. 29
Figure 10: Softplus activation function .. 30
Figure 11: Relu6 activation function ... 30
Figure 12: Stride of 2x2 is used for kernel in the convolution process on 6x6 image size 32
Figure 13: Zero Padding convolution on 6x6 image which reduces the spatial dimension 33
Figure 14: Padding of 2 pixels before convolution on 6x6 image to maintain the spatial dimension 33
Figure 15: Dropout operation block diagram [google] ... 34
Figure 16: Inception naive and inception dimension reduction block diagram [3] 35
Figure 17: Regularization function fit graph [google] ... 36
Figure 18: Face detection and recognition GUI system process flow diagram ... 43
Figure 19: Face detection and recognition training system process flow diagram.................................... 44
Figure 20: Training commuter process flow block diagram ... 45
Figure 21: GUI Commuter process flow block diagram ... 46

 11

Figure 22: Training context module block diagram ... 46
Figure 23: GUI context module block diagram .. 47
Figure 24: Large data Images collected ... 50
Figure 25: After cropped face from large data image .. 50
Figure 26: CNN architecture model diagram... 61
Figure 27: Inception 1b architecture diagram .. 65
Figure 28: Inception 5b architecture model diagram ... 67
Figure 29: SVM Model for face image classifier architecture diagram ... 70
Figure 30: Detector module block diagram ... 71
Figure 31: Tilted face detected ... 73
Figure 32: Anti-rotation on tilted face with black corners ... 73
Figure 33: Cropped face after anti-rotation ... 73
Figure 34: Face detected with padding 20 .. 73
Figure 35: Anti-rotation on image padded with 20 pixels ... 73
Figure 36: After cropping of anti-rotated image with padding 20 ... 73
Figure 37: Recognizer module wrapper architecture ... 74
Figure 38: Accumulator of size 10 .. 77
Figure 39: Weighted accumulator example .. 78
Figure 40: Class Label wise data distribution before Augmentation .. 81
Figure 41: Class label wise data distribution After Augmentation .. 82
Figure 42: CNN loss function ... 91
Figure 43: Inception 1b loss function .. 92
Figure 44: Inception 5b loss function .. 92
Figure 45: CNN validation accuracy curve .. 93
Figure 46: Inception 1b validation accuracy curve .. 94
Figure 47: Inception 5b validation accuracy curve .. 95

 12

List of Tables

Table 1: Technology stack used in our system ... 41
Table 2: Convolution layer JSON configuration .. 56
Table 3: Maxpool layer JSON configuration.. 57
Table 4: Flat layer JSON configuration ... 58
Table 5: Dense layer JSON configuration ... 58
Table 6: Inception layer JSON configuration... 59
Table 7: Output layer JSON configuration .. 60
Table 8: CNN model video analysis statistics ... 83
Table 9: Inception 1b model video analysis statistics .. 84
Table 10: SVM model with inception 5b embedding video analysis statistics .. 84
Table 11: SVM model with FaceNet embedding video analysis statistics .. 85
Table 12: FaceNet video analysis statistics .. 85
Table 13: CNN Model video analysis statistics ... 87
Table 9: Inception 1b model video analysis statistics .. 88
Table 10: SVM model with inception 5b embedding video analysis statistics .. 88
Table 11: SVM model with FaceNet embedding video analysis statistics .. 89
Table 12: FaceNet video analysis statistics .. 89

 13

Chapter 1: Introduction

1. Introduction

There have been many researches in the area of Computer Vision and Deep Learning for decades to make

it better in detecting and recognizing objects and their interaction with the environment. Robots of different

types are becoming more sophisticated with the use of such methodologies e.g. autonomous cars,

Unmanned Aerial Vehicle (UAV), and surgery robots. These robots need large datasets from different

sensors such as vision, proximity sensor, etc. to analyze real environment, and implementing deep learning

architectures enables them to make better decisions with high accuracy when compared to a human brain.

The brain is an extremely complex structure with multiple connections of neurons and sensors such as

vision, touch sensors etc. Researchers have been working hard to match the level of human intelligence

by improvising the robot’s decision-making process with the implementation of deep learning

methodologies. This process of improvements in above mentioned field of studies would not have been

possible without the help of computer vision and deep learning research community.

1.1. Thesis Objective

The objective of this thesis is to investigate and analyze face detection and recognition system. Various

deep learning architecture models have been closely analyzed, implemented and performances of each

model have been observed and compared with present state of art classification models. Following models

have been considered in this paper:

• FaceNet: A unified embedding for face recognition [16]

• Conventional Neural Network (CNN) deep learning architecture [3]

• Convolutional Inception Model deep learning architecture [3]

• Support Vector Machine, state of art classification model

CNN is widely used as the deep learning architecture for the object detection and recognition and it has

helped researchers to improve the performance. These deep learning networks consists of multiple layers

of convolution and max pooling. 2-D convolution on both grayscale images and RGB images can be

processed through these kinds of networks. These networks have been used in the extraction of all level

of features for analysis of an image and video contents for detection and recognition.

 14

1.2. Preliminary Understanding

Recent advancement in the field of computer vision and deep learning has enabled researchers to

improvise object detection and recognition. Many papers have been published on detection and recognition

task like You Look Only Once (YOLO) [10], Google's object detection and recognition API [11], etc. in which,

researchers have achieved a breakthrough and they proposed their model performed better than the state

of art models using CNN and inception models. Implementation of CNN and Inception models requires prior

knowledge of deep learning architectures, however, for new aspirants, those architectures have been

explained in detail in the following section 2 and 3.

1.3. Methodology

Current researches in object detection and recognition inspired us to analyze and build a system of face

detection and recognition with the help of LFW dataset. The system primarily comprises of two main

components, face detection component and face recognition component with other additional components

like pre-processing, post-processing, etc.

Face detection component has been developed using the existing libraries like Multi-Task Cascaded

Convolutional Networks (MTCNN) [2] and DLIB [1], to identify the face bounding box and marking points in

an image or a video frame, which will be explained in detail in the section [3.1.5.16].

Face recognition component, has been developed using various deep learning classification models like

convolutional neural network, convolutional inception 1b model (which has only one inception layer),

convolutional inception 5b model (which has 5 inception layers), state of the art classification model like

SVM and FaceNet's face recognition functionalities. Theory and implementation of all the components have

been explained in detail in the following sections 2 and 3.

1.4. Delimitations

Face detection and recognition system have been developed using following libraries and methodologies.

• SVM, CNN, inception 1b, and inception 5b models for the face recognition

• MTCNN and DLIB for face detection

• Face detection and recognition system GUI, which has helped us in real life testing and

automatically capturing of the future dataset for our training.

 15

1.5. Outline

Background of computer vision & deep learning and theories of deep learning architecture designs and

terminologies has been explained in Chapter 2. Chapter 3, briefly discusses about our research

implementation and experimental set-up. Followed by Chapter 4, which contains experimental result and

analysis along with a comparison of various models, bibliography and the future work.

 16

Chapter 2: Background and Theory

2. Background

Computer vision and deep learning is an extensive field of research. There are many articles and papers

that have been published in various publications. The purpose of this chapter is to study the significant

contributions in computer vision (section 2.1) and deep learning (section 2.2) research areas and recent

research work in object detection and recognition. Note, this chapter assumes that the reader has prior

knowledge of convolutional neural networks and their terminologies.

2.1. Background of Computer Vision

Computer Vision is an interdisciplinary field that deals with analysis of videos and image contents. In this

field of study, researchers have been analyzing the human visual system and vision tasks. These tasks

include methods on acquiring, processing, analyzing and understanding of digital images and videos. In

order to produce numerical or symbolic information from the data, system extracts high-dimensional feature

from real world scenarios to find meaningful information for easy understanding. The image data can take

many forms, such as video sequences, stereo vision or multi-dimensional data from a medical scanner.

Computer vision is concerned with the theory behind image processing which extracts information from this

dataset.

In the late 1960s, this field of study has begun at universities, those were pioneering in artificial intelligence.

It was designed to compete with the human visual system, which will be going to be the stepping stone for

robots with intelligent behavior. In 1966, a breakthrough has happened while a camera was attached to a

computer and allowing it to describe “what it saw”.

In this thesis, various computer vision techniques have been used to process an image and a video frame.

These techniques like convolution, pooling, background subtraction, optical flow have been explained later

in this document. Following are the pre-work that have been carried out to understand the field of computer

vision related to object detection and recognition task.

• Understanding of Viola-Jones face detection framework [17].

• Understanding of Human Pose Estimation system to identify the human pose in video frames.

• Implementation of edge detection and smoothing operation to find features in an image and a video

contents.

 17

2.2. Background of Deep Learning

In 1962, Deep Convolutional Neural Networks (CNN) paper, laid the foundation for feature identification.

The paper we are referring to is "Receptive Fields, Binocular Interaction and Functional Architecture in the

Cat's Visual Cortex" by Hubel and Wiesel [4]. Their experiment has shown new insights on how brain sees

objects and things around us. The experiments were conducted on a sedated cat. They shone the light on

to the cat's eyes with electrodes connected to its brain. The authors made very important findings of how

the brain interprets visual stimuli. Finally, they observed that complex cells were activated by the same type

of light as simple cells. The difference was that they were less dependent on the spatial position. Following

sections contain a detail explanation of recent work and the deep learning architectures.

2.3. Recent Work in Deep Learning

Deep learning is very famous in research community for a long time because of its computation power and

popularity in analyzing the video contents of huge data size with ease. However, it had lost its creativity and

credibility in past because of lack in computation power and processing units. Recent advances in GPU's

are enabling researchers to concentrate on deep learning area. Many papers have been published in

various deep learning journals since 2012 related to object detection and recognition task, out of those most

popular is capsule network [18], YOLO [16], Googles Tensorflow Object Detection API [15]. Following are

the pre-work that have been successfully carried out to understand the field of deep learning related to

object detection and recognition task.

• Face recognition using FaceNet.

• CNN based classifier to recognize face.

• Perceptron learning in python to understand the deep learning methodologies.

• Object detection and recognition using Google’s Object Detection API

2.4. Understanding CNN

Researchers have been concentrating on improvising CNN architecture. First, Szegedy [15], he showed

that small perturbations on the images can cause 100% misclassification on the network that it has been

trained on. He also showed that the perturbations are quite general as they significantly decrease the

performance of networks trained with the difference in number of layers and using different training

datasets. The knowledge they gained proved that it was actually the depth in CNN network that caused the

significant leap in performance rather than the supporting tasks used e.g. cropping, the use of data

augmentation, and GPUs.

 18

Recently, a lot of progresses has been achieved in the area of image classification and object detection

with the help of deep CNN classifiers. It all really took off when Krizhevsky and Hinton [19] crushed the

previous state-of-art models and beat the Top-5 error rate in the ImageNet challenge by 10.9% (absolute)

compared to the second-best entry in the competition. They found out that, 1x1 convolution in the last layer

improved the classification rate drastically, whereas 1×1 convolutions correspond to a multilayer perceptron

producing more advanced function approximation.

CNN uses multiple layers in its architecture. Following are the layers used to build convolutional neural

network architectures.

• Convolutional Layer

• Activation Layer

• Pooling Layer

• Fully-Connected Layer or Densely Connected Layer

• Output Layer or Softmax Layer for classification

CNN architecture is explained in detail in section 3.

2.5. Understanding Inception Model

Inception model is the breakthrough in the era of deep learning called as Deep Convolutional Neural

Network, which was considered as the state of art classification and visual recognition model in ImageNet.

The main idea behind the inception model is to improve the utilization of computing resources inside the

neural network. This model is used to increase the depth of the feature by keeping computational cost

constant. Moreover, it provides parallel computing branch of convolution layers for same input and

concatenates the output of all parallel layers before passing to the next layer in the architecture.

The basic inception model consists of 4 parallel layers. First parallel layer has 1x1 convolution. Second

parallel layer has 1x1 convolution followed by 3x3 convolution. Third parallel layer has 1x1 convolution

followed by 5x5 convolution. Fourth parallel layer has 1x1 convolution followed by max pool layer. The final

layer concatenates all outputs of parallel layers, before feeding it to the next layer. Inception models are

explained in detail in Section 3.

 19

2.6. Pre-Trained Model

Pre-trained model contains already trained weights for a specific neural network. One of the pre-trained

models is ImageNet, which has been trained over 1.3 million images for object detection and recognition

task. Normally researcher removes the final classification layers or fully-connected layers of those pre-

trained model and replaces them with SVM or KNN classification layer for their research.

Donahue and Jia [13] investigated that to generalize the ImageNet model which can be further used for

other datasets at various depths. They did this by visualizing the separation between different categories

in the first and sixth layer, showing greater separation in the deeper layers. They have shown that eight-

layer network having three fully-connected layers are most expensive when it comes to computational time.

However, by tuning the pre-trained network separately for fine-grained bird classification, domain

adaptation, or scene labeling, it out-performed the state-of-art models in these categories. Similarly,

Oquab’s [14] experiment outperformed the state-of-art object detection model when the last classification

layer was replaced by Rectified Linear Unit (ReLU) and Softmax for the VOC07 and VOC12 dataset.

In addition to that, FaceNet has achieved success in face recognition by extracting embedding feature from

inception model and having the SVM classifier at final layer. In one of our experiment, FaceNet 's pre-

trained model has been used to extract embedding features from our dataset to train the SVM model in the

final classification layer.

Generally, the pre-trained model comes in a single protobuf file with the meta, checkpoint and graph files.

Following are the files that are present in a pre-trained model.

• model.meta

• model.index

• checkpoints

• model data

• model.pbtxt

Following steps have to be performed, while loading the model into tensorflow session before starting the

training process.

• The foundation of computation in TensorFlow is the Graph object being loaded first into tensorflow

session or any deep neural network training

 20

• Default session of Tensorflow holds a network of nodes, their associated trained weight, operational

nodes like softmax, addition, multiplication and these are connected to each other

• Graph object is created, it can be accessed through “as_graph_def()”, which returns a GraphDef

object from tensorflow session

• Also, the input placeholders, operations, and variables can be accessed from tensorflow graph

object which is present in tensorflow session

• These graph objects are used to run the model

2.7. Understanding SVM

Support vector machines (SVM) is the supervised learning methodology in machine learning field which

analyzes the data used for the classification and regression task. SVM is based on finding the best possible

hyperplane that gives the largest distance to separate the training class labels.

Figure 1: SVM model for linearly separable data

SVM training algorithm builds a model that based on categorical separation, making it a non-

probabilistic binary linear classifier. Support vector machine constructs a hyperplane or set of hyperplanes

in a high- or infinite-dimensional space, which can be used for classification, regression, or other tasks like

outlier’s detection.

 21

Linearly Separable Data
For an example, let’s consider the data which is linearly separable. Imagine a training set of {xi, di}, where

i=0 consisting of an input pattern xi, for the ith row, and di is the desired output to the corresponding class

label. A hyperplane separating this training set is described by

!" =	%& + b = 0

where w is an adjustable weight vector and b is the bias term. This means that classes belonging to di = 1

are described by

!"	 = 	%& + * ≥ 0

This method known as perceptron will provide a solution which by no means guaranteed to be optimal.

Different perceptron might come up with different solutions that would maximize the margin for each class

labels.

2.8. Theory

Convolutional Neural Networks (CNN), were first introduced by Yann LeCun's in 1998 for Optical Character

Recognition (OCR), where they have shown impressive performance on character recognition. CNN is not

just used for image related tasks, they are also commonly used for signals and language recognition, audio

spectrograms, video, and volumetric images. Figure 2 shows the high-level block diagram of CNN.

Figure 2: Convolutional neural network architecture block diagram

Above diagram is an overview of a CNN, where the first layer is an input layer, followed by blue color blocks

which are convolution layer. The yellow color blocks are the activation layer, and the white color blocks are

 22

the maxpool layers. Finally, the red colored blocks are the fully connected layers in the CNN architecture.

Above architecture is a basic model for the initial understanding of CNN. We have explained the CNN in

detail in section 3 [3.1.2].

These was a breakthrough in deep learning area when researchers designed Inception model in 2014.

According to the paper [3] “Going deeper with convolutions” [3], an inception layer was introduced to the

existing CNN model, which has set a benchmark in state of art classification and detection task on ImageNet

dataset. The main functionality of this inception layer is to improve the utilization of computing resources

inside the neural network. Figure 3, shows the basic state of the art inception layer block diagram.

Figure 3: Inception model architecture block diagram

In above diagram the gray color block shows a basic inception layer. The only difference between CNN and

Inception model is inception layer, which has 4 parallel connected convolution and max pool layers with the

concatenate layer at the end. The architecture of Inception layer model is explained in detail in section 3

[3.1.3].

So far, we have got an overview on CNN and Inception model architecture and what does the deep learning

model mean. The common terminologies used in deep learning architectures has explained in the following

sections.

2.9. Convolutional Layer

Convolution Layer provides a convolution operation, in which a 2-D or 3-D filter of appropriate size sweeps

over an image and apply the filters to each depth of an image. The convolutional layers are restricted

version of the Multi-Layer Perceptron (MLP) adapted to take a 2D / 3D inputs instead of 1D. The idea behind

 23

convolutional layers is to detect elementary features such as edges, corners, and endpoints, and combine

them using multiple layers to get high-level features that might describe an object completely. Figure 4,

shows a sample convolution of an image on 3x3 filter size.

This operation performed in the following manner: first layer f1(·) contains the most elementary features,

the second layer f2(f1(·)) is a function of the elementary features in the previous layer. The third layer is

then a function f3(f2(f1(·))) of the features in the second layer and so on.

Moreover, this architecture is designed for high-level features extraction from an image at any given layer

to describe an object like face, chair, or a car. In addition to this, convolution also provides an important

and valuable feature attribute called shift invariance. That is, if the input to the first layer is shifted, then the

output of the first layer is also shifted by the same amount. Convolution has 2 main parameters which can

change the behavior of convolution, like stride and padding. Padding and Stride is explained in the later

sections.

Following figure shows the convolution over an 8x8 image size with STRIDE of 1 and PADDING of 0

(SAME) and kernel size of 3x3.

Figure 4: Convolution of a gray scale image on 3x3 kernel size

Output of the convolution layer is calculated as per the following formula.

,-./ =
(,123 − 5/&367 + 29)

; + 1

 24

Fwidth: Filter or Kernel size as in width and height parameter while using respective formula.

P: Padding

S: Stride window size for convolution

Wnew: New width of the output image

Wold: Old width of the input image

2.10. Pooling Layer

Pooling is a method of reducing the feature size in width and height of an input. The pooling operation

sweeps a rectangular window over the input feature and computes a size reduction operation for each

window (average, max, or max with arg max). Each pooling operation uses rectangular windows of size k,

separated by offset strides. For example, if strides are all ones every window is used, if strides are all twos

every alternative window is used in each dimension. a simple way of reducing the precision for the position

from where distinctive features are located in the feature map. Since the exact position of the feature is

irrelevant, only its position in relation to the other features is of importance, especially for classification

tasks.

In other words, we do not care where an edge or a corner is located in the image, we only care about its

position relative the other corners and edges in the image. The size of the receptive field is critical, most

commonly used is 2×2, this is due to the significant information loss that occurs when using the larger

receptive field. For an instance, if a 2×2 receptive field is used four pixels are turned into one. Increasing

the receptive field to 3×3 would mean nine pixels are turned into one and if 4×4 is used, 16 pixels are turned

into one and so forth.

To put it into perspective, imagine you have a 12 × 12 image, giving a total of 144 pixels. A receptive field

of 2×2 would leave you a 6×6 image with 36 pixels. You have now lost 75% of the information, but the

object might still be recognizable. If instead, you use 3×3 you only get an image of 4×4 with 16 pixels leaving

only 11% of the original information.

Now it might be possible to recognize the original shape, but if you are unlucky you have lost too much

information. If you decide to push it even further by using 4×4 pooling will get you a 3×3 image with a total

of nine pixels, you have now lost 94% of all the information in the image. Figure 5, shows a max pool

operation on the 2x2 filter with 2x2 stride.

 25

Figure 5: Maxpool layer operation [google]

Pooling layer output is calculated as per the following formula.

,-./ =
(,123 − 5)

; + 1

,-./: New Width for the output image

,123: Input image width

F: Filter Width size

S: Stride size

This formula is used for the output image width calculation, and same can be used to calculate the resulting

height of an output image from the pooling layer by changing width parameter with the height parameter.

 26

2.11. Fully Connected Layer

Fully connected layer is the called as dense layer, where each neuron in one layer is connected to each

and every neuron in the following layer. This principle is same as the traditional multi-layer perceptron

neural network model and how it works. Fully-connected layers refer to be the final layers in the full CNN

model. Fully-connected layers operate as a Multi-Layer Perceptron (MLP) with normally either two or three

hidden layers and one classification layer. The properties of the MLP make it a superb function

approximation, with only two hidden layers it can approximate any function assuming it has enough hidden

neurons. Normally, the number of neurons in the hidden layers is constant, with 4096 being a common

number for deep networks with large input images.

The inputs to the first hidden layer originate from all neurons in the previous layer (either a pooling or

convolutional layer). In other words, each neuron in the previous layer is connected to each and every

neuron in the first hidden layer. Outputs from the first hidden layer are connected to each and every neuron

in the second hidden layer, it is fully-connected. Outputs from the last hidden layer are then fully- connected

to the final classification layer. The size of the final layer depends on the number of classes used to train

the neural network.

The fully connected layer can be flattened and connect to the output layer and so on it get reduced in size

for the classification of the images. At the fully connected layer, if the input is coming from convolution layer

or max pool layer of size XxYxZ size, we can choose how many nodes do we need in the fully connected

flattened layer. It could be the XxYxZ number of nodes or (X*Y*Z)/2 number of nodes and then the output

will be reduced feed to the output classification layer.

2.12. Activation Function

The activation function is really important to the deep neural network, which is complicated and complex.

They bring non-linearity property to neural networks. The main property of an activation functions is to

convert an input signal to output signal. This is used in every node of the deep neural network for abstraction

representation of action potential firing the node.

If we don't use the activation function, the output mapping function will be, by default a linear function, which

linearity is less effective towards learning of complex function boundaries of the input data. Following are

some of the activation functions explained in detail.

 27

2.12.1. ReLU

The activation function plays a central, and very important role in how CNN work and how well they perform.

Every neuron in every convolutional and fully- connected layer has a specific non-linear activation function.

The type of non-linear function varies, but most networks nowadays are using ReLUs (Rectified Linear

Units) mathematically described by ϕ(x) = max(0, x).

It got very popular in recent years over the tanh because its convergence capability surpasses the tanh

function by 6 times. It addresses the and rectifies the vanishing gradient problem. I have used the ReLU in

all activation function in all the hidden layer. We have capabilities to change the activation function to any

other function at any point in time.

Figure 6: Relu activation function

2.12.2. Sigmoid

A sigmoid function is used as activation function is a special case of the logistic function shown in the first

7 this includes the logistic and hyperbolic tangent functions. Sigmoid curves are also common in statistics

as cumulative distribution functions (which go from 0 to 1).

It has major reason why this is fall out of the popularity,

• Vanishing Gradient problem

• Output is not zero centered

• Sigmoid saturates and kills the gradient

 28

• Sigmoid has slow convergence

Figure 7: Sigmoid activation function

2.12.3. Softmax

This softmax function also known as normalized exponential function which is used as the activation

function in the neural network. This is used as a probability distribution for K possible outcomes. This is

also used in the final layer with cross entropy in the neural network for the probability distribution for

categorical data. Softmax gives the output as 0-1.

Figure 8: Softmax activation function

 29

2.12.4. TanH

Tanh function is another activation function of kind Logistic sigmoid, which has "s"- shaped curve, but

outputs values are range from -1 to 1. This function makes the negative inputs to map strongly to the

negative outputs. Additionally, only zero-valued inputs are mapped to nearest non-zero outputs. These

properties make the network less likely to get "stuck" during training and eradicate the possibility of

vanishing gradient. Calculating the gradient for the tanh function also uses the quotient rule.

The output is zero centered because it falls between -1 to 1. Optimization is easier than the sigmoid but

still, it has the vanishing gradient problem.

Figure 9: Tanh activation function

2.12.5. Softplus

A smooth approximation to the rectifier linear function is Softplus function: f(x) = ln(1+ex). Both the ReLU

and Softplus are largely similar, except near 0 where the softplus is enticingly smooth and differentiable.

It’s much easier and efficient to calculate derivatives of ReLU than the softplus function which has log(.)

and exp(.) in its calculation. Interestingly, the derivative of the softplus function is the logistic function.

 30

Figure 10: Softplus activation function

2.12.6. Relu6

Figure 11: Relu6 activation function

2.13. Elementary Feature

Elementary features are the simplest of shapes, such as edges and corners in an image detected by some

feature detectors. The Sobel operator is the simplest example of the feature detector. It approximates the

derivative of a pixel value. This type of detector is basic of CNN, there are lots of feature detectors were

there, which are responsible for finding elementary features in any layer of the neural network. Elementary

 31

features in one part of the image are used in another part of the image and because of this one feature

map has identical Weight Vector (Section 2.8.6) even if their local receptive fields are in the different region

of the image. Every unit as in neuron in each feature map has the exact the same weight vector. And this

concept is helpful in terms of following in detail.

• Generalization ability

• Reduction in training time

• It allows for parallelism

2.14. Weight Vector

Weight vectors are the filters in the Convolutional Neural Network and help in the convolution process and

find out the feature map through feature extraction operation. Initially, the weight matrix is created by the

Gaussian distribution of numbers which has 0 mean and 0.001 standard deviations. This initialization also

could be achieved by setting all weights to a random number or zeros in all layers of the neural network.

This random initialization affects the convergence of loss function, which will take a lot of time to reach local

minima or global minima.

In addition to that weights are shared between feature maps. If the two neurons have same feature maps,

then they share the same weight vector to reduce the space and computation complexity. Generally, the

researcher uses the random uniform weight vector for its normal distribution feature.

2.15. Filters or Kernels

Kernels and filters are used interchangeably in our document. The kernel is an of 2-D or 3-D matrix, which

is used in convolution process as described earlier in this section. Each convolution gives rise to a number

of the channel as defined by the number of filters. Kernels are generally referred as the feature detectors

used in convolution layer.

Kernels are defined as 3x3, 5x5, 7x7 and so forth. This means the height and width of the kernel. Smaller

filters or kernels capture minute detail features in an image than the bigger kernels which leave out some

important features in the convolution or in max pool layer. So, researcher prefers to use the smaller kernels

rather than bigger kernels like 11x11 or 19x19. The kernel is defined in the tensorflow as [1,3,3,1] vector

format, this means, [batch, height, width, depth] respectively. Height and width are defined for the kernel

size of 3x3 or 5x5. Moreover, the batch size is defined as per the training requirement and the depth is

defined by input image depth.

 32

2.16. Strides

Stride is a concept, which controls the movement the kernel over an image in convolution and max pool

operation. By Default, the kernel moves over the image by shifting one position at a time in horizontally or

vertically. Starts at (0,0) position of the image and if the stride is 1x1 then it will move 1 in both the direction,

horizontally or vertically. Stride is defined as [1,2,2,1], that means, each element in the array is defined as

[batch, shift in vertical direction, shift in horizontal direction, channels] respectively.

For an example

Figure 12: Stride of 2x2 is used for kernel in the convolution process on 6x6 image size

In above convolution, the stride is used as 2x2, in the figure 13b, the kernel moved by 2 positions as shown

in red color in horizontal direction and in figure 13c, the kernel moved by 2 positions in vertical direction.

2.17. Padding

Padding the input image is 3D or 2D with zeros, such that the convolution layer does not alter the spatial

dimensions of the input image. With the zero padding while convolution controls the spatial size of the

output image from convolution layer.

Padding can be calculated as the P = (F-1)/2.

F: Filter size

For an Example convolution without padding or padding = 0

 33

Figure 13: Zero Padding convolution on 6x6 image which reduces the spatial dimension

In figure 13a, convolution is happening without padding, which results in reduction in the spatial dimension.

Because of which, most of the convolution process loose information in the image. So padding is added in

the convolution process to avoid this issue.

Figure 14: Padding of 2 pixels before convolution on 6x6 image to maintain the spatial dimension

In figure 14a, before the convolution process, padding is added around the image of size 2, which help to

keep the spatial dimension of the image after the convolution.

 34

2.18. Dropout

Deep neural networks with a large number of nodes and hyper-parameters are making this model very

powerful in machine learning algorithms. However, overfitting is a serious problem in such networks. Large

networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of

many different large neural nets at test time. Dropout is a technique for addressing this problem.

To reduce overfitting, we will apply dropout before the readout layer. We create a placeholder for the

probability that a neuron's output is kept during the dropout, which allows us to turn off and on the dropout

during training and testing.

Figure 15: Dropout operation block diagram [google]

2.19. Inception Layer

This architecture has been developed to make the computation faster with dimensionality reduction feature

in the neural network design. This Inception model is a breakthrough happened in the ImageNet paper [3].

This model has multiple convolutions with multiple filters and pooling layers in parallel within the same layer

called inception layer. In this architecture shown in the figure 13-a is a basic inception model with parallel

layers, employs convolution with 1x1 filters as well as 3x3 and 5x5 filters and a max pooling layer. Figure

13-b demonstrates a dimensionality reduction in feature map and explains the use of 1x1 convolution filters

can help in dimensionality reduction (since no. of channels is reduced).

The intention behind this type of architecture is to enable the deep neural network to learn deep and find

the best possible weights while training the model. This model automatically selects the useful features and

 35

concatenate them all, before passes it to next layer. Additionally, it is intended to reduce the number of

dimensions of feature map, so that the number of units and layers can be increased at the later stage [3].

Figure 16: Inception naive and inception dimension reduction block diagram [3]

2.20. Normalization

Generally, normalization of the data helps in speeding up the training process. If we didn't normalize the

input data, the data distributions range of feature values would likely be different for each input.

Normalization is important in terms of classification to avoid the overfitting of data. We normalize the data

from -127 to 127-pixel values to make it uniform across the all the gray scale images before starting the

training process for depth 1. For depth 3 (RGB) image training, the normalization process goes through the

process of subtracting the mean pixel value from image and dividing the standard deviation of mean face

to bring the normal distribution to the image pixels.

2.21. Regularization

The goal of a deep learning or machine learning algorithm is to ignore the noise. In the noisy data,

algorithms will over fit while trying to fit those noise in addition to features or patterns. Since the noise is

stochastic and does not generalize for unseen data leads to low training error but the high testing error.

 36

Figure 17: Regularization function fit graph [google]

In the figure above, first, the straight line tries to fit most possible points however the second graph shows

all the points fit a k degree polynomial. In the right side, this fit the noise, so by penalizing the higher degree

polynomial so that it reduces error significantly as compared to the simpler at left. Then we call it

regularization. To avoid overfitting and max reach of weight we have to perform the regularization to keep

the weights under some threshold limit.

2.22. Optimization

In deep learning optimization involved in many contexts. Sometimes analytical optimization does help in

the writing of proofs. The most optimization problem in deep learning is neural network training.

Optimization is a process of finding a best optimizing parameter for which that the neural network cost

function reduces significantly. There are many optimizers are available like Adam Optimizer or Gradient

Descent to make the loss function optimized, when there is a good feature found and reaches its optimum

point and global minima. If it reaches to any kind of local minima, it's very difficult to overcome those local

minima. Some of the optimizers are described as follows.

2.22.1. Adam Optimizer

The Adam optimizer uses Kingma and Ba's Adam algorithm to control the learning rate. Adam offers several

advantages over the simple Gradient Descent Optimizer. Foremost is that it uses moving averages of the

parameters (momentum).

This enables the optimizer to use a larger effective step size, and the algorithm will converge to this step

size without fine-tuning. this requires more computation to be performed for each parameter in each training

step (to maintain the moving averages and variance and calculate the scaled gradient), and more states to

be retained for each parameter.

 37

2.22.2. Gradient Descent Optimizer

A simple Gradient Descent Optimizer could equally be used in your MLP but would require more

hyperparameter tuning before it would converge as quickly. Other Optimizer can be used to optimize the

cost function are

• Adadelta Optimizer

• Adagrad DAO ptimizer

• Adagrad Optimizer

• Gradient Descent Optimizer

• Adam Optimizer

2.23. Loss Function

The loss function is an important part in deep learning neural networks, sometimes loss function cares

about the error in classification but it is not optimized, which is used to measure the inconsistency between

the predicted value and actual label. It is a non-negative value comes out of final classification layer, where

the robustness and accuracy of deep learning model increase along with the decrease in the value of loss

function. The loss function is an empirical risk function, which is consist of empirical risk term and a

regularization term.

• Mean Square Error

• Mean Square Logarithmic Error

• L2

• Mean Absolute Error

• Cross Entropy Error

• Hinge Error

 38

2.24. Early Stopping

Early stopping is a form of regularization used to avoid overfitting while training a model in iteratively such

as gradient descent. Early stopping is calculated to open the validation sets, and the loss incurred by the

network at each iteration. When the neural network observes the loss is increasing from a certain limit at

low and try to stop the model training and use the lowest loss model for testing. This method also provides

a way to stop the model when it starts overfitting.

2.25. One hot Encoding

One-hot encoded vectors are high-dimensional and sparse. If we have 2000 classes to train and in the final

layer, a vector containing 2000 integers and 1999 are zero and as the network is trained with 2000 classes

then each class will possess 2000-dimensional vector for each output node and it is very computationally

expensive when it comes to the big dataset.

2.26. Embedding

Instead of using one hot encoding, we can specify the size of embedding matrix to keep how many

embedding values do we need to classify one class label for the classification purpose. Embedding values

are best-chosen values for each class label and, for the future unknown input, images can be classified by

measuring the distance from each class embedding values to the new image embedding values.

Embedding is generally a vector representation of an image in specific feature dimension space. If we

define an embedding vector of 128-dimension space. Then after several convolutions and max pool and

when it the comes to fully connected layer it will flatten the image matrix to the feature vector and convert

it to 128 sizes and this can be used to represent the input image in 128-dimensional space.

2.27. Batch Processing

Batch processing is a technique to process multiple numbers if images simultaneously in training. Most of

the CNN and other deep learning network architectures supports batch processing through tensorflow. But

it comes at a cost. Batch processing needs computing power to process and do mathematical computation

at once on huge size of matrixes. For an example, if you have 120x120 image and you have selected batch

size as 100 then the Deep Learning Networks will process the input as 100x120x120 simultaneously. For

that much of the memory and GPU units has to be placed to handle that number of mathematical operation.

 39

It is very efficient in calculating and updating the weight vectors. In backpropagation, weights associated

with each node get updated once in a batch rather than updating for every image as we process in

stochastic gradient descent algorithm.

 40

Chapter 3: Implementation

3. Implementation

Several experiments have been performed on face detection and recognition systems using deep learning

architectures. We have trained various deep learning architectures and implemented a system from the

scratch on deep learning model training, evaluation, testing, GUI modules for the application for real-life

testing. Following are the deep learning models have been considered for the face recognition system.

Followed by a detail explanation of our system.

• Convolutional Neural Network

• Inception 1b Model

• Inception 5b Model

• Embedding SVM Model

• FaceNet Out of the box functionality

3.1. Face Detection and Recognition System Experiment

This thesis concentration is on face detection and recognition task. This system primarily comprises of two

components, face detection component and face recognition component. Face detection component is

used to detect the faces in a video frame. DLIB and MTCNN face detectors are used in our application.

Face recognition component, for recognizing the faces those are already detected by the existing library as

mentioned earlier. For this component, FaceNet out of the box application features have been used along

with the newly trained deep learning models like CNN based classifier and Inception model classifiers for

face recognition. Following sections contains details explanations of our system.

Our task consisted of detecting and recognizing moving objects, specifically faces in the real world. This

also includes detecting and classifying moving objects in images using a camera, video and images. Moving

object detection using CNN is a highly complex and computational challenge and solving such advanced

problems requires 3 fundamental resources. First of all, hardware that will help us in performing

computationally challenging tasks. This means, a faster CPU and GPU (Graphical Processing Unit, e.g.

Nvidia GT 1080T) along with large amount of RAM (Random Access Memory). Our complete set-up of

GPU cluster is described in section 3.2. Secondly, software which would have a faster implementation, both

in terms of writing code as well as execution time, thus enabling us in training deep learning models. The

software we used for this project is explained in section 3.3. Lastly, data, which is a primary focus in any

 41

deep learning model training task. The data that are used for training and testing of deep neural network is

explained in section 3.5.

3.2. Hardware

It used to be very difficult for the researchers to train complex deep learning architectures earlier. However,

the evolution of GPUs and faster CPUs have enabled researchers to concentrate more in the area of deep

learning research. The training of various deep learning architectures with huge datasets requires intense

processing power, to satisfy that requirement a GPU cluster of 4 NVidia GX Titan 11 GB GPU, overall 45

GB of GPU memory has set up for training.

All training and testing were conducted on the Unix machine with "NVidia GX Titan" 45 GB cluster in the

Computer Science department at UTA. It has 4 GPUs allowing for extreme parallelization using multiple

cores. The main GPU is an NVidia GX Titan with 11GB RAM that allows us for preparing batch of images

at once. It can perform 1.4 TeraFLOPS (FLoating-points Operations Per Second) split over 2,880 CUDA

cores with a bandwidth of 288 GB/s. This high-end hardware setup allowed for rapid training and testing of

very large networks with thousands of images. Experiments that otherwise would have taken days or weeks

or even months could not be performed in a few hours or less. The hardware, therefore, played a crucial

role in conducting multiple experiments during the time of the thesis.

3.3. Software

Software also played a crucial role in this face detection and recognition system for training of various deep

learning architecture. All the detection & recognition APIs and architectures is explained in the following

sections. Software are considered because of its computational power, easy to use and of course it’s open

source category. Software that have been used is explained in table 1.

Table 1: Technology stack used in our system

Category Name Description

Operative system Ubuntu 14.0 Operating System used in Ubuntu 14.0

version

Programing language Python 3.6

 Anaconda, Conda

Deep Learning Library Tensorflow 1.4, 1.5, 1.6 Deep Learning library

 Keras Deep Learning library and tensorflow as

backend

 42

Math Library Numpy Numerical Library for python

 Scipy Numerical Library for python

 Scikit-learn Scientific Library for python. It has lot of other

functionality as in statistical modeling and ML

libraries.

Pre-Processing Tools

GUI Tools QtPy Interface Library

Image Tools ImageIO

Others pickle Pickle file preparation library and it has lots

of other functionality too.

 Dlib Face Detection library

 MTCNN Face Detection library

3.4. System Architecture

Face detection and recognition system have two major components

• GUI component

• Training component

Both the component's architecture is explained in the following sections

3.4.1. GUI component

GUI component is consisting of multiple modules such as GUI module, Commuter, Context. Each module

is designed in a modular fashion by their processing logic. Context module initialization happened at the

start of our application and stays till the end. This module possesses other modules instances like data

loader, pre-processing, post-processing, recognizer, detector module etc. Moreover, with the help of this

module, commuter module creates a process flow pipeline and prepares are communication channel

between the modules. Below system block diagram will explain the connectivity between the modules and

their dependencies.

 43

Figure 18: Face detection and recognition GUI system process flow diagram

All modules in the above block diagram are independent to each other, and GUI Commuter module creates

a process flow for those independent modules. The GUI Commuter modules and other functionalities are

explained in the section starting from 3.6.

3.4.2. Training component

The training component is as like the GUI component; however, the main difference is that the training

component does not have instances of some of the modules like the detector, GUI and recognizer as

explained in the previous GUI commuter process flow diagram. Each module related to training component

are explained in section 3.17.

 44

Figure 19: Face detection and recognition training system process flow diagram

Figure 19, shows the training module block diagram. It consists of a training commuter module which

creates a process flow for training and a training context module which possesses the instances of

supporting modules related to training process. All modules displayed in the above block diagram is

explained in the following sections.

3.5. Data

The most important aspect of any deep learning model training is data. Without that the training may not

be successful or the model would not be trained properly, or the loss function may not converge to a local

or global minimum. LFW face dataset is used for the training process with ~ 5000 face images. Those

images have captured in different lighting condition, different angle of rotation of face and with various facial

pose.

3.6. Modules

There are several components are designed in a modular fashion depending on their behavior and

responsibility. Each module is designed by keeping the scalability of our application too. This whole system

of face detection and recognition is going to be an open source software package and will be available on

 45

GitHub for further development and contribution. Following section contains details explanation on each of

the modules and their functionalities.

3.7. Commuter

Commuter is the core module, purpose of this module is to create different process flow and inter-module

communication channel such as training and user interface for real life face recognition task. Following are

the two types of commuter have been developed.

• Training Commuter

• GUI Commuter

3.7.1. Training Commuter

Training commuter is a placeholder for all the training related tasks and this is designed to handle set of

instruction specific to the training pipeline. This pipeline creates a process flow for training in which all the

modules related for training is connected to each other. For an example, loading configuration file, deep

learning architecture and preparing deep learning model for training, loading of data, preprocessing, and

post-processing are connected to each other to create a training process. Those module functions are

explained in the following sections.

Below block diagram (figure 20), shows the interaction of each module with other and the flow of information

between the modules through a face message.

Figure 20: Training commuter process flow block diagram

 46

3.7.2. GUI Commuter

GUI Commuter is as like as training commuter with small difference, is that it loads GUI modules rather

than training related module, such as GUI interface component, detector, and recognizer modules are not

required in training process. This module is used to create a face detection and recognition process flow

for real life testing. Following figure 21, explains the communication channel created by GUI commuter for

different modules to communicate for recognition task.

Figure 21: GUI Commuter process flow block diagram

3.8. Context

Context is the primary component of the system. It instantiates and possesses all the modules of the system

and make it available for above commuters, to prepare process flow for specific task like training and user

interface (GUI) for real life testing. Context creation is the first step of our application. The initialization of

the modules in the context will be decided upon the type of contexts is being created such as GUI context

or training context.

Figure 22: Training context module block diagram

 47

Figure 22, shows modules are instantiated in the training context. Like configuration, data loader, pre-

processing, augmentation, data splitter, deep learning model creation, training, and model freeze. All the

modules are explained in the following sections.

Figure 23: GUI context module block diagram

Figure 23, shows modules are instantiated in the GUI Context. Like Configuration, data loader, pre-

processing, face detector, face recognition, post processing and GUI module. All the modules are explained

in the following sections

3.9. Configuration

The primary purpose of this module is to load the application specific configuration JSON files into the

context. This configuration module’s instance is created in the context and later this instance is shared

among other modules to access their module specific configuration details. Following is a sample

configuration file, which has to be updated and maintained before the application starts.

{

 "image_depth":1,

 "training_data_type_info":"FR-FaceRecognition,OD-ObjectDetection",

 "training_data_type": "FR",

 "prepare_data_from_pickle_file": false,

 "pickle_data":{

 "images":"data/training_images.pickle",

 "labels":"data/training_label.pickle"

 },

 "pre_processing_required":false,

 48

 "raw_data_folder":{

 "images":"data/images/original",

 "labels":"data/labels"

 },

 "processed_data_folder":{

 "images":"data/images/processed120",

 "labels":"data/labels"

 },

 "model_file":{

 "restoration_model_required":false,

 "restore_model":{

 "model":"trained_model/nn_cnn/freeze_conv_net.pb",

 "model_graph":"trained_model/nn_cnn/freeze_conv_net_grpah.pb"

 }

 },

 "image_size":{

 "height": 120,

 "width": 120

 },

 "augmentation_required": true,

 "augmented_data_size": 100,

 "prepare_pickle_file": false,

 "train_method_info":"CNN,INCEPTION,SVM,KNN,CNN-SVM,CNN-KNN",

 "training_method":"CNN",

 "network_config_file":"configuration/nn_architecture/cnn_net.config",

 "classes" : "auto",

 "training_size_percentage":90,

 "random_shuffle":false,

 "data_separation":"NORMAL",

 "data_separation_info": "NORMAL, CROSS_VALIDATION"

}

 49

3.10. Data Loader

The main functionality of this module is to read and write data into the file system. Data Loader module is

instantiated and the instance of the module in available in the context prior to the training process. Following

is the configuration details required by the data module to load the data into the system.

"prepare_data_from_pickle_file": false,

"pickle_data":{

 "images":"data/training_images.pickle",

 "labels":"data/training_label.pickle"

},

"pre_processing_required":false,

"raw_data_folder":{

 "images":"data/images/original",

 "labels":"data/labels"

},

"processed_data_folder":{

 "images":"data/images/processed120",

 "labels":"data/labels"

},

If the “prepare_data_from_pickle_file = True” option is enabled, then the data will be loaded from the pickle

file instead of folder structure. And the pickle file details are mentioned in “pickle_data” option.

If the preprocessing is required to fetch the faces from the larger images the then following configuration

has to be pre_processing_required = True.

If all the above configurations are false, then the data for training will be loaded from the processed data

folder mentioned in processed_data_folder option.

3.11. Cropping of Face

This module’s primary function is to crop the face image from the larger image as shown in figure 24 where

a large image collected for training which has only one face in it and labeled. Face bounding box information

is required to crop faces from larger image. For, that DLIB and MTCNN libraries are used to find the face

bonding box information. These libraries output the face coordinates in the larger images. Using that face

information this module crops and stores those face images in the file system. Figure 25, shows the cropped

face image. Which will be later used in the training process for face recognition.

 50

Figure 24: Large data Images collected

Figure 25: After cropped face from large data image

Following are some of the example of cropped faces from large images and properly separated according

to the class labels for training.

3.12. Capture Faces

There is another module to capture the faces from a video content having persons face in it. In this case,

the cropping of faces happened from the camera frame or video frames in real time. The face detector is

used to detect the face in an image and those face images get stored in the directory, which will be used

later for the incremental training process. Dlib and MTCNN face detection libraries (Which will be explained

in the detector module section 3.18) are used for detection. This module is very helpful in terms of face

data collection.

 51

3.13. Pre-Processing

Crucial and important step in our training process is pre-processing. After the data is loaded into the system,

it flows through a set of pre-processing steps such as normalization, resize etc. The following section will

provide a brief explanation of the preprocessing steps.

3.13.1. Normalization

First step in the preprocessing module is to normalize the face images. Normalization can be achieved by

many ways. Following are the options available for the normalization process.

• Keeping the pixel values between -127 to 127

• Keeping the pixel values between -1 to 1

• Keeping the pixel values according to the Gaussian distribution

While keeping the pixel values of an image between -127 to 127. First the face images get converted to a

grayscale image for depth 1 training. This typically helps the deep neural network to learn faster, since

gradients act uniformly for each channel and scale your inputs in a way that resulted in similarly-ranged

feature values so that our gradients don't go out of control and overfit the model.

In addition to that, for RGB image training requires normalization of face image too. For this task the image

pixels are normalized by substation the mean pixel value from each and then divided upon the standard

deviation of image pixels. By this method of normalization images gets normalized by Gaussian distribution

of pixel values, which will be helpful in training process.

3.13.2. Resize

The second task of preprocessor is to resize the faces as per the input tensor needs in the deep neural

network training process. Images those are captured in the previous capture modules could be of any size.

This module resizes the face images before it gets passed to input tensor of the neural network. The resizing

parameters such as height and width details are declared in the application configuration file (app.config

file under configuration->application folder). Below is the sample configuration required by this module.

"image_size": {

 "height": 120,

 "width": 120

}

 52

3.13.3. Reshaping

Reshaping comes after the resizing process in the preprocessor; this functionality helps in reshaping of

face images as per the input tensor needs in deep learning architecture. Input tensor in tensorflow receives

the image data in the following format [batch, height, width, depth], batch considered as 1, while declaring

the input tensor, height and width as per the configuration which is by default 120x120 and the depth as 1

because of grayscale images. The depth parameter of input tensor can be changed according to the training

process for grayscale or RGB images.

3.14. Augmentation

Data augmentation is a crucial functionality for any deep learning architecture training. The sole purpose

for this module is to augment the data and increase the number of images, which is essential for neural

network training. Following are the augmentation properties affects the data augmentation process.

3.14.1. Rotation Angle

Rotation angle will help us in rotating the existing data set and create more rotated faces by 30 degrees we

have used in our application. Those configurations can be changed in augmentation module.

3.14.2. Width Shift Range

Width shift range will shift the image content to the specific range but the shifting of the pixel values to right

and left horizontally. Width shift range value used in this augmentation process is 0.2. however, this property

value can be changed at any time in the augmentation module, before starting the training process.

3.14.3. Height Shift Range

This is same as the width shift range, but the shift of pixel values occurs in the vertical direction. Height shift

range value used in this augmentation process is 0.2. however, this property value can be changed at any

time in the augmentation module, before starting the training process. This augmentation helps in training

of the faces, which are shifted a little from the center.

3.14.4. Shear Range

This option enables augmenter to shear the image from various angle and this augmentation helps in

training of the network for blurring effect in the faces. This shearing value used in this system is 0.1. We

 53

don't shear much, because the chance of finding feature will be minimized because of the higher blurring

effect. Which will be bad for the training of deep neural network training. This property value can be changed

at any time in the augmentation module, before starting the training process.

3.14.5. Zoom Range

The zoom range of 0.1 is used for augmenting the face images so that the network can be trained for the

bigger face images. This property value can be changed at any time in the augmentation module, before

starting the training process.

3.14.6. Horizontal and Vertical Flip

Horizontal flip functionality is used to create augmented face flipped horizontally and vertically as well. It

will help in the way that in the real world sometimes we stand in front of the camera and we flip ourselves

horizontally and vertically. This could help us in training those kinds of real-life scenarios. This property

value can be changed at any time in the augmentation module, before starting the training process.

3.15. Data Splitter

This module helps in splitting of the dataset into training, validation and testing set. Data Split will commence

after the augmentation process is complete. This data splitting process requires the percentage parameter

to split the dataset, which is declared in the configuration file with the property name

“training_size_percentage”. If this property’s value is set to 90 then the data split happens in 90% training

data, 5% validation data and 5% testing data. This property’s value has to be updated before training

process starts. Out of nearly 16000 of images generated for training after the augmentation process are

segregated into 90% is 14000 images are kept for training purpose and other 1000 will be for validation

and rest 1000 will be for the testing task.

3.16. Deep Learning Model Preparation

This is the core module of our training process. Which loads the neural network architecture JSON

configuration file into the system and prepare the tensorflow deep learning model layers like convolution,

max pool and fully connected layer, and binds the hyper-parameters to the model for the training. The

configuration JSON for the neural network architecture is detailed as follows,

 54

3.16.1. Hyper-parameter details:

The hyper-parameters are mentioned and declared in the configuration file under the key "training". Some

of the hyper-parameters are like batch size to be performed, learning rate to be used, optimizer, loss

function, regularization parameter and dropout percentage and the number of the class label has to be

trained. Following is the sample of the configuration file that used in one of our training processes.

"training":{

 "training_steps":1000,

 "batch_size":30,

 "learning_rate":0.001,

 "stopping_loss_threshold_from_previous": 0.5,

 "optimizer":"adam",

 "loss":"softmax_cross_entropy",

 "regularization_beta":0.01,

 "nn_input_size":"auto",

 "nn_output_size":"auto",

 "tensor_name":"auto",

 "class_label_no": 37

},

3.16.2. Model File Details:

Model file details section in the JSON configuration holds the details about the model to be freeze after the

training is over or the pre-trained model to be restored before training. Following is the example of the

model information.

"model_file":{

 "model_dir": "trained_model/nn_cnn",

 "model_name": "freeze_conv_net_120.pb",

 "model_graph":"freeze_conv_net_grpah_120.pb",

 "restoration_model_required":false,

 "restore_model":{

 "model":"trained_model/nn_cnn/freeze_conv_net_120.pb",

 "model_graph":"trained_model/nn_cnn/freeze_conv_net_grpah_120.pb"

 }

},

 55

In the above configuration, if the option restoration_model_required is set to True, in this case, before the

training starts, it will restore that pre-trained model instead of creating a new from scratch. If that option is

False, then a new neural network model will be created, and weight and biases are to be re-initialized by

random normal function to start the training process. After the training process completed, the model will

be saved as per the file name provided in the configuration option "model_name" under the directory

mentioned as "model_dir".

3.16.3. Image Size

Another configuration is image size, the width and the height in this configuration, will be used to resize an

image, and along with that, this will be used to declare the input tensor size of the neural network.

"image": {

 "width":120,

 "height":120,

 "resize_required":false
},

3.16.4. Deep Neural Network

This configuration provides the network architecture declaration. In which, all the layers like convolution

and max pool are declared in blocks of JSON string in sequence. And the network preparation module will

create the layers and automatically binds them in sequence. "deep_neural_network" is the key in the JSON

file which holds the network JSON configuration. This JSON configuration is designed to ease our process

of designing neural networks. Following is the sample JSON file configuration for the neural network and

followed by different blocks information used while declaring the network layers.

"deep_neural_network":[

 {

 "name": "conv0",

 "type": "conv",

 "filters": 32,

 "kernel": [3, 3],

 "strides": [1, 1],

 "padding": "SAME",

 "activation": "relu",

 "output":"120x120x32"

 56

 }

 […]]

3.16.5. Convolution layer configuration JSON block

{

 "name": "conv0",

 "type": "conv",

 "filters": 32,

 "kernel": [3, 3],

 "strides": [1, 1],

 "padding": "SAME",

 "activation": "relu"

}

In the above configuration, which is used to declare a convolution layer with relu as the activation function.

Properties are explained in detail as follows

Table 2: Convolution layer JSON configuration

Property Values and Description

name This property will be used to name the tensor that

will be created in tensorflow as per the layer

definition

type This property defines the type of layer in the neural

network for that block

filters This property depicts how many filters to be used

in a specific block of convolution in neural network.

kernel Kernel or filter size that will be used in the

convolution

strides This property will be used to declare the stride size

of the convolution

padding Declares the padding of the convolution

activation This help is declaration of activation for that layer

 57

3.16.6. Maxpool layer configuration JSON block

{

 "name": "maxpool0",

 "type": "maxpool",

 "pool_size": [2, 2],

 "strides": 2

}

In the above configuration, which is used to declare a maxpool layer for the neural network. Maxpool layer

properties are explained in detail as follows

Table 3: Maxpool layer JSON configuration

Property Values and Description

name This property will be used to name the tensor that

will be created in tensorflow as per the layer

definition

type This property defines the type of layer in the neural

network for that block

pool_size This property shows the pooling size of the max

pool layer.

strides This property will be used to declare the stride size

of the max pool layer

3.16.7. Flat layer configuration JSON block

{

 "name": "flat",

 "type": "flat",

 "output":"1x1x28800"

}

In the above configuration, which is used to declare a flat layer. Flat layer properties are explained in detail

as follows

 58

Table 4: Flat layer JSON configuration

Property Values and Description

name This property will be used to name the tensor that

will be created in tensorflow as per the layer

definition

type This property defines the type of layer in the neural

network for that block

3.16.8. Dense layer configuration JSON block

{

 "name": "dense0",

 "type": "dense",

 "activation": "relu",

 "units": 1024

}

In the above configuration, which is used to declare a dense layer. Dense layer properties are explained in

detail as follows

Table 5: Dense layer JSON configuration

Property Values and Description

name This property will be used to name the tensor that

will be created in tensorflow as per the layer

definition

type This property defines the type of layer in the neural

network for that block

activation This help is declaration of activation for that layer

units This property is the output of that layer.

3.16.9. Inception layer configuration JSON block

Inception layer same as that of the convolution or max pool layer as per the configuration but the main

difference is that the blocks have to declare in parallel. The following design will show who to align the

blocks in parallel in JSON file.

 59

{

 "name": "inception_1a",

 "type": "inception",

 "block": [[{Convolution Block}], [{Convolution Block}, {Convolution Block}], […], […]]

}

Table 6: Inception layer JSON configuration

Property Values and Description

name This property will be used to name the tensor that

will be created in tensorflow as per the layer

definition of inception layer

Under the inception layer, there will be many

convolution and max pool layers. All the layers

below inception block will be named prefix with this

name property of inception layer.

Ex: in inside inception block named as

"inception_1a", if we have one convolution block

with the name as "conv0" the conv0 name will be

changed to "inception_1a_conv0"

type This property defines the type of layer in the neural

network for that block of inception layer

block This property shows the inception blocks. As you

can see, this a list of lists.

Each parallel unit will be declared in a list

containing that layer’s information and then all the

parallel unit will be put together in another list. So

that in this way we can create a parallel layer

configuration in JSON for the network creation.

 60

3.16.10. Output layer configuration JSON block

Output layer is the final dense layer of the network, which will be used to classify the different class.

Following are the configuration details in the JSON file.

{

 "name": "output",

 "type": "output",

 "units": 37

}

Table 7: Output layer JSON configuration

Property Values and Description

name This property will be used to name the tensor that

will be created in tensorflow as per the layer

definition

type This property defines the type of layer in the neural

network for that block

units This property is the number of classes information

for the classification.

3.17. Training

In this thesis, various deep learning architecture designed, trained and compared the result with the existing

FaceNet system, which is trained over our dataset. Following are the deep learning architecture have been

considered for the training. Following sections consists of detail explanation of architecture and training

process of each model.

• CNN Model

• Inception 1b model

• Inception 5b Model

• Embedding SVM Model [CNN as feature / embedding extractor]

• FaceNet Training

 61

3.17.1. CNN Model Training

Convolutional Neural Network, the basic model used for object detection and recognition. Carried out some

research to understand the feature extraction and classification using CNN. The following section will be

explained in detail about the implementation of CNN architecture that we have used in the system and

model training. [3]

Description
Convolutional Neural Network is used heavily for the object detection now a day. We have designed our

own CNN architecture model to train from scratch for our face recognition system.

Architecture:

Figure 26: CNN architecture model diagram

Figure 22, shows the architecture of CNN, and each layer's input, output, and responsibilities are explained

in detail as follows

First Layer is the input layer (input tensor), which will accept the input images in batch for the training to go

through. The size of the tensor decided upon the input configuration provided before the training starts in

the input height and width section of configuration file. However, for our training, we have used the shape

of the 120x120x1 image, and input tensor shape would be 1x120x120x1 [batch, height, width, depth].

The second layer is the convolution layer, in which filter size we have kept is of 3x3, with 32 filters and

stride is of 1x1 and padding as SAME. The output of the second layer is 120x120x32 (32 being the number

of the filtered has been used for the convolution).

The third layer is relu activation layer, which will accept the input size of 120x120x32, and apply relu

activation function on each weight vector and output produced is of the same size.

 62

The fourth layer is the max pooling layer, of filter size of 2x2 and stride, is of 2x2. To make the input size of

the image to be reduced by half in the max pooling layer. The input to the layer is 120x120x32 and output

of the layer is 60x60x32. As we are not changing the number of filters in max pooling layer, so it won't have

any effect on the number of channels we have used to the output.

The fifth layer is the second convolution layer, with 3x3 size filter and the number of filters used is 64 as

per the processing standards with a stride of 1x1. The input to the layer is 60x60x32 and the output of the

layer is 60x60x64 as this number of channel is changed from 32 to 64 depends upon the number of filters

we have used in the fifth layer.

The sixth layer is again a relu layer applied after the second convolution layer as an activation function.

Input size to the relu layer is 60x60x64 and the output from the layer is 60x60x64.

The seventh layer being a max pool layer we again reduced the size of the input to the layer by half again

to get the feature again fine-grained further. With stride 2x2 and filter size of 2x2. The input to the layer is

60x60x64 and the output is 30x30x64.

The eighth layer is a convolution layer which has input as per the previous layer's output as 30x30x64, we

have applied 3x3 filter size of 128 filters, which will find the local features in the 64 channels and in 30x30

feature size. The input to the layer is 30x30x64 and output of the layer is 30x30x128 because if 128 numbers

of filters.

The ninth layer is a max pool layer which has input as per the previous layer's output as 30x30x128, we

have applied 2x2 pooling filter size, which will reduce the feature size to 15x15x128. Which is the input to

the next layer?

After the Ninth layer, we have decided to stop because we have reached the size of 15x15 feature size and

we applied a flattened relu layer. In this layer will flatten our input features to 28800 number of nodes by

the calculation of 15*15*128 (28800) and it will be feed to the next layer which is a final connected layer.

In the tenth layer, we have applied the final connected layer, in which the input from the previous flattened

relu layer being converted to 512 feature vectors from 28800 feature vectors.

In the eleventh layer, we applied again a fully connected layer which in turn convert the input feature vector

from 512 to the number of classes got into the training phase as in 37 class labels.

 63

After the last fully connected layer, we applied the cross-entropy softmax loss function and Adam optimizer

to train our CNN model network for the classification. At the last layer, we have softmax to get the probability

of class prediction for all the class labels to find the validation accuracy and to minimize the loss function.

Training
All parts of the CNN deep neural network have been trained with error back-propagation using stochastic

gradient descent as the optimizer. This optimizer can be changed in the configuration file before training

starts. The hyper-parameters those we have used are like, batch size is 24. This means that during training

a batch of 24 images are feed-forwarded through the network until each of the images has been trained or

classified to one of the possible classes with the networks current weights. Then every image classification

is compared to the ground-truth for that image. Then the error will be calculated if the prediction is same as

the ground truth then back-propagated along the network changing the weights one by one in the direction

that would minimize the error, also known as the steepest gradient descent.

The amount of training data plays a huge role in the performance of CNN. When training a network from

scratch, a few thousand annotated images will not be enough. We have seen with the lesser number of the

images the accuracy is not enough as compared to the larger dataset. One needs tens of thousands or

hundreds of thousands, preferably millions of images. This amount of annotated data is hard to come by;

As per of student dataset we have used for training with over a 2500 annotated image with over 37 classes.

Our training involved from scratch, pre-training modes have not considered for this architecture. However,

there are other models for which the pre-trained network has been used to train on our dataset. Which will

be explained later in the section.

While in training, we kept 1000 epochs for training before we validate the accuracy on the validation set in

each epoch and get the loss and to decide for an early stop to avoid the overfitting.

 64

3.17.2. Inception 1b Model

Inception model, that we have trained on 120x120 face images using one inception layer. Following

sections will provide insight into the inception 1b model architecture and training.

Description
This is simple, inception model having one inception stack. The inception stack has three convolutions and

one max pool with convolution in parallel and concatenates the resulting feature maps from the parallel

layers before going to the next layer.

Now let's assume the next layer is also an Inception layer. Then each of the convoluted feature maps will

be passed through the mixture of convolutions again and so forth, If the network has multiple inception

layers stacked to each other. The idea is we don't need to know ahead of time that there was a better

chance of finding best feature in the layers of convolution as, a 3×3 then a 5×5 convolution. Instead, this

model applies parallel convolution and maxpool and automatically pick the best feature for the model

training.

In this model a variety of convolutions is used; specifically, 1×1, 3×3, and 5×5 convolutions along with a

3×3 max pooling. If you're wondering what the use of max pooling layer with all the other convolutions, is

that pooling is added to the Inception layer for the feature reduction as all the network design has at least

one pooling layer. The larger convolutions are more computationally expensive, so the paper suggests first

doing a 1×1 convolution reducing the dimensionality of its feature map, passing the resulting feature map

through a relu layer, and then performs a larger convolution (in this case, 5×5 or 3×3). The 1×1 convolution

is key because it will be used to reduce the dimensionality of its feature map.

It's also designed to be computationally efficient, using 12x fewer parameters than other competitors,

allowing Inception to be used on less-powerful systems.

 65

Architecture

Figure 27: Inception 1b architecture diagram

First Layer is the input layer (input tensor), which will accept the input images in batch for the training to go

through. The size of the tensor decided upon the input configuration provided before the training starts in

the input height and width section of configuration file. However, for our training, we have used the shape

of the 120x120x1 image, and input tensor shape would be 1x120x120x1 [batch, height, width, depth].

The second layer is the convolution layer, in which filter size we have kept is of 3x3, with 32 filters and

stride is of 1x1 and padding as SAME. The output of the second layer is 120x120x32 (32 being the number

of the filtered has been used for the convolution).

The third layer is relu activation layer, which will accept the input size of 120x120x32, and apply relu

activation function on each weight vector and output produced is of the same size.

The fourth layer is the max pooling layer, of filter size of 2x2 and stride, is of 2x2. To make the input size of

the image to be reduced by half in the max pooling layer. The input to the layer is 120x120x32 and output

of the layer is 60x60x32. As we are not changing the number of filters in max pooling layer, so it won't have

any effect on the number of the channels we have used to the output.

The fifth layer is the second convolution layer, with 3x3 size filter and the number of filters used is 64 as

per the processing standards with a stride of 1x1. The input to the layer is 60x60x32 and the output of the

layer is 60x60x64 as this number of channel is changed from 32 to 64 depends upon the number of filters

we have used in the fifth layer.

 66

The sixth layer is the inception layer, here we have used the dimensionality reduction inception model,

which is different than the usual state of art inception model. In this inception layer, we have 4 parallel

processing and one concatenation layer. Among 4 parallel layers, the first layer holds the 1x1 convolution

with stride 1x1, the output is the same as input and it will find the feature map. Second, it comes to

dimension reduction, in this second parallel layer, we have two sequential convolutions one with 1x1

convolution and the second one with 3x3 convolution. In the third parallel layer is also a dimension reduction

layer, we have one 1x1 convolution followed by a 5x5 convolution and the final parallel layer has 1x1

convolution with a max pool layer and the all the parallel layers are connected to a concatenation layer.

Which will concatenate and feature maps and keep the all the feature maps and removed the duplicate

ones?

The seventh layer being a max pool layer, we again reduced the size of the input to the layer by half again

to get the feature again fine-grained further. With stride 2x2 and filter size of 2x2. The input to the layer is

60x60x64 and the output is 30x30x64.

The eighth layer is a convolution layer which has input as per the previous layer's output as 30x30x64, we

have applied 3x3 filter size of 128 filters, which will find the local features in the 64 channels and in 30x30

feature size. The input to the layer is 30x30x64 and output of the layer is 30x30x128 because if 128 numbers

of filters.

The ninth layer is a max pool layer which has input as per the previous layer's output as 30x30x128, we

have applied 2x2 pooling filter size, which will reduce the feature size to 15x15x128. Which is the input to

the next layer?

After the ninth layer, we have decided to stop because we have reached the size of 30x30 feature size and

we applied a flattened relu layer. In this layer will flatten our input features to 28800 number of nodes by

the calculation of 15*15*128 (28800) and it will be feed to the next layer which is a final connected layer.

In the tenth layer, we have applied the final connected layer, in which the input from the previous flattened

relu layer being converted to 512 feature vectors from 28800 feature vectors.

In the eleventh layer, we applied again a fully connected layer which in turn convert the input feature vector

from 512 to the number of classes got into the training phase as in 37 class labels.

After the last fully connected layer, we applied the cross-entropy softmax loss function and Adam optimizer

to train our Inception 1b model network for the classification. At the last layer, we have softmax to get the

 67

probability of class prediction for all the class labels to find the validation accuracy and to minimize the loss

function.

3.17.3. Inception 5b Model

This is the very complex architecture of training a deep learning network. We have 5 inception layers before

we classify the images. Images have to go through the 5-inception layer and computation wise this the

heaviest model to train. Following sections contains architecture and training of inception 5b model in

details.

Description
This is very deep inception layer for the training of face recognition system. Earlier we have seen the

inception model for only 1 layer having 4 parallel convolutions and max pool and concatenation layer before

passing it on to the next layer. However here, we have five inception layers as described in next architecture

section.

Architecture
Here we have five inception layers connected to each other and each inception layer has 4 parallel blocks.

Following architecture, the diagram shows the 5b inception model architecture.

Figure 28: Inception 5b architecture model diagram

First Layer is the input layer (input tensor), which will accept the input images in batch for the training to go

through. The size of the tensor decided upon the input configuration provided before the training starts in

the input height and width section of configuration file. However, for our training, we have used the shape

of the 120x120x1 image, and input tensor shape would be 1x120x120x1 [batch, height, width, depth].

 68

The second layer is the convolution layer, in which filter size we have kept is of 3x3, with 32 filters and

stride is of 1x1 and padding as SAME. The output of the second layer is 120x120x32 (32 being the number

of the filtered has been used for the convolution).

The third layer is relu activation layer, which will accept the input size of 120x120x32, and apply relu

activation function on each weight vector and output produced is of the same size.

The fourth layer is the max pooling layer, of filter size of 2x2 and stride, is of 2x2. To make the input size of

the image to be reduced by half in the max pooling layer. The input to the layer is 120x120x32 and output

of the layer is 60x60x32. As we are not changing the number of filters in max pooling layer, so it won't have

any effect on the number of the channels we have used to the output.

The fifth layer is the second convolution layer, with 3x3 size filter and the number of filters used is 64 as

per the processing standards with a stride of 1x1. The input to the layer is 60x60x32 and the output of the

layer is 60x60x64 as this number of channel is changed from 32 to 64 depends upon the number of filters

we have used in the fifth layer.

The sixth layer is the inception layer, here we have used the dimensionality reduction inception model,

which is different than the usual state of art inception model. In this inception layer, we have 4 parallel

processing and one concatenation layer. Among 4 parallel layers, the first layer holds the 1x1 convolution

with stride 1x1, the output is the same as input and it will find the feature map. Second, it comes to

dimension reduction, in this second parallel layer, we have two sequential convolutions one with 1x1

convolution and the second one with 3x3 convolution. In the third parallel layer is also a dimension reduction

layer, we have one 1x1 convolution followed by a 5x5 convolution and the final parallel layer has 1x1

convolution with a max pool layer and the all the parallel layers are connected to a concatenation layer.

Which will concatenate and feature maps and keep the all the feature maps and removed the duplicate

ones?

From 7th to 10th layers, are the inception layers, as mentioned earlier. Each having same inception block

architecture of dimensionality reduction inception model as per the sixth layer.

The eleventh layer being a max pool layer we again reduced the size of the input to the layer by half again

to get the feature again fine-grained further. With stride 2x2 and filter size of 2x2. The input to the layer is

60x60x64 and the output is 30x30x64.

The twelfth layer is a convolution layer which has input as per the previous layer's output as 30x30x64, we

have applied 3x3 filter size of 128 filters, which will find the local features in the 64 channels and in 30x30

 69

feature size. The input to the layer is 30x30x64 and output of the layer is 30x30x128 because if 128 numbers

of filters.

The thirteenth layer is a max pool layer which has input as per the previous layer's output as 30x30x128,

we have applied 2x2 pooling filter size, which will reduce the feature size to 15x15x128. Which is the input

to the next layer?

After the Thirteenth layer, we have decided to stop because we have reached the size of 30x30 feature

size and we applied a flattened relu layer. In this layer will flatten our input features to 28800 number of

nodes by the calculation of 15*15*128 (28800) and it will be feed to the next layer which is a final connected

layer.

In the tenth layer, we have applied the final connected layer, in which the input from the previous flattened

relu layer being converted to 512 feature vectors from 28800 feature vectors.

In the fourteenth layer, we have applied the final connected layer, in which the input from the previous

flattened relu layer being converted to 128 feature vectors from 28800 feature vectors.

In the fifteenth layer, we applied again a fully connected layer which in turn convert the input feature vector

from 128 to the number of classes got into the training phase as in 37 class labels.

After the last fully connected layer, we applied the cross-entropy softmax loss function and Adam optimizer

to train our Inception 1b model network for the classification. At the last layer, we have softmax to get the

probability of class prediction for all the class labels to find the validation accuracy and to minimize the loss

function.

Training
This training is same as the above-mentioned steps, but the difference is the image has to go through the

5 layers of inception blocks before it classifies the image passed to the network. We have seen the fall of

the loss function is faster as compared to the above two models and smooth. All the results and analysis

will be explained in section 4.

 70

3.17.4. SMV Classifier

Support Vector Machine is the simplest and time-consuming Machine Learning state of art classification

model when the data is more. Following sections will explain, how the SVM is used to train the model on

our dataset in detail.

Description
Support Vector Machines (SVMs) is a binary feedforward neural network that can be used for pattern

classification given both linearly and non-linearly separable data. Given the simplest scenario with two

classes that are linearly separable the main idea of SVMs can be summarized as "Given a training sample,

the support vector machine constructs a hyperplane as the decision surface in such a way that the margin

of separation between positive and negative examples is maximized." We have used the radial basis

function in SVM for training. Radial basis function provides non-linearity to the data, so this is very useful

for us in this kind of training.

Architecture
Here the architecture is very simple as compared to the previous models. SVM requires feature vectors so

that it can construct the hyperplanes to separate each class features for classification. The feature vector

is of 128-embedding data extracted from the final layer of Inception 5b model. Those 128-embedding data

used to train the SVM with RBF function along with the beta as 0.001 and C as 1. we have used the Scikit-

learn SVM trainer to train our SVM model. Figure 25, shows the architecture of SVM model.

Figure 29: SVM Model for face image classifier architecture diagram

Training
The first thing is to load a pre-trained network which provides 128 embedding feature vectors. In the first

method, the final classification layer is removed from the pre-trained model and then the images are sent

through the network and the 12-embedding features are recorded along with the class labels. Feature

vectors generated from the training images are then used to train a Support Vector Machine (SVM)

classifier. This classifier is adapted specifically to our training data since the feature vectors generated from

the feature extraction are high-level representations of our images.

Evaluation of the SVM classifier is simple, we use our feature vectors from the test images and run them

through the SVM. It will then predict which class each of the images they belong to or provide a probability

 71

estimate of which class it belongs to. This relatively simple method has proven itself by providing

outstanding results.

3.18. Detector

This module’s function is to detect a face in the given frame. This Module is independent as like other

modules. The module architecture is as follows.

Figure 30: Detector module block diagram

The input to the modules in the image in which faces has to be detected and type of detection method to

be used for face detection. This module is very scalable if we would like to add a new detection library, we

just have to create an underlying module structure as defined above. The output of the detection module is

the list of face object which holds the face image and the bounding box of the face image relative to the

original image passed to the detector module. Each component of this module is explained in detail in the

following sections.

 72

3.18.1. Method and Implementation

Face Detection has been used so many places right now and now a day. In addition to that MTCNN and

DLIB library are used to detect the faces as primary module, with all the kind of face detection technology

and try to improve the accuracy of the face detection from the recognition standpoint.

3.18.2. DLIB Library

Dlib is an open source API. It has many functions, but we have used the face detection function out of it.

And created a wrapper around the Dlib so that it will handle the preprocessing and post-processing steps

before it creates the list of face objects and passes it to other modules in the pipeline of face detection and

recognition system. [1]

3.18.3. MTCNN Library

MTCNN is the multi-task cascaded convolutional network, is an open source library designed and published

by Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, Yu Qiao. Which is a Face detection and alignment in an

unconstrained environment? This has various challenging due to various poses, illuminations, and

occlusions around the faces in the image frame. However, this performs better than the Dlib 19.4 version.

[2]

3.18.4. Post-processing of Detector

We have implemented a naïve approach in the post processing module of our application. Usually detector

detects the faces in an image and passes it to recognizer module (section 3.1.5.16). It does not rotate the

face as in, if the face is tilted with 30 degree it will pass the tilted face image to the recognizer, and we have

seen a performance issue. So, to avoid the rotated issue, in the post processing section of detector, we

have implemented an anti-rotation functionality. This anti-rotation functionality rotates the face in opposite

direction of face rotation and makes the face vertically straight before it passes it to the recognizer. And we

have seen some improvement over the application of anti-rotation.

This anti-rotation has problem in padding of pixel values. If we rotate a face image of the size 120x120x3,

then after the rotation, the corner of the face image has black area, which is not good for neural network.

 73

So, we have added some padding before rotation and then rotate and after the rotation we have performed

a crop operation if rotated image to get the straight face without black area.

3.18.5. Anti-rotation of Face without padding

Figure 31: Tilted face detected

Figure 32: Anti-rotation on tilted face

with black corners

Figure 33: Cropped face after anti-

rotation

Above pictures shows, in figure 27, the face is detected as tilted and in figure 28 we have performed an

anti-rotation of face in the opposite direction of persons movement and in figure 29 it shows the cropped

face without the back corners which will be the input to the neural network. In this scenario the features of

a person get damaged by cropping and anti-rotation. To Solve this problem, we have taken an approach to

add padding before the anti-rotation.

3.18.6. Anti-rotation of face with padding

Figure 34: Face detected with

padding 20

Figure 35: Anti-rotation on image

padded with 20 pixels

Figure 36: After cropping of anti-

rotated image with padding 20

Above pictures shows, in figure 30, the face is detected as tilted but with padding of 20 and in figure 31 we

have performed an anti-rotation of face in the opposite direction of persons movement and in figure 32 it

shows the cropped face without the back corners which will be the input to the neural network. In this

scenario the features of a person did not get damaged by cropping and anti-rotation as compared to the

previous without padding.

 74

3.19. Recognizer

This module is also an independent and wrapper module is our system and it has many recognizers inside

it wrapped inside one single recognizer module. CNN recognizer, FaceNet, Inception model recognizer

module and SVM model recognizer are considered for the recognition components. Below is the recognizer

module architecture.

Figure 37: Recognizer module wrapper architecture

The input to the recognizer is the list of face objects those are detected by the detector module so that this

module could process the faces detected and recognize the faces of the persons trained. And the output

of the module is the list of faces recognized by the recognizer.

Each of the recognizer modules inside the recognizer wrapper is independent of each other. Each module

inside the recognizer has their own preprocessing and post-processing components depending on their

implementation. In future, if anyone would like to add new recognizer, they have to add a separate module

with preprocessing, recognizer and post-processing and register to the existing recognizer wrapper module.

Recognizer module each component will be explained in the following sections.

 75

3.19.1. Method and Implementation

Various components have been designed and implemented for the face recognition system, the following

are the face recognition components have been used independently

• CNN Model Recognizer

• Inception 1b Model Recognizer

• Inception 5b Model Recognizer

• SVM-Embedding Model Classifier Recognizer

• FaceNet Recognizer

All of the above recognizer modules and their usage have been explained in detail in the following sections

and as we have already mentioned each recognizer component has their own preprocessing and post-

processing component in regardless of recognizer component. Following are the preprocessing steps those

are part of preprocessing steps and post-processing steps.

3.19.2. FaceNet

As FaceNet does not support the recognition functionality for image size below 160x160 height and width.

So, in the preprocessing step in the FaceNet component, we have filtered those faces which do not have

160x160 size.

In the FaceNet post-processing component, we have taken the faces and their predictions from the FaceNet

and prepared the face objects so that our system could understand the message being flown to the

subsequent module in the system.

3.19.3. CNN Model, SVM & Inception 1b and 5b Model

As above models are concerned, there is some more task has to be done in the preprocessing step before

we pass the face image to the deep neural network for the recognition. First, we normalize the face pixel

values from -127 to 127, then resize the face to 120x120 so that the reshape component can reshape the

face images to the 1x120x120x1 dimension so that this can be processed by our own designed deep

learning models. In the post-processing step, we just accumulate the al the face recognition and prediction

 76

output from the neural network and prepare the face object so that it can be passed to the subsequent

modules.

3.20. Pre-Processing

Pre-Processing being the first layer as such in the deep learning feature extraction process from deep

learning architectural point of view for the unseen data. In this layer, the data will be converted to the

appropriate shape so that it can be fed to the neural network for the feature extraction. Without that the

neural network may throw an exception for undetected data format giving to the network. Several pre-

processing tasks is done before our deep learning layers accept the input, the following is the task done

and explained in detail.

3.20.1. Normalization

Normalization is the pre-processing task in which, we normalize the input image so that the mathematical

calculation stays in the limit and don't go into the overfitting step. I have normalized each face image pixel

values to be constrained into -127 to 127-pixel value. Because of its Gaussian nature of pixel value

distribution and keeping the pixel value between that to handle the

3.20.2. Resizing

Resizing the images is very important from the neural network standpoint so that the network can handle

the proper input size and dimensionality of the input data. I have used 120x120 pixel image format that can

be feed into the neural network. It can be changed at any time however it depends on the training process

and how the training has been carried out with how many dimensions of the image for the feature extraction.

If we provide the image of 200x170 it will be resized to 120x120 dimension, it may reduce the feature

extraction and loses some of its property however it does not matter a lot because that way I have designed

the neural network to handle the feature extraction is to the sheering and resizing of the face.

3.20.3. Reshaping

Reshaping is required by the preprocessor because of the nature of handling the input by the tensorflow, it

requires the input image should be proper shape before it enters into the first layer. The shape of the image

depends on the batch size, height, width, depth of the image. So as per my training process, I have used

various batch size but the height and width as of 120x120 and depth of the image to be 1 because I have

converted the image to the grayscale image before pushing it for feature extraction.

 77

3.21. Post Processing

The last but previous module in our system is the post-processing module, which comprises of various

tasks to be handled before it can be viewed by the users. Following are the post-processing task those are

designed for our system.

3.21.1. Accumulator

Post-processing accumulator is implemented to store the past recognized faces for the future prediction.

An accumulator is an object that stores the previously recognized data as per the accumulator size defined

for the post-processing. When the accumulator gets full then its takes maximum occurrence of faces being

recognized and on the basis of the maximum vote, it will predict the face. For an example, If the accumulator

size is defined as 15. In this case, accumulator stores the recognized faces for 15 frames and at the 16th

frame, it starts the prediction. On the 17th frame, the first recognized face from the accumulator is deleted

and a 17th frame recognition details get appended to the accumulator and so on. Example of the

accumulator size 10

Figure 38: Accumulator of size 10

In the above accumulator example of size 10, it has 10 positions where the recognized faces get stored for

initial 10 frames before it predicts. On the 11th frame. Accumulator gives a voting of all the accumulated

faces for last 10 frames. As per the example above

 This face gets 8/10 vote, which is the face we have in all the frames

 This face gets 2/10 vote which is the incorrect recognition

 78

3.21.2. Weighted Accumulator

Figure 39: Weighted accumulator example

In the above accumulator example of size 10, it has 10 positions where the recognized faces get stored for

initial 10 frames before it predicts for the current recognized frame. On the 11th frame. Accumulator gives a

voting of all the accumulated faces for last 10 frames on their weighted sum over each face accumulated.

As per the example above

 This face gets weighted sum of probabilities 7.2, which is the face we have in all the frames

 This face gets 1.8, which is the incorrect recognition

3.21.3. Overlay of Bounding Box

As the recognizer and detector, detects and recognized the face and prepared the face object. It has

bounding box information, face image and original frame with the prediction details.

To display the bounding box around the face in the original frame, so that the user can see the bounding

box around the face, this module adds an overlay in the original frame at the specific position mentioned in

the face object on the image and draws the bounding box. Which after that can be displayed in the GUI, so

that user could able to see the bounding box information on the screen.

3.21.4. Prediction Details enhancement

Face object prepared in the previous recognition module has the prediction probability details from the

softmax layer of the neural network. In this section, we process to find out the top 5 predictions made of the

 79

given face by taking top 5 probabilities from the 37-probability values from the last layer of the neural

network or the SVM predictor.

After we have finalized the top 5 probabilities, the system assigns a label according to the probability index.

Those indices are stored in a mapping pickle file before we started our training process. That mapping

pickle file has the mapping of the label to the output node index. For example, node 0 in the output layer

mapped to a specific label X10 and node 1 might get mapped to label X34, because we don't decide the

mapping process, because of that we have kept a mapping of pickle file of those class label to node index

mapping.

3.22. GUI

The last module in our system is the GUI module, we have used the PYQT framework to design the GUI

module. It has many components regarding our system and how user-friendly the system would be for face

detection and recognition system. Following are the components we have designed in the GUI module.

3.22.1. Camera QT Frame

Camera frame is a PYQT frame, which is designed to display the camera captured frame and processed

frame after the bounding box has been drawn on the original frame after the face gets recognized. This just

acts as the display of images captured from the camera in real time.

3.22.2. Toolbar QT Frame

This holds the basic button and functionality selection options, through which we can change the whole

system options. Such as displaying the camera frame without recognition, recognize the faces in frames

read from the camera or video file. We could able to change the source of the videos from setting window.

And after we select the type of action, we would like to perform, then by clicking the start button, we could

start the specific function of real-world testing. E.g. Just display the frame read from video or camera or

start to capture the faces from the frames or start the recognition system to recognize the persons.

3.22.3. Recognition System Flow QT Frame

This advanced setting is a QT frame, has many options and options in our system. Like we can change,

which face detector and recognizer to be used and how many predictions we would like to see in the GUI

for a recognized face.

 80

While capturing the face images from the frame, which face has to be captured, is this near to the camera

or all faces those are detected in the current frame read from the camera or video file.

By the help of the number of recognition setting, we could able to decide how many persons we would like

to recognize. This preference has 1 to 5 and all. Depending on the number of selection, the system will

decide how my face has to go through the recognition process.

There is another preference for capturing report of our recognition activity. This report capturing functionality

can be turned on but selection the Capture Video Analysis option to Yes. After the process gets stopped, a

video analysis report pickle file gets stored in the specific recognizer module folder under result directory.

3.22.4. Prediction QT Frame

Which displays the predicted face images, after a person gets recognized successfully. So, that the user

can easily visualize the recognized person by seeing the predicted faces.

It's a setting in the advance setting frame, that how many predicted faces that user would like to display in

the prediction frame. This preference can be changed from the advance setting frame labeled as "Number

of Predictions".

 81

Chapter 4: Experiment

4. Experiments

We have carried out several experiments on the CNN and Inception 1b, 5b and SVM model along with the

FaceNet model and compared the results of each model with another. Following are the statistics of our

result analyzed from the training. All the experimentation and result and graphs will be explained in detail

in following sections.

4.1. Data

Out of whole dataset collected for training of deep learning models, 90% of those data considered for

training set, 5% is considered for the validation set and the rest is taken as testing set. Validation dataset

is used to calculate the validation accuracy of the model in each epoch of training. While testing dataset is

used to find the model final accuracy before freeze the model for future use.

4.2. Data Augmentation Details

Below statistics shows, the information about the data collected per class label. This statistic is taken before

the data get augmented for training.

Figure 40: Class Label wise data distribution before Augmentation

Below statistics shows, after the data augmentation completed per class label.

 82

Figure 41: Class label wise data distribution After Augmentation

4.3. Result

4.3.1. Testing Accuracy for gray scale images of Depth 1

Our CNN testing accuracy is 90%.

Inception 1b outperform CNN with the accuracy of 91%.

Inception 5b even outperform Inception 1b with the accuracy of 92%.

SVM model trained over Inception 5b embedding detail accuracy is of 89%.

FaceNet accuracy is of 89% in our dataset.

Our SVM model trained over FaceNet embedding details which gives us testing accuracy of 77%.

4.3.2. Testing Accuracy for RGB images of Depth 3

Our CNN testing accuracy is 80%.

Inception 1b outperform CNN with the accuracy of 84%.

Inception 5b even outperform Inception 1b with the accuracy of 80%.

SVM model trained over Inception 5b embedding detail accuracy is of 77%.

FaceNet testing accuracy is of 79%.

Our SVM model trained over FaceNet embedding details which gives us testing accuracy of 76%.

When we have tested with the sample videos of unknown but labeled dataset, we have observer the

following information.

 83

4.4. Comparison without accumulator

Following analysis is carried out for all the models and represented in tabular format. This analysis is done for down samples images by factor 4,

which reduces the size of frames by quarter before starts the recognition.

4.4.1. CNN Model

Following are the statistics of unlabeled and unseen dataset tested through CNN model.

Table 8: CNN model video analysis statistics

Video Number Labeled With Number of total

Frame

Face Detected

in Number of
Frame

Face Recognized

in Number of
Frame

Correct Number of

Recognition

Incorrect Number of

Recognition

Video1 X4 245 219 219 86 133

Video2 X3 219 203 197 71 126

Video3 X31 362 316 311 301 10

Video4 X4 511 465 465 445 20

Video5 X4 327 181 181 70 111

 84

4.4.2. Inception 1b

Following are the statistics of unlabeled and unseen dataset tested through Inception 1b model.

Table 9: Inception 1b model video analysis statistics

Video Number Labeled With Number of total

Frame

Face Detected

in Number of

Frame

Face Recognized

in Number of

Frame

Correct Number of

Recognition

Incorrect Number of

Recognition

Video1 X4 245 219 219 55 164

Video2 X3 221 205 199 22 177

Video3 X31 309 309 303 302 1

Video4 X4 504 466 465 463 2

Video5 X4 264 147 147 49 98

4.4.3. SVM – Inception 5b Embedding

Following are the statistics of unlabeled and unseen dataset tested through SVM and Inception5b embedding model.

Table 10: SVM model with inception 5b embedding video analysis statistics

Video Number Labeled With Number of total

Frame

Face Detected

in Number of

Frame

Face Recognized

in Number of

Frame

Correct Number of

Recognition

Incorrect Number of

Recognition

Video1 X4 245 220 219 34 185

Video2 X3 229 213 208 0 208

Video3 X31 326 316 310 303 7

Video4 X4 510 465 465 462 3

 85

Video5 X4 327 181 181 56 125

4.4.4. SVM – FaceNet Embedding

Following are the statistics of unlabeled and unseen dataset tested through our SVM model trained over FaceNet embedding data.

Table 11: SVM model with FaceNet embedding video analysis statistics

Video Number Labeled With Number of total

Frame

Face Detected

in Number of

Frame

Face Recognized

in Number of

Frame

Correct Number of

Recognition

Incorrect Number of

Recognition

Video1 X4 245 219 219 173 46

Video2 X3 223 207 202 9 193

Video3 X31 347 316 310 59 251

Video4 X4 240 238 237 237 0

Video5 X4 295 161 161 81 80

4.4.5. FaceNet

Following are the statistics of unlabeled and unseen dataset tested through FaceNet model.

Table 12: FaceNet video analysis statistics

Video Number Labeled With Number of total

Frame

Face Detected

in Number of

Frame

Face Recognized

in Number of

Frame

Correct Number of

Recognition

Incorrect Number of

Recognition

Video1 X4 245 219 219 182 37

 86

Video2 X3 268 252 247 219 28

Video3 X31 341 315 309 66 243

Video4 X4 510 465 465 463 2

Video5 X4 327 181 181 93 88

 87

4.5. Comparison with moving accumulator

Following analysis is carried out for all the models and represented in tabular format. this analysis is done for down samples images by factor 1, in

short process the actual image received from camera frames and we have used an accumulator of size 10 in the post processing to store the past

recognized faces for future recognition and we have seen a better performance as compared to other experiments.

4.5.1. CNN Model

Following are the statistics of unlabeled and unseen dataset tested through CNN model.

Table 13: CNN Model video analysis statistics

Video Number Labeled With Number of total
Frame

Face Detected
in Number of

Frame

Face Recognized
in Number of

Frame

Correct Number of
Recognition

Incorrect Number of
Recognition

Video1 X4 245 219 219 185 34

Video2 X3 219 203 197 181 16

Video3 X31 362 316 311 310 1

Video4 X4 511 465 465 462 3

Video5 X4 327 181 181 85 96

 88

4.5.2. Inception 1b

Following are the statistics of unlabeled and unseen dataset tested through Inception 1b model.

Table 14: Inception 1b model video analysis statistics

Video Number Labeled With Number of total

Frame

Face Detected

in Number of

Frame

Face Recognized

in Number of

Frame

Correct Number of

Recognition

Incorrect Number of

Recognition

Video1 X4 245 219 219 93 126

Video2 X3 221 205 199 180 19

Video3 X31 309 309 303 302 1

Video4 X4 504 466 465 463 2

Video5 X4 264 147 147 55 92

4.5.3. SVM – Inception 5b Embedding

Following are the statistics of unlabeled and unseen dataset tested through SVM and Inception5b embedding model.

Table 15: SVM model with inception 5b embedding video analysis statistics

Video Number Labeled With Number of total

Frame

Face Detected

in Number of

Frame

Face Recognized

in Number of

Frame

Correct Number of

Recognition

Incorrect Number of

Recognition

Video1 X4 245 220 219 192 27

Video2 X3 229 213 208 102 106

Video3 X31 326 316 310 303 7

Video4 X4 510 465 465 462 3

 89

Video5 X4 327 181 181 75 106

4.5.4. SVM – FaceNet Embedding

Following are the statistics of unlabeled and unseen dataset tested through our SVM model trained over FaceNet embedding data.

Table 16: SVM model with FaceNet embedding video analysis statistics

Video Number Labeled With Number of total

Frame

Face Detected

in Number of

Frame

Face Recognized

in Number of

Frame

Correct Number of

Recognition

Incorrect Number of

Recognition

Video1 X4 245 219 219 173 46

Video2 X3 223 207 202 9 193

Video3 X31 347 316 310 59 251

Video4 X4 240 238 237 237 0

Video5 X4 295 161 161 81 80

4.5.5. FaceNet

Following are the statistics of unlabeled and unseen dataset tested through FaceNet model.

Table 17: FaceNet video analysis statistics

Video Number Labeled With Number of total

Frame

Face Detected

in Number of

Frame

Face Recognized

in Number of

Frame

Correct Number of

Recognition

Incorrect Number of

Recognition

Video1 X4 245 219 219 182 37

 90

Video2 X3 268 252 247 219 28

Video3 X31 341 315 309 66 243

Video4 X4 510 465 465 463 2

Video5 X4 327 181 181 93 88

 91

4.6. Losses

4.6.1. CNN Loss Function

Following loss graph shows the gradient descent and loss function graph of Convolutional Neural Network

training. In this training process we have used the adam optimizer and softmax cross entropy as loss

function. We have seen that the loss function approaches to zero after 41st iteration.

Figure 42: CNN loss function

4.6.2. Inception 1b Loss Function

Following loss graph shows the gradient descent and loss function graph of Inception 1b model training. In

this training process we have used the adam optimizer and softmax cross entropy as loss function. We

have seen that the loss function approaches to zero after 38th iteration.

 92

Figure 43: Inception 1b loss function

4.6.3. Inception 5b Loss Function

Following loss graph shows the gradient descent and loss function graph of inception 5b model training. In
this training process we have used the adam optimizer and softmax cross entropy as loss function. We

have seen that the loss function approaches to zero after 46th iteration.

Figure 44: Inception 5b loss function

 93

4.7. Validation Accuracy

Validation accuracy is measured in every iteration of deep learning model training. This accuracy shows

that how our model is getting trained over the dataset iteratively and at each stage of training how well our

model is.

4.7.1. CNN Validation Accuracy

Following validation accuracy curve have been observed for CNN3 model. It reaches to 85% validation

accuracy at 41st iteration where the loss is zero and we have stopped our training process. Its shows that

the learning process has been getting better and better over the iteration.

Figure 45: CNN validation accuracy curve

 94

4.7.2. Inception 1b validation accuracy

Following validation accuracy curve have been observed for inception 1b model. Accuracy curve

approaches to 90% mark at 38th iteration where the loss is zero and we have stopped our training process.

It’s also shows that the learning process has been getting better and better over the iteration.

Figure 46: Inception 1b validation accuracy curve

4.7.3. Inception 5b Validation Accuracy

Following validation accuracy curve have been observed for inception 5b model. Accuracy curve

approaches to 88% mark at 46th iteration where the loss is zero and we have stopped our training process.

It’s also shows that the learning process has been getting better and better over the iteration

 95

Figure 47: Inception 5b validation accuracy curve

4.8. Conclusion

All the model has been trained with same dataset and the same number of classes. We have seen our

models outperforms some of the state of art model and previous implemented model FaceNet in some

scenarios. Section 4.4 and 4.5 has the statistics of the analysis for unseen video.

Our CNN and Inception 1b model accuracy which beats the previous state of art models like FaceNet for

90% and 91% respectively and outperforms FaceNet model in some scenarios when the lighting condition

is very good, and faces are clearly visible.

With the use of weighted accumulator in the post processing stage also improves the recognition process

as compared to the without accumulator.

 96

4.9. Future Work

There are numerous opportunities for future work in moving object detection and face recognition. The most

time-consuming part of our research is training deep learning architecture every time when new data set

arrives, only if we don’t have SVM trained for embedding. I would like to work on this system and improve

it further on face recognition and moving object identification as well as object recognition apart from faces.

The following improvements can be achieved as follows

• Implement triplet loss function to test the accuracy of the model.

• This system can be enhanced to identify the moving objects rather than only face. It is designed so

that, we can train any number of class and visualize in the software as well to test the accuracy.

• It can train classes and would like to improve it by adding sub class prediction. The sub class would
be facial pose estimation.

• As we have implemented the reporting tool inside this software, we could improve it to display the

video analysis report in future to a great extent.

• Design capsule network to test the face recognition system, as this is the recent paper published
by Dr. Hinton.

• Currently our system could detect and recognize any number of face from camera frame or already

existing videos. But our system could be improved or enhanced to detect and recognize the small

faces which are far away from the view point.

• Currently we have implemented the weighted accumulator for one face recognition, this feature can
be enhanced for any number of face recognition.

4.10. Bibliography

1. Vuong Le, Jonathan Brandt, Zhe Lin, Lubomir Boudev, Thomas S. Huang. Interactive Facial
Feature Localization

2. Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, Senior Member, IEEE, and Yu Qiao, Senior Member.

Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks. IEEE

3. Going deeper with convolutions, Christian Szegedy Google Inc. Wei Liu University of North

Carolina, Chapel Hill Yangqing Jia Google Inc. Pierre Sermanet Google Inc. Scott Reed University

of Michigan Dragomir Anguelov Google Inc. Dumitru Erhan Google Inc. Vincent Vanhoucke Google

Inc. Andrew Rabinovich Google Inc. CVPR 2014
4. David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and functional

architecture in the cat’s visual cortex. The Journal of physiology, 160(1):106, 1962.

 97

5. Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of

pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–202, 1980.

6. Chunhui Gu, Joseph J Lim, Pablo Arbelaez, and Jitendra Malik. Recognition using regions. In

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1030–
1037. IEEE, 2009

7. Apple Inc. Kernel convolution, 2011.

8. Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Re- turn of the devil in

the details: Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531, 2014.

9. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling in deep

convolutional networks for visual recognition. In Computer Vision–ECCV 2014, pages 346–361.

Springer, 2014.

10. Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi. You Only Look Once: Unified, Real-
Time Object Detection.

11. GOOGLE Object Detection API. https://research.googleblog.com/2017/06/supercharge-your-

computer-vision-models.html

12. Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna.

Rethinking the Inception Architecture for Computer Vision.

13. Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor

Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. arXiv preprint

arXiv:1310.1531, 2013
14. M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual

Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html.

15. Sergey Ioffe, Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift

16. FaceNet : A Unified Embedding for Face Recognition and Clustering, Florian Schroff, Dmitry

Kalenichenko, James Philbin, CVPR 2015.
17. Rapid Object Detection using a Boosted Cascade of Simple Features, Paul Viola; Michael Jones

in COMPUTER VISION AND PATTERN RECOGNITION 2001

18. Dynamic Routing Between Capsules; Geoffrey E. Hinton; Google Brain; CVPR 2017

19. ImageNet Classification with Deep Convolutional Neural Networks; Alex Krizhevsky, Ilya Sutskever

and Geoffrey E. Hinton

20. Tensorflow API documentation, for learning of tensorflow related functionality for object detection

and recognition and basic concept of deep learning, https://www.tensorflow.org/api_docs/

 98

Appendix A

User Manual

Our Face detection and recognition system consists of 6 major application processes.
1. Display Frame

2. Capture Faces

3. Preparing data for training

4. Training of deep learning model user interface

5. Training from console

6. Recognize Faces

Display Frames
This action, is developed to display the frames captured from camera or video in the application screen. In

the main screen of GUI application if user deselects the “Recognizer” and “Capture” check box and clicks

the start button in the toolbar. The application start displaying the real time camera frame in the application
window.

To display a video, user has to select the “video file” option in the Process Flow setting window, which can

be open by hot key Ctrl+A. After selecting the video file option from the setting window. Application will

open one browse window to select a video file. Supported video files are .avi, .mov, .mpeg and .mp4. Then

the application we will read the frames in the video and displays on the screen. At point of time user can

change the video file by clicking the “Change Video File” button the setting window (Ctrl+A).

Capture Faces
As frames gets displayed on the from source, by this functionality user can able to instruct application to
capture the face that has been detected, for future training. To enable the capture functionality following

steps has to be performed.

Note:

1. Setting window can be accessed through hot key Ctrl+A or by selecting toggle button from the

menu bar.

2. Capture Window can be accessed through the hot key Ctrl+C or by selecting toggle button from

the menu bar as Capture, from View menu.

Following are the steps for capturing faces

 99

1. Select the Source from setting window video file or camera from

2. Select the “Capture” checkbox from the toolbar from the main window.

a. Selecting both the “Recognize” and “Capture” option from main window, also captures the

faces, however this time the recognizer functionality is also in action.
b. If the “Capture” alone is selected, at this time only capture process will run.

3. Click the “Start” button to start the capture process

4. Capture process options can be changed from capture window as well as from setting window.

Following are the options can be changed

5. “Face to capture” which has two options such as “Near to Camera” or “All faces”.

a. Near to camera: captures the face which is nearer to camera

b. All faces: captures all the identified faces in the viewing frame.

6. “Detector” which can be changed from setting window
a. Changing the face detector library for capture process by selecting the detector from the

setting window as Dlib or MTCNN for face detector.

7. “Size of the face” can be changed by altering “padding slider” from the setting window in detector

post processing block

8. After the face is captured, it will get stored in the following folder.

a. data -> images -> captured -> <date:time>

b. There will be a current date time folder, in which all the captured faces will be stored for

that period of time. Along with the face images, system will the store the video file for that
time period.

Preparing data for training
For a new user the preparation of data is very important. Following are the steps to start the training process

from scratch.

1. Open the application app.py

2. Select capture option from the main window and capture as many faces as you can.

a. Remember while capturing the face images of a person. Only one person has to be present

in front of camera. Once the faces of one person is captured then click the stop button and

start it again for next person and so on.
3. After the capture process is completed. You can find captured face images under folder “data-

>images->captured-> <<many folders with date and time>>”. There will be many folders

depending on how many time the capture process has ran. Each folder holds a particular person

image. Make sure specific person’s faces images are not duplicated in multiple folders.

4. Then move or copy all the folders from captured folder to the “data->images->processed” folder.

5. After the data is placed in the processed folder, the class labels of the person will be chosen as per

the folder names.

 100

6. Then follow the steps mentioned in the “Training of deep learning model user interface” and

“Preparing data for training” section to start the training process.

Training of deep learning model user interface
This module is graphical user interface for training process. Following are the steps to use the GUI for

training of deep learning models or svm models
1. Run train_gui.py from base folder

2. This screen contains for each stage of training process and with their configurations such as

training method selection, data preparation, pre-processing, data augmentation, data separation,

hyper parameter selection, model preparation and training blocks

3. Initially all the block will be populated with the default configuration as per the configuration file

“configuration->application->app.config”

4. First block is “Deep Learning Architecture”, it contains following options

a. Training method selection
i. Neural Network

ii. SVM

b. Neural Network model selection

i. NN_CNN_3 etc.

c. SVM Model selection

i. SVM_RBF_INCEPTION_5B etc.

5. Second block is “Data Preparation”, it contains following options
a. Data Folder

i. Raw data folder: used for data pre-processing task

ii. Processed data folder: from which the training face images will be loaded into the

system

b. Information Button: Click to view the data information those are loaded for training process

i. Number of class labels for training

ii. Each class has how many faces to be trained

6. Third block is “Pre-Processing”, it contains following options
a. Normalization: select the normalization method

b. Resize: select the resize height and width for the training

7. Fourth block is “Augmentation”, which contains following options

a. Rotation Angle: how much of rotation is required for augmentation

b. Vertical and Horizontal flip: is vertical and horizontal flip is required for the augmentation

process.

c. Shearing range, zoom range, fill mode, etc.

 101

d. Information button: to visualize the augmentation details about the data after the data get

augmented

8. Fifth block is “Data Separation”, which contains the following options

a. Separation logic: used for data separation
b. Percentage of Separation: Used for separation of training, validation and testing dataset

c. After the data is separated, an information block will appear with the separation details

9. Sixth block is “Hyper Parameter”, this block has following options

a. Learning Rate

b. Regularization beta

c. Dropout percentage

d. Optimizer selection

e. Loss function selection
10. Seventh block is “Model Preparation” this block is used to visualize the model is prepared as per

the configuration selected in each block and network configuration as per the configuration file for

respective model selected in the first block (All the model configuration files can be accessed from

configuration->nn_architecture folder)

11. If the model name is not listed, user has flexibility to create a new model configuration file for training

as per the configuration details mentioned in the section 3. Following are the steps to create a new

model file

a. Create a model configuration file under “configuration -> nn_architecture” folder.
b. Name the configuration file as XYZ.config, XYZ could be any name without any special

character or spaces in it.

c. Go to the configuration.py and add the same name into the respective model list

i. If the new model file is of SVM type then add the name to

self.svm_model_name_list variable

ii. If the new model is of type neural network then add the name to

self.deep_learning_model_name_list variable
12. After all the above steps are successfully completed, then the training process can be started by

clicking the “Prepare Model” button followed by “Train” button

13. The progress of the training process will be displayed in the progress bar on the top of each block.

Training from console
Training process can be carried out without the GUI as well. Following steps has to be performed for the

training of deep learning models from console.

 102

1. Update the configuration files “configuration->application->app.config” and “configuration-

>nn_architecture-><<model_name>>.config” as per the training requirements and how to update

refere to the section 3.

2. If new model is required to train, then follow the 11th step in the previous section
3. Open train.py

4. Update the following line Train(svm_model='SVM_LINEAR_FACENET', depth=3, skip=True)
a. “svm_model”: this named parameter passed to train SVM model, the value passed to this

parameter is the configuration file name present in “configuration->nn_architecture” folder.

b. “deep_learning_model”: this named parameter is passed to train Deep learning model, the

value passed to this parameter is the configuration file name present in “configuration-

>nn_architecture” folder

c. “depth”: this named parameter is used to instruct the training process to use the depth of
the image for training, the default depth value is 1.

i. 1-grayscale image

ii. 3-RGB image

d. “skip”: if this parameter is set to true then system start to train the FaceNet out of the box

Linear SVM model from their application folder

5. Run the train.py from base folder

Recognize Faces
Third and the most important feature of our system is recognizing person. “Recognize” checkbox in the
main window has to be selected to enable the recognition task. The system starts recognizing the person

after clicking the start button and the recognized person details can be seen in the prediction box (Ctrl+P

to open the prediction box window if it not visible).

This module also has some options, following are the options those can be accessed and changed as per

the user need in real time.

1. Number of Recognition: this option instruct system, to recognize those many faces in the frame if

available. This preference has 1 to 5 and all option.
2. Number of Prediction: this option instruct system, to change the number of prediction to be viewed

in the prediction frame. Like, if the Number of Prediction is selected as 2, then in the prediction

frame, each detected face will have top 2 predictions displayed on the screen.

3. Change Camera: by changing this option system will swap the available camera connected to

computer for the input. Default is 0.

 103

4. Face Recognition Method: this option will change the method of recognition in the application. By

default, this option is set to “nn”. All the recognition activity will go through CNN model. We have

other options like

a. “cnn”: CNN model
b. “inception1b”: inception 1b model

c. “inception5b”: inception 5b model

d. “svm”: svm model trained over inception 5b embedding

e. “svm_FaceNet”: SVM model trained over FaceNet embedding

f. “FaceNet”: FaceNet out of the box recognition platform trained over our dataset.

5. Face Detection method: On the selection of detector, the face detector will be changed in the

application in real time. Two detector API have been used such as MTCNN and DLIB.

6. Capture Report: On the selection of this combo box to Yes, video analysis report for the period of
recognition activity will commence.

7. Accumulator Status: On the selection of this checkbox, post processing module will start to use the

accumulator functionality

8. Accumulator Size: On the selection of accumulator size, post processing module will accumulate

those many recognized faces before it produces the final prediction.

9. Rotation of face: By selecting this option user can instruct the system to pass the rotated face for

recognition task instead of passing the original tilted face.

10. Weighted Accumulator: On the selection of this checkbox, post processing module will start to use
the weighted accumulator for the recognition task.

11. Display Feature Points: On the selection of this checkbox, the feature points such as eyes, nose

and mouth point will be displayed on screen.

